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Abstract. Deploying applications to the cloud has become an increasingly
popular way in the industry due to elasticity and flexibility. It uses virtualization
technology to provide storing and computing resources to the applications. So
how to efficiently schedule virtual resources to ensure the quality of services
during the peak, and avoid the waste of resources during the idle is an important
research topic in the cloud computing, which aims to minimize the execution cost
and to increase the resource utilization. The way based on the monitoring data to
scale up or scale down the virtual resources may let virtual resources suffer from
over seriously. In this paper, we present a dynamic scheduling method for the
virtual resources based on the prediction model. Firstly, we use prediction model
to predict the request quantity. And then we combined the prediction result with
the load capacity of current resources to compute whether to increase or decrease
the virtual resources. Finally, we choose the suitable physical machine to create
or recycle the virtual machine. The experimental results show that the prediction
model can fit our scene well, and the resource scheduling algorithm can be used
to ensure the quality of service in a timely and effective manner.

Keywords: Cloud application - Surge in traffic - Quality of service - Prediction
model - Dynamic resource scheduling

1 Introduction

Cloud computing provides an on-demand and scalable delivery model for the users [1].
It has been used to solve the complicated computation and storage problems by more
and more governments, research institutions and industries [2] due to provide resources
as a service to the users. Effective virtual resource scheduling can improve the utilization
of resources and meet the needs of users. The virtual resource scheduling problem is
considered to be a combinatorial optimization problem, but also a NP complete
problem [3].

The workload of each virtual machine (VM) is always changing, and some may
exhibit cyclical changes. We usually tend to over allocate virtual resources in order to
ensure the application to have a better performance during the peak [4], which will
inevitably lead to low utilization of resources. To operate and manage resources more
conveniently, effective monitor is often used [5]. But there will be a traffic surge for
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quite a time after application is deployed and then decline gradually based on the moni-
toring. For example, in the school’s teaching information system, a few students will
visit this website in ordinary time, but a huge amount of traffic will be generated when
students need to select the course. Then the application system needs to extend resources
to deal with the requests traffic. We usually monitor the system and warn system
managers to deal with the lack of resources. But there is often a delay to schedule
resources by monitor and warning.

To deal with the above challenges and to improve the utilization of virtual resources
and flexibility of scheduling, we propose a method to dynamically schedule the virtual
resources based on the Autoregressive Integrated Moving Average Model (ARIMA)
prediction model. Resources will be allocated in advance on the basis of the prediction
data. Our paper addresses the following problems:

Find a prediction model to accurately predict the possible application workload of
the next time interval.

Dynamic scheduling of virtual machine resources according to the change of work-
load and prediction data to ensure more efficient use of resources.

The rest of our paper is organized as follows. Section 2 is an overview of the current
state of the academic research on the virtual resource scheduling. Section 3 describes
the system architecture. Section 4 focuses on the prediction model we will use.
Section 5 describes the virtual machine scheduling strategy and the corresponding
experiment details are illustrated in Sect. 6. Section 7 presents conclusions and future
work.

2 Related Works

Since cloud computing uses virtualized resources, scheduling and resource allocation
are the important research topics [6]. It is a hot research topic that how to use effective
scheduling strategies to reduce the cost of execution and improve the utilization of
resources.

Silpa et al. [6] discuss the current scheduling algorithm that has been published in
cloud computing, in this paper, 15 different algorithms are studied and compared, such
as fuzzy genetic algorithm based on task scheduling.

Some resource scheduling frameworks are put forward. Singh et al. [7] present an
efficient cloud workload management framework under the premise of certain workload
and quality of service. Shuja et al. [8] introduce a resource scheduling framework for
efficient utilization.

Hassan et al. [9] present Nash bargaining to save resources and optimize the number
of servers. Singh et al. [10] propose service quality indicators to optimize the execution
time and avoid waste of resources. And some studies about resource optimization algo-
rithms, such as the article [11, 12].

Zheng et al. [13] point out that virtual machine placement is also a way to optimize
the resources, two kinds of virtual machine placement method, incremental placement
and consolidated placement, are discussed and a new virtual machine placement strategy
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is proposed. Wang et al. [14] explore an energy and QoS-aware VM placement
optimization approach based on particle swarm optimization.

Liu et al. [15] present an approach to process the dynamic user service requests more
cost-effectively. Zhou et al. [16] introduce a dynamically adjust the virtual resource
rental strategy to help cloud service providers maximizing profits.

There are also some researches on prediction methods. Salah et al. [17] use Markov
chains to estimate the number of virtual machine instances that are required to be allo-
cated under a given Service Level Object (SLO) standard. Shyama et al. [18] study a
Bayesian model to predict resource needs of CPU and memory intensive applications
in the short term and long term. However, the article [17] focus on load balance, and in
[18] mainly focus on CPU cores and RAM, but they are not very suitable for our
scenarios.

3 System Architecture

3.1 Architecture Description

The system architecture used in this paper showed in Fig. 1 includes the following layers
User Layer, Application Layer, Control Layer, Virtual Layer, Physical Layer.

| Load Balancer |

I Data Collector | | Data Predictor l

| Resource Scheduler |

Vet o
Layer

Physical S
Layer
PUZ
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Fig. 1. System architecture diagram

User Layer: Users who use the application in cloud plateform.

Application Layer: It provides basic application environment, such as tomcat server,
MySQL database, Hbase, etc.

Control Layer: It includes Load Balance Module, Data Collector Module, Data
Predictor Module, Resource Scheduler Module.

Load Balancer Module: All requests submitted by the users will be forwarded
through the Load Balancer to our web server. We use Nginx as a load balancing server
in the system architecture.
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Data Collector Module: This module is mainly to get the data through real-time
monitoring. Some data will be collected by this module, such as CPU, memory, request
quantity, etc., and then data will be pre processed. We store the requests per second to
database in order to analyze historical data in the future. The module will calculate the
response time for each request, which is ready for us to assess the application response
time.

Data Predictor Module: The module uses the data collected in the Data Collector
Module to calculate the number of requests to be reached at the next time interval of the
application. The next time interval is the amount of user requests that the application
will achieve after 5 min. On one hand, we mainly study the prediction of the application
workload in the short term; On the other hand, the high frequency statistics and calcu-
lation will cause some pressure on our server. Generally each virtual machine can be
completed in 30-96 s from creation to deployment [17], so the time is enough for us to
deal with the coming pressure on the system. Of course, you can adjust the time interval.

Resource Scheduler Module: Using the Data Predictor Module to get the predicted
requests of the application to decide to increase or reduce the virtual resource.

Virtual Layer: It supply virtual resource and composes a virtual resource pool.

Physical Layer: It is infrastructure and mainly includes the physical servers and the
virtual machines deployed on the physical servers, which provides the underlying
resources for the application.

4 Workload Prediction Methods

In this section we will discuss several methods for predicting the workload. We simplify
the workload to the number of user requests in our scenario. But the requested quality
of service has been taken into account, we assume that the response time of the request
is satisfied in the range of O to 2 s, the maximum workload of the server is considered
under such a condition. We mainly discuss three prediction methods: Moving Average
method, Polynomial Fitting method, ARIMA Model method. We have also introduced
the error to analyze the three methods which is more suitable for our scenario.

® Moving Average: Moving Average is one of widely known technical indicator
used to predict the future data in time series analysis [19]. In statistics, a moving average
is a calculation to analyze data points by creating series of averages of different subsets
of the full data set. It includes simple moving average, the cumulative moving average
and weighted moving average [20]. We use simple moving average in this paper.

We assume that the requests for a certain time of application is r;, then the sequence
of requests can be expressedas R = {r,1, ... 1;... 1,In < T}, where T is our measurement
time. According to the definition of the moving average, we can predict the amount
requested at time n + 1 is:

Pre R = (r; + 5,4 ... +1,) /n. (1)

Pre_R is the predicted value at time n + 1 in Eq. (1), n denotes the average movement
cycle, r; to r, are the first n values.



388 D. Yang et al.

® Polynomial Fitting method: Polynomial regression is a form of linear regression
in which the relationship between the independent variable x and the dependent variable
y is modelled as an nth degree polynomial [21]. Linear relationship is not a good
description of the relationship between the amounts of application requests at different
times, so the polynomial method is one aspect to consider.

We assume that the ti time corresponds to a request amount of r;, and (t;, r;) is a point
on a two curve, namely:

r=at’ + bt =c. )

Since it is the conic section, we only need to use three sets of values to be able to
seek out a, b and c solution. If we predict r;,;, just need three points, that is,
(tigs T9)s (G, Tiy), (6, 1))

® ARIMA Model: The ARIMA model is built based on Markov random process,
which not only absorbs the dynamic advantages of the regression analysis, but also the
advantages of moving average [22]. Non-seasonal ARIMA model use ARIMA (p, d, q)
to express, wherein p, d, q are non-negative integers, p is the order of autoregressive
model; d indicates the degree of differencing, q represents the moving average model
order. Seasonal ARIMA model using ARIMA (p, d, q) (P, D, Q) m, m refers to the
number of cycles per season, P, D, Q, respectively, refers to the autoregressive, moving
average and differential [23].

5 Scheduling Algorithm and Implementation

5.1 VM Provisioning Algorithm and Implementation

We assume that a certain time point T, the requests for our application is R. We simplify
the application workload to the user’s request. Our machine (Web Server) number is N
in the current state. We adopt a polling workload allocation strategy. The number of
requests for each web server shared by the load balancer is R/N.

We use Data Collector Module to collect raw data and pre-processing data. We use
Tresponse 10 denote the response time for each request, and pass the request of the pre
processed data to the ARIMA module. Each time the user requests for the application
will be recorded in the database, we can calculate the amount of user requests of each
interval, abbreviated R;. We predict requests of the next time interval, assumed to be
Spredicc based on Ry Spregir and Seypren_max, the maximum workload that the virtual
machines can bear under the current scale, will be passed to the Dynamic Scheduling
Module. If S;cic; is greater than Sgyene maxe then the DSM will find the right virtual
machine template in physical servers to configure virtual resources. The way we are
using is to randomly select a virtual machine that is providing services for the application
and obtain its information (the using operation system, CPU kernel number, memory,
etc.). Finding the information from the template in physical servers and here we assume
that each virtual machine that has been used is created by a template in the physical
machine server. In order to reduce the false positive rate, we can set the number of times
to meet the judgment. We begin to configure virtual resources, when the times are more
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than a specified number of times. Assuming that each virtual machine created by virtual
machine template can withstand the maximum workload of MHVMW. The difference
between the predicted workload and the maximum workload that the current size of the
virtual machines can withstand is the workload that we need to create virtual machines
to support. We can roughly calculate the number of virtual machines that need to be
created at a time combined with MHVMW, using N, ..q to denote the calculated number.
To determine the location of the virtual machine created, first of all, physical machines
workload will be sorted from least to most, and we use the word “size” to denote the
number of physical machines that meet the conditions for creating virtual machines,
then taking the remainder of “size” from 0 to N,4. The purpose of this is to create a
virtual machine in a low workload physical machine. Finally, the strategy returns the
positions of the virtual machine to be created.

Symbol definition:

LVMW;: Lowest Virtual Machine Workload, the minimum workload value allowed
by each virtual machine, if the current workload is lower than the value, we will consider
it to be an idle virtual machine.

HVMW;: Highest Virtual Machine Workload, the maximum workload value
allowed by each virtual machine, if the current workload is higher than the value, we
will believe that the quality of service provided can not meet the needs of users.

Spredici: The predicted workload value obtained from the prediction model.

Neurrene: Number of current virtual machines.

Scurrent max: The maximum workload that the virtual machines can bear under the
current scale.

Ncurrent

Scurrent_maX = Z HVMWz (3)

i=1

Scurent_min: The minimum workload required for the virtual machines at the current
scale.

Ncurrent

Scul’emfmin = Z LVMWI (4)

i=1

MHVMW: Model Highest Virtual Machine Workload, the virtual machine can be
made into a template, this variable represents the maximum workload that it can take
after the template is turned into a virtual machine.

PM: Physical Machine, PM = {PM,, PM, ... PM; | i < PMCount}.

VM: Virtual Machine, VM = {VM,, VM, ... VM; | j < VMCount}.
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Algorithm 1. VM Provisioning
Input: Spredict' Ncurrent’ Scurrent_max’ MHEVMW, PM, VM
Output:postions that VM will place.

l:while true do

21 1f  Spredict >= Scurrent_max then

3: MHVMW = findTemplate (PM, VM)

4: Npced = (Spreaict - Scurrent_mex) / MEVIMN
5: return addVMPos (PM, Nneed)

6 else

7: break;

8:end while

9: function findTemplate (PM, VM)

10: randomly select VM[j] from VM
11: for (template in PM)

12: if(VM[j]l== template)

13: MHVMW = VM[3j]

14: break;

15: else

16: continue

17: end for

18: return MHVMW

19: function addVMPos (PM, Nneed)

20: list = {}
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21: for pm in PM do

22: if (pm.currentWorkload <
pm.higestworkload())&& pm.hasResource() then

23: list.add (pm)

24: end for

25: sortByAsc(list)

26: size = list.size()

27: for i=0;i< Npeeq ;i++ do

28: positions.add(list.get (i % size))
29: end for

30: return positions

Algorithm 2: VM Recycling

Input: Spredict ’ Scurent_min ’ VM

Output:Recycling virtual machine success (true) or
failure (false)

1: while true do

2: if Spredict <= Scurent_min then
3: rmPos = delVMPos (VM)

4: return destoryVM(rmPos)

5: else

6: break;

7: end while

8: function delVMPos (VM)

9: sortByAsc (VM)

10: return VM.get (0)

391
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5.2 VM Recycling Algorithm and Implementation

It is obviously a waste of resources that virtual resources remain the largest scale after
the peak of the traffic is over. VM recycling Algorithm will be enabled when the current
workload is less than the specified minimum workload. We will carry out an ascending
sort to workload of all virtual machines when the recycling algorithm is enabled. In order
to reduce the false positive rate, we can also use the method that predicted times reach
the number of count times specified to enable VM Recycling Algorithm. We will poll
the VM workload and recycle the VM that is the minimum workload until the remaining
one virtual machine to provide services.

6 Experimental Design and Results

6.1 Experimental Environment

In order to verify whether the prediction model and the resource scheduling algorithms
are effective, we do some experiments in this part. The experimental environment used
is: 2 LoadRunner servers, 1 load balance server, 4 application servers, 1 MySQL servers
and 3 physical machines (Table 1).

Table 1. Configuration information

Name CPU Memory Hard disk
LoadRunnerl 2 cores 2.0 GHz 4 GB 130 GB
LoadRunner2 2 cores 2000 MHz 4 GB 100 GB
LoadBalance 1 core 2000 MHz 2GB 100 GB
VM1 (Application Server) 1 core 2000 MHz 2GB 100 GB
VM2 (Application Server) 1 core 2000 MHz 2GB 100 GB
VM3 (Application Server) 2 core 2600 MHz 2GB 100 GB
VM4 (Application Server) 1 core 2000 MHz 2GB 100 GB
MySQL 2 core 2.67 GHz 4GB 100 GB
PM1 48 core 2.6 GHz 64 GB 830 GB
PM2 48 core 2.6 GHz 32 GB 550 GB
PM3 48 core 2.6 GHz 32GB 550 GB

6.2 Experiment and Result Analysis of the Predict Methods

We deploy our application in two groups of two virtual machines, one group using the
default policy, another group using the proposed strategy in this paper. Using 2
LoadRunner servers to simulate the request, and then using our prediction model to
predict. We will show the number of requests for the site below and the curve drawing
of the real value and the predictive value obtained by using the methods in the Sect. 4.
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Figure 2 is the general trend of accepting requests from our website. The number of
requests for the site is a gradual increase from less to more, after a certain period of time,
the requests will gradually decline. This is the scenario we need to deal with in the
project. Figure 3 uses moving average method to fit our scenarios, and the overall trend
is well fitted, but we can find out from the graph, the fitting curve of this method is
relatively backward, which cannot be very good to help us to predict the future trend of
requests. Figure 4 method is very good at the request of the amount of the increase and
decrease of the scene, but the volatility of prediction results is larger in the peak period
of requests. In our scenario, the Fig. 5 method can be well fitted with both increasing
and decreasing values. In order to observe the real value and the predicted value of the
scene, we introduce the error analysis. Figure 6 shows the relative error of the three
methods.

From Fig. 6, we can see that the relative error of ARIMA is relatively stable, and the
error is the smallest of the three methods, we will use the model to predict in our scene.

6.3 Resource Scheduling Experiment Results and Analysis

We use our prediction model in the virtual machine scheduling algorithm. By prediction,
it will inform our Virtual Resource Dynamic Scheduling (VRDS) algorithm when the
user’s traffic continues to increase. And then our VRDS algorithm calculates the size of
the required resources, select a reasonable resource scheduling and decide to create or
recycle the virtual machine. In the default policy we give a fixed number of virtual
machines, and in the VRDS strategy will base on the load situation to do resource
scheduling. In Fig. 7, it shows the comparison of the number of requests for the users
to access the web site under the two different strategies. VRDS strategy can effectively
reduce the number of failed requests. It is assumed that the maximum response time for
each user to request is 2 s. The response time of the user request is illustrated in the case
of Fig. 8 with two strategies, which are continuously increasing with the number of
requests on the website. VRDS strategy can be more close to the response time we set.
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Figure 9 shows the change in the number of VMs, VRDS can create and recycle
VMs in different stages.

In summary, in our scenario, the prediction model used in this article can be more
fitting site requests constantly increasing amount of requests to the maximum amount
and gradually decreasing after the scene. VRDS algorithm combined with the prediction
model in this paper can effectively and timely response to the site of the high workload
situation.

7 Conclusion and Future Work

With the advent of big data era, the data is growing geometrically. Our web site or
application is likely to generate a huge surge in traffic because of sudden or hot events.
Relying solely on the traditional way apparently is unable to cope with such pressure,
and cloud computing brings us a new revolution. Deploying our applications in the cloud
will help us to avoid the collapse of the application because of heavy workload.
However, there are still many deficiencies in the dynamic scheduling of cloud resources.

In this paper, we proposed a method for dynamic scheduling of virtual resources
based on prediction. The prediction will help us to make the decision to deal with the
load too much earlier, and change the passive into the initiative. By actively calculating
the size of the virtual resources that are needed to cope with the current workload and
the decision to create a reasonable location for the virtual machine, we will be more
rapid in response to the heavy workload of cloud applications and ensure that the appli-
cation can easily cope with the massive use of access.

Of course, that we simplify the server workload to the user’s request for the appli-
cation is not enough to completely express the actual situation of the workload, and the
workload prediction method is still not fine enough, the scene is relatively simple. In
future work we will consider more factors that are more close to the actual situation and
simulate our experiments, and apply our algorithm to more practical scenarios.
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