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Abstract. This research applies the method of grey relational analy-
sis (GRA) for multiple attribute decision making (MADM) problems in
which the attribute weights are completely unknown and attribute val-
ues take the form of fuzzy numbers. In order to obtain the attribute
weights, this research proposes an integrated data envelopment analysis
(DEA) and analytic hierarchy process (AHP) approach. According to
this, we define two sets of weights in a domain of grey relational loss,
i.e., a reduction in grey relational grade, between each alternative and
the ideal alternative. The first set represents the weights of attributes
with the minimal grey relational loss in DEA. The second set represents
the priority weights of attributes, bounded by AHP, with the maximal
grey relational loss. Using a parametric goal programming model, we
explore the various sets of weights in a defined domain of grey relational
loss. This may result in various ranking positions for each alternative in
comparison to the other alternatives. An illustrated example of a nuclear
waste dump site selection is used to highlight the usefulness of the pro-
posed approach.

Keywords: Grey relational analysis · Data envelopment analysis · Ana-
lytic hierarchy process · Multiple attribute decision making · Goal pro-
gramming · Fuzzy numbers

1 Introduction

Multiple attribute decision making (MADM) aims to find the ranking position
of alternatives in the presence of multiple incommensurate attributes. Many
MADM problems take place in an environment in which the information about
attribute weights are incompletely known and attribute values take the form of
intervals and fuzzy numbers [16,24,29].

Grey relational analysis (GRA) is part of grey system theory [3], which is
suitable for solving a variety of MADM problems with both crisp and fuzzy data.
The application of GRA with fuzzy data has recently attracted the attention of
many scholars [5,8,25].

GRA solves MADM problems by aggregating incommensurate attributes for
each alternative into a single composite value while the weight of each attribute is
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subject to the decision maker’s judgment. When such information is unavailable
equal weights seem to be a norm. However, this is often the source of controver-
sies for the final ranking results. Therefore, how to properly select the attribute
weights is a main source of difficulty in the application of this technique. For-
tunately, the development of modern operational research has provided us two
excellent tools called data envelopment analysis (DEA) and analytic hierarchy
process (AHP), which can be used to derive attribute weights in GRA.

DEA is an objective data-oriented approach to assess the relative perfor-
mance of a group of decision making units (DMUs) with multiple inputs and
outputs [2]. Traditional DEA models require crisp input and output data. How-
ever, in recent years, fuzzy set theory has been proposed as a way to quantify
imprecise and vague data in DEA models [7,14,26]. In the field of GRA, DEA
models without explicit inputs are applied, i.e., the models in which only pure
outputs or index data are taken into account [11,27,28]. In these models, each
DMU or alternative can freely choose its own favorable system of weights to max-
imize its performance. However, this freedom of choosing weights is equivalent
to keeping the preferences of a decision maker out of the decision process.

Alternatively, AHP is a subjective data-oriented procedure which can reflect
the relative importance of a set of attributes and alternatives based on the formal
expression of the decision maker’s preferences. AHP usually involves three basic
functions: structuring complexities, measuring on a ratio-scale and synthesizing
[23]. Some researchers incorporate fuzzy set theory in the conventional AHP to
express the uncertain comparison judgments as fuzzy numbers [9,12,17].

However, AHP has been a target of criticism because of the subjective nature
of the ranking process [4]. The application of AHP with GRA can be seen in
[1,10,30].

In order to overcome the problematic issue of confronting the contradic-
tion between the objective weights in DEA and subjective weights in AHP,
this research proposes an integrated DEA and AHP approach in deriving the
attribute weights in a fuzzy GRA methodology. This can be implemented by
incorporating weight bounds using AHP in DEA-based GRA models. It is worth
pointing out that the models proposed in this article are not brand-new models
in the DEA-AHP literature. Conceptually, they are parallel to the application
of DEA and AHP in GRA using crisp data as discussed in [20]. Nevertheless,
it is the first time that these models are applied to a fuzzy GRA methodology.
Further research on the integration of DEA and AHP approach in deriving the
attribute weights with fuzzy data can be seen in [19].

2 Methodology

2.1 Fuzzy Multiple Attribute Grey Relational Analysis

Let A = {A1, A2, · · · , Am} be a discrete set of alternatives and C = {C1,
C2, · · · , Cn} be a set of attributes. Let ỹij = (y1ij , y2ij , y3ij , y4ij) be a trape-
zoidal fuzzy number representing the value of attribute Cj(j = 1, 2, · · · , n) for



Fuzzy Multi-Attribute Grey Relational Analysis 697

alternative Ai(i = 1, 2, · · · ,m). Using α-cut technique, a trapezoidal fuzzy num-
ber can be transformed into an interval number as follows:

yij = [y−
ij , y

+
ij ] = [αy2ij + (1 − α)y1ij , αy3ij + (1 − α)y4ij)], (1)

where yij = [y−
ij , y

+
ij ], y

−
ij ≤ y+

ij , is an interval number representing the value of
attribute Cj(j = 1, 2, · · · , n) for alternative Ai(i = 1, 2, · · · ,m). Then alterna-
tive Ai is characterized by a vector Yi =

(
[y−

i1, y
+
i1], [y

−
i2, y

+
i2], · · · , [y−

in, y+
in]

)
of

attribute values. The term Yi can be translated into the comparability sequence
Ri = ([r−

i1, r
+
i1], [r−

i2, r
+
i2], · · · , [r−

in, r+in]) by using the following equations [31]:

[r−
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+
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ij
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,
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ij
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j(max)

]
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+
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mj} (2)

for desirable attributes,

[r−
ij , r

+
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ij
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∀j, y−
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1j , y
−
2j , · · · , y−

mj} (3)

for undesirable attributes.
Now, let A0 be a virtual ideal alternative which is characterized by a reference

sequence U0 =
(
[u−

01, u
+
01], [u

−
02, u

+
02], · · · , [u−

0n, u+
0n]

)
of the maximum attribute

values as follows:

u−
0j = max{r−

1j , r
−
2j , · · · , r−

mj} ∀j, (4)

u+
0j = max{r+1j , r

+
2j , · · · , r+mj} ∀j. (5)

To measure the degree of similarity between rij = [r−
ij , r

+
ij ] and u0j =

[u−
0j , u

+
0j ] for each attribute, the grey relational coefficient, ξij , can be calculated

as follows:
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while the distance between u0j = [u−
0j , u

+
0j ] and rij = [r−

ij , r
+
ij ] is measured by

|u0j − rij | = max
(∣∣u−

0j − r−
ij

∣
∣ ,

∣
∣u+

0j − r+ij
∣
∣). ρ ∈ [0, 1] is the distinguishing coef-

ficient, generally ρ = 0.5. It should be noted that the final results of GRA
for MADM problems are very robust to changes in the values of ρ. Therefore,
selecting the different values of ρ would only slightly change the rank order of
attributes [13]. To find an aggregated measure of similarity between alternative
Ai, characterized by the comparability sequence Ri, and the ideal alternative
A0, characterized by the reference sequence U0, over all the attributes, the grey
relational grade, Γi, can be computed as follows:

Γi =
n∑

j=1

wjξij , (7)
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where wj is the weight of attribute Cj and
∑n

j=1 wj = 1. In practice, expert
judgments are often used to obtain the weights of attributes. When such infor-
mation is unavailable equal weights seem to be a norm. Nonetheless, the use
of equal weights does not place an alternative in the best ranking position in
comparison to the other alternatives. In the next section, we show how DEA can
be used to obtain the optimal weights of attributes for each alternative in GRA.

2.2 DEA-Based GRA Models

Since all the grey relational coefficients are benefit (output) data, a DEA-based
GRA model can be formulated similar to a classical DEA model without explicit
inputs [15]:

Γk = max
n∑

j=1

wjξkj , (8)

n∑

j=1

wjξij ≤ 1 ∀i, (9)

wj > 0 ∀j, (10)

where Γk is the grey relational grade for alternative under assessment Ak (known
as a decision making unit in the DEA terminology). k is the index for the
alternative under assessment where k ranges over 1, 2, · · · ,m. wj is the weight
of attribute Cj . The first set of constraints (9) assures that if the computed
weights are applied to a group of m alternatives, (i = 1, 2, · · · ,m), they do not
attain a grade of larger than 1. The process of solving the model is repeated
to obtain the optimal grey relational grade and the optimal weights required
to attain such a grade for each alternative. The objective function (8) in this
model maximizes the ratio of the grey relational grade of alternative Ak to
the maximum grey relational grade across all alternatives for the same set of
weights (max Γk/maxi=1,··· ,m Γi). Hence, an optimal set of weights in the DEA
based-GRA model represents Ak in the best light in comparison to all the other
alternatives. It should be noted that the grey relational coefficients are normal-
ized data. Consequently, the weights attached to them are also normalized. In
addition, adding the constraint

∑n
j=1 wj = 1 to the DEA-based GRA model is

not recommended here. In fact, the sum-to-one constraint is a non-homogeneous
constraint (i.e., its right-hand side is a non-zero free constant) which can lead
to underestimation of the grey relational grades of alternatives or infeasibility in
the DEA-based GRA model (see [22])

2.3 Minimax DEA-Based GRA Model Using AHP

We develop our formulation based on a simplified version of the generalized dis-
tance model (see for example [6]). Let Γ ∗

k (k = 1, 2, · · · ,m) be the best attainable
grey relational grade for the alternative under assessment, calculated from the
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DEA-based GRA model. We want the grey relational grade, Γk(w), calculated
from the vector of weights w = (w1, · · · , wn) to be closest to Γ ∗

k . Our definition
of “closest” is that the largest distance is at its minimum. Hence we choose
the form of the minimax model: minw maxk{Γ ∗

k − Γk(w)} to minimize a single
deviation which is equivalent to the following linear model:

min θ (11)

s. t. Γ ∗
k −

n∑

j=1

wjξkj ≤ θ, (12)

n∑

j=1

wjξij ≤ Γ ∗
i ∀i, (13)

θ ≤ 1, (14)
θ, wj ≥ 0 ∀j. (15)

The combination of (11)–(15) forms a minimax DEA based-GRA model that
identifies the minimum grey relational loss θmin needed to arrive at an optimal
set of weights. The first constraint ensures that each alternative loses no more
than θ of its best attainable relational grade, Γ ∗

k . The second set of constraints
satisfies that the relational grades of all alternatives are less than or equal to their
upper bound of Γ ∗

k . It should be noted that for each alternative, the minimum
grey relational loss θ = 0. Therefore, the optimal set of weights obtained from
the minimax DEA based-GRA model is exactly similar to that obtained from
the DEA-based GRA model.

On the other hand, the priority weights of attributes are defined out of the
internal mechanism of DEA by AHP. In order to more clearly demonstrate how
AHP is integrated into the newly proposed minimax DEA-based GRA model,
this research presents an analytical process in which attributes’ weights are
bounded by the AHP method. The AHP procedure for imposing weight bounds
may be broken down into the following steps:

Step 1. A decision maker makes a pairwise comparison matrix of different
attributes, denoted by B with the entries of bhq(h = q = 1, 2, · · · , n).
The comparative importance of attributes is provided by the decision
maker using a rating scale. Saaty [23] recommends using a 1–9 scale.

Step 2. The AHP method obtains the priority weights of attributes by comput-
ing the eigenvector of matrix B (Eq. (16)), e = (e1, e2, · · · , ej)T , which
is related to the largest eigenvalue, λmax.

Be = λmaxe. (16)

To determine whether or not the inconsistency in a comparison matrix
is reasonable the random consistency ratio, C.R. can be computed by
the following equation:

C.R. =
λmax − N

(N − 1)R.I.
, (17)
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where R.I. is the average random consistency index and N is the size
of a comparison matrix.

In order to estimate the maximum relational loss θmax necessary
to achieve the priority weights of attributes for each alternative, the
following set of constraints is added to the minimax DEA-based GRA
model:

wj = αej ∀j. (18)

The set of constraints (18) changes the priority weights of attributes to
weights for the new system by means of a scaling factor α. The scaling
factor α is added to avoid the possibility of contradicting constraints
leading to infeasibility or underestimating the grey relational grade of
alternatives (see [22]).

2.4 A Parametric Goal Programming Model

In this stage we develop a parametric goal programming model that can be solved
repeatedly to generate the various sets of weights for the discrete values of the
parameter θ, such that 0 ≤ θ ≤ θmax. Let w(θ) be a vector of attribute weights
for a given value of parameter θ. Let w∗(θmax) be the vector of priority weights
of attributes obtained from the minimax DEA-based GRA model after adding
the set of constraints (18). Our objective is to minimize the total deviations
between w(θ) and w∗(θmax) with a city block distance measure. Choosing such
a distance measure, each deviation is being equally weighted subject to the
following constraints:

min Zk(θ) =
n∑

j=1

(d+j + d−
j ) (19)

s. t. wj − d+j + d−
j = αej ∀j, (20)

d+j , d−
j ≥ 0. (21)

and constraints (12)–(15), where d+j and d−
j are the positive and negative devi-

ations from the priority weight of attribute Cj(j = 1, 2, · · · , n) for alternative
Ak(k = 1, 2, · · · ,m). The set of Eq. (20) indicates the goal equations whose right-
hand sides are the priority weights of attributes adjusted by a scaling variable.

Because the range of deviations computed by the objective function is dif-
ferent for each alternative, it is necessary to normalize it by using relative
deviations rather than absolute ones. Hence, the normalized deviations can be
computed by:

Δk(θ) =
Z∗

k(0) − Z∗
k(θ)

Z∗
k(0)

, (22)

where Z∗
k(θ) is the optimal value of the objective function for 0 ≤ θ ≤ θmax. We

define Δk(θ) as a measure of closeness which represents the relative closeness
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of each alternative to the weights obtained from the minimax DEA-based GRA
model in the range [0, 1] after adding the set of constraint (18) to it. Increasing
the parameter (θ), we improve the deviations between the two systems of weights
obtained from the minimax DEA-based GRA model before and after adding the
set of constraints (18). This may lead to different ranking positions for each
alternative in comparison to the other alternatives. It should be noted that in a
special case where the parameter θ = θmax = 0, we assume Δk(θ) = 1.

3 Numerical Example: Nuclear Waste Dump Site
Selection

In this section we present the application of the proposed approach for nuclear
waste dump site selection. The multiple attribute data, adopted from Wu and
Olson [27], are presented in Table 1. There are twelve alternative sites and 4
performance attributes. Cost, Lives lost, and Risk are undesirable attributes and
Civic improvement is a desirable attribute. Cost is in billions of dollars. Lives lost
reflects expected lives lost from all exposures. Risk shows the risk of catastrophe
(earthquake, flood, etc.) and Civic improvement is the improvement of the local
community due to the construction and operation of each site. Cost and Lives
lost are crisp values as outlined in Table 1, but Risk and Civic improvement have
fuzzy data for each nuclear dump site.

We use the processed data as reported in [27]. First the trapezoidal fuzzy
data are used to express linguistic data in Table 1. Using the α-cut technique,
the raw data are expressed in fuzzy intervals as shown in Table 2. These data
are turned into the comparability sequence by using the Eqs. (2) and (3). Each
attribute is now on a common 0–1 scale where 0 represents the worst imaginable
attainment on an attribute, and 1.00 the best possible attainment.

Table 3 shows the results of a pairwise comparison matrix in the AHP model
as constructed by the author in Expert Choice software. The priority weight for
each attribute would be the average of the elements in the corresponding row
of the normalized matrix of pairwise comparison, shown in the last column of
Table 3. One can argue that the priority weights of attributes must be judged
by nuclear safety experts. However, since the aim of this section is just to show
the application of the proposed approach on numerical data, we see no problem
to use our judgment alone.

Using Eq. (6), all grey relational coefficients are computed to provide the
required (output) data for the DEA-based GRA model as shown in Table 4.
Note that grey relational coefficients depend on the distinguishing coefficient ρ,
which here is 0.80.

Solving the minimax DEA-based GRA model for the site under assessment,
we obtain an optimal set of weights with minimum grey relational loss (θmin).
It should be noted that the value of the grey relational grade of all waste dump
sites calculated from the minimax DEA-based GRA model is identical to that
calculated from the DEA-based GRA model. Therefore, the minimum grey rela-
tional loss for the site under assessment is θmin = 0 (Table 5). This implies that
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Table 1. Data for nuclear waste dump site selection

Site Cost Lives Risk Civic

Nome 40 60 Very high Low

Newark 100 140 Very low Very high

Rock Sprgs 60 40 Low High

Duquesne 60 40 Medium Medium

Gary 70 80 Low Very high

Yakima 70 80 High Medium

Turkey 60 70 High High

Wells 50 30 Medium Medium

Anaheim 90 130 Very high Very low

Epcot 80 120 Very low Very low

Duckwater 80 70 Medium Low

Santa Cruz 90 100 Very high Very low

Table 2. Fuzzy interval nuclear waste dump site data

Site Cost Lives lost Risk Civic

Nome [0.80–1.00] [0.40–0.70] [0.00–0.10] [0.10–0.30]

Newark [0.00–0.05] [0.00–0.05] [0.90–1.00] [0.90–1.00]

Rock Sprgs [0.70–0.95] [0.70–0.90] [0.70–0.90] [0.70–0.90]

Duquesne [0.50–0.85] [0.70–0.90] [0.40–0.60] [0.40–0.60]

Gary [0.40–0.60] [0.10–0.30] [0.70–0.90] [0.90–1.00]

Yakima [0.50–0.70] [0.10–0.30] [0.10–0.30] [0.40–0.60]

Turkey [0.75–0.90] [0.20–0.40] [0.10–0.30] [0.70–0.90]

Wells [0.85–0.95] [0.85–1.00] [0.40–0.60] [0.40–0.60]

Anaheim [0.00–0.30] [0.00–0.10] [0.00–0.10] [0.00–0.10]

Epcot [0.10–0.40] [0.00–0.20] [0.90–1.00] [0.00–0.10]

Duckwater [0.30–0.50] [0.20–0.40] [0.40–0.60] [0.10–0.30]

Santa Cruz [0.10–0.40] [0.10–0.30] [0.00–0.10] [0.00–0.10]

Table 3. Pairwise comparison matrix of 4 attributes

Attribute Cost Lives Risk Civic Priority

Cost 1 1/5 1/2 3 0.131

Lives 5 1 2 9 0.545

Risk 2 1/2 1 6 0.275

Civic 1/3 1/9 1/6 1 0.05

C.R. = 0.01
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Table 4. Results of grey relational coefficient for nuclear waste dump site selection

Site Cost Lives lost Risk Civic

Nome 0.9383 0.6281 0.4578 0.4872

Newark 0.4444 0.4444 1 1

Rock Sprgs 0.8352 0.8352 0.7917 0.7917

Duquesne 0.6847 0.8352 0.6032 0.6032

Gary 0.6281 0.5033 0.7917 1

Yakima 0.6847 0.5033 0.4872 0.6032

Turkey 0.8837 0.539 0.4872 0.7917

Wells 0.9383 1 0.6032 0.6032

Anaheim 0.472 0.4578 0.4578 0.4578

Epcot 0.5033 0.472 1 0.4578

Duckwater 0.5802 0.539 0.6032 0.4872

Santa Cruz 0.5033 0.5033 0.4578 0.4578

the measure of relative closeness to the AHP weights for the site under assess-
ment is Δk(θmin) = 0. On the other hand, solving the minimax DEA-based GRA
model for the site under assessment after adding the set of constraints (18), we
adjust the priority weights of attributes (outputs) obtained from AHP in such
a way that they become compatible with the weights’ structure in the minimax
DEA-based GRA model. This results in the maximum grey relational loss, θmax,
for the site under assessment (Table 5). In addition, this implies that the mea-
sure of relative closeness to the AHP weights for the site under assessment is
Δk(θmax) = 1.

Table 6 presents the optimal weights of attributes as well as its scaling factor
for all nuclear waste dump sites. It should be noted that the priority weights of
AHP (Table 3) used for incorporating weight bounds on the attribute weights
are obtained as ej = wj

α .
Going one step further to the solution process of the parametric goal pro-

gramming model, we proceed to the estimation of total deviations from the AHP
weights for each site while the parameter θ is 0 ≤ θ ≤ θmax. Table 7 represents
the ranking position of each site based on the minimum deviation from the pri-
ority weights of attributes for θ = 0. It should be noted that in a special case
where the parameter θ = θmax = 0, we assume Δk(θ) = 0. Table 7 shows that
Wells is the best alternative in terms of the grey relational grade and its relative
closeness to the priority weights of attributes.

Nevertheless, increasing the value of θ from 0 to θmax has two main effects
on the performance of the other sites: improving the degree of deviations and
reducing the value of the grey relational grade. This, of course, is a phenom-
enon, one expects to observe frequently. The graph of Δ(θ) versus θ, as shown
in Fig. 1, is used to describe the relation between the relative closeness to the
priority weights of attributes, versus the grey relational loss for each site. This
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Table 5. Minimum and maximum grey relational losses for each nuclear waste dump
site

Site Γ ∗
k θmin θmax

Nome 1 0 0.2876

Newark 1 0 0.2761

Rock Sprgs 1 0 0.0487

Duquesne 0.8921 0 0.0345

Gary 1 0 0.2774

Yakima 0.7855 0 0.1742

Turkey 1 0 0.3251

Wells 1 0 0.0000

Anaheim 0.5735 0 0.0409

Epcot 1 0 0.2811

Duckwater 0.7351 0 0.0869

Santa Cruz 0.5943 0 0.0283

Table 6. Optimal weights of minimax DEA-based GRA model for all nuclear waste
dump sites bounded by AHP

w1 w2 w3 w4 α

0.1516 0.6308 0.3183 0.0579 1.1575

Table 7. The ranking position of each site based on the minimum distance to priority
weights of attributes

Site Z∗(θmin = 0) Rank Site Z∗(θmin = 0) Rank

Nome 1.1568 12 Turkey 0.8884 9

Newark 0.3955 4 Wells 0.0000 1

Rock Sprgs 0.1479 2 Anaheim 0.7521 7

Duquesne 0.2069 3 Epcot 0.5274 5

Gary 0.7049 6 Duckwater 0.8371 8

Yakima 0.9496 11 Santa Cruz 0.8972 10

may result in different ranking positions for each site in comparison to the other
sites. In order to clearly discover the effect of grey relational loss on the rank-
ing position of each nuclear dump site, as shown in Table 8 in Appendix, we
performed a Kruskal-Wallis test. The Kruskal-Wallis test compares the medi-
ans of rankings to determine whether there is a significant difference between
them. The result of the test reveals that its p-value is quite smaller than 0.01.
Therefore, we conclude that increasing grey relational loss in the whole range
[0.0, 0.33] changes the ranking position of each site significantly. Note that at
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Fig. 1. The relative closeness to the priority weights of attributes [Δ(θ)], versus grey
relational loss (θ) for each site

θ = 0 sites can be ranked based on Z∗
k(0) from the closest to the furthest from

the priority weights of attributes. For instance, at θ = 0, Nome, Newark and
Rock Sprgs with grey relational grades of one, are ranked in 12th, 4th and 2nd

places, respectively (Tables 5 and 7). However, with a small grey relational loss
at θ = 0.01, Nome, Newark and Rock Sprgs take 9th, 10th and 5th places in the
rankings, respectively. Using this example, as a guideline, it is relatively easy
to rank the sites in terms of distance to the priority weights of attributes. At
θ = 0.02, Newark moves up into 9th place while Nome and Rock Sprgs drop
in 10th and 6th places, respectively. It is clear that both measures, Z∗

k(0) and
Δk(θ), are necessary to explain the ranking position of each nuclear dump site.

4 Conclusion

We develop an integrated approach based on DEA and AHP methodologies for
deriving the attribute weights in GRA with fuzzy data. We define two sets of
attribute weights in a minimax DEA-based GRA framework. The first set rep-
resents the weights of attributes with minimum grey relational loss. The second
set represents the corresponding priority weights of attributes, using AHP, with
maximum grey relational loss. We assess the performance of each alternative (or
DMU) in comparison to the other alternatives based on the relative closeness of
the first set of weights to the second set of weights. Improving the measure of
relative closeness in a defined range of grey relational loss, we explore the vari-
ous ranking positions for the alternative under assessment in comparison to the
other alternatives. To demonstrate the effectiveness of the proposed approach,
an illustrative example of a nuclear waste dump site using twelve alternative
sites and 4 attributes is carried out. Further studies can apply the simultaneous
application of DEA and AHP to the field of GRA by considering the hierarchical
structures of attributes in the ranking positions of alternatives [18,21].
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Appendix

Table 8. The measure of relative closeness to the priority weights of attributes [Δk(θ)]
verses grey relational loss[θ] for each nuclear waste dump site

θ Nome Newark Rock Sprgs Duquesne Gary Yakima Turkey Wells Anaheim Epcot Duckwater Santa Cruz

0 0 0 0 0 0 0 0 0 0 0 0 0

Rank N/A N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A

0.01 0.0451 0.0445 0.2054 0.2051 0.1409 0.0921 0.0369 1.0000 0.7774 0.0418 0.2693 0.8839

Rank 9 10 5 6 7 8 12 1 3 11 4 2

0.02 0.0870 0.0882 0.4108 0.5901 0.2019 0.1596 0.0725 1.0000 0.8644 0.0835 0.4711 0.9474

Rank 10 9 6 4 7 8 12 1 3 11 5 2

0.03 0.1263 0.1310 0.6162 0.8726 0.2586 0.2270 0.1068 1.0000 0.9292 0.1251 0.6439 1.0000

Rank 10 9 6 4 7 8 12 1 3 11 5 2

0.04 0.1627 0.1734 0.8217 1.0000 0.3100 0.2941 0.1405 1.0000 0.9940 0.1667 0.7656 1.0000

Rank 11 9 5 3 7 8 12 1 4 10 6 1

0.05 0.1967 0.2158 1.0000 1.0000 0.3550 0.3610 0.1743 1.0000 1.0000 0.2082 0.8284 1.0000

Rank 11 9 5 1 8 7 12 1 4 10 6 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9070 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 12 1 1 1 1 1

0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9335 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 12 1 1 1 1 1

0.31 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 12 1 1 1 1 1

0.32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9865 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 12 1 1 1 1 1

0.33 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1
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