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Abstract. Influence maximization is the problem of selecting a set of seeds in a
social network to maximize the influence under certain diffusion model. Prior
solutions, the greedy and its improvements are time-consuming. In this paper,
we propose candidate shells influence maximization (CSIM) algorithm under
heat diffusion model to select seeds in parallel. We employ CSIM algorithm (a
modified algorithm of greedy) to coarsely estimate the influence spread to avoid
massive estimation of heat diffusion process, thus can effectively improve the
speed of selecting seeds. Moreover, we can select seeds from candidate shells in
parallel. Specifically, First, we employ the k-shell decomposition method to
divide a social network and generate the candidate shells. Further, we use the
heat diffusion model to model the influence spread. Finally, we select seeds of
candidate shells in parallel by using the CSIM algorithm. Experimental results
show the effectiveness and feasibility of the proposed algorithm.

Keywords: Parallel � Social networks � Influence maximization � K-shell
decomposition

1 Introduction

With the rising popularity of online social works (OSNs) such as Facebook, Twitter
and WeChat and etc., OSNs play a critical role range from the dissemination of
information to the adoption of political opinions and technologies [1, 2]. OSNs can be
ubiquitously used to various applications, e.g., viral marketing, popular topic detection,
and virus prevention [3]. A problem that received considerable attention in this context
is that of influence maximization, first proposed by Domingos et al. [4, 5] and for-
mulated by Kempe et al. [6].

Formally, given a social network G = (V, E), budget k and a stochastic model, the
problem of influence maximization is to find a k-node set of maximizing the influence
spread under certain stochastic model. Kempe et al. [6] proposed two classic diffusion
models: linear threshold model (LTM) and independent cascade model (ICM), and they
proved the influence maximization problem under these two diffusion models is
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NP-hard. Further, it was proved that the objective function of influence spread under
these two diffusion models is monotone and submodular, and thus the greedy algorithm
can be used to approximately select the optimal seed set based on the theory of [7].
However, the greedy algorithm is time consuming. Consequently, extensive follow-up
studies along with the above work were launched [7–13] and mainly focus on
improving the greedy algorithm or proposing new heuristic algorithm.

Despite the immense progress has been made in the past decades, parallel seed
selection is also challenging. Actually, we can obtain the seed set timely by selecting
seeds in parallel. We consider the following scenario of viral marketing. A company
develops a new product and wants to advertise this new product via viral marketing
within a social network. If the advertiser takes weeks to select some initial user as seeds
to provide them free sample or discount to promote products, then they may lose their
superiority because of non-timeliness [14].

It is known that the k-shell decomposition method partitions a network into
sub-structures, and this process assigns an integer index ks to each node, where the
index ks represents its location according to successive layers (i.e., shells) in the net-
work [18]. The k-shell decomposition can depict the structure feature of social network
and discover the layer feature [19]. We can further obtain multiple candidate shells,
which are independent with each other. We further select seeds of multiple candidate
shells in parallel. In this paper, we mainly discuss the problem of parallel seed selection
for influence maximization based on k-shell decomposition. For this purpose, we need
consider the following questions:

(1) How to model the influence spread (i.e., diffusion model)?
(2) How to obtain the k-shell structure of social network?
(3) How to select seeds in parallel for influence maximization?

For the question (1), we adopt the heat diffusion model presented by Ma et al. [15]
due to its time-dependent property, which can simulate the product adoptions step by
step and help companies divide their marketing strategies in to several phases. For
example, a company may want to know the production adoption incurred by the initial
user (i.e., seeds) in two days, five days or a week, etc.

For the question (2), we first borrow the idea from [16–18] and divide the social
network by employing the method of k-shell decomposition. We further obtain the
candidate shells and the number of their seeds based on the number of nodes in shell
and the value of ks (i.e., a k shell with index ks).

For the question (3), we propose candidate shells influence maximization (CSIM)
algorithm to select seeds in parallel based on the GraphX framework on Spark [20].
The influence maximization problem based on heat diffusion model is NP-hard, and the
greedy algorithm can approximate the optimal result with 1−1/e [15]. In this paper, we
employ the CSIM algorithm (a modified algorithm of greedy) to coarsely estimate the
influence spread based on the seed set, the active set and non-seed nodes, which can
avoid massive estimation of heat diffusion process, thus can effectively improve the
speed of selecting seeds. Specifically, we first select the max-degree nodes of candidate
shells in parallel as the first seed. For any shell, if its n(ks = i) = j > 1, here, n
(ks = i) denotes the number of seeds with index of shell ks = i, then we compute the
mean of shortest distance (MSD) from seed set to its active set. Further we compute the
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number of neighbors of v in MSD range. Here, v excludes from the seed set. Finally, we
compute the value that the number of neighbors of v in MSD range subtracts the
number of intersection of the neighbors of v in MSD range and the active set, and select
node vj with the maximum value added into the seed set as the jth seed node.

Experimental results on real-world social networks show the effectiveness and
feasibility of the method proposed in this paper.

2 Related Work

With the popularity of online social networks, diffusion models have received con-
siderable attention. In addition to the heat diffusion model adopted in this paper, there
are some classic diffusion models. Kempe et al. [6] proposed two diffusion models:
linear threshold (LT) model and independent cascade (IC) model. In the LT model, if
the total weight from active in-neighbors reaches the threshold of a node, then this node
is activated. In the IC model, an active node tires to active its inactive out-neighbors
with a given probability, and this activation process is independent with other acti-
vations. Comparing to the LT model and IC model, the heat diffusion model adopted in
this paper is a realistic model, which can predict the future behavior of the social
network (e.g., Amazon networks) since it includes the time factor.

Kempe et al. [6] proved that the objective function under the LT model and IC model
is NP-hard, and they further prove the monotonicity and submodularity of this objective
function, thus the greedy algorithm can be used to approximately select seeds based on
the theory of Nemhauser et al. [7]. However, the greedy algorithm is time consuming.
Aimed at addressing this issue, many follow-up studies tried to improve the greedy
algorithm or propose new heuristics [8–14, 21–23]. In terms of greedy selection, our
CSIM algorithm is similar to the Core Covering Algorithm of [21], which is assigned a
covering distance, but our CSIM algorithm estimates the influence spread based on the
active set of seed set and converge area of non-seed set, and the computation of our
converge area by using the MSD not assigning the covering distance. Moreover, in the
aspect of selecting seeds, we select seeds from the candidate shells in parallel.

The approaches of graph analysis have high computation complexity in large-scale
graphs [24]. In order to solve this problem, some frameworks have appeared including
Hama [25], Giraph [26], GraphLab [27], GraphX [28] and etc. In terms of parallel
framework, we adopt the GraphX, which combines the advantages of both data-parallel
and graph-parallel systems by efficiently expressing graph computation within the
Spark data-parallel framework and extends Spark’s Resilient Distributed Dataset
(RDD) abstraction to introduce the Resilient Distributed Graph (RDG) and leverage
advances in data-flow systems to exploit in-memory computation and fault-tolerance.

3 Heat Diffusion Model

A social network is modeled as an undirected graph G = (V, E), where V is the set of
nodes representing individuals, and E is the set of edges representing the relationships
between the individuals. The heat diffusion model can be formulated as follows [15]
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f ðtÞ ¼ ðIþ atH
P

ÞP � f ð0Þ ð1Þ

where I, a, H, P and f(0) is the identity matrix, thermal conductivity-heat diffusion
coefficient, matrix, positive integer and initial distribution of heat respectively.

Here, H is denoted as

H ¼
1; ðvi; vjÞ 2 E or ðvj; viÞ 2 E
�dðviÞ; i ¼ j
0; otherwise

8
<

:
ð2Þ

where d(vi) is the degree of node vi.
Given the activation threshold h at time t, if the amount heat of node vi exceeds h,

then node vi is active.

4 Generating Candidate Shells and Selecting Seeds Based
on Candidate Shells in Parallel

In this section, we first give the approach of k-shell decomposition. Further, we gen-
erate the candidate shells based on the value of shell and the number of nodes in shell.
Finally, we select the seeds of candidate shells in parallel.

4.1 Generating Candidate Shells

We first introduce the basic idea of k-shell decomposition [18]. We first remove the
nodes with degree k = 1. After removing the nodes with degree k = 1, some nodes may
be left with degree k = 1, so we continue pruning the system iteratively until there is no
node with degree k = 1 left. The removed nodes along with the corresponding links for
a k shell with index ks = 1. Similarly, we continue removing higher-k shells until all
nodes are removed.

We then generate the candidate shells based on the value of ks and the number of
nodes in shell. Given the number of seeds (i.e., k), we select k1 = ck seeds based on the
number of nodes in shell, and select k2 = k−ck seeds based on the index of ks. We
employ Eq. (3) to compute the number of seeds based on the number of nodes in each
shell as follows

k1ðks ¼ iÞ ¼ k1 � nðks ¼ iÞ
nðGÞ ð3Þ

where k1(ks = i), n(ks = i) and n(G) denote the number of seeds with ks = i, the number
of nodes with ks = i and the number of nodes with social network G = (V, E). If
k1(ks = i) is equal to 0, then we will do not select the seeds based on the number of nodes.
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We further compute the number of seeds in each shell by using Eq. (4) based on the
value of ks. The maximum of ks is max, then we only consider these shells range from
max to max-m. Here, the number of seeds of ks = max-i is bmax-i �k2.

k2 ¼ ðbmax þ . . .þ bmax�i. . .þ bmax�mÞ � k2 ð4Þ

Here, bmax + …+bmax-i …+bmax-m = 1 and bmax > …>bmax-i … > bmax-m. Then,
we can filter some shells with k1(ks = i) = 0 and ks � max-i−1, and there are n′
candidate shells left.

4.2 Selecting Seeds of Candidate Shells

We first select the nodes of candidate shells with maximum degree as the first seed in
parallel, i.e.,

S1ks¼i ¼ argmaxðdðvjÞÞ vj 2 Gks¼i ð5Þ

where S1ks¼i denotes the first seed with index ks = i.
For any shell, if k1(ks = i) > 1 or k2(ks = i) > 1, to obtain the jth seed, we first

compute the MSD from Sj�1
ks¼i to its active set ASðSj�1

ks¼iÞ by Eqs. (6) and (7).

SPðvj ! AsðvjÞÞ ¼
P

u2AsðvjÞ SPðvj ! uÞ
jAsðvjÞj ð6Þ

MSD ¼
P

vj2Sj�1
ks¼i

SPðvj ! AsðvjÞÞ
Sj�1
ks¼i

�
�
�

�
�
�

ð7Þ

We further compute the number of neighbors of vk 2 Gks¼inSj�1
ks¼i with MSD steps,

i.e., |Nmsd(vk)| and the number of intersection between Nmsd(vk) and AsðSj�1
ks¼i

Þ, i.e.,
jNmsdðvkÞ \AsðSj�1

ks¼i
Þj. Finally, we select the following vk by computing Eq. (8) as the

jth seed with index ks = i.

vk ¼ argmaxðjNmsdðvkÞj � NmsdðvkÞ \AtðSj�1
ks¼iÞ

�
�
�

�
�
�Þ ð8Þ

4.3 Parallel Algorithm for Seed Selection Based on Candidate Shells

Based on the above descriptions of selecting seeds of candidate shells, the algorithm for
the candidate shells influence maximization (CSIM) is given in Algorithm 1. Ma et al.
proved the greedy algorithm approximate the optimal result with 1 − 1/e [15]. How-
ever, the greedy algorithm is time consuming due to the massive matrix computation,
and thus we propose the CSIM algorithm (a modified algorithm of greedy) to coarsely
estimate the influence spread based on the seed set, the active set and non-seed nodes,

Parallel Seed Selection for Influence Maximization Based on k-shell Decomposition 31



which can avoid massive estimation of heat diffusion process. At the same time, we
obtain the candidate shells by the k-shell decomposition, and these candidate shells are
independent of each other, thus we can further efficiently select seeds of candidate
shells in parallel. Specifically, the CSIM algorithm can be described as follows. First,
we employ the k-shell decomposition approach to divide the social network G = (V,
E) (lines 1–3). For each shell, we compute its number of seeds based on its index ks and
prune these shells with k1(ks = i) = 0 and k2(ks = i) � max-m−1 to generate the
candidate shells (lines 4–8). Finally, we select the seeds from candidate shells in
parallel (lines 9–18).
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5 Experimental Results

5.1 Experiment Setup

Datasets: We choose ca-GrQc, ca-HepPh and com-DBLP for our experiments [6, 29].
The ca_Hepth and Ca-GrQc are collaboration networks extracted from the e-print arXiv
(http://www.arXiv.org). The former is extracted from the “High Energy
Physics-Theory” and the latter is extracted from the General Relativity. The
com-DBLP is a much larger collaboration network extracted from the DBLP (http://
dblp.uni-trier.de/db/), which is Computer Science Bibliography Database. The nodes in
these two networks are authors and an edge between two nodes means the two
coauthored at least one paper.

Running environment: All algorithms were implemented in Scala. All experiments
were conducted on a machine (i.e., master node) with 3.3GHZ 32-Core CPUs and
32 GB memory, and 10 machines (i.e., worker nodes) with 3.3GHZ 8-Core CPUs and
16 GB memory.

5.2 Performance Studies

We measured the following metrics: (1) the influence spread of CSIM algorithm,
max-degree algorithm and random algorithm under heat diffusion model with 30 seeds;
(2) the influence spread of CSIM algorithm with different activation threshold h; (3) the
influence spread with different flow duration t; (4) the Speed-up of CSIM algorithm;
(5) the parallel efficiency of CSIM algorithm.

All the experiments presented in this paper use the heat diffusion model, where we
specified two parameters the initial heat of each heat source and P. Here, we choose N/
k as the amount of heat for each heat source, where N is the number of nodes in social
network, k the number of seeds and P = 30.

(1) Influence spread of three algorithms. Table 1 shows the influence spread of three
algorithms with the following parameters on a = 1, t = 0.1, h = 0.01 and |k| = 30.
From Table 1, we can observe that the number of active nodes with CSIM
algorithm is larger the max-degree and random algorithms. This is because
max-degree algorithm does not consider the overlap between seeds and the ran-
dom algorithm as baseline algorithm, some selected seeds cannot spread the
influence effectively.

(2) Activation threshold h. Given a = 1 and t = 0.1, Fig. 1 shows the influence
spread of CSIM algorithm of 30 seeds with different activation threshold h from

Table 1. The influence spread of different algorithms

Data CSIM Max-degree Random

ca-GrQc 329 311 278
ca-HepPh 741 606 374
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0.1 to 0.5 with a span of 0.1, respectively. The x-axis indicates the activation
threshold, and y-axis indicates the influence spread. From Fig. 1, we can see that
the influence spread of CSIM algorithm will decrease with the increase of acti-
vation threshold h. The reason is that the nodes are hard to be influenced when the
activation threshold is larger.

(3) Flow duration t. Given a = 1 and h = 0.5, Fig. 2 shows the influence spread of
CSIM algorithm of 30 seeds with different flow duration t from 1 to 1.8 with a
span of 0.2, respectively. The x-axis indicates the flow duration, and the y-axis
indicates the influence spread. From Fig. 2, we can obtain that the influence
spread of CSIM will increase with the increase of flow duration t. This is because
the larger flow duration t will lead to more nodes influenced.

(4) Speed-up. Speed-up of a parallel algorithm is a ration of the processing time
between of singer worker and multiple workers. Figure 3 shows the speed-up
trends for parallel CSIM algorithm. In all datasets, the speed-up will increase as
the number the workers increase.

(5) Parallel efficiency. Figure 4 shows the trends for parallel CSIM with different
datasets. To the same dataset, the parallel efficiency will decrease as the number of
workers increase.
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6 Conclusions and Future Work

To select seeds timely, we propose CSIM algorithm for parallel seed selection for
influence maximization based on k-shell decomposition. First, we employ the k-shell
decomposition method to divide a social network and generate the candidate shells.
Further, we use the heat diffusion model to model the influence spread. Finally, we
select seeds of candidate shells in parallel by using the CSIM algorithm. In a candidate
shell, if the number of seeds is larger than 1, then we adopt the CSIM algorithm (a
modified algorithm of greedy) to select seeds in parallel.

In this paper, we employ the value of index k-shell and the number of nodes to
generate candidate shells based on experience. For our future work, we are to adopt
modified algorithm to generate candidate shells. Moreover, the heat diffusion model in
this paper only includes one kind of information spread, while there exist competitive
influence spread in reality. Meanwhile, we are to analyze the competitive influence
spread of heat diffusion model.
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