
An Approach of Extracting Feature Requests
from App Reviews

Zhenlian Peng1,2, Jian Wang1(B), Keqing He1, and Mingdong Tang2

1 State Key Lab of Software Engineering, Computer School,
Wuhan University, Wuhan, China

{zlpeng,jianwang,hekeqing}@whu.edu.cn
2 Computer School, Hunan University of Science and Technology, Xiangtan, China

mdtang@hnust.edu.cn

Abstract. With the rapid development of mobile technologies, devel-
oping high-quality mobile apps becomes increasingly important. App
reviews, which are collaboratively collected from various users, are viewed
as important sources for enhancing or evolving mobile apps, wherein
how to accurately extract feature requests becomes an important issue.
However, the scale of app reviews is so large that it is intractable to
manually identify feature requests from these reviews. In this paper, we
propose a semi-automated approach to extract feature requests based
on machine learning approaches. In our approach, we firstly identify
reviews on feature requests by defining suitable classification features and
selecting appropriate classification approaches. Afterwards, these identi-
fied reviews are clustered using topic models, and phrases are extracted
as feature requests, which serve as the basis of feature modeling. Exper-
iments conducted on a real world data set show that the proposed app-
roach can contribute to extracting feature requests from app reviews.

Keywords: Feature requests · App review · Classification · Word
dependencies

1 Introduction

With the rapid development of mobile technologies, an increasing number of
mobile apps have been developed and published. Similar to the traditional soft-
ware development, the development of mobile apps also starts from requirements
elicitation, where the quality of requirements plays a key role to assure the suc-
cess of the software [1]. Since the approach of feature-oriented domain analysis
(FODA) is proposed [2], the feature-oriented approach has been widely used in
software development by software practitioners. According to IEEE standard
glossary of software engineering terminology [3], a feature is defined as “a soft-
ware characteristic specified or implied by requirements documentation”. Due to
the close relationship between requirements and features, extracting appropriate
features will contribute to requirements elicitation, which will in turn promote
the success of software development.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 312–323, 2017.

DOI: 10.1007/978-3-319-59288-6 28

An Approach of Extracting Feature Requests from App Reviews 313

Various sources can be used to extract feature requests. For example, online
open forums have been used to elicit features by project managers [4,5]. Domain
knowledge coming from domain experts can also be utilized to elicit features
by recommending proper expert stakeholders [6,7]. In addition, descriptions of
online software products can also be leveraged to elicit software features [8,9]. In
particular, reviews can be viewed as a way for users to collaboratively propose
feature requests for a certain mobile app. So many works have been conducted
towards extracting feature requests from app reviews. For example, an unsuper-
vised information extraction system named OPINES is proposed in [10], which
builds a model of important product features by mining reviews. Various infor-
mation retrieval techniques such as topic modeling are leveraged to extract topics
and representative sentences of those topics from user comments, which will be
used to revise requirements for next releases of software [11]. A prototype named
mobile app review analyzer (MARA) for automatic retrieval of mobile app fea-
ture requests from app reviews is designed in [12]. As a whole, these approaches
mainly leverage information retrieval techniques in identifying feature requests
from user reviews and they do not classify app reviews in advance. An automated
approach that helps developers filter, aggregate, and analyze user reviews is pro-
posed in [13]. However, they mainly focus on sentiment analysis on reviews and
feature requests mining is not the focus of their work. Several classification algo-
rithms are compared in [14] to classify app reviews into four types: bug reports,
feature requests, user experiences, and ratings. They comprehensively classify
app reviews, but they do not consider the characteristics such as linguistic rules
that are specific to feature requests.

An approach of extracting feature requests from app reviews is presented
in this paper. We focus on how to select appropriate classification attributes
and an optimal classification algorithm to identify feature requests from the
app reviews. Specifically, various classification attributes such as bag of words,
linguistic rules and metadata (e.g., rating, tenses and sentiment) are analyzed.
Four classification algorithms including J48, Naive Bayes, Random Forest [15]
and SVM (Support Vector Machine) [16] are compared to select an optimal
classifier. Then LDA (latent Dirichlet allocation) [17] is used to cluster reviews
on feature requests. Finally, phrases that represent feature requests are extracted
by using the Stanford Parser [18], a tool that can generate word dependencies
of sentences, based on the clustered topics and terms.

The main contributions of our work are as follows.

• An approach of extracting feature requests from app reviews is proposed.
Various possible selected classification attributes from raw reviews and clas-
sification algorithms are discussed. In addition, we use LDA to cluster reviews
on feature requests into various groups. Word dependencies are used to extract
phrases that represent feature requests based on the clustered result.

• Experiments on a real world data set are conducted to identify reviews on
feature requests and extract representative feature requests.

314 Z. Peng et al.

The remainder of the paper is organized as follows. Section 2 introduces
feature requests extraction approach in detail. The evaluation of the proposed
approach is discussed in Sect. 3. Section 4 discusses related work and we conclude
the paper in Sect. 5.

2 Feature Requests Extraction

2.1 Overview of the Approach

An overview of the approach is described in Fig. 1, which mainly involves three
steps:

Fig. 1. Overview of feature requests extraction

Step 1: The objective of this step is to identify which reviews belong to
feature requests using classification techniques. As depicted in Fig. 1, a classifier
is trained by selecting appropriate classification attributes from these reviews.
Then the classifier is utilized to predict whether unlabeled reviews belong to
feature requests. To improve the prediction performance, it is important to select
appropriate classification algorithms together with attributes.

Step 2: After raw reviews are classified, reviews on feature requests are clus-
tered into semantically similar groups. Clustering algorithms have been widely
used in mining features in the field of feature model extraction [8,9] and discov-
ering Web service from text descriptions [19,20]. In this paper, LDA, a widely
used topic model, is adopted to cluster these reviews based on identified latent
topics.

Step 3: For each topic, the highly relevant reviews are selected, and then verb-
noun phrases and noun phrases are extracted by analyzing from word dependen-
cies of these selected reviews using the Stanford Parser. Finally, the phrases are
filtered and selected as feature requests based on the relevance between its con-
tained terms with the topic.

The extracted feature requests can be viewed as new requests of the mobile
app, and therefore they can also serve as a basis of the mobile app evolution and
the feature model change, which means that they will be developed or reused in
the next release of the mobile app. Due to the space limitation, in this paper, we
focus more on selecting appropriate classification algorithms and classification
attributes.

An Approach of Extracting Feature Requests from App Reviews 315

2.2 Classification Attributes Selection

A review extracted from the Apple Store and the Google Play store [21] usually
consists of the following attributes: app Id, review Id, review title, review com-
ment, rating, reviewer, fee, date, and data source. However, not all the attributes
are useful to train a classifier on identifying feature requests. Therefore it is nec-
essary to select useful information from the review.

The title and comments are basic attributes of an app review, which can
be treated as a document. In the document classification, bag of words (abbr.
BW) are the basic classification attributes. The vectorization process of BW
is usually described as follows: firstly a dictionary which includes all terms of
reviews in the corpus is created; next, whether a term appears in the review and
how often it appears is counted; and finally the TF -IDF of each term in a review
is calculated. Some natural language processing techniques such as stop words
removal and lemmatization are usually used during the process. In this paper,
BW refers to bag of words together with stop words removal and lemmatization.

According to the analysis of the manually identified feature requests in the
random sample described in [12], some keywords used for defining linguistic
rules on feature requests have been identified in the title or comments. In order
to reflect linguistic rules by using these keywords, they are classified into three
categories: modal verbs (abbr. MV), general verbs or nouns (abbr.VN), and
preposition phrase (abbr. PP), as shown in Table 1.

Table 1. Keywords in reviews on feature requests

Part of speech Keywords

MV could, maybe, must, need, should, will, wish, want, would, please

VN add, allow, complaint, hope, improve, lack, look forward to, miss,
prefer, request, suggest, wait for

PP if only, instead of

TF -IDF of each category is calculated to quantify the textual attributes. TF
of a category in a review is the ratio between the number of keywords of the
category occurred in the review and the total number of words in the review.
IDF of a category in a review is a logarithm between the number of all reviews
and the number of reviews containing any keyword of this category. TF -IDF of
a category is the product of the TF and IDF score of the category. They are
calculated using Eqs. (1), (2) and (3), respectively.

TF (c, r) =

∑
k∈c # of k occurs in r

of words in r
, (1)

IDF (c) = log
of reviews

∑
k∈c # of reviews containing k

, (2)

TF -IDF (c, r) = TF (c, r) × IDF (c), (3)

316 Z. Peng et al.

where, k represents a keyword in a category c (MV, VN, or PP) and r rep-
resents a review. In addition, we use LR to represent the combination of MV,
VN, and PP.

The metadata such as star rating, tenses of the verbs, and reviewer sen-
timent can be extracted from app reviews. The star rating is a numeric value
between 1 and 5 given by the reviewer, which will be used as a classification
attribute. The tenses of verbs which occur in the review is also selected as a
classification attribute because the future tense reflects a larger possibility on
an enhancement of the app or a new feature request. Different from [14] which
used past, present, and future tenses by part of speech tagging provided in NLP
libraries, we only distinguish the future tense and the non-future tense in this
paper. The reviewer sentiment reflects the positive and negative emotions of
the reviewer [13]. Thelwall et al. [22] propose a fine-grained sentiment extrac-
tion approach, where one negative sentiment score in a scale of −5 to −1 and
one positive score in a scale of 1 to 5 are assigned for each review. Similar to
[13,14], an absolute score combined by negative and positive scores is used as a
classification attribute.

2.3 Feature Requests Clustering and Extraction

As one of the most widely used topic models, LDA can be used to extract
unobserved factors that capture the underlying domain semantics within the
given documents. Once the reviews on feature requests are identified, LDA is
leveraged to cluster these reviews on feature requests and identify the latent
topics among them. More specifically, according to the distribution of topics in
these reviews and the distribution of terms in topics generated by LDA, we can
cluster the reviews where the highly relevant reviews on each topic are grouped
together and we can also identify the highly relevant terms of each topic.

In our opinion, the feature requests can be represented in the form of verb-
noun phrases, e.g.,“update screen”, or noun phrases, e.g., “picture upload”. Next,
we pay our attention to extracting this kind of feature requests from the clustered
reviews.

Inspired by our previous work on service goal extraction [23], in this paper
we leverage the Stanford Parser [18] to extract the feature requests. The Stan-
ford Parser can be used to perform linguistic analysis of sentences contained by
reviews. The main linguistic analysis result we used is word dependencies, which
describe the binary relations between words within a sentence. For example,
amod(option-2, File-1) and compound(upload-6, picture-5) are two word depen-
dencies in the review “File option such as picture upload will be loved”. Based
on these two word dependencies, we can get two potential feature requests: file
option and picture upload. The Stanford Parser provides about 50 word depen-
dencies, where we currently use a subset of them to extract feature requests, as
shown in Table 2.

For each topic, we can extract feature requests from the reviews that are
highly relevant to the topic using the above mentioned approach. Note that not
all the phrases extracted from the word dependencies will be appropriate feature

An Approach of Extracting Feature Requests from App Reviews 317

Table 2. Used word dependencies

Dependency Definition Usage

dobj A noun phrase which is the (accusative)
object of the verb

Identify a “verb-noun”
pair in an active clause

nsubjpass A noun phrase which is the syntactic
subject of a passive clause

Identify a “verb-noun”
pair in a passive clause

nn(compound) Any noun that serves to modify the
head noun

Identify a “noun-noun”
pair in a clause

amod Any adjectival phrase that serves to
modify the meaning of the noun phrase

Identify a “adj-noun”
pair in a clause

requests relevant to the topic. A phrase can be viewed as a candidate feature
request relevant to a topic if and only if it contains at least one highly relevant
term of that topic. These candidate feature requests can be ranked according to
their frequencies in the topic and the probabilities of its contained terms over
the topic. In this way, we can get the feature requests from the reviews.

3 Evaluation

In this section, we evaluated the proposed extraction approach by a series of
experiments. All the experiments are conducted on a PC with 3.19 GHz Intel
Core i3 CPU and 4 GB RAM, running Windows 7 OS.

3.1 Experiment Data

In the experiments, we used the data set provided in [14], which was extracted
from the Apple AppStore1 and the Google Play2. In the data set, each review has
the attributes of comment text, title, app name, category, store, submission date,
and username. Furthermore, the metadata such as star rating, tenses of verbs
and sentiment of the reviews were also extracted. Moreover, the types of reviews
were manually analyzed and labeled, which were set as the grounding truth. In
the data set, due to the great effort of manually labeling, 1924 reviews were
labeled, where 295 reviews were feature requests, 600 reviews were non-feature
requests, and 1029 reviews were labeled as other types such as bug reports, user
experiences and ratings.

3.2 Evaluation Indicator

In order to evaluate the performance of various classification algorithms under
different classification attributes, the standard metrics precision, recall and
F -measure are used. In this paper, Precision is the fraction of reviews that
are correctly classified to feature requests. Recall is the fraction of reviews on

1 https://itunes.apple.com/us/genre/ios/id36.
2 https://play.google.com/store?hl=en.

https://itunes.apple.com/us/genre/ios/id36
https://play.google.com/store?hl=en

318 Z. Peng et al.

feature requests which are classified correctly. F -measure is a harmonic mean
function of precision and recall. They are calculated by Eqs. (4), (5), and (6),
respectively.

precision = TP/(TP + FP), (4)
recall = TP/(TP + FN), (5)

F -measure =
2 × precision× recall

precision + recall
, (6)

where, TP is the number of reviews that are classified as feature requests and
actually are feature requests. FP is the number of reviews that are classified
as feature requests but actually are not feature requests. FN is the number
of reviews that are classified into non-feature requests but actually belong to
feature requests.

3.3 Results and Analysis

Firstly, a group of experiments are conducted in order to evaluate the
performance of various classification algorithms under different classification
attributes. The values of precision, recall, F -measure and execution time are
compared by using various classification algorithms such as Naive Bayes, SVM,
J48, and Random Forest under different classification attributes. In order to
reduce the sensitivity of the data, the mean values of precision (abbr. pre), recall
(abbr. rec), F -measure (abbr. F1) and the execution time (abbr. time)under equal
scale of training and testing data were calculated for five times. Every time 75%
of all the reviews labeled as feature and non-feature requests were randomly
selected as training data and the remaining 25% reviews were selected as testing
data. The result of this group of experiments is shown in Table 3 (please note
that rat, ten and sen denotes rating, tenses and sentiment respectively).

As can be seen from Table 3, if BW is solely used as the classification
attribute, precision, recall and F -measure of each classification algorithm is on
the scale of 63.5% to 70.9%, 52.7% to 68.9% and 60.5% to 69.4%, respectively.
Wherein, SVM can get the best precision, but its recall is the smallest. Naive
Bayes can achieve the best classification results on the whole and its executing
time is the shortest. Random Forest is suboptimum on the whole but its execut-
ing time is the longest. If LR is solely used as the classification attribute, we find
that precision,recall and F -measure of each classifier is about 57.7%, 60.8%,
and 59.2%, respectively. It is obvious that the F -measure of using BW is gen-
erally superior to that of using LR, but the executing time is the opposite. The
reason is that BW consists of much more classification information meanwhile
it has far more dimensions to compute for training a classifier. If BW and LR
are used as classification attributes together, precision, recall and F -measure of
each classifier are on the scale of 66.7% to 76.8%, 58.1% to 75.7%, and 65.6% to
75.2%, respectively. Four classifiers have the similar comparison of classification
results with only BW being used as the classification attribute. Each algorithm
can get better results by using both of them to show that BW and LR can get
mutual supplement for training a classifier.

An Approach of Extracting Feature Requests from App Reviews 319

Table 3. Comparison of various algorithms under different attributes

Attributes Naive Bayes SVM

pre rec F1 time/s pre rec F1 time/s

BW 0.699 0.689 0.694 0.05 0.709 0.527 0.605 0.2

BW+rat 0.697 0.716 0.707 0.05 0.707 0.554 0.621 0.22

BW+rat+ ten 0.74 0.76 0.75 0.05 0.758 0.642 0.695 0.23

BW+rat+ ten+ sen 0.76 0.77 0.765 0.05 0.778 0.662 0.715 0.26

LR 0.577 0.608 0.592 0.001 0.577 0.608 0.592 0.05

LR+ rat 0.609 0.598 0.603 0.001 0.587 0.608 0.597 0.08

LR+ rat+ ten 0.632 0.618 0.625 0.001 0.736 0.519 0.609 0.09

LR+ rat+ ten+ sen 0.639 0.622 0.63 0.001 0.75 0.527 0.619 0.18

BW+LR 0.747 0.757 0.752 0.05 0.768 0.581 0.662 0.26

BW+LR+rat 0.757 0.757 0.757 0.06 0.808 0.568 0.667 0.27

BW+LR+rat+ ten 0.816 0.816 0.816 0.06 0.845 0.703 0.767 0.32

BW+LR+rat+ ten+ sen 0.824 0.824 0.824 0.09 0.852 0.703 0.77 0.4

Attributes J48 Random Forest

pre rec F1 time/s pre rec F1 time/s

BW 0.635 0.635 0.635 0.94 0.697 0.622 0.657 1.97

BW+rat 0.655 0.642 0.648 1 0.676 0.649 0.662 2.04

BW+rat+ ten 0.737 0.651 0.691 1.06 0.73 0.622 0.672 2.88

BW+rat+ ten+ sen 0.742 0.662 0.7 1.1 0.771 0.73 0.75 3.01

LR 0.577 0.608 0.592 0.002 0.577 0.608 0.592 0.01

LR+ rat 0.592 0.614 0.603 0.002 0.608 0.619 0.613 0.01

LR+ rat+ ten 0.706 0.681 0.693 0.003 0.687 0.622 0.652 0.02

LR+ rat+ ten+ sen 0.718 0.689 0.703 0.01 0.71 0.662 0.685 0.03

BW+LR 0.749 0.584 0.656 0.89 0.667 0.649 0.658 1.78

BW+LR+rat 0.759 0.615 0.679 1.28 0.727 0.649 0.686 2.38

BW+LR+rat+ ten 0.761 0.628 0.688 1.39 0.768 0.716 0.741 3.12

BW+LR+rat+ ten+ sen 0.772 0.643 0.702 2.18 0.809 0.743 0.775 5.74

Furthermore, adding the metadata such as rating, tenses and sentiment can
effectively improve the performance of each classification algorithm. According
to the results, using tenses can get better performance than using the other two
because future tense and non-future tense are considered together. When LR and
the metadata are used as classification attributes, J48 can get better F -measure
than the other three since J48 is more suitable for the sample with the smaller
size. SVM can often get the best precision, but its recall is almost the lowest,
so its F -measure is not so good. The performance of Random Forest is rather
moderate and its execution time is the longest. The performance of Naive Bayes
is superior to other classifiers if BW is used as one of classification attributes.
When BW, LR and metadata are used as classification attributes, Naive Bayes
can get the best results and both of its precision and recall can reach 82.4%.
Additionally, the executing time of Naive Bayes is the shortest.

320 Z. Peng et al.

Table 4. Some topics and representative terms

Afterwards, LDA is conducted on the reviews on feature requests. Table 4
depicts some topics and top five representative terms in each topic. Wherein,
each column represents a topic and each row shows terms and their probabilities
in the corresponding topics.

Finally, for each topic, phrases are extracted from the clustered reviews by
using the Stanford Parser. The top ranked feature requests in the data set are
as follows: update screen, fix game, game phone, add button, file download, open
video, file option, picture upload, easy way, and proper version. Clearly most of
the identified feature requests are meaningful and can help requirements analysts
in identifying new evolution requirements from app reviews. On the other hand,
some resulting feature requests such as easy way and proper version are not
satisfactory. How to further improve the identified feature requests using more
word dependencies and more filtering rules will be our future work.

3.4 Threats to Validity

With respect to the internal validity, the main threat is that the proposed app-
roach mainly considers various classification algorithms under different classifica-
tion attributes for identifying whether a review belongs to feature requests. But
it is also important to select proper clustering algorithms for grouping similar
reviews into feature requests.

Threats to external validity concern the selection of keywords that occur in
the reviews on feature requests. Since only some familiar keywords are selected
for training a classifier, the value of recall is not high. Additionally, the scale of
the experiments data needs to be extended. Due to the difficulty of getting the
truth of the type of the app reviews by manually labeling, we only select 1924
reviews for the experiments. It inevitably limits the verification experiments on
the performance of the classification algorithms.

4 Related Work

Many works have been presented to extract feature requests. Laurent et al. [5]
explore the use of online forums to conduct the requirements engineering tasks of

An Approach of Extracting Feature Requests from App Reviews 321

the open source projects which was led by the software vendor. Castro-Herrera
et al. [6] present a hybrid recommender system to identify potential users who
might be capable of responding to unanswered posts in open source forums.
Castro-Herrera et al. [7] utilize the organizer and promoter of collaborative ideas
(OPCI) recommendation system to recommend expert stakeholders of the field
and the requirements are elicited by means of the domain knowledge from these
expert stakeholders. These approaches focus on the problem of finding the proper
stakeholders to participate in the process of requirements elicitation. Hariri
et al. [8] and Dumitru et al. [9] leverage the data mining techniques to extract the
common features from online products description and design a recommender
system to elicit missing features.

App reviews have also been used to extract feature requests. Popescu et al.
[10] introduce an unsupervised information extraction system named OPINE to
build a model of important product features. Galvis Carreo et al. [11] adapt
topic modeling from user comments to extract the topics mentioned and some
sentences representative of those topics. These approaches do not consider sen-
timent of the user and they do not address the problem of the mis-classification
or mix of topics. Iacob et al. [12] design a prototype named mobile app review
analyzer (MARA) to automatic retrieve mobile app feature requests from app
reviews, where they manually define linguistic rules and identify feature requests
from reviews which match at least one linguistic rule. Because only part of the
linguistic rules are listed in their paper, it is difficult to quantitatively compare
their approach with ours. Their approach needs much manual labors and the
output of their approach is the corresponding keywords relevant to the feature
requests. In our approach, we use linguistic rules and bag of words as classifi-
cation attributes to train a classifier for identifying reviews on feature requests.
We also use the Stanford Parser to extract phrases to represent feature requests,
which can be easily understood by users. Guzman et al. [13] propose an auto-
mated approach that helps developers filter, aggregate, and analyze user reviews.
But they mainly focus on the emotion analysis on reviews and feature requests
mining is not their research task. Maalej et al. [14] introduce several probabilistic
techniques such as string matching, text classification, NLP (Natural Language
Processing) and sentiment analysis, and compare the classification algorithms
including Naive Bayes, Decision Tree and maximum entropy (MaxEnt) to clas-
sify app reviews into four types: bug reports, feature requests, user experiences,
and ratings. They classify app reviews comprehensively, but they do not consider
the characteristics such as linguistic rules only for feature requests. In contrast
to their works, we add linguistic rules besides bag of words and metadata as clas-
sification attributes to identify the reviews on feature requests. Furthermore, we
adopt the Stanford Parser to extract representative phrases as feature requests
based on clustered topics and top relevant terms of each topic.

322 Z. Peng et al.

5 Conclusion and Future Work

An approach of extracting feature requests from app reviews is proposed in this
paper. The approach can be applied in the early stage of software requirements
engineering, which can be a supplement for mining features from the description
of mobile apps. In order to accurately extract feature requests from reviews, it
is important to identify whether a review belongs to feature requests. There-
fore, different classification algorithms are compared under various classification
attributes, which are validated by leveraging a real world data set of reviews
from the AppleStore and the Google Play stores. In addition, phrases that rep-
resent feature requests are extracted by using word dependencies based on the
clustered reviews.

In the future, we plan to extend our work from the following directions.
Firstly, we will further investigate how to extract more meaningful phrases as
feature requests from reviews. Secondly, we plan to evaluate the performance
of various classification algorithms under different classification attributes when
the experimental data set grows to a larger scale.

Acknowledgments. The work is supported by the National Basic Research Program
of China under grant No. 2014CB340404, and the National Key Research and Develop-
ment Program of China under grant No. 2016YFB0800400, and the National Natural
Science Foundation of China under Nos. 61672387, 61373037, 61572186 and 61562073.
The authors would like to thank anonymous reviewers for their valuable suggestions.

References

1. Tiwari, S., Rathore, S.S., Gupta, A.: Selecting requirement elicitation techniques
for software projects. In: the CSI 6th IEEE International Conference on Software
Engineering (CONSEG), pp. 1–10. IEEE Press, New York (2012)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie Mellon Uni-
versity (1990)

3. Radatz, J., Geraci, A., Katki, F.: IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610121990(121990): 3 (1990)

4. Cleland-Huang, J., Dumitru, H., Duan, C., Castro-Herrera, C.: Automated support
for managing feature requests in open forums. Commun. ACM 52(10), 68–74 (2009)

5. Laurent, P., Cleland-Huang, J.: Lessons learned from open source projects for facil-
itating online requirements processes. In: Glinz, M., Heymans, P. (eds.) REFSQ
2009. LNCS, vol. 5512, pp. 240–255. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02050-6 21

6. Castro-Herrera, C.: A hybrid recommender system for finding relevant users in open
source forums. In: 3rd IEEE International Workshop on Managing Requirements
Knowledge, pp. 41–50. IEEE Press, New York (2010)

7. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Enhancing stakeholder pro-
files to improve recommendations in online requirements elicitation. In: Proceedings
of the 17th IEEE International Conference on Requirements Engineering, pp. 37–46.
IEEE Press, New York (2009)

http://dx.doi.org/10.1007/978-3-642-02050-6_21
http://dx.doi.org/10.1007/978-3-642-02050-6_21

An Approach of Extracting Feature Requests from App Reviews 323

8. Hariri, N., Castro-Herrera, H., Mirakhorli, M., Cleland-Huang, J.: Supporting
domain analysis through mining and recommending features from online product
listings. IEEE Trans. Softw. Eng. 39(12), 1736–1752 (2013)

9. Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-
Herrera, C., Mirakhorli, M.: On-demand feature recommendations derived from
mining public product descriptions. In: Proceedings of the 33rd IEEE International
Conference on Software Engineering, pp. 181–190. IEEE Press, New York (2011)

10. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews.
In: Anne, K., Stephen, R. (eds.) Natural Language Processing and Text Mining, pp.
9–28. Springer, London (2007)

11. Galvis Carreño, L.V., Winbladh, K.: Analysis of user comments: an approach for
software requirements evolution. In: Proceedings of the 35th IEEE International
Conference on Software Engineering, pp. 582–591. IEEE Press, New York (2013)

12. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from
online reviews. In: Proceedings of the 10th IEEE Working Conference on Mining
Software Repositories (MSR 2013), pp. 41–44. IEEE Press, New York (2013)

13. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of App. reviews. In: Proceedings of the 22nd IEEE International Conference
on Requirements Engineering, pp. 153–162. IEEE Press, New York (2014)

14. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automat-
ically classifying app reviews. In: Proceedings of the 23rd IEEE International Con-
ference on Requirements Engineering, pp. 116–125. IEEE Press, New York (2015)

15. Torgo, L.: Data Mining with R: Learning with Case Studies. Chapman &
Hall/CRC, Boca Raton (2010)

16. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 271–2727 (2011)

17. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

18. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural net-
works. In: 2014 Conference on Empirical Methods in Natural Language Processing,
pp. 740–750 (2014)

19. Wu, J., Chen, L., Zheng, Z., Lyu, M., Wu, Z.: Clustering web services to facilitate
service discovery. Knowl. Inf. Syst. 38(1), 207–229 (2014)

20. Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented
LDA for web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 162–176. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-45005-1 12

21. Pagano D., Maalej, W.: User feedback in the appstore: an empirical study. In:
Proceedings of the 21st International Conference on Requirements Engineering, pp.
125–134. IEEE Press, New York (2013)

22. Thelwall, M., Buchley, K., Paltoglou, G.: Sentiment strength detection for the
social web. J. Am. Soc. Inf. Sci. Technol. 63(1), 163–173 (2012)

23. Wang, J., Zhang, N., Zeng, C., Li, Z., He, K.: Towards services discovery based on
service goal extraction and recommendation. In: 2013 IEEE International Confer-
ence on Services Computing, pp. 65–72. IEEE Press, New York (2013)

http://dx.doi.org/10.1007/978-3-642-45005-1_12
http://dx.doi.org/10.1007/978-3-642-45005-1_12

	An Approach of Extracting Feature Requests from App Reviews
	1 Introduction
	2 Feature Requests Extraction
	2.1 Overview of the Approach
	2.2 Classification Attributes Selection
	2.3 Feature Requests Clustering and Extraction

	3 Evaluation
	3.1 Experiment Data
	3.2 Evaluation Indicator
	3.3 Results and Analysis
	3.4 Threats to Validity

	4 Related Work
	5 Conclusion and Future Work
	References

