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Abstract. Expansion and equivalence relations have been explored in
the settings of abstract argumentation. However, in terms of structured
arguments, expansion and equivalence relations have not been explored
in the settings of structured arguments based on logic programs. In this
paper, we draw connections between resulting argumentation frameworks
from logic programs considering expansion and equivalence relations. We
show that by considering different methods for constructing arguments
and defining attack relations, one can define different expansion and
equivalence relations between the resulting argumentation frameworks
from logic programs. Moreover, we extended results from abstract argu-
mentation into structured arguments based on logic programs.

1 Introduction

Argumentation has been regarded as a non-monotonic reasoning approach since
it was suggested as an inference reasoning approach [22]. Dung showed that argu-
mentation inference can be regarded as a logic programming inference with nega-
tion as failure [10]. Indeed logic programming with negation as failure has been
playing an important role in the developments of argumentation. For instance,
it has been shown that well-accepted argumentation semantics can be character-
ized in terms of the inference of logic programming semantics1. Moreover, some
of the well-performed argumentation solvers are based on logic programming
solvers [8]. We can observe that most of these developments have been done
in the settings of abstract argumentation. This means that these developments
consider arguments without an internal structure. Hence the use of these devel-
opments in applications which require arguments with an internal structure is
not straightforward.

We can argue that depending of the specification language of a knowledge
base and the purpose of the arguments, one can define different internal struc-
tures of an argument [1,2,10,12,17]. In the settings of logic programming with
negation as failure, one can find different approaches for constructing structured

1 A summary of these characterizations can be found in Sect. 4 of [20].
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arguments [5,10,16,24]. Structured arguments based on logic programs are usu-
ally characterized by a tuple of the form 〈S,C〉 where S is called the support of
the argument and c is called the conclusion of the argument. S is a subset of
a logic program, which derives the conclusion c. The main differences between
the different approaches for constructing arguments rely on the conditions which
have to satisfy S. There are approaches which only ask for syntactic constraints
on S [24] and other approaches ask for semantic-based inference conditions on S
[16]. Hence, depending on the approach for constructing arguments, one can con-
struct different sets of arguments from the same knowledge base. For instance,
let P be the following simple program: Moreover, these sets of arguments con-
structed from a knowledge base will affect both the inferred information from a
given knowledge base and the quality of the inferred information2.

Against this background, we draw connections between resulting argumen-
tation frameworks from logic programs considering expansion and equivalence
relations [1,4,9,19]. Given the dynamics of argumentation processes, e.g., dia-
logues between rational agents [18], equivalence and expansion relations in argu-
mentation have emerged as a relevant research thread in order to compare and
relate different argumentation frameworks. In this paper, we focus our atten-
tion to a quite common syntactic-based approach for constructing arguments
[21,24] and a semantic-based approach for constructing arguments [16]. We will
show that considering the different sets of arguments which can be constructed
following these approaches, one can define expansions between argumentation
frameworks resulting from a logic program. We will also observe that the way
of defining attack relations between arguments has consequences in the struc-
ture of the resulting argumentation frameworks. We introduce the property of
sub-argument transitive attack property which is not fulfilled by the syntactic-
based approach for defining attacks between arguments. On the other hand, this
property is fulfilled by the semantic-based approach for defining attacks between
arguments. In the last part of the paper, we identify a class of logic programs
which suggests equivalences in terms of the outputs of the resulting argumenta-
tion frameworks.

Let us observe that to the best of our knowledge, the results presented in
this paper are the first results which connect structured-based argumentation
based on logic programming and expansion relations. It worth mentioning that,
in the literature of formal argumentation, expansion and equivalence relations
have been explored mainly in the settings of abstract argumentation.

The rest of the paper is split as follows: In Sect. 2, a basic background about
logic programming and argumentation theory is introduced. In Sect. 3, we iden-
tify relevant differences of the resulting argumentation frameworks from a logic
programming by considering different approaches for constructing arguments.
In Sect. 4, we show properties of the argumentation frameworks resulting from
a logic program w.r.t. expansion relations and equivalence relations in terms of
outputs. In the last section, we outline our conclusions and future work.

2 By quality of the inferred information, we mean the satisfaction of conditions such
as consistency [7].
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2 Background

In this section, a basic background on logic programming and argumentation
theory is presented. In terms of logic programming, the class of extended logic
programs and the stable model semantics are defined. Regarding argumentation
theory, basic definitions on argumentation semantics and relations of expansion
and equivalence between argumentation frameworks (based on arguments with-
out an internal structure) are presented.

We are assuming that the reader has a basic knowledge on classical logic
and logic programming with negation as failure. Indeed, by space limitation,
concepts such as interpretation, model, minimal model, stratified logic programs
are not defined. For an introduction of these concepts, we encourage the reader
to see [3].

2.1 Extended Logic Programs

Let us introduce the language of a propositional logic, which is constituted by
propositional symbols: p0, p1, . . . ; connectives: ∧,←,¬, not,�; and auxiliary
symbols: ( , ), in which ∧,← are 2-place connectives, ¬, not are 1-place con-
nectives and � is a 0-place connective. The propositional symbols, the 0-place
connective � and the propositional symbols of the form ¬pi (i ≥ 0) stand for the
indecomposable propositions, which we call atoms, or atomic propositions. The
atoms of the form ¬a are also called extended atoms in the literature. In order
to simplify the presentation, we call them atoms as well. The negation symbol
¬ is regarded as the so-called strong negation in the Answer Set Programming
literature [3], and the negation symbol not as negation as failure. A literal is an
atom, a (called a positive literal), or the negation of an atom not a (called a
negative literal). A (propositional) extended normal clause, C, is denoted:

a ← b1 ∧ · · · ∧ bj ∧ not bj+1 ∧ · · · ∧ not bj+n (1)

in which j +n ≥ 0, a is an atom, and each bi (1 ≤ i ≤ j +n) is an atom. We use
the term rule as a synonym of clause indistinctly. When j+n = 0, the clause is an
abbreviation of a ← � (a fact), such that � is the propositional atom that always
evaluates to true. In a slight abuse of notation, we sometimes write the clause (1)
as a ← B+∧notB−, in which B+ := {b1, . . . , bj} and B− := {bj+1, . . . , bj+n}. An
extended logic program P is a finite set of extended normal clauses. When n = 0,
the clause is called an extended definite clause. By LP , we denote the set of atoms
which appear in P. The handling of strong negation in our logic programs will be
done as it is usually done in Answer Set Programming literature [3]. Essentially,
each atom of the form ¬ a is replaced by a new atom symbol a

′
that does not

appear in the language of the program. A program without extended atoms
will be called a normal logic program. Therefore, we can induce a normal logic
program from an extended normal logic program by replacing each extended
atom with a new symbol. For instance, let P be the program: a ← q; ¬q ← r,
then, by replacing each extended atom with a new atom symbol, we will have:
a ← q; q

′ ← r.
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In the literature, different logic programming semantics have been proposed
for capturing extended logic programs [13,14]. In this paper, the stable model
semantics is considered in order to build arguments. Stable model semantics is
one of the most influential logic programming semantics in the non-monotonic
reasoning community and is defined as follows:

Definition 1 [14]. Let P be a normal logic program. For any set S ⊆ LP , let
PS be the definite logic program obtained from P by deleting

(i) each rule that has a formula not l in its body with l ∈ S, and then
(ii) all formulæ of the form not l in the bodies of the remaining rules.

Hence S is a stable model of P iff S is a minimal model of PS. STABLE(P )
denotes the set of stable models of P .

2.2 Argumentation Theory

In this section, we introduce basic concepts on abstract argumentation. To this
end, the so called argumentation frameworks are introduced. Considering argu-
mentation frameworks, argumentation-based inferences have been defined in
terms of argumentation semantics [10]. Hence, some well-acceptable argumenta-
tion semantics will be defined. In the last part of this section, some definitions
about expansion and equivalence relations between argumentation frameworls
are defined.

Argumentation Semantics: We start by defining the basic structure of an
argumentation framework (AF).

Definition 2 [10]. An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR × AR.

We say that a attacks b (or b is attacked by a) if attacks(a, b) holds. Similarly,
we say that a set S of arguments attacks b (or b is attacked by S) if b is attacked
by an argument in S. We say that c defends a if b attacks a and c attacks b.

Let us observe that an AF is a simple structure which captures the conflicts of
a given set of arguments. In order to select coherent points of view from a set of
conflicts of arguments, Dung introduced the so-called argumentation semantics.
These argumentation semantics are based on the concept of an admissible set :

Definition 3 [10]

– A set S of arguments is said to be conflict-free if there are no arguments a, b
in S such that a attacks b.

– An argument a ∈ AR is acceptable with respect to a set S of arguments if and
only if for each argument b ∈ AR: If b attacks a then b is attacked by S.

– A conflict-free set of arguments S is admissible if and only if each argument
in S is acceptable w.r.t. S.
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Let us introduce some notation in order to define some argumentation seman-
tics. Let AF :=〈AR, attacks〉 and S ⊆ AR. S+={b|a∈S and (a, b) ∈ attacks}.

From a general point of view, an argumentation semantics σ is a function
which assigns to an argumentation framework AF a set of sets of arguments
denoted by Eσ(AF ). Each set of Eσ(AF ) is called σ-extension.

Definition 4 [6,10,11]. Let AF := 〈AR, attacks〉 be an argumentation frame-
work. An admissible set of argument S ⊆ AR is:

– a stable extension of AF (S ∈ Estb(AF )) if S attacks each argument which
does not belong to S.

– a preferred extension of AF (S ∈ Epr(AF )) if S is a maximal (w.r.t. set
inclusion) admissible set of AF .

– a complete extension of AF (S ∈ Eco(AF )) if each argument, which is accept-
able with respect to S, belongs to S.

– a grounded extension of AF (S ∈ Egr(AF )) if S is a minimal (w.r.t. set
inclusion) complete extension.

– a semi-stable extension of AF (S ∈ Ess(AF )) if S is a complete extension
such that S ∪ S+ is maximal w.r.t. set inclusion.

– an ideal extension of AF (S ∈ Eid(AF )) if S is contained in every preferred
extension of AF .

In addition to the argumentation semantics based on admissible sets,
there are other approaches for defining argumentation semantics. One of these
approaches is the approach based on conflict-free sets, e.g., [23]. Considering
conflict-free sets, Verheij introduced the so-called stage semantics:

Definition 5 Let AF := 〈AR, attacks〉 be an argumentation framework. E is a
stage extension of AF (E ∈ Estg(AF )) if E is a conflict free set and E ∪ E+ is
maximal w.r.t. set inclusion.

One can observe that given an argumentation semantics σ and an argumen-
tation framework AF , Eσ(AF ) can have more than one σ-extension. Hence, one
can define different status of an given argument w.r.t. σ.

Definition 6 (Status of arguments) [1]. Let AF := 〈AR, attacks〉 be an
argumentation framework, a ∈ AR and σ be an argumentation semantics.

– a is sceptically accepted w.r.t. σ iff a ∈ ⋂
E∈Eσ(AF ) E.

– a is credulously accepted w.r.t. σ iff a ∈ ⋃
E∈Eσ(AF ) E.

– a is rejected accepted w.r.t. σ iff a /∈ ⋃
E∈Eσ(AF ) E.

Expansion and Corresponding Equivalence Notions: The evaluation of
equivalence between argumentation frameworks considering different argumen-
tation semantics have been explored by the argumentation community [4,19].
The following definition introduces some relations of equivalence which have
been explored in the settings of abstract argumentation without considering a
particular argumentation semantics:
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Definition 7 [4]. Let AF and AF ′ be two argumentation frameworks. AF ′ is
an expansion of AF = 〈AR, attacks〉 (denoted by AF �E AF ′) iff AF ′ = 〈AR∪
AR′, attacks∪attacks′〉 where AR∩AR′ = attacks∩attacks′ = ∅. An expansion
is called

1. normal (AF �N AF ′) iff ∀a, b if (a, b) ∈ attacks′ then a ∈ AR′ or b ∈ AR′.
2. strong (AF �S AF ′) iff AF �N AF ′ and ∀a, b if (a, b) ∈ attacks′ then it

does not hold that a ∈ AR and b ∈ AR′.
3. local (AF �L AF ′) iff AR′ = ∅.

Informally speaking, an expansion of an argumentation framework suggests
the introduction of new attack relations. These new attack relations can consider
new arguments or not. Essentially, a normal expansion introduces new attack
relations such that each new attack relation considers new arguments. A strong
expansion considers only attacks of new arguments such that the new argu-
ments are not attacked by the original arguments. A local expansion considers
new attacks; but, these new attacks are identified considering only the original
arguments.

Now let us consider the ideas of equivalence between argumentation frame-
works. The following definition introduces different relations of equivalence con-
sidering the concepts of expansions and argumentation semantics:

Definition 8 [4]. Give an argumentation semantics σ. Two argumentation
frameworks AF and AF ′ are

1. standard equivalence w.r.t. σ (AF ≡σ AF ′) iff AF and AF ′ possess the same
extensions under σ, i.e. Eσ(AF ) = Eσ(AF ′).

2. expansion equivalence w.r.t. σ (AF ≡σ
E AF ′) iff for each argumentation

framework AF ∗, AF ∪ AF ∗ ≡σ AF ′ ∪ AF ∗ holds,
3. normal expansion equivalence w.r.t. σ (AF ≡σ

N AF ′) iff for each argumenta-
tion framework AF ∗, such that AF �N AF ∪ AF ∗ and AF ′ �N AF ′ ∪ AF ∗,
AF ∪ AF ∗ ≡σ AF ′ ∪ AF ∗ holds,

4. strong expansion equivalence w.r.t. σ (AF ≡σ
S AF ′) iff for each argumentation

framework AF ∗, such that AF �S AF ∪ AF ∗ and AF ′ �S AF ′ ∪ AF ∗,
AF ∪ AF ∗ ≡σ AF ′ ∪ AF ∗ holds,

5. local expansion equivalence w.r.t. σ (AF ≡σ
L AF ′) iff for each argumentation

framework AF ∗, such that AF �L AF ∪ AF ∗ and AF ′ �L AF ′ ∪ AF ∗,
AF ∪ AF ∗ ≡σ AF ′ ∪ AF ∗ holds,

Unlike expansion relations which are only concern on understanding the new
information which added to an argumentation framework, equivalence relations
also consider restrictions on how to keep the inferred information from argumen-
tation frameworks considering argumentation semantics.

Let us observe that all the concepts introduced until now are based on
abstract arguments. This means that arguments have no a internal structure.
In the following section, structured arguments are explored. These structured
arguments are constructed from knowledge bases which are expressed in terms
of extended normal logic programs.
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3 Structured Arguments

In this section, we explore two approaches for constructing arguments from logic
programs. One approach suggests syntactic-based constrains for defining the
supports of the suggested arguments [24]. On the other hand, the other approach
suggests semantic-based constrains for the supports of the suggested arguments
[16]. As we have observed in Definition 7, attack relations are quite critical for
defining expansions of argumentation frameworks. Hence, we introduce an attack
relation property which is mainly oriented to structured arguments since this
property is based on the idea of sub-arguments. The introduced property is called
sub-argument transitive attack property. We will observe that the syntactic-
based approach suggested by [24] does not fulfill the so called sub-argument
transitive attack property (see Proposition 1).

Let us start with the syntactic based approach. The following definition intro-
duces a syntactic-based approach for constructing arguments. As the authors
claim in [24], this definition of structured arguments is close related to the sug-
gested definitions by other authors [21].

Definition 9 [24]. Let P be a normal logic program. An argument A based on
P is a finite tree of rules from P such that:

1. each node (of the form c ← a1 ∧· · ·∧an ∧not b1 ∧· · ·∧not bm with n ≥ 0 and
m ≥ 0) has exactly n children, each having a different head ai ∈ {a1, . . . , an}
(1 ≤ i ≤ n) and

2. no rule occurs more than once in any root-originated branch of the tree.

An argument A will be denoted by a tuple of the form 〈S, c〉 such that S is
the set of rules that appear in the tree of A and c is the head of the rule which
appears in the root of the tree of A. Arg1P denotes the set of all the arguments
built from P according to Definition 9.

Relationships between arguments are defined by the concept of attack. Intu-
itively, an attack between arguments emerges whenever there is a disagreement
between arguments. Considering the arguments constructed according to Defin-
ition 9, the following definition of attack has been defined:

Definition 10 [24]. Let P be a normal logic program and A,B ∈ Arg1P such
that A = 〈SA, cA〉 and B = 〈SB , cB〉. We say that A attacks B if not cA appears
in SB. At1(Arg1P ) denotes the set of all the attack relationships between the
arguments belonging to the set of arguments Arg1P .

Definition 9 follows a syntactic-based approach for constructing the support
of arguments. Another option for constructing supports of arguments is to follow
a semantic-based approach. In the following definition, the stable model semantic
is considered for defining the restrictions of the support of an argument:
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Definition 11 [16]. Given an extended logic program P and S ⊆ P . ArgP =
〈S, a〉 is an argument under the stable model semantics, if the following condi-
tions hold:

1. S is a stratified logic program,
2. a ∈ M such that M ∈ STABLE(S),
3. S is minimal w.r.t. the set inclusion satisfying 2,
4. � c ∈ LP such that {c,¬c} ⊆ M and M ∈ STABLE(S).

By Arg2P , we denote the set of all the arguments built from P according
to Definition 11. Let us observe that if 〈S, a〉 ∈ Arg2P , then STABLE(S) has
exactly one stable model. Moreover, unlike Definition 9 which considers nor-
mal logic programs, Definition 11 is considering extended logic programs. It
is worth mentioning that Arg2P can be constructed considering Well-Founded-
Semantics [13].

From here on, ArgP will refer to either Arg1P or Arg2P .
One can consider also a semantic-based approach for defining attack relations

between arguments.

Definition 12 (Attack relationship between arguments). Let P be an
extended logic program. Let A,B ∈ ArgP such that A = 〈SA, cA〉 and B =
〈SB , cB〉. Let EA =

⋂
M∈STABLE(SA) M and EB =

⋂
M∈STABLE(SB) M , we say

that A attacks B if one of the following conditions holds:

1. a ∈ EA and ¬a ∈ EB.
2. a ∈ EA and a ∈ LSB

\ EB.

At2(ArgP ) denotes the set of all the attack relationships between the argu-
ments belonging to the set of arguments ArgP .

Definition 12 identifies attacks between arguments by considering the inferred
atoms of each support of the arguments. If there are inconsistencies between the
inferred atoms from the supports, attacks between the arguments are defined.
The first condition looks for inconsistencies considering strong negation. The
second condition looks for inconsistencies considering the semantic interpretation
of the atoms.

From here on, At(ArgP ) will refer to either At1(Arg1P ) or At2(ArgP ). As
we can observe, Definition 9 and Definition 11 suggest different approaches for
constructing arguments. In order to understand the differences between these
two approaches for constructing arguments, let us consider the class of normal
logic programs which is the class of logic programs in common between the
arguments constructed according to Definition 9 and the arguments constructed
according to Definition 11.

Proposition 1. Let P be a normal logic program. The following condition holds:

1. Arg2P ⊆ Arg1P .
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Proof. There are two cases to show:

(a) If A ∈ Arg2P , then A ∈ Arg1P : If A ∈ Arg2P and A = 〈S, a〉, then S is a
stratified logic program. Since S is minimal (w.r.t. set inclusion), then each
rule which belongs to S appears only once in S. It is direct to see that one
can build a three T from S considering Condition 1 of Definition 9. Moreover
the root of T is a rule of the form a ← B+ ∧ not B−. Hence, A ∈ Arg1P .

(b) ∃A ∈ Arg1P such that A /∈ Arg2P : Let us suppose that a ← not a ∈ P . Then,
〈{a ← not a}, a〉 ∈ Arg1P . However, since STABLE({a ← not a}) = {},
A /∈ Arg2P .

Let us observe that it can be the case that for a given normal logic program P ,
Arg2P = Arg1P can be true; however, At2(Arg2P ) ⊆ At1(Arg1P ) does not hold for
any normal logic program P . In order to illustrate this situation, let us consider
the following example:

Example 1. Let P be a normal logic program with the following set of clauses:

n ← a p ← c
a ← not c c ← �
We can see that Arg1P = Arg2P = {Arg1, Arg2, Arg3, Arg4} where the argu-

ments are defined as follows:

Arg1 = 〈{n ← a, a ← not c}, n〉
Arg2 = 〈{a ← not c}, a〉
Arg3 = 〈{p ← c, c ← �}, p〉
Arg4 = 〈{c ← �}, c〉
Considering the attack relations suggested by Definition 10, At1(Arg1P ) =

{(Arg4, Arg1), (Arg4, Arg2)}. On the other hand considering the attack rela-
tions suggested by Definition 12, At2(Arg2P ) = {(Arg4, Arg1), (Arg4, Arg2),
(Arg3, Arg1), (Arg3, Arg2)}.

In order to understand why At2(Arg2P ) and At1(Arg1P ) are different even
that Arg2P and Arg1P can be the same set of arguments, let us introduce the
binary relation of sub-argument.

Definition 13 (Sub-argument). Let A = 〈SA, gA〉, B = 〈SB , gB〉 be two argu-
ments. A is a sub-argument of B if and only if SA ⊂ SB.

Considering the idea of sub-arguments, the sub-argument transitive attack
property is defined as follows:

Definition 14 (Sub-argument transitive attack). Let P be a normal logic
program and A,B,C ∈ At(ArgP ) such that B is a sub-argument of A. At(ArgP )
fulfill sub-argument transitive attack property if the following conditions hold:

1. if B attacks C, then A attacks C.
2. if C attacks B, then C attacks A.
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Considering the arguments introduced by Example 1, we can see that
At1(Arg1P ) contains the attack rations in order to satisfy Condition 2 of Defin-
ition 14; however, At1(Arg1P ) does not contain the attack relations in order to
satisfy Condition 1 of Definition 14. On the other hand, At2(Arg2P ) contains all
the attack relations in order to satisfy the property of sub-argument transitive
attack. These observations can be expressed in the following proposition:

Proposition 2. Let P be a normal logic program. The following statements
hold:

(a) At1(Arg1P ) does not fulfill the property of sub-argument transitive attack.
(b) At2(Arg2P ) fulfills the property of sub-argument transitive attack.

Proof

(a) The proof is direct by Example 1 which introduces a contra-example.
(b) Direct by Proposition 5 from [16].

Now that we have defined the concepts of arguments and attacks, let us
define the concept of argumentation framework with respect to a logic program
as follows:

Definition 15. Let P be a logic program. The resulting argumentation frame-
work w.r.t. P is the tuple: AFP = 〈ArgP , At(ArgP )〉.

4 Expansion Relations and Equivalence Criteria

In this section, we show properties of the argumentation frameworks resulting
from a logic program w.r.t. expansion and equivalence relations in terms of
outputs.

Let us start observing that given a normal logic program P , AF 1
P =

〈Arg1P , At1(Arg1P )〉 and AF 2
P = 〈Arg2P , At2(Arg2P )〉, AF 2

P �E AF 1
P is false. As

we observed in Example 1, At2(Arg2P ) could contain more attack relations than
At1(Arg1P ), even though Arg2P ⊆ Arg1P holds. Hence, given that Arg2P ⊆ Arg1P
holds, an interesting question can be: can we define an expansion for AF 2

P con-
sidering Arg1P ? The answer is yes.

Proposition 3. Let P be a normal logic program, AF 1
P = 〈Arg1P , At1(Arg1P )〉,

AF 2
P = 〈Arg2P , At2(Arg2P )〉 and AF 3

P = 〈Arg1P , At1(Arg1P ) ∪ At2(Arg1P )〉. The
following relations hold:

(a) AF 1
P �L AF 3

P

(b) AF 2
P �N AF 3

P

Proof

(a) The proof is direct by the fact that At1(Arg1P ) ⊆ At1(Arg1P ) ∪ At2(Arg1P ).
(b) We start introducing the following notation: Arg = Arg1P \ Arg2P and At =

(At1(Arg1P ) ∪ At2(Arg1P )) \ At2(Arg2P ).
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Not let us introduce the following observations:

Ob-1: If Arg2P ⊆ Arg1P , then At2(Arg2P ) ⊆ At1(Arg1P ) ∪ At2(Arg1P ).
Ob-2: If 〈S, c〉 ∈ Arg then either S is not a stratified logic program or S is a

stratified logic program but c /∈ ⋂
M∈STABLE(S) M .

By Proposition 1 and Ob-1, it is direct to see that AF 2
P �E AF 3

P is true.
By Ob-2, if A ∈ Arg, then the attack relations w.r.t. A appear in At1(Arg1P );
hence, if ∃C ∈ Arg1P such that C attacks A or A attacks C, these attack relations
belong to At. Therefore, AF 2

P �N AF 3
P .

Let us observe that considering AF 2
P and AF 3

P , as they were defined in Propo-
sition 3, it does not hold AF 2

P �S AF 3
P . In order to illustrate this observation,

let us consider the following example:

Example 2. Let P be the following logic program:

a ← not a
a ← not b
b ← not a

We can see that Arg1P = {Arg1, Arg2, Arg3} and Arg2P = {Arg2, Arg3} such
that:

Arg1 = 〈{a ← not a}, a〉
Arg2 = 〈{a ← not b}, a〉
Arg3 = 〈{b ← not a}, b〉
Moreover, At1(Arg1P ) = {(Arg1, Arg1), (Arg2, Arg1), (Arg2, Arg3), (Arg3,

Arg2)} and At2(Arg2P ) = {(Arg2, Arg3), (Arg3, Arg2)}. Considering AF 3
P =

〈Arg1P , At1(Arg1P )∪At1(Arg1P )〉 as an expansion of AF 2
P = 〈Arg2P , At2(Arg2P )〉.

We can see that an argument from Arg2P attacks the new argument introduced
by Arg1P , i.e. Arg2 attacks Arg1; hence, AF 3

P cannot be considered as a strong
expansion of Arg2P . However, AF 3

P is a normal expansion of AF 2
P .

Self-loop attacks have been observed as an important condition in the explo-
ration of equivalence [4]. By self-loop attacks, we mean binary relation of the
form: an argument A is self-loop attacked if (A,A) ∈ attacks. In [16], it
was shown that the resulting argumentation frameworks following a semantics-
based approach avoid to contain self-loop attacked arguments. Considering these
results, we can show the following relevant theorem:

Proposition 4. Let P , G be two extended logic programs and AFP = 〈Arg2P ,
At2(Arg2P )〉 and AFG = 〈Arg2G, At2(Arg2G)〉. For any Φ ∈ {E,N, S} and any
argumentation semantics σ ∈ {stg, stb, ss, pr, id, gr, co}:

AFP = AFG iff AFP ≡σ
Φ AFG

Moreover, for σ ∈ {stg, ss, pr, id}:
AFP = AFG iff AFP ≡σ

L AFG



386 J.C. Nieves

Proof. Proposition 7 from [16] has shown that given an extended logic program
P , the resulting argumentation framework AFP = 〈Arg2P , At2(Arg2P )〉 has no
arguments which are self-loop attacked. Hence, the proof is direct by Proposition
4.2 from [4].

4.1 Equivalence Criteria

Amgoud et al. [1] have studied equivalence between argumentation systems with
structured arguments in terms of outputs. In this section, we present results in the
study of equivalence regarding outputs. In particular, we identify a class of logic
programs which suggests equivalences in terms of outputs. To this end, we extend
some concepts introduced by Amgoud et al. in order to capture argumentation
frameworks constructed from logic programs.

Given a set of arguments E, Base(E) =
⋃

〈S,g〉∈E S.

Definition 16 (Outputs). Let AFP = 〈ArgP , At(ArgP )〉 be the resulting
argumentation from the extended logic program P and σ be an argumentation
semantics.

– Scσ(AFP ) = {A|A ∈ ArgP is sceptical accepted w.r.t. σ}.
– Crσ(AFP ) = {A|A ∈ ArgP is credulously accepted w.r.t. σ}.
– Outputsc

σ (AFP ) = {gA|A ∈ ArgP such that A = 〈SA, gA〉 and A is sceptical
accepted w.r.t. σ}.

– Outputcr
σ (AFP ) = {gA|A ∈ ArgP such that A = 〈SA, gA〉 and A is credu-

lously accepted w.r.t. σ}.
– Basesσ(AFP ) = {Base(E)|E ∈ Eσ(AFP )}.

We introduce our own version of a subset of equivalence criteria introduce
by [1].

Definition 17. Let AFP = 〈ArgP , At(ArgP )〉 and AFG = 〈ArgG, At(ArgG)〉
be the resulting argumentation frameworks from the logic programs P and G,
respectively. Given an argumentation semantics σ, AFP and AFG are equivalent
EQi (AFP ≡σ

EQi
AFG) iff EQi holds where i ∈ 1, . . . , 6 and

EQ. 1 Eσ(AFP ) = Eσ(AFG),
EQ. 2 Scσ(AFP ) = Scσ(AFG),
EQ. 3 Crσ(AFP ) = Crσ(AFG),
EQ. 4 Outputsc

σ (AFP ) = Outputsc
σ (AFG),

EQ. 5 Outputcr
σ (AFP ) = Outputcs

σ (AFG),
EQ. 6 Basesσ(AFP ) = Basesσ(AFG).

Considering the equivalence criteria introduced by Definition 17, syntactic-
based arguments and semantics-based arguments, an interesting question is:

Is there a class of logic programs which suggests argumentation frameworks
which are equivalent in terms of outputs?
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The following proposition identifies a class of logic programs which is an
initial answer for the aforementioned question.

Proposition 5. Let P be a stratified normal logic program such that if a ←
B+ ∧ not B− ∈ P then a /∈ B+ and B+ ∩ B− = ∅, AF 3

P = 〈Arg1P , At2(Arg1P )〉,
AF 2

P = 〈Arg2P , At2(Arg2P )〉. The following conditions hold:

AF 1
P ≡σ

EQi
AF 3

G

where i ∈ 1, . . . , 6 and σ ∈ {stb, pr, co, gr, ss, id, stg}.
Proof (Sketch). Let us start observing that if P is a stratified normal logic pro-
gram such that if a ← B+ ∧ not B− ∈ P then a /∈ B+ and B+ ∩ B− = ∅,
then Arg1P = Arg2P . Hence, the proof is direct by the fact that At2(Arg1P ) =
At2(Arg2P ).

Let us observe that in Proposition 5, both AF 3
P and AF 2

P are considering
attack relations which are identified following a semantic-based approach. More-
over, the class of programs which is suggested by Proposition 5 avoids clauses
which are tautologies. In this regards, let us observe that the syntactic-based app-
roach for constructing arguments can suggest arguments which their supports
contain clauses which are tautologies. On the other hand, the semantic-based
approach for constructing arguments does not suggest arguments which their
supports contain tautologies.

5 Conclusions and Future Work

Currently there is an intensive research which is mainly oriented to abstract
argumentation. However, whenever we consider structured arguments there are
different factors which can affect the structure of the resulting argumentation
frameworks from a knowledge base.

It is direct to observe that constructing arguments from a logic program con-
sidering different (syntactic and semantic) constrains of the supports of these
arguments will give place to different argumentation frameworks (Proposition 1
and Proposition 2). Hence to consider different constructions of arguments is
not redundant since the resulting argumentation frameworks can infer different
information from a given logic program. Moreover, these differences can give
place to different strategies for expanding argumentation frameworks (Proposi-
tion 3). Let us observe that in a given sequence of assert moves in an agent-based
dialogue, we are basically expanding argumentation frameworks [18].

It seems that by considering syntactic and semantic restrictions for identi-
fying attack relations, different sets of attack relations can be defined (Proposi-
tion 2). We have shown that some properties of structured arguments can help
to extend results of abstract argumentation into structured argument as it is
the case of self-loop attacks and equivalence relations (Proposition 4). Consider-
ing equivalence in terms outputs, we identified a class of logic programs which
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suggests equivalences in terms of outputs of the resulting argumentation frame-
works (Proposition 5).

In the future work, we aim to extend our study considering structured
arguments suggested by Dung [10] and the structured arguments suggested by
Assumption-Based argumentation ABA [5]. As we have observed with the results
of this paper, the way of identifying attack relations affects the final structure
of the resulting argumentation frameworks. Moreover, considering different sets
of attack relations can define different kind of expansions of the resulting argu-
mentation frameworks from logic programs. Hence, the identification of proper
definitions of attack relation is also a goal of our research. It is worth mentioning
that in the settings of structured arguments based on classical logic, one can also
identify different classes of attacks [15]. However, the definition of these classes
of attacks cannot be applied directly in the settings of structured arguments
based on logic programming because the inconsistency is defined in other terms
e.g., the lack of model.

The identification of classes of logic programs in which different structured
argumentation approaches coincide seems to be a relevant issues since these
classes of logic programs can define different algorithms for getting the same
outcomes. Hence, this issue is also part of our future work.
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