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Abstract. Current BDI agent frameworks often lack necessary mod-
ularity, scalability and are hard to integrate with non-agent applica-
tions. This paper reports ongoing research on LightJason, a multi-agent
BDI framework based on AgentSpeak(L), fine-tuned to concurrent plan
execution in a distributed framework; LightJason aims at efficient and
scalable integration with existing platforms. We state requirements for
BDI agent languages and corresponding runtime systems, and present
the key concepts and initial implementation of LightJason in the light
of these requirements. Based on a set of requirements derived for scal-
able, modular BDI frameworks, the core contribution of this paper is the
definition of a formal modular grammar for AgentSpeak(L++), a mod-
ular extension of AgentSpeak(L), and its underlying scalable runtime
system. A preliminary validation of LightJason is given by means of an
example evacuation scenario, an experimental analysis of the runtime
performance, and a qualitative comparison with the Jason platform.

Keywords: Agent programming language · Scalability · Multiagent-
based simulation

1 Introduction

Agent-oriented programming (AgOP) [18] is about building systems consisting
of software agents maintaining mental states, based on declarative logical lan-
guages. The Belief-Desire-Intention (BDI) paradigm [16] has become the preva-
lent approach to AgOP and multi-agent systems (MAS). Such agent programs
consist of statements in first-order logic, allowing agents to deduce new facts,
commit to plans and eventually execute actions. A very popular language for
programming BDI agents is AgentSpeak(L) [15]. Jason [4] has been instrumen-
tal to the popularity of AgentSpeak(L) by providing a BDI agent framework that

M. Aschermann—Parts of this work were supported by the German Research Foun-
dation (DFG) through the Research Training Group SocialCars: Cooperative (De-)
centralized Traffic Management (GRK 1931).

c© Springer International Publishing AG 2017
N. Criado Pacheco et al. (Eds.): EUMAS 2016/AT 2016, LNAI 10207, pp. 58–66, 2017.
DOI: 10.1007/978-3-319-59294-7 6



LightJason 59

combines an extension of AgentSpeak(L) with an interpreter and provides inte-
grated development environment (IDE) plugins for JEdit and Eclipse. However,
analysing the level of usage of BDI agent frameworks in software engineering
practice reveals a sobering picture. A look at the major programming indices
Tiobe [20], Redmonk [17] and PopularitY [13], which measure the popularity
of programming languages, shows that the world of practice is still dominated
by imperative and object-oriented languages. Only Tiobe lists any logic-based
languages: The major proponent Prolog is ranked 33rd. AgOP languages are not
represented at all. Furthermore, in their study of MAS application impact, [12]
show that among the agent languages, the only ‘true’ BDI language with some
application impact is Jack, a proprietary language, while the use of languages
like Jason or GOAL is restricted to academic prototypes. The hypothesis under-
lying our research is that part of the reasons for this dire state are elementary
shortcomings of AgOP languages regarding modularity, maintainability, software
architecture interoperability, performance, and scalability. This paper reports
ongoing research on a multi-agent framework based on AgentSpeak(L) which
aims at an efficient and scalable integration into existing platforms, enabling
non-agent-aware systems to incorporate agent-based optimisation techniques
to solve distributed problems. We present the initial version of LightJason, a
BDI agent framework fine-tuned to concurrent plan execution in a distributed
environment.1

2 Requirements and State of the Art

Requirements. Over the past years, we have gained experience in modelling
and engineering multi-agent applications based on the BDI paradigm (most
notably in domains of traffic and industrial business processes), but also with
developing agent programming languages and runtime platforms. While we con-
sider the BDI abstraction appealing and intuitive for modelling sociotechnical
systems, we were often confronted with the limitations of today’s agent plat-
forms. From these limitations, we derived a number of requirements for BDI
agent platforms, which extend the list of general requirements from [4, p. 7]) and
are summarised as follows: (1) Integrability in existing software architectures.
(2) Modularisation of agents and underlying data structures. (3) Agent scripting
language with strict language syntax. (4) Action checking during parsing time,
not during run time. (5) Avoid action-centric reasoning cycle as argued by [1].
(6) Parallel execution of plans in separated execution tasks. (7) Agent generation
mechanism for easy instantiation of large numbers of agent. (8) Hierarchically
structured belief bases and actions in semantic groups.

Discussion of State of the Art. The main concepts of BDI frameworks are
mostly based on the Procedural Reasoning System (PRS) [7,8] and the first
robust implementations such as dMARS [6]. As [10] and subsequent surveys

1 For a much more comprehensive version of this short paper, we refer to [2].
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point out, virtually all existing multi-agent frameworks are not designed for pro-
ductive use (performance, scalability) and easy integration with specific domains.
The design of agent-based scripting languages leads to challenges in maintain-
ability; e.g. Bordini et al. [3, p. 1300] state that: “[T]he AgentSpeak(L) code is
not elegant at all. The resulting code is extremely clumsy because of the use of
many belief addition, deletion, and checking (for controlling intention selection)
[. . . ] [and] thus a type of code that is very difficult to implement and maintain.”
Though this is a paper from 2002, the situation has not changed much. MAS
platforms like Jason provide a separate runtime system, these approaches raise
issues regarding scalability and consistency, especially when combining existing
systems with MAS. In the case of Jason, this also can lead to ill-defined execu-
tion behaviour of agents, especially regarding clarity when an iteration of the
agent control cycle has ended (see requirement 2 above).

In this paper, we focus on the comparison with AgentSpeak(L)/Jason as the
most prominent (open-source) representative of BDI languages/platform. We
compared the legacy Jason 1.4 branch, which is still in use in our research group
for small-scale agent-based traffic simulation (e.g. [5]), and the quite recently
published Jason 2.0 branch with our requirements. Jason 1.4 lacks support for
all the above-mentioned requirements except a partially support for modular
agents (requirement 2), due to its include functionality. Jason 2.0 additionally
supports a hierarchical structuring of agents (requirement 2), but this feature
is limited to beliefs and plans2. Also, one new feature of Jason 2.0 is parallel
execution of plans [22], which addresses requirement 2. However, like Jason 1.4,
Jason 2.0 still heavily relies on synchronised data structures in their architecture
design, implying slow-downs due to locking and CPU context switches during
each agent cycle. In their approach adding concurrency to the reasoning cycles
in Jason, [22] provided benchmark results regarding scalability; their test setup
with only two CPU cores and synthetic benchmarks (e.g. nested for-loops and
Fibonacci sequence) resulted in a linear increase in execution time for up to 500
agents, which would also be expected for single-thread applications.

In order to tackle the above requirements, we start from the architecture
design of Multi-Agent Scalable Runtime platform for Simulation (MASeRaTi)
[1], as an attempt to tackle the scalability issues in modern MAS. We created a
modified, light version of AgentSpeak(L) (named AgentSpeak(L++)) and build
a Java-based implementation of the MASeRaTi architecture.

3 LightJason Architecture and Data Model

There is broad agreement in the AgOP literature that “[a] multi-agent system
is inherently multithreaded, in that each agent is assumed to have at least one
thread of control [21, p. 30]” meaning that agents should be able to pursue more
than one objective at the same time. To implement this conceptual notion of con-
currency at the technical level, we refer to the basic notion of a thread [19] as a
“lightweight process”, and that all threads are running within the same process.
2 https://git.io/vXqup.

https://git.io/vXqup
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Thus, in LightJason, an agent is be controlled by a thread during the reason-
ing process and stores all data for the reasoning internally, by following the
thread-local-storage model. Our general approach in LightJason is to conceive
AgOP as a combination of Imperative, Object-Oriented and Logic Programming,
see [2, p. 6]. To get into a more detailed view, an agent is not one single soft-
ware component but it is split up into two different elements, i.e. agent-mind
and agent-body. This approach is a reverence to the Mind-Head-Body model
proposed by Steiner in [9]. The symbolic representation of an agent’s mind is
stored as logic literals, as in Prolog or AgentSpeak(L). All literals of LightJason’s
agents are stored within a belief base for getting access during runtime. During
execution the agent asks for particular literals, initiating a unification process.
As this process is run many times, we optimised the internal data structure rep-
resenting the logic elements for parallel execution and avoiding cost-intensive
back-tracking. The Imperative Programming paradigm is used to describe the
execution behaviour of agents in LightJason (similar to the Patterns of Behav-
iour (PoBs) in the InteRRaP architecture [11]). In contrast, to InteRRaP, we
provide for parallel execution of PoBs, so that actions, assignments or expres-
sions can be run or evaluated in parallel. Finally, LightJason is Java-based; the
internal representation of agents is written in an Object-Oriented Programming
(OOP) style with concurrent data structures, allowing us to create inheritable
agent objects running in a multithreading context and easier integration with
domain-specific software systems. To further parallelise execution and gain more
scalability, we made extensive use of state-of-the-art Java techniques, such as
lambda-expressions3 and streams4.

4 AgentSpeak(L++) Language Definition

We regard an agent as a hybrid system, which combines different programming
language paradigms, allowing programmers to describe complex behaviour. This
abstract point of view allows a flexible structure – also for non-computer sci-
entists – to parameterise or specify a software system. The whole syntax was
designed as a logic programming language, by which all elements could be reduced
to terms5 and literals6, defining a symbolic representation of behaviour and
(environment) data. This allows modelling a generalised multi-agent system,
which can later be concretised for different applications, i.e. scenarios and sup-
ports the agent programmer to design the behaviour by scripting beliefs, rules,
plans and actions. Our first contribution is the definition of a scripting lan-
guage based on a modified and extended AgentSpeak(L) grammar. We modu-
larised the grammar into subgrammars to obtain a more abstract structure of
the agent programming language. The main grammar definition of LightJason is
hierarchically structured into the modules depicted in Fig. 1 and is explained in
3 http://www.webcitation.org/6lfbGeOlc.
4 http://www.webcitation.org/6lfbNP7nX.
5 Term: https://git.io/viKWQ, EBNF: https://git.io/viKWx.
6 Literal: https://git.io/viKlt, EBNF: https://git.io/viKlI.

http://www.webcitation.org/6lfbGeOlc
http://www.webcitation.org/6lfbNP7nX
https://git.io/viKWQ
https://git.io/viKWx
https://git.io/viKlt
https://git.io/viKlI
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Fig. 1. Modular grammar structure

detail in [2, p. 7ff.]. This allowed us to get a more flexible parsing component,
which could be split up into a layer-based structure.

Built-in Actions. The language structure and the underlying architecture of
our implementation allows to create a flexible action interface. In comparison
to Jason, we can detect the agent is running, if the agent source code is syn-
tactically correct and all actions can be executed. If the action does not exist,
the parsing process will fail. The built-in actions are organised in packages. In
our framework we support actions related to various types of computation. For a
complete overview of these actions and how they can be implemented, we refer to
[2, p. 14] and our unit test agent complete.asl7, published in the appendix of [2].

5 Evaluation and Discussion

Evacuation Scenario. In this section we illustrate the capabilities of Light-
Jason on a grid-based evacuation scenario, where agents needed to reach an
exit to leave the grid. The AgentSpeak(L++) code for the corresponding walk-
ing agent is displayed in the listing below. For finding a route to the exit the
agent used the Jump Point Search (JPS+) with Goal Bounding [14] algorithm,
which, after an initial O(n2) preprocessing of the grid, outperforms A∗ by two to
three orders of magnitude in speed. To demonstrate the clarity of LightJason’s
grammar, we grouped all plans and respectively actions describing a moving
behaviour, e.g.

+! movement/walk/forward <-
move/forward ();
!movement/walk/forward.

+! movement/walk/right <-
move/right ();
!movement/walk/forward.

The concrete agent with its source code is available in [2].

Preliminary Validation. To validate our results, we conducted first tests with
LightJason implementation of the evacuation scenario. The goal was to investi-
gate whether the design and implementation of LightJason leads to good scalabil-
ity and cycle consistency regarding the routing model, and number of concurrent
running agents. We chose a grid-based scenario with 250 × 250 cells on an iMac
with an Intel R© CoreTM i7-3770 and 16 GB RAM. Each agent received the same

7 https://git.io/vi67u.

https://git.io/vi67u
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Fig. 2. Number of agents plotted against cycles until all agents left the scenario.

exit destination (140, 140); it disappeared once it reached the approximate des-
tination (±10 cells). Figure 2 illustrates the run-time behaviour of the agents. It
(not surprisingly) shows that with an increasing number of agents, each agent
needs more cycles to complete its task. This can be attributed to additional
invocations of repair plans when an agent’s path got obstructed by other agents.
This scales sub-linearly up to roughly 1000 agents. After that point, the mainly
egoistic approach of each agent prevents them to find a free path to the exit,
resulting in plan-failures and necessary re-routing. From a technical perspective
we also observed that the CPU utilisation is constantly at around 70% for 15000
agents (for detailed plots we refer to [2]). The constant CPU load shows that the
workload induced by agents is distributed fairly and evenly, avoiding spikes and
idle times. Furthermore we observed a low utilisation of the JVM’s survivor space
(roughly 3.5 MB after the initialisation spike), reflecting the design in relying on
lazy bindings and LightJason’s ability to share references to concurrently used
data structures, e.g. plans, which only differ in their context and parameters.

Discussion. In this paper we presented our design and implementation of an
agent framework, introducing LightJason, an AgentSpeak(L) variant. The key
aspects we focused on were modularity, flexibility, scalability and deterministic
execution behaviour. The AgentSpeak(L++) language supported by LightJason
reflects AgentSpeak(L) as implemented by [4], we differ on a number of aspects,
in terms of the language features and – to a larger extent – in the software archi-
tecture underlying the implementation. Among others the most notable addi-
tions to AgentSpeak(L) are lambda-expressions, multi-plan definitions, explicit
repair-planning, multi-variable assignments, parallel execution and thread-safe
variables. When considering to port an existing Jason code to LightJason it is
important to understand, that by design in LightJason all plans which conditions
evaluate to true get instantiated. Here we argue, that in comparison to Jason,
a non-synchronised system’s behaviour results in a considerably more plausible
multi-agent system, considering the requirements formulated by [21].

Additional Features. Most of the AgentSpeak(L) expressions find their equiv-
alents in LightJason’s AgentSpeak(L++). Major additions are expressions for
parallel execution and unification (@). As it is in general possible to design an
agent to run plans sequentially, we argue, that for performance reasons it is
sensible to make use of parallel execution whenever possible.
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Jason 2.0. With the quite recent release of Jason 2.0, there now exist new
features8 in Jason which are similar, but independently developed, to some of
our own. Jason 2.0 introduces modules and namespaces to modularise beliefs,
goals and plans. In our approach we go even further by integrating those con-
cepts deeply into the fundamental agent grammar. Thus it is possible for us
to, for example, modularise actions, functions or beliefs by building hierarchical
structures in arbitrary depth allowing greater flexibility than in Jason. Another
new feature of Jason 2.0 are concurrent courses of actions [22]. As parallel exe-
cution is a fundamental aspect of scalability, we made this an integral part of
LightJason’s architecture by mainly using state-of-the-art Java 1.8 developing
techniques and features to enable concurrency at a very fine granularity.

6 Conclusion and Outlook

The contribution of this paper is a flexible agent programming framework Light-
Jason, which can be easily integrated into existing systems. The key features of
LightJason are the simplification of the agent’s reasoning cycle and the sup-
port of some important requirements including modularity, maintainability, and
scalability, combined with state-of-the-art techniques in software development.
At the core of LightJason is AgentSpeak(L++), a declarative agent scripting
language extending Jason. We provide a formal grammar definition describing
the features of AgentSpeak(L++). For the sake of usability, LightJason sup-
ports many built-in actions and a structure to load actions in a pre-processing
step of the parser. Thus, by parsing the agent’s source code it is possible to
check that the agent is syntactically correct and can be executed. We further
provide generator structures that enable automated creation of large numbers
of agents which can be further customised by the user. We also support a fully
concurrent and parallel agent execution model of an agent. This paper describes
ongoing work. Our next steps will involve a formal definition of the semantics of
AgentSpeak(L++). The reader will have noticed that AgentSpeak(L++) does
not contain language elements for communication. This is intentional, because
in our view, communication is a matter of the runtime system rather than of
the compilation mechanism. Yet, agent communication is one of the next fea-
tures to be added to LightJason. Also, while we performed an initial qualitative
comparison with Jason, a thorough experimental benchmarking remains to be
performed. Our project can be found under http://lightjason.org providing fur-
ther documentation9 and source code10.
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1. Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: An architecture for
scalable simulation of systems of cognitive agents. Int. J. Agent-Oriented Softw.
Eng. 5(2–3), 232–265 (2016)

8 https://git.io/vXmeK.
9 http://lightjason.github.io/AgentSpeak/index.html.

10 https://github.com/LightJason/AgentSpeak.

http://lightjason.org
https://git.io/vXmeK
http://lightjason.github.io/AgentSpeak/index.html
https://github.com/LightJason/AgentSpeak


LightJason 65

2. Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired by
Jason. IfI Technical Report Series IfI-16-04, Department of Informatics, Clausthal
University of Technology (2016)

3. Bordini, R.H., Bazzan, A.L., de O Jannone, R., Basso, D.M., Vicari, R.M., Lesser,
V.R.: AgentSpeak(XL): efficient intention selection in BDI agents via decision-
theoretic task scheduling. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 3, pp. 1294–1302. ACM
(2002)
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