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Abstract. In the present paper we introduce a numerical technique for
solving fractional optimal control problems (FOCP) based on an ortho-
normal wavelet. First we approximate the involved functions by Sine-
Cosine wavelet basis; then, an operational matrix is used to transfer
the given problem in to a linear system of algebraic equations. In fact
operational matrix of the Riemann-Liouville fractional integration and
derivative of Sine-Cosine wavelet are employed to achieve a linear alge-
braic equation, in place of the dynamical system in terms of the unknown
coefficients. The solution of this system, gives us the solution of original
problem. A numerical example is also given.
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1 Introduction

Many application of the fractional calculus is in basic sciences and engineering.
Many realistic model of physical [8] phenomenon which has dependence at both
the time instance and on the previous time history, can be utter with fractional
calculus. For example it can be applied in nonlinear oscillations of earthquakes,
fluid-dynamic traffic [9], frequency dependent damping behavior of various vis-
coelastic materials [2], solid mechanics [18], economics [3], signal processing [17],
and control theory [4].

One of the main difficulties is how to solve the fractional differential equa-
tions. The most commonly techniques proposed to solve them are Adomian
decomposition method (ADM) [22], Variational Iteration Method (VIM) [20],
Operational Matrix Method [19], Homotopy Analysis Method [6,7], Fractional
Difference Method (FDM) [15] and Power Series Method [16].

A fractional optimal control problem is an optimal control problem in which
the performance index or the differential equations governing the dynamic of the
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system or both contains at least one fractional order derivative term [25]. Inte-
ger order optimal controls have already been well established and a significant
amount of works have been done in the field of optimal control of integer order
systems. Agrawal formulated and developed a numerical scheme for the solution
of FOCP [1] in the Caputo sense. Biswas proposed a pseudo-state space represen-
tation of a fractional dynamical system, which is exploited to solve a fractional
optimal control problem using a direct numerical method [21]. Sweilam et al.
solved some types of fractional optimal control problem with a Hamiltonian for-
mula using a spectral method based on Chebyshev polynomials [24]. Bernstein
polynomials have been used for finding the numerical solution of FOCP by using
Lagrange multipliers [10].

Approximation by orthogonal families of basis functions is widely used in
science and engineering. The main idea behind applying an orthogonal basis is
reduction of the problem under consideration into a system of algebraic equa-
tions. This is possible by truncating series of orthogonal basis functions for the
solution of the problem and applying operational matrices. The orthogonal func-
tions are classified into three main category [23]: the first one is sets of piecewise
constant orthogonal functions such as the Walsh functions and block pulse func-
tions. The second one is orthogonal polynomials such as the Laguerre, Legendre
and Chebyshev functions, and the last one is sine-cosine functions. In one hand
approximating a continuous function with piecewise constant basis functions
results in a piecewise constant approximation, on the other hand, if a discon-
tinuous function is approximated with continuous basis functions, the resulting
approximation is continuous which cannot properly model the discontinuities.
So, neither continuous basis functions nor piecewise constant basis functions, if
used alone, can efficiently model both continuity and discontinuity of phenom-
ena at the same time. In the case that the function under approximation is not
analytic, wavelet functions will be more effective.

In this paper, we propose a computational method based on Sine-Cosine
wavelet with their fractional integration and derivative operational matrix to
solve the FOCP. The main idea is reduction the problem under consideration into
a system of algebraic equations. To this end, we expand the fractional derivative
of the state variable and the control variable using the Sine-Cosine wavelet with
unknown coefficients.

The paper is organized as follows. In first section we will give the definitions
of fractional calculus, then express a brief review of block pulse function and
the related fractional operational matrices. In Sect. 4, we describe Sine-Cosine
wavelets and its application in function approximation. In Sect. 5, operational
matrices of fractional integration and derivative for considered wavelet is given.
In Sect. 6, the proposed method is described for solving the underlying FOCP. In
the last section the proposed method is applied for solving numerical example.
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2 Preliminaries of Fractional Calculus

The Riemann-Liouville fractional integration and Caputo differential operator
of a function f of order α ≥ 0 is defined in [13] as:

(Iαf)(t) =

{
1

Γ (α)

∫ t

0
(t − τ)α−1f(τ)dτ α > 0

f(t) α = 0,
(1)

Dαf(t) =
1

Γ (n − α)
∫ t

0
(t − τ)n−α−1f (n)(τ)dτ

= In−αfn(t) n − 1 < α ≤ n.
(2)

3 Review of Block Pulse Functions and the Related
Fractional Operational Matrix

In this section first we introduce block pulse function (BPF), then it’s operational
matrix of fractional integration.

3.1 Definition of BPF

A set of BPFs Bm′(t) containing m′ component functions in the interval [0, T)
is given by

Bm′(t) � [b0(t)b1(t) · · · bi(t) · · · bm′−1]T . (3)

The ith component of the BPF vector Bm′(t) is defined as

bi(t) =
{

1 iT
m′ ≤ t < (i+1)T

m′
0 O.W.

i = 0, 1, 2, · · · ,m′ − 1. (4)

A square integrable function f can be expanded into a BPF series as

f(t) = [c0c1 · · · ci · · · cm′−1]Bm′(t) = CT Bm′(t), (5)

ci =
1
h

∫ (i+1)h

ih

f(t)dt h =
T

m′ . (6)

3.2 Operational Matrix for Fractional Integration of BPF

Suppose that Fα be the block pulse operational matrix of fractional integration
[12]. It is defined as follows,

Fα = hα 1
Γ (α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 · · · ξm′−1

0 1 ξ1 · · · ξm′−2

0 0 1 · · · ξm′−3

...
...

...
. . .

...
0 0 0 0 ξ1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1 k = 1, 2, · · · ,m′ − 1. (8)
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4 Description of Sine-Cosine Wavelets and Its
Application in Function Approximation

4.1 The Sine-Cosine Wavelet

Sine-cosine wavelets ψn,m(t) are defined as follows [11],

ψn,m(t) =
{

2
k+1
2 f(2kt − n) n

2k
≤ t ≤ n+1

2k

0 o.w
(9)

with

fm(t) =

⎧⎨
⎩

1√
2

m = 0
cos(2mπt) m = 1, 2, · · · , l
sin(2(m − l)πt) m = l + 1, · · · , 2l

(10)

n = 0, 1, · · · , 2k − 1, k = 0, 1, · · · , where l is any positive integer.

4.2 Function Approximation

A function f(t) ∈ L2[0, 1) can be approximated as:

f(t) =
2k−1∑
n=0

2l∑
m=0

cn,mψn,m = CT Ψ(t) = ΨT (t)C, (11)

where cn,m = 〈f(t), ψn,m〉 and 〈., .〉 denotes the inner product as:

cn,m =
∫ +∞

−∞
f(t)ψn,m(t)dt. (12)

where Ψ(t) represent considered wavelet. C and Ψ(t) are 2k(2l + 1) × 1 matrices
which are given by:

CT = [c00c01 · · · c0,2l, c10, · · · , c1,2l, · · · , c2k−1,0, · · · , c2k−1,2l], (13)

ΨT = [ψ00ψ01 · · · ψ0,2l, ψ10, · · · , ψ1,2l, · · · , ψ2k−1,0, · · · , ψ2k−1,2l]. (14)

5 Operational Matrix of Fractional Calculus
for Sine-Cosine Wavelet

In this section we find the operational matrix of fractional derivative for the con-
sidered wavelet using the operational matrix of fractional integration for BPF.
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5.1 Express Ψ(t) in Terms of BPF

ψn,m(t) as a function can be express in terms of blockpulse function

ψn,m �
m′−1∑
i=0

fibi m′ = 2k(2l + 1), (15)

fi = m′
∫ i+1

m′

i
m′

ψn,m(x)dx = m′
∫ i+1

m′

i
m′

2
k+1
2 fm(2kx − n)dx. (16)

Now we calculate fi for different value of i = 0, 1, · · · ,m′ − 1

m = 0, fi = m′
∫ i+1

m′

i
m′

2
k+1
2 × 1√

2
dx = 2

k
2

i = n(2l + 1), · · · , (n + 1)(2l + 1) − 1,

(17)

m = 1, 2, · · · , l, fi = m′
∫ i+1

m′

i
m′

2
k+1
2 cos(2mπ(2kx − n))dx

=
m′

2
k+1
2 mπ

[
ψn,m+l

(
i + 1
m′

)
− ψn,m+l

(
i

m′

)]
,

(18)

m = l + 1, · · · , 2l, fi = m′
∫ i+1

m′

i
m′

2
k+1
2 sin(2(m − l)π(2kx − n))dx

=
−m′

2
k+1
2 (m − l)π

[
ψn,m−l

(
i + 1
m′

)
− ψn,m−l(

i

m′ )
]

.

(19)

For m = 0 we have

ψn,m = [0, · · · , 0
︸ ︷︷ ︸

n(2l+1)

, 2k/2, 2k/2, · · · , 2k/2

︸ ︷︷ ︸

2l+1

, 0, · · · , 0] × Bm′ . (20)

For m = 1, 2, · · · , l

ψn,m =
m′

2
k+1
2 mπ

⎡

⎢

⎣0, 0, · · · , 0
︸ ︷︷ ︸

n(2l+1)

, ψn,m+l

(

n(2l + 1) + 1

m′

)

−ψn,m+l

(

n(2l + 1)

m′

)

, (21)

· · · , ψn,m+l

(

(n + 1)(2l + 1)

m′

)

− ψn,m+l

(

n(2l + 1) + 2l

m′

)

, 0, 0, · · · , 0

]

× Bm′ .

And for m = l + 1, · · · , 2l we get

ψn,m =
−m′

2
k+1
2 (m−l)π

⎡

⎢

⎣0, 0, · · · , 0
︸ ︷︷ ︸

n(2l+1)

, ψn,m−l

(

n(2l + 1) + 1

m′

)

− ψn,m−l

(

n(2l + 1)

m′

)

, (22)

· · · , ψn,m−l

(

(n + 1)(2l + 1)

m′

)

− ψn,m−l

(

n(2l + 1) + 2l

m′

)

, 0, 0, · · · , 0

]

× Bm′ .
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Therefore we have Ψ(x) = Φm′×m′Bm′(x) where Φm′×m′ = diag(Φ0, Φ1, · · · ,
Φ2k−1), Φn is defined as follows, in the following matrix, i = n(2l + 1)

Φn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
k
2 · · · 2

k
2

m′

2
k+1
2 1π

(ψn,1+l

(
i+1
m′

) − ψn,1+l( i
m′ ) · · · ψn,1+l( i+2l+1

m′ ) − ψn,1+l( i+2l
m′ ))

...
. . .

...
m′

2
k+1
2 lπ

(ψn,2l

(
i+1
m′

) − ψn,21

(
i

m′
) · · · ψn,2l( i+2l+1

m′ ) − ψn,21( i+2l
m′ )))

−m′

2
k+1
2 1π

(ψn,1

(
i+1
m′

) − ψn,1( i
m′ ) · · · ψn,1( i+2l+1

m′ ) − ψn,1( i+2l
m′ ))

...
. . .

...
−m′

2
k+1
2 lπ

(ψn,l

(
i+1
m′

) − ψn,l( i
m′ ) · · · ψn,l( i+2l+1

m′ ) − ψn,l( i+2l
m′ ))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

5.2 Operational Matrix of Fractional Integration and Derivative for
Sine-Cosine Wavelet

For finding operational matrix of fractional derivative of vector Ψ(t), first of all
we try to find the operational matrix of fractional integration.

(IαΨ)(x) � PαΨ(x), (24)

where Pα is the operational matrix of fractional integration, which calculate as
follows

IαΨ(x) = IαΦm′×m′ .Bm′(x) = Φm′×m′IαBm′(t) = Φm′×m′FαBm′(x) (25)
⇒ PαΨ(x) = PαΦm′×m′Bm′(x) = Φm′×m′FαBm′(x)

⇒ Pα = Φm′×m′FαΦ−1
m′×m′

⇒ IαΨ(x) � Φm′×m′FαΦ−1
m′×m′Ψ(x). (26)

Now we calculate operational matrix of derivative using Pα

Dαf(x) = In−αfn(x)n − 1 < α ≤ nn ∈ N, (27)

Dαx(t) = DαXT Ψ(t) = XT DαΨ(t) = XT In−αΨ (n)(t). (28)

For α ∈(0,1) we have n = 1 thus

Dαx(t) � XT I1−αDΨ(t) = XT DI1−αΨ(t)

= XT DΦm′×m′F 1−αΦ−1
m′×m′Ψ(t),

(29)

where D is operational matrix of derivative for Ψ(t) which defined as D =
diag(w,w, · · · , w), which is 2k(2l + 1) × 2k(2l + 1) matrix and w is of size
(2l + 1) × (2l + 1)
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w = 2k+1π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 −1 0 · · · 0
0 0 0 · · · 0 0 −2 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · −l
0 1 0 · · · 0 0 0 · · · 0
0 0 2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · l 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2l+1)×(2l+1)

. (30)

6 Solution of the Fractional Optimal Control Problem
by Sine-Cosine Operational Matrix

Consider the fractional optimal control problem with quadratic performance
index

min J =
1
2
XT (1)SX(1) +

1
2

∫ 1

0

(XT (t)QX(t) + UT (t)RU(t))dt (31)

s. t. DαX(t) = AX(t) + BU(t) (32)
X(0) = X0 0 < α ≤ 1, (33)

where A and B are constant matrices with the appropriate dimensions, also in
cost functional S and Q are symmetric positive semi-definite matrices and R
is a symmetric positive definite matrix. In this section, the Sine-Cosine wavelet
is used for solving the above problem. We approximate each xi(t) and ui(t), in
terms of Sine-Cosine wavelets as

X(t) = [x1(t), x2(t), · · · , xs(t)]T xi(t) = ΨT (t)Xi or XT
i Ψ(t), (34)

X(t) = Ψ̂T
s (t)X X = [XT

1 ,XT
2 , · · · ,XT

s ] Ψ̂s(t) = Is ⊗ Ψ(t), (35)

U(t) = [u1(t), u2(t), · · · , uq(t)]T ui(t) = ΨT (t)Ui or UT
i Ψ(t), (36)

U(t) = Ψ̂T
q (t)U U = [UT

1 , UT
2 , · · · , UT

q ] Ψ̂s(t) = Is ⊗ Ψ(t), (37)

where Xi, Ui are vectors of order 2k(2l + 1) × 1, X and U are vectors of order
s2k(2l+1)×1 and q2k(2l+1)×1 respectively. ⊗ denotes the kronecker product.
By substituting the above mentioned relation into objective function

J =
1
2
XT Ψ̂s(1)SΨ̂T

s (1)X +
1
2

∫ 1

0

[XT Ψ̂sQΨ̂T
s X + UT Ψ̂qRΨ̂T

q U ]dt. (38)

Since considered wavelet is orthonormal, it means
∫ 1

0
ΨT (t)Ψ(t)dt = I, we

can rewrite Eq. (38) as follows

J(X,U) =
1
2
XT [S ⊗ Ψ̂(1)Ψ̂T (1)]X +

1
2
[XT (Q ⊗ I)X + UT (R ⊗ I)U ]. (39)
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Similarly, we do the same method for Eq. (32)

X(t) = XT Is ⊗ Ψ(t) or (Is ⊗ ΨT (t))X, (40)

DαX(t) = I1−αX ′(t) = I1−α(XT (Is ⊗ Ψ(t)))′ = XT I1−α(Is ⊗ (DΨ(t)))′

= XT Is ⊗ (I1−αDΨ(t)) = XT Is ⊗ [DI1−α(Ψ(t))]

= XT Is ⊗ (DΦm′×m′FαΦ−1
m′×m′Ψ(x))

(41)

R(t)=XT Is⊗(DΦm′×m′FαΦ−1
m′×m′)Ψ(t)−AXT Is⊗Ψ(t)−BUT Iq ⊗ Ψ(t)R(t)

= [XT Is ⊗ (DΦm′×m′FαΦ−1
m′×m′) − AXT Is ⊗ I2k(2l+1) (42)

− BUT Iq ⊗ I2k(2l+1)] ⊗ Ψ(t).

As in a typical tau method [5] we generate 2k(2l + 1) − 1 linear equations by
applying

〈R(t), ψn,m(t)〉 =
∫ 1

0

R(t).ψn,m(t)dt = 0. (43)

Also, by substituting Eq. (35) in (33) we get

X(0) = XT Ψ̂(0) = X0. (44)

Equations (43) and (44) generate 2k(2l + 1) set of linear equations. These
linear equations can be solved for unknown coefficients of the vectors XT and
UT . Consequently, X(t) and U(t) can be calculated.

7 Illustrative Example

We applied the method presented in this paper and solved the undergoing
example.

Example 1. Consider the following time invariant FOCP [14],

min J =
1
2

∫ 1

0

(x2(t) + u2(t))dt

s. t. Dαx(t) = −x(t) + u(t)
x(0) = 1.

We want to find a control variable u(t) which minimizes the quadratic perfor-
mance index J . This problem is solved by proposed method with α = 1,m = 5
and n = 7, the numerical value obtained for J is 0.1979, which is close to the
exact solutions in the case α = 1(0.1929).
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8 Conclusion

In this paper, we derive a numerical method for fractional optimal control based
on the operational matrix for the fractional integration and differentiation. The
procedure of constructing these matrices is summarized. An example is given
to show the efficiency of method. The obtained matrices can also be used to
solve problems such as fractional optimal control with delay. Moreover we could
find these matrices using another set of orthogonal functions instead of BPFs,
it seems if we use a set of continuous orthogonal function the numerical result
will improve.
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