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1 Introduction

Spectrum sensing is an important function of cognitive radios (CRs), in finding

spectrum access opportunities and obtaining noninterfered spectrum for reliable

communication. The purpose of cognitive radio techniques is to allow secondary

users (unlicensed) to utilize the spectrum which is not occupied by the primary

users (licensed) [1]. Multirate systems can perform key signal processing applica-

tions for CR systems. In wideband spectrum sensing, the wideband channel is

divided into multiple nonoverlapping narrowband channels and is sensed for

opportunities which are referred as multiband sensing in literature [2, 3]. The

multirate signal processing techniques are useful in wideband spectrum sensing

for multiband spectrum detection by the use of filter bank techniques. In cases

where wideband spectrum sensing requires high sampling rates and high power

consumption, multirate filter banks become a better solution [4].

In general for wideband spectrum sensing, the radio frequency (RF) front end

requires wideband architecture, and the spectrum is estimated by using power

spectral density (PSD). The basic method used for PSD is the periodogram

spectrum estimator (PSE). The PSE is limited due to the trade-off between

spectrum resolution and dynamic range because of the sidelobes of the PSE

window. To overcome these limitations, multi-taper (MT) method and filter bank-

based methods were utilized. The advantage of filter bank method is that it enables

efficient implementation of band-pass filters using polyphase decomposition of

prototype filters. A comparison between filter bank method and MT has shown

that the filter bank methods are more promising compared with MTmethod in terms

of lower computational complexities.
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In wideband multichannel spectrum sensing, FFT or filter bank-based spectrum

analyzer has been considered by averaging the output samples of each subbands for

detecting multiple spectral gaps. FFT and filter bank techniques have been used for

sensing Wireless Local Area Networks (WLAN) such as OFDM based on IEEE

802.11 system and Wireless Personal Area Network (WPAN) with bluetooth

designated to operate on 2.4 GHz ISM band [5]. Multi-resolution filter banks

based on fast filter bank design with varying spectral bands have been used for

sensing military radio receivers [6]. Tree-structured DFT filter bank was applied for

estimating the center frequencies and spectral edges of primary user signals [7]. -

Filter banks are also useful for the detection of wireless microphones in IEEE

802.22 Wireless Regional Area Network (WRAN) and estimation of center

frequency to fractionally utilize the available bandwidth [8, 9]. Progressive

decimation filter bank techniques (PDFB) are applicable for variable sensing

resolutions to detect different bandwidths in wideband spectrum. The theoretical

framework for the analysis and design of filter bank-based detectors for spectrum

sensing applications in cognitive radios is also discussed in literature [10]. In this

chapter we discuss the spectrum sensing techniques in CR and the application of

multirate filter banks in CR applications.

2 Cognitive Radio

Cognitive radio system has been proposed as a promising solution to improve the

spectrum utilization. The concept of cognitive radio was proposed by Joseph Mitola

[11]. CR systems have intelligent mechanism for monitoring the radio spectrum to

detect spectral holes and, thereby, allocate the same to secondary users without

causing any harmful interference to the primary users in wideband spectrum.

Particularly, CR is considered for obtaining spectrum usage characteristics across

multiple dimensions such as time, space, frequency, and code. CR comprises of

determining the type of signals in addition to parameters such as modulation,

waveform, bandwidth, and carrier frequency occupying the spectrum [12].

FCC defines CR as A radio or system that senses its operational electromagnetic
environment and can dynamically and autonomously adjust its radio operating
parameters to modify system operation, such as maximize throughput, mitigate
interference, facilitate inter-operability, access secondary markets.

CRs are considered to be the most promising future wireless communication

technology that may potentially mitigate the problem of spectrum scarcity using

dynamic spectrum access techniques [13]. The underutilization of spectrum is due

to the extremely low spectrum utilization in some localized temporal and geograph-

ical spectrum bands. Spectral opportunities have to be detected without any assis-

tance from primary users. The primary users do not have any constraints to share or

change the operating parameters for sharing spectrum with cognitive radio

networks [14].
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A CR system consists of the following entities:

Primary User: The users who have higher priority or legacy rights on the usage of a
specific part of the spectrum are defined as primary users.

Secondary User: The unlicensed user, who transmits and receives signals over the

licensed spectra or portions of it when primary users are inactive, is called

secondary users [12].

Spectral hole: A band of frequencies assigned to a primary user, which is unused at

a particular time and at a specific geographic location is called a spectrum

hole [1].

The spectral holes are classified into two types: (1) temporal and (2) spatial

spectral holes. A temporal spectral hole appears when a primary user is not

transmitting for a certain period of time. When the primary user transmission is

confined within an area, a spatial spectral hole appears, and the secondary users can

use the spectrum outside that area [15].

Cognitive radios have two main features which distinguish them from the

conventional radio devices; they are cognitive capability and reconfigurability [16].
The cognitive ability allows a CR system to sense and capture the information

from the surrounding radio environment. This feature allows a cognitive user to be

aware of different parameters such as transmitted waveform, radio frequency

spectrum, and geographical information. The gathered information are analyzed

to identify any unused spectrum at a specific time and location [17]. The interaction

between CR and radio environment is known as cognitive cycle. The cognitive

ability of CR explained through cognitive cycle is shown in Fig. 1. A cognitive

cycle consists of the following three components namely: spectrum sensing, spec-

trum analysis, and spectrum decision [1].

Spectrum Sensing In spectrum sensing, a cognitive radio observes the frequency

band and gathers necessary information regarding its surrounding radio environ-

ment. Based on the information captured, the cognitive radio is able to detect

spectrum holes.
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Fig. 1 Cognitive cycle
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Spectrum Analysis. Once the spectrum holes are detected using spectrum

sensing, each of the spectrum band is characterized based on the local observation

of the cognitive radio as well as the statistical information of primary user network.

Moreover, characteristics of spectrum holes are also analyzed and estimated.

Spectrum Decision. Depending on the spectrum analysis, the cognitive radio

determines the operating parameters such as the data rate, the transmission mode,

and the bandwidth available for transmission. The most appropriate spectrum band

is selected based on the spectrum band characterization and the user requirements.

As mentioned earlier, the second key feature of a cognitive radio that distin-

guishes it from a traditional radio is reconfigurability. The ability of a cognitive

radio to intelligently adapt to the radio environment by adjusting its operating

parameters, according to the sensed environmental variations, in order to achieve

the optimal performance, is referred to as reconfigurability. Cognitive wireless

networks are capable of reconfiguring their infrastructure in order to adapt to the

continuously changing environment. The reconfiguration actions take place in the

PHY/MAC layers for the selection of appropriate technology and spectrum for

operation. Different transmission access technologies can be supported by its

hardware design such that transmission and reception are possible in a variety of

frequencies [16, 18].

3 Spectrum Sensing Methods

Spectrum sensing is an inevitable part of cognitive radio systems that allows us to

use the available spectrum efficiently. The different spectrum sensing methods

provide the key to monitor and reuse the spectrum without interference. One of

the major tasks of CR is to obtain underutilized and noninterfered spectrum for

allocation of secondary users. The channel conditions keep changing due to the

noise uncertainty, multipath fading, and shadowing effects in wireless channels.

Therefore, there exists a need for monitoring and cooperation among secondary

users for efficient spectrum utilization. The usefulness of the spectrum sensing

techniques is based on the sensing performance and complexity in implementation.

Spectrum sensing techniques can be classified as noncooperative and coopera-

tive methods. The cognitive radio acts on its own in noncooperative spectrum

sensing, while in cooperative spectrum sensing, multiple CRs work together,

which results in an increase of accuracy in spectrum detection and spectrum

awareness. Cooperative spectrum sensing is further classified into three categories

depending on how cooperating CR users share the sensing data: (1) centralized,

(2) distributed, and (3) relay assisted [19, 20]. In multipath fading and shadowing

environment, cooperative spectrum sensing is considered to be an effective

approach. The common spectrum sensing techniques are energy detection (ED),

matched filter (MF), and cyclostationary feature detection (CFD), which are

discussed in subsequent sections. In filter banks, subband-based energy detection
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is applied for detection of spectral holes. Apart from common spectrum sensing

methods, other techniques existing in literature include eigenvalue-based methods,

covariance matrix method, and wavelet-based methods [21, 22]. After spectrum

sensing, the secondary users are allowed to access the spectrum holes. In order to

access the spectrum holes effectively, spectrum sharing and spectrum allocation

techniques are important [23]. The common spectrum sensing methods are briefly

explained in the following sections.

3.1 Energy Detection Method

Energy detection method is further classified as traditional energy detection and

subband-based energy detection.

3.1.1 Traditional Energy Detection

The most widely used method of spectrum sensing is the traditional energy detec-

tion due to its low computational complexity [24]. The receiver does not require

any prior knowledge of the primary user signal as energy detection is a noncoherent

method of detection. The primary user is detected by measuring the energy and

comparing it with a predetermined threshold. The threshold λ is computed using the

assumed noise variance σ2w and probability of false alarm Pfa, which generally

depends on the channel characteristics. The problem of detecting the presence and

absence of signal in spectrum sensing is typically formulated by the following

binary hypothesis test [25],

H0 : y n½ � ¼ w n½ �
H1 : y n½ � ¼ x n½ � þ w n½ �

where y[n] represents the received signal, x[n] is the transmitted wireless signal, and

w[n] is the zero mean complex circularly symmetric additive white Gaussian noise

(AWGN). Further, x[n]¼ s[n]
N

h[n] where s[n] denotes the primary user signal

and h[n] the channel impulse response [26]. Hypothesis H0 represents the absence

of a primary user signal and consists only the noise w[n]. On the other hand,

hypothesis H1 represents the presence of primary user signal x[n] along with

noise w[n]. The test statistic is computed as the energy of the received signal as

given in Eq. (1),

T yð Þ ¼ 1

Ns

XNs�1

n¼0

y n½ �j j2, ð1Þ
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where Ns is the total number of samples sensed at the receiver. The test statistic

follows a chi-square distribution. However, in practical cases, the test statistic can

be approximated to a Gaussian distribution for large number of samples according

to the central limit theorem (CLT) [27]. According to CLT any independent and

identically distributed (IID) random variable with finite mean and variances

approaches is a normal distribution when the number of samples Ns is large enough.

Therefore, the distribution of test statistics can be accurately approximated with a

normal distribution for sufficiently large number of samples. The above hypothesis

can be written as in,

T yð Þ � N σ2w;
1

Ns

σ2v

� �
; for hypothesis H0

T yð Þ � N σ2x þ σ2w;
1

Ns

σ2x þ σ2w
� �2� �

; for hypothesis H1

where σ2x is the signal variance and σ2w is the noise variance. The presence of an

active signal is determined by comparing the energy (test statistics) with a

predetermined threshold. The threshold λ is calculated using the knowledge of

probability of false alarm Pfa and the assumed noise variance σ2w of the received

signal. The probability of false alarm Pfa is given as

pfa ¼ Q
λ� σ2wffiffiffiffiffiffiffiffiffiffi
1=Ns

p
σ2w

 !
ð2Þ

and the probability of detection can be expressed as

pd ¼ Q
λ� σ2w þ σ2s

� �ffiffiffiffiffiffiffiffiffiffi
1=Ns

p
σ2w þ σ2s
� � !

ð3Þ

The threshold λ is determined from Eq. (2) as

λ ¼ Q�1 Pfað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Nsþ1= Þσ2w

p�
ð4Þ

The minimum number of samples required for spectrum sensing is obtained

using Eqs. (2) and (3) [28],

Nmin ¼ 2 Q�1 pfað Þ � Q�1 pdð Þ 1þ SNRð Þ� 	2
SNR�2 ð5Þ

3.1.2 Subband-Based Energy Detection

When the available wideband is split into nonoverlapping subbands, the subband-

based energy detection is performed at the output of the individual subbands. The

energy is computed as the test statistic at the output of each subband and compared
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with a predetermined threshold. Filter bank-based methods are robust and efficient

for multiband spectrum sensing where energy detection is performed at the subband

level at the output of the FFT or analysis filter bank (AFB). The wideband signal is

split into narrow signal bands using FFT or AFB. Similar to traditional energy

detection, the subband signal can be expressed as follows:

H0 : yk m½ � ¼ wk m½ �
H1 : yk m½ � ¼ xk m½ � þ wk m½ �

where yk[m] is the received signal at the k
th subband (k¼ 1, 2, . . . ,M ),M is the total

number of subbands with xk[m]¼Hksk[m], Hk represents the complex gain of the

subbands, sk[m] is the input signal, and wk[m] is the noise samples of the subbands.

Similar to traditional energy detection, noise follows the distribution wk m½ � � N

0; σ2w,k
� �

and signal xk m½ � � N 0; σ2x,k
� �

with σ2w,k being the noise variance and σ2x,k
the signal variance [26]. If σ2w,k is the noise variance of the wideband channel, the

subband noise variance is
σ2w
M . The energy at the output of individual subbands is

considered as the test statistic,

Yk ¼ 1

L

XL�1

m¼0

yk m½ �2 ð6Þ

where L ¼ Ns

M

� �
is the number of samples in each subband with M number of

subbands for sensing and Ns total number of samples received. The presence and

absence of a primary user signal is written in terms of the following two hypotheses:

yk mð Þ � N σ2w,k;
1

L
σ4w,k

� �
; for hypothesis H0

yk mð Þ � N σ2x,k þ σ2w,k;
1

L
σ2x,k þ σ2w,k
� �2� �

; for hypothesis H1

The number of samples for each stage needs to be large enough to perform

energy detection even in low SNR. The minimum number of samples required in

each stage can be calculated using the relation in Eq. (5).

3.2 Matched Filter

Matched filter (MF) is a non-blind spectrum sensing technique with coherent

detection. Prior knowledge of the primary user signal is required in MF. The

known primary user information is correlated with the received signal to detect

the presence of primary user signal and maximize the signal-to-noise ratio (SNR).

The matched filter requires short sensing time and achieves good detection perfor-

mance with low probability of missed detection and false alarm. The drawback of
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this method is that it requires knowledge about primary user signal such as

operating frequency, bandwidth, modulation type, and packet format. Therefore,

the technique is not applicable when the information regarding the primary users

are unknown [23].

3.3 Cyclostationary Feature Detection

Cyclostationary feature detection (CFD) technique exploits the cyclostationary

features of the signal for spectrum sensing. A signal is considered to be

cyclostationary if its statistical properties vary cyclically with time. When the

modulated signals are combined with sinusoidal signals and pulse trains, they

exhibit periodicity. The cyclostationary features are exploited from the periodicity

using signal statistics such as mean and autocorrelation. The cyclic autocorrelation

function (CAF) of the received signal x(t) can be expressed as

R αð Þ
x ¼ E x tð Þx∗ t� τð Þexp �j2πατð Þ½ �, ð7Þ

where α is the cyclic frequency, E[.] is the expectation operation, and ∗ denotes

complex conjugation. Using Fourier series expansion, CAF can be expressed as

cyclic spectral density (CSD) [23].

When the cyclic frequency α and fundamental frequencies become equal, CSD

exhibits peaks. Therefore, under hypothesis H0, the noise alone is present, and the

CSD function does not exhibit peaks as the noise is nonstationary. On the other

hand, in hypothesis H1, peaks occur due to the signal and presence of noise.

Therefore, CFD distinguishes the noise from the PU signal and can also be used

for the detection of weak signal in case of very low SNR. CFD does not require

prior knowledge of primary user waveform. The performance of CFD can be

improved at a given SNR by increasing the number of samples, however at the

cost of sensing time. The limitation of cyclostationary feature detection is that it

requires longer processing time compared to the energy detection and matched filter

detection techniques.

4 Wideband Spectrum Sensing

An important challenge in CR is sensing of multiple narrowband channels over a

wideband spectrum. Most of the existing spectrum sensing algorithms discussed

above are suitable for narrowband spectrum sensing, which exploits the spectral

opportunities over narrow frequency range. To achieve higher throughput,

CR needs to exploit spectral opportunities over a wide range of frequencies,

from hundreds of megahertz to several gigahertz [14]. In cases where

spectral opportunities are to be identified in ultra-high frequency (UHF) TV band
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(between 300 MHz and 3 GHz), wideband spectrum sensing techniques are to be

employed. Narrowband spectrum sensing techniques cannot be applied in this

scenario as they can make only binary decision on the whole spectrum and the

spectral opportunities within the wideband cannot be identified. The benefits of

multichannel/wideband spectrum sensing for CR networks are the secondary user

throughput capacity can be maximized and aggregate interference of primary user

networks can be reduced [29]. Multiband joint detection techniques have also been

utilized to maximize the secondary user throughput capacity and reduce interfer-

ence of primary users [3]. The multiband spectrum sensing has a few challenges due

to the following reasons as discussed in [2].

• The available wideband for spectrum sensing may not be contiguous.

• A small portion of bandwidth may be occupied by a wireless device, and the

entire bandwidth may be considered unavailable. (For example, in IEEE 802.22,

wireless microphone occupies only 200 kHz of a 6 MHz TV channel, and the

entire TV channel would be considered occupied.)

• If a portion of signal is in deep fade, the subbands may consider that portion as a

spectral hole. Therefore, if a secondary user is allocated to that portion of the

spectrum, interference would occur with the existing primary user.

The multiband spectrum sensing is categorized into serial-based detectors,

parallel-based detectors, and wideband-based detectors. Serial sensing is simple

to implement; however, the technique is slow and undesirable when the subbands

are more. Parallel sensing provides faster detection at the expense of RF compo-

nents and complex signal processing. The common multiband sensing techniques

use reconfigurable band-pass filters, tunable oscillators, filter banks, wavelets, and

blind sensing. A comparison between the different multiband spectrum sensing

methods is provided in [2]. A detailed review and comparison between the different

spectrum sensing methods along with advantages, disadvantages, and challenges

are also provided in [12].

Further, wideband spectrum sensing techniques are broadly classified into two

types:

• Nyquist wideband SS

• Sub-Nyquist wideband SS

In Nyquist wideband spectrum sensing, digital signals are sampled at or above

the Nyquist rate, and in sub-Nyquist technique the signals are sampled below the

Nyquist rate. Standard analog-to-digital converters (ADC) and digital signal

processing techniques are used in Nyquist wideband spectrum sensing. After the

received signals are sampled, serial to parallel conversions are required for further

processing of the signals. A widely used Nyquist wideband spectrum sensing

technique is the filter bank-based spectrum sensing. In filter bank-based techniques,

fast Fourier transform (FFT) is used to convert the signal to a series of narrowband

spectra. The spectral opportunities were identified by applying the binary hypoth-

esis test to the individual subbands. In most of the filter bank techniques, energy

detection was chosen as the test statistic. The threshold for detection was jointly

chosen using optimization techniques.
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The sub-Nyquist approach overcomes the limitations of Nyquist approach

resulting from high sampling rate and computation complexity. In sub-Nyquist

sensing, the wideband signal is acquired by using sampling rates lower than Nyquist

rate. The compressed sensing techniques are applied for sub-Nyquist sampling.

5 Filter Bank Techniques for Spectrum Sensing

The concept of multirate filter banks was proposed for spectrum sensing initially by

Farhang [30]. Filter banks are implemented by shifting a low-pass prototype filter.

The first subband is estimated using the prototype filter, and other subbands are

obtained by modulating the prototype filter. The total bandwidth is split into narrow

nonoverlapping subbands using multiple band-pass filters. Multicarrier techniques

were also suggested for spectrum sensing, where OFDM was the first multicarrier

technique proposed for CR [31]. OFDM was considered as a suitable candidate for

CR as FFT can be used for spectral analysis and demodulator for OFDM signal.

However, the limitation of using the OFDM for CR application is the presence of

large sidelobes in the response of the subband filters due to 13 dB attenuation of

FFT, which may lead to interference between different users because of the spectral

leakage. Moreover, OFDM techniques lack high spectral dynamic range and are not

suitable for detection of low-power primary users. To overcome this issue, the

rectangular pulse shape in OFDM was replaced with a smooth edge pulse shape

filters called filtered OFDM. Filter bank multicarrier (FBMC) and filtered OFDM

become alternate solutions to overcome the above limitations. FBMC reduces the

spectrum leakage compared to cyclic prefixed OFDM systems and is capable of

identifying multiple users with different center frequencies and spectral gaps

between users efficiently with flexibility [10]. Different FBMC schemes reported

in literature include staggered modulated multitone (SMT), filtered multitone

(FMT), and cosine-modulated multitone (CMT). A comparison of filter bank

multicarrier methods in cognitive radio systems is presented in [32].

The spectrum efficiency can be increased by designing prototype filters with

acceptable subband attenuation. Therefore, filter banks are considered to be an

alternate solution for wideband spectrum sensing. To achieve high spectral

dynamic range in filter banks, the length of the prototype filter also needs to be

adjusted. Multi-taper method (MT) is shown as a near optimal sensing method,

even though MT has high computational complexity [1, 33]. However, similar

performance can be achieved with filter banks using prolate filters with lower

computational complexity [30]. Discrete Fourier transform (DFT) and modified

DFT filter bank with root-Nyquist filter have also been exploited for spectrum

sensing in wideband cognitive radios.

Different types of filter banks have been used in CR system for varied applica-

tions. Multistage polyphase filter bank techniques were used for the detection of

center frequency of primary users with low computational complexity and higher

precision. FFT-based filter bank techniques have been used for sensing Wireless
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Local Area Networks (WLAN) such as OFDM based on IEEE 802.11 system and

Wireless Personal Area Network (WPAN) with bluetooth designated to operate on

2.4 GHz ISM band. Multi-resolution filter banks based on fast filter bank design

with varying spectral resolution were applied for spectrum sensing in military radio

receivers. Tree-structured DFT based filter banks have also been used for estimat-

ing the center frequencies and spectral edges of primary user signals.

5.1 Sensing Architecture Based on Filter Banks

Filter banks consist of an analysis filter bank (AFB) and synthesis filter bank (SFB).

Synthesis filter banks are sufficient to extract the signal components of each

subband from the wideband RF signals. The basic filter bank spectrum sensing

architecture is illustrated in Fig. 2. The RF module is followed by wideband ADC to

sample the RF signal. Different filter bank structures like cosine-modulated filter

bank (CMFB), DFT, and polyphase DFT can be considered. In case of complex

modulated filter banks, the complete filter bank structure can be realized using

complex modulation of a single prototype filter.

In general, multiband sensing utilizes energy detection techniques due to the

reduced computational complexity. Different methods such as periodogram

method, multi-taper method (MTM), and filter bank methods have investigated

energy detection for spectrum sensing in literature. Farhang has shown in [30] that

DFT filter banks based on energy detection are more promising in terms of accuracy

if noise variance is known. Energy detection is the most common method as it has

low computational and implementation complexities. Energy (power) is computed

at the output of individual subband and considered as the test statistic. The presence

and absence of the signal is detected by comparing the energy with a predefined
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threshold as explained in Sect. 3. The threshold is a function of probability of false

alarm and noise variance of the channel.

Different filter bank structures have been used in CR for spectrum sensing like

cosine-modulated filter banks and DFT-\FFT-based filter banks.

6 Multirate Filter Banks

The multichannel filter banks can be implemented using cosine modulation, FFT,

DFT, or modified DFT filter banks. The filter banks can be implemented using

complex modulation of a single prototype filter [34]. Multirate filter banks are

designed with basic multirate signal processing techniques such as decimation and

interpolation [4]. The polyphase representation in multirate is useful for computa-

tionally efficient implementation of polyphase filter banks. In general the analysis

and synthesis subbands of the filter bank are simultaneously generated by applying

an appropriate modulation scheme to the linear phase finite impulse response (FIR)

prototype filter. The significance of prototype filter design in the implementation of

filter banks to improve the overall performance is well proven. Therefore, the

design of prototype filter is vital in the implementation of filter bank structures.

In general, filter bank designs can be categorized into two types:

• Perfect reconstruction (PR)

• Near-perfect reconstruction (NPR) or quadrature mirror filters (QMF)

Perfect reconstruction filters are alias-free filters, where the output is a delayed

version of input. However, the implementation of PR filters is computationally

complex, and for practical applications, NPR filters are adequate. The filter bank

implementation focuses on NPR as they provide improved alias suppression in the

subbands by relaxing PR constraint. As the same prototype filter is employed in the

analysis and synthesis banks, the NPR filters have polyphase matrices which are

paraunitary and, hence, have favorable numerical properties.

Perfect reconstruction (PR) filter banks satisfy the condition that the

reconstructed signalbx nð Þ need to be a scaled and delayed version of the input x(n).

bx nð Þ ¼ cx n� n0ð Þ ð8Þ

The reconstructed signal can be represented using z-transform as

bX zð Þ ¼ T zð ÞX zð Þ ð9Þ

The PR condition indicates that aliasing is canceled, and distortion function T(z)
is forced to be a delay. The optimization of the prototype coefficients for perfect

reconstruction is highly nonlinear. In case of NPR or approximate reconstruction,

the analysis and synthesis filters Hk(z) and Fk(z), respectively, are chosen in such a
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way that the adjacent subband aliasing gets cancelled. The distortion function T(z)
is approximately a delay. The approximate systems mentioned are called pseudo-

QMF banks and are acceptable for practical applications.

Extensive research has been carried out to find an optimal prototype filter for

complex modulated filter banks. The optimization techniques for prototype filter

design can be categorized into three types:

• Frequency sampling techniques

• Window-based techniques

• Direct optimization of filter coefficients

In order to overcome the limitation of having M different transfer functions,

which provide perfect reconstruction, the complex modulated filter banks can be

realized from a single low-pass prototype filter. The complex modulated filter banks

generally use the basic pseudo-quadrature mirror filter principle. The filter banks

are realized by equidistant frequency shifts of a prototype filter. For near perfect

reconstruction in the filter banks, the low-pass prototype filters have to satisfy the

following conditions [35]:

1. Prototype filter has to be band limited.

H ejω
� �

 

 � 0 ωj j > π

M
ð10Þ

2. Frequency response of prototype filter has to be pairwise power complementary.

H ejω
� �

 

2 þ H e

π
M�ωð Þ� �


 


2 � 1, 0 � ω � π

M
ð11Þ

The advantages of such filters are twofold:

• The cost of implementing M analysis filter bank includes the cost of one

prototype filter and modulation overhead. The cost ofM synthesis filter is similar

to an analysis filter.

• Optimization of prototype filter alone is required for the implementation of filter

bank structure.

The prototype filters should have sufficient stopband attenuation to suppress the

aliasing components. The realization of DFT, cosine modulation, and DFT-based

polyphase filter banks are discussed in the following subsections.

6.1 DFT Filter Banks

In DFT filter bank, the M analysis filter banks, Hk(z) , k¼ 0 , 1 , . . . ,M� 1, are

realized by frequency shifting the transfer function H(z) of the prototype filter h
(n). The impulse response of the prototype filter is multiplied by a factor ejnΩ0 .
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Further, the frequency response of the prototype filter H(ejΩ) is shifted right as H

ej Ω�Ω0ð Þ� �
: The M analysis filter response can be expressed as

Hi e
jΩ� � ¼ H ej Ω�2πi

Mð Þ� �
, i ¼ 1, 2, . . . ,M � 1 ð12Þ

In case, WM¼ ej2π/M, the Z-transform of the analysis filters can be written as

Hi zð Þ ¼ H zW i
M

� � ð13Þ

The frequency response of the prototype filter and the shifted versions of the

prototype filter for the generation of subbands filter are shown in Figs. 3 and 4,

respectively.

6.2 Cosine-Modulated Filter Banks

The cosine-modulated filter banks (CMFB) are also pseudo-QMF and satisfy the

NPR conditions. Cosine-modulated filters can easily maintain maximally deci-

mated NPR condition. Among the NPR FIR filter banks, CMFB is considered to

be simple both in terms of design and implementation complexities. Initially, the

prototype filter is designed satisfying the power complementary and band-limiting

Ω

Fig. 3 Frequency response of prototype filter

Ωπ

i=0 i=1

…

i = Μ − 1

Fig. 4 Frequency shifted version of the prototype filter for analysis filter banks
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conditions specified in Eqs. (10) and (11). In an M channel CMFB, the impulse

responses of the analysis and synthesis filters are hk(n) and fk(n), respectively. The
filter banks are cosine-modulated versions of the prototype filter h(n). The proto-

type filter is linear phase FIR Type I filter. The analysis and synthesis filters are

given by Eqs. (14) and (15) for 0� n�N� 1 and 0� k�M� 1 as in [4],

hk nð Þ ¼ 2h nð Þ cos π

M
k þ 1

2

� �
n� N � 1

2

� �
þ �1ð Þkπ

4

� 
ð14Þ

f k nð Þ ¼ 2h nð Þ cos π

M
k þ 1

2

� �
n� N � 1

2

� �
� �1ð Þkπ

4

� 
ð15Þ

where k¼ 0 , 1 , 2 , . . .M� 1 is the number of subbands in the filter bank. By

choosing a linear phase FIR Type I filter, the phase distortion can be eliminated

completely. The amplitude distortion is reduced, when the band-limiting condition

stated in Eq. (10) is satisfied and if the filters are pairwise power complementary as

in Eq. (11), the aliasing error can also be reduced.

6.3 Spectrum Sensing with Cosine-Modulated Filter Bank

Among the different filter bank-based methods such as orthogonal multiplexed

quadrature amplitude modulation (OQAM), cosine-modulated multitone (CMT),

and filtered multitone (FMT), CMT is more desirable as it provides higher band-

width efficiency compared to FMT and lower sidelobes than OQAM. The perfor-

mance of spectrum estimation is characterized by different parameters such as

frequency resolution, spectrum leakage, and estimation time. The above three

parameters can be regulated using CMFB with a proper design of prototype filters.

In wideband spectrum sensing, signals are filtered using CMFB followed by power

spectrum estimation [36]. CMFB can detect primary users over contiguous channel

having different bandwidths. A transceiver framework based on cosine-modulated

filter bank was proposed in [37] for cognitive access to TV white spaces. The

spectrum sensing is performed using the system model described in Sect. 3 for

subband-based energy detection.

6.4 Polyphase Filter Banks

Polyphase filter bank structure reduces the complexity of the filter bank implemen-

tation using the noble identities of multirate systems. Polyphase filter banks are

efficiently designed using FFT when the number of subbands M is a power of two.

The DFT filters can be modified to get a better stopband attenuation compared to

13 dB of DFT at the cost of one prototype filter. The polyphase decomposition of
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the prototype filter enables to implement the filter bank in an efficient manner

[4, 38]. The transfer function of a FIR prototype filter h(n) is given by

H zð Þ ¼
X1
n¼�1

h nð Þz�n ð16Þ

The transfer function in Eq. (16) can be decomposed into polyphase components

as in Eq. (17)

H zð Þ ¼
X1
n¼�1

h nMð Þz�nM þ z�1
X1
n¼�1

h nM þ 1ð Þz�nM þ . . .

þ z� M�1ð Þ X1
n¼�1

h nM þM � 1ð Þz�nM

ð17Þ

Eq. (17) can be written in short as in Eq. (18).

H zð Þ ¼
XM�1

l¼0

z�lEl z
M

� � ð18Þ

The above equation represents a Type-1 polyphase filter. Similarly, lth polyphase
component of the filter bank is defined as

El zð Þ ¼
X1
n¼�1

el nð Þz�n ð19Þ

where, el(n)¼ h(Mnþ l ). The Type-2 polyphase decomposition of the Eq. 10 can

be expressed as

H zð Þ ¼
XM�1

l¼0

z� M�1�lð ÞRl z
M

� � ð20Þ

Polyphase implementation simplifies the theoretical results, and computation-

ally efficient filter banks can be realized. The filter bank implementation with

uniform DFT bank using polyphase decomposition is shown in Fig. 5. Using

noble identities the polyphase uniform DFT filter bank structure with decimators

can be redrawn as shown in Fig. 6. Since the downsampler are shifted toward the

input side, the polyphase subband filters are computed at a low sampling rate, which

reduces the computational complexity by a factor of M. Due to the polyphase

decomposition of prototype filter, the polyphase subband filters are shorter com-

pared to the original filters by a factor of M.

The computational complexity of polyphase filter banks is NþMlog2M, where

N is the length of the prototype filter. Polyphase filter bank reduces the computa-

tional complexity to a large extent compared to the complexity NM of direct
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implementation. The important advantage of multirate polyphase filter banks is that

it allows efficient implementation of filter bank structure due to the polyphase

decomposition. Moreover, the entire computational complexity of the polyphase

filter bank is reduced to the design of a prototype filter and M point FFT.

7 System Model for Filter Bank Spectrum Sensing

The wideband signal for spectrum sensing is localized to various subband frequen-

cies using filter bank structures. The available spectrum band is divided into

M nonoverlapping uniform subbands, where M is the number of subbands in the

0

IFFT
Εκ

− 1

− 1

− 1

0

− 1

Fig. 5 Uniform DFT bank

using polyphase

decomposition

0

IFFT
Εκ

− 1

− 1

− 1

0

− 1

Fig. 6 Polyphase filter banks with efficient implementation using noble identities
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filter bank. The output of each subband, xk(n), is assumed to be a random process,

obtained from a random process input sk(n) passing through a linear subband filter

of frequency response Hk, where xk(n)¼Hksk(n). The received signal yk(n) can be

modeled as [26],

yk nð Þ ¼ xk nð Þ þ wk nð Þ, k ¼ 0, 1, 2, . . . ,M � 1,

where xk(n) is the active signal and wk(n) is the additive white Gaussian noise with

zero mean and variance σ2w. In order to detect the presence of primary user signal, a

binary hypothesis is defined as [40],

Ho,k : yk nð Þ ¼ wk nð Þ absence of signal

H1,k : yk nð Þ ¼ xk nð Þ þ wk nð Þ presence of signal

We consider the test statistic as the energy at the output of each subband as given

by

yk nð Þ ¼ 1

L

XL�1

n¼0

x2k nð Þ

where L ¼ Ns

M

� �
, is the number of samples in each subband and k¼ 0 , 1 , 2 , . . . ,

M� 1.When the number of samples is increased, the chi-square distribution

approximate to a normal distribution from the central limit theorem as discussed

in Sect. 3.

The presence of an active signal in a specified subband can be determined by

comparing the energy in that subband with a predetermined threshold. The avail-

able wideband is divided into M nonoverlapping subbands using filter banks.

Energy detection is performed on the output of each subband and compared with

a predefined threshold. Depending on the threshold decision, a subband is consid-

ered to have the presence of primary user referred as ’1’ or absence of primary user

referred as ’0’ (spectral hole). This is referred to as binary detection and illustrated

in Fig. 7.

7.1 Calculation of Threshold

The threshold λ can be calculated using the knowledge of probability of false alarm
Pfa and noise variance σ2w of the received signal as explained in Sect. 3. The energy

detector gives the best performance with known noise variance and performance

deteriorates when the noise variance is uncertain. To improve the detection perfor-

mance, the noise variance can be estimated at the receiver before spectrum detec-

tion using noise variance estimation techniques.
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8 Multistage Filter Bank Spectrum Sensing

Spectrum sensing can be performed using filter bank structures for varying

granularity

bands. The number of subbands M determines the granularity of sensing band-

width. For spectrum sensing with finer granularity bands, M needs to be increased,

whereas for spectrum sensing with coarser granularity bands, M needs to be

decreased. The advantage of varying granularity band is that the spectrum utility

and re-usability can be effectively increased. Moreover, the same structure can be

used for spectrum reallocation due to the flexibility offered by the filter bank

structure.

The granularity of the filter banks can be chosen specifically if the bandwidth of

the primary users is known apriori. The energy is computed at the output of

individual subbands as the test statistics. The threshold is calculated for specified

probability of false alarm Pfa and known noise variance σ2w: The bandwidth

efficiency could be effectively increased using finer granularity bands for spectrum

sensing. When the number of subbands is increased, the spectral resolution of the

filter banks gets increased, and better detection performance is achieved. The

computational complexity can be reduced with efficient structures using polyphase

filter bank discussed in subsequent sections. However, finer granularity bands

increase the computational complexity of the filter bank structure used for spectrum

sensing. In order to reduce the computational complexity, multistage filter bank

structures can be considered. In the subsequent sections, we discuss multistage

CMFB and multistage polyphase filter banks [9, 39].

En
er

gy

1       1       

Frequency

0      0 1 0 1       1        1       1

PU1 PU2 PU3

0       0

Fig. 7 Illustration of binary detection in wideband spectrum sensing
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8.1 Spectrum Detection with Multistage CMFB

Better sensing performance can be achieved in filter banks with finer resolution.

However, this would increase the computational complexity of the filter bank

structure. Therefore, to overcome the computational complexity, multistage filter

banks and tree-structured DFT filter banks are investigated for sensing from coarser

to finer resolution [7, 8]. In multistage or multi-resolution filter banks, at the initial

stage, the total bandwidth is sensed using coarser spectral resolution (smaller

number of subbands). The bandwidth of interest is identified depending on the

sensing decision, and only those frequency bands are further sensed with finer

spectral resolution. Multi-resolution filter bank techniques include fast filter bank

(FFB) based on frequency-response masking (FRM), coarser to finer spectrum

sensing using wavelet transforms, and FFT-based multi-resolution spectrum sens-

ing using multiple antennas [6].

In case of multistage filter bank spectrum sensing, the available bandwidth is

initially divided into nonoverlapping subbands with coarser spectral resolution of

M1 subbands as illustrated in Fig. 8. When narrowband users appear in wideband

spectrum and the bandwidth of sensing is sparse as shown in Fig. 8, the subbands of

interest can be detected in the first stage. The detected subbands can be sensed

further with finer spectral resolution in the next stage with a spectral resolution of

M2 subbands. As the narrowband users are identified in coarser resolution, only the

detected subbands are sensed further with finer resolution. Therefore, the compu-

tational complexity is reduced, and better sensing performance can be achieved.

Multistage spectrum sensing can be performed by defining two thresholds based

on different probability of false alarm Pfa depending on the channel conditions.

Energy detection is performed using the predefined thresholds with different prob-

ability of false alarms, calculated as discussed in Sect. 3. Two thresholds, λ1 and λ2,
are the calculated based on different probability of false alarm (λ2> λ1). If the

energy is above the threshold λ2, it can be concluded as the presence of primary

…

Stage 1

En
er

gy

Frequency

Stage 2

Frequency

En
er

gy

Fig. 8. Illustration for multistage filter bank spectrum sensing from coarser to finer spectral

resolution
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user. If the energy is below λ1, it is decided as the (absence of primary user)

presence of a spectral hole or absence of primary user, and if the energy is between

λ1 and λ2, there is a possibility of spectral hole within the subband.

The multistage spectrum sensing with energy distribution and thresholds are

explained in Fig. 9. Only the subbands having energy between λ1 and λ2 have to be
sensed in the next level with finer granularity. Multiple spectral gaps can be

identified in an efficient and flexible way using the multistage methods with

reduced complexity since the whole band need not be sensed with finer granularity.

The significance of multistage spectrum sensing is summarized as follows:

1. The probability of detection is improved with finer granularity bands.

2. Multistage filter banks reduce the computational complexity as the whole band

need not be sensed with the finer granularity.

3. Spectrum sensing can be performed from a coarser to finer spectral resolution.

8.2 Spectrum Sensing with Polyphase Filter Banks

Wideband spectrum sensing using filter banks has proved to be robust and efficient.

Filter bank-based physical layer design for CR systems was introduced to perform

simultaneous spectrum sensing and transmission. Filter bank techniques can reduce

computational complexity and improve spectral analysis in cognitive radio

En
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Threshold λ1

Lower
Threshold λ2

Subband to be detected by 
Stage 2 with finer resoution

Subband detected in 
Stage 1

Subband 
detected
in Stage 1

Fig. 9 Illustration of threshold decision with multistage spectrum sensing
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applications. For fractional utilization of spectrum, the center frequency and spec-

tral edges of the primary user need to be estimated which can be done using

polyphase filter banks. The complexity in filter bank implementation can be

reduced to a large extent using polyphase filter bank structures. Polyphase filter

banks are efficiently designed using FFT when the number of subbands M is a

power of two. The problem of estimating the center frequency and spectral edges of

primary users in a wideband spectrum using polyphase filter banks is discussed

below.

8.3 Multistage Polyphase Filter Banks

Multistage polyphase filter bank method detects the presence of primary user and

identifies the spectral holes. In addition, for fractional utilization of spectrum bands,

the center frequency of the primary user can be estimated with higher precision

using filter banks and subband-based energy detection along with centroid/center of

mass method [8, 9]. It is well known that the detection accuracy depends on the

number of subbandsM in the filter bank. The computational complexity of the filter

bank increases with higher values of M. However, the complexity is reduced by

using multistage polyphase filter bank structure. The primary users are detected by

computing the signal energy (power) at output of the individual subbands. The

algorithm for the detection of unused spectrum (spectrum holes) starts from a

coarser spectral resolution (smaller number of subbands) at the first stage to reduce

computational complexity. Single user and multiuser scenarios are considered in

wideband for spectrum sensing using multistage polyphase filter banks. The detec-

tion of single and multiple users in widebands is elaborated in the following

subsections.

8.4 Single User Detection in Wideband Spectrum

Polyphase filter are useful in detection of narrowband single user in a wideband

spectrum [9, 38]. For example, consider the detection of wireless microphone

(WM) in the presence of a signal that follows IEEE 802.22 WRAN standard. In

IEEE 802.22 WRAN standard, spectrum sensing has to be done to allow television

(TV) services and wireless microphones to coexist. WMs are low-power licensed

users and are allowed by Federal Communications Commission (FCC) to operate

on vacant TV channels without causing interference. The detection of WM is

difficult due to the low power transmission (typically 50 mW for 100 m coverage)

and small bandwidth occupancy (200 kHz). In IEEE 802.22 WRAN standard, when

a WM appears anywhere in the TV channel, the whole channel of 6 MHz has to be

evacuated to avoid interference. However, TV channels can be utilized fractionally

190 S. Chris Prema and K.S. Dasgupta



when the exact position of the WM is detected [8, 41]. Hence, there are several

challenges in the detection of WM signals/narrowband users.

Multistage polyphase filter bank method can detect the presence of WM and

estimate the center frequency of the WMwith better precision by using the centroid

method. The centroid-based technique can detect the presence of WM in the first

stage itself, when spectrum of WM lies partly in one subband and partly in adjacent

subband. When the WM is detected in the first stage, it reduces the computational

complexity and latency and achieves fast sensing. However, if WM appears exclu-

sively within a single subband, an additional stage is required to detect and estimate

the center frequency of WM with finer spectral resolution. In such cases, WM can

be detected in the second stage without ambiguity.

The multistage polyphase filter banks can be designed to detect the presence of

WM anywhere within a TV channel (6 MHz) and to estimate the center frequency

of WM taking into account the following scenarios:

Case 1: If the signal spectrum of WM lies partly in one subband and partly in the

adjacent subband as shown in Fig. 10, the center frequency of WM can be either in

one of the subbands or between two subbands. The center frequency in such a case

is estimated using the centroid method as described in the subsequent sections.

Case 2: If the signal spectrum of WM is in the middle of two adjacent subbands as

shown in Fig. 11, the energy at the output of two subbands will be equal. That is, the

center frequency of WM is at the midpoint of the two subbands. Therefore, finer

level of detection is not necessary, which in turn reduces the computational

complexity and latency.

Case 3: If the signal spectrum of WM appears exclusively within a subband as

shown in Fig. 12, the output of first stage is passed to the input of the next stage filter

0

Stage 1 with M1
subbands

Narrow Band User

π

….

Fig. 10 Case 1: Narrowband user appears anywhere between two consecutive subbands

0

Stage 1 with M1
subbands

Narrow Band User

π

….

Fig. 11 Case 2: Narrowband user appears exactly between two subbands

Multirate Systems in Cognitive Radio 191



bank to estimate the center frequency with a finer spectral resolution. The process is

illustrated in Fig. 13 where only two stages are required to detect the presence of the

WM and to accurately estimate its center frequency. The center frequency is

estimated in the second stage using DFT polyphase filter bank and centroid method.

The procedure followed for multistage spectrum sensing is briefed in the fol-

lowing two steps and illustrated in Fig. 13:

Step 1: The bandwidth of sensing is divided coarsely into M1 subbands and sensed

through the M1 subband DFT polyphase filter bank. Energy detection is

performed at the output of each subband, considering energy (power) as the

test statistic to decide the presence or absence of the WM in the subbands. The

detection and estimation of center frequency of WM as per Case 1 or Case 2 is

done in the first stage. If the signal spectrum of WM is as per Case 3, the output

of the sensed subband is further processed with finer resolution as in Step 2.

Step 2: The output of first stage is sensed in the next level with M2 subbands.

The signal energy (power) at the output of the subband is considered as the test

statistic. At this level, the spectrum is sensed with a spectral resolution of

π/M1M2.

0

Stage 1 with M1
subbands

Narrow Band User

π

….

Fig. 12 Case 3: Narrowband user appears exclusively within a subband

0

Stage 1 with M1
subbands

Narrow Band User

π

….

0 / 1

Fig. 13 Detection of narrowband users using two-stage filter bank
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The proposed method can be summarized as:

(i) If WM appear anywhere within consecutive subbands (Case 1 and Case 2), the

center frequency of WM is estimated accurately using the centroid method in

single stage.

(ii) If WM appears anywhere exclusively within any subband (Case 3), the output

of the sensed subband is further processed with finer resolution as in Step 2.

8.5 Center Frequency Detection Using Centroid Method

The center frequency of the narrowband frequency can be detected when the

narrowband user appears between the two subbands. The center of each subband

represents the energy in that subband resolution as shown in Fig. 14. The energies

can be modeled as a trapezoid, and the center frequency can be calculated from the

centroid of the trapezoid. The top edge of the distribution can be defined using a

linear function as,

f xð Þ ¼ bþ x

h
a� bð Þ:

The area of the trapezoid is given as A ¼ h
2
a� bð Þ:

The centroid in the x direction is computed as

A�x ¼
ðh
0

xf xð Þdx

¼
ðh
0

x bþ x

h
a� bð Þ

� �
dx

¼ h2

6
2aþ bð Þ

1 2

Frequency resolution
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h
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Fig. 14 Illustration of

centroid method
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where �x ¼ h
3

2aþb
aþb

� �
, and A is the area of the trapezoid. Here, �x represents the

centroid of the trapezoid.

In case of equal energy at the output of individual subband, i.e., when a¼ b, the
midpoint can be verified as �x ¼ h

2
. The center frequency of the narrowband user is

related to h which represents the granularity of filter bank M , a and b are related to

the energies E1 and E2 of the adjacent subbands. The minimum of two subband

energies are represented as a, i.e., a¼min(E1,E2) andmaximum as b¼max(E1,E2).

Thus, the estimated center frequency bf c can be expressed as follows:

bf c ¼ M

3

2aþ b

E1 þ E2

� �
A generalized expression is obtained by considering the energies of subband Ei

and adjacent subband Eiþ 1.

bf c ¼ M

3

2min Ei;Eiþ1ð Þ þmax Ei;Eiþ1ð Þ
Ei þ Eiþ1

� �
The centroid method provides better accuracy in center frequency estimation

when the number of detected subbands is almost two. If the number of detected

subbands is beyond two, the centroid method does not provide accurate estimation

of center frequency. Since the energy distribution can no longer be modeled as a

trapezoid, the top edge cannot be written as a linear function. In such cases, a center

of mass method is used for estimation of center frequency.

8.6 Center Frequency Detection Using Center of Mass

The center of mass method can also be used to estimate the center frequency.

The energy of the subbands is related to the mass, and the distance is related to the

frequency. Consider the energy in two subbands as E1 and E2, let Δ1 and Δ2 be

the center point of spectral resolution in the subband bins as shown in Fig. 15.

The center frequency for the energy bins can be obtained using the law of center of

mass as

bf c ¼ E1Δ1 þ E2Δ2

E1 þ E2

The expression can be extended for different subbands, and the center frequency

can be calculated using the relation,
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bf c ¼
Pn
k¼1

EkΔkPn
k¼1

Ek

Thus the polyphase filter banks using the multirate system can be utilized for

wideband spectrum sensing in CR. The filter banks are useful for varied applica-

tions such as detection of spectral holes and estimation of center frequencies of

different primary users. The polyphase filter banks reduce the computational

complexity and provide efficient realization of filter bank structure for wideband

spectrum sensing.

9 Conclusions

The multirate filter bank-based spectrum analysis is applicable for multiband

spectrum sensing in cognitive radio applications. Different filter banks have been

analyzed for spectrum sensing in CR such as FFT, cosine-modulated filter banks,

and polyphase filter banks. From the performance analysis of the different filter

banks, the polyphase filter banks exhibit more reliable and efficient detection

performance. Polyphase filter banks take advantage of the low spectral leakage

property of the different subbands in the filter bank structure, which enables them to

enhance the performance of multiband spectrum sensing in cognitive radio net-

works. Moreover, the computational complexity of polyphase filter banks is

reduced when compared with other filter banks. In addition, the same filter bank

sensing architecture can be applied for transmission and reception of signals in

vacant subbands using channel adaptation techniques.

1 2

Frequency resolution
En

er
gy

h

h

2h

1E

2E

Fig. 15 Illustration of

center of mass
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