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Abstract. The cloud-computing environment makes it possible to select the best
features when tuning parameters. Various dimensionality reduction algorithms
can achieve the best features with the tuning of parameters. Double adjacency
graphs-based discriminant neighborhood embedding (DAG-DNE) is a typical
graph-based dimensionality reduction method, and has been successfully applied
to image recognition. It involves the construction of two adjacency graphs, with
the goal of learning the intrinsic structure of the data. However, it may impair the
different degrees of importance of the intra-class information and inter-class
information of the given data. In this paper, we develop an extension of DAG-
DNE, called locality balanced double adjacency graphs-based discriminant
neighborhood embedding (LBDAG-DNE) by considering the intra-class infor‐
mation and inter-class information of the given data differently. LBDAG-DNE
can find a good projection matrix, which allows neighbors belonging to the same
class to be compact while neighbors belonging to different classes become sepa‐
rable in the subspace. Experiments on two image databases illustrate the effec‐
tiveness of the proposed approach.

Keywords: DAG-DNE · Intrinsic structure · Image recognition · Dimensionality
reduction

1 Introduction

Dimensionality reduction is one of the most useful tools for data analysis in data mining.
Many dimensionality reduction algorithms can achieve the best features when tuning
parameters. However, tuning parameters in the process of dimensionality reduction
significantly increases the time cost. Cloud computing [6, 7], which has supercomputing
power, can extract features more efficiently when tuning parameters.

The most popular dimensionality reduction algorithms include locally linear embed‐
ding (LLE) [1], ISOMAP [2], and Laplacian eigenmap (LE) [3]. These algorithms only
provide the embedding results for training samples. There are many extensions that
attempt to solve the out-of-sample problem, such as locality preserving projections
(LPP) [4, 5]. These algorithms could preserve the local information by constructing an
adjacency graph, but they cannot work well in classification because they are unsuper‐
vised.
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Many supervised algorithms have been proposed to overcome the aforementioned
drawbacks. Linear discriminant analysis (LDA) was proposed in [8–10], Yan et al.
proposed marginal Fisher analysis (MFA) [11]; Zhang et al. proposed discriminant
neighborhood embedding (DNE) [12]; Ding et al. proposed similarity-balanced discrim‐
inant neighborhood embedding (SBDNE) [14] and double adjacency graph-based
discriminant neighborhood embedding (DAG-DNE) [13], and so on. However, these
algorithms may not consider the different degrees of intra-class information and inter-
class information, which is important to learn the projection matrix.

Inspired by recent progress, in this study, we propose a novel supervised discriminant
subspace learning algorithm called locality balanced double adjacency graphs-based
discriminant neighbor embedding (LBDAG-DNE). In LBDAG-DNE, we employ DAG-
DNE to construct two adjacency graphs to preserve the intra-class information and inter-
class information, which link every sample to its homogeneous and heterogeneous
neighbors, respectively. In LBDAG-DNE, we introduce a parameter that can balance
the intra-class information and inter-class information depending on the situational
requirements. Thus, LBDAG-DNE could maintain the balance between intra-class
information and inter-class information and find an optimal projection matrix. Experi‐
mental results validate the effectiveness of LBDAG-DNE in comparison with several
related state-of-the-art methods.

The rest of this paper is structured as follows. In Sect. 2, we provide a summary of
the classic algorithms. Our LBDAG-DNE algorithm is introduced in Sect. 3. The exper‐
imental results are presented in Sect. 4. Finally, we provide the concluding remarks in
Sect. 5.

2 Related Work

Over the past few years, dimensionality reduction techniques have received much atten‐
tion, and correspondingly, many algorithms have been proposed [11–13, 15]. We will
briefly introduce some of the classic algorithms in this section.

Yan et al. [11] proposed MFA in 2005, which finds an optimal projection matrix by
simultaneously minimizing the intra-class scatter and maximizing the inter-class scatter
by constructing two adjacency graphs. However, it cannot determine the optimal
discriminant subspace.

Soon after this, Zhang et al. [12] proposed DNE. It maintains the local structure and
distinguishes homogeneous and heterogeneous neighbors by constructing an adjacency
graph, which can determine the optimal discriminant subspace. However, DNE does not
construct a link between each point and its heterogeneous neighbors when constructing
the adjacency graph.

Recently, Ding et al. [13] proposed DAG-DNE, which can effectively solve the
problem of DNE and LDNE, with each sample respectively linked to its homogeneous
and heterogeneous neighbors by constructing double adjacency graphs. However, DAG-
DNE simply considers intra-class information and inter-class information to have the
same degree of importance. In actuality, they play different roles in the classification
task.
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The above algorithms may simply consider intra-class information and inter-class
information to have the same degree of importance. However, they play different roles
in the classification task. Thus, when projected into a low-dimensional space, some more
important discriminative information may be missed.

3 Our Proposed LBDAG-DNE

3.1 LBDAG-DNE

Let {(𝐱i, yi)}
N
i=1 be a set of training samples, where 𝐱i ∈ Rd and yi ∈ {1, 2,… , C}.

LBDAG-DNE aims to find a projection matrix 𝐏, with the ability to project the data
from a high-dimensional space into a low-dimensional space 𝐕i = 𝐏T𝐱i, which allows
neighbors belonging to the same class to be compact while neighbors belonging to
different classes become separable.

Similar to DAG-DNE, LBDAG-DNE requires the construction of two adjacency
graphs. Let 𝐅w and 𝐅b be the intra-class and inter-class adjacency matrices, respectively.
For a sample 𝐱i, NHw

k
(𝐱i) and NHb

k
(𝐱i) denote its K homogeneous and heterogeneous

neighbors, respectively.
The intra-class adjacency matrix 𝐅w is defined as

Fw

ij
=

{
+1, 𝐱i ∈ NHw

k
(𝐱j) or 𝐱j ∈ NHw

k
(𝐱i)

0, otherwise
(1)

and the inter-class adjacency matrix 𝐅b is

Fb

ij
=

{
+1, 𝐱i ∈ NHb

k
(𝐱j) or 𝐱j ∈ NHb

k
(𝐱i)

0, otherwise
(2)

The intra-class scatter is defined as follows:

𝛷(𝐏) =
∑

i.j

||𝐏T
𝐱i − 𝐏

T
𝐱j||2Fw

ij

= 2tr{𝐏T
𝐗(𝐃w − 𝐅

w)𝐗T
𝐏}

(3)

where 𝐃w is a diagonal matrix, and its entries are the column sums of 𝐅w.
The inter-class scatter is as follows:

𝛹 (𝐏) =
∑

i.j

||𝐏T
𝐱i − 𝐏

T
𝐱j||2Fb

ij

= 2tr{𝐏T
𝐗(𝐃b − 𝐅

b)𝐗T
𝐏}

(4)

where 𝐃b is a diagonal matrix, and its entries are the column sums of 𝐅b.
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The goal is to allow neighbors belonging to the same class be compact, while neigh‐
bors belonging to different classes become separable in the subspace. We need to maxi‐
mize the margin of total inter-class scatter and total intra-class scatter, i.e.,

Θ(𝐏) = Ψ(𝐏) − 𝛽Φ(𝐏) (5)

where 𝛽 ∈ [0, 10] is a tuning parameter that controls the tradeoff between intra-class
information and inter-class information.

LBDAG-DNE seeks to find a projection matrix 𝐏 by solving the following objective
function. The complete derivation and theoretical justifications are similar to those of
DAG-DNE. Therefore, the details of the derivation and theoretical justification can be
found in [13].

{
max

𝐏

tr
{
𝐏T𝐗𝐒𝐗

T
𝐏
}

s.t. 𝐏T𝐏= 𝐈
(6)

where S = 𝐃b − 𝐅b − 𝛽 ∗ 𝐃w + 𝛽 ∗ 𝐅w.
The projection matrix 𝐏 can be found by solving the generalized eigenvalue problem

as follows:

𝐗𝐒𝐗
T
𝐏 = 𝜆𝐏 (7)

Thus, 𝐏 is composed of the optimal r projection vectors corresponding to the r largest
eigenvalues.

The details for LBDAG-DNE are given in Algorithm 1.
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3.2 Connection to LBDAG-DNE and DAG-DNE

By constructing two adjacency graphs, DAG-DNE can maintain the local intrinsic
structure for the original data in the subspace, allowing it to effectively find optimal
discriminant directions. However, DAG-DNE simply considers the intra-class infor‐
mation and inter-class information to have the same degree of importance. In actuality,
they play different roles in the classification task. Thus, when projected into the low-
dimensional space, some more important discriminative information may be missed.
LBDAG-DNE regulates the different levels of the intra-class information and inter-class
information by introducing a balance factor. As a result, LBDAG-DNE can adjust the
balance factor according to the actual situation to achieve a good performance.

4 Experiments and Analysis

4.1 Data Sets

We conducted experiments on three data sets that are publicly available: MNIST1,
UMIST2. Brief descriptions of these data sets are given below (see Table 1 for some
important statistics):

Table 1. Data sets used in our experiments

Data set #of instances #of features #of classes
MNIST 70000 784 10
UMIST 564 10304 20

MNIST is a data set of handwritten digits. Each image is represented as a 784-
dimensional vector.

UMIST is a data set that takes into account race, sex, and appearance, which we
downsampled to a size of 32 × 32 for computational efficiency.

4.2 Experimental Setup

All of the algorithms were implemented in MATLAB 2012b, and executed on an Intel
(R) i5 Core CPU 2.50 GHz machine with 4 GB of RAM. Our experiment required the
nearest neighbor parameter K to construct adjacency graphs. For simplicity, the nearest
neighbor (NN) classifier was used for classifying test images in the projected spaces.

1 http://yann.lecun.com/exdb/mnist/.
2 web.mit.edu/emeyers/www/face_databases.html#umist.
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4.3 Comparison Algorithms

To demonstrate the effectiveness and efficiency of our proposed LBDAG-DNE, we
compared it with three other state-of-the-art algorithms. The following is a list of
information concerning the experimental settings of each method:

(1) DNE: discriminant neighborhood embedding proposed in [12].
(2) MFA: marginal Fisher analysis proposed in [11].
(3) DAG-DNE: double adjacency graphs-based discriminant neighborhood embed‐

ding proposed in [13].

4.4 Performance Metric

The classification result was evaluated by comparing the obtained label of each sample
with the label provided by the data set. We used the accuracy [11, 12] to measure the
classification performance. Given a data point 𝐱i, let c(𝐱i) and c′(𝐱i) be the obtained
classification label and the label provided by the corpus, respectively. The accuracy is
defined as follows:

Accuracy =

∑N

i=1 𝛿(c(𝐱i), c′(𝐱i))

N
(9)

where N is the total number of samples, and 𝛿(a, b) is the delta function that equals one
if a = b and equals zero otherwise.

4.5 Experimental Results

To evaluate the effectiveness and correctness of the proposed algorithm, experiments
were carried out on the MNIST, UMIST, and ORL databases, and the results were
compared with those of DNE, MFA, and DAG-DNE.

In the parameter selection step, we randomly selected 60% of the images from the
60% training set as the training set, and the remaining 40% of the images from the 60%
training set as the test set to selection parameters and then used the result to choose 𝛽.

4.5.1 Results with Handwritten Dataset
For the MNIST data set, we considered five classes, including the digits 1, 3, 5, 7, and
9. For each class, we randomly selected 50 samples from the original training set as our
training samples, and 50 samples from the original test set as our test samples. Figure 1
shows some image samples from the MNIST dataset. The performances of the four
methods are reported in Fig. 2. We used K = 1, 3, 5, and 7 to construct the adjacency
graphs for all the methods.
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Here, we mainly focus on the effect of the dimensionality of the discriminant
subspace on the classification accuracy under different choices for the nearest neighbor
parameter K. Without prior knowledge, K was set to be 1, 3, 5, and 7. PCA was utilized
to reduce the dimensionality from 784 to 80. We repeated 30 trials and report the average
results. Figure 2(a), (c), (e), and (g) shows the accuracy of the four methods with different
dimensions and different values of K. Figure 2(a), (c), (e), and (g) shows that the clas‐
sification accuracies of all four methods increase rapidly, and then almost become stable.
More importantly, we can obviously see that LBDAG-DNE performs better than DNE,
MFA, and DAG-DNE across a wide dimensionality range on the MNIST dataset, and
the increase for LBDAG-DNE is the most rapid.

From Fig. 2(b), (d), (f), and (h), we can observe that LBDAG-DNE can obtain a good
performance at a relatively low discriminant subspace, and can reduce the computational
complexity and improve the classification performance.

Thus, the experimental results on the MNIST dataset illustrate that LBDAG-DNE
outperforms the other algorithms. In spite of the variation in K, LBDAG-DNE has the
highest recognition accuracy among these methods.

Fig. 1. Sample face images from MNIST database
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Fig. 2. Classification accuracy on MNIST database

206 C. Ding and Q. Sun



4.5.2 Results with UMIST Dataset
For UMIST datasets, we randomly selected 20% of the images from the database as
training samples, with the remaining 80% used as test samples. Figure 3 shows some
image samples from the UMIST dataset. We repeated 20 runs and report the average
results and corresponding parameters in Table 2.

Fig. 3. Sample face images from UMIST database.

Table 2. Best average recognition rates of all methods on UMIST dataset.

Method K = 1 K = 3
PCA 85.37 ± 0.71(80) 85.37 ± 0.71(80)
LPP 75.57 ± 0.96(80) 74.72 ± 1.59(80)
MFA 83.55 ± 0.33(36) 81.95 ± 1.79(31)
DNE 85.90 ± 1.74(76) 84.26 ± 1.64(77)
DAG-DNE 87.72 ± 0.52(47) 87.23 ± 0.82(32)
LBDAG_DNE 89.53 ± 0.18(16) 89.76 ± 0.46(19)

First, we consider the parameter selection. The nearest neighbor parameter K is
selected from the set {1, 3}. Figure 4 illustrates the relationship between the accuracy
and the value of 𝛽. From Fig. 4, we know that the accuracy is not the highest when
𝛽 = 1, where 𝛽 is a tuning parameter that balances the tradeoff between intra-class infor‐
mation and inter-class information. The intra-class information and inter-class infor‐
mation play different roles in the classification task.

Figure 5(a) and (c) shows the accuracies of the four methods vs. the dimensionality
of the subspace with different K. Figure 5(b) and (d) shows the relationship for the
subspace dimension with the best accuracy. As seen in Fig. 5(a) and (c), the classification
accuracies of all four algorithms increase rapidly. However, LBDAG-DNE has the
fastest increase. From Fig. 5(b) and (d), we can see that LBDAG-DNE has the lowest
discriminant subspace, which provides a good performance.
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Fig. 4. Average recognition rates vs.𝛽

Furthermore, Table 2 reports the best average recognition rates on the test sets for
all of the methods, along with the corresponding dimension of the reduced subspace
under different values of K. In spite of the variation in K, LBDAG-DNE has the highest
recognition rate among these algorithms.

Based on the results of the handwriting and face recognition experiments, we can
see that the classification performance of LBDAG-DNE is the best compared to DNE,
MFA, and DAG-DNE. This suggests that the intra-class information and inter-class
information have different degrees of importance for classification. In other words, they
play different roles in the classification task. Moreover, the superiority of LBDAG-DNE
was effectively demonstrated in all of the experiments. We could reduce the computa‐
tional complexity and improve the classification using LBDAG-DNE to extract the
effective features.
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Fig. 5. Recognition rates for different parameters on UMIST database

5 Conclusion

The superior computing power of cloud computing makes it possible to utilize tuning
parameters to select the best features. In this paper, we proposed a novel supervised
discriminant subspace learning algorithm, called LBDAG-DNE, with the goal of
learning a good embedded subspace from the original high-dimensional space for clas‐
sification. LBDAG-DNE maintains the intra-class and inter-class structure by
constructing adjacency graphs and balances them by introducing a balance parameter.
More importantly, by introducing a balance parameter, it can also regulate the different
levels of the intra-class information and inter-class information. Thus, LBDAG-DNE
could find an optimal projection matrix. Experimental results show that LBDAG-DNE
could achieve the best classification performance in comparison with several related
state-of-the-art methods.
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