
Investigation on the Optimization for Storage
Space in Register-Spilling

Guohui Li, Yonghua Hu(&), Yaqiong Qiu, and Wenti Huang

School of Computer Science and Engineering,
Hunan University of Science and Technology, Xiangtan 411201, China

hyhyt@126.com

Abstract. In order to make full use of the memory resources of computers,
especially embedded systems, the multiplexing of storage space in register
spilling is investigated and the corresponding method is presented in this paper.
This method is based on the graph coloring register allocation method and on
the basic principle of greedy algorithm. In this method, the register allocation
candidates to be spilled, which do not conflict with each other, will be spilled to
the same memory unit. Thus, in register spilling, less memory is needed and
more load/store instructions using immediate values can be used. The effec-
tiveness of the method is verified. Besides, the method is suitable for archi-
tectures with both scalar and vector operands.

Keywords: Register allocation � Spilling � Storage space � Compiling
optimization

1 Introduction

In compiling, register allocation is an important optimization technology. The main
conventional methods of register allocation can be classified into two main classes:
linear scan register allocation [1] and graph-coloring [2]. There are also some other
register allocation methods such as studying optimal spilling in the light of SSA [3],
heuristic allocation method [4], allocation of repair strategies [5], layered allocation [6],
etc. The graph-coloring method, which is a highly effective global register allocation
method [7, 8], was proposed by Chaitin in 1981. The coloring process must ensure that
the adjacent nodes have different colors. The number of colors that an interference
graph needs in coloring is called as its register pressure, and the treatment modifying
code in order to make the graph colorable is called “reducing register pressure”.

Spilling symbolic registers [9–12] is a method for reducing register pressure. Its
basic idea is to split the lifetime of a register allocation candidate into two or more
lifetimes, i.e., dividing the live range of a symbolic register into two or more parts.
Physical registers will get the gap time between live ranges of divided candidates. This
process is helpful to reduce register pressure [13, 14]. The basic method of
register-spilling is to spill candidates to memory. In conventional register-spilling

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 627–633, 2017.
DOI: 10.1007/978-3-319-59288-6_63



algorithm [15, 16], each pending spilling candidate needs a storage unit, indicating that
the storage space needed is directly proportional to the number of candidates to be
spilled. This paper is devoted to the study of reducing the storage space for spilling in
register allocation through storage units multiplexing. An algorithm that is based on the
graph coloring register allocation method will be presented to realize this optimization.
Not only will this algorithm not impact the register spilling result, but also it can greatly
reduce the storage units needed in register spilling and thus improve the utilization of
memory.

2 Optimization Algorithm

In order to optimize the storing of register allocation candidates (called webs in what
follows) to be spilled, we define the following quantities to analyze the code:

(1) NDimMtx is an N-dimensional matrix template class, where N can be 1 or 2 for
the problem considered in this paper.

(2) AdjacentListRecord is a data structure containing the needed information of an
adjacent list record.

(3) ApInstn is code instruction object.
(4) def and use are definition object and use object, respectively.
(5) DU and UD are definition-use-chain and use-definition-chain, respectively.
(6) spillWebs is a set of webs to spilled (a web is made up of DUs), and spillWebList

is the corresponding list form of spillWebs.
(7) spillWebAdjList is the adjacency list for the webs to be spilled.

The top-level process of our optimization method has the following main steps:

(1) First Judge_NeedRegistersSpilling() determines whether the register allocation
needs spilling. If yes, the following steps should be executed.

(2) Next, Find_SpillWebs() function finds out all the webs to be spilled, and generates
spillWebs and spillWebList.

(3) Next, Get_SpillWebsConflictShip() function analyzes the active ranges of the
webs in spillWebs, judges whether they are overlapping.

(4) Then, Assign_StorageSpaceToSpillWebs() assigns storage units for each elements
of spillWebs: it assigns the same storage spaces to the webs that don’t conflict
with each other, and assigns different storage spaces to those conflict with each
other.

(5) At last, Gen_SpillCode() generates spilling and restore codes.

628 G. Li et al.



At the beginning of the optimization, the algorithm set the initial offset of the
available storage space for spilling to baseOffset, a global static variable. Then, for each
following register spilling process, the value of baseOffset will be equal to the address
of the maximum offset determined by its previous register spilling process. The
algorithm of the top-level structure of our method is as follows:

We assume that optimistic heuristic method is used to prune the interference graph.
To describe whether a node in an interference graph result should be spilled, we set a
Boolean value for each node as a flag to mark this status. We traverse the webs whose
spilling flags are true and put them into spillWebs and spillWebList. As for the conflict
relation among the webs to be spilled, it can be obtained directly from the existing
adjacent matrix and adjacent list and is stored in the spillWebAdjList object corre-
sponding to spillWebs.

In the process of register spilling, the address of the storage units assigned to the
webs in spillWebList increases from the base address for spilling. For each web w, the
algorithm traverses the storage units starting from the base address until it finds a unit
whose corresponding web is not conflict with w. When the algorithm finds out such a
storage unit, it assigns this storage unit to the web w and ends the traversing process. It
should be noted that some architectures have both scalar and vector operands, and
hence there will be scalar and vector webs in spillWebList. In our algorithm, we assume
that the increment of traversing storage units for a scalar web is a, while that for a
vector web is m*a, both m and a being integer.

Investigation on the Optimization for Storage Space 629



The corresponding algorithm is as follows:

630 G. Li et al.



After all the webs in spillWebs being assigned storage units, the algorithm inserts
corresponding spills and restores for them. This treatment is the same as that used in
conventional graph coloring method, so we don’t repeat it in this paper.

3 Verification

To show the effectiveness of our method, we demonstrate the using of the method in an
example (see the left side of Fig. 1) by comparing with the conventional storage
assigning method. We assume that the aim architecture has 4 general purpose registers,
i.e., R0, R1, R2, and R3, and has a register AR3 as the base address register for register
spilling. In Fig. 1, the arrows are live ranges corresponding to the variables, and
a stands for the size of a storage unit. The result intermediate codes after the first
register spilling pass are shown in the right part of Fig. 1.

The following physical register assigning process will find out that the assignment
is not successful. Then a second register allocation pass with register spilling is needed,
where f and m will be further spilled. The final allocation result is shown in the right
part of Fig. 2. As a comparison, the allocation result based on the conventional storage
unit assignment method for webs to be spilled is shown in the left part of Fig. 2.

According to this example, it is easy to see from Fig. 2 that 4 storage units is
needed by our method but 6 storage units is needed by the conventional method. Of
Course, it should be noted that the optimization effect of our method will be different
for different codes because it depends on the conflict relations among register allocation
candidates.

1 → a
2 → b
3 → c
1 → d
2 → e
3 → f
4 → g
a → h
d + e → w
w + f → w
w + g → w
w + h → w
1 → i
2 → j
3 → k
4 → m
b → n
i + j → w
w + k → w
w + m → w
w + n → w
c → p
w + p → w

1 → a
2 → b, b → AR3[0]
3 → c, c → AR3[a]
1 → d, d → AR3[2a]
2 → e
3 → f
4 → g
a → h
AR3[2a] → d, d + e → w
w + f → w
w + g → w
w + h → w
1 → i
2 → j , j → AR3[3a]
3 → k
4 → m
AR3[0] → b, b → n
AR3[3a] → j , i + j → w
w + k → w
w + m → w
w + n → w
AR3[a] → c, c → p
w + p → w

a b c d e f g h i j k m n p w
t1
t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23

Fig. 1. Schematic diagram of the first pass of register spilling for source codes.

Investigation on the Optimization for Storage Space 631



4 Conclusion

In this paper, an optimization method of storage space optimization in register spilling
is presented. This method is based on graph coloring register allocation method and
consists of several main steps, such as identifying the register allocation candidates to
be spilled, analyzing the conflict relation among these candidates, assigning storage
units to these candidates, etc. It is demonstrated by an example that the method can
reduce the storage units needed in register spilling, and that the correctness of graph
coloring register allocation will not be affected. Consequently, more load/store
instructions that directly access memory can be used in register spilling, and thus
reducing the pressure on offset registers.

Acknowledgment. This work was supported by National Natural Science Foundation of China
(Grant No. 61308001) and graduate student innovation fund project (Grant Nos.S140027 and
CX2015B537).

1 → a
2 → b
b → AR3[2a]
3 → c
c → AR3[a]
1 → d
d → AR3[0]
2 → e
3 → f
f → AR3[3a]
4 → g
a → h
AR3[0] → d
d + e → w
AR3[3a] → f
w + f → w
w + g → w
w + h → w
1 → i
2 → j
j → AR3[0]
3 → k
4 → m
m → AR3[3a]
AR3[2a] → b
b → n
AR3[0] → j
i + j → w
w + k → w
AR3[3a] → m
w + m → w
w + n → w
AR3[a] → c
c → p
w + p → w

b c d j f m
t1
t2
t3
t4
t5
t6
t7
t8
t9

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35

1 → a
2 → b
b → AR3[0]
3 → c
c → AR3[a]
1 → d
d → AR3[2a]
2 → e
3 → f
f → AR3[4a]
4 → g
a → h
AR3[2a] → d
d + e → w
AR3[4a] → f
w + f → w
w + g → w
w + h → w
1→ i
2→ j
j → AR3[3a]
3 → k
4 → m
m → AR3[5a]
AR3[0] → b
b → n
AR3[3a] → j
i + j → w
w + k → w
AR3[5a] → m
w + m → w
w + n → w
AR3[a] → c
c → p
w + p → w

Fig. 2. Comparison diagram for the result code that the spilled data storing optimization is used
and that the spilled data storing optimization is not used.

632 G. Li et al.



References

1. Poletto, M.: Linear scan register allocation. ACM Trans. Program. Lang. Syst. 21, 895–913
(1999)

2. Briggs, P., Cooper, K., Kennedy, K., Torczon, L.: Coloring heuristics for register allocation.
ACM SIGPLAN Not. 39, 275–284 (1989)

3. Colombet, Q., Brandner, F., Darte, A.: Studying optimal spilling in the light of SSA. In: 14th
International Conference on Compilers, Architectures and Synthesis for Embedded Systems,
Taipei, pp. 25–34 (2011)

4. Tavares, A., Colombet, Q., Bigonha, M.: Decoupled graph-coloring register allocation with
hierarchical aliasing. In: Proceedings of the 14th International Workshop on Software and
Compilers for Embredded Systems, Goar, Germany, pp. 1–10 (2011)

5. Colombet, Q., Boissinot, B., Brisk, P.: Graph-coloring and tree scan register allocation using
repairing. In: 14th International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, Taipei, pp. 45–54 (2011)

6. Diouf, B., Cohen, A., Rastello, F.: A polynomial spilling heuristic: layered allocation.
R. Research Report, Project-Teams Parkas and Compsys (2012)

7. Chaitin, G., Auslander, M., Chandra, A.: Register allocation via coloring. J. Comput. Lang.
6, 47–57 (1981)

8. Carole, D.-G., Hugues, F., Eli, G., Leslie, L.: Adaptive register allocation with a linear
number of registers. In: 27th International Symposium, DISC 2013, Jerusalem, Israel, 14–18
October (2013)

9. Steven, S.: Advanced Compiler Design and Implementation. Elsevier Science, Amsterdam
(1997). M. USA

10. Salgado, M., Ragel, R.G.: Register spilling for specific application domains in ASIPs. In: 7th
International Conference on Information and Automation for Sustainability. IEEE (2014)

11. Wu, C., Lu, C., Lee, J.: Register spilling via transformed interference equations for
PAC DSP architecture. Concurrency Comput. Pract. Experience 26, 779–799 (2014)

12. Pfenning, F., Simmons, R.: Lecture Notes on Register Allocation Optimizations (2015).
http://www.cs.cmu.edu/*rjsimmon/15411-f15/lec/17-regopt.pdf

13. Yin, M., Steve, C., Rong, G.: Low-cost register-pressure prediction for scalar replacement
using pseudo-schedules. In: 2004 International Conference on Parallel Processing,
0190–3918/04 (2004)

14. Shobaki, G., Shawabkeh, M., Rmaileh, N.: Preallocation instruction scheduling with register
pressure minimization using a combinatorial optimization approach. ACM Trans. Archit.
Code Optim. 10, 14 (2013)

15. Philipp. K., Frankfurt, M.: Bytewise register allocation. In: 18th International Workshop on
Software and Compilers for Embedded Systems, New York (2015). 978-1-4503-3593-5

16. Gaow, Z., Han, L., Pang, J.: Research on SIMD auto-vectorization compiling optimization.
J. Softw. 26, 1265–1284 (2015)

Investigation on the Optimization for Storage Space 633

http://www.cs.cmu.edu/%7erjsimmon/15411-f15/lec/17-regopt.pdf

	Investigation on the Optimization for Storage Space in Register-Spilling
	Abstract
	1 Introduction
	2 Optimization Algorithm
	3 Verification
	4 Conclusion
	Acknowledgment
	References


