
Multi-Queue Priority Based Algorithm for CPU
Process Scheduling

Usman Rafi1, Muhammad Azam Zia2,3(B), Abdul Razzaq4, Sajid Ali5,
and Muhammad Asim Saleem6

1 Department of CS and IT, UOS Lyallpur Campus, Faisalabad, Pakistan
2 State Key Laboratory of Networking and Switching Technology, BUPT, Beijing,

The People’s Republic of China
3 University of Agriculture, Faisalabad, Pakistan

zia uaf@hotmail.com
4 Department, NFC Institute of Engineering and Technology, Multan, Pakistan

5 Department, D.G. Khan Campus, University of Education,
Lahore, Pakistan

6 Department of IT, Government College University, Faisalabad, Pakistan

Abstract. Operating Systems acts as a base software and acts as a driver
for both application programs and system programs. All the programs
residing in an operating system has to become process for execution. A
modern computer system supports multitasking by single user or multi-
ple users. Different processes have different priorities. The major goal of
an operating system is to reduce waiting time and enhance throughput by
scheduling processes in some way. This paper discusses various scheduling
terms and scheduling algorithms. We have proposed a new approach for
scheduling. This proposed algorithm is based on the mixture of MQMS,
Priority Scheduling mechanism and Round Robin scheduling. The pro-
posed algorithm facilitates operating system by managing separate queue
for separate priority of process and manages queue scheduling in round
robin fashion with dynamic time slicing. Processes are added to appropri-
ate queue and this decision is based on any user defined or system defined
criteria. We have also discussed various case studies regarding this algo-
rithm and compared its results with priority scheduling algorithm. These
case studies are limited to two queuing system up till now. We have also
proposed multiple queue management (more than 2), dynamic time slic-
ing instead of half execution scheme and varying execution times of queues
as future work of this algorithm scheme.

Keywords: Priority scheduling · Multi-queue scheduling · Dynamic
time slice execution · Fair priority scheduling · Single processor multi-
queue scheduling · Improved priority scheduling

1 Introduction

A computer system comprises of software and hardware. Software includes pro-
grams for system and user needs. Hardware is a set of resources including CPU,

c© Springer International Publishing AG 2018
J. Xu et al. (eds.), Proceedings of the Eleventh International Conference
on Management Science and Engineering Management, Lecture Notes
on Multidisciplinary Industrial Engineering, DOI 10.1007/978-3-319-59280-0 4

48 U. Rafi et al.

GPU, RAM and many more of them. The most important software is Operating
System that acts as an interfacing layer which serves the users in using hardware
effectively. User needs are fulfilled by set of Application Software that requires a
base software to run i.e. operating system. Software may be in running state or
it may not be running. The former is called a Process while the latter is called
Program. A process requires certain resources for execution. CPU and RAM are
major resources that each process requires for execution. CPU is the most costly
and important resource. It must be utilized properly. CPU should never be left
underutilized. Operating System must ensure proper utilization of the CPU.

A computer system may be Single Processor System or it may be Multi-
Processor System. Single processor system allows only one process to acquire
the CPU and gets execute on it. On the other hand multi-processor system
allows more than one processes to be executed with one on each processor at a
time.

A process changes its activity from time to time as it executes. Process activ-
ity is defined in terms of two-state model or five-state model. Two-state model
defines that a process can have two states: running and not running. It gives an
abstract idea. Two state model is shown in Fig. 1. Stallings [21] described a more
elaborative version of two state model called five-state model. Five state model
took into account the reason of process for not being in the running state. So,
five-state model described five process activities: new, ready, running, waiting
and terminated. Figure 2 shows five state model for process execution states.

Fig. 1. Two state model for process states

Fig. 2. Five state model for process states

Section 2 of the paper describes CPU Scheduling, its need, various queue man-
agement systems, queues involved in scheduling and scheduling criteria. Section 3

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 49

is organized to give a brief idea of various scheduling algorithms. Section 4
describes some of related work. Sections 5 and 6 describes our proposed algo-
rithm, its working logic and pseudo code. Section 7 comprises of various case
studies and results of our proposed algorithm. The results of our proposed algo-
rithm are compared with the priority scheduling algorithm in Sect. 8.

2 CPU Scheduling

Operating system may be designed to be Single Programmed Systems or Multi
Programmed Systems.

A single programmed system can only accommodate single process in memory
for execution. CPU has to remain idle in the case of process waiting for some
I/O operation. This results in underutilization and causes increase in waiting
time and turnaround time.

Silberchatz et al. [18] narrated that a multi-programmed system facilitated
the efficient utilization of processor by allowing multiple processes or jobs
ready/waiting (residing in memory) for execution and switching the CPU among
these processes. If an executing process had to wait for some I/O operation, the
CPU no longer remained idle. It switched to the next job waiting for CPU alloca-
tion to get executed. In this manner proper utilization of CPU was achieved. To
achieve this utilization, scheduling was required. Scheduling scheme comprised
of criteria and algorithm to implement this criteria. CPU scheduling was of
immense importance in multi-programmed systems because CPU was expansive
and scarce resource.

2.1 Ready Queue Management

The ready queue is a bulk of processes ready to get executed. Ready queue
may be partitioned as it is done in Multilevel Queue Scheduling and Multilevel
Feedback Scheduling. There are following two ways to manage ready queue:

(1) SQMS
SQMS (Single Queue Management System) involves no partitioning of ready
queue. SQMS consists of single partition ready queue in which all the incoming
processes are stored. It is a straight forward queue management scheme. It is due
to the fact that processes are to be picked for execution from a single queue. So
operating system requires only process scheduling algorithm. Only a single queue
has to be managed and scheduled. No overhead is involved in terms of scheduling
ready queue partitions or multiple ready queues. In addition to this, operating
system doesn’t require any overhead for deciding the addition of processes to
un-partitioned ready queue.

50 U. Rafi et al.

(2) MQMS
MQMS (Multi-Queue Management System) scheme maintains multiple ready
queues of jobs or partitions of ready queue. Processes are added to appropriate
ready queue portion depending upon certain criteria. MQMS scheme is complex
scheme in terms of implementation, management and scheduling. The selection
of process for execution requires two important decisions: (i) appropriate queue
selection and (ii) appropriate process selection from the selected queue. Hence
MQMS involves both queue scheduling algorithm and process scheduling algo-
rithm. MQMS scheme involves overhead in terms of queue selection.

A process is first added to job queue. After this, it is moved to ready queue.
Process can now move itself among ready queue, running state and waiting queue
as and when required. All these state changes depend upon a criteria on the basis
of which the Operating System decides that which process move to ready queue,
which started execution next, which process will be needed to move to waiting
queue and which process pre-empted and moved to ready queue. These decisions
are taken by intelligent algorithms, executed by CPU Scheduler.

3 Scheduling Algorithms

Tanenbaum [22] described that First Come First Served (FCFS), Shortest Job
First (SJF), Shortest Remaining Time First (SRTF), Round Robin (RR) and
Priority Scheduling (PS) algorithms were commonly used Scheduling Algo-
rithms. These algorithms were implemented in the form of SQMS. However,
priority scheduling may had MQMS version. Mishra and Khan [11] narrated
that SJF only permitted process with lowest burst time to acquire CPU for exe-
cution and lowered average waiting time. RR scheduling defined a time quantum
for assigning CPU fairly to each process present in the ready queue for specific
amount of time. We discuss Shortest Job First (SJF), Shortest Remaining Time
First (SRTF), Round Robin (RR) and Priority Scheduling algorithms below.

3.1 Shortest Job First (SJF)

Shortest Job First is based on the Burst Time of processes. SJF is based on
a simple idea derived from FCFS, that is, executing smaller processes before
larger ones lowers the Average Waiting Time (AWT) of process set. If a sub set
of processes have same burst time, then they are executed in FCFS fashion. The
processes are arranged in a queue on the base of their Burst Times in a way that
process with smallest burst time is placed at the Head/Front of queue while the
process with largest burst time is placed at Rear of queue. In this way, CPU
Scheduler always picks the process with smallest burst time from ready queue.
It’s a non-preemptive scheduling algorithm. The main advantage of SJF is to
decrease the Average Waiting Time of process set. However, this algorithm does
not take into account process priorities. SJF may result in starvation of larger
processes.

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 51

3.2 Shortest Remaining Time First (SRTF)

Shortest Remaining Time First scheduling algorithm is simply preemptive ver-
sion of SJF. In SRTF, the main idea is simply the same, that is, execute small
process before large one. But in this algorithm, if a process is under execution
and during course of its execution a new process enters the system. Then the
burst time of newly entered process is compared with remaining burst time of
currently executing process. If the comparison results in the fact that enter-
ing process has smaller burst time, then CPU is preempted and allocated to the
newly entering process. However, if the new entering process has same burst time
as that of already executing process, then FCFS manner is used for their schedul-
ing. The major advantage is the exploitation of phenomenon to lower Average
Waiting Time of process set. The demerit of SRTF is that, the processes in real
environment have priorities and SRTF does not support priorities. Moreover, it
is not necessary that smaller processes are important while larger ones are less
important. This algorithm also includes high overheads for queue managements,
queue rearrangements, burst time comparisons and context switches. It may also
give rise to starvation for large processes.

3.3 Round Robin (RR)

Round Robin scheduling algorithm is same as that of FCFS with certain innova-
tion. This innovation includes preemption and Time Quantum. Time Quantum
is a small amount of time. Processes are arranged in a circular queue. CPU is
allocated a process from the queue; CPU executes the allocated process for a
time period equal to that of time quantum. When the time quantum expires, the
CPU is preempted and next process from the queue is selected. Next process is
also executed for a time length equal to time quantum. This algorithm continues
to schedule processes in this fashion until queue is empty. The major advantage
of this scheme is that each of the process gets fair share and equal opportunity
of execution. The major drawback is that, if time quantum is very small, then
too many context switches are involved. On the other hand, if time quantum is
large, then RR may perform same as FCFS. Moreover, RR also does not consider
priorities of processes. Siregar [23] narrated that starvation could be avoided if
CPU was allocated fairly to processes. Time quantum was an important factor
in RR scheduling scheme for lowering waiting time of process set. Time quantum
could take any value. But best time quantum should be discovered for minimizing
average waiting time.

3.4 Priority Scheduling (PS)

Priority Scheduling s involves assigning a Priority to each process. A Prior-
ity is either indicated by an integer number (0, 1, 2, 3, etc.) or a string (low,
medium, high etc.). In the case of numeric priority, two choices exist: higher
number may indicate a higher priority (our proposed algorithm consideration)
or lower priority (other algorithm consideration). This scheduling algorithm is

52 U. Rafi et al.

implemented using a Priority Queue. Processes are arranged in decreasing order
of priority (Front to Rear) with process having highest priority placed at front
while process having second highest priority placed at a place next to front
and so on. The CPU Scheduler picks process with highest priority and allocates
CPU for execution. If a number of processes have same priority then they are
scheduled in FCFS fashion as of in SJF and RR case. PS may be preemptive
or non-preemptive. If non-preemptive version is being used, then no matter how
much higher priority process enters the queue, if CPU is executing a process
then it will not be preempted unless the process is completed. On the other
hand, the preemptive version preempted the CPU if such a situation occurs.
The main attraction in PS is realistic approach about priorities. However, PS
can lead to starvation situation preventing lower priority processes from execu-
tion. Its implementation involves high overheads of queue rearrangements and
priority comparisons in case of preemptive version. PS can be implemented in the
form of either SQMS (Traditional Priority Scheduling) or MQMS (Multi-Level
Queue Scheduling). Rajput and Gupta [14] narrated that in priority scheduling,
processes were arranged in queue according to their fixed priority values. A high
priority incoming process interrupted low priority process. Waiting time of low
priority processes were thus increased and hence starvation occurred.

Adekunle et al. [2] analysed the performance of FCFS, SJF, RR, SRTF and
Lottery scheduling algorithms. SJF showed higher while RR showed medium
CPU utilization. SJF also showed lower average waiting time and good response
time as compared to RR. However, RR algorithm was found to be fair and
starvation free.

Almakdi et al. [4] simulated FCFS, SJF, RR and SRT algorithms for
analysing scheduling algorithm performance. The results showed that the lowest
average waiting time and the lowest average turnaround time were showed by
SJF. However, high average core utilization and high average throughput were
resulted by RR.

4 Related Work

Rao et al. [15] elaborated that Multilevel Feedback Queue Scheduling involved
use of multiple queues. Process could be migrated (promoted/demoted) from
one queue to another. Each queue had its own scheduling algorithm. Similarly,
criteria were also defined for promotion and demotion of processes. PMLFQ
resulted in starvation because of execution of high priority process queues before
low priority process queues.

Goel and Garg [5] explained fairness was an important scheduling criteria.
Fairness ensured that each process got fair share of CPU for execution. Further,
higher priority processes exhibited smaller waiting time and starvation could
take place for lower priority process.

Shrivastav et al. [16] proposed Fair Priority Round Robin with Dynamic
Time Quantum (FPRRDQ). FPRRDQ calculated time quantum on the basis of
priority and burst time for each individual process. Experimental results when

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 53

compared with Priority Based Round Robin (PBRR) and Shortest Execution
First Dynamic Round Robin (SEFDRR) scheduling algorithms, showed that
FPRRDQ had improved performance considerably.

Patel and Patel [13] proposed a Shortest Job Round Robin (SJRR) schedul-
ing algorithm. SJRR suggested to arrange processes in SJF fashion. The shortest
process’s burst time was designated as time quantum. Case study showed reduc-
tion in average waiting time of process set.

Abdulrahim et al. [1] proposed New Improved Round Robin (NIRR) algo-
rithm for process scheduling. The algorithm involved two queues ARRIVE and
REQUEST. In this algorithm, the time quantum was calculated by finding the
ceiling of average burst time of process set. First process in the REQUEST queue
was allocated to CPU for one time quantum. In any case, the executing process
had burst time less than or equal to half time quantum then CPU reallocated for
remaining CPU burst time. Otherwise, process was removed from REQUEST
and added to ARRIVE. NIRR algorithm improved scheduling performance and
also lowered number of context switches as the case of RR algorithm.

Mishra and Rashid [12] introduced Improved Round Robin with Varying
Time Quantum (IRRVQ) scheduling algorithm. IRRVQ proposed arrangement
of processes (in ready queue) in SJF fashion and setting time quantum equal
to burst time of first process. After a complete execution of first process, next
processes were selected and assigned one time quantum. If finished, processes
were removed from ready queue otherwise, processes were preempted and added
to tail of ready queue.

Sirohi et al. [20] described an improvised round robin scheduling algorithm
for CPU scheduling. This algorithm calculated the time quantum by finding the
average of the burst times of processes. The processes were allocated to ready
queue in SJF order. CPU was allocated to first process for one time quantum.
The reallocation of CPU was based on remaining burst time of process under
execution.

Akhtar et al. [3] proposed a preemptive hybrid scheduling algorithm based
on SJF. Initially, it showed similar steps as that of SJF. The algorithm reduced
number of context switches considerably but only showed minor change in aver-
age waiting time. The algorithm could exhibit starvation.

Joshi and Tyagi [7] explained Smart Optimized Round Robin (SORR)
scheduling algorithm for enhancing performance. At first step, the SORR algo-
rithm arranged processes in increasing order of burst times. In the second step,
the mean burst time was calculated. Third step involved calculation of Smart
Time Quantum (STQ) after which the CPU was allocated to first process in
the ready queue for a time quantum equal to calculated STQ. If the allocated
process was remained with burst time less or equal to 1 time quantum, CPU was
reallocated for the burst time. Otherwise process was preempted, next process
was selected from ready queue and CPU was allocated to the newly selected
process for STQ.

Lulla et al. [10] devised a new algorithm for CPU scheduling. The algo-
rithm introduced mathematical model for calculating initial time quantum and

54 U. Rafi et al.

dynamic time quantum. Dynamic time quantum assisted in lowering number
of context switches. The algorithm proposed execution of top two high priority
processes by assigning calculated initial time quantum followed by the calcula-
tion and assignment of dynamic time quantum for execution of top two high
priority processes.

Goel and Garg [6] proposed Optimized Multilevel Dynamic Round Robin
Scheduling (OMDRRS) algorithm. This algorithm suggested the allocation of
dynamic time slices. Factor analysis based on arrival time, burst time and prior-
ity was calculated for sorting processes in ready queue. Burst values of first and
last process were used for time slice calculation. Simulated results, statistically
analysed using ANOVA and t-test, showed considerable performance improve-
ment.

Kathuria et al. [8] devised Revamped Mean Round Robin (RMRR) schedul-
ing algorithm. RMRR involved two queues ReadyQueue (RQ) and Pre-
ReadyQueue (PRQ). Time quantum was calculated by taking mean of the burst
time of processes. The proposed algorithm lowered average waiting time, average
turnaround time and number of context switches as compared to RR scheduling.
RMRR showed the best response time when compared with FCFS, SJF and RR
scheduling algorithms.

Singh and Singh [19] proposed a hybrid scheduling algorithm based on Multi
Level Feedback Queue (MLFQ) and Improved Round Robin (IRR) scheduling
principles. The proposed algorithm suggested the sub-division of memory in
three queues as in MLFQ. Fonseca and Fleming’s Genetic Algorithm (FFGA)
was implemented for optimization. Results showed optimized performance in
comparison to various algorithms (Fig. 3).

Fig. 3. Schedulers and scheduling queues

5 Proposed Algorithm

In this paper, we proposed a new scheduling algorithm as an extension of pri-
ority scheduling. Here, we proposed it only for single processor system (neither

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 55

multiple processors nor multi-core processors). It is based on hybrid concepts of
multiple queue management, priority scheduling and round robin scheme. In our
algorithm, multiple queue management scheme facilitates subdivision of ready
queue in multiple portions. Shukla et al. [17] described the use of multi-level
queuing approach. Multi-level queuing involved partitioning of ready queue into
various sub queues. In such scheduling, processes were assigned permanently to
specific queue. Memory size, process type and priority were some of parameters
used for such assignments.

In our proposed algorithm, each job is allocated to specific queue according
to criteria predefined criteria. The criteria consists of two factors: (1) Priority
of individual process and (2) Burst Time of process. Firstly, a priority criteria
is defined in a set of processes. The processes are allocated after comparing
process priorities to priority criteria. Our proposed algorithm assumes that the
largest number represented highest priority and smallest number represented
lowest priority. Shortest job first scheme is applied while arranging processes
when they are transferred from the job pool to the ready queue partitions. Jobs
inside a specific queue are scheduled as defined by priority scheduling scheme.
Khan and Kakhani [9] suggested SJF based PS was proposed for performance
improvement. Processes were placed in ready queue in higher to lower order
of priority. SJF was employed for arranging process in case of more than one
processes having similar priority. Results of SJF based PS were compared to
FCFS based PS and results showed considerable decrease in average waiting
and average turnaround times. Moreover, the queues are scheduled in a round
robin fashion from the highest priority queue to the lowest priority queue. Round
robin scheme is based on dynamic time slicing. Whenever a queue is given time
slice it is according to the process burst time and some variations of it. Our
algorithm has following main steps:

Step 1. Create Multiple Queues (one for high priority processes and other for
low priority processes) based on Priority Scheme. These queues are
designated as High Priority and Low Priority Queues.

Step 2. Create Processes in Job Pool.
Step 3. Define Priority Criteria.
Step 4. Allocate processes to queues based on priority criteria and burst time.

Processes are arranged in decreasing order of priority from front to
rear. Additionally following are considered:
Step 4.1.1 If process priority is less than or equal to priority criteria

then add it to the Low Priority Queue. Otherwise add it
to High Priority Queue.

Step 4.1.2 If multiple processes have same priority then arranges
them in a way that the process with shortest burst time
comes first in the queue.

Step 5. Select first process from High Priority Queue and execute it fully (for
entire burst time by assigning time slice equal to the burst time) and
remove it from queue head.

56 U. Rafi et al.

Step 6. Select first process from Low Priority Queue and execute for a time
equal to half that of burst time (assign time slice equal to half the
burst time). Important thing to consider is that, in this case, each low
priority process completed in two halves.

Step 7. Repeat Steps 5–6 until both queues are empty.

One of the interesting things to note is that, CPU is alternated between
high priority and low priority processes in order to increase the fairness. Our
approach lowers the starvation faced by low priority processes in the presence of
high priority processes. Another point may arise that why low priority processes
are executed in two halves? The answer of this question is that, it is done so
that if a low priority process is executed fully, then the purpose of two queues
is unclear. Similarly, if high priority process is executed for half time, then the
use of priorities becomes meaningless.

6 Pseudo Code

Proposed Algorithm (P[1, · · · , n], Priority Criteria) (Fig. 4)

begin
Create Queue Portions QH[1....nh], QL[1....nl]
For each P[i] in P[1.......n]

If (P[i].Priority <= PriorityCriteria) Then
Add P[i] to QL in such a way that processes are arranged in
decreasing order of priority and increasing order of burst time

Else
Add P[i] to QH in such a way that processes are arranged in
decreasing order of priority and increasing order of burst time

 End If
Repeat following steps while QH and QL are not empty

Select a process from QH head, allocate CPU, execute completely and
remove it from QH
Select a process from QL head, allocate CPU, execute for the time half to
its original burst time

If (P[i].RBT) = 0 Then
Removes it from QL

Else
place it back to QL head

End If
Goto step 4

End while
Completion of process set
End Algorithm
*RBT = Remaining Burst Time

Fig. 4. The proposed algorithm

7 Case Studies

7.1 Case Study 1

Gantt Chart of above process data when executed by Priority Scheduling is as
Fig. 5 (Table 1).

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 57

Table 1. Process set with five processes

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

Fig. 5. Gantt chart for priority scheduling algorithm

Average Waiting Time = 8.6 ms.
Average Turnaround Time = 12.4 ms.
Now we define certain parameters related to proposed algorithm.
(1) Priority Criteria: Process with Priority > 2 is placed in High Priority
Queue while process with Priority <= 2 is placed in Low Priority Queue.
(2) Ready Queue Partitions: As Fig. 6.
The proposed algorithm on given data results in Fig. 7.

Fig. 6. Scheduling queues Fig. 7. Gantt chart for proposed algorithm

Average Waiting Time = 6.5 ms
Average Turnaround Time = 10.3 ms

7.2 Case Study 2

Gantt Chart of above process data when executed by Priority Scheduling is as
Fig. 8 (Table 2).

Average Waiting Time = 7.0 ms.
Average Turnaround Time = 10.8 ms.
Now we define certain parameters related to proposed algorithm.

58 U. Rafi et al.

Table 2. Process set with five processes

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Fig. 8. Gantt chart for priority scheduling algorithm

(1) Priority Criteria: Process with Priority > 2 is placed in High Priority
Queue while process with Priority ≤ 2 is placed in Low Priority Queue.
(2) Ready Queue Partitions: As Fig. 9.
The proposed algorithm on given data results in Fig. 10.

Average Waiting Time = 6.5 ms.
Average Turnaround Time = 10.3 ms.

7.3 Case Study 3

Gantt Chart of above process data when executed by Priority Scheduling is as
Fig. 11 (Table 3).

Average Waiting Time = 33.8 ms.
Average Turnaround Time = 49.8 ms.
Now we define certain parameters related to proposed algorithm.
(1) Priority Criteria: Process with Priority > 2 is placed in High Priority
Queue while process with Priority ≤ 2 is placed in Low Priority Queue.
(2) Ready Queue Partitions: As Fig. 12
The proposed algorithm on given data results in Fig. 13.

Average Waiting Time = 33.5 ms
Average Turnaround Time = 49.5 ms

Fig. 9. Scheduling queues Fig. 10. Gantt chart for proposed algo-
rithm

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 59

Table 3. Process set with five processes

Process Burst time Priority

P1 12 3

P2 19 3

P3 21 5

P4 13 2

P5 15 3

Fig. 11. Gantt chart for priority scheduling algorithm

7.4 Case Study 4–Special Case

This case deals with a situation involving same priority processes (high priority).
Similarly, inverse case of this can also be assumed. In such cases all the processes
added to a single queue either high or low priority (Table 4).

Gantt Chart of above process data when executed by Priority Scheduling is
as Fig. 14.

Average Waiting Time = 3.67 ms
Average Turnaround Time = 9.33 ms
Now we define certain parameters related to proposed algorithm.
(1) Priority Criteria: Process with Priority > 2 is placed in High Priority
Queue while process with Priority ≤ 2 is placed in Low Priority Queue.
(2) Ready Queue Partitions: As Fig. 15
The proposed algorithm on given data results in Fig. 16.

Average Waiting Time = 3.67 ms
Average Turnaround Time = 9.33 ms

In the case with all the processes getting place in a single queue, the proposed
algorithm gives an average waiting time and average turnaround time exactly
equal to priority scheduling algorithm.

Fig. 12. Scheduling queues Fig. 13. Gantt chart for proposed algo-
rithm

60 U. Rafi et al.

Table 4. Process set with three processes

Process Burst Time Priority

P1 10 5

P2 3 6

P3 4 7

Fig. 14. Gantt chart for proposed scheduling algorithm

8 Results and Discussion

8.1 Comparison of Average Waiting Time

In this section we compare average waiting time of our proposed algorithm and
traditional priority scheduling algorithm. This comparison is based on case stud-
ies discussed in the previous sections.

The average waiting time is minimized by our proposed algorithm as com-
pared to the baseline scheduling algorithm as shown in Fig. 17. However, the last
case showed same average waiting time. This was because, the last case com-
prised of special dataset involving all the processes with same priority (high). In
this case, only one priority queue was formed rather two queues. So, in this case
it exhibited same behaviour as that of traditional priority scheduling algorithm.

8.2 Comparison of Average Turnaround Time

In this section we presented comparison of average turnaround time of our pro-
posed algorithm with traditional priority scheduling algorithm. This comparison
based on case studies discussed in the previous sections.

Figure 18 clearly showed that in first three case studies the average turn-
around time of our proposed scheduling algorithm was less than traditional pri-
ority scheduling algorithm. However, the last case showed same average turn-
around time. This was because, the last case comprised of special dataset having

Fig. 15. Scheduling queues Fig. 16. Gantt chart for proposed algo-
rithm

Multi-Queue Priority Based Algorithm for CPU Process Scheduling 61

Fig. 17. Comparison of average waiting time

Fig. 18. Comparison of average turnaround time

all the processes having high priority. In this case only one priority queue was
formed rather two queues.

9 Conclusion and Future Work

It is concluded that our proposed algorithm used minimum waiting and turn-
around time as compared to baseline Priority Scheduling algorithms. Our pro-
posed algorithm also supported multiple queue supporting operating systems
using different priorities. Each type of priority can be managed with a separate
queue. The proposed algorithm provided fairness to both high priority and low
priority jobs and thus saved low priority jobs from starvation. The importance is
given to high priority process within both high priority and low priority list by
our proposed algorithm. Our algorithm also enhanced throughput by lowering
average waiting and average turnaround time. As compared to Round Robin
scheduling with small time slice, proposed algorithm used a scheme requiring
only two context switches per process. In this way, our proposed algorithm lim-
ited the number of context switches required for a job. This algorithm is a good
mixture of priority scheduling, shortest job first and round robin scheduling.

As a future work, we will try out different execution lengths or time slices for
high priority processes and low priority processes to find optimized solution pro-
viding optimized results of scheduling criteria. We will also extend this algorithm
in a way that for each priority type a single queue may be used.

62 U. Rafi et al.

References

1. Abdulrahim A, Abdullahi SE, Sahalu JB (2014) A new improved round robin (nirr)
cpu scheduling algorithm. Int J Comput Appl 90(4):27–33

2. Adekunle O (2014) A comparative study of scheduling algorithms for multipro-
gramming in real-time systems. Int J Innov Sci Res 12:180–185

3. Akhtar M, Hamid B et al (2015) An optimized shortest job first scheduling algo-
rithm for cpu scheduling. J Appl Environ Biol Sci 5:42–46

4. Almakdi S (2015) Simulation and Performance Evaluation of CPU Scheduling
Algorithms. LAP LAMBERT Academic Publishing, Saarbrücken

5. Goel N, Garg RB (2013) A comparative study of cpu scheduling algorithms. Int J
Graph Image Process 2(4):245–251

6. Goel N, Garg RB (2016) Performance analysis of cpu scheduling algorithms with
novel omdrrs algorithm. Int J Adv Comput Sci Appl 7(1):216–221

7. Joshi R, Tyagi SB (2015) Smart optimized round robin (sorr) cpu scheduling algo-
rithm. Int J Adv Res Comput Sci Softw Eng 5:568–574

8. Kathuria S, Singh PP et al (2016) A revamped mean round robin (rmrr) cpu
scheduling algorithm. Int J Innov Res Comput Commun Eng 4:6684–6691

9. Khan R, Kakhani G (2015) Analysis of priority scheduling algorithm on the basis
of fcfs and sjf for similar priority jobs. Int J Comput Sci Mob Comput 4:324–331

10. Lulla D, Tayade J, Mankar V (2015) Priority based round robin cpu scheduling
using dynamic time quantum. Int J Emerg Trends Technol 2:358–363

11. Mishra MK (2012) An improved round robin cpu scheduling algorithm. J Glob Res
Comput Sci 3(6):64–69

12. Mishra MK, Rashid F (2014) An improved round robin cpu scheduling algorithm
with varying time quantum. Int J Comput Sci Eng Appl 4(4):1–8

13. Patel R, Patel M (2013) Sjrr cpu scheduling algorithm. Int J Eng Comput Sci
2:3396–3399

14. Rajput G (2012) A priority based round robin cpu scheduling algorithm for real
time systems. Int J Innov Eng Technol 1:1–10

15. Rao MVP, Shet KC, Roopa K (2009) A simplified study of scheduler for real time
and embedded system domain. Comput Sci Telecommun 12(5):1–6

16. Shrivastav MK, Pandey S et al (2012) Fair priority round robin with dynamic time
quantum: Fprrdq. Int J Mod Eng Res 2:876–881

17. Shukla D, Ojha S, Jain S (2010) Data model approach and markov chain based
analysis of multi-level queue scheduling. J Appl Comput Sci Math 8(4):50–56

18. Silberschatz A, Gagne G, Galvin PB (1983) Operating System Concepts, 8th edn.
Addison-Wesley Pub. Co, Boston Binder Ready Version

19. Singh N, Singh Y (2016) A practical approach on mlq-fuzzy logic in cpu scheduling.
Int J Res Educ Sci Methods 4:50–60

20. Sirohi A, Pratap A, Aggarwal M (2014) Improvised round robin (cpu) scheduling
algorithm. Int J Comput Appl 99(18):40–43

21. Stallings W (2011) Operating Systems–Internals and Design Principles, 7th edn.
DBLP

22. Tanenbaum AS, Tanenbaum AS (2001) Modern Operating Systems, 2nd edn.
Prentice-Hall, Upper Saddle River

23. Ulfahsiregar M (2012) A new approach to cpu scheduling algorithm: Genetic round
robin. Int J Comput Appl 47(19):18–25

	Multi-Queue Priority Based Algorithm for CPU Process Scheduling
	1 Introduction
	2 CPU Scheduling
	2.1 Ready Queue Management

	3 Scheduling Algorithms
	3.1 Shortest Job First (SJF)
	3.2 Shortest Remaining Time First (SRTF)
	3.3 Round Robin (RR)
	3.4 Priority Scheduling (PS)

	4 Related Work
	5 Proposed Algorithm
	6 Pseudo Code
	7 Case Studies
	7.1 Case Study 1
	7.2 Case Study 2
	7.3 Case Study 3
	7.4 Case Study 4--Special Case

	8 Results and Discussion
	8.1 Comparison of Average Waiting Time
	8.2 Comparison of Average Turnaround Time

	9 Conclusion and Future Work
	References

