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Abstract. In this work, we propose a training algorithm for an audio-
visual automatic speech recognition (AV-ASR) system using deep recur-
rent neural network (RNN). First, we train a deep RNN acoustic model
with a Connectionist Temporal Classification (CTC) objective function.
The frame labels obtained from the acoustic model are then used to per-
form a non-linear dimensionality reduction of the visual features using a
deep bottleneck network. Audio and visual features are fused and used
to train a fusion RNN. The use of bottleneck features for visual modal-
ity helps the model to converge properly during training. Our system
is evaluated on GRID corpus. Our results show that presence of visual
modality gives significant improvement in character error rate (CER) at
various levels of noise even when the model is trained without noisy data.
We also provide a comparison of two fusion methods: feature fusion and
decision fusion.

Keywords: Audio-visual speech recognition · Connectionist Temporal
Classification · Recurrent neural network

1 Introduction

Audio-visual automatic speech recognition (AV-ASR) is a case of multi-modal
analysis in which two modalities (audio and visual) complement each other to
recognize speech. Incorporating visual features, such as speaker’s lip movements
and facial expressions, into automatic speech recognition (ASR) systems has
been shown to improve their performances especially under noisy conditions.
To this end several methods have been proposed which traditionally included
variants of GMM/HMM models [3,5]. More recently AV-ASR methods based on
deep neural networks (DNN) [14,21,23] have been proposed.

End-to-end speech recognition methods based on RNNs trained with CTC
objective function [10,11,19] have come to the fore recently and have been shown
to give performances comparable to that of DNN/HMM. The RNN trained
with CTC directly learns a mapping between audio feature frames and char-
acter/phoneme sequences. This method eliminates the need for an intermediate
step of training GMM/HMM model, thereby simplifying the training procedure.
To our knowledge, so far AV-ASR systems based on RNN trained with CTC
have not been explored.
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In this work, we design and evaluate an audio-visual ASR (AV-ASR) sys-
tem using deep recurrent neural network (RNN) and CTC objective function.
The design of an AV-ASR system includes the tasks of visual feature engineer-
ing, and audio-visual information fusion. Figure 1 shows the AV-ASR pipeline
at test time. This work mainly deals with the visual feature extraction and
processing steps and training protocol for the fusion model. Proper visual fea-
tures are important especially in the case of RNNs as RNNs are difficult to train.
Bottleneck features used in tandem with audio features are known to improve
ASR performance [7,12,28]. We employ a similar idea in order to improve the
discriminatory power of video features. We show that this helps the RNN to
converge properly when compared with raw DCT features. Finally, we compare
the performances of feature fusion and decision fusion methods.

The paper is organized as follows: Sect. 2 presents the prior work on AV-ASR.
Bi-directional RNN and its training using CTC objective function are discussed
in Sect. 3. Section 4 describes the feature extraction steps for audio and visual
modalities. In Sect. 5 different fusion models are explained. Section 6 explains
the training protocols and experimental results. Finally, we summarize our work
in Sect. 7.

Fig. 1. Pipeline of AV-ASR system at test time. Fusion

2 Related Work

The differences between various AV-ASR systems lie chiefly in the methods
employed for visual feature extraction and audio-visual information fusion.
Visual feature extraction methods can be of 3 types [24]: 1. Appearance based
features where each pixel in the mouth region of the speaker (ROI) is considered
to be informative. Usually a transformation such as DCT or PCA is applied
to the ROI to reduce the dimensions. Additional feature processing such as
mean normalization, intra-frame and inter-frame LDA may be applied [15,24].
2. Shape based features utilize the geometric features such as height, width and
area of the lip region or build a statistical model of the lip contours whose
parameters are used as features. 3. Combination of appearance and shape based
features.

Fusion methods can be broadly divided into two types [16,24]: 1. Feature
fusion 2. Decision fusion. Feature fusion models perform a low level integration
of audio and visual features and this involves a single model which is trained
on the fused features. Feature fusion may include a simple concatenation of fea-
tures or feature weighting and is usually followed by a dimensionality reduction
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transformation like LDA. On the other hand, Decision fusion is applied in cases
where the output classes for the two modalities are same. Various decision fusion
methods based on variants of HMMs have been proposed [3,5]. In Multistream
HMM the emission probability of a state of audio-visual system is obtained
by a linear combination of log-likelihoods of individual streams for that state.
The parameters of HMMs for individual streams can be estimated separately
or jointly. While multistream HMM assumes state level synchrony between the
two streams, some methods [2,3] such as coupled HMM [3] allow for asynchrony
between two streams. For a detailed survey on HMM based AV-ASR systems we
refer the readers to [16,24]

Application of deep learning to multi-modal analyses was presented in [22]
which describes multi-modal, cross-modal and shared representation learning
and their applications to AV-ASR. In [14], Deep Belief Networks (DBN) are
explored. In [21] the authors train separate networks for audio and visual inputs
and fuse the final layers of two networks, and then build a third DNN with the
fused features. In addition, [21] presents a new DNN architecture with a bilinear
soft-max layer which further improves the performance. In [23] a deep de-noising
auto-encoder is used to learn noise robust speech features. The auto-encoder
is trained with MFCC features of noisy speech as input and reconstructs clean
features. The outputs of final layer of the auto-encoder are used as audio features.
A CNN is trained with images from the mouth region as input and phoneme
labels as output. The final layers of the two networks are then combined to train
a multi-stream HMM.

3 Sequence Labeling Using RNN

The following notations are adopted in this paper. For an utterance u of length
Tu, Ou
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u
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u

a,2, ..., O
u

a,Tu
) and Ou

v = (O
u
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u
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observation sequences of audio and visual frames where Oa,t ∈ R
da and Ov,t ∈

R
dv . We assume equal frame rates for audio and visual inputs which is ensured

in experiments by means of interpolation. Ou
av = (O
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u

av,Tu
) where

O
u

av,t = [O
u

a,t, O
u

v,t] ∈ R
dav where dav = da + dv denotes the concatenated

features at time t for utterance u. The corresponding label sequence is given by
l = (l1, l2, ..., lSu

) where Su ≤ Tu and li ∈ L where L is the set of English letters
and an additional element representing a space. For ease of representation, we
drop the utterance index u. All the models described in this paper are character
based.

3.1 Bi-directional RNN

RNNs are a class of neural networks used to map sequences to sequences. This
is possible because of the feedback connections between hidden nodes. In a bi-
directional RNN, the hidden layer has two components each corresponding to
forward (past) and backward (future) connections. For a given input sequence
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O = (O1, O2, ..., OT ), the output of the network is calculated as follows: forward
pass through forward component of the hidden layer at a given instant t is
given by

h
f

t = g(Wf
hoOt + Wf

hhh
f

t−1 + b
f

h) (1)

where Wf
ho is the input-to-hidden weights for forward component, Wf

hh cor-

responds to hidden-to-hidden weights between forward components, and b
f

h is
the forward component bias. g is a non-linearity depending on the choice of the
hidden layer unit. Similarly, forward pass through the backward component of
the hidden layer is given by

h
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hoOt + Wb

hhh
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where Wb
ho, W

b
hh, b

b

h are the corresponding parameters for the backward com-
ponent. The input to next layer is the concatenated vector [hf

t ,hb
t ]. In a deep

RNN multiple such bidirectional hidden layers are stacked.
RNNs are trained using Back-Propagation Through Time (BPTT) algorithm.

The training algorithm suffers from vanishing gradients problem which is over-
come by using a special unit in hidden layer called the Long Short Term Memory
(LSTM) [8,13].

3.2 Connectionist Temporal Classification

DNNs used in ASR systems are frame-level classifiers i.e., each frame of the input
sequence requires a class label in order for the DNN to be trained. The frame-
level labels are usually HMM states, obtained by first training a GMM/HMM
model and then by forced alignment of input sequences to the HMM states. CTC
objective function [9,10] obviates the need for such alignments as it enables the
network to learn over all possible alignments.

Let the input sequence be O = (O1, O2, ..., OT ) and a corresponding label
sequence l = (l1, l2, ..., lS) where S ≤ T . The RNN employs a soft-max output
layer containing one node for each element in L′ where L′ = L∪{φ}. The number
of output units is |L′| = |L| + 1. The additional symbol φ represents a blank
label meaning that the network has not produced an output for that input frame.
The additional blank label at the output allows us to define an alignment π of
length T containing elements of L′. For example, (AφφMφ), (φAφφM) are both
alignments of length 5 for the label sequence AM . Accordingly, a many to one
map B : L′T �−→ L≤T can be defined which generates the label sequence from
an alignment.

Assuming that the posterior probabilities obtained at soft-max layer, at each
instant are independent we get

P (π|O) =
T∏

t=1

P (kt|Ot) (3)



102 A. Thanda and S.M. Venkatesan

where k ∈ L′ and

P (kt|Ot) =
exp(yk

t )
Σk′ exp(yk′

t )
(4)

where yk
t is the input to node k of the soft-max layer at time t

The likelihood of the label sequence given an observation sequence can be
calculated by summing (3) over all possible alignments.

P (l|O) =
∑

π∈B−1(l)

P (π|O) (5)

The goal is to maximize the log-likelihood log P (l|O) estimation of a
label sequence given an observation sequence. Equation 5 is computationally
intractable since the number of alignments increases exponentially with the num-
ber of labels. For efficient computation of (5), forward-backward algorithm is
used.

4 Feature Extraction

4.1 Audio Features

The sampling rate of audio data is converted to 16 kHz. For each frame of speech
signal of 25 ms duration, filter-bank features of 40 dimensions are extracted. The
filter-bank features are mean normalized and Δ and ΔΔ features are appended.
The final 120 dimensional features are used as audio features.

4.2 Visual Features

The video frame rate is increased to match the rate of audio frames through
interpolation. For AV-ASR, the ROI for visual features is the region surrounding
the speaker’s mouth. Each frame is converted to gray scale and face detection
is performed using Viola-Jones algorithm. The 64× 64 lip region is extracted
by detecting 68 landmark points [17] on the speakers face, and cropping the
ROI surrounding speakers mouth and chin. 100 dimensional DCT features are
extracted from the ROI.

After several experiments of training with DCT features, we found that RNN
training either exploded or converged poorly. In order improve the discriminatory
power of the visual features, we perform non-linear dimensionality reduction of
the features using a deep bottleneck network. Bottleneck features are obtained
by training a neural network in which one of the hidden layers has relatively
small dimension. The DNN is trained using cross-entropy cost function with
character labels as output. The frame-level character labels required for training
the DNN are obtained by first training an acoustic model (RNNa) and then
obtaining the outputs from the final soft-max layer of RNNa.

The DNN configuration is given by dim − 1024 − 1024 − 40 − 1024 − opdim
where dim = 1100 and is obtained by splicing each 100 dimensional video frame
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Fig. 2. Fusion models (a) Feature fusion (b) Decision fusion. The bottleneck network
for visual feature extraction is enclosed in the dotted box.

with a context of 10 frames - 5 on each side. opdim = |L′|. After training, the last
2 layers are discarded and 40-dimensional outputs are used as visual features.
The final dimension of visual feature vector is 120 including the Δ and ΔΔ
features.

5 Fusion Models

In this work, the fusion models are character based RNNs trained using CTC
objective function i.e. L′ is the set of English alphabet including a blank label.
The two fusion models are shown in Fig. 2.

5.1 Feature Fusion

In feature fusion technique, a single RNNav is trained by concatenating the
audio and visual features using the CTC objective function. In the test phase,
at each instant the concatenated features are forward propagated through the
network. In the CTC decoding step, the posterior probabilities obtained at the
soft-max layer are converted to pseudo log-likelihoods [26] as

log Pav(Oav,t|k) = log Pav(k|Oav,t) − log P (k) (6)

where k ∈ L′ and P (k) is the prior probability of class k obtained from the
training data [19].
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5.2 Decision Fusion

In decision fusion technique the audio and visual modalities are modeled by sep-
arate networks, RNNa and RNNv respectively. RNNv is a lip-reading system.
The networks are trained separately. In the test phase, for a given utterance the
frame level, the pseudo log-likelihoods of RNNa and RNNv are combined as

log Pav(Oa,t, Ov,t|k) = γ log Pa(k|Oa,t) + (1 − γ) log Pv(k|Ov,t) − log P (k) (7)

where 0 ≤ γ ≤ 1 is a parameter dependent on the noise level and the reliability
of each modality [5]. For example, at higher levels of noise in audio input, a low
value of γ is preferred. In this work, we adapt the parameter γ for each utterance
based on KL-divergence measure between the posterior probability distributions
of RNNa and RNNv. The divergence between the posterior probability distri-
butions is expected to vary as the noise in the audio modality increases. The
KL-divergence is scaled to a value in [0, 1] using logistic sigmoid. The parameter
b was determined empirically from validation dataset.

DKL(Pv||Pa) =
∑

i

PvlogPa (8)

where we consider the posteriors of RNNv as the true distribution based on the
assumption that video input is always free from noise.

γ =
1

1 + exp(−DKL + b)
(9)

6 Experiments

The system was trained and tested on GRID audio-visual corpus [4]. GRID
corpus is a collection of audio and video recordings of 34 speakers (18 male,
16 female) each uttering a 1000 sentences. Each utterance has a fixed length
of approximately 3 s. The total number of words in the vocabulary is 51. The
syntactic structures of all sentences are similar as shown below.

< command > < color > < preposition > < letter > < digit > < adverb >
Ex. PLACE RED AT M ZERO PLEASE

6.1 Training

In the corpus obtained, the video recordings for speaker 21 were not available. In
addition, 308 utterances by various speakers could not be processed due to vari-
ous errors. The dataset in effect consisted of 32692 utterances 90% of the which
(containing 29423 utterances) was used for training and cross validation while the
remaining (10%) data was used as test set. Both training and test data contain
utterances from all of the speakers. Models were trained and tested using Kaldi
speech recognition tool kit [25], Kaldi+PDNN [18] and EESEN framework [19].
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RNNa Acoustic Model. RNNa contains 2 bi-directional LSTM hidden layers.
Input to the network is 120-dimensional vector containing filter-bank coefficients
along with Δ and ΔΔ features. The model parameters are randomly initialized
within the range [−0.1, 0.1]. The initial learning rate is set to 0.00004. Learning
rate adaption is performed as follows: when the improvement in accuracy on the
cross-validation set between two successive epochs falls below 0.5%, the learning
rate is halved. The halving continues for each subsequent epoch until the training
stops when the increase in frame level accuracy is less than 0.1%.

Deep Bottleneck Network. The training protocol similar to [26] was followed
to train the bottleneck network. Input video features are mean normalized and
spliced. Cross-entropy loss function is minimized using mini-batch Stochastic
Gradient Descent (SGD). The frames are shuffled randomly before each epoch.
Batch size is set to 256 and initial learning rate is set to 0.008. Learning rate
adaptation similar to acoustic model is employed.

RNNv -Lip Reader. RNNv is trained with bottleneck network features as
input. The network architecture and training procedure is same as RNNa.
Figure 3 depicts the learning curves when trained with bottleneck features and
DCT features. The figure shows that bottleneck features are helpful in proper
convergence of the model.

RNNav . The feature fusion model RNNav consists of 3 bi-directional LSTM
hidden layers. The input dimension is 240, corresponding to filter-bank coeffi-
cients of audio modality, bottleneck features of visual modality and their respec-
tive Δ features. The initialization and learning rate adaption are similar to
acoustic model training. However, the learning rate adaptation is employed only
after a minimum number of (in this case 20) epochs are completed.

During each utterance in an epoch we first present the fused audio-visual
fused input sequence followed by the input sequence with audio input set to
very low values. This prevents the RNNav from over-fitting to audio only inputs.
Thus the effective number of sequences presented to the network in a given epoch
is twice the total number of training utterances (AV and V features). After the
training with AV and V features we train the network once again with two epochs
of audio only utterances obtained by turning off the visual modality.

6.2 Results

The audio-visual model is tested with three levels of babble noise 0 dB SNR,
10 dB SNR and clean audio. Noise was added to test data artificially by mixing
babble noise with clean audio .wav files. In order to show the importance of
visual modality under noisy environment, the model is tested with either audio
or video inputs turned off. A token WFST [19] is used to map the paths to
their corresponding label sequences. The token WFST obtains this mapping by
removing all the blanks and repeated labels. Character Error Rate (CER) is
obtained from the decoded and expected label sequences by calculating the edit
distance between them. The CER results are shown in Table 1.
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Fig. 3. Learning curves for bottleneck (bn) features and DCT features for training (tr)
and validation (cv) data sets.

We observe that with clean audio input, audio only RNNa performs signif-
icantly better (CER 2.45%) compared to audio-visual RNNav (CER 5.74%).
However as audio becomes noisy, the performance of RNNa deteriorates sig-
nificantly whereas the performance of RNNav remains relatively stable. Under
noisy conditions the feature fusion model behaves as if it is not receiving any
input from the audio modality.

Table 1 also gives a comparison between feature fusion model and decision
fusion model. We find that feature fusion model performs better than decision
fusion model in all cases except under clean audio conditions. The poor CER of
RNNa, RNNv model indicates that the frame level predictions between RNNa

and RNNv are not synchronous. However, both the fusion models provide sig-
nificant gains under noisy audio inputs. While there is large difference between
RNNa and other models with clean inputs, we believe this difference is due to
the nature of dataset and will reduce with larger datasets.

Comparison with Lip-Reading Systems. While a number of AV-ASR mod-
els exist, to our knowledge none of the methods were trained and tested on GRID
corpus. However, results on several lip-reading systems (visual only inputs) on
GRID corpus have been reported. Table 2 gives a comparison of lip-reading sys-
tems which employ recurrent neural networks. LipNet is a recent independent
work which uses spatio-temporal convolutions and Gated Recurrent Units. It is
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Table 1. % CER comparison for feature fusion (RNNav) and decision fusion
(RNNa, RNNv) models. RNNa is the acoustic model and RNNv is the lip reader.

Feature fusion Decision fusion

Model Input CER % Model Input CER %

Audio Visual Audio Visual

RNNav Clean OFF 7.35 RNNa, RNNv Clean OFF 2.45

RNNav Clean ON 5.74 RNNa, RNNv Clean ON 8.46

RNNav OFF ON 11.42 RNNa, RNNv OFF ON 11.06

RNNav 10 SNR dB OFF 38.31 RNNa, RNNv 10 SNR dB OFF 23.83

RNNav 10 SNR dB ON 10.24 RNNa, RNNv 10 SNR dB ON 14.83

RNNav 0 SNR dB OFF 59.65 RNNa, RNNv 0 SNR dB OFF 59.27

RNNav 0 SNR dB ON 11.57 RNNa, RNNv 0 SNR dB ON 16.84

trained using CTC at sentence level like our model whereas the RNN-LSTM
model in [27] is trained at word level. However, in contrast to LipNet our aim
in this paper was to present a noise-robust ASR which utilizes both audio and
visual modalities which we believe will perform better with larger vocabulary
datasets. Our model has the potential to switch from audio to a mixed modality
(by turning the camera on) based on an SNR measure (where we define the sig-
nal as a continually discernible linguistic content from an utterance as measured
perhaps using KL divergence described before). The %CER for LipNet [1] and
the RNN-LSTM model of Wand et al., [27] are reported from [1].

Table 2. % CER comparison of lip-reading systems employing RNNs. The audio
modality for the model in the last row is turned off.

Method CER %

LipNet 1.90

Wand et al. 15.20

RNNv 11.06

RNNav 11.42

7 Conclusions and Future Work

In this work we presented an audio-visual ASR system using deep RNNs trained
with CTC objective function. We described a feature processing step for visual
features using deep bottleneck layer and showed that it helps in faster conver-
gence of RNN model during training. We presented a training protocol in which
either of the modalities is turned off during training in order to avoid depen-
dency on a single modality. Our results indicate that the trained model is robust
to noise. In addition, we compared fusion strategies at the feature level and at
the decision level.
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While the use of bottleneck features for visual modality helps in training, it
requires frame level labels which involves an additional step of training audio
RNN. Therefore, our system is not yet end-to-end. Our experiments in visual fea-
ture engineering with unsupervised methods like multi-modal auto-encoder [22]
did not produce remarkable results. Currently, we are exploring visual features
like curl and divergence of optical flow field using the Fourier Transform based on
Clifford Algebra [6,20]. In future work we intend to explore other unsupervised
methods for visual feature extraction such as canonical correlation analysis.
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