
A More Flexible SDN Architecture Supporting
Distributed Applications

Wen Wang1, Cong Liu2(B), and Jun Wang2

1 National University of Defense Technology, Changsha, China
2 PLA Logistic Information Center, Beijing, China

congliu2005@163.com

Abstract. Software Defined Networking (SDN) abstracts network con-
trol logic from switches to a logically centralized controller with software
implemented applications. Unfortunately, not all the applications fit the
centralized control architecture, and the centralization may even degrade
the performance of these applications. Moreover, even though SDN artic-
ulates a vision for programmable networks, the OpenFlow instructions
with simple match-action fields restrict the flexibility of switches, and the
programmability of switches has rarely been actually touched. To strike
a balance between programmability and pragmatism of SDN, we pro-
pose a more flexible and powerful SDN control architecture to support
distributed applications besides simple OpenFlow instructions. The dis-
tributed applications run independently in switches, and the controller
is responsible for the installation and configuration of these applications.
The evaluation shows the proposed architecture is able to access more
local details efficiently with the centralized SDN control.

Keywords: SDN · Distributed applications

1 Introduction

Software Defined Networking (SDN) has attracted a lot of attentions in recent
years with the separation of network functions, moving network control logic
from switches to software applications on the controller, which results in increas-
ing flexibility. Unfortunately, flexibility and efficiency rarely go hand in hand,
as there is always a trade-off between programmability and performance. Even
though switches do not need to implement protocol details, the centralized con-
trol logic may be a critical performance bottleneck. A lot of applications compete
for computation and storage resources of the control plane. Moreover, applica-
tions communicate remotely with switches through control messages to manipu-
late flow tables, which adds to the communication overhead between the control
plane and data plane. To relieve the bottleneck, a logically centralized control
plane with multiple distributed controllers has been proposed, however, because
of the management complexity among multiple control nodes, the scalability of
SDN is still restricted.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 165–174, 2017.

DOI: 10.1007/978-3-319-59288-6 15



166 W. Wang et al.

While network functions in SDN have been abstracted to the centralized con-
troller, a lot of network functions require to access distributed information from
switches in real time, e.g., network monitoring, intrusion detection. Therefore,
the centralized node has to collect distributed information from switches fre-
quently. Considering the transmission overhead and limited storage space on the
centralized node, fine-grained distributed information collection is prohibitive.
Only coarse-grained sampling is acceptable, which usually results in relatively
low accuracy.

In order to make SDN more flexible and effective, a huge number of exten-
sions to OpenFlow have been proposed in recent years, however, the OpenFlow
control messages are still limited to simple match-action instructions. The match-
action instructions oversimplify the flow tables in switches, as the action field is
simply forwarding, dropping or modifying packets. However, supporting a wide
range of network services would require much more sophisticated functions to
analyze and manipulate traffic, e.g., deep packet inspection (DPI), compres-
sion and encryption [7]. Therefore, there is no means to deploy complicated
services on switches with the simple match-action instructions, so that the flex-
ibility of SDN is still limited. Meanwhile, these simple actions underutilize the
switches hardware potentiality, which equip with powerful hardware, e.g., mem-
ory, processor, and storage. Even though SDN claims a programmable network
with easily deployed applications and configurable flow tables, the programma-
bility of switches has rarely been touched actually.

To make switches more powerful to utilize the underlying hardware while
maintaining the flexibility of SDN, switches should support more complicated
actions besides current simple OpenFlow actions. In this paper, we extend
switches in SDN to support distributed applications, so that switches are able to
provide more complicated functions. The controller installs and configures these
distributed applications in switches with extended application control messages.
Thus, a part of previously tightly centralized control logic is released to switches.
We present two types of distributed applications based on their implementa-
tions in this paper: administrator-developed applications which are executable
programs developed by the administrators, and module-constructed applications
which are constructed with Click [9] elements and run as lightweight VMs. The
evaluation shows that distributed applications could access more local details
than centralized approaches with a little overhead, and the controller is able to
manage these applications efficiently.

The rest of the paper is organized as follows. Section 2 looks at the related
work. Section 3 proposes the architecture supporting distributed applications.
Section 4 describes implementation details, and Sect. 5 evaluates the basic per-
formance of the architecture. Finally, Sect. 6 concludes the paper.

2 Related Work

A lot of existing researches have been aware of the insufficiency of current SDN
to support complicated actions. [3,7] note that current SDN produces insufficient



A More Flexible SDN Architecture Supporting Distributed Applications 167

abstractions with simple instructions to cover a wide range of sophisticated net-
working services. [5,6] indicate that the programmability and flexibility of SDN
should be extended to the data plane to allow network owners to add their
custom network functions. Therefore, a lot of efforts have been made to cre-
ate programmable network infrastructures. [3] uses the Click modular router
language to orchestrate Linux networking tools. NetOpen [8] supports config-
urable networking with programmable networking switch nodes. [4,13] suggest
switches should support flexible mechanisms for parsing packets and match-
ing header fields with protocol-independent packet processors. [11] proposes an
extended application-aware SDN architecture with stateful actions in switches
to use L4-L7 information. [12] extends SDN to control the scheduling and queue-
ing behavior of a switch by adding a small FPGA in switches. However, these
approaches either require extra modifications in switches or are little controlled
by the control plane, which lose the flexibility and manageability of SDN.

3 A Switch Supporting Distributed Applications

3.1 SDN Architecture Supporting Distributed Applications

The complexity and overhead of implementing and executing all these software
applications in the centralized controller motivate it to release parts of control
logic to switches, especially for the applications which need to access distributed
information frequently. Therefore, these software applications should be distrib-
uted into multiple locations for advanced performance, while being managed by
a logically centralized controller.

Fig. 1. System architecture

To support these distributed applications, the infrastructure layer not only
acts as a data plane, but also runs instances of distributed applications in
switches. These distributed instances could be programs transferred and installed
by the controller, and run in switches with local fine-grained information. A dis-
tributed application instance is able to execute independently and usually does
not need to communicate with instances in other switches, but may require



168 W. Wang et al.

to contact with the controller when necessary. Hence, in spite of OpenFlow to
manipulate flow tables in switches, extended application control messages are
used between the control layer and the infrastructure layer to install, configure
and communicate with distributed application instances in switches as Fig. 1
shows. These messages enable distribution applications to be dynamically pro-
grammed in network infrastructures so as to enhance the scalability and flexibil-
ity of SDN. Therefore, administrators are able to develop their own distributed
applications and then dynamically install them in switches.

Even though there is no standard northbound API currently, we consider that
SDN deploys centralized applications on the controller with general APIs, and we
only focus on the distributed applications in this paper. The distributed applica-
tions need to define the distribution features such as concerned flows, executable
programs, initial parameters with a distribution API, which is unnecessary for
centralized applications. With distributed instances running in switches, more
switch details are exposed to these distributed applications. However, as applica-
tions are able to manipulate flow tables in switches to control network behaviors,
poorly implemented, misconfigured or malicious applications may modify flow
tables deliberately. Therefore, the controller has to ensure the legitimacy of dis-
tributed applications to prevent abnormal activities. Unfortunately, the absence
of the northbound API fails to limit the access authorities granted to applica-
tions. Thus, an authentication API is added to verify the access permissions
of distributed applications between the application layer and control layer. To
ensure the legitimacy of distributed applications, the controller has a white list
record of legal distributed applications. Distributed application control requests
should be issued by authenticated applications, otherwise, requests to manipu-
late distributed applications in switches will be rejected by the controller.

3.2 Distributed Applications in SDN Switches

A lot of SDN applications running in the controller require to communicate with
switches frequently for fine-grained information collection or data plane control.
These applications obviously need to deal with distributed information in dis-
tributed architectures, e.g., network monitoring, intrusion detection, while the
current SDN manages all the applications as centralized. To distinguish distrib-
uted applications from centralized ones, we define the criteria of a distributed
application which is appropriate to be deployed distributedly in switches:

– Access local fine-grained information such as traffic statistics or packet pay-
load frequently, and do not need to wait for other remote data or control
messages.

– There are few control message exchanges with the controller. The controller
just needs to set up the distributed application in switches at the beginning,
and then a switch is able to execute the distributed instance independently.

– Require configurations or updates occasionally, so that the controller manages
a distributed instance with extended application control messages instead of
proprietary application implementations on switches.



A More Flexible SDN Architecture Supporting Distributed Applications 169

– Execute complicated functions instead of simple OpenFlow actions, and the
complicated functions could be triggered by sophisticated conditions other
than the simple match field of the flow table.

Due to the remote installation and configuration, distributed applications
should be carefully designed to ensure the correctness and effectiveness dur-
ing execution. Considering the construction and implementation of applications,
in this paper, we present two types of distributed applications: administrator-
developed applications and module-constructed applications.

Administrator-Developed Applications. These applications are executable
programs developed by the administrators and then deployed in switches with
control messages. For the application management, the controller transfers the
executable programs to the switch with control messages and installs a corre-
sponding entry for each application in the application table. The executable
programs are recorded in the disk of the switch, so that distributed applications
will not be lost when switches reboot. Application table records the applica-
tion entries and related programs. When packets matching the application entry
arrive, the corresponding programs are executed in the execution engine. The
execution engine uses memory and processor of the host switch, so that the hard-
ware is highly utilized with various distributed applications. When an application
is being executed, it may need to access information in the flow table or cap-
ture packet payload, e.g., DPI. Therefore, we also design interfaces between the
execution engine and flow tables.

Module-Constructed Applications. These applications are running in
ClickOS [10] VMs assembled with modules in switches. ClickOS is a Xen-based
tiny virtual machine that runs Click [9], and it can be quickly instantiated in
30 ms with a compressed 5 MB image. As Click equips with over 300 stock
elements, which make it possible to construct applications with minimal efforts.
Therefore, module-constructed applications could be assembled with these ele-
ments in virtual machines to be ClickOS VMs. Moreover, we can easily extend
this framework and develop new elements with the administrators-developed
to support more applications. To set up a module-constructed application in
ClickOS VM, the controller dispatches a Click configuration to related switches,
which is essentially a text file specifying elements. Once receiving the configura-
tion file, the switch instantiates a VM for the application based on the defined
configuration. As applications are isolated into multiple fast booted VMs, they
do not interfere with each other during processing.

As distributed applications run locally in switches, these applications are
able to execute in real time with detailed local data, which is impossible for the
centralized controller to perform such fine-grained controls. As the application
table is separated from the flow table, it does not affect the flow table lookup effi-
ciency. Moreover, the distributed applications are restricted with isolated hard-
ware resource (e.g., CPU, memory) for the both types of applications, so that



170 W. Wang et al.

the extended lightweight functions do not affect the basic packet processing of
the data plane, which means the extended programmability does not decrease
the packet processing efficiency.

4 Implementation

In this section, we design and implement control messages and execution engines
for the two types of distributed applications with Open vSwitch [1].

4.1 Distributed Application Control

We implement two kinds of control messages for distributed applications to
communicate between the controller and switches APP MOD and APP REP.
APP MOD is used to set up or update distributed application in switches. For
the administrator-developed applications, despite the distributed programs, the
control message also transfers the initial parameters for the programs together.
For the module-constructed application, the controller sends the Click config-
uration to a switch, so that the configuration is used to instantiate a ClickOS
VM. When an application instance becomes expired or loses effectiveness, the
controller could remove it by deleting the corresponding application entry and
removing related programs or shutting down VMs in the switch using APP MOD
messages. During the execution of an application, if it would like to communicate
with the controller, it sends APP REP messages to the controller.

4.2 Execution Engine

Administrator-Developed Application Execution. As the administrator-
developed applications are executable programs running in execution engine,
we implement an execution engine supporting programs developed in C, JAVA
and MATLAB. The programmed functions could be triggered by the arrival
of packets or run periodically every a short interval, which is decided by the
programs developed by the administrators. Thus, these applications can capture
finer-grained details than centralized schemes. The local information on switches
utilized by administrator-developed applications could be divided into three cate-
gories: traffic statistics (e.g., packet count, flow duration), packet sampling which
capture and analyze packet header or payload, and other local information of
switches (e.g., CPU and memory utilization).

Module-Constructed Application Execution. The module-constructed
applications are constructed with various Click elements, e.g., IPRateMonitor,
TCPCollector, Classifier. The variety of Click elements allows applications in
VMs to perform diverse complicated functions in addition to simple OpenFlow
actions in the flow table. The module-constructed applications are isolated into
VMs with restricted memory and CPU resources, and ClickOS accesses packets
with a direct pipe between NIC and VMs [10]. Therefore, applications in VMs do
not affect the basic efficiency of data plane packet processing, while OpenFlow
handles regular requests to manipulate the flow table as usual.



A More Flexible SDN Architecture Supporting Distributed Applications 171

5 Evaluation

The distributed applications not only reduce communication overheads between
the controller and switches, but also relieve administrators from heavy labour
configuring work by deploying and controlling these distributed applications with
the centralized controller. To show the efficiency of the proposed architecture, we
evaluate the execution and management performance of the two types of distrib-
uted applications. As the application performance greatly depends on the design
and implementation of each application, we mainly focus on information collec-
tion performance, throughput and management overhead of these distributed
applications.

5.1 Distributed Information Collection Performance

As distributed applications usually utilize local information for network mon-
itoring or anomaly analysis, we evaluate the collection efficiency of the three
kinds of local information in distributed applications and compare them with
centralized approaches.

(a) Traffic Statistics: As OpenFlow provides control messages to poll traf-
fic statistics from switches, the centralized controller usually uses peri-
odical polling which collects traffic statistics every several seconds.
With the remote polling, the fetching delay of port statistics using
OFPMP PORT STATS messages is almost 400 µs, while the distributed
application is able to access the statistics locally within 13 µs in Table 1.
Moreover, the periodical interval is difficult to decide for different statistics
granularity, and the communication overhead also depends on the polling
interval and grows linearly with the polling frequency. On one hand, the
smaller the collecting interval is, the larger the overhead is. On the other
hand, if the collecting interval is quite large, it may miss a lot of short
abnormal details because of the coarse monitoring granularity. Hence, it
is hard to strike a balance between the statistic overhead and accuracy in
centralized approaches, which is not a problem in distributed schemes.

(b) Packet Payloads: Due to the large network traffic volume, network monitor-
ing applications which analyze packet payload (e.g., DPI) usually capture
packets with sampling. Compared with the centralized packet capturing
approaches, the distributed applications in switches do not need to transfer
packets to a centralized node which saves a lot of transmission delay for real-
time analysis. We compare our distributed packet payload capturing with
sFlow [2], and the result shows that the centralized approach takes over
7× 105 µs which is almost 9000 times larger than 86 µs locally in switches
to fetch packet payloads. Furthermore, the communication overhead and
limited memory space in a centralized node also restrict the performance of
centralized packet payload capturing and inspection. Similar to the traffic
statistic, the collected packet payload size also grows proportional to the
sampling rate, which brings a great overhead for centralized fine-grained
packet capturing.



172 W. Wang et al.

(c) CPU/Memory Information: With distributed instances running in switches,
these instances are able to access more local information with assigned per-
missions, such as CPU and memory utilization. The latency to access CPU
and memory statistics with system files /proc/stat and /proc/meminfo in
Ubuntu is about 14 µs while it is unavailable for centralized approaches.

Table 1. Information collection latency (µs)

Distributed Centralized

Traffic statistics 13.14 ± 1.96 405.11 ± 93.24

Packet payloads 86.41 ± 12.17 7.535 × 105 ± 1.204 × 105

CPU/Mem info 14.12 ± 0.91 NA

In spite of the shorter latency of information collection in distributed applica-
tions, they also transfer less control messages between the controller and switches
than centralized schemes. The controller just needs to transfer programs or con-
figurations at the setup of distributed applications, and distributed instances
could then execute independently.

5.2 Throughput of Distributed Applications

As the performance of distributed application strongly depends on the design
and implementation of programs, we only evaluate the throughput of these appli-
cations by injecting related packets. The switch is equipped with a 1Gb/s con-
nection. We use an administrator-developed application to get statistics from
the flow table. The throughput is almost closed to line rate in Fig. 2, as the
statistics collection between the execution engine and the flow table does not
affect the basic packet processing. For the module-constructed applications, we
evaluate an application constructed with element Counter, and the throughput
achieves at least 80% injection rate. The optimized I/O pipe of ClickOS helps
to improve the throughput [10], which means simple ClickOS configurations add
little overhead.

Fig. 2. Throughput of distributed applications



A More Flexible SDN Architecture Supporting Distributed Applications 173

5.3 Distributed Application Management Overhead

To show the efficiency of distributed application management, we evaluate the
application transmission and configuration latency with the increasing of the
program/configuration file size and the network size respectively. As switches are
connected directly to the controller, the application management is independent
from the network topology. We test a 2-D mesh network with Mininet, and each
switch in the network connects to the controller with a 1 Gb/s link.

To execute multiple applications in switches efficiently, the administrator-
developed applications are usually small-sized lightweight programs. Meanwhile,
as the configuration file of module-constructed applications only needs to define
the element names and rules with integrated elements in ClickOS, the size of
configuration file is also quite small at the level of kilobytes. In Fig. 3, when the
size of transferred program/configuration file grows, the distribution latency also
increases, and it takes over 20 ms to send a 10 Mb program/configuration file
to a switch. Nevertheless, it is still acceptable for the overall lifetime of a dis-
tributed application, as the controller only transfers programs or configuration
files at the beginning. In the proposed SDN architecture supporting distributed
applications, when a switch sets up a distributed instance, it inserts a corre-
sponding entry in the application table and records the programs/configuration
file on the disk. The application table latency is quite short as the result shows.
The administrator-developed application executes the corresponding programs,
while a module-constructed application boots a ClickOS VM. We notice that the
ClickOS VM booting takes about 30 ms and does not increase a lot when the
configuration file size grows. The overall setting up time of a module-constructed
application is less than 100 ms for a 10 Mb configuration file. Thus, the setting
up latency is quite acceptable to relieve the centralized controller from frequent
information fetching.

Meanwhile, when the network size scales, the number of switches running
distributed applications is expected to increase to relieve control logic overhead.
The overhead of distributing and managing distributed instances in switches
also grows as Fig. 4 shows. It takes about 250 ms to distribute a 100 Kb pro-
gram/configuration file to 100 switches at once. The latency is still much shorter
than the collecting and sampling interval in centralized approaches, which usu-
ally perform at the level of several seconds. Therefore, the distribution and man-
agement overheads of distributed applications are reasonably acceptable.

Fig. 3. Scalability with app size Fig. 4. Scalability with network size



174 W. Wang et al.

6 Conclusion

Considering the dumbness of switches and the simpleness of OpenFlow actions
in current SDN, we propose an extended OpenFlow-enabled switch architecture
to support distributed applications in addition to simple match-action Open-
Flow instructions. Therefore, a lot of previously centralized applications could
be deployed as distributed instances in switches, e.g., network monitoring, intru-
sion detection, etc. The distributed applications do not mean distributed control
logic, as the controller is still controlling these distributed instances with applica-
tion control messages. The evaluation shows that distributed applications could
access more local information efficiently than centralized schemes, while the con-
troller manages these distributed applications with low overheads.

References

1. Open vswitch. http://openvswitch.org/
2. sflow. http://www.sflow.org/
3. Bhatia, S., Bavier, A., Peterson, L.: Wanted: systems abstractions for SDN. In:

HotOS (2013)
4. Bosshart, P., Daly, D., Gibb, G., et al.: P4: Programming protocol-independent

packet processors. In: SIGCOMM (2014)
5. Farhad, H., Lee, H., Nakao, A.: Data plane programmability in SDN. In: ICNP

(2014)
6. Farhadi, H., Du, P., Nakao, A.: User-defined actions for SDn. In: CFI (2014)
7. Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an intellectual history of

programmable networks. In: SIGCOMM (2014)
8. Kim, N., Yoo, J.-Y., Kim, N.L., Kim, J.: A programmable networking switch node

with in-network processing support. In: ICC (2012)
9. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular

router. ACM Trans. Comput. Syst. 18, 263–297 (2000)
10. Martins, J., Ahmed, M., Raiciu, C., et al.: Clickos and the art of network function

virtualization. In: NSDI (2014)
11. Mekky, H., Hao, F., Mukherjee, S., Zhang, Z.-L., Lakshman, T.: Application-aware

data plane processing in SDN. In: HotSDN (2014)
12. Sivaraman, A., Winstein, K., Subramanian, S., Balakrishnan, H.: No silver bullet:

extending SDN to the data plane. In: HotNets (2013)
13. Song, H.: Protocol-oblivious forwarding: unleash the power of sdn through a future-

proof forwarding plane. In: HotSDN (2013)

http://openvswitch.org/
http://www.sflow.org/

	A More Flexible SDN Architecture Supporting Distributed Applications
	1 Introduction
	2 Related Work
	3 A Switch Supporting Distributed Applications
	3.1 SDN Architecture Supporting Distributed Applications
	3.2 Distributed Applications in SDN Switches

	4 Implementation
	4.1 Distributed Application Control
	4.2 Execution Engine

	5 Evaluation
	5.1 Distributed Information Collection Performance
	5.2 Throughput of Distributed Applications
	5.3 Distributed Application Management Overhead

	6 Conclusion
	References


