
Keyword-Based Search of Workflow Fragments
and Their Composition

Khalid Belhajjame1(B), Daniela Grigori1, Mariem Harmassi1,2,
and Manel Ben Yahia1

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR [7243],
LAMSADE, 75016 Paris, France

{khalid.belhajjame,daniela.grigori,mariem.harmassi,
manel.benyahia}@dauphine.fr

2 L3i Lab, Université de La Rochelle, La Rochelle, France
mariem.harmassi@univ-lr.fr

Abstract. Workflow specification, in science as in business, can be a
difficult task, since it requires a deep knowledge of the domain to be able
to model the chaining of the steps that compose the process of interest,
as well as awareness of the computational tools, e.g., services, that can be
utilized to enact such steps. To assist designers in this task, we investigate
in this paper a methodology that consists in exploiting existing workflow
specifications that are stored and shared in repositories, to identify work-
flow fragments that can be re-utilized and re-purposed by designers when
specifying new workflows. Specifically, we present a method for identi-
fying fragments that are frequently used across workflows in existing
repositories, and therefore are likely to incarnate patterns that can be
reused in new workflows. We present a keyword-based search method
for identifying the fragments that are relevant for the needs of a given
workflow designer. We go on to present an algorithm for composing the
retrieved fragments with the initial (incomplete) workflow that the user
designed, based on compatibility rules that we identified, and showcase
how the algorithm operates using an example from eScience.

1 Introduction

Workflows are popular means for specifying and enacting processes in business
as in science. For example, they are used in modern sciences to specify and enact
in-silico experiments, thereby allowing scientists to gain better understanding of
the phenomenon or hypothesis they are investigating. The design of scientific
workflows can however be a difficult task as it requires a deep knowledge of the
domain as well as awareness of the programs and services available for imple-
menting the workflow steps. To overcome this obstacle and facilitate the design
of workflows, many workflows repositories have emerged, e.g., myExperiment [1],

The research reported on this paper was supported by the french research agency
(ANR-14-CE23-0006). M. Harmassi and M. Ben Yahia contributed to this work
during their masters internship at the Lamsade Laboratory.

c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): TCCI XXVI, LNCS 10190, pp. 67–90, 2017.
DOI: 10.1007/978-3-319-59268-8 4

68 K. Belhajjame et al.

Crowdlabs [2] and Galaxy [3] to share, publish and enable reuse of workflows. For
example, De Roure et al. [1] pointed out the advantages of sharing and reusing
workflows as a solution to face the difficulty and cost of design.

Sharing and publishing workflows is however not sufficient to enable their
reuse. Over the past years, an important number of workflows has been shared by
scientists in several domains on the myExperiment workflow repository. However,
their users face difficulties when it comes to exploring and querying workflows.
Indeed, users still have to go through published workflows to identify those
that are relevant for their needs. The situation is exacerbated by the fact that
the number of workflows hosted by workflow repositories is rapidly increasing.
To overcome this problem, mining techniques can be utilized to automatically
analyze the workflows in the repository with the objective to provide templates
that assist users in the design of their own workflows, thereby allowing them to
take advantage of a knowledge-asset gained and verified by their peers.

Several works have been proposed in the literature for mining workflows (see,
e.g. [4–6]). Unlike these proposals, our objective is not to propose yet another
mining algorithm. Instead, we investigate the graph representations that can
be used to encode workflow specifications into graphs before they are exam-
ined by existing graph mining algorithms. We are particularly interested in sub-
graph mining techniques that find commonalities among fragments of workflows.
Indeed, fragments that are common to multiple workflows are likely to be pat-
terns that can be useful for designers when specifying new workflows. In elabo-
rating possible representations, we take into consideration the cost in terms of
time that the graph mining algorithm spends given a workflow representation,
and the impact of the representation on the quality of the mining algorithm
results.

As well as mining frequent workflows fragments, we investigate the problem
of exploring them by designers using keyword search. In doing so, we augment
traditional TF-IDF with semantic capabilities that take into consideration syn-
onym relation between the keywords used by users in their query and the terms
used to label the activities that compose workflow fragments. Furthermore, we
elaborate an algorithm for assisting designers in the composition of the retrieved
fragments with the initial (incomplete) workflows that they specified.

Accordingly, the contributions of this paper are as follows.

– We elaborate representation models for encoding workflows in the form of
graphs that can be used as input to sub-graph mining algorithms, and system-
atically evaluate the effectiveness of such representations through an empirical
evaluation (in Sect. 4).

– We present a keyword-based search method for identifying relevant frequent
graphs (in Sect. 5).

– We present an algorithm for assisting designers in the composition of the
workflow fragments with their (incomplete) workflow specification (in Sect. 6),
and showcase how it operates using an example from eScience (in Sect. 7).

Furthermore, we present the overall approach (in Sect. 2), review and com-
pare existing proposals to ours (in Sect. 3). Finally, we conclude the paper

Keyword-Based Search of Workflow Fragments and Their Composition 69

underlining the main contributions and discussing future research directions (in
Sect. 8).

The work reported in this paper is an extended version of the work presented
in [7]. In [7], we have investigated the representation models suitable for mining
workflow fragments (Sect. 4). In the extended version reported on in this paper,
we make the following new contributions. We (i) investigate keyword search
of workflow fragments (Sect. 5), (ii) study the problem of workflow fragment
composition (Sect. 6), (iii) show how the composition operates using an example
(Sect. 7). Furthermore, we weave the three pieces of mining, keyword search, and
composition of workflow fragments within a global method (Sect. 2), and extend
related work analysis (Sect. 3).

2 Approach Overview

Designing a workflow is a time consuming and sometimes expensive task. The
designer needs to be knowledgeable of the tools (services) that are available to
implement the steps in the process she desires. Furthermore, she needs to know
how such services can (or should) be connected together taking into consider-
ation, amongst other criteria, the types and semantic domains of their input
and output parameters. There has been a good body of work in the literature
on workflow discovery, see e.g., [8–10]. The typical approach requires the user
to specify a query in the form of a workflow that is compared with a collec-
tion of workflows. The workflows that are retrieved are then ranked taking into
consideration, amongst other things, the structural similarity between the work-
flow issued by the user and the workflows retrieved. In our work, we focus on
a problem that is different and that received little attention in the literature.
Specifically, we position ourselves in a context where a designer is specifying her
workflow and needs assistance to design parts of her workflow, e.g., because she
does not know the services that are available and that can be used to enact the
steps within the part in question. In certain situations, the designer may know
the services that can be used for such purpose, but would still like to acquire
knowledge about the best way/practice for connecting such services together.
The solution we describe in this paper has been elaborated with the needs of
such designers in mind. It can be used to assist them finding an existing fragment
that can be used to complete the workflow being designed. Furthermore, we pro-
vide the user with suggestions on the way such fragments can be composed with
the initial workflow.

Figure 1 illustrates our approach using two processes. Figure 1(a) illustrates
the process that is enacted offline to build a repository of workflow fragments.
Specifically, given a workflow repository, e.g., the myExperiment repository [1],
the labels used to name the activities in the workflow are homogenized. Indeed,
different designers are likely to use different labels to name activities that perform
the same task. For this purpose, we use existing state of the art techniques, which
consist in using shared vocabularies (dictionaries) to rename the activities of the
workflow. Once the labeling of the workflows in the repository is homogenized,

70 K. Belhajjame et al.

Fig. 1. An overview of the approach

we use sub-graph mining techniques, in particular the SUBDUE algorithm [11]
to identify frequent fragments, which are stored in a dedicated repository. It is
worth underlining that we only seek to mine frequent fragments since they are
likely to represent patterns (and therefore best practices) that can be useful for
the designer. Note also that our choice of Subdue is motivated by the popularity
of this algorithm.

Figure 1(b) illustrates the process used to mine workflow fragments and
exploit them when designing new workflows. In the first phase, the user starts
by designing an initial workflow based on her objectives. There are some parts
of the workflow that the designer may need assistance with. For a given part,
which we name fragment, the designer issues a query against a repository of
workflow fragments (phase 2). Such a query is composed of two elements: a set

Keyword-Based Search of Workflow Fragments and Their Composition 71

of keywords and a set of activities in the workflow being designed, which we
name joint activities. The set of keywords are used to identify the fragments in
the repository that are relevant. The joint activities specify the activities in the
workflow being designed to which the relevant fragment(s) are to be connected
to, to complete that workflow. This step returns a list of ranked candidates work-
flow fragments. The fragments are ranked based on the extent they match the
keywords specified by the designer, but also based on their amenability to be
connected to the joint activities in the workflow being designed. The user exam-
ines the top-k fragments and identifies the one or the ones she wishes to compose
with the initial workflow (phase 3). Our system makes suggestions to the user
on the way the composition can be performed (phase 4). The user accepts the
suggestions she deems appropriate and complete the composition when neces-
sary to obtain the desired workflow. We will present in more details the mining
of frequent workflow fragments, their retrieval and their composition in Sects. 4,
5 and 6, respectively.

Workflow Model

For the work we present in this paper, we view a workflow as a graph wf =
(N,E), where N is a set of nodes composed of the activities A that constitute the
workflow and control flow operators OP , i.e., N = A∪OP . E represents the set
of edges connecting activities and operators, i.e., E ⊆ (N ×N). We consider the
control flow operators supported by BPMN1, namely sequence, and-split, and-
join, or-split, or-join, xor-split and xor-split, the semantics of which is defined
below.

– Sequence: The sequence flow connector (represented as an edge) is used to
model the cases where the completion of the execution of an activity causes
(or initializes) the execution of another activity.

– And-split and And-join: This operator is used when the completion of the
execution of a given activity causes the execution of two or more activities,
which are executed concurrently. The activities that are triggered by an and-
split, or more precisely the workflow branches that are initialized by such
activities, are usually synchronized by an and-join operator. Such an operator
triggers the execution of the succeeding activity when the execution of given
activities comes to completion.

– Or-split and Or-join: This operator is used when the completion of the
execution of a given activity causes some or all of its subsequent activities
within the workflow, which, as for and-split, are executed concurrently. The
Or-join operator is usually used to synchronize the execution of workflow
branches that were triggered by an or-split. It initializes the execution of the
succeeding activity when the execution of some of the preceding activities
terminates.

1 http://www.bpmn.org.

http://www.bpmn.org

72 K. Belhajjame et al.

– Xor-split and Xor-join: Unlike or-split, the xor-split is used when the activ-
ities (branches) that succeed a given activity are mutually exclusive. There-
fore, during the execution one and only one of those activities are triggered.
The xor-join is usually used to synchronize the branches that succeed an xor-
split. It triggers the execution of the following activity once the execution of
one of its preceding activities comes to completion.

Figure 2 illustrates a simple workflow composed of five activities. The work-
flow contains three control flow operators. The and-split connects the activity
att1 to the activities att2 and att4, specifying that the execution of att2 and
att4 is triggered once the execution of att1 terminates. The sequence connector
is used to specify that the execution of att2 is followed by that of att3. Finally,
the and-join operators connects the activities att3 and att4 to the activity att5,
specifying that the execution of the latter is triggered once the execution of the
formers terminates.

Fig. 2. A simple workflow

3 Related Work

There are three lines of work that are similar to our proposal which we analyze in
this section and compare to our work: workflow similarity and mining, semantic
enrichment as a means for improving workflow discovery and intelligent support
for process modelling.

Workflow Similarity and Workflow Mining. The literature of business and sci-
entific workflows is rich with proposals that seek to mine existing workflows
and/or identify similarities between workflows. Existing work on workflow min-
ing, focused mainly on deriving a workflow specification (usually as a petri-net)
from logs of executions of the workflows. There are however some proposals that
focused on examining workflow specifications using clustering [12] and case-based
reasoning [13], among other techniques. For example, in the case of clustering-
based techniques, several similarity measures were employed to estimate the
distance between workflows. For example, Bae et al. [4] proposed a metric that
uses tree structures to take into account control flow operators such as paral-
lel branching and conditional choice. Diamantini et al. estimate the similarity

Keyword-Based Search of Workflow Fragments and Their Composition 73

between workflows based on the representation of workflows as Event Condition
Action rules (ECA) [14]. Other authors apply sub-graph isomorphism techniques,
see e.g. [5,6].

The above methods assess the similarity between entire workflows. In our
work, we are interested in identifying the similarity between fragments of work-
flows. In this respect, our work is more related to the proposal by Diamantini
et al. [14] who applied hierarchical graph clustering method in order to extract
common fragments of workflows. We focus on fragments as opposed to entire
workflows since there are more (realistic) opportunities for reuse at the level of
the fragment as opposed to the entire workflow. In other words, the chances that
the user finds a workflow that match her needs are slim. On the other hand, the
chances that she finds workflows that contains one of more fragments that may
contribute to her workflow are more likely.

Improving Similarity Using Semantic Enrichment. A comparative study of dif-
ferent methods for scientific workflow matching confirms that inclusion of exter-
nal knowledge improves both computational complexity and result quality [15].
While the application of semantic enrichment has received notable attention in
the literature as a means to enhance the quality of workflow matching, enhanc-
ing the quality of fragments matching has received less attention and is by and
large unexplored.

One of the main issue that benefits from semantic enrichment is that of
heterogeneity in naming the parameters of the workflows and their constituent
activities. To do so, taxonomies are used to infer relationships between activities
and their parameters [16,17]. We use a different strategy by augmenting existing
sub-graph mining techniques [16–19] with a preprocessing phase for homogeniz-
ing workflow labels and by enriching user keywords query for searching fragments
with synonyms. Trying to make a naive clustering of workflows in a repository
would lead us to inefficient and limited method. Moreover, a striking distinction
is that the previous works [17,18,20] propose the most reused fragments among
the dataset as templates. Due to the large collection of available data on-line,
the number of templates increases, which leads the designer to a heavy activity
of browsing and analyzing the pool of templates in order to understand what
could be useful to him. Instead, our work consists on assisting designer by using
a simple keyword search to suggest the most probable component that could help
her. We also offer support for integrating this fragment in her current workflow.

With the exception of the work by Diamantini et al. [14], we are not aware
of any proposal that investigated the impact of the representation model used
to encode workflows on the effectiveness and efficiency of workflow fragment
mining. We proposed new models with respect to the work by Diamantini
et al. We also conducted an empirical evaluation to investigate the advantages
and limitations of each model. This study revealed that the representation model
that we proposed out-preforms the remaining models both in terms of effective-
ness and efficiency.

74 K. Belhajjame et al.

Advanced Support and Recommendation for Process Modelling. A categoriza-
tion of recommendation techniques for process modelling is presented in [21],
including textual recommendation, structural recommendation and linking rec-
ommendation. Following this classification, our technique would fall into the
category of structural recommendation, that can be used for forward or back-
ward completion. The approach in [22] aims also at helping designers to reuse
parts of workflow models. In contrast with our approach, the user is required to
describe the missing fragment using a dedicated query language.

Recommendation of an operator to extend a data analysis process is proposed
in [23], based on a prediction model that is learned in a pre-processing phase
using a pool of several thousand real-world data analysis workflows.

The notion of configurable operator that we use in our work is inspired by
the works on configurable workflows (e.g., [24]), where it has a different goal,
that of defining a generic process model whose behavior encompasses those of
its variants. The configurable process model, resulting from the union of several
alternative processes keeps information allowing analysts to track back, for each
element, the process model form which it originates. Thus, the approach in
[24] proposes to use it to construct the intersection of the process models, i.e.,
to identify common process fragments. A configurable business process is used
also in [25] to create a Bayesian network to allow probabilistic recommendation
queries.

Among the approaches for intelligent support for modelling, the work the
most similar to the one presented in this paper is [26], which offers a search
interface for process model fragments based on semantic annotations (tags). In
contrast with our work, where process fragments are automatically extracted by
mining the repository, users manually declare logically coherent process parts as
fragments and assign titles to them.

To conclude, while similar works exist for different steps of our approach,
the contribution presented in this paper is a complete and realistic solution
for reusing process fragments starting from mining an heterogeneous repository
using an efficient workflow encoding format, for offering a semantically enhanced
keyword search, and for including support for their integration (composition) in
a new workflow during the design task.

4 Mining Frequent Workflow Fragments

Given a repository of workflows, we would like to mine frequent workflow frag-
ments, i.e., fragments that are used across multiple workflows. Such fragments
are likely to implement tasks that can be reused in newly specified workflows.
Mining workflows raises the following questions.

– How to deal with the heterogeneity of the labels used by different users to model
the activities of their workflows within the repository? Different designers use
different labels to name the activities that compose their workflow. We need
a mean to homogenize the labels before mining the workflows in order not to
miss relevant fragments.

Keyword-Based Search of Workflow Fragments and Their Composition 75

– Which graph representation is best suited for formatting workflows for min-
ing frequent fragments? We argue that the effectiveness and efficiency of the
mining algorithm used to retrieve frequent fragments depend on the repre-
sentation used to encode workflow specifications.

4.1 Homogenizing Activity Labels

To be able to extract frequent workflow fragments, we first need to identify
common activities. Thus, activities implementing the same functionality should
have the same names. Some workflow modelling tools (see for example Signavio2)
handle a dictionary and allow to reuse dictionary entries via a search or by
the auto-completion function (when user starts typing an activity label, the
system suggests similar activity labels from the dictionary). If models in the
repository come from different tools and use different naming conventions, a
preprocessing step is applied to homogenize activity labels using a dictionary
[27]. For facilitating this step, we rely on existing techniques like [28]. These
techniques are able to recognize the labelling styles and to automatically refactor
labels with quality issues. These labels are transformed into a verb-object label
by the derivation of actions and business objects from activity labels. The labels
of verb-object style contain an action that is followed by a business object, like
Create invoice and Validate order. The benefits of this style of labeling have
been promoted by several practical studies and modeling guidelines. Synonyms
are also handled in this step. They are recognized using the WordNet lexical
database and they are replaced with a common term.

4.2 Workflow Encoding

In order to extract frequent patterns, we use an existing graph mining algo-
rithm, SUBDUE [11]. SUBDUE is a heuristic approach that uses a measure-
theoretic information, the minimum description length, to find important sub-
graphs. Thus, the workflow model must be translated to a graph format. To this
end, we studied some of the state of the art representation models and proposed
one that can enhance the running time, the memory space required, and also the
significance of the patterns extracted. In fact, we show that the representation
model is of major importance.

The pre-processing phase consists of transforming a workflow into a compact
graph representation. Indeed, the level of compactness depends on the represen-
tation model selected. As demonstrated by Diamantini et al. [14] and supported
by our experimentation which we will report later on, the choice of the encod-
ing model affects not only the time required for mining fragments, but also the
relevance of the fragments returned.

In the experiment conducted by Diamantini and coauthors, three represen-
tation models A, B and C have been proposed (see Fig. 4). In all these models,

2 www.signavio.com.

http://www.signavio.com/

76 K. Belhajjame et al.

the activities are mapped to the so called activity nodes, while the representa-
tion of operators differs from one model to another. Specifically, in model A,
each operator is represented by two nodes, called control nodes (to distinguish
them from activities nodes): the first one is labeled “operator” and the second
one is used to specify the type of operator. The labels that can be assigned to
the latter one are: sequence, AND or XOR. The model A does not explicitly
mention the difference between JOIN and SPLIT which can be deduced from
the number of ingoing and outgoing arcs. The second model, model B assigns a
control node to each operator, i.e., AND-split, XOR-split, AND-join, XOR-join.
The operator SEQ is not explicitly represented by a node, instead it is trans-
lated into an edge connecting the activity nodes in question. Finally, the third
model, C model simplifies the graph by removing both join and split nodes. XOR
nodes are removed by generating a graph for each alternative path. In this way,
the only nodes having several ingoing/outgoing activity are the AND nodes. As
there is no ambiguity about these nodes, they can be removed also. Edges are
labeled to maintain information about the type of the operator and its operand
nodes.

Fig. 3. An example of BPMN process (figure extracted from [14]).

According to the experiments conducted by Diamantini et al., model A is
the most costly in terms of execution time and also the less effective as it gen-
erates the least significant patterns. Indeed, when using representation model A
the majority of nodes are control nodes. On the other hand, the model C con-
tains no control node. The advantage of the model C is that the edges conveys
information about the nodes attached to and the nature of the operator con-
necting them, which resulted in a gain in terms of storage space and execution
time required. However, the disadvantage of model C lies in the mapping of the
“XOR” operator; a graph is generated for each alternative which makes spatio-
temporal complexity grow exponentially with the size of input data. Indeed, let
us consider the case, where during the parsing of the original business process
to convert into graph format the next node type is XOR-split with at least
two incidents arcs. In this case, the number of graphs generated is doubled. In
addition, if we consider an example repository where one of its most common
substructures includes an operator XOR, this knowledge will not be discovered.
Each path of the XOR operator will be extracted separately, but the fragment
of business processes which contains all of these alternatives will not be consid-
ered as a whole. However, the model C is suitable for the discovery of typical
pathways, which can be useful for some application domains.

Keyword-Based Search of Workflow Fragments and Their Composition 77

Fig. 4. Graphic of different representation models A, B, C and D.

Compared to model A and C, the model B has the higher level of compact-
ness without a loss of information. In fact, representation model B reflects most
closely the initial business process scheme. Therefore, patterns discovered based
on this model are more interesting than those extracted by model A and C for
searching and indexing cases.

We suggest a new representation model for workflows. We tried to take advan-
tage of the previous models A, B and C and come up with a new model D that
alleviates the disadvantages of such representation models. Specifically, we use
the same strategy as the model C, in the sense that no control node is used.
The edge connecting two activity nodes are labelled to indicate the kind of the
control operator(s) connecting the nodes. We propose two variant representation
models: D and D1. In the representation model D, the edges are labelled with the
type of the operator and the labels of the activities that the operator connects.
In the representation model D1, the edges are labeled only with the type of the
control operator. That is, it does not consider the labels of the activities.

4.3 Empirical Evaluation

The methodology we have just described raises the following question: Is the
representation model that we propose suitable for mining frequent workflow frag-
ments? In this section we report on an empirical evaluation that we conducted
to answer such a question.

78 K. Belhajjame et al.

Experimental Setting

We ran our experiment on a DELL machine with an Intel Core i7-2670QM
processor with a 2.20 GHz frequency. We used the SUBDUE 5.5.2 tool in the
fragment mining algorithm phase. We configured SUBDUE by choosing the MDL
as a selection criterion with beam width equal to 4 and the number of top
substructures returned set to 10.

We compared the representation models, namely A, B, C, D and D1. Our
goal is to show, amongst other things, the drawbacks of the representation model
C when it comes to dealing with datasets containing workflows with XOR oper-
ators. To do so, we generated three datasets composed of 30, 42 and 71 work-
flows. The datasets are composed of a mixture of some synthetic workflows that
are obtained by mutating the workflow illustrated in Fig. 3 and some real ones
selected from the Taverna 1 repository [1]. We manually examined the workflows
generated to identify useful frequent fragments. Therefore, to measure the effec-
tiveness of the representation models presented in this paper, we computed the
precision and recall of the results obtained using each model.

Evaluation Results

Figure 5 illustrates the size of the graphs created using the different representa-
tion models. It shows that model A is the most expensive in term of space disk
required to represent the dataset in graph format. Figure 6 compares the perfor-
mances of the different representation models in terms of space disk, execution
time and quality of results for different number of processes in the data set. Our
results confirm those reported by Diamantnini et al. The A model requires the
longest execution time (at least 7 times more than all other models); note this
is not depicted in Fig. 6 for visibility reasons. Regarding the qualitative perfor-
mance of the A model, we notice that when the number of workflows increases
to 71, the recall decreases to 0%. This is due to the fact that control operators in
the A model are represented by two nodes connected by an edge. For example the
And-Split operator gives rise to two nodes connected by an edge: one is labelled
“Operator” and the second “And-Split”. Therefore, when mining the workflow
repository using such a representation, the SUBDUE algorithm finds that the
fragments representing control flow operators are the most frequent and returns
them. However, they are useless for the designer as they do not implement any
useful pattern that can be reused.

Concerning the C model, as expected, Fig. 5 shows that it may require more
than twice the number of edges and nodes required by the models that we
propose, namely D and D1. In addition, the model C is associated with a recall
rate that varies between 32% and 34% for all tested databases which confirms
that the C model can, at best, discover only one alternative at a time (in our
case there are 2 alternatives attached to the XOR node).

Qualitatively, the B model performs much better than the A and C models.
It retrieves successfully twice the number of significant elements retrieved using
the C model and between 66% to 135% more than the A model. The B model was

Keyword-Based Search of Workflow Fragments and Their Composition 79

also able to discover more relevant workflow fragments than model D (about 10%
more). This is due to the fact that the D model uses activity labels when labeling
the edges. This over-specification of the labeling of the edges yields missing some
fragments, and has therefore a negative impact on the recall. Note, however, that
the B model returned more irrelevant workflow fragments (around 7%), which
impacted negatively on the precision. Concerning the disk space requirements,
the B model required between 25% up to 40% more space compared with the D
and D1 models.

Based on the results illustrated in Fig. 6, we can observe a common precision
performance between models D and D1. This performance is due to the fact
that these two models do not use control nodes thereby avoiding retrieving false
positive fragments, which will have a negative impact on the precision. We note,
on the other hand, that the D1 model performs better than the D model when
it comes to recall. This is due, as mentioned earlier, to the fact that the D
model over-specifies the labels of the edges by using as well as the name of the
control-operator, the labels of the activities connected by such an operator.

As SUBDUE loads the input data and performs all calculations in main
memory, reducing the search space and the input file size, would also reduce the
amount of memory required and computation time. Moreover, the D1 model also
requires the smallest space compared with the other models. We can therefore
conclude from this experiment that the D1 model was not only able to extract
the most significant fragments but also did so in a relatively short execution
time and required the least memory space. The performance achieved by the D1
model through this experiment has proven its effectiveness and efficiency.

5 Keyword-Based Search of Frequent Workflow
Fragments

Given an initial workflow, the user issues a query to characterize the desired
missing workflow fragment. The query is composed of two elements. The first
element is a set of keywords {kw1, . . . , kwn} characterizing the functionality that
the fragment should implement. The user selects the terms of her own choice.
In other words, we do not impose any vocabulary for keyword specification. The
second element in the user query specifies the activities in the initial workflow
that are to be connected to the fragment in question, Acommon = {a1, . . . , am}.
Generally speaking, the user will specify one or two activities in the initial work-
flow. We call such activities using the terms common activities or joint activities,
interchangeably.

The first step in processing the user query consists in identifying the frag-
ments in the repository that are relevant given the specified keywords. In doing
so, we adopt the widely used technique of TF/IDF (term frequency/inverse
document frequency) measure. It is worth mentioning here that the workflow
fragments in the repository are indexed by the labels of the activity obtained
after the homogenization of the workflow (see Sect. 4.1). We refer to such an

80 K. Belhajjame et al.

Fig. 5. Size of the graphs using the different representation models.

Fig. 6. Performances of the different representation models.

Keyword-Based Search of Workflow Fragments and Their Composition 81

index by IDX. Applying directly TF/IDF based on the set of keywords pro-
vided by the user is likely to miss some fragments. This is because the designer
provides keywords of her own choosing; a given keyword may not be present
in the repository, while one of its synonyms could be present. To address this
issue, we adopt the following method which augments traditional TF/IDF with
a semantic enrichment phase. Specifically, given a set of keywords provided
by the user {kw1, . . . , kwn}, for each keyword kwi we retrieve its synonyms,
which we denote by syn(kwi) from an existing thesaurus, e.g., Wordnet [29] or
a specialized domain specific thesaurus if we are dealing with workflows from
a specific domain. The index IDX is trawled to identify if there is a term in
syn(kwi) ∪ {kwi} that appears. If this is the case, then the term in the index is
used to represent kwi in the vector that will be used to compare the query with
the vectors representing the workflow fragments in the repository.

Note also that multiple keywords, e.g., kwi and kwj , may be mapped to
the same term kwIDX in the index IDX, in this case we set the frequency of
the kwIDX to be the number of keywords it represents when computing the
associated TF/IDF. In certain situations, we may need to use the hypernyms
of kwi. This is specifically the case when none of the terms in IDX appears in
syn(kwi) ∪ {kwi}. Using the hypernyms in such a case may allow us to identify
a term in IDX that can be used to represent kwi in the vector representing the
user query.

Once the vector that represents the user query is constructed and the TF/IDF
of its associated terms are calculated, it is compared against the vectors repre-
senting the workflow fragments in the repository using the cosine similarity [30].

The set of fragments retrieved in the previous step, which we call candi-
date fragments, are then examined. Specifically, their constituent activities are
compared and matched against the activities in Acommon, that are specified by
the user. Given a candidate fragment wffrg, each activity aj in Acommon is
compared (matched) against the activities that constitute the fragment wffrg.
The objective of this step is to identify the activities that will be in common
between the fragment and the initial workflow. Note that for a given activity
aj in Acommon there may be more than one matching activity in the fragment
wffrg. In this case, we associate aj with the activity in wffrg with the highest
matching score. Reciprocally, if two activities ai, aj in Acommon are associated
with the same activity in wffrg, the one with the highest score is kept and other
matcher is searched for the second one (such that the sum of the similarities of
the global mapping is maximised). Note also that it is possible that aj may not
have any matching activities among those of the fragment wffrg. The matching
is performed using existing techniques for matching activity labels [31]. These
techniques tokenize the activity labels, remove stop words and then apply syn-
tactic string comparisons (string edit distance, number of common words) and
take semantic relationships into account based on the lexical database WordNet.

The last step in the query processing consists in ranking the candidate frag-
ments. The ranking takes into consideration the following factors.

82 K. Belhajjame et al.

1. The relevance score of the candidate fragment calculated based on TF/IDF
given a user query uq. (We view a fragment as a document, or more specifi-
cally, we consider the terms labeling the activities in the fragment when com-
puting the TF/IDF.) We use Relevance(wffrg, uq) to denote the relevance
score associated with a candidate fragment wffrg given the user query.

2. The frequency of use of the fragment in the repository. The fragment that
are used across multiple workflows are likely to implement best practices that
are useful for the workflow designer compared with workflow fragment that
are used in, say, only 2 workflows. We use Frequency(wffrg) to denote the
frequency, i.e., the number of times a candidate fragment wffrg appears in
the mined workflow repository.

3. The compatibility of the candidate fragment with the inital workflow. To
estimate the compatibility, we consider the number of activities in Acommon

that have a matching activity in the workflow fragment and their associ-
ated matching score. Specifically, we define the compatibility of a workflow
fragment given the activities uq.Acommon specified in the user query uq as
follows:

Compatibility(wffrg, uq.Acommon) =

∑
aj∈Acommon

matchingScore(aj , wffrg)

|Acommon|

where matchingScore(aj , wffrg) is the matching score between aj and the
best matching activity in wffrg, and |Acommon| the number of activities in
Acommon. Compatibility(wffrg, Acommon) takes a value between 0 and 1. The
larger is the number of activities Acommon that have a matching activity in
wffrg and the higher are the matching scores, the higher is the compatibility
between the candidate workflow fragment and the initial workflow.

Based on the above factors, we define the score used for ranking candidate
fragments given a user query uq as:
Score(wffrg, uq) =

wr.Relevance(wffrg, uq) + wf .
Frequency(wffrg)

MaxFrequency
+ wc.Compatibility(wffrg, uq.Acommon)

where wr, wf and wc are positive real numbers representing weights such that
wr +wf +wc = 1. MaxFrequency is a positive number denoting the frequency
of the fragment that appears the maximum number of times in the workflow
repository harvested. Notice that the score takes a value between 0 and 1. Once
the candidate fragments are scored, they are ranked in the descendant order
of their associated scores. The top-k fragments, e.g., 5, are then presented to
the designer who selects to the one to be composed with the initial workflow.
Initially the weights wr, wf and wc take equal values. Then, depending on the
performance and the feedback provided by the user they can be adjusted.

6 Composing Workflow Fragments

Once the user has examined the fragments that are retrieved given the set of
keywords she specified, she can choose a fragment to be composed with the

Keyword-Based Search of Workflow Fragments and Their Composition 83

initial workflow she was designing. We present in this section a method that
can assist the designer in the composition task. Specifically, we consider that
the user has designed an initial workflow wfinitial and selected a fragment
wffrg to be composed with wfinitial. We turn our attention first to the case
where wfinitial and wffrg has one activity in common acommon. We denote by
in(acommon, wf) the set of activities that precedes acommon in the workflow wf ,
and by out(acommon, wf) the set of activities that succeed acommon in the work-
flow wf .

Fig. 7. Composition algorithm

Figure 7 sketches the algorithm used for composing wfinitial and wffrg. If
there is no succeeding activity for acommon in wfintial and there is no preceding
activity for acommon in wffrg then wfinitial is composed in sequence with wffrg
based on acommon (lines 1 and 2). Inversely, if there is no preceding activity for
acommon in wfinitial and there is no succeeding activity for acommon in wffrg
then wffrg is composed in sequence with wfinitial based on acommon (lines 3
and 4). The above cases are illustrated using Fig. 8.

If acommon has preceding activities in both wfinitial and wffrg (line 5), then
we connect the two workflows using a configurable join operator as illustrated in
Fig. 8 (lines 6 and 7). We call such an operator configurable because it is up to
the user to choose if such an operator is of a type and – join, or – join or xor –
join. The preceding activities of such an operator are the preceding activities of
wfinitial and wffrg, and its succeeding activity is acommon (Fig. 9).

If acommon has succeeding activities in both wfinitial and wffrg (line 8), then
we use a configurable split operator to connect the two workflows as illustrated
in Fig. 10 (lines 9 and 10). We call such an operator configurable because it is

84 K. Belhajjame et al.

up to the user to choose if such an operator is of a type and-split, or-split or xor-
split. The preceding activity of such an operator is acommon and its succeeding
activities are the succeeding activities of wfinitial and wffrg.

Fig. 8. Merging the initial workflow and a fragment in sequence based on the common
activity acommon.

Fig. 9. Merging the preceding activities of the initial workflow and a fragment using a
configurable join control operator.

Fig. 10. Merging the succeeding activities of the initial workflow and a fragment using
a configurable split control operator.

If the initial workflow and the fragment has more than one activity in common
then we perform the processing we have just described above iteratively using
one activity at a time. Note, however, that one would expect in the general
case that there is one activity in common between the initial workflow and the
fragment selected by the user. Having multiple activities in common between the
initial workflow and the fragment is likely to lead to complex workflows that are
difficult to understand thereby out-weighting the benefits that can be derived
from fragment reuse. Once the initial workflow and the fragment selected are

Keyword-Based Search of Workflow Fragments and Their Composition 85

merged, the user examines the obtained workflow, makes changes in terms of
activities and control flow connectors if necessary. In particular, the user will
need to substitute configurable join and split operators with concrete operators,
e.g., and-split or or-split, that meet the semantics of the process she has in mind.
As mentioned earlier, the user may want to merge another fragment once the
initial workflow and the current fragment has been merged. The same processing
described above will be applied to the newly selected fragment.

7 Example from eScience

In this section, we illustrate the use of the method we have proposed in this paper
to assist a designer of a workflow from the eScience field. Specifically, we show
how the method described can help the designer specify a workflow that is used
for analyzing Huntington’s disease (HD) data. Huntington’s disease is the most
common inherited neurodegenerative disorder in Europe, affecting 1 out of 10000
people. Although the genetic mutation that causes HD was identified 20 years
ago [32], the downstream molecular mechanisms leading to the HD phenotype
are still poorly understood. Relating alterations in gene expression to epigenetic
information might shed light on the disease aetiology. With this in mind, the
scientist wanted to specify a workflow that annotate HD gene expression data
with publicly available epigenetic data [33].

Fig. 11. Initial Huntington disease profiling workflow.

The initial workflow specified by the designer is illustrated in Fig. 11. The
workflow contains three activities that are ordered in sequence. The first activity
MapGeneToConcept is used to extract the concepts that are used in domain
ontologies to characterize a given gene that is known or suspected to be involved
in an infection or disease, in this case the Huntigton Disease. The second activity
IndentifySimilarConcepts is then used to identify for each of those concepts,
the concepts that are similar. The rational behind doing so is that genes that
are associated with concepts that are similar to concepts that are involved in

86 K. Belhajjame et al.

the disease have chances of being also involved in the disease. This activity
involves running ontological similarity tests to identify similar concepts. The
third activity GetConceptIds is then used to extract the identifiers of the similar
concepts.

The workflow depicted in Fig. 11 does not completely implement the analysis
that the designer would like. In particular, the designer would like to profile
and rank the similar concepts that have been identified by the third activity
but is unaware of the service implementations that can be used to do so. To
assist the designer in this task, we asked him to identify the common activity
to which the missing fragment is to be attached to. She identified the activity
GetConceptIDs as the common activity. We then asked him to provide a set of
keywords characterizing the desired fragment. She provided as a result the follow-
ing set: {concept, score, rank, profile}. Using the method presented in Sect. 5,
we retrieved candidate fragments. Figure 12 illustrates the fragment that was
first ranked in the results and was selected by the user. The common activity is
named GetTermIdentifiers in the fragment, which is different from the label of
the common activity in the initial workflow, GetConceptIds. Still, our method
was able detect it as a common activity thanks to the string similarity utilized.

Fig. 12. Candidate fragment selected by the workflow designer.

By applying the composition algorithm presented in Sect. 6 to merge the
initial workflow and the fragment selected by the user, we obtained the workflow
depicted in Fig. 13. Indeed, the common activity has no succeeding activity in
the initial workflow and has no preceding activity in the workflow fragment (lines
1, 2 in Fig. 7). Therefore, the two workflows are connected ins sequence using
the common activity.

Keyword-Based Search of Workflow Fragments and Their Composition 87

Fig. 13. Workflow obtained by merging the initial workflow and selected fragment.

8 Conclusion

We presented in this paper a methodology for improving the reusability of frag-
ments within workflow repositories, with the objective of allowing workflow
designers to benefit from existing workflows (and the knowledge they encom-
pass) when designing new workflows. Specifically, we examined the representa-
tion model that can be used for formatting workflows before they are mined.
In order to propose a realistic and complete solution, we showed also how to
deal with the heterogeneity of activity labels as a preprocessing step before min-
ing. The experimentation shows the effectiveness of the representation model
in improving the performance of the mining task. The mined fragments can be
searched by designers using a simple free keyword search and automatically inte-
grated in the initial workflow model. Our ongoing work aims to examine how
several fragments from different workflow specifications can be combined to meet
user needs. We also intend to perform a larger scale evaluation to assess the per-
formance of the solution proposed and a user study to evaluate the efficiency
gain of a designer using our approach.

88 K. Belhajjame et al.

References

1. De Roure, D., Goble, C.A., Stevens, R.: The design and realisation of the
myexperiment virtual research environment for social sharing of workflows. Future
Gener. Comput. Syst. 25(5), 561–567 (2009)

2. Mates, P., Santos, E., Freire, J., Silva, C.T.: CrowdLabs: social analysis and visu-
alization for the sciences. In: Cushing, J.B., French, J., Bowers, S. (eds.) SSDBM
2011. LNCS, vol. 6809, pp. 555–564. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22351-8 38

3. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy: a
platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455
(2005)

4. Bae, J., Caverlee, J., Liu, L., Yan, H.: Process mining by measuring process block
similarity. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 141–152.
Springer, Heidelberg (2006). doi:10.1007/11837862 15

5. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-science and a graph-based solution. In: International Conference on Web Services,
ICWS 2006, Chicago, IL, pp. 312–319. IEEE (2006)

6. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127 (2014)

7. Harmassi, M., Grigori, D., Belhajjame, K.: Mining workflow repositories for
improving fragments reuse. In: Cardoso, J., Guerra, F., Houben, G.-J., Pinto, A.M.,
Velegrakis, Y. (eds.) KEYSTONE 2015. LNCS, vol. 9398, pp. 76–87. Springer,
Cham (2015). doi:10.1007/978-3-319-27932-9 7

8. Deutch, D., Milo, T.: Evaluating TOP-K queries over business processes. In: Pro-
ceedings of the 25th International Conference on Data Engineering, ICDE 2009,
Shanghai, China, 29 March 2009–2 April 2009, pp. 1195–1198 (2009). http://dx.
doi.org/10.1109/ICDE.2009.199

9. Goderis, A., Li, P., Goble, C.A.: Workflow discovery: requirements from
e-science and a graph-based solution. Int. J. Web Serv. Res. 5(4), 32–58 (2008).
http://dx.doi.org/10.4018/jwsr.2008100102

10. Starlinger, J., Brancotte, B., Boulakia, S.C., Leser, U.: Similarity search for sci-
entific workflows. PVLDB 7(12), 1143–1154 (2014). http://www.vldb.org/pvldb/
vol7/p.1143-starlinger.pdf

11. Jonyer, I., Cook, D.J., Holder, L.B.: Graph-based hierarchical conceptual cluster-
ing. J. Mach. Learn. Res. 2, 19–43 (2001)

12. Yaman, M.B.F., Oates, T.: A context driven approach for workflow mining. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, pp. 1798–1803. Morgan Kaufmann Publishers Inc.
(2009)

13. Leake, D., Kendall-Morwick, J.: Towards case-based support for e-science workflow
generation by mining provenance. In: Althoff, K.-D., Bergmann, R., Minor, M.,
Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 269–283. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85502-6 18

14. Diamantini, C., Potena, D., Storti, E.: Mining usage patterns from a repository of
scientific workflows. In: Proceedings of the ACM Symposium on Applied Comput-
ing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, pp. 152–157. ACM (2012).
http://doi.acm.org/10.1145/2245276.2245307

http://dx.doi.org/10.1007/978-3-642-22351-8_38
http://dx.doi.org/10.1007/978-3-642-22351-8_38
http://dx.doi.org/10.1007/11837862_15
http://dx.doi.org/10.1007/978-3-319-27932-9_7
http://dx.doi.org/10.1109/ICDE.2009.199
http://dx.doi.org/10.1109/ICDE.2009.199
http://dx.doi.org/10.4018/jwsr.2008100102
http://www.vldb.org/pvldb/vol7/p.1143-starlinger.pdf
http://www.vldb.org/pvldb/vol7/p.1143-starlinger.pdf
http://dx.doi.org/10.1007/978-3-540-85502-6_18
http://doi.acm.org/10.1145/2245276.2245307

Keyword-Based Search of Workflow Fragments and Their Composition 89

15. Starlinger, J., Brancotte, B., Cohen-Boulakia, S., Leser, U.: Similarity search for
scientific workflows. In: 40th International Conference on Very Large Data Bases,
VLDB Endowment, Hangzhou, China, pp. 2150–8097 (2014)

16. Cuzzocrea, A., Diamantini, C., Genga, L., Potena, D., Storti, E.: A composite
methodology for supporting collaboration pattern discovery via semantic enrich-
ment and multidimensional analysis. In: 6th International Conference of Soft Com-
puting and Pattern Recognition (SoCPaR), Tunis, Tunisa, pp. 459–464. IEEE
(2014)

17. Garijo, D., Corcho, Ó., Gil, Y.: Detecting common scientific workflow fragments
using templates and execution provenance. In: Proceedings of the Seventh Inter-
national Conference on Knowledge Capture, pp. 33–40. ACM, New York (2013)

18. Diamantini, C., Genga, L., Potena, D., Storti, E.: Innovation pattern analysis. In:
2013 International Conference on Collaboration Technologies and Systems (CTS),
San Diego, CA, pp. 628–629. IEEE (2013)

19. Garijo, D., Corcho, Ó., Gil, Y., Gutman, B.A., Dinov, I.D., Thompson, P.M.,
Toga, A.W.: Fragflow automated fragment detection in scientific workflows. In:
10th IEEE International Conference on e-Science, Sao Paulo, Brazil, pp. 281–289.
IEEE (2014)

20. Diamantini, C., Genga, L., Potena, D., Storti, E.: Discovering behavioural patterns
in knowledge-intensive collaborative processes. In: Appice, A., Ceci, M., Loglisci,
C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS, vol. 8983, pp.
149–163. Springer, Cham (2015). doi:10.1007/978-3-319-17876-9 10

21. Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation tech-
niques in business process modeling. In: Proceedings of 9th Workshop on Knowl-
edge Engineering and Software Engineering (KESE9) Co-located with the 36th
German Conference on Artificial Intelligence (KI 2013), Koblenz, Germany, 17
September 2013

22. Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by selection: a reuse-based app-
roach for business process modeling. In: Jeusfeld, M., Delcambre, L., Ling, T.-W.
(eds.) ER 2011. LNCS, vol. 6998, pp. 332–345. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24606-7 25

23. Jannach, D., Jugovac, M., Lerche, L.: Adaptive recommendation-based modeling
support for data analysis workflows, pp. 252–262 (2015)

24. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.M.: Business process model merging:
an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol.
22(2), 11 (2013)

25. Bobek, S., Nalepa, G.J., Grodzki, O.: Integration of activity modeller with Bayesian
network based recommender for business processes. In: Proceedings of 10th Work-
shop on Knowledge Engineering and Software Engineering (KESE10) Co-located
with 21st European Conference on Artificial Intelligence (ECAI 2014), Prague,
Czech Republic, 19 August 2014

26. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for
business process modeling. Data Knowl. Eng. 70(6), 483–503 (2011)

27. Peters, N., Weidlich, M.: Automatic generation of glossaries for process modelling
support. Enterp. Model. Inf. Syst. Archit. 6(1), 30–46 (2011)

28. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

29. Princeton University (2010) About WordNet. http://wordnet.princeton.edu/
wordnet/

http://dx.doi.org/10.1007/978-3-319-17876-9_10
http://dx.doi.org/10.1007/978-3-642-24606-7_25
http://dx.doi.org/10.1007/978-3-642-24606-7_25
http://wordnet.princeton.edu/wordnet/
http://wordnet.princeton.edu/wordnet/

90 K. Belhajjame et al.

30. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern information retrieval - the concepts
and technology behind search, 2nd edn. Pearson Education Ltd., Harlow (2011).
http://www.mir2ed.org/

31. Cayoglu, U., et al.: Report: the process model matching contest 2013. In: Lohmann,
N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 442–463. Springer,
Cham (2014). doi:10.1007/978-3-319-06257-0 35

32. The Huntington’s Disease Collaborative Research Group: A novel gene contain-
ing a trinucleotide repeat that is expanded and unstable on Huntington’s disease
chromosomes. Cell 72(6), 971–983 (1993)

33. Mina, E., van Roon-Mom, W., ’t Hoen, P.A., Thompson, M., van Schouwen, R.,
Kaliyaperumal, R., Hettne, K., Schultes, E., Mons, B., Roos, M.: Prioritizing
hypotheses for epigenetic mechanisms in Huntington’s disease using an e-science
approach. J. BioData Min. (2014, submitted)

http://www.mir2ed.org/
http://dx.doi.org/10.1007/978-3-319-06257-0_35

	Keyword-Based Search of Workflow Fragments and Their Composition
	1 Introduction
	2 Approach Overview
	3 Related Work
	4 Mining Frequent Workflow Fragments
	4.1 Homogenizing Activity Labels
	4.2 Workflow Encoding
	4.3 Empirical Evaluation

	5 Keyword-Based Search of Frequent Workflow Fragments
	6 Composing Workflow Fragments
	7 Example from eScience
	8 Conclusion
	References

