
Real-Time Scheduling for Periodic Tasks
in Homogeneous Multi-core System
with Minimum Execution Time

Ying Li1(&), Jianwei Niu1, Jiong Zhang1, Mohammed Atiquzzaman2,
and Xiang Long1

1 State Key Laboratory of Software Development Environment,
School of Computer Science and Engineering,
Beihang University, Beijing 100191, China

liying@buaa.edu.cn
2 School of Computer Science,

University of Oklahoma, Norman, OK 73019, USA

Abstract. Scheduling of tasks in multicore parallel architectures is challenging
due to the execution time being a nondeterministic value. We propose a
task-affinity real-time scheduling heuristics algorithm (TARTSH) for periodic
and independent tasks in a homogeneous multicore system based on a Parallel
Execution Time Graph (PETG) to minimize the execution time. The main con-
tributions of the paper include: construction of a Task Affinity Sequence through
real experiment, finding the best parallel execution pairs and scheduling sequence
based on task affinity, providing an efficient method to distinguish memory-
intensive and memory-unintensive task. For experimental evaluation of our
algorithm, a homogeneous multicore platform called NewBeehive with private
L1 Cache and sharable L2 Cache has been designed. Theoretical and experi-
mental analysis indicates that it is better to allocate the memory-intensive task
and memory-unintensive task for execution in parallel. The experimental results
demonstrate that our algorithm can find the optimal solution among all the
possible combinations. The Maximum improvement of our algorithm is 15.6%).

Keywords: Task affinity � Real-time scheduling � Periodic tasks �
Homogeneous multicore system � Beehive

1 Introduction

With the changes of application, real time demands are being developed, e.g. scientific
computing, industrial control and especially mobile clients. The popularity of mobile
clients provided a broad space for the internet industry and presented higher demands
on the performance of hardware. The traditional way to improve the processing speed
relied on accelerating the clock speed, which resulted in a bottleneck due to a large
amount of energy consumption. It forced companies to use multi-core technology
[1–5]. But all of the traditional calculation models belong to Turing Machine which can
only be used for serial instructions. If we wrote some parallel programmes on a
single-core processor, they cannot be executed in parallel, essentially [6–9]. Therefore,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 175–187, 2017.
DOI: 10.1007/978-3-319-59288-6_16

the single-core calculation models cannot be simply transplanted to multi-core. Parallel
computing brings great challenges both to hardware structure and software design.

The objective of this paper is to find an efficient scheduling strategy which allows a
set of real-time periodic and independent tasks to be executed in a Homogeneous
Multi-Core system (HMC) with as little time as possible. In a multi-core system, the
execution time of tasks is not a deterministic value and it is very difficult to find a
sufficient condition for scheduling a set of periodic tasks. We solved this problem based
on task affinity (defined in Sect. 3). First, we obtain the affinity between each task
according to the actual measurement data. Second, we applied a scheduling heuristics
algorithm to find an optimal parallel scheme and a reasonable execution sequence. This
work will be useful to researchers for scheduling real-time tasks in a multicore pro-
cessor system.

Real-time task scheduling for single-core processor was proposed in 1960 and the
most representative algorithms are EDF and RM. Liu et al. [9–12] presented the
scheduling policy and quantitative analysis of EDF and RM. In 1974, Horn proposed
the necessary conditions for scheduling a set of periodic tasks. [13]. In 2005, Jiwei Lu
[14] proposed a thread named Helper can be used to increase the percentage of Cache
hits. But the time complexity of [14] algorithm is O(N!) which had no practical sig-
nificance. Kim, Chandra and Solihin studied the relationship between the fairness of
sharing L2 Cache and the throughput of processor under the architecture of chip
multiprocessors (CMP) and introduced some methods for measuring the fairness of
sharing Cache [15]. Fedorova studied the causes of the unfairness of sharing Cache
between tasks based on the SPEC CPU2000 [16]. Zhou et al. proposed a dynamic
Cache allocation algorithm which can re-assign Cache resource by recording the
parallel tasks’ behaviors of using Cache [17]. Shao et al. [18] and Stigge et al. [19]
divided the tasks into delay-sensitive ones and memory-intensive ones according to the
characteristics of their memory access behaviors.

Although these works for multicore tasks scheduling have made some progress,
most of them still used the same scheduling algorithms and analytic methods used in
single-core processers, which indicated the execution time of a task is a deterministic
value. But in multi-core system, the execution time is a nondeterministic value due to
sharing of resources between tasks. Moreover, their experimental data is mostly
obtained from simulation models which lack real data.

This paper is different from previous work in terms of using a nondeterministic
scheduling algorithm for multicore processor and a real experimental environment.

In this paper, we focus on the scheduling strategy for a set of periodic and real-time
tasks which can be executed on a multicore computing platform. We proposed a
Task-Affinity Real-Time Scheduling Heuristics algorithm (TARTSH) for periodic tasks
in multicore system based on a Parallel Execution Time Graph (PETG) which was
obtained by accurately measuring the tasks’ number of memory access and quantita-
tively analysing their delays due to resource competition. This algorithm focused on
avoiding the execution of memory-intensive tasks in parallel, which can improve the
real-time performance of the multi-core processor system.

176 Y. Li et al.

The main contributions of this paper include:

• We proposed a quantitative method to measure the affinity between each task and
obtained an affinity sequence according to the order of execution time which is
affected by resource sharing.

• We designed a scheduling heuristic algorithm to find the best parallel execution
pairs according to the task affinity and obtained an optimal tasks assignment method
and scheduling strategy to minimize the sum of each core’s execution time.

The rest of the paper is organized as follows. The Task Affinity model and related
theorems are presented in Sect. 2. A motivational example is presented in Sect. 3 to
illustrate the basic ideas of TARTSH algorithm. The multicore scheduling model is
described in Sect. 4. The task-affinity real-time scheduling heuristics algorithm is
presented in Sect. 5. The experimental results are presented in Sect. 6. Section 7
concludes the paper.

2 Basic Model

In this section, we introduce the Homogeneous Multi-Core system (HMC) architecture,
followed by the Parallel Execution Time Graph (PETG) and definitions.

2.1 Hardware Model

In view of the research aim in this paper, we hope to find a multicore computing
platform which can support a complete tool chains for writing a programme in
advanced language and understanding the hardware program language for modifying
hardware structure. Our investigation shows that Microsoft Research Beehive, which
provides a multi-core prototype system, can meet our requirements. We modified the
interconnection structure and storage architecture of Beehive by adding L2 Cache,
clock interrupt, etc., to design a new multi-core processor, NewBeehive, as shown in
Fig. 1.

Fig. 1. The structure of NewBeehive.

Real-Time Scheduling for Periodic Tasks 177

NewBeehive is a RISC multi-core processor with bus architecture which can be
implemented on FPGA. At present, NewBeehive can support up to 16 cores and each
of them can be regarded as an independent computing entity. In Fig. 1, MemoryCore,
CopierCore and EtherCore belong to service cores which are mainly designed to
provide service for computing. MasterCore and Core1-Core4 belong to computing
cores which are mainly used to execute tasks. In NewBeehive, Core1-Core4 are
homogeneous and they share L2 cache and have their own private L1 Instruction Cache
and L1 Data Cache. Core1-Core4 can access data from memory through L2 Cache, bus
and MemoryCore. In order to meet the requirements of research, we incorporated some
new functions in NewBeehive, including cache-coherent protocol, statistical analysis
for Cache, clock interrupt and exclusive access to sharing resource, etc.

2.2 Definitions

In this paper, we use a Parallel Execution Time Graph (PETG) to model the tasks.
The PETG is defined as follows:

Definition 2.1 Parallel Execution Time Graph (PETG). A PETG G = < V, E > is an
undirected strongly connected graph where nodes V ¼ fv1; v2; . . .; vi; . . .; vng repre-
sents a set of tasks and edges E ¼ fe12; . . .; eij; . . .; enng represents a set of execution
time for which eij is the sum of the execution time of task vi and the execution time of
task vj when they are executed in parallel, eij ¼ eji; i 6¼ j: eij ¼ tij þ tij where t ji is the
parallel execution time of task vi when it is executed in parallel with task vj.

Each task’s parallel execution time is recorded in the Task Parallel Execution Time
Table which is used to calculate task affinity.

Definition 2.2 Task Parallel Execution Time Table (TPET). A TPET A is a table for
which t ji represents the average parallel execution time of task vi when it is executed in

parallel with task vj under different combinations of tasks and t ji 6¼ t ji :.t
j
i ¼

PN

k¼1
t jik

N ,
where N ¼ Cn

mðvi; vjÞ indicates the number of different combinations of tasks including
task vi and vj, N is the number of cores and m is the number of the tasks.

Task affinity which indicates the parallel appropriateness between tasks is recorded
in the Task Affinity Sequence.

Definition 2.3 Task Affinity Sequence (TAS). A TAS S is an ordered sequence for
which si represents the influence degree of task vi affected by other tasks,
si ¼ fs1i ; s2i ; . . .s ji ; . . .; sni g, where sj�1

i � �s\s ji � �s and i 6¼ j. s ji is a tuple, s ji ¼
\vj;�s[; s ji ;�s is the difference ratio between the independent execution time and the

parallel execution time of task vi. s
j
i � �s ¼ t ji�ti

ti
, where ti represents the independent

execution time of task vi when it works on a single core and t ji represents the parallel
execution time of task vi when it is executed in parallel with task vj.

178 Y. Li et al.

Given a PETG G, TPET A and TAS S, the goal is to obtain a parallel execution set
and a scheduling sequence on the target multicore computing platform NewBeehive to
make the sum of each core’s execution time as little as possible. To achieve this, our
proposed methods need to solve the following problems:

• Task Affinity Sequence: Task affinity sequence is obtained by actually testing the
independent execution time and the parallel execution time for each task on the
multicore computing platform NewBeehive.

• Task Scheduling Sequence: Task scheduling sequence is composed of a tasks
assignment which represents the best match of tasks work on different cores and an
execution sequence which indicates the serial sequence of tasks work on one core.

3 Motivational Example

To illustrate the main techniques proposed in this paper, we give a motivational
example.

3.1 Construct Task Affinity Sequence Table

In this paper, we assume all the real-time periodic tasks are independent so that and the
execution time cannot be affected by the different combinations of tasks. The inde-
pendent tasks we used in this paper are shown in Table 1. Tasks 1, 2, 3, 4, 5 and 6 are
Matrix Multiplication, Heap Sort, Travelling Salesman Problem, Prime Solution, Read
or Write Cache and 0-1 Knapsack Problem, respectively.

In order to calculate the delay between each task due to their sharing L2 Cache, we
need to test the independent execution time TSi and parallel execution time TPi for
each task, respectively. To make it easier to understand, we use two cores, Core3 and
Core4 to execute the tasks in parallel.

First, we obtained the independent execution time TSi by executing task vi on a
single core which indicates task vi can exclusively use all the resources and not be

Table 1. Task list

Num Tasks

v1 Matrix
v2 Sorter
v3 Tsp
v4 Prime
v5 Cachebench
v6 Pack

Table 2. Independent Execution Time (1000 clocks)

Num Execution time on a single core Average
time

Core1 Core2 Core3 Core4
v1 71619 72013 72029 71972 72015
v2 74542 76712 74566 74510 75083
v3 75317 78973 75317 75317 76231
v4 75654 75654 75654 75654 75654
v5 100641 100641 100637 100637 100639
v6 72817 72816 72817 72816 72816

Real-Time Scheduling for Periodic Tasks 179

affected by other tasks. Table 2 is constructed by separately executing the target tasks
on a single core of NewBeehive. For the better result, we take the average of four tests.
Table 2 shows one task’s respective execution times on different cores are basically the
same, which indicates Core1 * Core4 are homogeneous. And it accords well with the
design of NewBeehive in Sect. 2.

Second, we test the parallel execution time Tpi by executing task vi on one core and
other tasks on the left cores. These tasks will be affected by each other due to sharing
L2 Cache. The value tv2v1 ¼ 76062, which represents the parallel execution time of task
v1 when it works on Core3 and v2 works on Core4 at the same time. And tv1v2 ¼ 83811
represents the parallel execution time of task v2. They are different because they belong
to different tasks’ parallel execution time.

According to Table 2, we find each task’s parallel execution time is longer than its
independent execution time. Furthermore, if a task belongs to the memory-intensive
application, it will significantly increase the other task’s execution time. For example,
task 5 is a Cachebench, which accesses data from memory frequently and all the other
tasks will have a great delay when they are executed in parallel. In Table 2, task 1’s
independent execution time on core3 is 72029, but its parallel execution time on core3
is 90644 when task 5 works on core4.

Third, we calculated the influence ratio between each task based on its independent

execution time and parallel execution time, as shown in Table 3. E.g., ¼ tv1v2�tv2
tv2

¼
83811�74542

74542 ¼ 12:4%:

By analyzing the task affinity sequence si in Table 3, we conclude the following
two results:

(1) In a row, if the task affinity grows very little, it indicates the task in this row
belongs to memory-unintensive application. The reason is the task’s parallel
execution time is less influenced by other tasks when it rarely accesses memory,
e.g. task 4.

(2) In a column, if the task has a significant impact on other tasks, it indicates the task
in this column belongs to memory-intensive application. The reason is the task
will severely impact the execution time of others when it frequently updates L2
Cache and uses Bus, e.g. task 5.

Table 3. Influence Ratio of Two Cores (Unit: %)

Cores Core4

Core3 v1 v2 v3 v4 v5 v6
1 – 5.6 0.8 0.3 25.9 4.0

2 12.4 – 2.7 1.7 65.4 8.3

3 2.5 2 – 0.01 21.3 0.2

4 0.24 0.22 0.11 – 0.6 0.12

5 27.4 26.3 8.3 3.6 – 21.7

6 14.6 11.2 0.3 0.01 55.7 –

1 2

4

3

5

8

159873

162459

157311

148016

218765

158295

152140

251322

162117

154422
226099

158504

180386

148580
235913

Fig. 2. Parallel execution time
graph.

180 Y. Li et al.

3.2 Find an Optimal Tasks Scheduling

In order to find an optimal Task Scheduling Sequence, we apply a task-affinity
real-time scheduling heuristics algorithm (TARTSH) based on graph theory to assign
tasks. According to the conclusions in Sect. 3, it is better to allocate the
memory-intensive task and memory-unintensive task to be executed in parallel, which
can reduce the competition for resources and improve the real-time performance.

First, we draw a Parallel Execution Time Graph (PETG) based on Table 2, as
shown in Fig. 2. Each edge in graph G is the sum of the parallel execution times of two
nodes, e.g. e12 ¼ t21 þ t12 ¼ 76062 þ 83811 ¼ 159873.

Second, we find the best parallel execution pairs based on the TARTSH algorithm.
We obtained a global task affinity sequence by ordering each task’s parallel influence.
The parallel influence of task vi indicates the total influence of task vi to all the other
tasks when they are executed in parallel, which is calculated by adding all the sij:�s,
where i = 1,2,…,n and i 6¼ j. For example, according to Table 3, the parallel influence
of task v5 ¼ 25:9þ 65:4þ 21:3þ 0:6þ 55:7 ¼ 168:9 and the global task affinity
sequence (GTAS) is fv5; v1; v2; v6; v3; v4g. And the best parallel execution pairs are
obtained by finding their best match task which has the strongest affinity according to
the order the global task affinity sequence. E.g., f\v5; v4 [;\v1; v3 [;\v2; v6g.

Third, we find the optimal task scheduling sequence by allocating the tasks in each
sub-sequence in the global task affinity sequence to their appropriate cores based on the
task affinity sequence of the most influence task. In this paper, the most influence task
is task v5 which indicates it has the largest influence on the other tasks. And the task
affinity sequence of task v5 is fv4; v3; v6; v2; v1g. Therefore, the optimal task scheduling
sequence is composed of the task execution sequence on each core. P(ci) is the set of
tasks assigned to core ci. E.g., Pðc3Þ ¼ fv5; v1; v2g and Pðc4Þ ¼ fv4; v3; v6g. If two
tasks have the same index in the different cores, they will be executed in parallel, e.g. v1
is executed with v3.

4 Multicore Scheduling Model

In this section, we propose a multicore scheduling model to achieve an optimal tasks
assignment method and scheduling strategy in HMC system that makes the sum of each
core’s execution time as little as possible. First, the notations and assumptions used to
construct the multicore scheduling model are presented in Table 4. Then, the theorems
are introduced.

The aim of multicore scheduling model is to minimize the total execution time on
the condition that the set of periodic and independent tasks can be scheduled. The total
execution time is defined as:

ToptðVÞ ¼ minð
X

ci2C T cið ÞÞ
¼ minð

X
vi2V TP við Þþ

X
vi2V TD við ÞÞ

ð1Þ

Real-Time Scheduling for Periodic Tasks 181

Where TD við Þ is defined as:

TP við Þ ¼ TSðviÞ � 1þ h við Þð Þ ð2Þ

TD við Þ ¼ TSðviÞ � 1þ e við Þð Þ ð3Þ

Then, according to Eqs. (1)–(3), it holds that

ToptðVÞ ¼ minf
X

vi2V TS við Þ � 2þ h við Þþ e við Þð Þ½ �g ð4Þ

Theorem 4.1. If a set of periodic and independent tasks are executed in parallel, the
optimal tasks assignment TAopt composed of MðviÞ can be obtained by sorting its b við Þ
in ascending order.

Proof: According to the definition,

TAopt Sð Þ ¼ fS1; . . .; Sm; . . .; Sng
¼

XN

m¼1
Sm � s

where, Sm ¼ MðviÞ; Sm � s ¼ P
vi;vj2Sm ðs

j
i � �sþ s ji � �sÞ (defined in Sect. 3), and N is the

number of the cores. Then,
TAopt Sð Þ ¼ M1 vlð Þ; . . .;Mm við Þ; . . .;Mn vj

� �
, where �Vl [. . .�Vi [. . .[�Vj ¼ V ,

�Vi \ �Vj ¼ ; and b Mm�1 vkð Þð Þ[b Mm við Þð Þ.
Assume b Mm�1 vkð Þð Þ\b Mm við Þð Þ, then there is a new the optimal tasks assign-

ment TA0
opt whose total task affinity is smaller than TAopt’s. It holds that

Table 4. Notations of TARTSH Algorithm

V A set of periodic and independent
tasks

V A set of periodic and
independent tasks

Topt Pð Þ The optimal tasks scheduling with
the minimum execution time

b við Þ The parallel influence of task
vi to all the other tasks

TAopt Sð Þ The optimal tasks assignment with
the minimum sum of task affinity

h við Þ The parallel influence of the
best match tasks M(vi) to
task vi

MðviÞ the best match tasks of task vi T cið Þ the execution time of core ci
�Vi The set of tasks in MðviÞ TSðviÞ The independent execution

time of task vi
PðciÞ The task execution sequence

assigned to core ci
TPðviÞ The parallel execution time

of task vi
e við Þ The parallel influence of all the other

tasks to task vi
TDðviÞ The delay when task vi is

executed in parallel

182 Y. Li et al.

TA0
opt S

0ð Þ ¼ fS01; . . .; S0m; . . .; S0ng
¼

XN

m¼1
S0m � s

where S0m � s ¼ P
vk;vl2S0m ðs0lk � �sþ s0kl � �sÞ

If b Mm�1 vkð Þð Þ\b Mm við Þð Þ, thenP
vk;vl2S0m ðs0lk � �sþ s0kl � �sÞ[P

vi;vj2Sm ðs
j
i � �sþ s ji � �sÞ which indicates

PN
m¼1 S

0
m � s[

PN
m¼1 S

0
m � s

And it is different from assuming which indicates MðviÞ in TAopt Sð Þ is ordered by
its b við Þ.
Theorem 4.2. Based on TAopt Pð Þ, the optimal tasks scheduling Topt can be obtained by
making the tasks executed with their strong affinity tasks.

Proof: Assume the most influence task with the largest b við Þ is vmax, and its task
affinity sequence siðvmaxÞ ¼ fs1max; . . .s jmax; . . .; snmaxg (defined in Sect. 3). Then,

TAopt Pð Þ ¼ fP c1ð Þ; . . .; P cmð Þ; . . .; P cNð Þg and P cmð Þ ¼ \v1m; . . .; v
k
m; . . .; v

n
m [,

where the tasks in P cmð Þ are the same with those in Sm but ordered according to the task
affinity of vmax from small to large.

Assume a task v0 is assigned to core cm to replace the task vkm and
h vmax; v0ð Þ[hðvmax; vkmÞ. Then, a new optimal tasks scheduling TA0

opt P
0ð Þ is obtained.

TA0
opt P

0ð Þ ¼ fP0 c1ð Þ; . . .; P0 cmð Þ; . . .; P0 cNð Þg and P0 cmð Þ ¼ \v1m; . . .; v
k
i ; . . .; v

n
m [.

According to the Eqs. (2), we have that

TP vmax; v
0ð Þ ¼ TSðviÞ � 1þ h vmax; v

0ð Þð Þ

Therefore, TP vmax; v0ð Þ[TP vmax; vkm
� �

which indicate

TA0
opt P

0ð Þ[TA0
opt Pð Þ

And it is different from assuming.

5 TARTSH Algorithm

In this section, we propose a task-affinity real-time scheduling heuristics algorithm
(TARTSH) to find the Topt which has the minimum total execution time on the condition
that the set of periodic and independent tasks can be scheduled in a given HMC
according to task affinity.

Algorithm 5.1 shows the TARTSH algorithm. Initially, we build a matrix
TA[Vn�½Vn� to record task affinity between tasks and TA[vi�½vj� represents the s ji � �S
(defined in Sect. 3). The variables S(viÞ, Ci(S) and PS are used to record the parallel
influence of task vi, the already assigned tasks on the core ci and the global priority of
all the tasks based on the task affinity, respectively. And U Cið Þ is a function to calculate

Real-Time Scheduling for Periodic Tasks 183

the resource utilization rate of core Ci and Li(n) is the least upper bound of the
utilization ratio of core ci.

The TARTSH algorithm tries to find the best parallel execution sequence according
to the task affinity and obtained an optimal tasks assignment method and scheduling
strategy to make the sum of each core’s execution time as little as possible. From line 4
to line 16, the algorithm construct the priority of each task, PS½Vn�½Vn�, which satisfies
the condition PS½vi�½vx�[PS½vi�½vy�, where x\y; PS½vi�½vx� is the task affinity between
vi and vx. Then, we sort PS½Vn�½Vn� based on PS½Vn�½0� in line 17. From line 19 to
line 23, the task pairs with the highest tasks affinity will be assigned to the empty cores.
PS’ is obtained in line 24 by deleting the assigned tasks from PS. From line 25 to line
38, the tasks assignment on each core is obtained by finding the best match task for the
core’s latest task based on task affinity.

184 Y. Li et al.

6 Experiments

Experimental results are presented in this section. To demonstrate the effect of the
TARTSH algorithm across different cores, we complete our experiment in a homoge-
nous multi-core system with 2 cores, 4 cores and 8 cores, respectively. Our main
method is to generate all the periodic tasks sets consisted of real-time tasks defined in
Table 1 based on random algorithm and record their execution time, cache read failure
times and hit rate, respectively. Then, the effectiveness of the TARTSH algorithm is
proved according to the statistical data.

6.1 Periodic Tasks Set

We design different sizes of periodic tasks set consisted of different real-time tasks
defined in Table 1 by making them executed randomly for many times, as shown in
Table 5. In our experiment, the number of periodic tasks set is limited between 100 and
1500 for very small number of tasks will lead to inaccurate, but a large number of tasks
will increase the difficulty of collecting data. The execution sequence of tasks is also
generated randomly. E.g., Set1 just includes two tasks and they will be {T1, T2} or {T1,
T3} or {T1, T4} or other combinations of two tasks. And we execute them for 50 times
to obtain a periodic tasks set with 100 tasks, e.g., {{T1, T2}, {T1, T2},…, {T1, T2}}.

6.2 Task Affinity

In this paper, our purpose is to schedule a set of real-time periodic and independent
tasks with as little time as possible based on the task affinity. Task affinity can be
measured qualitatively based on the parameters of cache read-failure times, task exe-
cution time, etc., which are obtained by executing the periodic tasks sets in different
size of homogenous multi-core systems, as shown in Table 6.

In advance, we know T1, T3 and T5 access memory frequently and T2 and
T4rarely access memory. Table 6 shows a part of the statistical data of set1 and it
indicates T1 and T5 have the strongest affinity for they share data. But T1 and T3 will
cause the failure of reading cache for their data is stored on different lines of cache.

Table 5. Periodic tasks set table

Set No. Number of tasks Size of set Number of cores

Set1 2 100 {1,2}
Set2 4 500 {1,2,3,4}
Set3 6 1000 {1,2,3,4,5,6}
Set4 8 1500 {1,2,3,4,5,6,7,8}

Real-Time Scheduling for Periodic Tasks 185

7 Conclusion

In this paper, we propose a task-affinity real-time scheduling heuristics algorithm
(TARTSH) for periodic and independent tasks in a homogeneous multicore system
based on a Parallel Execution Time Graph (PETG) to minimize the execution time. We
build multicore scheduling model to obtain the best parallel execution pairs and
scheduling sequence based on task affinity. The experimental results show that
TARTSH algorithm spends less time than any other combination which is implemented
in a real homogeneous multicore platform.

Acknowledgments. This work was supported by the National Natural Science Foundation
of China (61572060, 61190125, 61472024), 973 Program (2013CB035503), and CERNET
Innovation Project 2015 (NGII20151004).

References

1. Bastoni, A., Brandenburg, B.B., Anderson, J.H.: An empirical comparison of global,
partitioned, and clustered multiprocessor EDF schedulers. In: Proceedings of the 31st IEEE
Real-Time Systems Symposium (RTSS), pp. 14–24 (2010)

2. Liu, J.W.S.: Real-Time System. Pearson Education (2002)
3. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real time

environment. J. ACM 20(1), 46–61 (1973)
4. Davari, S., Dhall, S.K.: An online algorithm for real-time tasks allocation. In: IEEE

Real-time Systems Symposium, pp. 194–200 (l 986)
5. Baruah, S.K., Li, H., Stougie, L.: Towards the design of certifiable mixed-criticality systems.

In: The Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 13–22 (2010)

6. Lauzac, S., Melhem, R., Mosse, D.: Comparison of global and partitioning schemes for
scheduling rate monotonic tasks on a multiprocessor. In: 10th Euromicro Workshop on Real
Time Systems, pp. 188–195, June 1998

7. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv. 4, 1–44 (2011)

Table 6. A part of statistical data of set1

No. Tasks Cache performance parameters on one
core

Cache performance parameters on two
core

Read times Read-failure times Hit Rate Read times Read-failure times Hit Rate

1 T1, T2 725301 54397 92.5 401631 34942 91.3
2 T1, T5 638120 15953 97.5 309162 9893 96.8
3 T2, T4 65390 6931 89.4 39125 3717 90.5
4 T2, T5 640145 60174 90.6 392174 41178 89.5
5 T1, T3 1025471 255342 75.1 8946756 1261493 85.9
6 T2, T3 825301 179090 78.3 579834 92–93 83.6

186 Y. Li et al.

8. Mok, A.K.: Fundamental design problems of distributed systems for the hard real-time
environment. Ph.D. Dissertation, MIT (1983)

9. Lakshmanan, K., de Niz, D., Rajkumar, R., Moreno, G.: Resource allocation in distributed
mixed-criticality cyber-physical systems. In: The 30th International Conference on
Distributed Computing Systems (ICDCS), pp. 169–178 (2010)

10. De Niz, D., Lakshmanan, K., Rajkumar, R.: On the scheduling of mixed-criticality real-time
task sets. In: The 30th Real-Time Systems Symposium (RTSS), pp. 291–300 (2009)

11. Guan, N., Ekberg, P., Stigge, M., Yi, W.: Effective and efficient scheduling of certifiable
mixed-criticality sporadic task systems. In: The 32rd Real-Time Systems Symposium
(RTSS), pp. 13–23 (2011)

12. Burchard, A., Liebeherr, J., Oh, Y.F., Son, S.H.: New strategies for assigning real-time tasks
to multiprocessor systems. IEEE Trans. on Comput. 44(12), 1429–1442 (1995)

13. Han, C.C., Tyan, H.: A better polynomial-time schedulability test for real-time fixed-priority
scheduling algorithms. In: The 18th IEEE Real-Time Systems Symposium, San Francisco,
pp. 36–45 (1997)

14. Lu, J., Das, A., et al.: Dynamic helper threaded prefetching on the sun ultra SPARC CMP
processor. In: The 38th Microarchitecture, pp. 93–104, October 2005

15. Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip
multiprocessor architecture. In: 13th International Conference on Parallel Architecture and
Compilation Techniques, Los Alamitos, CA, pp. 111–122 (2004)

16. Fedorova, A.: Operating System Scheduling for Chip Multithreaded Processors. Ph.D.
thesis, Harvard University (2006)

17. Benhai, Z., Jianzhong, Q., Shukuan, L.: Dynamic shared cache allocation algorithm for
multicore professor. J. Northeast. Univ. 32(1), 44–47 (2011)

18. Shao, J., Davis, T.: A burst scheduling access reordering mechanism. In: 13th International
Symposium on High Performance Computer Architecture, pp. 285–294 (2007)

19. Stigge, M., Ekberg, P., Guan, N., et al.: On the tractability of digraph-based task models. In:
23rd Euromicro Conference on Real-Time Systems (ECRTS), Porto, Portugal, pp. 162–171
(2011)

Real-Time Scheduling for Periodic Tasks 187

	Real-Time Scheduling for Periodic Tasks in Homogeneous Multi-core System with Minimum Execution Time
	Abstract
	1 Introduction
	2 Basic Model
	2.1 Hardware Model
	2.2 Definitions

	3 Motivational Example
	3.1 Construct Task Affinity Sequence Table
	3.2 Find an Optimal Tasks Scheduling

	4 Multicore Scheduling Model
	5 TARTSH Algorithm
	6 Experiments
	6.1 Periodic Tasks Set
	6.2 Task Affinity

	7 Conclusion
	Acknowledgments
	References

