A Continuous Segmentation Algorithm
for Streaming Time Series

Yupeng Hu', Cun Ji', Ming Jing', Yiming Ding', Shuo Kuai',
and Xueqing Li'®0

! School of Computer Science and Technology,
Shandong University, Jinan, China
{huyupeng, jicun, jingming, xqli}@sdu. edu. cn,
dingyiming@mail. sdu. edu. cn, kuaishuo_sdu@l63. com
% State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

Abstract. Along with the arrival of Industry 4.0 era, massive numbers of
detecting instruments in various fields are continuously producing a plenty
number of time series stream data. In order to efficiently and effectively analyze
and mine the high-dimensional streaming time series, the segmentation which
provides more accurate representation to the raw time series data, should be
done as the first step. In this paper, we propose a novel online segmentation
approach based on the turning points to partition the time series into some
continuous subsequences and maintain a high similarity between the processed
subsequences and the raw data. It achieves the best overall performance on the
segmentation results compared with other baseline methods. Extensive experi-
ments on all kinds of typical time series datasets have been conducted to
demonstrate the advantages of our method.

Keywords: Data mining * Time series + Online segmentation - Algorithms

1 Introduction

Along with the arrival of Industry 4.0 era, the evolving of IoT (Internet of Things) has
stimulated the deployment of massive numbers of detecting instruments in various
fields including business, finance, medicine, astronomy, aviation and so on, which are
continuously producing a plenty number of time series stream data [1-3]. Time series
stream data can be described as an ordered collection of elements, where the elements
are continuously generated in a high speed and potentially forever [4, 5]. Due to the
large amount, high-dimensional, continuous and other related properties, it is not
capable to do in-depth researches for the streaming time series.

In consideration of the above situation, the segmentation of the streaming time
series should be done as the first step to reduce both the space and the computational
cost of storing and transmitting such data. In this paper, we are concerned with the
online linear segmentation approach for the streaming time series, which is aimed for
not only producing approximate representation conformed the temporal features, but
also being effective in continuous segmentation. An efficient online segmentation

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
S. Wang and A. Zhou (Eds.): CollaborateCom 2016, LNICST 201, pp. 140-151, 2017.
DOLI: 10.1007/978-3-319-59288-6_13

A Continuous Segmentation Algorithm for Streaming Time Series 141

algorithm for streaming time series would be a useful tool for other data mining tasks,
for instance:

1. The similarity search and pattern recognition in time series first need several
“primitive shapes” [6] and “frequent patterns” [7] subsequences, which can be used
for the next similarity measure steps.

2. In time series classification tasks, the typical prototypes should be created for the
predefined classes, which could be generated by the segmentation approach as a
preprocessing step.

3. In time series clustering tasks, some renowned heuristic methods such as K-means
need to use several meaningful temporal feature sequences rather than random
points to improve its convergence ability [8].

At present, most existing representation-based segmentation approaches do not
work well for our problems. Some methods [9, 10] process segmentation on static data
sets, and may incur a high cost if applied directly to streaming data. There do exist
works that address the segmentation problem for data streams [11], which is called
Sliding Windows (SW) but the accuracy of the segmentation is in low level, due to the
lack of a more holistic view of segmentation. To solve this problem, Keogh et al. [12]
consider combining the online nature of Sliding Windows and the superiority of
Bottom-Up, which is called Sliding Window and Bottom-up (SWAB). However, this
algorithm treats every point of the time series equally and exists some computation
redundancy. In order to speed up the efficiency of the online segmentation algorithm,
Liu et al. [13] propose the Feasible Space Window (FSW) method, which introduces
the concept of feasible space to find the farthest segmenting point of each segment. This
method greatly enhances the efficiency of the segmentation, but the partitioned sub-
sequences are unable to make more accurate representation than SWAB.

In this paper, we propose a novel segmentation approach based on the turning
points to piecewise linear representation (PLR) for streaming time series, and our
method can provide a more accurate segmentation than all of the baseline methods
previously used. In summary, we have achieved the following contributions in this

paper.

1. We propose an online time series segmentation algorithm called the continuous
segmentation algorithm based on turning points (CS_TP) which partitions the time
series by a set of temporal feature points and maintains a high similarity between the
processed subsequences and the raw data.

2. We adopt two segmentation criteria to refine the FSW-based segmentation results
by standing on a more holistic view with the temporal features, and propose an
optimal merging algorithm to reduce computation redundancy.

3. We compare the CS_TP with other baseline methods on both real open source data
sets and some kinds of the typical industry time series datasets to demonstrate the
superiority of our approach.

The remainder of the paper is organized as follows. In Sect. 2 we present the related
work. Section 3 describes some preliminaries. The online segmentation approach is
described in detail in Sect. 4. Section 5 presents the experiment results and analyses.
Finally, we conclude this paper in Sect. 6.

142 Y. Hu et al.

2 Related Work

Segmentation which supplies more accurate and compact representations of time series
can be considered as a discretization problem. Piecewise Linear Representation
(PLR) [14] has been one of the most widely used segmentation methods for many
practical applications [15, 16], which divides a time series into segments and uses a
linear function to approximate each segment.

Compared with other methods, PLR is more consistent with human visual expe-
rience. In addition, PLR has some advantages of low index dimension for storing, fast
speed for calculating and similarity searching. For this, PLR method is more fit for
segmenting and detecting, so we use PLR to divide time series data into linear seg-
ments, which can be subdivided into three main segmentation strategies: Top-Down
(TD), Bottom-Up (BU) and Sliding Windows (SW).

1. The PLR based on Top-Down algorithm

The PLR based on Top Down (PLR_TD) algorithm, which starts with an unsegmented
sequence and introduces one cutting point at a time, repeating this process until some
stopping criteria are met, in that case, the raw time series data would be partitioned into
some straight lines. According to the temporal features of time series data, Zhou et al.
[17] propose a novel time series segmentation based on series importance point
(PLR_SIP). However, the algorithm is mainly designed to investigate the error of
segments, the error of single point is not considered in this algorithm. To solve this
problem, Ji et al. [18] propose a new piecewise linear representation based on
importance data point (PLR_IDP) for time series, which finds the important points by
calculating the fitting error of single point and piecewise segments. As a consequence
of this, the fitting error of PLR_IDP is much smaller than any other PLR_TD methods.

2. The PLR based on Bottom-Up algorithm

The PLR based on Bottom-Up (PLR_BU) algorithm, starting with the n-1 segments,
and then, two adjacent segments are greedily merged into one by choosing the lowest
cost of merging pairs, iterating this process until some stopping criteria are met. Keogh
et al. [19] present an improved method, which not only produces segments, but also
predetermines the number of segments represented the time series.

3. The PLR based on Sliding Windows algorithm

The PLR based on Sliding Window (PLR_SW) algorithm, initializing the first data
point of time series as the left endpoint of a segment and then trying to find the right
endpoint of a segment by sequential scanning time series data. Keogh et al. [12]
consider combining the online nature of sliding window and the superiority of
bottom-up, which is called Sliding Window and Bottom-up (SWAB). However, this
algorithm treats every point of the time series equally and exists some computation
redundancy. In order to speed up the efficiency of the online segmentation algorithm,
Liu et al. [13] propose the Feasible Space Window (FSW) and Stepwise FSW (SFSW)
method, which introduce the concept of feasible space to find the farthest segmenting
point of each segment. FSW method greatly enhances the efficiency of the

A Continuous Segmentation Algorithm for Streaming Time Series 143

segmentation, but the partitioned subsequences are unable to make more accurate
representation, due to the lack of a more holistic view of segmentation.

According to the different requirements, the PLR segmentation can also be cate-
gorized into two classes: online and offline. The offline methods segment the whole
data sequence, and the online methods can continuously partition these streaming data
as long as the data is continuously producing (potentially forever). We can see that the
PLR_TD methods (e.g., PLR_SIP, PLR_IDP et al.) and the PLR_BU methods should
be grouped into the offline segmentation approaches, the PLR_SW methods including
SWAB, FSW, SFSW and so on should be grouped into the online segmentation
approaches.

Through the comparative analysis of the above algorithms, the major advantage of
the PLR_SW methods is their ability to continuous segmentation, which meets our
requirement for streaming time series segmentation. The main problem of the PLR_SW
is the accuracy of representation which can not be guaranteed, compared with its offline
counterparts. The PLR_TD and PLR_BU methods can produce more accurate
approximation, but the entire data set should be scanned first, which is impossible for
the streaming time series segmentation.

3 Preliminaries

3.1 The Turning Points Definition

When we plan on dividing the streaming time series into some continuous subse-
quences, it is advisable for us to segment the stream according to their temporal
features. The temporal feature is constructed by a sequence of data points and each
point actually has the different influence on the variation trend. In our paper, we focus
on some data points indicating the change trend of time series, which can be called as
the Turning Points (TPs).

Judging from the intuition, these local maximum and minimum points seemingly
can be defined as the TPs since they indicate the change in the trend of the time series
which has been proposed by Yin et al. [20] on the financial time series. According to the
analysis on the different types of time series data sets, we draw the conclusion: The TPs
are not only composed by the local extreme points (e.g., inflection points, step points
etc.) and not all local extreme points should be defined as TPs in consideration of the
noise and disturbance. For such reason, we provide our definition of TPs as follow:

1. For a time series T={(. . .,q; . . ., a;...) where a; = (x;y;) is a taw data point in time
series. If a; meets one of the following two inequations, it can be defined as the
Level 1 TP:

Vil <Yi<Vi410rYi 1 <Yi = Yi+10rYi1 = Yi<Vi+1 (1)

Viel > Vi > Vit 1 OFYint > Vi = Vit 1 OFYint =Y > Vit (2)

144 Y. Hu et al.

2. For a time series T'={. .,qa;, . ., a;...) where a; = (x;y;) and a; = (x;,y;) are TPs in the
level 1. If a; meets the following condition, it can be defined as the Level 2 TP:

b’j -)’i|
x> A
X; — x; > pand (|yj|+|yi|)/2 >p (3)
The intuitive idea of the Level 2 is to discard unimportant fluctuations and keep
major peaks and valleys with parameter p and p, which can be specified by users. In
order to make our intention clearer, we select one subset of data from the Fig. 1(a) to
magnify in the Fig. 1(b). As shown in Fig. 1(b), if the value p=3 and p = 1, two TPs
in the Level 1 (i, j) can be defined as the TPs in the Level 2 and two TPs (k, m) can be
smoothed. In other words, we can directly draw a straight line from the point i to point j
so as to discard unimportant fluctuations in the streaming time series.

N bi=vil 54
\ (yj[+lvib7z =

(a) Turning Points in Level 1

i

(b) Turning Points in Level 2

Fig. 1. The definitions of turning points

3.2 The Segmentation Criteria

To ensure the accuracy and the efficiency of the segmentation algorithm, we need to
introduce two segmentation criteria for a potential segment.

1. The maximum error for single point (ME_SP)

The ME_SP is used to evaluate the fitting error of the single data in a segment. In the
classic PLR_SW method, a segment continues to grow until the maximum vertical
distance (MVD) for certain data point exceeds the ME_SP. The FSW method greatly
simplifies the calculation of the MVD by the slope calculation (SC) [13], and therefore,
we will adopt this SC measure instead of the direct MVD calculation and combine with
the discovery of the TPs for our online segmentation. In order to make this concept
clearly, we will provide some definitions and instructions of the SC measure (more
details in reference 13) in Table 1: for a time series T = (cz,-7 PR .ak) and the o (the

ME_SP specified by users) >0, if sline(a;, a;) satisfies the inequation: slow(ai,aj)

A Continuous Segmentation Algorithm for Streaming Time Series 145

Table 1. The definitions of the slope calculation

Definitions | Instructions

line(a;,a;) | The straight line from point a; to g,
sline (a,-, aj) The slope of the straight line from point a; to g;

slow(a;,a;) | The slope of the straight line from point a; to a; — ¢

sup(a;,a;) | The slope of the straight line from point a; to a; + ¢

< sline(a;, ar) < sup(a;, a;), the MVD between a; and line(a;, ax) will not exceed the
o(ME_SP). Along with the growth of a segment, the values of slow() and sup() are
constantly changing, and we define the maxslow;;, and minsup. to find the maxi-
mum value of slow() and the minimum value of sup(). The definition is as follow:

maxslow ;) = max; <, <;slow(a;, a;) 4)
minsup i;y = min; <; <jsup(a;, a) (5)

When such condition: maxslow ;) > minsup;; is satisfied, the current segmenta-
tion will be ended and then to repeat the above operation until the entire stream data
has been processed.

2. The maximum error for entire segment (ME_ES)

The ME_ES is used to evaluate the fitting error for the entire segment, and we use this
segmentation criterion to eliminate the insufficiency of only relying on the ME_SP to
segment the streaming time series, in other words, the segmentation criterion ME_SP
only guarantees the fitting error of each point under certain threshold, but fails to
control the fitting error of the entire segment in a reasonable range.

For this reason, we will introduce an additional reference condition ME_ES to
guarantee the accurate representation for online segmentation.

4 Algorithm Description

In this section, we first describe our online segmentation algorithm CS_TP, and then,
we will provide the time complexity analysis of our algorithm. The CS_TP algorithm
can be divided into three major steps, as follow:

1. Initial segmentation by the ME_SP and SC

The initial segmentation can divide the streaming time series into several segments by
the SC measure (proposed in Sect. 3) and ensure the fitting error of each point is under
the ME_SP. More importantly, the initial segmentation will find all of the TPs in
segment by the definition of the TPs (in Level 2), which is prepared for optimizing the
results of segmentations. Figure 2(a) and (b) describe this process. The red rhombus
points denote the segmenting points of three segments and the blue dots between two
rhombus points denote the TPs in a segment.

146 Y. Hu et al.

the nearest TP

(d) (c)

Fig. 2. The major steps of the segmentation

2. Segmentation error evaluation by the ME_ES and TPs in Level 2

After the above process, we will use the ME_ES to evaluate the fitting error of the
segments by accumulating the fitting error of the single point until the last point of
segment has been accumulated or the accumulative value exceeds the ME_ES. We will
record the position of the current point and find the nearest TP, Fig. 2(b) and (c) de-
scribes this process. In these pictures, it is obvious that, in Fig. 2(b), the accumulation
of the segment 1 and segment 2 do not exceed the MP_ES, however when the accu-
mulative calculation of the segment 3 at the red triangular point, the value of the
accumulation has exceeded the MP_ES, in that case, we will select the nearest TP in
Fig. 2(b). The accumulative calculation will restart at the new selected point. As shown
in Fig. 2(c), When the evaluation of the segmentation error is complete, we can get all
of the original segmenting points and the nearest TPs (violet dots in Fig. 2(c)).

3. Merging the subsequences by standing on holistic view

After the above two steps, we can make use of the segmenting points to refine the
FSW-based segmentation results by iteratively merging the lowest cost of the con-
secutive pairs of the sequences. The process of our method is similar with the SWAB
methods, however we optimize the process from two aspects:

On one hand, the merging process begins with the consecutive sequences instead of
connecting two adjacent points, in other words, the merging process can retain the
segmentation results in the first two steps and keep the number of the segments as low
as possible. On the other hand, not only the leftmost segment would be removed from
the buffer, the consecutive segments behind the leftmost one can also be removed as
long as the segmenting points are exactly the initial segmenting points defined in the
first step. With the above optimization, the efficiency of our approach can be signifi-
cantly improved compared with the SWAB. As shown in Fig. 2(d), the segment 1 and
the segment 2 can be removed from the buffer immediately, and segment 3 which has
been divided into two subsequences, will be merged along with the next arriving
segments. The summary of notations and the pseudo code is described as follows
(Table 2):

A Continuous Segmentation Algorithm for Streaming Time Series 147

Table 2. The summary of notations

Definitions Instructions

nsp_qu The queue for storing the segmentation points which are process by step 1 and
step 2

m_cost The merging cost of the consecutive pair of segments

cost_priqu The priority queue for storing the cost of the merge

calc_merg() | The calculation of the cost of the merge

rSp_qu The queue for storing the segmentation points of segments which have been
considered to complete the segmentation

Function merge_seg()
Input: nsp_qu, ME_ES
Output: rsp_qu
Begin
for i=1 :2 : nsp_qu.length
m_cost = calc_merg(),
cost_priqu.enqueue(m_cost);
end for
m_cost = cost_priqu.dequeue();
while m_cost <ME_ES
merge the two adjacent sequences;
m_cost = calc_merg(); I/ update the merging cost
cost_priqu.enqueue(m_cost);
end while
while nsp_gu.top() is the original segmenting point
rsp_qu.enqueue(nsp_qu.dequeue());
end while
remove the segments whose segmenting points are stored in the rsp_qu queue
return rsp_qu
End

According to the above description of the algorithm, in the first step, the slope
calculation and the TPs discovery can be done by scanning the whole sequence in
linear time, so the time cost of this operation is O(n). In the second step, the evaluation
of the fitting error of the entire segments should consider the number of the segmenting
points and the number of the TPs. In our method the buffer can store about 6 segments
(7 segmenting points), and the number of TPs (k) in one segment is far less than the
number of points (n) in the segment, which can be represented by k < n, the time
complexity of the second step is O(7*k*n). In the third step, the operation is similar
with the PLR_BU, but our method optimizes the process from two aspects, which has
been described above. So the time complexity of the third step is no worse than O(Ln),
(L is the average segment length). So the total time complexity of our method is O(O
(n) + O(kn) + O(Ln)), that is O(Ln). Finally, we summarize the time complexities for
all of the online segmentation methods mentioned in the Table 3.

148 Y. Hu et al.

Table 3. The time complexities of online segmentation methods

Algorithm | Complexity

CS_TP O(Ln) L is the average segment length

SWAB O(Ln) L is the average segment length

FSW O(Mn) M is the number of segmenting points
SFSW O(Mn?) M is the number of segmenting points

5 Experiment and Analysis

In this section, we evaluate the performance of our online segmentation algorithm:
CS_TP by compared with the SWAB, FSW and SFSW, which are nearly the most
highly cited online segmentation algorithm based on the PLR up to date. We are
concerned not only the representation accuracy of these techniques, but also the effi-
ciency by using different datasets.

5.1 Dataset and Evaluation Metrics

In order to accomplish the experiment, we select some kinds of typical time series
datasets which contain an average of 10,000 records from different fields, including
medicine, finance, industry provided by the UCR homepage [21], and we also choose
some representative industrial streaming time series including the monitoring data of
Jinan municipal steam heating system (JMSHSD) from December 2013 to March 2016
(i.e.,100,532 data points), the monitoring data of Dong Fang Hong satellite (DFHSD)
from January 2015 to June 2015 (i.e.,320,675 data points), which is the Chi-
nese satellite dataset provided by China Academy of Space Technology.

In our experiment, the goal of our segmentation is to minimize the holistic repre-
sentation error and obtain as few segments as possible in a more efficient manner.
Therefore, in order to evaluate the segmentation for a given streaming time series, we
consider the representation error, as well as the number of segments by two parameters:
the ME_SP and ME_ES.

5.2 Comparison with Existing Methods

We compare our methods with the three baseline methods (FSW, SFSW, SWAB) by
varying the ME_SP and ME_ES.

The SWAB [12] combines the main features of the PLR_SW and PLR_BU, which
segments the streaming time series by iteratively using the BU merging method to the
new sliding window and removing the leftmost segment as a finished one. The FSW
and SFSW [13] belong to the PLR_SW, the former adopts the slope calculation instead
of the direct MVD calculation to segment streaming time series, the latter is carried out
corresponding optimization on the basis of the former. When two consecutive segments
have been segmented, the SEFSW would adopt backward segmenting strategy to refine
the previously segmenting result.

A Continuous Segmentation Algorithm for Streaming Time Series 149

Finally, we provide the overall performances of segmentation methods on all of the
above-mentioned datasets. Before the experiments, considering the variety and com-
plexity of the datasets, some conditions need to be defined in advance.

First of all, we adopt the Maximum Error Percentage for Single Point (MEP_SP) to
substitute the absolute ME_SP, which is proposed by Liu et al. [10] and MEP_SP can
eliminate the influences on different data sets by specifying the percentage of the value
range on different data sets. What’s more, with the change of the MEP_SP, the ME_ES
in CS_TP should also be changed simultaneously to avoid that the ME_SP exceeds the
ME_ES, so we will adopt the Maximum Error Percentage for Entire Segment
(MEP_ES) to substitute ME_ES, and the MEP_ES is set as an integral multiple of N
which is an integer greater than 2. Last but not least, we consider the result of the
SWAB with MEP_SP whose value is 10% as the benchmark (set as 1), and we can
normalize the results of other methods with the benchmark.

When we vary the MEP_SP from 10% to 50% in the Fig. 3(a), we can see that the
CS_TP has the lowest the normalized representation error, which means this method
can provide more accurate representation than other methods, and the error of all
methods gradually increase with the rising of MEP_SP. However, the error of CS_TP
grows more slowly than the other three methods because of the restriction of the
MEP_ES, in other words, the CS_TP can guarantee a relative accurate representation
even though the single point fitting error is constantly increased. In the Fig. 3(b), we
can also find that the normalized number of segments of all methods gradually decrease
with the rising of MEP_SP, and when the value of MEP_SP is up to 40%, the number
of CS_TP is less than the SWAB because of the optimal merging step in our method.

—==CS_TP ——SWAB ——SFSW FSW SFSW FSW ——SWAB -=-CS_TP
3 4.8 z 1
3 3 o9
n3_, 3.8]
& 5§ 07
3 28 3
° 2 os
3 ——
3 18 i 3 os
p—]
0.8 = 01
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
MEP_SP MEP SP
(a) Normalized Error w.rt MEP_SP (b) Normalized Number w.r.t MEP_SP

Fig. 3. The MEP_SP analysis

When we vary the MEP_ES from 2*MEP_SP to 5*MEP_SP in the Fig. 4(a), the
three baseline methods are shown as three straight lines parallel to the X axis, because
these methods do not use MEP_ES to segment the time series. However, the CS_TP
relies on the MEP_ES to refine the result of initial segmentation. We can see that the
normalized representation error of CS_TP constantly increases with the gradually
loosened restriction of the MEP_SP and the error of CS_TP is close unlimitedly to the
FSW. In the Fig. 4(b), the normalized number of segments of CS_TP continues to
decrease with the change of the MEP_SP, finally the number of segments of CS_TP is
nearly the same as the FSW, which means that the segmentation effect of CS_TP is no
lower than the FSW in the worst case.

150 Y. Hu et al.

~#-SWAB -#-SFSW -4-FSW =e=CS_TP ~+—CS_TP -=-SWAB —+—FSW —+—SFSW
1.7 1.2
3 3 11
S 15 s L
: 3.
= 1.3 =
3 g o0°
o 1.1 g 0.8
§ 0.9 / g_ 0.7
07 2 o8
2«MEP_SP 3*MEP_SP 4+*MEP_SP S5+*MEP_SP 2*xMEP_SP 3*MEP_SP 4xMEP_SP 5*MEP_SP
MEP_ES MEP_ES
(a) Normalized Error w.r.t MEP_ES (b)) Normalized Number w.r.t MEP_ES

Fig. 4. The MEP_EP analysis

At last, we provide the representation error for all methods on the above-mentioned
datasets, the result of the SWAB is set as the benchmark. The results are listed in the
Table 4. We can find that the CS_TP can provide more accurate segmentation than the
FSW, SFSW and SWAB.

Table 4. Normalized representation error of different methods

Normalized representation error of different
methods
Data sets | Method
SWAB | CS_TP | FSW | SFSW
1 0.79 [243 |2.39
JMSHSD |1 0.89 [221 |2.17
ECG 1 0.97 1.97 |2.03
Phonel 1 1.01 1.98 | 1.73
1
1
1

DFHSD

091 2.15 |1.83
0.95 1.24 |1.01
0.92 2.00 | 1.86

Powerplant
Wind
Average

6 Conclusion

In this paper, we propose a new segmentation algorithm (CS_TP) which performs well
on segmenting the streaming time series, and holds the main characteristic of time
series by refining he FSW-based segmentation result and reducing computation
redundancy. The extensive numeric experiments demonstrate the advantages of our
algorithm. The CS_TP can produce lower representation error to guarantee more
accurate representation for online segmentation. In future, we plan to use this algorithm
as a useful tool for time series classification, clustering and anomaly detection.

Acknowledgment. The authors would like to acknowledge the support provided by the Novel
Software Technology Project(KFKT2015B02) and the Science & Technology Development
Project of Shandong Province (2015GGX101009).

A Continuous Segmentation Algorithm for Streaming Time Series 151

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Lin, J., Keogh, E., Lonardi, S.: A symbolic representation of time series, with implications
for streaming algorithms. In: Proceedings of ACM SIGMOD (2003)

Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent
neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 26(12),
3123-3136 (2015)

. Jamali, S., Jonsson, P., Eklundh, L., Ardd, J., Seaquist, J.: Detecting changes in vegetation

trends using time series segmentation. Remote Sens. Environ. 156, 182-195 (2015)

. Palpanas, T., Vlachos, M., Keogh, E.: Online amnesic approximation of streaming time

series. In: Proceedings of IEEE ICDE 2004 (2004)

. Luo, G., Yi, K., Cheng, S.W., Li, Z, Fan, W., He, C., Mu, Y.: Piecewise linear

approximation of streaming time series data with max-error guarantees. In Proceedings of
IEEE ICDE 2015(2015)

. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs proceedings.

In: Proceedings of ACM SIGKDD 2003 (2003)

. Lin, J., Keogh, E., Patel, P., Lonardi, S.: Finding motifs in time series. In: Proceedings of

ACM SIGKDD 2002 (2002)

. Fayyad, U., Reina, C., Bradley, P.: Initialization of iterative refinement clustering

algorithms. In: Proceedings of ACM SIGKDD 1998 (1998)

. Yi, B., Faloutsos, B.: Fast time sequence indexing for arbitrary Lp-norms. In: Proceedings of

VLDB International Conference 2000 (2000)

Lazaridis, 1., Mehrotra, S.: Capturing sensor-generated time series with quality guarantees.
In: Proceedings of IEEE ICDE 2003 (2003)

Wang, C., Wang, S.: Supporting content-based searches on time Series via approximation.
In: Proceedings of IEEE SSDBM 2000 (2000)

Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series.
In: Proceedings of IEEE ICDM 2001 (2001)

Liu, X., Lin, X., Wang, H.: Novel online methods for time series segmentation. TKDE 20
(12), 1616-1626 (2008)

Shatkay, H., Zdonik, S.B.: Approximate queries and representations for large data
sequences. In: Proceedings of IEEE ICDE 1996 (1996)

Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based pattern
detection in streaming time series. In: Proceedings of IEEE ICDE 2007 (2007)

Li, Q., Lopez, LLF.V., Moon, B.: Skyline index for time series data. IEEE Trans. Knowl. Data
Eng. 16(6), 669-684 (2004)

Zhou, D.: Time Series Segmentation Based on Series Importance Point. Computer
Engineering, 2008(34) (2008)

Ji, C, Liu, S., et al.: A piecewise linear representation method based on importance data
points for time series data. In: Proceedings of IEEE CSCWD 2016 (2016)

Keogh, E., et al.: Fast similarity search in the presence of longitudinal scaling in time series
databases. In: Proceedings of IEEE ICTAI 1997 (1997)

Yin, J., Si, Y., Gong, Z.: Financial time series segmentation based on turning points. In:
IEEE ICSSE 2011 (2011)

Keogh, E., Folias, T.: The UCR Time Series Data Mining Archive, Computer Science and
Engineering Department, University of California (2002). www.cs.ucr.edu/~eamonn/
TSDMA/index.html

http://www.cs.ucr.edu/%7eeamonn/TSDMA/index.html
http://www.cs.ucr.edu/%7eeamonn/TSDMA/index.html

	A Continuous Segmentation Algorithm for Streaming Time Series
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Turning Points Definition
	3.2 The Segmentation Criteria

	4 Algorithm Description
	5 Experiment and Analysis
	5.1 Dataset and Evaluation Metrics
	5.2 Comparison with Existing Methods

	6 Conclusion
	Acknowledgment
	References

