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Abstract. When evaluating a logistics system, automobile companies
commonly search for the minimum transportation cost, which is sig-
nificantly influenced by inventory problems. These inventory problems
are extensive and varied. In many actual logistics systems, there are
the three-stage network models take inventory values into consideration.
Safety inventories are kept in distribution centers (DCs). In this study,
we adapted a model to set-up a number of plants and DCs. We then per-
formed numerical experiments by using demand data that we created on
the basis of data disclosed by an automobile company. In this study, we
propose a random key-based genetic algorithm (rk-GA) with the distrib-
uted environment scheme, we compared it with random key and spanning
tree-based GAs, and report the advantages of the proposed method, ran-
dom key-based genetic algorithm with distributed environment scheme
(des-rkGA).

Keywords: Automobile manufacturing · Multi-stage logistics · Inven-
tory control · Random key-based genetic algorithm

1 Introduction

Many difficult inventory problems involve production control and asset man-
agement, but those that involve logistics systems are important and have gar-
nered strong interest in recent years. Particular focus has been paid to inventory
problems. Doboshas presented many papers on inventory problems. In 2001, he
presented the problem of reverse logistics, adjusting the relationship of holding,
production, and disposal costs [4]. In 2005, he investigated production inventory
adjustment [5]. In 2007, he presented a paper on the total production cost of two
companies for adjustment [6]. Minner et al. [18] have also presented papers on
inventory problems. In 2003, they evaluated reverse logistics, where the inven-
tory has several supply methods. In 2005, they presented a paper on the problem
of adjusting shipping, replenishment, and lost sales opportunities for two inven-
tories [19]. In 2008, Thangam et al. [28] presented a paper on how to determine
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replenishment for Poisson demand. In 2003, Mahadevan et al. [16] treated a facil-
ity as an inventory problem where the returned products are remanufactured.
In 2004, Miranda et al. [20] analyzed the inventory decision problem using the
Lagrangian relaxation method and subgradient methods; their ordering point
method was based on the economic order quantity. In 2009, Rieksts et al. [24]
analyzed the inventory problem with ordering intervals using power- of- two
policies.

There are many other inventory problems, including the reduction of the
total safety inventory quantity, or on-hand inventory [8], and the calculation of
the inventory value at each step, or echelon inventory [12].

In this study, we propose a new model where inventories are managed at
distribution centers (DCs), taking actual conditions into account. Holding costs
only occur in DCs, but additional inventory costs are incurred for the product
value because a product near dealers has more value. For inventory costs other
than the holding cost, we can get an interest charge if the product is exchanged
with cash. Another factor is the lost product value due to age depreciation. We
calculated the annual supply and demand value, and created demand data that
were based on the Poisson demand of time-series fluctuations. Logistics models
such as these are known as the NP-hard problem [3]. Soft computing methods
such as simulated annealing, neural networks, and genetic algorithms (GA) are
well-suited to solve this problem [1,17,26,29].

In this study, we adopted random key-based genetic algorithm (rk-GA) with
distributed environment scheme (des-rkGA) as the proposed method, which is
an improved version of rk-GA; we compared the proposed method with rk-GA
and spanning tree-based GA (st-GA) to confirm its suitability [9].

We propose a model that addresses many of the different inventory problems
studied earlier; we demonstrate des-rkGA algorithm to solve the multi-logistics
inventory problem, and present the computational results with the effectiveness
by the proposed algorithm.

2 Inventory Problem in Logistics System

In this section, we detail the contents for the inventory problem treated in this
study. Inventory costs result from holding costs and other factors. For the model
used in this study, the product is held in a DC for general managing. All products
have needed costs as their product value, and the production control cost is
needed to calculate the safety inventory in a DC. The safety inventory quantity
is decided by the service level but is affected by the production control and
holding costs. The safety inventory cost is based on the service level and has a
trade-off relation with lost costs based on lost sales opportunities.

Figure 1 shows many different kinds of inventories; they are difficult to cat-
egorize clearly, but it is important for inventory management to categorize and
manage them. The inventory cost without the holding cost includes all inven-
tory, such as the pipeline, production process, lot size and DC inventories. The
inventory costs determine the product value, inventory value, inventory time,
and inventory holding ratio.
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Therefore, the inventory cost without holding costs and the product value,
inventory value, inventory time, and inventory holding ratio have a trade-off
relation. In this section, we describe the inventory holding ratio, safety inven-
tory, production adjustment, pipeline inventory, and inventory on a production
process, lot size inventory, and DC inventory as well as a summary of the inven-
tory problems evaluated in this study. Although there are many kinds of inven-
tories, we adopted the idea of a value chain for the inventories; we used the
pipeline, lot size, production process, and DC inventories.

Fig. 1. Inventory category

The general outline of the logistics model used for the inventory in this study
is shown in Fig. 2.

Fig. 2. General outline of logistics model with inventory

Below, we define the indices, constants, parameters, decision variables, and
units used in this paper. Units of measurement are in square brackets.
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Indices:
i = 1, 2, · · · , I : index of suppliers;
j = 1, 2, · · · , J : index of plants;
k = 1, 2, · · · ,K : index of DCs;
l = 1, 2, · · · , L : index of customers;
t = 1, 2, · · · , T : index of cycles in the logistics system. Tcycle intervals are

described later.
Parameters:
A : number of unit parts to constitute;
c1ij : shipping cost of unit parts or material from supplier i to plant j

[yen];
c2jk : shipping cost of unit production from plant j to DC k [yen];
c3kl : shipping cost of unit production from DC k to customer l [yen];
g1ij : shipping time of unit parts or material from supplier i to plant j [h];
g2jk : shipping time of unit production from plant j to DC k [h];
g3kl : shipping time of unit production from DC k to customer l [h];
Tplant : producing time of plants [h];
α : safety inventory coefficient;
σ : standard deviation of demand;
Tcycle : cycle time in the logistics system. It shows how much time it takes

for a load to be moved once [h];
h : inventory holding ratio (2.1 value chain.);
H : holding cost of unit production in a DC [yen];
ek : inventory cost or DC k [yen];
Mcost : material cost [yen];
r1j : fixed cost for operating plant j [yen];
r2k : fixed cost for operating DC k [yen];
U1

i : upper limit of supply for parts and materials in supplier i;
U2

j : upper limit of supply for production in plant j;
U3

j : upper limit of supply for production in DC k;
pconstj : unit cost production at steady state [yen];
pexceedj : unit cost production at excess state, [yen];
pshortagej : unit cost production at shortage state [yen];
Itotal : total inventory cost without holding cost;
Ndelay : number of delays for plant production;
W1 : number of plants that can be operated;
W2 : number of DCs that can be operated;
Raverage : production quantity for one period of cycle time as calculated

from the annual average production quantity;
S1

i : supplier production ratio; ratio of supplier i to gross supplier product
capability;

S2
j : plant production ratio; ratio of plant j to gross plant product

capability;
zlevelk : base inventory level in DC k.
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Decision Variables:
u1

i (t) : supply amount of parts and materials in supplier i at cycle t;
u2

j (t) : supply amont of production in plant j at cycle t;
u3

k(t) : supply amont of production in DC k at cycle t;
u4

l (t) : demand amount of production in customer l;
zk(t) : inventory volume for DC k at cycle t [yen];
S3

k(t) : DC demand ratio; demand ratio of DC k to the gross DC demand
quantity;

R2
j (t) : shipping quantity in plant j;

R3
k(t) : receive cargo quantity in DC k;

Bl(t) : back order quantity in customer l;
Dl(t) : order quantity at this period in customer l;
DDC

l (t) : request quantity to DC at this period in customer l;
Δzk(t) : difference of inventory quantity and base inventory level;
Δzmax(t) : maximum of difference of inventory quantity and base inventory

level;
zreqk (t) : request quantity in DC k;
p1val : product value when delivery is completed to plants [yen];
p2val : product value when delivery is completed to DCs [yen];
p3val : product value when delivery is completed to customers [yen];
U exceed

j : threshold for determination when exceeding production;
U shortage

j : threshold for determination when reducing production;

Decision Variables:
pj(uj2) : producing cost of unit production in plant j, [yen]
x1

ij(t) : amount supplied of unit parts or material from supplier i to plant j
at cycle t;

x2
jk(t) : amount supplied of production from plant j to DC k at cycle t;

x3
kl(t) : amount supplied of production from DC k to customer l at cycle t;

p1j (t) : operating flag for plant j at cycle t (= 1 when plant j is used,
= 0 otherwise);

p2k(t) : operating flag for DC k at cycle t (= 1 when DC k is used,
= 0 otherwise).

2.1 Value Chain

When considering the product value and inventory holding ratio in addition to
the holding cost, the inventory cost becomes high near the customer (dealer),
as shown in Fig. 3 [23]. The inventory holding ratio is determined by the con-
stant number by interest rate when the product is cashed, the decrease in prod-
uct value, etc. In this study, we treated the inventory holding ratio as uniform
because we were dealing with engineered products such as automobiles that do
not experience degradation. We adopted the value chain concept for all products.
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The value chain can be defined as:

Icost : Inventory Cost;
Pvalue : Product Value;
Ivolume : Inventory Amount.

Icost = h × Pvalue × Ivolume (1)

Fig. 3. Value chain

2.2 Safety Inventory

The safety inventory is the inventory required to prevent stock out. The safety
inventory and service level have a mutual trade-off relation. The formula for the
safety inventory is shown below.

Isafety = ασ
√

Tcycle + max(gjk) ∀j, k, (2)

where Isafety is safety inventory.

2.3 Production Adjustment

Order fluctuations mean that factories have to adjust production. Extra charges
include extra pay, etc. if production is over the steady state, and extra fixed
costs for the equipments if production is under steady state. The formula for
production adjustment is shown below.

Pj(u2
j (t)) =Pconst + max{Pexceed(u2

j (t) − U exceed
j ), 0} (3)

+ max{Pshortage(U
shortage
j − u2

j (t)), 0}.

2.4 Pipeline Inventory

The pipeline inventory denotes the inventory during shipping. There is a trade-off
between the pipeline inventory and shipping cost. In this study, we constructed a
model based on the idea of an inventory holding ratio. We treated each product
during shipping between a supplier and plant and between a DC and customer
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as pipeline inventory. The formula of the pipeline inventory cost Ipileline is shown
below.

Ipipeline =h

⎧
⎨

⎩

T∑

t=1

⎛

⎝p1val

I∑

i=1

J∑

j=1

g1ijx
1
ij(t) + p2val

J∑

j=1

K∑

k=1

g2jkx2
jk(t) (4)

+p3val

K∑

k=1

L∑

l=1

g3klx
3
kl(t)

)}

.

The cost is approximated as follows because we presumed that the product
has the same value when received by any factory, DC, or dealer. The value of
completed product is approximated by material and average shipping costs.

p1val = Mcost +

∑T
t=1

∑I
i=1

∑J
j=1 c1ijx

1
ij(t)

∑T
t=1

∑I
i=1

∑J
j=1 x1

ij(t)
. (5)

The product value when shipped to DCs is approximated by its value when
shipped to plants and the average shipping cost.

p2val = p1val +

∑T
t=1

∑J
j=1

∑K
k=1 c2jkx2

jk(t)
∑T

t=1

∑J
j=1

∑K
k=1 x2

jk(t)
. (6)

The product value when shipped to dealers is approximated by its value when
shipped to DCs and average shipping cost.

p3val = p2val +
∑T

t=1

∑K
k=1

∑L
l=1 c3klx

3
kl(t)∑T

t=1

∑K
k=1

∑L
l=1 x3

kl(t)
. (7)

2.5 Inventory of a Production Process

For the inventory of a production process, we constructed a model based on the
idea of an inventory holding ratio. We treated an unfinished product as inventory
on a production process.

The formula is shown below. The product value on a production process
changes with the progress conditions of the manufacturing processes. However,
in this study, the value was approximated as the material cost and half of the
production cost in the plant.

Iproduction = hTplant

J∑

j=1

u2
j (t)(p

1
val + Pj(u2

j (t))/2). (8)
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2.6 Lot-Size Inventory

The lot size inventory is the inventory of the completed products during shipping.
We treated completed products as lot size inventory. All products are shipped
from plants to DCs in the same interval. The lot size inventory cost was cal-
culated as half the product of the shipping values, production values in plants,
and inventory holding ratio, as shown in Fig. 4; we used this formula because
all products were shipped from a plant to a DC in the same time intervals. The
formula is shown below.

Ilotsize = h

T∑

t=1

J∑

j=1

K∑

k=1

g2jkx2
jk(t)(p1val + Pj(u2

j (t)))
2

. (9)

Fig. 4. Lot size inventory value

2.7 DC Inventory

We treated products in a DC as DC inventory. In this study, the DC inventory
plays the central role of the inventory of the logistics system; we need extra
holding costs for each car in DCs. The DC inventory cost is calculated as the
product of the DC inventory amount, cycle time, and production value when
shipped to DCs multiplied by the inventory holding ratio. The formula is shown
below.

IDC = hTcyclep
2
val

T∑

t=1

K∑

k=1

zk(t) + HTcycle

T∑

t=1

K∑

k=1

zk(t). (10)

2.8 Total Inventory Cost Without Holding Cost

As mentioned above, the formula of the total inventory cost without the holding
cost used in this study consists of the pipeline, production process, lot size, and
DC inventory costs; it is shown as follows.
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Itotal=Ipipeline + Iproduction + Ilotsize + IDC (11)

Itotal =h

{ T∑

t=1

(p1val
I∑

i=1

J∑

j=1

g1ijx
1
ij(t) + p2val

J∑

j=1

K∑

k=1

g2jkx2
jk(t)

+ p3val

K∑

k=1

L∑

l=1

g3klx
3
kl(t)) + Tplant

J∑

j=1

u2
j (t)(p

1
val + Pj(u2

j (t))/2) (12)

+
T∑

t=1

J∑

j=1

K∑

k=1

g2jkx2
jk(t)(p1val + Pj(u2

j (t)))
2

+ Tcyclep
2
val

T∑

t=1

K∑

k=1

zk(t)
}

+ HTcycle

T∑

t=1

K∑

k=1

zk(t).

2.9 Demand Data

In this study, we constructed the logistics system in terms of inventories with
Poisson demand [25]. To confirm the availability, we created demand data from
an automobile company’s public data. Many products flow in the supply chain
network (SCN) by dealer’s demand, and these demands are approximated with
Poisson demand time fluctuations. We created new demand data using Poisson
randomization. The Poisson equation is shown below.

p(k) =
e−λλk

k!
, (13)

here, p(k) is the demand, λ is the average order values, and k is the number
of order times. Figure 5 shows the outline of the Poisson randomization. In this
study, we created daily demand data each experiment by applying a Poisson
random number to the annual demand.

Fig. 5. Relationship between amount and times of orders
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3 Mathematical Model of Multi-stage Logistics System
with Inventory

3.1 Assumptions

In this study, we constructed the logistics model with the following assumptions.

A1. The transit times are known between suppliers and plants, plants and DCs,
and DCs and customers.

A2. The shipping costs are known between suppliers and plants, plants and
DCs, and DCs and customers.

A3. The supplies are delivered without delay to a factory in population to the
planned production.

A4. In this model, suppliers provide multipurpose parts for effective optimiza-
tion. The parts are examined and classified for easy assembly work. This
process is carried out assuming that A package parts are used in the assem-
bly of one car. The conditions for assembling one car require the package
parts of A units. Other parts are not targeted in this model because the
supply route is decided from the first time the supplier side is entrusted
with delivery, few of the detailed parts have management value in the
logistics system, etc.

A5. The products made at a plant are shipped to a DC by lot size.
A6. The DCs have space to accept products from plants.
A7. We consider only the inventory costs in DCs.
A8. The customer addresses are known.
A9. The existence of inventory is known in advance through an inventory check;

orders for inventory that is out of stock are treated as reservations.
A10. A product has the same value when received by any factory, DC, or dealer.
A11. All products are delivered within the limits time of a Tcycle.

3.2 Multi-stage Logistics System

Generally, when a logistics system is seen from the functional constitutive prop-
erty, it is modeled by a three-stage production network and distribution system,
which is called a supply chain network. The first stage is the supplier phase,
which involves parts and a supplier. The second stage is the plant phase, which
consists of a production plant or outsourcing. The third stage is the DC phase
and consists of a distribution center or storehouse. A sample of an actual auto-
mobile company’s logistics system is shown in Fig. 6. In many cases, the actual
logistics system is comprised of three stages. A three stage logistics system model
is shown in Fig. 7. The logistics model used in this study had 14 suppliers, 2 fac-
tories, 4 DC, and 22 customers. The mathematical model used in this study is
shown below.
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Fig. 6. Sample of actual logistics system

min Z1 =
T∑

t=1

{
A

I∑

i=1

J∑
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c1ijx
1
ij(t) +

J∑
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c2jkx2
jk(t)

+
K∑
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L∑
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c3klx
3
kl(t)

}
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{ T∑
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(p1val
I∑
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J∑
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g1ijx
1
ij(t)

+ p2val

J∑
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K∑
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g2jkx2
jk(t) + p3val

K∑
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L∑
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g3klx
3
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J∑
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u2
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K∑
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jk(t)(p1val + Pj(u2
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2
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}
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J∑
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x1
ij(t) ≤ u1

i (t), ∀i, t (15)
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i=1

x1
ij(t) ≤ u2

j (t)p
1
j (t), ∀j, t (16)
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J∑

j=1

x2
jk(t) ≤ u3

k(t)p2k(t), ∀k, t (17)

K∑

k=1

x3
kl(t) ≥ u4

l (t), ∀l, t (18)

J∑

j=1

x1
ij(t) =

J∑

j=1

x2
jk(t), ∀j, t (19)

K∑

k=1

x2
jk(t) = zk(t − 1) − zk(t) +

K∑

k=1

x3
kl(t), ∀j, t (20)

J∑

j=1

p1j ≤ W1 (21)

K∑

k=1

p2k ≤ W2 (22)

x1
ij(t), x

2
jk(t), x3

kl(t), zk(t) ≥ 0, ∀i, j, k, l, t (23)

p1j (t), p
2
k(t) = {0, 1},∀j, k, t (24)

Pj(u2
j ) = P cont

j + max(P exceed
j (u2

j (t) − U exceed
j ), 0)

+ max(P shortage
j (U shortage

j − u2
j (t)), 0) (25)

p1val = Mcost +

∑T
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∑I
i=1

∑J
j=1 c1ijx

1
ij(t)

∑T
t=1

∑I
i=1

∑J
j=1 x1

ij(t)
(26)

p2val = p1val +

∑T
t=1

∑J
j=1

∑K
k=1 c2jkx2

jk(t)
∑T

t=1

∑J
j=1

∑K
k=1 x2

jk(t)
(27)

p3val = p2val +
∑T

t=1

∑K
k=1

∑L
l=1 c3klx

3
kl(t)∑T

t=1

∑K
k=1

∑L
l=1 x3

kl(t)
. (28)

4 Advanced Genetic Algorithm

4.1 Random-Key Based Genetic Algorithm

Gen and Lin [7] surveyed genetic algorithms in Wiley Encyclopedia of Computer
Science and Engineering and recently many researchers applied GA to various
areas in logistics systems. Inoue and Gen [10] reported multistage logistics sys-
tem with inventory considering demand by hybrid GA, Neungnatcha et al. [22]
reported adaptive genetic algorithm (AGA) for solving sugarcane loading sta-
tions with multi-facility services problem, Jamrus et al. [11] reported discrete
particle swarm optimization (PSO) approaches and extended priority based-
HGA for solving multistage production distribution under uncertainty demands
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Fig. 7. 3-stages logistics model

and Lee et al. [13] reported multi-objective hybrid genetic algorithm (MoGA) to
minimize the total cost and delivery tardiness in a reverse logistics.

Lin and Gen [15] proposed a random key-based genetic algorithm (rk-GA) for
solving AGV (automatic guided vehicle) dispatching problem in flexible man-
ufacturing system (FMS). Now we are going to use it for multistage logistics
system with inventory. Now we define the following example of the cost matrix:

Fig. 8. Sample of cost matrix

The algorithm created using the rk-GA technique has three logistics stages.
Figure 7 shows the third stage process. Figure 8 shows a sample cost matrix.
Figure 9 shows a sample rk-GA chromosome.

Gen and Cheng successfully applied rk-GA encoding to the shortest path
and project scheduling problems in 2000 [2]. For transportation problems, a
chromosome consists of the priorities of sources and depots, which make up a
transportation tree; its length is equal to the total number of sources m and
depots n, i.e., m + n. The transportation tree corresponding to a given chro-
mosome is generated by the sequential arc between sources and depots. At each
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Fig. 9. Sample of rk-GA chromosome

Fig. 10. Sample of one point crossover

Fig. 11. Sample of insertion mutation

step, a single arc is added to a tree that selects a source (depot) with the highest
priority and connects it to a depot (source) to minimize cost.

Figure 13 shows the brief decoding at each stage. Figure 14 shows the process
of the m-logistics problem. In this study, we used the one-point crossover, which is
the simplest method when using rk-GA. We used insertion and swap mutations.
We used the roulette wheel approach, which selects the chromosome in ascending
order of fitness. Examples of one-point crossover, insertion mutation, and swap
mutation are shown in Figs. 10, 11 and 12, respectively.

The new generated chromosome is evaluated. It is selected in ascending order
of fitness based on the number of popSize in the parent and newly generated
chromosomes. The order of fitness then helps determine the next generation of
chromosomes.



782 H. Inoue et al.

Fig. 12. Sample of swap mutation

Fig. 13. Brief decoding of each stage

Inversion and displacement mutations are used in st-GA. The inversion muta-
tion select two positions within a chromosome at random and then inverts the
substring between these two positions. The displacement mutation selects a sub-
string at random and inserts it in a random position.

4.2 Total Logistics Process

The total logistics system process can be explained as follows. Figure 15 shows
the whole logistics system process in logistics cycle periods. The safety inventory
is given first each cycle period. The inventory quantity is renewed last in each
cycle period. The plant product shipping quantity is based on past demand,
because of the production time in plants. In this study, this is called the number
of delays for plant production Ndelay where the plant production time is the
number of order times. This is shown below.
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Fig. 14. m-Logistics Process

Ndalay =
Tplant

Tcycle
. (29)

Here, we use an example for the shipping products when the customer’s
total demand quantity changes from 600 before delay cycle times (Ndelay) to
1200. A pull-type demand quantity is applied to DC-customer and supplier-plant
product distributes based on the demand quantity at the time. The shipping
quantity is 1200. A push-type demand quantity is applied to plant-DC product
distributions based on the demand quantity before the number of delay times
for plant production (Ndelay). The shipping quantity is 600.

The load of the customer’s demand is shared by the total inventory quantity
in DCs and total production in plants and suppliers. An example process is
shown in Fig. 16. Step 1 shows a renewal of the demand quantity (u4

l ) and back
order quantity (Bl). Step 2 calculates the planned order quantity (u2

j (t)). Step 3
calculates the order quantity in suppliers (u1

i (t)). Step 4 calculates the planned
shipping quantity (R2

j (t)). Step 5 calculates the quantity of cargo received in
DCs (R3

k(t)).

Fig. 15. Total m-logistics process in a cycles period
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Fig. 16. Initial process

4.3 rk-GA with Distributed Environment

The immigration scheme is an independent genetic operation where each island
is made up of several divided populations for the same generation. The basic con-
cept of immigration is shown in Fig. 17. Immigration is an information exchange
that is performed continuously for a group of chromosomes. The ratio to the
number of immigration populations is called the immigration ratio, and the
generation interval during which immigration occurs is called the immigration
interval. In 2008, Lin et al. [14] solved the shortest route problem for cost and
time using a priority-based GA with immigration, and reported their result.

Nominated 

Group of Genes 

Island-A 

Island-D 

Island-B 

Island-C 

Same 

Generation Immigation 

Fig. 17. Basic Concept of Immigration

In this study, we propose rk-GA with a distributed environment scheme (des-
rkGA) that changes the crossover and mutation rates for each island. Miki et al.
[21] proposed multi-objective genetic algorithms with a distributed environment
scheme (MoGA-DES). We adopted an immigration rate of 0.1; we selected other
islands randomly and changed the chromosome asynchronously. There are two
methods for parallel processing [27]. The multithread method performed by one
programming using time sharing. The multi-task method performs several tasks
at the same time [21]. In this study, we adopted the multi-task method because
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it is easy to disperse processing to several PCs. There are also two process-
ing methods for GA. The synchronous method synchronized the time for each
generation. The asynchronous method does not do so. We adopted the asyn-
chronous method because we would need a wait time for the slowest island if we
adopted the synchronous method. We created nine islands with crossover prob-
ability (PC) and lower mutation probability (PM) than the center island. Two
of nine islands were chosen at random with the generation timing of the center
island. The direction of immigration was decided at random, and the popula-
tions immigrated at a 0.1 immigration rate. Next, 10% of each island’s worst
chromosomes were destroyed, and 10% of other islands’ best chromosomes were
adopted as immigrations. The concrete values of PC and PM used by this study
are discussed in detail in the next section. We performed the experiment using
parallel processing with three PCs.

5 Numerical Experiments

We performed prior experiments to determine PC and PM for the center island
and obtained the solution is shown in Table 1. We adopted PC = 0.4 and PM =
0.6 as the center island values for st-GA and PC = 0.6 and PM = 0.4 as the
center island values for rk-GA because they provided the best solutions.

We adopted PC = 0.6 and PM = 0.4 as the center island values for des-rkGA,
because it is based on rk-GA. We created 9 islands with PC = (0.4, 0.6, 0.8) and
PM = (0.2, 0.4, 0.6) for the experiments.

popSize denotes the population size. maxGen is the maximum generation
size used as the terminating condition for the experiments. We performed exper-
iments repeated 20 times using maxGen = 5000 and popSize = (20, 50, 100).
However, we reported maxGen = 1000 as sufficient for the evolutive process
because no more improvement was detected after 1000 generations. Table 2 shows
the evolutive processes for the best value by each method. The best value Z1

was at gen = (300, 500, 1000).

Fig. 18. Evolutive process for each method

Figure 18 shows the evolutive processes for each method when popSize was
100. The proposed Des-rkGA produced the best final result because its evolutive
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Table 1. Solution at each PC and PM (unit: yen)

PM PC

0.2 0.4 0.6 0.8

st-GA 0.2 451, 461, 818 442, 315, 078 447, 088, 045 454, 269, 696

0.4 445, 044, 804 440, 918, 667 444, 501, 564 444, 782, 298

0.6 442, 653, 511 440, 602, 712 445, 820, 848 452, 372, 968

0.8 445, 865, 777 443, 723, 937 451, 882, 261 454, 711, 777

rk-GA 0.2 412, 925, 351 406, 037, 962 408, 355, 139 413, 251, 110

0.4 406, 280, 823 405, 783, 627 405, 476, 817 405, 988, 745

0.6 408, 604, 249 406, 269, 725 405, 763, 570 413, 679, 127

0.8 412, 120, 741 406, 777, 058 411, 116, 273 413, 073, 894

Table 2. Evolutive process for each popSize (unit: yen)

PopSize Gen

300 500 1000

st-GA 20 551, 429, 175 547, 095, 287 541, 769, 426

50 499, 464, 718 485, 094, 520 482, 185, 269

100 447, 629, 126 423, 064, 081 402, 412, 188

rk-GA 20 467, 164, 557 463, 804, 677 433, 653, 257

50 452, 496, 499 434, 436, 525 394, 435, 691

100 366, 335, 225 365, 780, 289 364, 869, 285

des-rkGA 20 418, 809, 097 396, 053, 541 389, 092, 924

50 353, 999, 460 346, 130, 700 346, 030, 174

100 348, 536, 438 345, 863, 047 345, 695, 925

Table 3. Evolution of each island by des-rkGA (unit: yen)

Island Gen

10 20 50 70

A 590, 914, 974 505, 586, 248 442, 219, 078 407, 869, 638

B 545, 289, 874 519, 883, 420 431, 958, 888 411, 047, 134

C 596, 086, 519 530, 215, 824 413, 252, 989 399, 855, 446

D 589, 080, 440 496, 206, 544 433, 337, 814 386, 073, 858

E 569, 117, 032 535, 673, 932 419, 654, 636 412, 582, 256

F 556, 063, 137 497, 222, 107 454, 229, 946 381, 231, 373

G 582, 061, 836 535, 413, 007 412, 034, 067 417, 752, 697

H 548, 377, 594 520, 688, 854 446, 742, 473 378, 950, 050

I 572, 220, 316 493, 015, 494 415, 259, 267 382, 084, 372

des-rkGA 545, 289, 874 493, 015, 494 412, 034, 067 378, 950, 050
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speed was faster than the other compared methods. As shown in Table 2, Z1 was
(402, 412, 188) when st-GA was used. It was (364, 869, 285) with rk-GA and (345,
695, 925) with des-rkGA. des-rkGA showed 16.41% and 5.55% improvements
compared to st-GA and rk-GA, respectively. des-rkGA was confirmed to provide
stable results because the standard deviation was only 3210 compared to 20,
338 with st-GA and 7780 with rk-GA. Table 3 shows the evolutive process of
each island when popSize was 100 as in Table 2. The highlight shows the best
solution for each generation, of which the best was with des-rkGA. In a prior
experiment, the PC and PM for island E were the best combination. However, in
the evolutive process for each island, many of the best solutions were produced
at other islands. Table 4 shows the solution at each immigration rate, and the
best solution by rk-GA is shown as reference. The experimental results show
that if the immigration rate surpassed 50%, the results become bad. Figure 19
was created from Table 4; the best value was produced at 10% migration rate.

Table 4. Immigration Rate of des-rkGA

Immigration rate (%) Z1 (yen)

0 352, 543, 849

5 349, 209, 452

10 346, 035, 987

15 349, 468, 738

20 353, 121, 891

50 373, 634, 700

rk-GA 364, 769, 003

Fig. 19. Immigration Rate of des-rkGA

Table 5 summarizes the experimental results in terms of the des-rkGA
improvement rate and standard deviation for Z1 of maxGen when popSize
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Table 5. Experimental results

st-GA rk-GA des-rkGA

Z1 (yen) 402, 412, 188 364, 869, 285 345, 695, 925

Improvement rate 16.41% 5.55% -

standard deviation 20, 338 7, 780 3, 210

Table 6. Experimental results

st-GA rk-GA des-rkGA

Each PC Total PCs

maxGen 55.56 29.96 32.47 97.41

For 1d 35.78 19.98 20.45 61.35

Time to arrive at the maxGen value 55.56 11.07 5.74 17.22

Time to arrive at the rk-GA value - - 3.15 9.45

was 100. As shown in Table 2, there were differences when the number of gener-
ations was small.

In this experiment, we used three PCs of the same kind dual core AMD1212
2.0 GHz/2 MB; the memory size was 2 GB, and the development language was
C#.

The computational time is shown in Table 6. We experimented with the test
data for 90 days. When converted to 1 day, the computation time was 35.78,
19.98, and 20.45 s using st-GA, rk-GA, and des-rkGA, respectively. The average
generation number when the solution arrived at the maxGen value was 685,
467, and 78 using st-GA, rk-GA, and des-rkGA, respectively. The generation
time is shown in Table 6 as time to arrive at the maxGen value. The time was
55.56, 11.07, and 5.74 s using st-GA, rk-GA, and des-rkGA, respectively. There
was no drastic improvement because the total CPU processing time was 9.45 s,
but the CPU processing time could be distributed. Moreover, the average of the
generation numbers when the des-rkGA value became better than maxGen of
rk-GA was 165, and it took 3.15 s. We also confirmed the advantage of des-rkGA
in terms of computer time. This was due to using parallel processing with 3 PCs
of the same kind. We believe that the PC environment affects the solutions.

6 Conclusions

Using date of an actual automobile company in this study, we proposed random
key-based genetic algorithm with distributed environment scheme (des-rkGA),
for a multi-stage logistics system that calculates inventory values for many differ-
ent cases. We proposed a logistics system that keeps the safety inventories only
in DCs and that can cope with the location allocation problem. We performed
numerical experiments with test data that were based on the disclosed data of a
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certain automobile company. The proposed des-rkGA showed improvements of
16.25% and 5.43% compared to the performances of st-GA and rk-GA, respec-
tively. The des-rkGA also showed a small dispersion of solutions compared with
the other methods. For future work, we intend to investigate the effectiveness
of the logistics system in actual conditions while continuing to advance research
and analysis of case studies.
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