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Abstract. Nowadays, the reliability of the wind turbines is essential to ensure
the efficiency and the benefits of the wind energy. The SCADA system installed
in a wind turbine generates lot of data that need to be processed. The informa-
tion obtained from these data can be used for improving the operation and man-
agement, obtaining more reliable systems. The SCADA systems operate through
different control rules that are predefined. However, a static control of the wind
turbine can generate a miscorrelation between the control and the real conditions
of the wind turbine. For example, two wind turbines can be separated several
kilometers in the same wind farm, therefore, the operation conditions must be dif-
ferent and the control strategy should not be unique. This research work presents
a method based on neural networks for a dynamic generation of the control strat-
egy. The method suggests that the thresholds used for generating alarms can vary
and, therefore, the control of the wind turbine will be adapted to each specific
wind turbine.
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1 Introduction

The wind energy is currently the most important renewable energy, the capacity
installed currently is more than 420 GW and it is estimated to be more than 1000GW
in 2030 [3]. The maintenance and operation costs of conventional wind turbines are
12% of the total costs, but the wind energy is evolving towards the offshore location. It
causes an important increase of these costs, being for offshore wind farms around 23%
of the total costs [12].

SCADA systems are widely introduced in wind turbines (WTs) due to their effec-
tiveness has been proved in other industries for detection and diagnostics of failures
[9,11,16]. They are presented as an inexpensive and optimal solution [20] to control
feedback for the health monitoring while reducing the operation and management costs
[19]. Nevertheless, they also present some minor disadvantages due to the operational or
reliability conditions [14,21]. These systems consider a large amount of measurements
such as temperatures or wind and energy conversion parameters [18]. Data have raised
considerable interest in different areas, e.g. wind power forecasting [17], production
assessment [22] or fault detection [4,6,8, 10].
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In the case of WTs, the introduction of SCADA systems verifies the efficiency when
their components are deteriorated. This degradation can indicate problems of different
nature such as misalignments in the drive-train, friction caused by bearing or gear faults.
The basic elements of the performance monitoring consist on a first collection of raw
values by the sensors. After the application of the appropriate filters, anomalies are
detected. Finally, a diagnosis will be provided. The anomaly detection includes a series
of techniques that range from simple threshold checks to statistical analyses [5,7,15].

It has been demonstrated that the WT suffers a gradual loss of production. Figure 1
shows that the power has a decrease year by year (this study has been developed by
Sheffield university in the OPTIMUS project [2]). The SCADA data has been consid-
ered over 5 years and the wind speed-power curve has been estimated.
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Fig. 1. Loss of power of a WT over the time

This paper present a signal processing considers the minor changes in the behavior
of the WT. Some alarms will be affected by the decrease of the power shown in Fig. 1.
The following alarms will be activated considering the power as a cause.

e Activation of the ice safe mode: One of the statements considered for this alarm is
that the power is low for the measured wind.
e High aerodynamic deterioration: It is considered for low power with high wind.

If the power presented a minor reduction, then some false alarms would be activated
because the SCADA was prepared for a higher power. However, if the control laws are
dynamic, this problem will be solved.

2 Proposed Method

The method proposed aims to improve the control of the system by following a super-
vised iterative process. The objective is to determine if the SCADA control is coherent
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Fig. 2. Flowchart of the method proposed

with the historical data and, therefore, if the system has changed. The main capability
of the method is to find differences in the behavior of the system over the time. Figure 2
shows a flowchart of the method proposed.

The iterative process starts with a database of the historical SCADA data. In this
paper, two different types of data are considered: the value of the measured parameters
and an alarm report. This data is employed to build an artificial neural network (NN)
with a supervised training. The values of the parameters are employed as the inputs and
the alarms will represent the outputs of the NN.

NN are used in problems that cannot be formulated as an exact method or an analyti-
cal solution. NN learns by itself and provides a good solution for the problem simulating
the biological neurons in a reasonable time. An artificial NN consists of neurons that
are simple processing units and weighted connections between those neurons [1].

It can be used for improving the control of the WT when the NN that defines the
logic of the system has been generated. The SCADA system will provide online data
of the condition of the WT. These data will be processed following two different eval-
uations: the SCADA system processing and the NN processing. Both outcomes will be
compared. If the outcomes are equal, then the data will be added to the database, there
for the NN processing will became an adaptive process.

3 Case Study

The European Optimus project [2] has provided the SCADA data used in this work.
It measures a lot of parameters, but after a filtering process, only 34 parameters (see
Table 1) have been considered for the analysis presented hereby. The values of this
parameters will be considered as inputs for the NN.

Basically, the NN receives a dataset and make a training process to recognize sev-
eral patterns. The training process fits the different weights to provide the output. If
the output is known, then the training is defined as supervised, otherwise, it is called
unsupervised training. The condition of the WT corresponds to the desired outputs of
the NN. The data used to design the NN is divided in following groups:
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Table 1. Inputs and outputs for neural network

No | Signal No | Signal

1 | General accumulator blade 1 pressure | 18 | Environmental temperature

2 | General accumulator blade 2 pressure | 19 | Drive end side generator bearing temperature
3 | General accumulator blade 3 pressure | 20 | Non-drive end side generator bearing temperature
4 | Phi cosine 21 | Generator winding temperature

5 | Turbulence level 22 | Nacelle temperature

6 | Oscillation level 23 | Lower gearbox radiator

7 | Vibration level 24 | Upper gearbox radiator

8 | Pitch 1 angle 25 | Gearbox bearing temperature

9 | Pitch 2 angle 26 | Transformer | temperature

10 | Pitch 3 angle 27 | Transformer 2 temperature

11 | Active power 28 | Transformer 3 temperature

12 | General accumulator pressure 29 | Grid voltage

13 | Brake pressure 30 | Total reactive power

14 | Hydraulic group pressure 31 | Generator speed

15 | SP pitch angle 32 | Rotor speed

16 | Hydraulic group oil temperature 33 | Wind speed

17 | Gearbox oil temperature 34 | Yaw

e Training set: Around 75% of the total amount of data.
e Validation set: Around 15% of the total amount of data.
e Testing set: Around 15% of the total amount of data.

The NN is expected to be able to learn from data and predict the output when a
generic input is considered.

The output of the NN will be specified by a Report of Alarms generated by the
SCADA [2]. The data available consists of a serial of alarms registered from 01/10/2012
to 15/05/2015, where there are different types of alarms identified by a specific code.
The codes are not indicated for reasons of confidentiality. In this work, only 5 different
scenarios have been considered to simplify the example. These scenarios correspond to
4 different alarms and the absence of alarms.

Therefore, the NN will be created following the structure shown in Table 2.

The design of the NN has been carried out using the geometrical pyramid rule [13].
Figure 3 shows the structure of the NN built. This rule express an approximation of the
number of neurons h at the hidden layer. It is defined by:

h=+vmxn,

where m is the number of elements of each input and » is the number of possible outputs,
being m = 34, n = 5, and therefore, 1 = 13.03.

Figure 4 shows the statistics of the NN generated by using the SCADA data. This
is a global confusion matrix and corresponds to the sum of the training, validation and
testing sets. The rows of the matrix show the outcomes of the NN for the dataset used.
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Table 2. Inputs and outputs for NN

Input data | Output data
1 34 | Alarm 1 | Alarm 2 | Alarm 3 | Alarm 4 | None Alarm
Date 1 |al |a; | a4 1 0 0 0 0
1 1 1j
1| | 34
Date 2 | a; | a; ay; 0 1 0 0 0
1| | 34
Date 3 | a3 | a3 az; 0 0 1 0 0
1| | 34
Date 4 | ay | ay ay; 0 0 0 1 0
Date 5 a}, as’ ag“ 0 0 0 0 0
m n
1 (hidden layer) Alarm 1
2 | Number of neurons [ Alarm 2
3 Alarm 3
h=13 Alarm 4
Fig. 3. Structure of the neural network
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28.6% | 0.0% 0.0% 0.0% 1.0% 3.4%
2 o 9 1 0 1| s18%
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00% | 0.0% | 92% | 0.0% | 1.0% | 10%
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0.0% 2.0% 1.0% 0.0% | 36.7% | 7.7%
6 | 100% 81.8% | 81.8% 100% | 92.3% 92.9
0.0% 18.2% | 18.2% | 0.0% 7.7% 7.1%
1 2 3 4 5 6
Target

The columns show the real output, i.e. the output established by the alarms. The diago-
nal of this matrix (grey cells) contains the desired solutions. The sixth row and the sixth
column show a summary of the rights (green percentage) and wrongs (red percentage).

The outcomes of the NN agree more than 90% with the alarms that the SCADA
system generates. The method proposed establishes that the control of the SCADA
needs to be uploaded when the alarms cannot be predicted by the NN with enough
accuracy. If the SCADA control and this NN have the same response, then the data
processed will be added to the database. Therefore, a “healthy” dataset will be created

Fig. 4. Results of the neural network:

confusion matrix

and the control will be adapted to the real conditions over the time.
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4 Alarm Prediction

The method proposed here by also allows for predicting a possible alarm. In the previ-
ous Sect. 3, a NN was generated by inputting the data that the SCADA system employs
for generating the alarms. In this section, the input will be the data obtained before the
alarm is activated, i.e. the objective is to predict an alarm before the SCADA system
generates it. The NN is performed using the same techniques that in previous section. In
this case the NN will be designed to distinguish whether alarm will be activated or not.
Figure 5 shows the scheme used for the prediction. The inputs employed for performing
the NN are the dataset collected before the alarms are activated.

Number of neurons
Input t-1 | Outputt

h=+34%2 ~8

Fig. 5. Structure of the second neural network

Following the structure of Fig.5, a NN has been performed obtaining the results
shown in Fig. 6. This confusion matrix shows that the NN can predict a 20.1% of the

alarms. Despite it is a low percentage when the NN suggests an alarm, it has a success
of 62.1%.

5580 143 97.5
! 96.5% | 2.5% 2.5%
22 36 62.1
Output 2 0.4% 0.6% 37.9%
99.6% | 20.1 97.1%
0.4% | 79.9% | 2.9%
1 2
Target

Fig. 6. Results of the second neural network: confusion matrix

This method can be used for determining the predictability of some alarms. This
can be a useful tool to identify possible alarms before the WT can be damaged.

5 Conclusions

In this work, a new methodology is presented for extracting information from SCADA
dataset. The methodology is based on the generation of neural network from the quanti-
tative (value of parameters) and qualitative dataset (alarms) of the SCADA system. The
methodology has two different purposes. In first place, the adaptation of the SCADA
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control rules to the variable condition of the wind turbines. A neural network has been
generated to determine which data should be added to the database. The creation of a
“healthy” database allows for adapting the SCADA control rules to the real condition
of the wind turbine over the time. Secondly, an additional neural network has been cre-
ated for making predictions of the activation of alarms. This can be used to identify an
abnormal state of the wind turbine earlier than the SCADA.
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