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Preface

This book presents the proceedings of the 4th IAPR TC 9 Workshop on Pattern
Recognition of Social Signals in Human-Computer-Interaction (MPRSS 2016). This
workshop endeavored to bring recent research in pattern recognition and
human-computer-interaction together, and succeeded to install a forum for ongoing
discussions. In recent years, research in the field of intelligent human-computer-
interaction has made considerable progress in methodology and application. However,
building intelligent artificial companions capable of interacting with humans, in the
same way humans interact with each other, remains a major challenge in this field.
Pattern recognition and machine learning methodology play a major role in this
pioneering research. MPRSS 2016 focused mainly on pattern recognition, machine
learning, and information fusion methods with applications in social signal processing,
including multimodal emotion recognition, user identification, and recognition of
human activities. For the MPRSS 2016 workshop 13 out of 19 papers were selected for
presentation at the workshop and for inclusion in this volume. MPRSS 2016 was held
as a satellite workshop of the International Conference on Pattern Recognition (ICPR
2016) in Cancun, Mexico, on December 4, 2016.

This workshop would not have been possible without the help of many people and
organizations. First of all, we are grateful to all the authors who submitted their con-
tributions to the workshop. We thank the members of the Program Committee for
performing the difficult task of selecting the best papers for this book, and we hope that
readers of this volume may enjoy this selection of excellent papers and get inspired
from its contributions. MPRSS 2016 was supported by the University of Ulm
(Germany), the University of Southern California (USA), the Transregional Collabo-
rative Research Center SFB/TRR 62 Companion-Technology for Cognitive Technical
Systems at Ulm University, the International Association for Pattern Recognition
(IAPR), and the new IAPR Technical Committee on Pattern Recognition in Human-
Computer-Interaction (TC 9). Finally, we wish to express our gratitude to Springer for
publishing our workshop proceedings in their LNCS/LNAI series.

March 2017 Friedhelm Schwenker
Stefan Scherer
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Active Shape Model vs. Deep Learning
for Facial Emotion Recognition in Security

Monica Bebawy1, Suzan Anwar2, and Mariofanna Milanova2(B)

1 Computer Science, Azusa Pacific University, Azusa, CA, USA
mbebawy12@apu.edu

2 Computer Science, University of Arkansas at Little Rock, Little Rock, AR, USA
{sxanwar,mgmilanova}@ualr.edu

Abstract. As Facial Emotion Recognition is becoming more important
everyday, A research experiment was conducted to find the best app-
roach for Facial Emotion Recognition. Deep Learning (DL) and Active
Shape Model (ASM) were tested. Researchers have worked with Facial
Emotion Recognition in the past, with both Deep learning and Active
Shape Model, with wanting to find out which approach is better for this
kind of technology. Both methods were tested with two different datasets
and our findings were consistent. Active shape Model was better when
tested versus Deep Learning. However, Deep Learning was faster, and
easier to implement, which means with better Deep Learning software,
Deep Learning will be better in recognizing and classifying facial emo-
tions. For this experiment Deep Learning showed accuracy for the CAFE
dataset by 60% whereas Active Shape Model showed accuracy at 93%.
Likewise with the JAFFE dataset; Deep Learning showed accuracy at
63% and Active Shape Model showed accuracy at 83%.

Keywords: Deep Learning · Active Shape Model · Facial emotion
recognition · Neural network · Expression classification and Recognition

1 Introduction

Examination of facial expressions has a substantial significance in fields
such as verbal, non-verbal expression and human-computer interface. Various
approaches have been established in the Vision-based computerized expression
recognition field lately. Fasel and Luettin and Pantic and Rothkrantz have stud-
ied these researches in detail in [6,7]. As Paleari et al. proposes, it also conceivable
progress multi-modal emotion recognition by the use of voice and visual data [8].

Murugappan et al. has accomplished to recognize emotions such as happi-
ness, sadness, surprise and fear by use of time-frequency based methods of EEG
data [9]. The emphasis of this study is to compare between existing software to
test and see which approach is better for emotion recognition. Arı and Akarun,
organized both skull movements and facial expressions by emerging face triangu-
lation tracking based on high resolution, multi posture active object model and
using the head trajectory information with Saklı Markov classification model
c© Springer International Publishing AG 2017
F. Schwenker and S. Scherer (Eds.): MPRSS 2016, LNAI 10183, pp. 1–11, 2017.
DOI: 10.1007/978-3-319-59259-6 1
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[10]. Akakin and Sankur have used sovereign mechanisms analysis results of the
trajectory [11].

When evaluated with numerous classification methods, it is concluded that
best result is obtained through use of 3D discrete cosine transform (DCT). Kuano
et al. proposed a knowledge model for each emotion based upon variable concen-
tration patterns and enabled face detection independent of the pose [12]. Sebe
et al. has studied face expressions with Bayes nets, support vector machines and
decision trees and presented the database they worked on to researchers [13].
Meanwhile, Littword et al. have recommended the systematic use of Adaboost,
support vector machines and linear discriminant analysis methods [14].

Shan et al. used local binary patterns statistical model to classify the obtained
attributes, using many artificial learning techniques, finally, Shan reported that
support vector machines attained the best results [15]. Busso et al. used a com-
mercial software for facial point tracking, which separates the human face in 5
areas of interest, calculated principal component analysis (PCA) coefficients of
facial point locations for each region and classified this attribute vector obtained
from these values with the nearest 3 neighbor [16].

Aggarwal and Shaohua Wan suggested an instinctive expression recognition
method based on robust metric learning. They learnt a new metric space, the
close data points have a higher likelihood of being in the same class, they also
defined sensitivity and specificity to characterize the annotation steadfastness of
each annotator [17]. Mao et al. anticipated a real time emotion recognition app-
roach based on both 2D and 3D facial expression features extracting using Kinect
sensors. They combined the features of animation units and feature point posi-
tions tracked by Kinect [18]. Suzan et al. implemented an Active Shape Model
tracker, which tracks 116 facial landmarks. They used Support Vector Machine
based classifier to recognize seven expressions. This technique is applied for the
automated identification of the psychological state that exhibits a very strong
correlation with the detected features [19]. Socher, Huval, Bhat, Manning and
Ng Suggested that advances in 3D sensing technology made it easier to record
color and depth images, which therefore, can improve object detection. This the-
ory relies on convolutional neural networks and recursive neural networks (CNN
and RNN) [20]. Le, Ngiam, Coates, Lahiri, Prochnow, and Ng proposed a new
method to optimize Deep Learning. In their paper they show that more complex
optimization methods can meaningfully simplify and accelerate the process of
pertaining deep algorithms [21].

In this paper, a comparison between Active Shape Model (ASM) and Deep
Learning (DL) for face emotion recognition is presented. In Detail, the following
contribution is made.

First, a light on both Active Shape Model and Deep Learning is shed. Both
approaches were tested and compared. By comparing Active Shape Model and
Deep Learning gives the reader and future researchers the opportunity to see and
decide which approach is better for their research and if they need to adjunct
one or the other based on this research and its findings.
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Secondly, Active Shape Model and Deep Learning were trained and tested
with more than one database to make sure that our findings were accurate. The
databases that were used included a variety of age, ethnic group, and gender to
insure that both systems were well trained and will produce the best results.

Finally, facial emotion recognition can be used for security purposes. For
example, using the Active Shape Model program that was provided, can calcu-
late the percentage a person was anger, disgusted, and afraid; based on that a
prediction of if that person is a threat to security or not.

The research begins with description of the dataset used and both Deep
Learning as well as Active Shape Model proceeds with how they were trained.
Then how both approaches were tested. The experiments done and the results
obtained are given in Sect. 5. Section 6 summarizes the conclusions.

2 Background

Deep Learning (DL) and Active Shape Model (ASM) were compared to see which
one is the better option for facial emotion recognition for security in real time.
Both Deep Learning and Active Shape Model were tested with two datasets: The
Japanese Female Facial Expression (JAFFE), and another dataset with children
(CAFE). It was important to use more than one dataset, and to use a variety
of age, gender, and ethnic group, because crime is not confined to a certain age,
or one gender, nor one ethnic group.

2.1 Datasets

CAFE Dataset. The CAFE dataset was tested using LeNet with all 1192
pictures posed by different children. The findings were not very accurate.
JAFFE Dataset. First, the JAFFE dataset was tested using LeNet with all
213 pictures posed by ten different Japanese models. The findings were not very
accurate.

2.2 Deep Learning

The software that was used for the Deep Learning software is the NVIDIA
Deep Learning GPU Training System (DIGITS). This software provides three
different neural networks for classification: LeNet, AlexNet, and GoogLeNet read
more about them in [3–5]. To choose the best neural network to work with five
pictures were taken of each dataset to test which neural network is the best for
each dataset.

2.3 Active Shape Model

Active Shape Model (ASM) introduced by Cootes et al. is one of the most
prevalent technique for detection and tracking of triangulation point. In this
approach ASM is trained by introduction for tagged images. In order to identify
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the triangulation points in an image, first the location of face is detected with
an overall face detector (such as Viola-Hones). The average face shape which
is aligned according to position of the face constitutes the starting point of the
search. Then the steps described below are repeated until the shape converges.
(i) For each point, best matching position with the template is identified by
using the gradient of image texture in the proximity of that point. (ii) The
identified points are projected from their point locations in training set to the
shape eigenvalues which is obtained by Principal Component Analysis (PCA).
Whereas the individual template matchers in the first step may diverge from
their sound positions and the shape obtained may not look like a face, the holistic
approach used in the second step strengthens the independent weak models by
constraining them and associating them with the shapes in the training set.

3 Training

3.1 Deep Learning

The training of the Deep Learning software started with two datasets: JAFFE
and CAFE.
CAFE Dataset. First the CAFE dataset was used to test the Deep Learning
software. To choose between the three neural network five random pictures were
selected from each emotion and tested them with the neural networks available.
LeNet was better than AlexNet by 40% which was better than GoogLeNet by
65%. Here is a figure of the training graph for the LeNet for the CAFE dataset.

Fig. 1. This is the training graph for the Cafe Dataset we see that the blue is the
loss, the orange is the accuracy, and the green is the loss in the training sample.
(Color figure online)
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In Fig. 1: the loss(Blue) is decreasing as the neural network is given more
pictures to train with, which is what makes this neural network the best one for
our dataset.
JAFFE Dataset. Then, the JAFEE dataset was used to test the Deep Learn-
ing software. The same test was run to choose the neural network as the CAFE
dataset. LeNet was better then GoogLeNet by 43% which was better than
AlexNet by 12%. Here is the figure of the training graph foe the LeNet for
the JAFFE dataset.

Fig. 2. This is the training graph for the JAFFE Dataset. The blue is the loss,
the orange is the accuracy, and the green is the loss in the training sample.
(Color figure online)

In Fig. 2: Similar results are shown to the CAFE dataset, the blue (loss)
is decreasing and it stays around zero. Again, this is what makes this neural
network the best one to work with the JAFFE dataset.

3.2 Active Shape Model

When ASM need to be extended for training of a new subject, photographs of
the individual are taken and triangulation points of this photograph are marked
up automatically by matching with general model. After this marked points
are fine-tuned with Pinotator [22] an ASM specific for the person is generated.
Then classifier can be easily trained for new person and environment, enabling
use of the system for new people. Since facial expressions differ for each person
and the environment (such as lighting), here a mechanism which can configured
according to a specific person and specific environment has been targeted. In
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this mechanism subjects start with a neutral expression and wait for 2 s. In this
process an average of derived attributes is calculated and in frames following
that, in order to enable system to act independent of environmental variables,
attributes are normalized by division to their average. Each individual who will
use the system repeats each expression T times, recording a total of NT samples
(N = number of expression classes).

4 Testing

4.1 Deep Learning

The NVIDIA DIGITS provided the research with very effective information
about Deep Learning and how it is used [1]. The NVIDIA DIGITS was used
to test facial emotion recognition with multiple datasets, The Japaneses Female
Facial Expression Database (JAFFE) was the first dataset that was used.
Every dataset was trained with three different networks: LeNet, AlexNet, and
GoogLeNet.

Every dataset reacted differently when tested with the different networks;
however, in our case both datasets worked best with LeNet.
CAFE Dataset. Here is a table showing the findings and the accuracy
percentage.

Table 1. The results for the CAFE dataset tested with Deep Learning using LeNetwork

Emotion Total pictures Right classification Percentage

Anger 205 95 46%

Disgust 191 139 73%

Fear 140 66 47%

Happiness 215 147 68%

Neutral 230 188 82%

Surprise 103 62 60%

Sadness 108 50 46%

In Table 1 it is shown that the accuracy is not very good. However, it was
very hard to test the CAFE dataset. Since it is using children as the models for
the pictures it is very hard to get the models to understand and demonstrate
the emotion without having any confusion. In the Active Shape Model however,
the accuracy is a lot higher as it will be shown in the next section.
JAFFE Dataset. Here is a table showing the findings and the accuracy per-
centage.

In Table 2 it is shown that the accuracy is a lot better, since the models are
all adults and therefore can clearly show the labeled emotion.
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Table 2. The results for the JAFFE dataset tested with Deep Learning using LeNet-
work

Emotion Total pictures Right classification Percentage

Anger 30 17 57%

Disgust 29 17 59%

Fear 32 25 78%

Happiness 31 25 81%

Neutral 30 14 47%

Surprise 30 19 63%

Sadness 31 17 55%

4.2 Active Shape Model

CAFE Dataset. First, the Active Shape Model computer program was tested
with the CAFE dataset to compare it with the Deep Learning results.

Table 3. The results for the CAFE dataset tested with Active Shape Model

Emotion Total pictures Right classification Percentage

Anger 205 188 92%

Disgust 191 179 94%

Fear 140 132 94%

Happiness 215 200 93%

Neutral 230 225 98%

Surprise 103 94 91%

Sadness 108 98 91%

It is clear that Active Shape Model shows a much better accuracy with the
CAFE dataset than Deep Learning with LeNet the total percentage for the
CAFE dataset using ASM is 93% which is very accurate given all the challenges
(Table 3).

During the test phase, the subject once more starts with a neutral expression,
prepares the system to initial state to avoid disturbances of the environment.
In each following frame, attribute vector for the face is calculated. The average
distance value of each element in the attribute vector to each class is calculated
which is di, i = 1,....N vectors. The distance values depict differences, whereas
Si = e − di values depict similarities and used as similarity metrics. Finally Si
vector is normalized as the sum of their elements will equal to 1. This values can
be thought as a probability for each class.
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5 Findings

After testing both Deep Learning and Active Shape Model, Active Shape model
was found to be indeed better in facial emotion recognition in the CAFE dataset
Deep Learning was accurate by 60% but Active Shape Model was accurate
by 93%.

Fig. 3. Results for the JAFFE dataset when tested with Deep Learning DIGITS
system.

In Fig. 3: it is shown how the DIGITS system works after training the system,
this is the result that was obtained when testing it with these four pictures. It
was pretty accurate with these pictures, however, for the second picture the
picture was not labeled as happy, nevertheless, the model does show some happy
features.

In Fig. 4: it shows when the CAFE dataset was tested with the Active Shape
Model. Most of these pictures are classified correctly.
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Fig. 4. Results for the CAFE dataset when tested with Active Shape Model system.

6 Conclusion

Facial Emotion Recognition is very important and because of that an experiment
was conducted to compare between Active Shape Model and Deep Learning.
This experiment used NVIDIA DIGITS software and a computer program by
Ms. Anwar. Based on the previous sections it was concluded that Active Shape
Model is in fact better than Deep Learning given the specific computer programs
that were used. However, this experiment could be conducted with different
software to produce different results. Since many variables were used, the same
experiment with more controlled variables might provide different results.

Acknowledgment. This project is supported by the National Science Founda-
tion under the award CNS1359323 This project is funded by the National Sci-
ence Foundation for Undergraduate students. (https://sites.google.com/a/ualr.edu/
cs-reu-site-ualr/).
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Abstract. An essential component of the interaction between humans
is the reaction through their emotional intelligence to emotional states of
the counterpart and respond appropriately. This kind of action results in
a successful interpersonal communication. The first step to achieve this
goal within HCI is the identification of these emotional states.

This paper deals with the development of procedures and an auto-
mated classification system for recognition of mental overload and men-
tal underload utilizing speech an physiological signals. Mental load states
are induced through easy and tedious tasks for mental underload and
complex and hard tasks for mental overload. It will be shown, how to
select suitable features, build uni modal classifiers which then are com-
bined to a bimodal mental load estimation by the use of early and late
fusion. Additionally the impact of speech artifacts on physiological data
is investigated.

1 Introduction

The interaction between humans and machines is ubiquitous in today’s world.
Whether at the station, while solving a web card or when using a mobile phone,
it has become the aim of making this interaction between man and machine to
the user so intuitive, effective and pleasant as possible. While this is desirable
in most cases, but not always reach satisfactory levels. A key factor that affects
the human interaction significantly, has not yet been taken into account - the
emotional intelligence [6]. By the term emotional intelligence one understands
the ability of the regulation, the use of knowledge and the expression of emotions
in interactions with others or with themselves. A system that is centered on the
satisfaction of persons needs should offer these expertise to react appropriately
to the emotional state [10].

Recognition of affective states on multiple modalities, such as facial expres-
sions, speech, gestures, and to a lesser extent on physiological changes. The
recognition of these states is possible because by state changes the expressions
adjust accordingly such as the pitch of the voice when is excited.

The consideration in this work are speech and physiological signals. The
speech is in terms of research a dominant modality, as for the people it is repre-
senting the most natural way of communicating and a very quick indicator for
an emotional state of the counterpart. A closer look at speech turns out that not
c© Springer International Publishing AG 2017
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only the content of what is said is relevant, but also the way on how its said and
which emotions are placed in an utterance. The recognition of the content by
machines, with a high detection rate of about 90%, is already realized, however,
the rate of recognition of speech emotions is only about 60% [11]. Physiological
signals like electrocardiography (ECG), electromyography (EMG) and electro-
dermal activity (EDA) provide a relatively new and growing area of research in
terms of affective state recognition compared to audiovisual emotion recognition.
The advantages of physiological signals are that the regulation of the values such
as heart rate or the activity of the sweat glands cannot be simply consciously
influenced, such as speech and gestures. This leads to an almost undistorted
image on the emotional state of the person.

In the past there had been a lot of research on detecting emotional states
utilizing single modalities, like detecting affect from speech with detection rates
from 50% up to 90% [7,8]. For physiological signals there are many studies on
the impact and the detection of mental load [2,3]. For bimodal approach with
speech and physiological signals J. Kim shows an improvement in recognition
rate compared to unimodal classification [4]. Most of the studies are based on
acted or even strong expressive emotional datasets on basic emotions for example
defined by Eckman [1]. This methods can not be easily transferred to typical
weak expressive behaviours in HCI which in addition typically does not refer to
basic emotions.

The utilized dataset contains data from natural behaving, none acting, users
interacting with a HCI system which is able to induce different mental load
levels. The investigated affective states are mental overload and underload that
both have a negative impact on the performance of a person. Firstly, even simple
tasks work in a period of excessive demand as relatively difficult. On the other
tasks are perceived as boring during a mental underload, which leads to a lack of
concentration and thus to a decrease in performance. Based on the dataset this
paper develops an classification system for these affective states with the use of
ensemble classifiers. The interests are the unimodal classification based on speech
and physiological signals, the fusion of these to a bimodal classification result
and the investigation of the influence of speech artifacts on the classification of
physiological signals.

2 Experimental Setting

The dataset is based on an experiment done within the Transregional Collab-
orative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive
Technical Systems”.

Participants were asked to play a series of games based on the Interaction
paradigm of Schüssel et al. [12]. The task of each game sequence was to identify
the singleton element, i.e. the one item that is unique in shape and color (num-
ber 36 and 2 in Fig. 1). The difficulty was set by adjusting the number of shapes
shown and the maximum time to answer. If the given answer was incorrect, they
received no reward for that particular round. After an introduction each partic-
ipant completed five game sequences of decreasing difficulty. The first sequence
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Fig. 1. Screen shot of the difficult level (left) with target element 36 and the easiest
one (right) with target element 2. (Color figure online)

Fig. 2. Overview of the setting with sensors: (1) MS Kinect 2, (2) frontal webcam, (3)
wireless headset, (4) GTec g.MOBIlab+ biophysical sensor with sensors attached to
the users body.

was designed to induce overload (6× 6 board, 6 s to answer, see Fig. 1 left), the
second was 5 × 5 with 10 s, the third was set to 3× 3 with 100 s, sequence four
again was 3× 3 mode with 100 s time (underload). As the sequences 1 and 4
are explicitly designed to cause mental overload and underload, we focused on
those two.

After each sequence played, the participants answered a Self Assessment Scale
questionnaire (SAM). The aim of those questions was to determine valence,
arousal and dominance experienced in the particular sequence. A total of 60
participants were recorded. Of those were 30 male and 30 female. Their age
spanned from 17 to 27 (mean 21.97, σ2 ≈ 2.6).

During the experiment, participants were monitored by several sensors pro-
viding multimodal synchronous data. See Fig. 2. The sensory system contains two
webcams (Logitech C9100), one in front locking towards the users face and one
from the rear providing an overview of the scene, a wireless headset, a Mirosoft
Kinect v2 camera in front recording rgb, infrared, depth, skeleton/postural and
audio information and finally an GTec g.MOBIlab+ biophysical sensor record-
ing ECG, EDA, EMG (trapezius muscle), Respiration and Temperature. In this
work we focus on the audio and physiological data.
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3 Unimodal Recognition of Cognitive Load

At first, two unimodal classifiers for speech and two for every channel of the
physiological signals were trained. This results in a total of twelve ensemble
classifiers, where six are specialized on mental overload (OL) and the other
six are trained for recognising the amount of mental underload (UL). These
unimodal classifiers are evaluated using individual classification (SELF) method
with a 10×10-fold cross validation and leave one subject out (LOSO) method
with 10-fold cross validation.

In Chap. 4 fusion approaches for the bimodal classification are shown and the
influence of speech on the classification of physiological signals.

3.1 Speech

For cognitive load recognition from speech, random forest ensembles were used
to classify. Only the utterances contains useful parts without speaking breaks
(silence) are dictated by the experimental settings, this reduces the average
length of recorded overload sequence from 362 to 22 s. and for the underload
sequence from 324 to 18 s. The average amount of utterances within the over-
load sequence is 45 and for the underload sequence it is 43.

The extracted features of the audio data is subdivided into the feature extrac-
tion methods:

– Linear predictive filter coefficients (LPC)
– Mel-frequency cepstral coefficients (MFCC)
– Relative spectral perceptual linear prediction (Rasta-PLP)
– Modulation spectrum (ModSpec)

The window size for each frame ranges between the different feature extrac-
tion methods from 40 to 200 ms. The window shift is 20 ms for every feature
instance. Overall for every frame 57 features are extracted consisting of 8 LPC,
20 MFCC, 21 Rasta-PLP and 8 ModSpec.

The evaluation with the SELF and LOSO method results in Table 1 show the
average classification accuracy based on different features and the early fusion of
these features. Classification based on utterances, containing an aggregation of
severe frame level decisions, for SELF and LOSO method shows better average
classification accuracies than based on single frame level. The highest result
with respect to accuracy are achieved through early fusion of the features and
the classification of utterances for the SELF and LOSO method.

3.2 Physiology

In order to recognize mental overload on the basis of physiology, a random forest
classifier for each of the following physiological signals was trained: Electrocar-
diography, trapezius trapezius Electromyography, Electrodermal activity, respi-
ration and body temperature. For the physiological signals 58 statistical features
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Table 1. Evaluation results of all speech classifiers using SELF and LOSO method
for every used extraction method. The results are subdivided into classification results
based on frame and utterances level.

Analysis SELF LOSO

Frame Utterance Frame Utterance

LPC 66.52% 77.75% 61.22% 68.93%

MFCC 76.27% 83.80% 68.54% 75.53%

Rasta-PLP 74.49% 82.75% 68.70% 74.40%

ModSpec 70.20% 78.82% 63.90% 71.29%

Audio-Fusion 81.67% 86.58% 72.72% 77.50%

were extracted, which results in 290 features over all. The features are extracted
on 5 s data chunks with an overlap of 4.9 s. The preprocessing for the physiolog-
ical signals is subdivided into two groups, one for ECG and one for the rest of
the physiological signals.

For the ECG signal the preprocessing consists of linear detrending and the
normalization of the signals with the mean R-peaks, because the sensors are not
exactly at the same position at each participant. This creates a different mean
peak value for every participant which has no information about the mental load
of a participant. For EMG, EDA, respiration and temperature the preprocessing
consists of the use of a butterworth filter with low and high cutoff frequencies of
10 Hz and 125 Hz and the order of four.

The features extracted from the ECG signal are based on 25 features from
wavelets [15] and 33 statistical features from the PQRST complex [13]. Features
extracted from EMG, EDA, respiration and temperature are based on statistical
and mathematical features in time and fequency domain [5,9,14].

All four classifiers and an additional fusion of these classifiers were evaluated
using the SELF and LOSO method. Table 2 shows the average classification
accuracies over all 60 participants. The weights for the fusion which are used to
fuse the outputs together are calculated through a Moore-Penrose pseudoinverse.
The SELF classification results for ECG are promising and achieve an average
classification accuracy of 91.52%. The EMG channels shows that there are three
different activity patterns for the trapezius muscle:

– More activity in the overload sequence (e.g. in Fig. 3 left)
– less activity in the overload sequence (e.g. in Fig. 3 right)
– almost the same activity in the overload and underload sequence

The results show that the difference between mental overload and under-
load and therefore the classification can be highly accomplished for SELF, such
that the person has a characteristic behaviour for these affective states. Figure 3
shows that for both participants on their own the development of the MAV fea-
ture is easily distinguishable between OL and UL sequence. But for the LOSO
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Table 2. Evaluation results of all physiological classifiers using SELF and LOSO
method for every used extraction method.

Analysis SELF LOSO

ECG 91.52% 66.53%

EMG 74.53% 51.03%

EDA 64.68% 51.51%

Respiration 64.68% 51.50%

Temperature 60.89% 54.23%

Fusion 91.91% 65.61%

Fig. 3. Mean absolute value (MAV) feature from the EMG signal of two participants.
Shows the course of MAV feature in the overload (OL) and underload (UL) sequence.

classification Fig. 3 and the results in Table 2 show that there is not an general
feature expression in respect to the physiological signals.

4 Bimodal Recognition of Mental Overload
and Underload

In order to achieve bimodal classification results, two different fusion approaches
were used to aggregate the unimodal results. The input consists of two classifi-
cation results from the speech classifiers for (OL and UL) and two classification
results from the physiological classifiers. The output of these classifiers is con-
tinuous between 0 and 1, e.g. where 1 for an OL classifier corresponds to that
every weak learner classified it as mental overload.

For the bimodal evaluation the data was taken from both modalities, if a
participant speaks. If there is no classification from speech the classification
result is just based on the physiological classification. The classification structure
which is used produces for every utterance for both, the physiological and the
audio signal, one classification result.
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4.1 Moore-Penrose Pseudoinverse

The pseudoinverse is used to create weights for the OL and UL classifier. Two
calculated weights are needed. One for the OL where the extend of mental over-
load is classified and one for the UL where the extend of mental underload is
classified. For the OL classifier a mental overload frame should be classified as 1
and an underload frame should be classified as 0 but for the UL classifier it should
work the other way around such that for an underload frame it should be 1.

For the calculation of the weights e.g. for the OL classifier follows these steps:

1. Train the ensembles
2. Take a train set for the fusion with N frames which are not used to train the

ensemble system and which have no intersection with the testset
3. Classify the train set for the fusion thought the trained ensemble system,

results in two unimodal classification results
4. X (N × 2) for OL (two stands for both modalities)
5. Calculate the pseudoinverse X+ = (XtX)−1Xt

6. Calculate the weights w = X+Y

The same steps should be done for the UL part of the classification system.
After theses steps the weights for the bimodal fusion layer are set. The calculated
weights strongly depend on the data presented to train the fusion layer. For the
SELF classification there are 284 frames and for the LOSO there about 16450
frames to train this layer. This corresponds to about 11% of the data used to
train the ensembles.

Numerical Evaluation. Table 3 shows the classification accuracy, for SELF
classification it is 94.07%. The weights for the input channels through the
pseudoinverse for the SELF classification have a σ2 = 0.38 and a mean weight
for speech of 0.23 and for physiological of 0.77. The difference of the weights for
the modalities is based on the greater variance of the physiological classification
between participants.

For the LOSO classification the weight for speech is 0.76 and for physiological
it is 0.24. The variance of the weights for LOSO classification is far smaller
because only about 1.7% of the data within the training set changes for the
classification for a new participant. The overall average accuracy for the LOSO
classification is 76.31%. The difference for the weights between the OL and the
UL classifier are −0.01 for the speech and +0.01 for the physiological inputs.

4.2 Modified Max-Voting

The second fusion method used is a modified max-voting (MMV). This method
does not have any learning phase and can be used immediately to fuse the uni-
modal classification results. The input consists, as described, of two values for
OL and two for UL. For the OL and the UL classification results from the differ-
ent modalities are averaged. This results in two confidences, one for OL and one
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Table 3. Bimodal classification accuracy with the Moore-Penrose pseudoinverse
method for SELF and LOSO classification.

Analysis SELF LOSO

Pseudoinverse 94.07% 76.31%

OL 95.59% 75.80%

UL 92.55% 76.82%

for UL for each modality. The last step calculates a MMV on these OL and UL
classifiers and the bimodal classification result is based on the higher confidence
of OL or UL. The bimodal classification confidence is calculated through the
difference of confidence of the OL and UL within the step before.

For this fusion method, weights for audio and physiology classification results
are the same. It just differentiates how confident the bimodal OL and UL classi-
fiers are. It takes advantage of the classification result for one modality if it has
an higher confidence than the confidence of the classifier for the other modal-
ity. The more secure a classifier is that it is a specific affective state the less
important the other modality is.

Numerical Evaluation. Table 4 shows that SELF classification has an average
accuracy of 96.41%. The difference between the recognition of mental overload
to underload is 3.04%. For 83% of participants the accuracy improves from the
unimodal classification results to the bimodal results from 1% up to 29%. This
effect is particularly pronounced for a participant which has the lowest classifi-
cation rate of 67.7% for the physiological signals. His rate increases through the
bimodal classification to 95.4%. Another effect is the decrease of variance for the
classification results for the different participants: audio (σ2 = 2.9), physiological
(σ2 = 5.6) and bimodal fusion through MMV (σ2 = 1.6).

LOSO classification shows an average accuracy of 72.55% but a greater differ-
ence between the recognition of mental overload to underload. With a difference
of 21.41% between OL and UL it is far more unbalanced in respect to the fusion
approach with pseudoinverse.

Table 4. Bimodal classification accuracy with the modified max-voting method for
SELF and LOSO classification. The accuracies for the mental overload and underload
are shown.

Analysis SELF LOSO

MMV 96.41% 72.55%

OL 97.93% 82.56%

UL 94.89% 61,15%



20 D. Held et al.

Table 5. Evaluation results of all physiological classifiers and the comparison between
the classification of physiological signals while the participants speak and does not
speak using SELF and LOSO method.

Analysis SELF LOSO

Speaking No speaking Speaking No speaking

ECG 91.08% 92.72% 65.70% 67.85%

EMG 74.54% 75.19% 49.55% 53.62%

EDA 64.18% 66.08% 49.95% 54.15%

Respiration 57.78% 60.27% 49.72% 54.73%

Temperature 60.47% 62.27% 53.47% 55.65%

Fusion 91.73% 93.00% 65.82% 68.42%

4.3 Influence of Speech to Physiological Classification

The investigation deals with the influence of speech in the classification of phys-
iological signals. The aim is to discover the impact on different physiological
channels like EMG and conclude how serious these impacts are.

The change in physiological signals through speech is based on two factors.
The first is the direct influence for example through the vibration of the vocal
cords or the change of air volume within the lungs and therefore influence on the
physiological signal values like for the respiration signal a higher measured res-
piration rate while speaking. The second is the real influence if there is an direct
influence through speaking on the physiological signals e.g. a person speaks if
there is significant influence to change the physiological signals and therefore are
not based on the emotion to recognize rather than on speaking itself. For exam-
ple if speaking has a negative influence on the recognition of emotion through
physiological signals the reason for this could be that if somebody speaks there is
an physiological signature for this within the physiological signals and therefore
in all sequence similar. The reason for an influence within the signal is hard to
assign based on these two influences therefore it is investigated to what extend
the values are changing while speaking and if there is an positive, negative or
no influence on the classification.

The training and evaluation is done with extracted frames from the physi-
ological signals where the participant did not speak in any of the 5 s length of
these frames against the others where the physiological signals are influenced by
speaking. This is done for all physiological channels as well as for the unimodal
fusion of these channels.

Numerical Evaluation. Table 5 shows the classification result for the physi-
ological signals with and without any speaking involved. For the SELF classi-
fication the average classification accuracy improves for ECG by 1.64%, EMG
by 0.65%, EDA by 1.90%, respiration by 2.49%, temperature by 1.80% and for
fusion by 1.27%. 42 participants improve their SELF classification through the
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Table 6. T-Test between speaking and not speaking for SELF and LOSO classification
of the physiological signals.

T-Test SELF LOSO

Speaking/no speaking Speaking/no speaking

ECG 0.004 0.002

EMG 0.465 4.4 e−5

EDA 0.041 2.2 e−4

Respiration 0.007 2.3 e−10

Temperature 0.009 4.0 e−4

Fusion 0.003 4.9 e−9

fusion up to 8.18%. The improvements are based primarily on the change of
classification accuracy of mental underload (+1.52%).

For the LOSO classification the average classification accuracy improves for
all channels: ECG by 2.15%, EMG by 2.59%, EDA by 4.07%, respiration by
4.20%, temperature by 2.18% and for the fusion by 2.60%. 47 participants
improve their LOSO classification through fusion up to 12.84%. The increase
of accuracy is based on the improvement of the recognition for both mental
overload and underload. For both SELF and LOSO classification the improve-
ments are the same for male and female.

To investigate if there is a statistical significant difference between the clas-
sification of all physiological signals if the participant speaks and did not speak
a T-Test is used. The results are shown in Table 6. The results support that
there is an difference between speaking and not speaking. For example at an
α = 0.05, all null hypothesis are rejected except the EMG for SELF classifica-
tion. The highest support for an difference show the respiration channel with
LOSO classification.

4.4 Discussion

The investigation of the influence of speech artifacts while the classification of
physiological signals shows that the classification accuracy improves both for
SELF and LOSO classification if parts containing speech are removed from the
physiological data pool. This could be based on the two influences described in
Subsect. 4.3. The first could be due to movement of the subject which influences
the physiological signal like noise. The second could have more impact on the
change in classification results based on my observation. The reason for this
is that the participants behave during and shortly after speaking with respect
to their posture and activity differently between speaking and not speaking.
This change in behaviour while speaking, however is noted in both sequences
almost equally, which means that a similar behaviour in the OL and UL sequence
is shown and therefore the meaningfulness of the physiological signals while
speaking are not so depend on the emotional state as the participant does not
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speak. The reason might be clear especially towards the end of the utterance that
the participants are waiting for the response of the system, so if their answer
was accepted and whether the answer was correct or incorrect.

For SELF classification shows that the MMV is 2.34% better than the fusion
with pseudoinverse. A reason for this could be that the weights for pseudoinverse
method are dependent on the trainings set for this fusion layer and the training
set could show another kind of behaviour than the rest of the data. This could
lead into questionable weights for both modalities. For the LOSO classification
the pseudoinverse is 3.76% better than the fusion with MMV. The classification
of the underload sequence is ≈15% better with the pseudoinverse. The reason
for this could be the amount of data which could be used to train this method.
Because about 8.3% of the data from 59 out of 60 participants could be used to
train the bimodal fusion layer. The probability to use data to train the bimodal
fusion layer that does not represent the remaining data to train the ensembles
is shrinking compared to the SELF classification.

The LOSO accuracies for the speech data achieve a higher accuracy than the
bimodal classification and the reason for this could be the high deviation of clas-
sification results from the physiological data. The LOSO classification accuracies
for the physiological data reaches from 35.72% up to 89.62%. The reason for this
could be the different behaviour patterns for the participants. The classifica-
tion of participants which have the behaviour pattern of no different movement
within the overload and underload sequence improves by 1.91%. The amount of
participants which have more activity within the overload sequence are approxi-
mately double as frequent as participants which have more activation within the
underload sequence. This results in the lower accuracy for the classification of
participants with lower acitivity within the overload sequence for the physiolog-
ical signals.

The bimodal classification results show that for the SELF classification aver-
age classification accuracy of 96.41% could be achieved and for the LOSO clas-
sification 76.31%.
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Abstract. We provide a novel algorithm for the discovery of mobility
patterns and prediction of users’ destination locations, both in terms
of geographic coordinates and semantic meaning. We did not use any
semantic data voluntarily provided by a user, and there was no sharing
of data among the users. An advantage of our algorithm is that it allows
a trade-off between prediction accuracy and information. Experimental
validation was conducted on a GPS dataset collected in the Microsoft
Research Asia GeoLife project by 168 users in a period of over five years.

Keywords: GeoLife · Human behavior · Location extraction ·
Mobility pattern · Next place prediction · Positioning technology ·
Semantic information · Stay point · Trajectory data

1 Introduction

Positioning technologies, such as GPS, provide accurate and continuous geo-
graphical positions of mobile devices. Even though human movement and mobil-
ity patterns display a high degree of freedom and variation, they also exhibit
structural patterns due to geographic and social constraints. Thus, the problem
of accurately predicting a user destination location based on the user’s mobil-
ity patterns becomes increasingly important in different areas, one of which is
related to contextual applications.

One of two main ways to predict a next location is by predicting a semantic
label [6,20], such as “Restaurant”, without providing the coordinates of that
label. This might be ambiguous since users visit multiple restaurants in different
locations. In addition, explicit semantic information may not be available, or
when it is, using it may compromise the user’s privacy. The other way of predic-
tion is of a specific geographical location ID with the corresponding coordinates,
using only anonymous geographical data such as GPS or WiFi records [5,8,21].
The prediction of a location ID is a more difficult task because it requires a more
precise output, which considers many more prediction options.

Existing studies on user location prediction can be classified into three cate-
gories: (1) those using only a user’s own data, (2) those using the data generated
by crowds, and (3) hybrid methods using both kinds of data [26]. For the task of
next place prediction, one may benefit from using other users’ data. Even though
c© Springer International Publishing AG 2017
F. Schwenker and S. Scherer (Eds.): MPRSS 2016, LNAI 10183, pp. 24–35, 2017.
DOI: 10.1007/978-3-319-59259-6 3
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the user has visited many locations, there must be some places the user has never
been [26]. These places cannot be predicted, as opposed to a case in which the
list of all possible locations to be visited is based on the crowd. A model that is
based only on a user’s own data may be considered as a personalized model, and
a model that incorporates other users’ data as a generalized model, and given
observations from all users over the whole recording period, one could expect the
general model to be robust prior to improving the performance of the personal-
ized model [5]. Additionally, thanks to its user-independent nature, the general
model can be used for new users without retraining [5].

On the other hand, using information regarding other users for the prediction
task will force the use of a cloud service. In those cases, the calculations are usu-
ally performed on the server side where all data from all end users is aggregated
and stored. While the on-line cloud service has become increasingly popular
through the years, a user’s privacy can be easily violated, as it is quite common
for a cloud application provider to utilize user data for all sorts of claimed pur-
poses, and it is nearly impossible for users to monitor the usage of their data [12],
and they have to trust service providers with their personal data [12]. This is
perhaps the biggest concern to the user community, and so far it has prevented
many individual users and corporations from adopting cloud-based solutions.
Therefore, storing the data and performing all calculations on the client side
(user’s device) will contribute to the user privacy, as it will prevent unneces-
sary personal identifiable information (PII) or sensitive location data transfer
between the server and the client side. This was the main motivation in this
study to develop an algorithm that avoids any data sharing among users.

Section 2 presents related work, whereas Sect. 3 introduces our proposed
framework. Section 4 demonstrates our results before Sect. 5 concludes the work
and also offers further research.

2 Related Work

Next places are commonly predicted using data-mining techniques based on col-
lected mobility traces. In this work, we consider the prediction of one of the
learned locations in terms of location ID. Others [10] presented a prediction
model that represents the mobility behavior of an individual as a Markov model
and predicts the next location based on the previously visited locations. They
modified a similar approach [2] using a different clustering algorithm to find
locations. A spatio-temporal approach based on nonlinear analysis of the time
series of start times and duration times of visits was introduced in [24], and a
trajectory model, which is represented as a probabilistic suffix tree with both
spatial and temporal information of movements, was described in [15]. An algo-
rithm that predicts a user’s next place using a support vector machine classifier
given only the current context of time stamp and location was presented in [21].
Several mobility predictors based on graphical models, neural networks, and
decision trees were suggested [8], as well as their ensemble, similar in spirit to
an ensemble method in which different mobility patterns were extracted with
multiple models and combined under a probabilistic framework [5].
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3 Framework

We present an algorithm that addresses the task of predicting users’ destination
locations without given semantic data by the user himself and without sharing
data among users, and test it in predicting end locations of trajectories.

3.1 Database Description and Trajectory Collection

We used a GPS record dataset that was collected in the Microsoft Research
Asia GeoLife project over a five-year period, from April 2007 to August
2012 [28,29,31]. We transformed the raw GeoLife trajectories to represent con-
tiguous sequences of points having a “big enough” gap between them. The gaps
between points are measured both in terms of time duration and distance with
the thresholds set to be at least 20 min and 50 m, with the time constraint tested
first. The GeoLife dataset originally contained 182 users, but we used only 168
users who had at least five trajectories; at least three trajectories for training
and two for testing.

3.2 Stay-Point Detection

A stay point is a geographic region where the user stayed for a period of time,
where time and distance can be considered as attributes to decide on a “stay”
[17]. Once we have the sequence of start, stay, and end points, we obtain a
meaningful trajectory, as opposed to the initial sequence of the raw GPS points.

3.3 Clustering Stay Points to Locations by Geographic Proximity

Finding users’ locations using the raw GPS points has been previously per-
formed by a variant of the k-means clustering algorithm [2], based on popular
destinations, as those destinations where the users spend the most time [14],
and using a density-based clustering algorithms, such as DBSCAN [7] and DJ-
clustering [32], which use the density of local neighborhoods of points. Also oth-
ers denoted locations as clusters of stay points [30] or proposed a grid-clustering
algorithm that finds locations based on clustering stay points into locations of
some fixed size [27]. The last method was further improved [5] by adding an
additional step of maximizing the number of covered stay points with respect to
the set of regions that cover the highest density unassigned cell.

Our main purpose was to find these locations with as few a priori limitations
as possible, e.g., without assuming a precise location radius [2] or area [5,27],
or predefining the minimum number of points in a location [7]. Furthermore,
we claim that different users should have the option to have different sizes of
locations to best represent their daily life.

Based on these considerations, we developed an algorithm that clusters stay
points hierarchically [13] using the complete-linkage criterion and the Haver-
sine distance [18]. We refer to the maximum distance between clusters at each



Human Mobility-Pattern Discovery and Next-Place Prediction 27

clustering step as parameter H, and use the Davies-Bouldin (DB) index [4] and
the Silhouette coefficient (SC) [23]—as well as two other metrics we developed
(Sect. 3.5)—to evaluate the clustering and choose the optimal value of H.

3.4 Determining Semantic Meaning to Location

Knowing the semantic places around each point clustered in a location, we can
give this location a semantic meaning. To do this, we used semantic data from
the OSM project [1], using its application programming interface (API) imple-
mented by the R software package “osmar” [9]. This approach is safer than
using semantic information that is provided by the user himself (such as where
his home or workplace is) in terms of data privacy. Also, it may be more accu-
rate, as e.g., a shop, which is a possible semantic value to extract from a map,
can be a place someone goes to in order to buy groceries, but it can also be
a workplace. Thus, collecting a list of unique semantic values of all points in a
location represents the semantics of that location.

3.5 Clustering Evaluation

To address our specific task of clustering geographical points to semantically
meaningful locations, we developed two new clustering evaluation metrics that
should be maximized. These are based on the DB and SC metrics in conjunction
with a semantic score we have defined that is based on the (weighted by number
of points) average semantic similarity between all pairs of points in a cluster
(i.e., the fraction of common semantic values for these pairs):

1. 0.5[Normalized semantic score(H) − Normalized DB index(H)]
2. 0.5[Normalized semantic score(H) + Normalized SC(H)]

The four metrics evaluated the hierarchical clustering and recommended the
optimal value of H. Each metric yielded its own best value of H, which results
in a different number of clusters (locations) providing a different resolution.

3.6 Clustering Trajectories of Similar Patterns

To represent user’s location mobility patterns, we want to detect groups of sim-
ilar trajectories for the user. After clustering stay points to locations, we sub-
stitute [30] a start/stay/end point in a user’s location history with the cluster
ID the point pertains to, and thereby can represent this history as a sequence
of visited locations [17]. Then, trajectories are represented as sequences of loca-
tions, i.e., string sequences. To cluster similar trajectories, we require a similar-
ity/distance metric between string sequences [11,16], and we applied a previously
recommended one [22].

To compare sequences that may be of different lengths, we map a sequence
x using an |L|-dimensional feature space of “language” sub sequences w ∈ L by
calculating an embedding function φw(x) for every w appearing in x, and then
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measure the similarity between equal-length vectors in the |L|-dimensional fea-
ture space. We chose the Blended k-grams method [25] for the formal language,
where L is the set of all sub sequences of lengths 1 and 2, and the frequency of
each w ∈ L in each sequence is the embedding function. The normalized linear
kernel (cosine function) was chosen as the similarity measure between pairs of
trajectories, and thus the distance between trajectories T1 and T2 is defined as:
distance(T1, T2) = 1 − similarity(T1, T2).

To measure distances between trajectories that are represented as sequences
of lists of semantic places, e.g.,
T1 : [“bank”] → [“sport”, “shop”] → [“transport”, “sport”] and
T2 : [“transport”] → [“shop”, “office”],
we generalize the framework by establishing a language comprising sub sequences
of both length 1, e.g., {“bank”, “sport”, “shop”, “transport”, “office”}, and
length 2, e.g., {“bank sport”, “bank shop”, “sport transport”, “sport sport”,
“shop transport”, “shop sport”, “transport shop”, “transport office”}, to a uni-
fied list, L = {“bank”, “sport”, “shop”, “transport”, “office”, “bank sport”,
“bank shop”, “sport transport”, “sport sport”, “shop transport”, “shop sport”,
“transport shop”, “transport office”}.

Once the distance measurement between trajectories has been defined, it is
possible to apply the hierarchical clustering algorithm also to trajectories (of
both types), where the clustering results are evaluated using the DB index.

3.7 Preparing a New Trajectory for Prediction

To predict next location in a new (test) raw trajectory, we first assign the trajec-
tory to the most representative trajectory cluster among those that were already
found during training (Sect. 3.6). This is performed in the following way:

1. For each start/stay/end point in the new trajectory, check if allocating this
point to an existing location will not violate the maximum distance restric-
tion between pairs of points in that cluster (location) with a margin of 10%.
Among all suitable clusters, choose the one with the minimal average distance
between the test point and all training points of the cluster. If there is no
suitable cluster, the location ID for the point will be “0”, meaning “other
location”.

2. Represent the test trajectory as both a sequence of location IDs and semantic
values (similar to training).

3. For each type of sequence representation (IDs and semantics), find for each
test trajectory the closest group (cluster) of trajectories and assign this tra-
jectory to that cluster.

3.8 Prediction of a Next Place

In this study, next place prediction is based on a history of visits for a user, a
priori information that is independent of the user trajectories, or a combination
of the two. We designed ten prediction functions, each of which utilizes another
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piece of information about location transitions the user makes or time and envi-
ronment conditions for making their trajectory, and an eleventh function that
combines the ten functions using a random forest (RF) [3]. Similar to [2,10],
functions f1–f4 predict a next place for a new trajectory that was assigned a
cluster using a location transition matrix for that cluster that measures the
probabilities to transit from one location to another based on the seen transi-
tions between the trajectories of that cluster. Functions f5–f10 assume that our
visits at different locations are highly influenced by the day of the week, the time
of day, or the proximity to other locations. In all functions, if there is more than
one prediction option, for example, if there are equal transition probabilities to
several locations, then we choose the closest one to the current location.

f1: “Predict by transition probabilities among locations”. This function is based
on the trajectory clusters derived during training when the trajectories are repre-
sented as sequences of location IDs. For each cluster of trajectories, a transition
matrix was built according to the transitions among the locations of the tra-
jectories of that specific cluster. Given a new trajectory, it is assigned to its
most similar cluster of trajectories. The prediction of the end location of this
test trajectory is based on the last known location of the user in that particular
trajectory and on the highest transition probability from that location. If the
location ID is found, but the probability of transition from it to every possible
other location is 0, the prediction will be location number “0”, meaning the
prediction is “other” or an “unknown” location. If the location ID of the last
known point is “0”, we go back to one previous location and repeat the pro-
cedure. If eventually nothing is found, the prediction location number is “0”,
meaning “other”.

f2: “Predict by transition probabilities among semantic locations”. For each clus-
ter of trajectories represented as semantic sequences, we build a transition matrix
to describe the probabilities in moving from one semantic place to another. For
each new trajectory, we predict the semantics of its end point according to the
highest probability of transition from the previous point to the end point. If
such prediction is possible (and does not result in “other”), then we choose the
location ID that corresponds to this semantic location to represent this end of
trajectory.

f3: “Choose f2 if f1 = 0”. If the prediction output by f1 is “0”, predict by f2.
If the semantic prediction also results in “other”, then this will be the final
prediction. This heuristic combines the first two in a way that prioritizes f1 over
f2. It does that because if f1 returns an answer which is not “other”, then it
results in a specific answer of a location ID in comparison to f2, which returns a
more general result that may fit several locations.

f4: “Another semantic prediction”. For each cluster of trajectories, which were
clustered by semantic information, consider the transitions between all stay
points in a location. For every point, choose the predicted place with the high-
est transition probability. The predicted semantic location will be the one that
corresponds to the semantic place that was selected by most points.
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f5: “Predict by day–1 st option”. This prediction function uses the information
we can collect of the user’s visits to each location by the day of the week. Based
on the training trajectories, we calculate the conditional probability of a location
given each day of the week. Given the user’s current day of visit, we choose the
prediction of the next location to be the location with the highest probability to
visit on this day.

f6: “Predict by day–2nd option”. Following the same steps as f5, instead of
choosing the predicted location to be the one with the highest probability, con-
sider all locations with a visiting probability >0 and choose the closest one to
the current location.

f7: “Predict by the hour”. This prediction function uses the information collected
about the number of user’s visits to each location grouped by hour of the day. In
order to predict the next location, we make the following assumptions: (a) the
time the user will arrive to his next location is unknown, (b) only the current
time is known, and (c) the user will arrive to his next location at a close point in
time to the current time. Given these assumptions, we look at the probabilities
of being at each location, starting at the current hour, and search for the first
non-zero probability. One would notice that these probabilities are incomparable
due to different scales as a result of different probabilities to visit the location
in the first place in any given 24-hour period. Therefore, the probabilities are
weighted by the total probability of being at each location, regardless of the
time, by counting the number of visits at each location and dividing by the total
number of visits.

f8: “Predict the closest location”. This is a very simple heuristic that is based
on the assumption that sometimes people who need to be at several places (for
some errands for example), and can choose in what order to visit those locations,
will tend to move to the next closest location each time. So with this heuristic,
the prediction of the next location is simply choosing the closest location to the
current one.

f9: “Predict by day and hour–1 st option”. This prediction function uses the infor-
mation we can collect on the user’s visits to each location not only by day, and
not only by hour, but by the combination of both. In order to be able to compare
these probabilities, they are weighted by the total probability of being at each
location regardless of the time or day. The result of the prediction is the location
with the highest weighted probability.

f10: “Predict by day and hour–2nd option”. This prediction function does the
same as f9, but instead of choosing the prediction as the location with the high-
est weighted probability, it considers all options with a non-zero weighted prob-
ability, and among them chooses the closest location to the current one.

Since the ten functions aiming to predict the end location of a trajectory
are heuristic, we designed a mechanism that combines their decisions by the
RF classifier. The RF is trained to map each ten-dimensional vector of deci-
sions (locations) to the location known in the training set. Then based on the
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ten-dimensional function representation of the end location in the test trajectory
and the trained RF, the end location is predicted. We experimentally evaluated
the RF with a range of 64 to 128 trees (similar to [19]), and found 100 trees
provide good performance with only little sensitivity to this size.

4 Results and Discussion

To test our algorithm, we partitioned the set of trajectories of each user chrono-
logically, such that the first 80% of the trajectories are used for training, and the
remaining 20% for testing. We tested our algorithm by predicting the end loca-
tion of each trajectory of the test set. We define the prediction accuracy of each
user as the ratio between the number of correct predictions to the number of
trajectories in his test set. Table 1 presents the results of the average (Avg) and
standard deviation (Std) of the prediction accuracy over all users, as a function
of the clustering evaluation metric.

Table 1. Prediction accuracy and Std by the clustering metric

Clustering by Avg (Std) of prediction functions and RF

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 RF

DB 0.74 0.61 0.72 0.63 0.53 0.53 0.50 0.54 0.53 0.53 0.59

(0.33) (0.37) (0.34) (0.38) (0.40) (0.41) (0.41) (0.43) (0.39) (0.41) (0.40)

DB+semantics 0.53 0.44 0.49 0.38 0.18 0.15 0.16 0.15 0.2 0.15 0.23

(0.30) (0.30) (0.31) (0.32) (0.29) (0.29) (0.29) (0.30) (0.29) (0.29) (0.30)

SC+semantics 0.72 0.58 0.71 0.62 0.52 0.53 0.47 0.56 0.51 0.53 0.62

(0.33) (0.36) (0.32) (0.36) (0.38) (0.40) (0.40) (0.41) (0.38) (0.40) (0.37)

SC 0.82 0.68 0.81 0.73 0.61 0.65 0.63 0.72 0.6 0.65 0.76

(0.28) (0.37) (0.29) (0.35) (0.38) (0.38) (0.38) (0.37) (0.38) (0.38) (0.33)

We can see that for any clustering evaluation metric, predictor f1 results in
the highest prediction accuracy, even above the RF predictions. Since the RF
classifier cannot predict an “unknown” (“0”) location (as these are not included
in the training set), we define our final prediction as a combination of RF and
the predictor f1 in the following way: if the prediction output of f1 for a given
trajectory is “0”, then our final prediction will be “0” as well, but in any other
case, the final prediction will be the prediction of RF. Combining RF with f1
yields the best prediction accuracy, regardless of the clustering metric.

Table 2 compares our algorithm (first four rows) with algorithms of previous
works, in terms of the average number of locations found per user, prediction
accuracy, and main assumptions made by the algorithm. We compare ourselves
only to works that predicted a location ID and that specify information regard-
ing the number of locations found for a user. As can be seen, our results are
on par with previously reported works. Not only that our algorithm provides
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Table 2. Average prediction accuracy and number of locations needed

Dataset Number of

locations

Accuracy Assumptions Personalized

model

(Yes/No)

SC Geolife (168 users) 4 0.82 None Yes

DB Geolife (168 users) 19 0.75 None Yes

SC+semantics Geolife (168 users) 15 0.72 None Yes

DB+semantics Geolife (168 users) 93 0.54 None Yes

Gambs et al.

2012

Phonetic dataset 5 0.7−0.95 DJ-Clustering

algorithm

assumptions

Yes

Gambs et al.

2012

Geolife (175 users) 8 0.7−0.95 DJ-Clustering

algorithm

assumptions

Yes

Do and

Gatica-Perez,

2012

LDCC dataset 37 0.6 Location is

250m × 250m

Yes

Do and

Gatica-Perez,

2012

LDCC dataset 37 0.64 Location is

250m × 250m

No

Prabhala et al.

2014

Nokia Mobility

Data Challenge and

WTD dataset

150–400 0.5 Locations are

known

Yes

Etter et al. 2013 Nokia Mobility

Data Challenge

150–400 [21] 0.56 Locations are

known

Yes

a reasonable degree of accuracy, it also does it with a reasonable number of
locations.

The different clustering evaluation metrics in this work result in different
numbers of clusters with different sizes. Thus, we have defined a simple density
measure of the number of points per unit of area. The measure is calculated
assuming that each location (cluster) is a circle with a diameter equals to the
distance between the two most distant points within the cluster. Hence, given
Dmax

i, the distance between the two most distant points in the ith cluster, and
ni, the number of points associated with the cluster, the cluster density, ρi, can
be calculated as,

ρi =
ni

π(Dmax
i

2 )
2 =

4ni

π(Dmax
i)

2 . (1)

Since each clustering method produces multiple clusters for every user, we weight
the cluster density by the number of points in it to create a single density measure
per user.

Figure 1 presents the average over all users of the prediction accuracy vs.
location (cluster) density for each clustering alternative. We can conclude that
regardless of the clustering alternative (with the exception of SC), the accuracy
results decrease for the users with the increased average density. That means
that the evaluation metrics that generate more clusters, which are smaller and
denser, provide us with more meaningful locations on the one hand, but on the
other hand, introduce a higher variability in location history, thus making every
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Fig. 1. Prediction accuracy for different clustering evaluation metrics and density
ranges.

location more difficult to predict. A simple analogy to a real life scenario can
be emphasized when one is trying to describe user location history, e.g., “vis-
ited retail store, then nearby restaurant, then post-office” rather than “visited
shopping mall” where all these locations are. The implication of having a higher
resolution, however, is that there are many more locations created by the clus-
tering method, and this strongly affects the classification accuracy. Using the
previous example, naturally, it is easier to predict that a user is going to visit
the mall than the precise store or restaurant he is going to visit there.

5 Conclusion

The problem of accurately predicting a user’s destination location is a difficult
one to solve. Given that the user’s trajectories are collected over a large period
of time, they contain noise and tend to be incomplete. Predicting the user’s next
place accurately and consistently is a vexing problem [20].

This work is based on the assumption of no data sharing among users, and
that a user’s data is stored on his own device, in order to reduce the risks of
invasion of privacy. Our work demonstrates that the predictability of user mobil-
ity is strongly related with the number and density of the users’ locations, as
learned from the data of each user. We did not decide a priori on a precise num-
ber of locations or on a fixed size of locations. We rather present the number of
locations and their sizes as an output of our procedure of location extraction.
The new proposed algorithm relaxes many assumptions used in other works in
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the field and demonstrates prediction accuracy in the range of 54%–82% for dif-
ferent location extraction approaches, which is on par with the reported values
in similar studies. Future research may consider other clustering evaluation met-
rics. One may also consider using different similarity measures for the procedure
of finding clusters of similar trajectories as presented in [22]. For the prediction
algorithm, a different partitioning of the user’s data into training and test sets
can be evaluated.
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Abstract. Knowledge about the users emotional state is important to
achieve human like, natural Human Computer Interaction (HCI) in mod-
ern technical systems. Humans rely on implicit signals like body gestures
and posture, vocal changes (e.g. pitch) and mimic expressions when com-
municating. We investigate the relation between them and human emo-
tion, specifically when completing easy or difficult tasks. Additionally we
include physiological data which also differ in changes of cognitive load.
We focus on discriminating between mental overload and mental under-
load, which can e.g. be useful in an e-tutorial system. Mental underload
is a new term used to describe the state a person is in when complet-
ing a dull or boring task. It will be shown how to select suited features,
build uni modal classifiers which then are combined to a multimodal
mental load estimation by the use of Markov Fusion Networks (MFN)
and Kalman Filter Fusion (KFF).

1 Introduction

A fundamental part of human communication is noticing a change in the affective
state of the conversational partner. Affective state refers to the experience of
feelings or emotions. To elaborate on this more, consider the following scenario: A
person is telling another about a rather complex topic, e.g. in an teacher-student
setting. During this conversation the student starts to look a bit overwhelmed
by all the new information. In this case one would expect the teacher to change
his pace as the student obviously can’t follow up. Let that state the student is
experiencing henceforth be referred to as mental overload. This term is meant
to describe the state one is in when being confronted with a very complex task,
e.g. understanding something completely new. The opposite, i.e. completing an
easy task or listening to a teacher talking about a already well known topic,
shall be called mental underload. In terms of the student-teacher example one
can consider a electronic tutorial platform which controls its pace depending on
the student’s behavior. A user centered system should offer possibilities for the
user to express their emotions [9].

In the past there had been a lot of research on detecting mental states utiliz-
ing single modalities, like detecting affect from loudness and pitch of words being
sad [8,10]. Non-verbal ways of expressing and detecting feelings can be facial
c© Springer International Publishing AG 2017
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expressions [11,14] and gestures [7]. Furthermore a lot of studies conducted mul-
timodal approaches on affective state estimation [12]. Most of them are based on
acted or even strong expressive emotional datasets on basic emotions for exam-
ple defined by Eckman [1]. This methods can not be easily transferred to typical
weak expressive behaviors in HCI which in addition typically not refer to basic
emotions. In this work we focus on the estimation of cognitive load called mental
over and underload estimated from several modalities combined by using either a
Markov Fusion Network or a Kalman Filter Fusion scheme. The utilized dataset
contains data from natural behaving, none acting, users interacting with a HCI
system which is able to induce different mental load levels.

2 Experimental Setting

The dataset is based on an experiment done within the Transregional Collab-
orative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive
Technical Systems”.

Participants were asked to play a series of games based on the Interaction
paradigm of Schüssel et al. [13]. The task of each game sequence was to identify
the singleton element, i.e. the one item that is unique in shape and color (Number
36 and 2 in Fig. 1). The difficulty was set by adjusting the number of shapes
shown and the time to answer. If the given answer was incorrect, they received no
reward for that particular round. After a introduction each participant completed
four game sequences of decreasing difficulty. The first sequence was designed to
induce mental overload by a 6 × 6 board with 6 s to answer (see Fig. 1 left), the
second was a 5 × 5 matrix with 10 s count down, the third was set to 3 × 3 size
with 100 s, sequence four again was 3×3 mode with 100 s time to induce mental
underload. A fifth sequence induces frustration, e.g. by purposely logging in a
wrong answer. As the sequences one and four are explicitly designed to cause
mental over- and underload, we focused only on those two.

After each sequence played the participants answered a Self Assessment Scale
questionnaire (SAM). The aim of those questions was to determine valence,
arousal and dominance experienced in the particular sequence. A total of 38

Fig. 1. Screen shot of the difficult level (left) with target element 36 and the easyest
one (right) with target element 2.
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Fig. 2. Overview of the setting with sensors: (1) MS Kinect v2, (2) frontal webcam,
(3) wireless headset, (4) GTec g.MOBIlab+ physiologic sensor with sensors attached
to the users body.

participants were recorded. Of those were 18 male and 20 female. Their age
spanned from 17 to 27 (mean 21.66, σ2 ≈ 2.7). For details on the Experimental
setup and the usage of SAM to proof induction quality see [5].

During the experiment, participants were monitored by several sensors pro-
viding multimodal synchronous data. See Fig. 2. The sensory system contains two
webcams (Logitech C9100), one in front locking towards the users face and one
from the rear providing an overview of the scene, a wireless headset, a Microsoft
Kinect v2 camera in front recording RGB, infrared, depth, skeleton/postural
and acoustic information and finally a GTec g.MOBIlab+ biophysical sensor
recorded Electrocardiography (ECG), Electromyography (EMG) of trapezius
muscle, Electrodermal activity (EDA), respiration and body temperature.

3 Unimodal Recognition of Mental Overload

At first, six unimodal classifiers for three modalities were trained. One for speech,
one for gestures and four for physiological signals. These unimodal classifiers
are evaluated using the leave one subject out (LOSO) method. Later on, these
classifiers are combined using the fusion approaches described in Sect. 4.

3.1 Speech

For cognitive load recognition from speech, a k-nearest neighbours classifier was
trained. In total, 2067 training samples were presented which were obtained by
extracting the following features from audio chunks where speech is present, i.e.,
a spoken word or sentence:

– Vocal pitch features: Local minima and maxima, first and second derivations
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– Vocal energy features: Local minima and maxima, first and second derivations
– Mel-frequency cepstral coefficients (MFCC) features
– Duration related features: Length of the whole speech segment
– Frequency spectrum features: The distance between the 10% and 90% fre-

quency quantile
– Harmonics-to-noise (HNR) features
– Voice quality features: Number of glottal pulses and jitter

These features are extracted by using the EmoVoice component of Social
Signal Interpretation framework (SSI), which was proposed by Vogt et al. [15].
The work of Vogt et al. also provides a detailed description of these features.

A LOSO evaluation of this classifier yielded an accuracy of 62.26%.

3.2 Gesture

3247 samples (feature vectors) were used to train a k-nearest neighbours classifier
for recognizing cognitive load from gestures. The data for feature extraction is
provided by a Microsoft Kinect v2 sensor and contains the position of several
body joints. The following body joints are used for feature extraction: Neck, left
elbow, right elbow, left hand, right hand, right foot and left foot. For each of
these joints the following features are computed: Mean velocity, variance of the
velocity, mean acceleration and variance of the acceleration. Apart from that,
the distances between the following joints are computed:

– Distance between hands
– Distance between right hand and head or left hand and head (the shorter one

is chosen)
– Distance between right hand and left elbow
– Distance between left hand and right elbow
– Distance between feets
– Distance between right hand and right hip
– Distance between left hand and left hip

These features are computed by the SSI component EmoGesture, which was
proposed by Hihn [5]. The work of Hihn also provides a detailed analysis of
cognitive load estimation on the basis of gestures and postural behaviour.

Each feature vector (training sample) is computed on the basis of a four
seconds data chunk. Only samples which hold enough gestural activity were used
to train the classifier. Enough gestural activity is given if the mean velocity of at
least one body joint overcomes a certain threshold. The classifier was evaluated
using the LOSO method. An accuracy of 58.39% was obtained.

3.3 Physiology

In order to recognize mental overload on the basis of physiology, a k-nearest
neighbours classifier for each of the following physiological signals was trained:
ECG, EMG, EDA and body temperature. For EDA, EMG and temperature fifty
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statistical features are extracted, such as mean value, first and second derivative,
standard deviation, local maxima and mean value of all local maxima, just to
name some of them. These features are extracted on five seconds data chunks
with an overlap of 4.5 s. The extraction is accomplished by an SSI component
which is developed and implemented by Held [4]. The work of Held provides a
detailed description of these features and a detailed analysis of cognitive load
estimation on the basis of physiological signals and speech. For the ECG signals
the following features are extracted:

– Mean interval between two R deflections in milliseconds (also called RR inter-
val) (R deflection denotes the major deflection in an ECG signal)

– Mean heart rate in beats per minute
– Standard deviation of the first feature
– Standard deviation of the second feature
– Coefficient of variation of the first feature
– Root mean square of the difference between all successive RR intervals
– Number of pairs of RR intervals differing by 20 ms and more in %
– Number of pairs of RR intervals differing by 50 ms and more in %

In contrast to the other physiological signals, the features for the ECG signals
are extracted on a 7.5 s time frame with an overlap of 6.5 s.

All four classifiers were evaluated using the LOSO method. Table 1 shows
the number of presented samples and the obtained accuracies. The number of
presented samples is much higher for physiological signals than for speech and
gestures because they are always present and no activity detection is needed for
this modality.

Table 1. Evaluation results of all physiological classifiers using the LOSO method.

Physiological signal Number of samples Accuracy

ECG 19928 50.04%

EMG 44601 56.27%

EDA 44601 52.55%

Temperature 44601 54.14%

4 Multimodal Recognition of Mental Overload

In order to obtain a higher overall accuracy, three fusion approaches were used
to aggregate the above described classifiers. Since these fusion approaches have
been implemented to work under real time conditions with real sensors, a suitable
procedure for evaluating these fusion architectures must be applied. At first, a
live performance of the whole system is simulated by using the recorded data of
a subject, which wasn’t used to train the classifiers, as input for the live system.
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Only the data of the overload and underload sequence is used as input. The
system works under real time conditions as if it gets data from actual sensors.
The whole process from feature extraction to classifier fusion is applied just on
time and the classifier decisions as well as the overall estimate of the MFN are
written into a file. This process was repeated for twelve subjects. In the following
the obtained data is referenced as live performance data.

4.1 Markov Fusion Network

The MFN proposed by Glodek et al. fuses multiple continuous classifier deci-
sions in a certain time frame [3]. The MFN is organised in discrete time steps.
Occurring unimodal classifier decisions are synchronized by assigning them to a
discrete time step of the MFN. Finally, the MFN provides an overall estimate
for each discrete time step. Furthermore, the MFN is capable to handle missing
classifier decisions, i.e., the overall estimate yt is always available even if there
is no classifier decision for time step t. This is ensured by a Markov chain which
enforces the estimates yt to be similar to the estimates yt−1 and yt+1 which
are close in time. Generally, yt is influenced by the classifier decisions which are
assigned to time step t and its temporal neighbours yt−1 and yt+1.

The MFN is defined through three potentials, namely, data potential, smooth-
ness potential and distribution potential. The data potential ensures that the
overall estimates of the MFN are close to the unimodal classifier decisions. The
smoothness potential ensures that the MFN estimates yt are similar to their
temporal neighbours yt−1 and yt+1. The distribution potential ensures that the
overall estimates of all classes sum up to 1 for each time step.

All three potentials are combined into one probability density function
p(Y,X1, . . . ,XM ), where Y are all estimates of the MFN, X1, . . . ,XM are the
unimodal classifier decisions and M the number of modalities. In order to obtain
the most likely estimate Y, only the mode of the probability density function has
to be determined. This can be accomplished by gradient ascent. All gradients
∂Y

∂yi,t
are computed, where i denotes the class and t the time step and then the

estimates yi,t are modified towards the mode of the probability density function.
This process is repeated until a certain number of iterations is reached. For the
initialization of Y the mean of all classifier decisions or the least informative
outcome (0.5 in case of a two-class problem) can be used. For offline fusion all
time steps are taken into account at once, whereas for online fusion a sliding
time window is implemented. A more detailed description of the MFN can be
found in [3].

Numerical Evaluation. Figure 3 illustrates the live performance data of the
MFN for subject 3 and 17. The x-axis denotes the discrete time step of the MFN.
One time step represents 500 ms during live performance. The y-axis denotes the
degree of mental overload. The blue dashed line represents the desired outcome,
i.e., it indicates the overload and underload sequence. The green, blue, yellow,
cyan, magenta and red curves represent (in the same order) the Kinect, EMG,
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Fig. 3. Live performance of the MFN for subject 3 and 17. The green, blue, yellow,
cyan, magenta and red curves represent (in the same order) the Kinect, EMG, EDA,
temperature, ECG and audio classification results. The black curve shows the MFN
outcome and the blue dashed line represents the desired outcome. (Color figure online)

EDA, temperature, ECG and audio classification results. For subject 17, the
EDA (yellow curve), ECG (magenta curve) and temperature (cyan curve) clas-
sifiers don’t perform very well. These curves seem to have no tendency. On the
other hand, the Kinect (green curve), audio (red curve) and EMG (blue curve)
classifiers tend to have higher outcomes in the overload sequence than in the
underload sequence. The overall outcome of the live system (black curve) inher-
its this tendency and therefore the overall performance for subject 17 is very
well.

Comparisons of the live performance for subject 17 with live performances
of other subjects showed that every unimodal classifier performs different on
different subjects. For example, the EDA classifier performs very well for subject
3 but poorly for subject 17, while the EMG classifier performs better for subject
17 than for subject 3. Furthermore, the unimodal outcomes are unstable and
show strong oscillations. The fusion seems to provide a more stable and reliable
overall outcome.

In order to compare the MFN with the unimodal classifiers and other fusion
approaches, a measure for accuracy must be defined. One method to obtain an
accuracy for the MFN is to set all outcomes above a certain threshold to 1 and all
outcomes below this threshold to 0. Then, for every time step of a subjects live
performance the MFN outcome is checked whether it is the desired value or not
and an accuracy for a certain subject is obtained. Since the live performance was
simulated for twelve subjects, an overall accuracy can be obtained by averaging
all twelve subject specific accuracies. The black curve in Fig. 4 shows the accuracy
(averaged over twelve subjects) of the MFN dependent on the threshold. The
orange circles represent the optimal threshold and the corresponding achieved
accuracy for each of the twelve individual subjects. The green and red curves
show the accuracy for subject 19 and 29 dependent on their specific threshold.

The black curve shows that the default threshold of 0.5 is a suitable thresh-
old in the general case. An average accuracy of 64.42% is achieved using this
threshold. However, the orange circles show that the accuracy for many subjects
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Fig. 4. MFN accuracy dependent on the threshold. The black curve shows the accuracy
(averaged over twelve subjects) of the MFN dependent on the threshold. The orange
circles represent the optimal threshold and the corresponding achieved accuracy for
each of the twelve subjects. The green and red curves show the accuracy for subject
19 and 29 dependent on the threshold. (Color figure online)

200 400 600 800 1000 1200
time steps

0

0.2

0.4

0.6

0.8

1

cl
as

si
fic

at
io

n 
re

su
lt

Subject 19
Subject 29

Fig. 5. Visualization of the MFN outcome for subject 19 and 29 by comparison and
their individual optimal thresholds. The orange curve shows the overall outcome for
subject 19 and the blue curve the overall outcome for subject 29. The blue dashed line
represents the desired outcome. The green line shows the optimal threshold for subject
19 and the red one the optimal threshold for subject 29. (Color figure online)

can be improved if individualized thresholds are used. As illustrated by the green
and red curves, for subject 19 and 29 the accuracy can be improved greatly if
individualized thresholds are used instead of the default threshold of 0.5. This
circumstance is also illustrated in Fig. 5. It depicts the live performance of the
MFN for the subjects 19 and 29 by comparison. The orange curve shows the
overall outcome for subject 19 and the blue curve the overall outcome for sub-
ject 29. The blue dashed line represents the desired outcome. The green line is
the optimal threshold for subject 19 and the red one the optimal threshold for
subject 29.
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The outcome for subject 29 is higher than the outcome for subject 19 for
almost every time step. These subjects seem to have different individual baselines
on dealing with mental load, and therefore individual thresholds lead to much
better accuracies. The accuracy averaged over all twelve subjects is 71.95% if
individualized thresholds are used. Compared to the value of 64.42% it is a gain
of 7.53%. This leads to the question how an individual threshold during live
performance can be estimated. This could be accomplished by implementing
something similar to a moving average filter.

4.2 Kalman Filter Based Fusion

Typically, Kalman filters [6] are used to fuse multiple measurements in order to
obtain a more precise estimate than relying on just one measurement. In other
words, noise and inaccuracies in measurements are reduced. Kalman filters are
often used in object tracking, e.g., estimating the position of a plane. They can
also be used to fuse multiple continuous classifier decisions as proposed by Glodek
et al. [2]. In the case of Kalman filter based fusion (KFF), classifier outputs are
interpreted as measurements. All measurements and the latest estimate of the
Kalman filter are used to compute the next overall estimate. The estimation
consists of two steps, namely prediction and update step. In the prediction step,
the latest outcome is used to predict the outcome of the next time step. In the
update step, the prediction is updated using the unimodal classifier decisions.
Additionally, in both steps uncertainties are taken into account. Analogous to
the traditional Kalman filter, these uncertainties are modelled as noise, i.e.,
additional parameters. Furthermore, the KFF is also capable of handling missing
classifier decisions in a particular time step. A more detailed description of the
KFF can be found in [2].
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Fig. 6. KFF accuracy dependent on the threshold. The black curve shows the accuracy
(averaged over twelve subjects) of the KFF dependent on the threshold. The orange
circles represent the optimal threshold and the corresponding achieved accuracy for
each of the twelve subjects. The green and red curves show the accuracy for subject
19 and 29 dependent on the threshold. (Color figure online)
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Numerical Evaluation. In order to enable a comparison, the accuracy for
the KFF approach was estimated the same way as the accuracy for the MFN
as described above. Analogous to Figs. 4 and 6 shows the accuracy of the KFF
dependent on the utilized threshold. The denotations are the same. The black
curve shows that the default threshold of 0.5 is optimal in the general case, using
this threshold an averaged accuracy of 63.50% is achieved. Similar to the MFN,
the accuracy can be improved if individualized thresholds are used. However,
the gain of accuracy is not as big as for the MFN. Firstly, the orange circles
lie below the ones in Fig. 4. Secondly, the green and the red curve show that
the KFF achieves a better individual accuracy for subject 19 and 29 than the
MFN if the default threshold of 0.5 is used and therefore a smaller gain can be
expected. An averaged accuracy of 67.87% and hence a gain of 4.37% is achieved
if individualized thresholds are used.

4.3 Weighted Majority Voting

In order to enable a comparison of the MFN and the KFF to a classical decision
aggregation method, the weighted majority voting was applied on the recorded
classifier decisions of the live performance data. For each time step the available
decisions were aggregated and afterwards an accuracy is obtained. The overall
accuracy (averaged over twelve subjects) is 55.40% and lies significantly below
the accuracy of the MFN and the KFF.

4.4 Discussion

The analysis of the live performance data and the LOSO evaluation results of
the unimodal classifiers show that the unimodal classifiers are very unstable and
unreliable. This instability is intensified by missing classifier decisions. Especially
the audio classifier provides decisions very infrequently compared to the other
classifiers. Furthermore, some classifiers perform well for one subject but bad
for another subject, while other classifiers perform the other way around. The
fusion via MFN and Kalman filter stabilises the overall outcome in such a way
that strong oscillations are avoided and a more reliable outcome is provided even
if many missing classifier decisions occur.

Furthermore, the accuracies of the MFN, the KFF and the weighted majority
voting have been estimated. Tables 2 and 3 lists the accuracies of the unimodal
classifiers and all tested fusion approaches. The MFN and the KFF perform
slightly better than the best unimodal classifier. If individualized thresholds are
used, the accuracies of these fusion approaches increase decently. The weighted
majority voting is clearly outperformed by both fusion approaches.

These results show that the MFN and the KFF are both suitable fusion
approaches when it comes to multimodal classifier fusion. The accuracy of the
MFN is only 0.92% above the accuracy of the KFF, but if individual thresholds
are used, the gap raises to 4.08%. One reason for the better performance of
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Table 2. Achieved accuracies
of the unimodal classifiers.

Modality Accuracy

Kinect 58.39%

EMG 56.27%

EDA 52.55%

Temperature 54.14%

ECG 50.04%

Audio 62.26%

Table 3. Achieved accuracies of the
fusion approaches.

Fusion approach Accuracy

MFN 64.42%

KFF 63.50%

MFN (individual thresholds) 71.95%

KFF (individual thresholds) 67.87%

Weighted majority voting 55.40%

the MFN may be that the KFF takes only two time steps into account in its
calculations, while the MFN takes time steps according to its window size into
account.
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8. Meudt, S., Zharkov, D., Kächele, M., Schwenker, F.: Multi classifier systems
and forward backward feature selection algorithms to classify emotional coloured
speech. In: Proceedings of the 15th ACM on International Conference on Multi-
modal Interaction, pp. 551–556. ACM (2013)

9. Picard, R.W.: Affective Computing, vol. 252. MIT Press, Cambridge (1997)

http://dx.doi.org/10.1007/978-3-642-38067-9_8


Fusion Architectures for Multimodal Cognitive Load Recognition 47

10. Plesa-Skwerer, D., Faja, S., Schofield, C., Verbalis, A., Tager-Flusberg, H.,
Dykens, E.M.: Perceiving facial and vocal expressions of emotion in individuals
with Williams syndrome. Am. J. Ment. Retard. 111(1), 15–26 (2006)

11. Russell, J.A., Bachorowski, J.-A., Fernández-Dols, J.-M.: Facial and vocal expres-
sions of emotion. Annu. Rev. Psychol. 54(1), 329–349 (2003)

12. Schels, M., Glodek, M., Meudt, S., Scherer, S., Schmidt, M., Layher, G.,
Tschechne, S., Brosch, T., Hrabal, D., Walter, S., et al. Multi-modal classifier-
fusion for the recognition of emotions. In: Coverbal Synchrony in Human-Machine
Interaction (2013)

13. Schüssel, F., Honold, F., Bubalo, N., Huckauf, A., Traue, H., Hazer-Rau, D.: In-
depth analysis of multimodal interaction: an explorative paradigm. In: Kurosu, M.
(ed.) HCI 2016. LNCS, vol. 9732, pp. 233–240. Springer, Cham (2016). doi:10.
1007/978-3-319-39516-6 22

14. Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using
local binary patterns. In: IEEE International Conference on Image Processing,
2005. ICIP 2005, vol. 2, p. II-370. IEEE (2005)
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Abstract. This paper explains research based on improving real time face recog‐
nition system using new Radix-(2 × 2) Hierarchical Singular Value Decomposi‐
tion (HSVD) for 3rd order tensor. The scientific interest, aimed at the processing
of image sequences represented as tensors, was significantly increased in the last
years. Current home security solutions can be cost-prohibitive, prone to false
alarms, and fail to alert the user of a break-in while they are away from the home.
Because of advancements in facial detection and recognition techniques made in
the past decade, we propose a home security system that takes advantage of this
technology. To create such a system at a low cost requires algorithms that are
powerful enough to detect users in various environmental conditions and fast
enough to process real time video on weaker hardware. Experiments comparing
the efficiency of two different decomposition techniques applied for face recog‐
nition in real time.

1 Introduction

Machine facial recognition is one of the staple problems in the field of computer vision
and has been studied in great detail since the first experiments by Woodrow Bledsoe in
the 1960’s. Human beings are able to easily recognize faces at a young age thanks to
specialized sections of our brains, but what seems like an easy task for humans is a very
difficult task for computers.

When people talk about facial recognition, they often refer to a process that is actually
performed in two separate steps, facial detection and facial recognition. First, regions
that contain faces must be extracted from an image by recognizing the features that
typically make up a face. After the face regions have been identified, the features of the
unknown faces are compared to the features of known faces to determine their identity.
Decomposing an image into its features is a task that is performed by both computers
and our brains to make sense of the images that we are given. Many different algorithms
exist for detecting a face in an image, and each algorithm has its own strengths and
weaknesses depending on the context in which it is used. Likewise, there are several
algorithms for recognizing a face and each has its uses.
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In order to make a truly useful facial recognition system, faces must be detected in
different lighting conditions and at various angles; simply making a system that has good
results for recognizing frontal faces in controlled lighting conditions is not good enough
for use in home surveillance. A home surveillance system must be able to work in low
lighting conditions as many break-ins happen at night, and it must be able to detect faces
from different angles because there is no guarantee that an intruder will be facing directly
towards the camera at any point.

2 Related Work

Currently, the performance of face recognition algorithms increased implementing
Convolution Neural Network (CNN). The power of CNN to extract knowledge from
data has been verified in many fields [1]. Deep CNN is becoming the mainstream in face
recognition [2]. There are many configurations of CNN but in all of them convolution
nets use and process images as tensors.

Many of the most powerful face detection and recognition algorithms that achieve
a high success rate in unconstrained conditions have already been commercialized, such
as Picasa. Simplicam [3] has developed and commercialized a product that is very
similar to the one described in this paper and is marketed towards people who want
better security in their homes.

The basic methods for tensor decomposition [4] are higher-order extensions of the
matrix SVD: the CANDECOMP/PARAFAC (CP) which decomposes the tensor as a
sum of rank-one tensors, and the Tucker decomposition, which is a higher-order form
of the Principal Component Analysis (PCA). To enhance the decomposition of image
sequences (for example, human faces), represented as tensors, in this paper is proposed
to use new approach, called Radix-(2 × 2) Hierarchical SVD (HSVD) [5, 6], which to
replace famous Multilinear Singular Value Decomposition (MSVD) [7]. Proposed
Radix-(2 × 2) HSVD is different from HSVD presented in [11]. In Radix-(2 × 2) HSVD
tensor size N × N × N for N = 2n is build from elementary tensor (ET) of size 2 × 2 × 2.

The contributions of this paper are summarized as follows:

• We propose new tensor decomposition called 3D Hierarchical Singular Value
Decomposition (3D HSVD)

• We implement 3D HSVD and developed Home Security System
• We compare two different algorithm for face recognition: face recognition using SVD

and face recognition using 3D HSVD
• The main advantages of the new decomposition for video are the low computational

complexity and the tree-like structure.

3 Proposed System

The developed home surveillance system is able to perform the following tasks:

• Generate TensorFaces from a database of facial images
• Monitor an area for motion
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• Detect faces in frames where there is motion
• Recognize faces using the TensorFaces data compiled in step 1
• Send an SMS alert to the homeowner with a screenshot of the face and the name of

the subject if the subject is recognized

A visual representation of the system’s flow can be found below in Fig. 1.

Fig. 1. Overall design

4 Face Detection

The field of face detection has made significant progress in the past decade, however
there are still difficulties that come from lighting conditions, variations in scale, facial
expressions, occlusions, etc. Generally speaking, face detection techniques can be
divided into four main categories: knowledge-based methods, feature-based approach,
template matching methods and appearance-based methods [12]. Appearance based
methods have been shown to have better performance than the other methods. An
appearance-based method learns face models from a set of representative training face
images; the two important considerations in this process are which features to extract
and which learning algorithm to use.

The Viola-Jones (VJ) algorithm is robust, works in real time video, and can detect
faces and eyes without recognizing them. The first step in detecting a face using the VJ
algorithm is to convert an image to grayscale. All N × N subsets of the grayscale image
(where N is smaller than the size of will be checked to see if they match a set of Haar-
like features (referred to as a Haar cascade). If several neighboring subsets match the
Haar cascade, the region will be identified as a face. Faces of different sizes can be
detected by scaling N up by an arbitrary multiplier and repeating the process. The VJ
method of face detection proposes three main ideas that reduce computation time and
make it possible for real time object detection: the integral image, the boosting algorithm,
and the attention cascade structure [8].
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The use of Haar-like features and their usage in face detection is well documented;
an implementation of object detection using Haar-cascades can be found in the popular
Open Source Computer Vision library (OpenCV) [13].

5 Tensor Decomposition Based on the Radix (2 × 2) Hierarchical
Singular Value Decomposition

The basic idea is to represent the tensor decomposition of size N × N × N (for N = 2n),
by using a hierarchical tree-like structure of N levels, consisting of elementary tensors
of size 2 × 2 × 2. In the first level each elementary tensor, which builds the tensor of
size N × N × N, is decomposed by using SVD, and the so obtained components are
rearranged in accordance with their energy. In the next levels, the edges of the small
cube, which describes the elementary tensor, are increased twice. Each enlarged elemen‐
tary tensor is decomposed once more through SVD; the new components are rearranged,
etc. In brief, the heart of the method is given below.

1. Calculation of the SVD for elementary tensor of size 2 × 2 × 2

The tensor of size 2 × 2 × 2, noted as T2×2×2, is the kernel of the decomposition for
the tensor of size N × N × N for N = 2n. The HSVD algorithm for the tensor [T] of size
2 × 2 × 2 (HSVD2×2×2), based on the SVD2×2, is shown on Fig. 2 [5].

Fig. 2. Two-level HSVD2×2×2 for elementary tensor of size 2 × 2 × 2, based on the SVD2×2

After mode-1 unfolding the tensor T2×2×2, is obtained:

unfold𝐓2×2×2 =

[
a b e f
c d g h

]
=
[
[X1] [X2]

]
(1)
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In the first level of HSVD2×2×2, over each of the matrices [X1] and [X2] of the tensor
T2×2×2 is applied SVD of size 2 × 2 (SVD2×2) and in result is got:

[X1]=

[
a b
c d

]
= [C11]+ [C12], [X2]=

[
e f
g h

]
= [C21]+ [C22] (2)

Each matrix [X1] and [X2] is decomposed in accordance with the general relation for
SVD of size 2 × 2 [6]:

[X] =
[

x11 x12
x21 x22

]
= [C1] + [C2] =

√
ω + A
8A2

[
P1 P2
P3 P4

]
+

√
𝜔−A
8A2

[
P4 −P3
−P2 P1

]
, (3)

where x11, x12, x21, x22 - pixels values (elements of the matrix [X]),

ω = x2
11 + x2

12 + x2
21 + x2

22, A=
√
ν2+4η2, ν = x2

11 + x2
21 − x2

12 − x2
22,

η = x11x12 + x21x22, μ = x2
11 + x2

12 − x2
21 − x2

22,

P1 =
√
(A+μ)(A+ν), P2 =

√
(A+μ)(A − ν), P3 =

√
(A − μ)(A+𝜈), P4 =

√
(A − μ)(A − ν).

The matrices [C1] and [C2] from Eq. (3) depend on 4 parameters only (ω, ν, μ, η),
hence, the decomposition is of the kind “non over complete”.

The so obtained matrices [Ci,j] of size 2 × 2 for i, j = 1, 2 (as given in Eq. 2), are
rearranged in new couples in correspondence with their energy. After the rearrangement,
the first couple of matrices [C11] and [C21], which have high energy, defines the tensor
T1(2×2×2), and the second couple [C12] and [C22] which have lower energy - the tensor
T2(2×2×2).

𝐓2×2×2 = 𝐓1(2×2×2) + 𝐓2(2×2×2) (4)

After mode-2 unfolding both tensors in horizontal direction, is obtained:

unfold𝐓1(2×2×2) + unfold𝐓2(2×2×2) =
[
[X11] [X21]

]
+
[
[X12] [X22]

]
(5)

In the second level of HSVD2×2×2, on each matrix [Xi,j] of size 2 × 2 is applied
SVD2×2, and in result is obtained:

[X11] = [C111] + [C112], [X21] = [C211] + [C212], [X12] = [C121] + [C122], [X22] = [C221] + [C222]. (6)

The so calculated matrices [Ci,j,k] of size 2 × 2 for i, j, k = 1, 2 are rearranged into 4
new couples with similar energy in order, following the energy decrease. Each of these
4 couples of matrices defines a corresponding tensor of size 2 × 2 × 2. After their
unfolding is obtained:

unfold𝐓1(2×2×2)(1) +unfold𝐓1(2×2×2)(2) + unfold𝐓2(2×2×2)(1) + unfold𝐓2(2×2×2)(2)
=
[
[C111] [C211]

]
+
[
[C121] [C221]

]
+
[
[C112] [C212]

]
+
[
[C122] [C222]

]
. (7)
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In result of the execution of the two HSVD2×2×2 levels, the tensor T2×2×2 is repre‐
sented as:

𝐓2×2×2 = 𝐓1(2×2×2)(1) + 𝐓1(2×2×2)(2) + 𝐓2(2×2×2)(1) + 𝐓2(2×2×2)(2) =
2∑

i = 1

2∑
j = 1

𝐓i(2×2×2)(j) . (8)

2. Calculation of the Radix-(2 × 2) HSVD4×4×4 for tensor, representing image of size
4 × 4×4

In the first level of the HSVD4×4×4, the tensor T4×4×4 (for N = 4) from Fig. 3 is divided
into eight elementary tensors (kernels) of size T2×2×2(i). Each elementary tensor is
decomposed into 4 new tensors Ti(2×2×2)(j), for j = 1, 2, 3, 4 of same size.

Fig. 3. The tensor T4×4×4 is divided into eight elementary tensors T2×2×2(i) for i = 1, 2, .., 8.
(Color figure online)

In the 1st level of HSVD4×4×4, on each group of 8 pixels of same color (yellow, red,
green, blue, white, purple, light blue, and orange) is applied HSVD2×2×2. As a result,
four tensors Ti(4×4×4)(j) are obtained.

In the second level of the HSVD4×4×4, each of these four tensors Ti(4×4×4)(j) is divided
into eight kernels Ti,k(2×2×2)(j) for i = 1, 2, j = 1, 2 and k = 1, 2 in the way, defined by
the spatial net for pixel interlacing as shown on Fig. 4. The color of the pixels in each
kernel corresponds to that from the first level of the HSVD4×4×4 algorithm. On each
kernel is applied the HSVD2×2×2 algorithm.

After the execution of the 1st decomposition level, the tensor T4×4×4 is represented
as a sum of 4 components:

𝐓4×4×4=

2∑
i = 1

2∑
j = 1

Ti(4×4×4)(j) (9)

The so calculated 4 tensors Ti(4×4×4)(j) are arranged in correspondence with the mean
singular values (energy) of the kernels Ti,k(2×2×2)(j), for i = 1, 2, j = 1, 2, k = 1, 2. The
tensors Ti(4×4×4)(j) are rearranged in accordance with the energy decrease of the kernels
Ti,k(2×2×2)(j), which build them. On each kernel is applied again the two-level HSVD2×2×2
in accordance with Fig. 2.
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After the execution of the second decomposition level, the tensor T4×4×4 is repre‐
sented as a sum of 16 components:

𝐓4×4×4 =

4∑
i=1

4∑
j=1

𝐓i(4×4×4)(j) (10)

The computational graph of the 2-level HSVD4×4×4 decomposition is shown on
Fig. 5. The so obtained 16 tensors Ti(4×4×4)(j) are arranged, following the decreasing
values of the singular values (energies) of the kernels, Ti,k(2×2×2)(j), which compose them,
for i = 1, 2, j = 1, 2 and k = 1, 2. In the first level of the full HSVD4×4×4, the SVD2×2 is
executed 32 times, and in the second level - 64 times.

3. Calculation of the Radix-(2 × 2) HSVD for tensor, representing image of size
N × N × N for N = 2n

The decomposition of the tensor T4×4×4 could be generalized for the case, when the

tensor TN×N×N is of size N × N × N for N = 2n. As a result of the use of the Radix-(2 × 2)

HSVDN×N×N algorithm, the tensor 𝐓2n×2n×2n is represented as a sum of N2 = 2n eigen
tensors:

𝐓2n×2n×2n=

2n∑
i = 1

2n∑
j = 1

𝐓i(2n×2n×2n)(j) (11)

Fig. 4. Arrangement of tensors Ti(4×4×4)(j) into kernels Tj(2×2×2)(i) in the second HSVD4×4×4 level,
where the HSVD2×2×2 is applied on each group of pixels of same color (32 in total) (Color figure
online)
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The eigen tensors 𝐓i(2n×2n×2n)(j) of size 2n × 2n × 2n for i, j, k = 1, 2, .., 2n are arranged
in accordance with the decreasing values of the kernels energies Ti,k(2×2×2)(j), which build
them. The number of hierarchical levels needed for the execution of the HSVDN×N×N

algorithm (for N = 2n), is n = lg2N. The number of retained singular tensors is two times
lower than that for Truncated HSVDN×N×N, and in the last decomposition level it is

N2/2 = 22n−1.

6 Face Recognition

After successfully locating a face using the Viola & Jones method previously described,
the faces must be analyzed to extract their features, which are then used to identify the
person as either known or unknown. Much like face detection, there are many ways to
perform facial recognition and each has its strengths and weaknesses. The system
outlined in this paper uses an implementation of TensorFaces for facial recognition, as
described in Sect. 5. The Tensorface approach has the advantage of being both fast and
reasonably accurate, although it struggles with extreme variance in lighting and loses
accuracy when objects are occluding the major identifiers (eyes and mouth). State of the
art facial recognition methods, such as 3D facial analysis can overcome these issues,
but they are computationally intensive and require expensive specialized equipment.

The TensorFace method requires a training set of faces to compare any new faces
to. All of the images in the training set must be converted to grayscale and cropped to
only contain the face of the subject; the images must also be the same size. Every image
in the training set will be represented as an N × M matrix, where N is the length of an
image in vector format and M is the total number of images in the set. Unfortunately,

Fig. 5. Structure of the computational graphs of the full and truncated binary tree for execution
of the 2-level algorithm for the HSVD4×4×4 based on the SVD2×2
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the dimensionality of the images is very high: for a small image that is only 200 × 200
pixels, there are 40,000 dimensions. A common technique for reducing the dimension‐
ality of a dataset called Principal Component Analysis (PCA) is used to keep only the
features that best describe the images. PCA is useful for working with images because
it finds all of the eigenvectors, which are orthogonal, and keeps only the dimensions
which hold the most information; while some information is lost in this process, the
dimensionality of a dataset can be reduced drastically. Once PCA is applied and all of
the images are represented in the lower dimensionality subspace, the system is ready to
try to recognize faces. Any unknown faces will be represented as a linear combination
of the TensorFace in the training set, with a vector of coefficients that correspond to the
weights of each TensorFace. If the distance of the unknown face to its nearest face in
the training set is lower than a user-defined threshold, the face will be positively iden‐
tified but if the distance is higher than the threshold the face will remain unknown.

7 Experimental Results

To test the execution speed and accuracy of the proposed facial recognition surveillance
system two different experiments were applied. In the first set of experiments YALE
dataset and ORL dataset were used.

Tables 1 and 2 show the recognition rate for different number of training and testing
images using Singular Values Decomposition with Hidden Markov Model (SVD-
HMM) system [9].

Table 1. Recognition rate for different number of training and testing images – ORL database

ORL database
Number of images Recognition rate

(%)For training For testing
205 205 96.6%
246 164 96.3%
287 123 96.7%
328 82 98.8%
369 41 97.6%

Table 2. Recognition rate for different number of training and testing images – YALE database

YALE database
Number of images Recognition rate

(%)For training For testing
75 75 82.7%
90 60 80%
105 45 73.3%
120 30 90%
135 15 100%
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While the ORL face recognition accuracy is practically not affected, the YALE
dataset is more unstable in the presence of such variations.

Table 3 shows the recognition rate for different number of training and testing images
using Radix-(2 × 2) HSVD, for YALE dataset recognition accuracy is completely
affected. The table shows that the rate is increased and reached 100% along with
changing of the number of training and testing images.

Table 3. Recognition rate using Radix-(2×2) Hierarchical Singular Value Decomposition

YALE Database
Number of images Recognition rate

(%)For training For testing
75 75 89.45%
90 60 97.9%
105 45 98.43%
120 30 100%
135 15 100%

The 100% recognition rate shown on Table 3 follows from the use of 3D HSVD
instead of using 2D SVD.

Figure 6 shows the 38 subjects of YALE dataset. In the experiment 20 images for
each subject are used. Figure 7 shows 15 TensorFaces basic vector from HSVD tensor
decomposition using YALE dataset.

Fig. 6. The facial images of YALE database used for this experiment

In the second experiment multiple tests were performed using a short video clip of
students entering a room. Although the system was designed to operate on a live feed,
using a video clip is necessary to compare the execution time and accuracy of the
different methods used in the program. A total of four experiments were run on the video
clip, one for each combination of a face detection cascade (LBP or Haar Cascades) and
motion detection (on or off). The initial results show that there is definite increase in
speed when using the motion detection, but this increase in speed is mitigated when
there is a large amount of noise or movement (such as a sudden change in camera
focuses). Local binary patterns drastically reduce the execution time of the program
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compared to Haar cascades, but fail to detect the face as often. Both cascade types fail
to detect profile-shots of the face as well as rotation of the head.

8 Conclusions

The results of using LBP or Haar cascades in a surveillance system show that they are
not ideal. Even when the surveillance camera is positioned strategically to reduce the
chances of rotated or non-frontal faces appearing in a frame, LBP and Haar cascades
fail to detect faces far too often, especially when the subject is moving quickly or moving
their head. Other methods, such as Speeded Up Robust Features (SURF) [10] which is
rotation invariant is better suited to the task of facial detection and recognition. Use of
motion detection to narrow the region of interest provided a noticeable reduction in
execution time and could be combined with most other facial detection algorithms for
the same effect; motion detection is almost a perfect fit for these surveillance scenarios
since they often involve cameras that are at a fixed position with a mostly static back‐
ground.

Unlike the Multilinear SVD, new Radix-(2 × 2) HSVD does not require iterative
calculations. The computational complexity of the algorithm for the decomposition of the
tensor 𝐓2n×2n×2n, represented by the number of needed arithmetic operations, is O(24n), i.e.,
it is approximately 3 times lower than the number of operations O(3 × 23n + 3 × 24n),
needed for the H-Tucker tensor decomposition [5], which represents the MSVD.
However, the new decomposition needs larger memory (about 1/3) than the H-Tucker
tensor decomposition.

According to Eqs. (3) and (8), in each hierarchical level the decomposition of the
elementary tensors 2 × 2 × 2 is repeatedly executed. This permits to implement the
decomposition by using similar sets of calculations, executed in parallel. As a result, the
use for the first time of the Radix-(2 × 2) HSVD in the face recognition systems, offers
better abilities for real-time applications than the famous tensor decompositions.

Fig. 7. Group of 15 TensorFaces basic vector from HSVD tensor decomposition using YALE
dataset
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Classifiers for Building a Human Robot Interface
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Abstract. In this paper we present a natural human computer inter-
face based on gesture recognition. The principal aim is to study how
different personalized gestures, defined by users, can be represented in
terms of features and can be modelled by classification approaches in
order to obtain the best performances in gesture recognition. Ten dif-
ferent gestures involving the movement of the left arm are performed
by different users. Different classification methodologies (SVM, HMM,
NN, and DTW) are compared and their performances and limitations
are discussed. An ensemble of classifiers is proposed to produce more
favorable results compared to those of a single classifier system. The
problems concerning different lengths of gesture executions, variability
in their representations, generalization ability of the classifiers have been
analyzed and a valuable insight in possible recommendation is provided.

Keywords: Gesture recognition · Feature extraction · Model learning ·
Gesture segmentation · Ensemble classifier · Human-robot interface

1 Introduction

In the last decades, gesture recognition has been attracting a lot of attention
as a natural way to interact with computer through intentional movements of
hands, arms, face, or body. A number of approaches have been proposed giving
particular emphasis on hand gestures and facial expressions by the analysis of
images acquired by conventional RGB cameras [1,2].

The recent introduction of low cost depth sensors (ToF cameras), allowed the
spreading of new gesture recognition approaches and the possibility of developing
personalized human computer interfaces. Depth images provide the 3D structure
of the scene which can be easily used to simplify many tasks such as people
segmentation and tracking, body part recognition, motion estimation and so on.
Recent reviews on human activity recognition and motion analysis from 3D data
have been published in [3–6]. At present, Gesture Recognition through visual
and depth information is one of the main active research topics in the computer
vision community. The Kinect provides synchronized depth and color (RGB)
images where each pixel corresponds to an estimate of the distance between
c© Springer International Publishing AG 2017
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the sensor and the closest object in the scene together with the RGB values
at each pixel location. Together with the sensors some software platforms are
available to detect and track one or more people in the scene and extract the
corresponding human skeleton in real time. The availability of information about
joint coordinates and orientation has provided a great impulse to research [7–12].

Many papers, presented in literature in the last years, use normalized coor-
dinates of proper subset of skeleton joints which are able to characterize the
movements of the body parts involved in the gestures [13,14]. Angular infor-
mation between joint vectors have been used to maximize the invariance of the
skeletal representation with respect to the camera position [15].

Different methods have been used to generate gesture models. Hidden Markov
Models (HMM) are a common choice for gesture recognition as they are able to
model sequential data over time [16–18]. Usually HMMs require sequences of
discrete symbols, so different quantization schemes are first used to quantize the
features which characterize the gestures. In [16] a K-means clustering is used to
convert the feature vectors (joint angles) into the observable symbols for HMMs.
In [17] a uniform quantization of the orientations in 12 sectors (every π/6) has
been used. In [18] the skeleton coordinates are transformed into feature sequences
by considering the features as observations of Gaussian distributions. Support
Vector Machines (SVM) reduce the classification problem into multiple binary
classifications either by applying a one-versus-all (OVA-SVM) strategy (for a
total of N classifiers for N classes) [19] or a one-versus-one (OVO-SVM) strategy
(for a total of N × (N − 1)/2 classifiers for N classes) [20,21]. Artificial Neural
Networks (NNs) represent another alternative methodology to solve classification
problems in the context of gesture recognition [22]. The choice of the network
topology, the number of nodes/layers and the node activation functions depends
on the problem complexity and can be fixed by using iterative processes which
run until the optimal parameters are found [23]. Distance-based approaches,
starting from the assumption that the features characterizing the models are
well separated, apply distance metrics to measure the similarity between sam-
ples and gesture models. These methods have to solve the problem of variable
lengths of the sequences of features in order to apply any metric for comparisons.
Several solutions have been proposed either transforming the length of features
in common reference space (such as Dynamic Time Warping techniques (DTW)
[24]), or using ad hoc procedure to align the sequences [25].

In this paper we focus on the development of a Gesture Recognition approach
for developing a natural human computer interface. The final aim is to remotely
control a mobile robot by recognizing gestures performed by the users. Each
gesture defines a particular command for the robot. The low cost Kinect camera
is used to acquire the 3D information of the scene, then the features which
describes the gesture are extracted and are fed into the classification module.
Once the gesture is recognized, its associated command is sent to the robot.

In order to obtain the best performance, a study of different classification
approaches has been carried out. In this paper we compare different classifica-
tion methods such as Dynamic Time Warping (DTW), Neural Network (NN),
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Support Vector Machine (SVM) and Hidden Markov Model (HMM). The perfor-
mance of each methodology has been evaluated considering several users making
the gestures. This performance analysis is required as different users perform
gestures in a personalized way and with different velocity, furthermore even the
same user executes gestures differently in separate sessions. So, in order to build
an efficient and robust human robot interface the classifier must have good gen-
eralization ability. In conclusion, the main contribution of this paper is twofold:
first the analysis of the performance of different classifiers is given, then a combi-
nation of classifiers is applied in order to increase gesture recognition accuracy.

The rest of the paper is organized as follows. The overall description of the
problem and the definition of the gestures are given in Sect. 2. The definition of
the features is provided in Sect. 3. The methodologies selected for the gesture
model generation are describe in Sect. 4. Finally Sect. 5 presents the experiments
carried out. Section 6 reports some conclusions.

2 Definition of the Problem and Target Gestures

In this paper we have considered all the problems related to the development of
a gesture recognition interface which can be used in a real context and with low
cost sensors. The Kinect camera with OpenNI Libraries is used to extract people
in the environment and to segment the body parts involved in the movement.
Ten gestures have been defined and have been performed in front of the camera
by using the left arm. Figure 1 shows the gestures that have been chosen for the
experiments. Throughout the paper we will refer to these gestures by using the
following symbols G1, G2, G3, ... GN , where N = 10. Some of these gestures
involve movements in a plane parallel to the camera (G1, G3, G4, G7) while the
others involve a forward motion in a plane perpendicular to the camera (G2,
G5, G6, G8, G9, G10). Furthermore, some gestures are quite similar in terms of
variations of joint coordinates, the only difference is the plane in which they are
performed (see for example G9 and G4, G1 and G8).

Another point to consider is the complexity of gestures in terms of feature
variations. The human skeleton extracted by the Kinect framework is quite
unstable when the user has not a well distinguishable shape. For this reason,
those gestures involving a forward motion have strong variations that mainly
depend on the instability of the joint positions.

The development of a natural interface for gesture recognition involves two
main challenging tasks: the spatial and temporal resolution of gestures and the
generalization ability of the gesture classifier. In this paper these problems have
been investigated and tackled. First the best features, which are more represen-
tative and discriminant for the chosen set of gestures, are selected. Then, an
algorithm based on Fast Fourier Transform (FFT) has been applied to estimate
the duration of each gesture execution. Finally, different methodologies have
been compared for the evaluation of gesture model generalization. Since each
classifier works in a different way for all the gestures, a combination of classifiers
is proposed to reduce the risk of wrong decision.
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Fig. 1. Ten different gestures are shown. Gestures G1, G3, G4 and G7 involve move-
ments in a plane parallel to the camera. Gestures G2, G5, G6, G8, G9, and G10 involve
a forward motion in a plane perpendicular to the camera.

3 Feature Selection

The complexity of the gestures strictly affect the feature selection and the
methodology for the gesture model generation. If the gestures are distinct
enough, the recognition can be easy and reliable. So, joint coordinates which
are immediately available by the Kinect software platforms, could suffice. Only
a normalization is required to guarantee invariance with respect to the user’s
height, arm length, distance and orientation. On the other hand, the angular
information of joint vectors have the great advantage of maximizing the invari-
ance of the skeletal representation with respect to the camera position. In [26]
the angles between the vectors generated by the elbow-wrist joints, and the
shoulder-elbow joints, are used to generate the models of the gestures. However,
the experiments prove that these features are not discriminant enough to sepa-
rate all the gestures. For this reason, in our approach, we use features which are
more complex, but more representative since the orientation of a rigid body in a
3-dimensional space is considered. So, we use the quaternions of two arm joints
(returned by the OpenNi framework), in particular of the shoulder and elbow
left joints. A quaternion is a set of numbers that comprises a four-dimensional
vector space and is denoted by:

q = a + bi + cj + dk

where the coefficients a, b, c, d are real numbers and i, j, k are imaginary units.
The quaternion q represents an easy way to code any 3D rotation expressed
as a combination of a rotation angle and a rotation axis. The quaternions of
the shoulder and elbow left nodes produce a feature vector for each frame i
defined by:
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where the index s stands for shoulder and e stands for elbow. The sequence of
vectors which characterizes the whole gesture is given by the vector

V = [V1, V2, ..., Vn]

where n is the number of frames during which the gesture is entirely performed.

4 Gesture Classification

In this paper different methodologies for the gesture classification have been
applied. For each of them, the best parameter configuration and the best
architecture topology which assure the convergence of each method have been
selected. Neural Networks (NNs), Support Vector Machines (SVMs), Hidden
Markov Models (HMMs) and Dynamic Time Warping (DTW) have been recog-
nized as those most promising for gesture recognition.

Some of these methodologies require a fixed length for the input vector. For
this reason, as the length of a gesture can vary either if the gesture is executed by
the same user or by different users, a preliminary step of gesture length normal-
ization is required. A Fast Fourier Transform (FFT)-based approach has been
applied. Repeating a gesture for a number of times, it is possible to approxi-
mate the sequence of features as a periodic signal. So users are asked to repeat
the same gesture without interruption and all the frames of the sequences are
recorded. Applying the (FFT) and by tacking the position of the fundamental
harmonic component, the period can be evaluated as the reciprocal value of the
peak position. The estimated period is then used to interpolate the sequence of
feature vectors in a fixed number of values which can be provided as input to the
classifiers. Several sequences of gestures, executed by different people, have been
acquired in order to construct training and testing sets. Furthermore during the
real application of the human robot interface, as it is not possible to know the
starting frame and the length of the gestures executed by the user, FFT is also
applied to estimate the period p as previously described. So applying a sliding
window approach on the video sequence, segments of p frames are extracted and
resized with linear interpolation in order to have a number of frames equal to the
length of the gesture used in the training phase. Then the features are extracted
and fed into all the classifiers.

4.1 Neural Network

Ten different Neural Networks have been used to generate the models of the ten
considered gestures. Each ANN architecture has an input layer, one 40-nodes
hidden layer and a single node in the output layer. The back-propagation algo-
rithm is applied for model learning. Ten different training sets are constructed.
Each training set contains the feature vectors of one gesture as positive examples
and those of all the other gestures as negative ones. As each gesture execution
lasts a different number of frames, a preliminary normalization of the sequence
length has been applied. The length of each gesture as been fixed to n = 60
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frames, where n has been evaluated considering the average length of all ges-
tures (about 2 s). So the input vector for the ANNs has been defined by the
elements of feature vector V i times the number of frames n. After training, a
test phase has been carried out. Each gesture sample is provided to all the 10
ANNs and is assigned to the winning class, i.e. the one with the maximum output
among all the ANNs.

4.2 Support Vector Machine

In the case of SVM, a one-versus-one method has been applied. This method
builds one binary classifier for every pair of gestures, so a total of N(N − 1)/2
two-class classifiers (45 classifiers in our case). During the training phase, the
classifiers learn the optimal hyperplane which separates the two classes. The test-
ing phase is carried out by a max-wins voting strategy in which every classifier
assigns the test gesture to one of the two classes, then the vote of the win class
is increased by one. After each of the 45 classifiers makes its vote, the max-wins
voting strategy assigns the sample to the class with the largest number of votes.
As in the case of ANNs, the input vectors for SVMs are the normalized n-length
vectors of V i features.

4.3 Hidden Markov Models

Ten different discrete Hidden Markov Models have been built to generate the
models of the defined gestures. The choice of the number of hidden states depends
on the complexity of the process that has to be modelled. Different numbers of
states have been used and the best of these has been selected. A fully connected
HMM topology and the Baum-Welch algorithm have been applied to learn the
optimal model parameter. For both training and testing samples, a K-means
approach has been used to associate each continuous values of the feature vec-
tors with a discrete value. The preliminary normalization step has been applied
to gesture samples, too. As in the case of ANNs, during testing each gesture sam-
ple is inputted to the 10 trained HMMs and the HMM showing the maximum
probability of the data is selected as the winning class.

4.4 Dynamic Time Warping

DTW algorithm allows to compute the distance between two signals in terms of
their associated feature values. The Euclidean Distance has been used to find the
optimal alignment between the different sequences of feature vectors and solve
the classification problem. In this case, the normalization of feature vectors is
not necessary due to the warping peculiarity of DTW. A training phase is also
not needed apart from the selection for each gesture of a target feature sequence
which is representative of each considered gesture. The target gestures have been
selected applying the DTW to the set of training samples inside each gesture
class. The one with the minimum distance from all the other samples of the same



66 T. D’Orazio et al.

class has been chosen as target gesture. During testing phase, instead, DTW is
used to compare each test instance of gesture with all the target ones computing
the relative distances. The winning class is that of the closest target gesture.

4.5 Diversity of Classifiers

In the ideal case of noiseless input data, all the previous classifiers have per-
fect generalization performances. Such a generalization is quite impossible for
several reasons: noise in data acquisition phase; variability of the gesture tem-
plates both if performed by different users or by the same one (even the same
user does not perform gestures exactly the same each time). At the best, differ-
ent classifiers produce good results most of the time, and due to their different
nature, they behave differently on different instances of gestures. In this case,
a combination of classifiers can reduce the total error. A measure of diversity
among classifiers is necessary in order to assess their diversity and justify their
combination. Several measures have been defined in literature [28], the simplest
one is the pair-wise diversity measure between two classifiers. Given two classi-
fiers Ci and Cj we indicate with a the fraction of instances correctly classified
by both classifiers; with b the fraction of instances correctly classified by Ci but
incorrectly by Cj ; with c the fraction of instances incorrectly classified by the
Ci but correctly by Cj , and with d the fraction of instances incorrectly classified
by both classifiers. The Q statistic [27] measures the diversity between the two
classifiers as following:

Qi,j =
ad − bc

ad + bc

Q values close to zero indicate maximum diversity of classifiers, positive Q val-
ues indicate that both classifiers correctly classifies the same instances, whereas
negative Q values indicate that different errors are done on different instances
by the classifiers.

4.6 Combining Classifiers

A strategic combination of classifiers can reduce the total errors, improving the
performance of a single classifier. Let us define the decision of the tth classifiers
as dt,j ∈ {0, 1} for t = 1, .., T (T is the number of classifiers) and j = 1, ..., N
(N is the number of classes). Value 1 indicates that classifier t chooses class j,
whereas value 0 indicates all the other cases. The majority voting scheme [28]
chooses the class which receives the highest number of votes. In many cases,
as the vote cannot be distributed in an unequivocal way, for example when the
same vote is obtained for more classes, the final decision cannot be made. For
this reason, a weighted majority voting scheme has been used weighting more
heavily the more expert classifiers in order to improve the overall performance.
So the class of the gesture GJ is chosen if

T∑

t=1

wtdt,J = maxN
j=1

T∑

t=1

wtdt,j (1)



Performance Analysis of Gesture Recognition Classifiers 67

where wt is the weight of classifier t which measures the quality of the classifier
decision.

5 Experiments and Evaluations

Different experiments have been carried out in order to evaluate the performance
of the proposed framework.

In order to manage real-world situations, several sequence of gestures per-
formed by different users in front of a Kinect camera have been acquired. The use
of public datasets has been discarded as they do not assure that real situations
are handled, furthermore they contain few executions of the sample gestures
which are mainly acquired in the same conditions.

Fig. 2. Results of tests performed on gestures executed by four different Users: User1,
User2, User3, and User4. In each table the rate of correctly recognized gestures, for
each type of gesture and each classifier, are listed.

Gestures performed by one user (User 1) are used to build sets of samples
for training the classifiers. For each gesture, a number of sequences containing
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several executions of the same gesture were recorded. As introduced in Sect. 4 a
FFT-based algorithm has been applied to process each acquired sequence and
evaluate the period in order to extract sub-sequences of frames, each containing
one gesture execution. As previously stated a normalization is applied to each
sub-sequence in order to obtain feature vectors with the same length useful for
training ANNs, SVMs and HMMs. In the DTW case, all the training samples of
each gesture class are used to select the target gesture as described in Sect. 4.4.

After the training phase, other sessions of acquisitions were carried out con-
sidering both User 1 and other three different users (referred as User 2, User 3
and User 4). The same processing applied to the training sets is applied to these
new sequences in order to build different testing sets. It is important to observe
that the execution of the gestures by different people in different sessions involve
a number of factors that do not guarantee a uniformity of gesture execution with
respect the training ones. These are: different relative positions between users
and camera, different orientation of the arms, different amplitude of the move-
ment, and so on. All these factors can greatly modify the resulting skeletons and
the joint positions producing large variations in the extracted features.

In Fig. 2 the recognition rates, obtained during testing by applying the dif-
ferent classifiers, are reported for each user. As can be observed, there is a great
variability of recognition rates: the classifiers answers differently for each type of
gesture and for each user. This is principally due to the individual complexity of
the gestures and to the subjective execution of the gestures by each user. As a
consequence the choice of the best classifier (best in terms of the better classifi-
cation rate) among the analyzed ones is not possible. So another experiment has
been carried out in order to consider the possibility of improving the recognition
performance and building a human computer interface as general as possible.
To this aim the ensemble based algorithm has been applied for taking the final
decision as described in Sect. 4.6. First a measure of diversity has been evaluated
for each pair of classifiers as described in Sect. 4.5. In Table 1 the values of the Q
statistics evaluated considering test results of User 1 are listed. Values close to 0
implies large diversity of classifiers, whereas in case of Q = 0 maximum diversity
is obtained. This is the case, for example, of couples DTW-SVM, NN-SVM and
SVM-HMM.

The Q values in Table 1 asses the diversity and uncorrelation of the classifiers
making possible the application of an ensemble system. The idea is to combine
the outputs of different uncorrelated classifiers in order to improve performance
upon that of a single classifier. Therefore a new experiment has been carried out
by applying the ensemble of classifiers approach which has been implemented
by using the weighted majority voting scheme described in Eq. 1. The weights
of each classifier for each type of gesture have been estimated considering the
performance of the classifiers on the training set. Figure 3 shows the obtained
performance rates after applying the ensemble based scheme. As can be seen in
Fig. 3, the performance rates increase in all the cases. Weighting the decisions
improve the overall performance as expected.
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Table 1. Measures of the Q-values for each pair of classifiers.

NN SVM HMM

DTW −0.018 0 0.082

NN - 0 0.17

SVM - - 0

Fig. 3. Results obtained applying the ensemble based algorithm. On average, the detec-
tion rates increase notably with respect to single classifiers.

Some important conclusions can be drawn considering the overall experi-
ments carried out in this work: first, the solution of using only one user to train
the classifiers can be pursued as the performance of classifiers on different users
are quite good even if the gestures are performed in different ways. Second, the
use of an ensemble based algorithm increases the performance of each individual
classifier solving the unlucky situation in which one classifier completely fails.
The last point concerns the evaluation of gesture complexity. Experiments prove
that the failures are due to either the strict similarity between different gestures
or to the complexity of the gestures. For example, gestures that involve a move-
ment perpendicular to the camera image plane (such as G2, G5, G6, G8, G9

and G10) can produce false skeleton postures and consequently the extracted
features are completely erroneous. For example, during the experiments, gesture
G8 is sometimes misclassified as gesture G1. By observing Fig. 1, G1 and G8

actually involve the same movement, but in different planes: G1 in the lateral
plane, G8 in the frontal one with respect to the camera. It is evident that a slight
different orientation of the user in front of the camera could potentially produce
miss-classifiable features.

Considering the results discussed above, a subset of gestures has been selected
for building the human robot interface. Five of the ten considered gestures have
been chosen for controlling the mobile platform. Table 2 lists these gestures and
the associated commands for the robot. Figure 4 shows the scheme of the inter-
face. As described in Sect. 4 an initialization stage is required in order to apply a
FFT-based algorithm to estimate the length of gestures executed by the user. As
soon as a gesture is recognized, a socket containing the code of the corresponding
command is sent to the mobile robot controller to execute the action. A display
informs the user about the correct reception of the command and plots the map
of the environment with the current robot position to allow the user to change
the command as soon as the previous task has been completed.
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Fig. 4. Scheme of human robot interface.

Table 2. The gestures and the associated commands

Gesture Command

G1 Initialization

G2 Home

G4 Go to the Goal

G6 Turn Around

G7 Go Wondering

G10 Stop

6 Discussion and Conclusions

In this paper we present a human computer interface based on a gesture recogni-
tion system by using the Kinect sensor. Quaternion features of the left shoulder
and elbow joint are used to describe gestures. Different classification methods
(DTW, NN, SVM, HMM) are used to construct the models of 10 different types
of gestures executed by several users. In particular only the gestures executed by
one user are used for building the training set, whereas all the others are used
for the testing sets.

Several experiments have been carried out to compare the performance of
each single classifier and to prove the great improvement obtained by applying
an ensemble based decision method. This proves that the decision of using only
one user for building the training set was not only convenient, but also successful.
Furthermore the application of an ensemble based algorithm for making the final
decision about the recognition of the gesture is very favorable as it solves prob-
lems related to erroneous recognition by the single classifiers. This is important
if an efficient and robust human robot interface must be developed. Actually the
conducted performance analysis of gesture recognition classifiers allows us to
build an efficient human robot interface which uses the gestures for remotely
controlling a mobile platform. Furthermore the proposed interface manages
the problem of gesture length estimation. Actually, during online executions of
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gestures the starting frame and the length of the gestures are not a-priori known
as they vary not only among the different types of gestures, but also among the
different users. So we propose to use a FFT-based algorithm to solve this prob-
lem.
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Abstract. Automatic question answering has been a major problem in
natural language processing since the early days of research in the field.
Given a large dataset of question-answer pairs, the problem can be tack-
led using text matching in two steps: find a set of similar questions to a
given query from the dataset and then provide an answer to the query by
evaluating the answers stored in the dataset for those questions. In this
paper, we treat the text matching problem as an instance of the inexact
graph matching problem and propose an efficient approximate matching
scheme. We utilize the well known quadratic optimization problem met-
ric labeling as the framework of graph matching. In order to solve the
text matching, we first embed the sentences given in natural language
into a weighted directed graph. Next, we present a primal-dual approx-
imation algorithm for the linear programming relaxation of the metric
labeling problem to match text graphs. We demonstrate the utility of
our approach on a question answering task over a large dataset which
involves matching of questions as well as plain text.

Keywords: Metric labeling · Graph matching · Primal-dual approxi-
mation · Question answering

1 Graph Based Question Answering

Automated understanding of natural language is a problem studied under sev-
eral disciplines including computer science, linguistics, and statistics. Turing
initiated the research in automated natural language processing (NLP) with
his seminal paper where he questioned whether computers can interpret human
queries made in natural language and reply in a way indistinguishable from
human response [28]. During the following decades, research in the field was
mainly focused on complex rule based systems. The scalability of the rule sets
has been the main limiting factor for the progress in this course. Research in the
field flourished in late eighties with the advent of machine learning techniques
such as neural networks and support vector machines (SVM) [16].
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Question answering (QA) has been a major problem in NLP since the early
days of research in the field [8]. From an information retrieval (IR) perspective,
the main goal is to extract an answer from a large data source that satisfies a
certain query [14]. It differs from other IR tasks in that queries being in nat-
ural language provide extra information due to syntactic and semantic relations
between the words in contrast to simple lists of conventional search terms. This
extra information can be utilized to represent sentences by directed graphs where
words are expressed as nodes and relations among the words are illustrated by
directed edges. Once the sentences are represented using graphs, graph matching
methods can be utilized to tackle the QA problem.

In this paper, we approach question answering as an instance of the graph
matching problem. More specifically, given a database of question-answer pairs
and a query, the goal is to find a proper answer. To achieve this, we first embed
the questions into graphs. Next, we find similar questions to the query by com-
paring the query graph to the graphs in the dataset. Finally, we determine the
answer according to the answers of the similar questions from the dataset. We
utilize the metric labeling approach for matching question graphs which we pre-
viously presented in [22] with its application to matching lineage trees in immune
repertoires.

The rest of the paper is organized as follows: First, we provide an overview
of the literature in natural language processing and question answering. Then,
we introduce an embedding approach for representing sentences by directed
weighted graphs. Next, we present the primal dual algorithm for metric labeling
that is adapted to text matching. Finally, we provide an experimental evaluation
of the proposed method over a question answering dataset and conclude with
discussions and future work.

2 Background

The most basic method used for information retrieval and NLP tasks in general
and QA in specific is the bag-of-words model [3]. In this model, individual words
in a given text are statistically indexed while any relation that is present among
the words is ignored. An extension to the bag-of words model that partially cap-
tures the syntactic relation between words is the n-grams, which represents the
text as vectors where features are not only single words but chunks of words of
size n [2]. Methods utilizing further syntactic information such as parse trees and
part of speech tags are also devised for retrieval tasks [19]. Although success-
fully applied in various types of question answering, one major drawback of these
methods is that they do not capture the semantic relations between words, which
leads to challenges such as negation detection and coreference resolution [4,10].
In order to address these problems, machine learning methods such as recur-
sive neural networks are commonly applied to NLP tasks in addition to various
combinations of the approaches mentioned above [11,26].

Graph based methods are widely used in information retrieval in the NLP
domain to overcome challenges that arise from ignoring the semantic relations
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between sentences and words by capturing syntactic and semantic relations
together. Sentences can be embedded into directed graphs based on their struc-
tural properties with words represented as nodes and the relations between words
represented as directed edges. Moschitti [20] only used dependency parse tree for
defining relations among words. He used subtrees and subset trees of the parse
tree as features for describing a sentence. Using these features, he trained an
SVM for a predicate argument classification task. Utilizing coreference edges in
addition to dependency parsing trees, graph matching techniques are applied to
several NLP tasks including review relevance identification [25], inference recog-
nition [21], and extraction of automatic reasoning chains [27].

Among several graph based methods applied to NLP tasks, we specifically
mention two that utilize combinatorial optimization due to their relevance to our
approach on QA. The first is due to Haghigi et al. [9] where the textual inference
problem is formulated as a graph matching problem. In this study, sentences
are first embedded into directed graphs by representing words as nodes and
dependency relations between words as edges. Then, the matching is defined as
a minimization problem with a two term objective function which consists of the
cost of assigning vertices and the cost of substituting relations. This approach
can be contrasted to the metric labeling problem in that it considers pairwise
relations among vertices while establishing the mapping. The difference lies in
the way that the effect of pairwise relations are incorporated into the matching.
The second study is due to Pang and Lee [23] which utilizes an approach based
on the metric labeling formulation for the rating-inference problem. Here, the
goal is to decide the sentiment value of a given review with respect to a multi-
point scale, such as one to five stars. In this comparative study, three methods
are proposed for solving the multi-category classification of query sentences: one-
vs-all, regression, and metric labeling, where the latter is shown to outperform
the others. This study differs from our method in that the objects and labels
that are being matched in here are entire reviews. In contrast, we utilize metric
labeling for comparing two sentence where the object and label nodes are the
words of sentences.

3 Embedding Sentences into Graphs

Tackling the QA problem as an instance of graph matching requires the embed-
ding of questions into directed weighted graphs. In this section, we explain the
general case of embedding sentences into graphs that is also applicable to the
embedding of questions. Each word in a sentence has a corresponding node in
the graph whose features are the POS and NE tags of the word, the vector
representation of the word in a language model, and the word itself. We used
the POS tagger and the NE recognizer of the Stanford CoreNLP toolkit [15]
for obtaining POS and NE tags. In order to obtain the vector representation
of words, we used the English language model of Mikolov et al. [17] which is
trained by word2vec system using the Google news dataset. The language model
contains three million words, each of which are represented by 300-dimensional
vectors.
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Fig. 1. Graph representation of a sentence. (a) Acronyms written in red are the POS
tags of the corresponding words such as JJ and PRP$ representing adjective and
possessive pronoun, respectively. (b) Acronyms written on dependency edges represent
the type of relation between two endpoints of the edge such as amod and ccomp standing
for adjectival modifier and clausal complement, respectively. Different edge types are
color coded.

Relations among words are represented by directed edges in the graph which
is defined as one of the following three types: word order edges, dependency
edges, and coreference edges. Words that follow each other in the sentence are
connected by word order edges that point from a word to the next. Edges that are
obtained by the dependency parse tree of the sentence are used as dependency
edges. Coreferencing words are connected with bi-directional coreference edges.
Note that, there can be more than one edge between a pair of nodes. We used the
Stanford dependency parser and the Stanford coreference resolution system of
the Stanford CoreNLP package [15] for obtaining the aforementioned relations.
Graph representation of a sentence is shown in Fig. 1. Distinct edge weights can
be associated with types of edges since each type represents a different relation
which are needed to be learned empirically.

4 Graph Based Text Matching

Once the questions are embedded into graphs, questions that are similar to
a query can be retrieved from a question/answer dataset by matching corre-
sponding graphs. In order to achieve matching, we utilize the metric labeling
approach [12] with its primal-dual realization [7]. The goal is to find a similarity
score while obtaining a mapping between the nodes of the two graphs (see Fig. 2).
In the rest of the text, we present a primal-dual approximation algorithm that
is motivated by the method that we previously introduced in [22] for matching
lineage trees of the immune repertoire.
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Fig. 2. Matching graph representation of two questions.

We first state the metric labeling problem in its quadratic form as follows.

min
∑

p∈P

∑

a∈L

cp,a · xp,a +
∑

p∈P

∑

q∈P

wp,q

∑

a∈L

∑

b∈L

da,b · xp,a · xq,b

s.t.
∑

a∈L

xp,a = 1, ∀p ∈ P

xp,a ∈ {0, 1}, p ∈ P, a ∈ L

(1)

where cp,a is the cost of assigning a word p in the query to another word a in a
dataset sentence, wp,q is the strength of relation between words p and q of the
query sentence, and da,b is the distance between words a and b of the dataset
sentence. Adapting the formulation (1) to graph based text matching requires
us to define proper similarity and distance measures for the c, w, and d terms.

4.1 Assignment Cost

In graph representations of sentences, the cost cp,a of assigning word p to word
a is defined as a function of four parameters: the vector representation of the
words, the dictionary features of the words, their POS tags, and the NE tags.
First, the cosine distance between the vector representation of two words that
are obtained from the language model is used as a similarity measure between
the two words. Next, another similarity score that is obtained according to the
dictionary features of the words is used, such as assigning higher similarity to two
words that are synonyms or hyponyms. To calculate the similarity score among
word pairs, we utilized WordNet [18] which is a lexical database for English that
groups words into sets of cognitive synonyms by using a graph structure. We
used the method of Do et al. [6] among several similarity metrics defined over
WordNet. Finally, we take the POS and NE tags into account while determining
the similarity score. This is especially important in distinguishing two words
that are same but used within different contexts. The following two sentences
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are an example of such a case over the word rolling: “Rolling her eyes, she started
to walk away” vs “The Rolling Stones was his favorite rock band”. The (POS,
NE) tag tuple for the word “Rolling” will be (verb, none) in the first sentence
while it is (proper noun, organization) in the second. Even though the vector
representation will be the same for both words and WordNet will consider the
two to be identical, their similarity score will be set low by incorporating POS
and NE tags.

4.2 Separation Cost

The second sum in the objective function of (1), i.e., separation cost, requires
defining a relation among nodes over the graph representation of sentences. We
need to consider several aspects while defining this relation which in turn will
be used for defining a distance measure. First, note that there are three types
of edges in the text graphs. Second, it is possible to have an edge of each type
(making a total of up to three edges) between any two nodes in the graph. Third,
the relation between any two words is proportional to the number of direct edges
between them. Finally, for pairs of words that are not directly connected by any
edge, the relation should be defined in terms of the path connecting the two.
We denote the strength of relation among words p and q as wp,q. In order to
calculate the weight matrix w, we start with initializing it to zero and then run
the following path tracking procedure (denoted trackPath()) for each node in the
graph. Starting from the node representing word p, we follow the outgoing edges
recursively while labeling edges as visited to avoid cycles. We keep a counter
for each path denoting the number of hops made since the starting node. For
each node q that is encountered on the path, we increase the weight wp,q by the
weight coefficient of the type of incoming edge to node q divided by the number
of hops made up to this point. Note that, the contribution of edges that are
farther in the path will be relatively low due to the scaling of weights by the hop
counter. Once we calculate the weight matrix, we set the distance term dp,q as
the reciprocal of wp,q for all nodes p, q of the graph.

4.3 The Algorithm

A primal-dual realization of the metric labeling problem that is adapted to text
matching is presented in Algorithm 1. The procedure takes as input the graph
representations P and L of query and dataset sentences. The initialization phase
of the algorithm (lines 1–10) starts with setting the indicator variables xpa to
zero which denotes the probability of mapping the query sentence word p to
dataset sentence word q (line 1). Next, the costs of assigning query graph nodes
to dataset graph nodes cp,a are calculated as a function of the word feature coeffi-
cients ρw2v, ρNE , ρPOS , and ρwn (line 2). Then, the strength of relation between
node pairs w for both graphs P and L are calculated using the trackPath() pro-
cedure as a function of the number of hops and the edge weight coefficients
σcoref , σwordOrder, σdependency (lines 4–7). This is followed by the distance mea-
sure da,b which is only calculated for the dataset graph L (line 8). The procedure
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Algorithm 1. A primal-dual approximation algorithm for the metric labeling
problem to match sentences

procedure ML-Primal-Dual-for-Text(P, L)
1: ∀ p, q ∈ P, a ∈ L : xpa ← 0
2: ∀ p ∈ P, a ∈ L : cpa ← similarity(p, a, ρw2v, ρne, ρpos, ρwordNet)
3: ∀ p, q ∈ P, a, b ∈ L : wpq ← 0, wab ← 0
4: for ∀ p ∈ P, a ∈ L do
5: trackPath(p, hops, σcoref , σwordOrder, σdependency)
6: trackPath(a, hops, σcoref , σwordOrder, σdependency)
7: end for
8: ∀ a, b ∈ L : da,b ← 1/wa,b

9: ∀ p ∈ P, a ∈ L : φ(p, a) ← cpa
10: O ← P
11: while O �= ∅ do
12: Find p ∈ O that minimizes φ(p, a) for some a ∈ L
13: xpa ← 1
14: O ← O \ {p}
15: ∀q ∈ O, b ∈ L \ {a} : φ(q, b) = φ(q, b) + wpq · dab

16: end while
17: return

∑

p∈P,a∈L

φ(p, a)

further defines an adjusted assignment cost function φ which decides the map-
ping of nodes between P and L. The value of φ(p, a) is initially set to be the
assignment cost of p to a (line 9). At each iteration of the loop in lines 11–16,
the algorithm makes an assignment for the word pair (p, a) that minimizes the
adjusted assignment cost function φ (lines 12–13). Before proceeding to the next
iteration, φ function is updated for each of the query sentence nodes that are still
unassigned by an amount of separation cost with respect to the recently assigned
node (line 15). The algorithm terminates once all of the nodes in the query sen-
tence are assigned. The outcome of the algorithm is the similarity score between
the two graphs which is simply the summation of the adjusted assignment costs.

Proposition 1. Given |P| = n, |L| = m, and trackPath() is called with r as the
number of hops, running time complexity of Algorithm 1 is O(n2m+rn2+rm2).

Proof. The initializations made in lines 1–3 and 8–10 take O(n2 + m2 + nm)
time. The time complexity analysis for the lines 4–7 is as follows. The running
time of the trackPath() procedure is a function of r, i.e., the number of maximum
hops that is to be followed for each path, and the number of paths that can be
pursued beginning from the starting node. First, note that in a graph with k
nodes, there exist k − 1 dependency edges since the output of the dependency
parser is a tree, and k − 1 word order edges between the k nodes. We ignore the
contribution of coreference edges in our calculations since it can practically be
taken as constant due to the fact that sentences do not contain more than a few
coreferencing words. The worst case running time occurs when the parse tree of
the sentence is star shaped. Considering the result of graph embedding, which
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connects the leaf nodes with word order edges, the maximum running time of the
trackPath() procedure will be observed when the procedure is called for the root
of the parse tree. Specifically, the root node will recursively call the trackPath()
procedure with r−1 as the hop count for each of its neighboring nodes, and each
function will terminate after at most r −1 hops over edges. Thus, the worst case
running time of the path tracking procedure is O(r · k) for a graph containing k
nodes. Running the path tracking procedure for each node on the query and the
dataset graphs, the initialization of the weight matrix takes O(rn2 + rm2) time
in total. The while loop is executed n times, and lines 11, 13, and 14 each take
O(n) time. Making an aggregate analysis for lines 12 and 15, we get O(n2) and
O(n2m) time, respectively. Thus, the asymptotic running time of Algorithm 1
is O(n2m + rn2 + rm2).

4.4 Learning Coefficients

Several parameters are required to be learned by the algorithm. These parame-
ters include the coefficients ρw2v, ρne, ρpos, ρwordNet that account for the contri-
bution of word features word2vec, WordNet similarity, NE, and POS tags to the
assignment cost, and σcoref , σwordOrder, σdependency that define the weights of
the edge types for the calculation of distance measures. Learning these parame-
ters is a non-trivial task due to the time complexity of the graph based matching
methods. Nevertheless, the efficiency of the primal-dual algorithm presented in
Algorithm 1 makes it possible to learn the parameters in a reasonable time frame.
In order to train the system, we used grid search.

5 Experiments

We evaluate our graph based text matching and question answering method
on a combination of the Visual Question Answering (VQA) dataset [1] and the
Microsoft Common Objects in Context (MS COCO) [13] dataset. The VQA is a
visual question answering dataset containing three multiple question and answer
pairs for over 80 K images in its training set where the images are sampled from
the MS COCO dataset. The MS COCO is an image dataset that is generally
used for evaluating image recognition, segmentation, and captioning methods.
It provides five captions for each of the images in the dataset along with other
information. In our experiments, we obtained question-answer pairs from the
VQA dataset and image captions from the MS COCO dataset. We discarded
any further information that is provided by the datasets including the images
and image features. A set of sample question-answer pairs and captions are
shown in Table 1 along with their corresponding image.

Our experimental setup consists of three steps: preprocessing of the dataset,
training the parameters, and question answering. At the preprocessing stage,
we embedded the questions and captions into graphs as described in Sect. 3. In
order to train the parameters, we subsampled questions, answers, and captions
corresponding to 5 K images and run the question answering experiment on this
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Table 1. Sample captions and question-answer pairs for a corresponding image from
our experimental setup. Note that, images are not used as input in the experiments.

small dataset with various parameter values. We investigated the parameter
space using grid search in a coarse to fine level of detail. Specifically, we first run
the experiment at a coarse level with equally distributed intervals of parameters.
According to the evaluation results of the first level, we continued running the
experiment to further levels by finely dividing the region of the parameter space
with the highest success rate until reaching a local maximum.

The question answering task is performed as follows. First, the system is
loaded with the graph representations of the questions, answers, and the cap-
tions. Questions are sorted into groups according to the question category that is
provided by the VQA dataset, such as “what” or “why”. Question types for which
there exist less than 100 questions in the dataset are grouped together into a
category called “others”. Next, the question answering experiment is evaluated
using the leave-one-out approach with k-nearest neighbor (k-NN) algorithm.
That is, questions and captions corresponding to an image are withdrawn from
the dataset which is referred as the query. The goal is to find a correct answer
to each of the three questions that are asked for the query image. We first rule
out the question types that do not match with the question type of the query
which we take as its first word. Next, we run the graph based text matching
between the query and the questions in the dataset to obtain the most similar
n questions. Using graph matching, we further match the image captions of the
query with the captions of images corresponding to the most similar n ques-
tions. Among the resulting similarity scores, we choose the k nearest neighbors
out of the n questions. Finally, we decide on the answer using a voting scheme
over the multiple choices of the query through the answers to the k most similar
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Table 2. Accuracy of the methods (in percentage) for various k-NN values. Results
are reported for the cases when only the questions are used as well as questions and
captions are used in combination.

Method Questions only Questions & Captions

1-kNN 2-kNN 3-kNN 1-kNN 2-kNN 3-kNN

3-grams 35.73 52.79 67.00 37.69 54.07 67.00

Multi-layer perceptron [1] 53.68 59.85

Our method 36.43 54.65 69.38 37.85 55.80 69.61

question-answer pairs. We have experimentally chosen n and k values to be 100
and 50, respectively.

We took the n-gram based matching as the baseline to compare to our graph
based text matching method. We used n-grams up to 3-grams for describing the
questions and captions. The l1 distance is then used as the similarity measure
between n-grams, which is normalized according to the number of tokens in each
vector. Results are reported in Table 2.

We evaluated the accuracy of the methods for two cases. First, the answers
are decided based on the answers of the similar questions. Second, we further
take the image captions into account and refine the set of similar questions
by matching the image captions. As shown in Table 2, including the caption
information to the question answering process slightly increases the accuracy of
the system. This indicates that the questions are informative enough to provide
a correct answer for the multiple choice questions. Also note that, the correct
answer is within the 3 highly rated answers (3-NN) 70% of the time among
the 18 multiple choices provided for each question for both the n-gram method
and our approach. Our graph matching algorithm achieved better performance
rates compared to the n-gram with the current set of parameters that we used.
However, both methods perform relatively poorly when contrasted to the multi-
layer perceptron based method presented in [1]. We note that, our method’s
performance has the potential to be improved by training the algorithm with a
larger set of question-answer pairs.

6 Conclusions and Future Work

In this paper, we presented a graph based text matching approach applied to
the question answering problem. We first provided an embedding method to
represent sentences in natural language by directed weighted graphs. Next, we
formulated the text matching problem as an instance of the metric labeling
problem. Finally, we provided the application of the primal-dual approximation
algorithm for metric labeling to the text matching. The experimental evaluation
of our method on the VQA dataset shows the success of graph based matching
over the n-gram based matching.
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One limitation of the proposed system emanates from using the k-nearest
neighbor method to decide about the answer. Although the primal dual approx-
imation of metric labeling is efficient, the approach is not scalable considering
the growing sizes of knowledge bases. In the future, we would like to investigate
the utility of other machine learning algorithms. For instance, a kernel learning
approach such as SVM [5] can be used in a multi-class setting with question
types defining classes, in order to identify a subset of dataset questions with
salient properties (that is, support vectors). Then, we can use only these identi-
fied questions to compare with the query to reduce the running time. Our future
goal is to investigate the feasibility of applying the primal dual approximation of
the metric labeling as the graph kernel for the SVM. If this hypothesis fails, we
would like to investigate the use of clustering algorithms such as K-medoids [24]
on dataset questions to identify data-driven clusters of questions and their rep-
resentative members.
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Abstract. Human action recognition is an area with increasing signifi-
cance and has attracted much research attention over these years. Fusing
multiple features is intuitively an appropriate way to better recognize
actions in videos, as single type of features is not able to capture the
visual characteristics sufficiently. However, most of the existing fusion
methods used for action recognition fail to measure the contributions of
different features and may not guarantee the performance improvement
over the individual features. In this paper, we propose a new Hierar-
chical Bayesian Multiple Kernel Learning (HB-MKL) model to effec-
tively fuse diverse types of features for action recognition. The model
is able to adaptively evaluate the optimal weights of the base kernels
constructed from different features to form a composite kernel. We eval-
uate the effectiveness of our method with the complementary features
capturing both appearance and motion information from the videos on
challenging human action datasets, and the experimental results demon-
strate the potential of HB-MKL for action recognition.

Keywords: Action recognition · Feature fusion · Multiple kernel
learning

1 Introduction

Action recognition is an active research area in computer vision motivated by the
promise of applications in broad domains such as intelligent surveillance, human-
computer interaction and video retrieval. However, the task is still challenging
due to the variations in action performances, background clutter, illumination
changes, camera movements and occlusions.

The previous researches [1–7] in the literature have paid more attention to
designing descriptive features which are specific to action recognition and a large
number of features are available now for this task. It is an intuitive way to inte-
grate diverse types of informative features instead of a single one to improve
c© Springer International Publishing AG 2017
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the recognition performance. However, the existing action recognition algorithms
[8,9] usually employ the simple combination of different features. The most com-
mon method is the feature-level fusion which concatenates all the feature vectors
together into one single feature vector. A drawback of the method is the high
dimensionality of the final concatenated vector, since the efficiency of the method
drops exponentially as the dimensionality increases. Another feasible solution is
the kernel-level fusion. For instance, the multi-channel approach proposed in [10]
simply takes the multiplication of the kernels. Nevertheless, the method cannot
guarantee the performance improvement over the individual features. It is worth
noting that both methods do not consider the relative importance of the candi-
date features and this leads to a meaningless combination. Therefore, it requires
to formulate a combination method that is able to evaluate the relative contri-
butions of different feature representations and utilize such information to gain
enhanced classification performance.

In this paper, we propose a new Hierarchical Bayesian Multiple Kernel Learn-
ing (HB-MKL) framework to deal with feature fusion problem for action recog-
nition. We first formulate the multiple kernel learning problem as a decision
function based on a weighted linear combination of the base kernels, and then
develop a hierarchical Bayesian framework with three layers to solve this prob-
lem. Specifically, the bottom layer consists of the parameters in the decision
function. On the middle layer, the priors of Gaussian distribution family are
placed on the parameters of the decision function. Especially, the prior on the
kernel weight is set by a half-normal distribution, which has the advantage of
interpretability due to the only nonnegative restriction in nature. The top layer
is composed of the hyper-priors, invoked on the parameters of the priors at the
level below. Gamma distribution is employed to take the advantage of the conju-
gacy and non-informativeness. The non-informativeness ensures that the learnt
model parameters are intrinsic to the data. The model is established in a fully
conjugate manner, offering the probability of efficient inference. Therefore, we
derive a variational approximation for inference. After evaluating the optimal
weights of the base kernels using the framework above, we derive the composite
kernel. Finally, an SVM classifier is trained using the learnt optimal combined
kernel. We apply the above model to the feature fusion problem in the field of
action recognition, where no such attempts have been made before to the best of
our knowledge. We conduct a set of experiments for better illustration and com-
parison on several public action datasets. The experimental results demonstrate
the effectiveness of our method and provide some insight on the contributions
of different features for action recognition.

The main contributions of this work can be summarized as follows. First, a
new framework of hierarchical Bayesian multiple kernel learning is designed.
The half-normal distribution prior placed on the base kernel weights makes
them nonnegative without any other constraints, which exactly meets the actual
requirements and has good interpretability. Second, instead of conventional sim-
ple fusion of multiple features used in action recognition, we propose to apply
the HB-MKL based feature fusion method to action recognition, which can learn
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the optimal combination of multiple features automatically. Third, we carry out
a set of experiments on three datasets, and the experimental results demonstrate
the efficiency of the proposed method. It is worth mentioning that the valuable
results of the feature weights learnt by our method give some insight on how
each feature contributes to recognizing an action.

2 Related Work

In this section, we give a brief overview of the related work on three aspects: dis-
criminative features for action recognition, feature fusion methods and multiple
kernel learning algorithms.

Various classical video feature descriptors are proposed in previous work
including HOG, HOF [1], MBH [2] and some spatio-temporal extensions of
image descriptors, such as 3D-SIFT [3], HOG3D [4] and extended SURF [5].
Moreover, trajectory features are also popular descriptors. In [6], human actions
are represented using sparse SIFT-based trajectory. Wang et al. [7] introduce an
approach to combine dense sampling with feature tracking, and extract robust
features along the trajectories.

Realizing it is not enough to describe videos using homogeneous descriptor,
some researchers try to fuse heterogeneous descriptors to construct more dis-
criminative classifiers. However, most of the existing algorithms combine multi-
ple features in an easy way. Tian et al. [8] combine the histogram of MHI and
Haar wavelet transform of MHI at the feature-level. They use the straightforward
concatenation of the features as the combined feature representation, which is a
higher dimensional vector. Ullah et al. [9] use a multi-channel approach proposed
in [10] to integrate feature representations, which takes the multiplication of the
feature kernels in nature. The method can be regarded as a combination at the
kernel-level using fixed rules without additional parameters. However, the above
mentioned methods do not take into account the contribution of different fea-
tures and hence cannot make better use of the multiple features. In this paper,
we employ Multiple Kernel Learning (MKL) to informatively combine diverse
features for action recognition.

Many variants of MKL have been proposed in the previous work. In this
paper, we consider MKL with a weighted linear combination of the base kernels
under a Bayesian framework. The existing Bayesian MKL methods differ in the
prior assumptions on the kernel weights. Girolami et al. [11] present a Bayesian
model for regression and classification problems by employing a Dirichlet prior
on the kernel weighting coefficients. Damoulas et al. [12] use a similar model
with the same prior distribution assumptions and extend the model for multi-
class problem. Moreover, they apply the approach to protein fold recognition
and remote homology detection problems to prove the validity of the method.
Gönen [13] presents an efficient MKL algorithm by assuming the kernel weights
to be normally distributed. In this paper, we introduce a half-normal distribution
on the kernel weights. Compared with the normal distribution prior, the half-
normal distribution ensures that the kernel weights are nonnegative and hence
it produces a more meaningful combination of kernels.
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3 Hierarchical Bayesian Multiple Kernel Learning
for Action Recognition

In this section, we first introduce the heterogeneous and complementary fea-
tures used to sufficiently represent the actions in videos. Then we introduce the
detailed HB-MKL algorithm and its inference. Finally, we apply HB-MKL to
effectively fuse the obtained multiple features for action recognition.

3.1 Multiple Features for Action Representation

In this paper, we use the state-of-the-art improved dense trajectory features
[14] for action representation. We first extract the trajectories by densely sam-
pling feature points in each frame and tracking them in the video based on
displacement information from the optical flow field. Subsequently, we compute
the trajectory-aligned descriptors (i.e., Trajectory, HOF, HOG and MBH) within
a space-time volume along the trajectories.

It is worth noting that the extracted features are complementary in describing
action sequences by capturing both static appearance and dynamic motion infor-
mation. The trajectory descriptor is a concatenation of normalized displacement
vectors which describe the motion of the trajectories. HOF captures the motion
information based on the orientation of optical flow, whereas HOG calculates the
histograms of oriented gradients which measure the static appearance informa-
tion. MBH (motion boundary histogram) encodes relative motion information
by computing derivatives separately for the horizontal and vertical components
of the optical flow.

Once we obtain the features above, we encode them using both Bag of Fea-
tures (BOF) and Fisher Vector (FV) [15] approaches to achieve the final video
sequence representations. Using one of these two strategies, each video is repre-
sented by four kinds of features which characterize complementary information
of the video sequence.

3.2 Hierarchical Bayesian Multiple Kernel Learning

In order to formulate a better combination of the obtained multiple features, we
propose a HB-MKL model for feature fusion. First, we formulate the MKL for
multi-class classification problem as described below.

ConsiderN independent and identically distributed training instances {xi}N
i=1,

where each data instance has P feature representations xi = {xm
i }P

m=1. In this
paper, we consider a combined kernel which fuses different kinds of feature kernels
in a linear way as follows:

Ke(xi,xj) =
P∑

m=1

emKm(xm
i ,xm

j ), (1)

where Km is the base kernel calculating a similarity metric between videos with
respect to the m-th feature, em is the corresponding kernel weight indicating
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the m-th base kernel’s contribution and significance, and Ke is the composite
kernel that finally measures the overall similarity between two videos. Based on
the obtained composite kernel Ke, the decision function for a test instance x∗
with respect to action class c can be written as:

fc(x∗) =
N∑

i=1

ai
cKe(xi,x∗) + bc, c = 1, · · · ,K, (2)

where K is the number of the action classes, ai
c denotes the weight assigned to

the i-th training instance for the c-th action class, and bc is the bias for the c-th
action class.

We then propose a hierarchical probabilistic model to solve the above multi-
class multiple kernel learning problem in a Bayesian manner. Specifically, we
impose that the kernel weight em is sampled from a half-normal distribution with
precision ωm, which ensures that the kernel weights are non-negative without
any other constraints. The training instance weight ai

c and the bias bc are placed
by two zero-mean Gaussian distributions with precisions λi

c and γc, respectively.
Thus according to the decision function, the classification score fc

i is generated
from a Gaussian distribution with the mean eTaT

c km,i+bc and precision 1. Given
the classification score fc

i , the corresponding class label yc
i is simply obtained by

setting a threshold ν.

Table 1. List of notations

Notations Dimensions Representations

{Km}Pm=1 N ×N Base kernel matrices

A N ×K Training instance weight matrix

λ N ×K Priors for training instance weight matrix

e P Kernel weight vector

ω P Priors for kernel weight vector

b K Bias vector

γ K Priors for bias vector

F K ×N Classification score matrix

Y K ×N Class label matrix

Finally, three non-informative Gamma distributions with different shape and
scale parameters are placed on the precisions ωm, λi

c and γc of Gaussian distri-
butions respectively. On one hand, the parameters of Gamma distribution are
in general non-informative and thus the learnt kernel weights, training instance
weights, and biases are intrinsic to the data without prior knowledge assump-
tions. On the other hand, the above hierarchical probabilistic model is con-
structed in the conjugate exponential family, and therefore inference can be
implemented via variational Bayesian or Gibbs-sampling analysis, with analytic
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update equations. The variables mentioned above correspond to one instance
with respect to one action class. The vector or matrix forms of these variables
corresponding to all the training instances are listed in Table 1 for clarity. Actu-
ally, the superscripts and subscripts in the notations ai

c, λi
c, fc

i , yc
i denote the

row and column indexes of their matrices, respectively.
With these parametric definitions, the probabilistic graphical model of our

HB-MKL framework for multi-class classification is illustrated in Fig. 1. Cor-
responding to the three layers in the graphical model, the proposed HB-MKL
is expressed in the following three groups of formulations in summary. On the
bottom layer, the classification score of the instance with respect to action class
c is expressed as:

fc
i |bc, e ,ac, km,i ∼ N (fc

i ; eTaT
c km,i + bc, 1)

yc
i |fc

i ∼ δ(fc
i yc

i > ν), (3)

where N (·;μ,Σ) denotes a Gaussian distribution with the mean vector μ and
the covariance matrix Σ, and δ(·) represents the Kronecker delta function.

Fig. 1. Graphical model of hierarchical Bayesian multiple kernel learning

On the middle layer, the half-normal distribution and Gaussian distribution
are placed on the parameters of the decision function, which are expressed as:

em|ωm ∼ N+(em; 0, ω−1
m )

ai
c|λi

c ∼ N (ai
c; 0, (λi

c)
−1)

bc|γc ∼ N (bc; 0, γ−1
c ), (4)

where N+(·; 0,Σ) denotes a half-normal distribution with the mean vector 0 and
the covariance matrix Σ.
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On the top layer, non-informative gamma hyper-priors are placed on ωm, λi
c

and γc as follows:

ωm ∼ G(ωm;αω, βω)
λi

c ∼ G(λi
c;αλ, βλ)

γc ∼ G(γc;αγ , βγ), (5)

where G(·;α, β) denotes a Gamma distribution with the shape and scale para-
meters α and β.

3.3 Variational Inference

In order to perform efficient processing, we derive variational approximation
methodology for inference. The variational method [16], offers a lower bound
on the model evidence using an ensemble of factored posteriors to approxi-
mate the joint parameter posterior distribution. By defining the sets of priors
as Ξ = {γ,λ,ω}, hyper-priors as ζ = {αγ , βγ , αλ, βλ, αω, βω}, and the remain-
ing variables as Θ = {A, b, e ,F}, the factorable ensemble approximation of the
required posterior can be written as

p(Θ,Ξ|ζ, {Km}P
m=1,Y) ≈ q(Θ,Ξ) = q(λ)q(A)q(ω)q(e)q(γ)q(b)q(F), (6)

and each factor in the ensemble can be defined as:

q(λ) =
N∏

i=1

K∏
c=1

G(λi
c;α(λi

c), β(λi
c))

q(A) =
K∏

c=1
N (ac;μ(ac),Σ(ac))

q(ω) =
P∏

m=1
G(ωm;α(ωm), β(ωm))

q(e) = N+(e ;μ(e),Σ(e))

q(γ) =
K∏

c=1
G(γc;α(γc), β(γc))

q(b) = N (b;μ(b),Σ(b))

q(F) =
K∏

c=1

N∏
i=1

T N (fc
i ;μ(fc

i ),Σ(fc
i ), ρ(fc

i )).

We can bound the model evidence using Jensen’s inequality:

log p(Y|ζ, {Km}P
m=1) ≥

Eq(Θ,Ξ)[log p(Y,Θ,Ξ|ζ, {Km}P
m=1)] − Eq(Θ,Ξ)[log q(Θ,Ξ)],

(7)

and optimize it with respect to the distribution in the following form

q(τ) ∝ exp(Eq({Θ,Ξ}\τ)[log p(Y,Θ,Ξ|ζ, {Km}P
m=1)]). (8)
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3.4 HB-MKL Based Feature Fusion for Action Recognition

In order to utilize the proposed method for action recognition, we first extract
and encode the features described above to get the final video descriptors. When
adopting BOF representations, we use RBF-χ2 kernel [1] to separately calculate
the base kernels corresponding to different features. As for FV representations,
we compute the base kernels using linear kernel function. After that, we apply
the proposed HB-MKL to construct a composite kernel by learning the opti-
mum linear combination of the multiple kernels. Finally, we train a standard
SVM classifier with the combined kernel. For all the experiments, the multi-
class classification is made using the one-vs-all strategy.

4 Experiments

We evaluate our method on three popular human action datasets: KTH, UCF
sports, and HMDB51 datasets.

The KTH dataset [17] contains six action classes. The actions are performed
several times by 25 subjects under 4 different scenarios. The backgrounds are
relatively homogeneous and static in most sequences. We follow the experimental
settings in [17] where the videos are divided into a training set (16 subjects) and
a test set (9 subjects). For evaluation, the average accuracy over all classes is
reported.

The UCF sports dataset [18] includes 150 sequences of 10 classes of human
actions. The videos are extracted from sports broadcasts which are recorded in
unconstrained environments with camera motion and different viewpoints. We
apply a leave-one-out cross validation scheme and the evaluation is measured
using the average accuracy over all classes.

The HMDB51 dataset [19] contains a total of 6766 video clips collected
from various sources, ranging from digitized movies to YouTube. The videos in
the dataset vary in video quality, camera motion, viewpoints and occlusions. In
our experiments, we adopt the original experimental setup as in [19] with three
train/test splits. The average accuracy over the three splits is reported as the
performance measurement.

4.1 Baseline Feature Fusion Methods

To evaluate the performance improvement achieved using HB-MKL, we perform
experiments with two baseline feature fusion methods for comparison: concate-
nation and multi-channel methods. The concatenation method directly concate-
nates all the feature representations together to form a combined representation.
The multi-channel method combines different descriptors as follows [10]:

K(xi,xj) = exp(−
∑

m

1
Am

D(xm
i ,xm

j )), (9)

where D(xm
i ,xm

j ) is the χ2 distances defined on histogram representations
between videos xi and xj with respect to channel m. Am is the normalization
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factor computed as the average value of χ2 distances between all the training
instances for the m-th channel.

4.2 Comparison of Experimental Results

In order to qualify the effectiveness of our approach, we evaluate the classification
accuracies achieved by each of the features alone, as well as feature combination
via HB-MKL. The results of these approaches using BOF encoding are shown
in Table 2. It is clear that feature fusion using HB-MKL outperforms their uses
separately on all the datasets. By combining all the features using HB-MKL, we
obtain 95.37% on KTH which is around 1% better than the best single feature,
whereas on UCF sports it is around 5%. The improvement is even higher on
HMDB51, i.e., around 10%. The results demonstrate that the integration of
diverse features using HB-MKL enhances the performance compared with single
feature based approach.

Table 2. Performance comparisons of five single feature based approaches as well as
three fusion approaches using baseline and HB-MKL

Approaches KTH(%) UCF(%) HMDB51(%)

Trajectory 92.13 82.67 33.27

HOF 94.44 85.33 40.37

HOG 87.96 84.00 28.93

MBHx 93.98 82.67 35.80

MBHy 94.44 82.67 42.16

Concatenation 93.98 78.67 39.65

Multi-channel 94.44 77.33 41.33

HB-MKL 95.37 90.00 52.07

In addition, we also compare our method with the baseline combination meth-
ods in Table 2. It can be seen that there is a significant performance gain of
our combination method over the baselines. Moreover, we notice that the com-
binations using baselines can not guarantee the improvement with respect to
every single features. In contrast, our method consistently outperforms all single
features on all the datasets. The advantage of our feature fusion method over
baselines can be attributed to the ability of learning the relative importance of
each feature.

We also do a performance comparison using different feature encoding strate-
gies. Table 3 lists the results using both BOF and FV for feature encoding. We
notice that the improvement of FV over BOF on the KTH dataset is slightly,
whereas it reaches 4.6% on HMDB51. Unexpectedly, the performance of FV is
inferior to BOF on UCF sports. Based on this evaluation, we choose the best
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Table 3. Comparison of feature encoding strategies using BOF and FV

BOF FV

KTH(%) 95.37 95.83

UCF(%) 90.00 88.00

HMDB51(%) 52.07 56.67

performed FV encoding for KTH and HMDB51, and BOF encoding for UCF
sports in the rest of the experiments.

We also compare our method with the most recent results reported in the
literature on the three datasets in Table 4. On KTH, our method yields better
performance than [20]. The work of [20] uses direction-dependent feature pairs
to represent actions, and achieves a recognition rate of 95.0%. Zhang et al. [21]
report 87.5% on UCF sports by using a simplex-based orientation decomposition
descriptor to describe 3D visual features. We further improve their results by
2.5%. On HMDB51, Wu et al. [22] report 56.4% with a VLAD-based video
encoding for human action recognition. We achieve 56.7% which is slightly better
than theirs. It can be seen that the proposed method achieves a comparable
performance to the state-of-the-art approaches.

Table 4. Performance comparisons of our method with the state-of-the-art results

KTH UCF sports HMDB51

Sun et al. [23] 93.1% Sun et al. [23] 86.6% Yang et al. [24] 53.9%

Zhang et al. [21] 94.8% Zhang et al. [21] 87.5% Wu et al. [22] 56.4%

Veeriahet et al. [25] 94.0% Lan et al. [26] 83.6% Shao et al. [27] 49.8%

Wang et al. [28] 94.5% Wang et al. [28] 86.7% Liu et al. [29] 51.4%

Sheng et al. [20] 95.0% Sheng et al. [20] 87.3% Liu et al. [30] 48.4%

Our method 95.8% Our method 90.0% Our method 56.7%

4.3 Analysis of Feature Weights Learnt by HB-MKL

Table 5 shows the feature weights learnt by HB-MKL in the range [0, 1]. From
the table, we can see how each feature contributes to the final decision. It is
clearly to see that on KTH, among all the feature representations, HOF plays
the dominant role, while HOG tends to have the lowest weight. This reveals that
motion-based features of a video are the most informative features for action
recognition on KTH. This may be because the variation in appearances between
frames is very small on KTH.

As for UCF sports and HMDB51, it can be seen that HOG ranks first, fol-
lowed by motion-based features. This is probably because both of the datasets
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contain lots of camera motion which reduces the reliability of motion-based fea-
tures. Moreover, the UCF sports dataset often involves specific environment
and equipment, and hence the appearance-based feature is more important for
it. Therefore, it demonstrates that the proposed HB-MKL is able to learn the
optimal feature weights from data adaptively.

Table 5. The feature representation weights learnt by HB-MKL

KTH UCF HMDB51

Trajectory 0.19 0.23 0.20

HOF 0.23 0.22 0.21

HOG 0.12 0.25 0.24

MBHx 0.23 0.16 0.17

MBHy 0.23 0.14 0.18

5 Conclusion

In this paper, we have presented an efficient feature fusion framework based on
hierarchical Bayesian multiple kernel learning for action recognition. The method
is able to integrate different features in an informative way by evaluating the
relative importance of every feature and finally learns the optimum kernel com-
bination of the multiple feature kernels. We have carried out a set of experiments
on three human action datasets to evaluate the effectiveness of our approach,
and the results have demonstrated that the proposed approach generally outper-
forms the state-of-the-art methods in terms of classification accuracy for action
recognition.
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Abstract. In this work, we propose a training algorithm for an audio-
visual automatic speech recognition (AV-ASR) system using deep recur-
rent neural network (RNN). First, we train a deep RNN acoustic model
with a Connectionist Temporal Classification (CTC) objective function.
The frame labels obtained from the acoustic model are then used to per-
form a non-linear dimensionality reduction of the visual features using a
deep bottleneck network. Audio and visual features are fused and used
to train a fusion RNN. The use of bottleneck features for visual modal-
ity helps the model to converge properly during training. Our system
is evaluated on GRID corpus. Our results show that presence of visual
modality gives significant improvement in character error rate (CER) at
various levels of noise even when the model is trained without noisy data.
We also provide a comparison of two fusion methods: feature fusion and
decision fusion.

Keywords: Audio-visual speech recognition · Connectionist Temporal
Classification · Recurrent neural network

1 Introduction

Audio-visual automatic speech recognition (AV-ASR) is a case of multi-modal
analysis in which two modalities (audio and visual) complement each other to
recognize speech. Incorporating visual features, such as speaker’s lip movements
and facial expressions, into automatic speech recognition (ASR) systems has
been shown to improve their performances especially under noisy conditions.
To this end several methods have been proposed which traditionally included
variants of GMM/HMM models [3,5]. More recently AV-ASR methods based on
deep neural networks (DNN) [14,21,23] have been proposed.

End-to-end speech recognition methods based on RNNs trained with CTC
objective function [10,11,19] have come to the fore recently and have been shown
to give performances comparable to that of DNN/HMM. The RNN trained
with CTC directly learns a mapping between audio feature frames and char-
acter/phoneme sequences. This method eliminates the need for an intermediate
step of training GMM/HMM model, thereby simplifying the training procedure.
To our knowledge, so far AV-ASR systems based on RNN trained with CTC
have not been explored.
c© Springer International Publishing AG 2017
F. Schwenker and S. Scherer (Eds.): MPRSS 2016, LNAI 10183, pp. 98–109, 2017.
DOI: 10.1007/978-3-319-59259-6 9
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In this work, we design and evaluate an audio-visual ASR (AV-ASR) sys-
tem using deep recurrent neural network (RNN) and CTC objective function.
The design of an AV-ASR system includes the tasks of visual feature engineer-
ing, and audio-visual information fusion. Figure 1 shows the AV-ASR pipeline
at test time. This work mainly deals with the visual feature extraction and
processing steps and training protocol for the fusion model. Proper visual fea-
tures are important especially in the case of RNNs as RNNs are difficult to train.
Bottleneck features used in tandem with audio features are known to improve
ASR performance [7,12,28]. We employ a similar idea in order to improve the
discriminatory power of video features. We show that this helps the RNN to
converge properly when compared with raw DCT features. Finally, we compare
the performances of feature fusion and decision fusion methods.

The paper is organized as follows: Sect. 2 presents the prior work on AV-ASR.
Bi-directional RNN and its training using CTC objective function are discussed
in Sect. 3. Section 4 describes the feature extraction steps for audio and visual
modalities. In Sect. 5 different fusion models are explained. Section 6 explains
the training protocols and experimental results. Finally, we summarize our work
in Sect. 7.

Fig. 1. Pipeline of AV-ASR system at test time. Fusion

2 Related Work

The differences between various AV-ASR systems lie chiefly in the methods
employed for visual feature extraction and audio-visual information fusion.
Visual feature extraction methods can be of 3 types [24]: 1. Appearance based
features where each pixel in the mouth region of the speaker (ROI) is considered
to be informative. Usually a transformation such as DCT or PCA is applied
to the ROI to reduce the dimensions. Additional feature processing such as
mean normalization, intra-frame and inter-frame LDA may be applied [15,24].
2. Shape based features utilize the geometric features such as height, width and
area of the lip region or build a statistical model of the lip contours whose
parameters are used as features. 3. Combination of appearance and shape based
features.

Fusion methods can be broadly divided into two types [16,24]: 1. Feature
fusion 2. Decision fusion. Feature fusion models perform a low level integration
of audio and visual features and this involves a single model which is trained
on the fused features. Feature fusion may include a simple concatenation of fea-
tures or feature weighting and is usually followed by a dimensionality reduction



100 A. Thanda and S.M. Venkatesan

transformation like LDA. On the other hand, Decision fusion is applied in cases
where the output classes for the two modalities are same. Various decision fusion
methods based on variants of HMMs have been proposed [3,5]. In Multistream
HMM the emission probability of a state of audio-visual system is obtained
by a linear combination of log-likelihoods of individual streams for that state.
The parameters of HMMs for individual streams can be estimated separately
or jointly. While multistream HMM assumes state level synchrony between the
two streams, some methods [2,3] such as coupled HMM [3] allow for asynchrony
between two streams. For a detailed survey on HMM based AV-ASR systems we
refer the readers to [16,24]

Application of deep learning to multi-modal analyses was presented in [22]
which describes multi-modal, cross-modal and shared representation learning
and their applications to AV-ASR. In [14], Deep Belief Networks (DBN) are
explored. In [21] the authors train separate networks for audio and visual inputs
and fuse the final layers of two networks, and then build a third DNN with the
fused features. In addition, [21] presents a new DNN architecture with a bilinear
soft-max layer which further improves the performance. In [23] a deep de-noising
auto-encoder is used to learn noise robust speech features. The auto-encoder
is trained with MFCC features of noisy speech as input and reconstructs clean
features. The outputs of final layer of the auto-encoder are used as audio features.
A CNN is trained with images from the mouth region as input and phoneme
labels as output. The final layers of the two networks are then combined to train
a multi-stream HMM.

3 Sequence Labeling Using RNN

The following notations are adopted in this paper. For an utterance u of length
Tu, Ou

a = (O
u

a,1, O
u

a,2, ..., O
u

a,Tu
) and Ou

v = (O
u

v,1, O
u

v,2, ..., O
u

v,Tu
) denote the

observation sequences of audio and visual frames where Oa,t ∈ R
da and Ov,t ∈

R
dv . We assume equal frame rates for audio and visual inputs which is ensured

in experiments by means of interpolation. Ou
av = (O

u

av,1, O
u

av,2, ..., O
u

av,Tu
) where

O
u

av,t = [O
u

a,t, O
u

v,t] ∈ R
dav where dav = da + dv denotes the concatenated

features at time t for utterance u. The corresponding label sequence is given by
l = (l1, l2, ..., lSu

) where Su ≤ Tu and li ∈ L where L is the set of English letters
and an additional element representing a space. For ease of representation, we
drop the utterance index u. All the models described in this paper are character
based.

3.1 Bi-directional RNN

RNNs are a class of neural networks used to map sequences to sequences. This
is possible because of the feedback connections between hidden nodes. In a bi-
directional RNN, the hidden layer has two components each corresponding to
forward (past) and backward (future) connections. For a given input sequence
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O = (O1, O2, ..., OT ), the output of the network is calculated as follows: forward
pass through forward component of the hidden layer at a given instant t is
given by

h
f

t = g(Wf
hoOt + Wf

hhh
f

t−1 + b
f

h) (1)

where Wf
ho is the input-to-hidden weights for forward component, Wf

hh cor-

responds to hidden-to-hidden weights between forward components, and b
f

h is
the forward component bias. g is a non-linearity depending on the choice of the
hidden layer unit. Similarly, forward pass through the backward component of
the hidden layer is given by

h
b

t = g(Wb
hoOt + Wb

hhh
b

t−1 + b
b

h) (2)

where Wb
ho, W

b
hh, b

b

h are the corresponding parameters for the backward com-
ponent. The input to next layer is the concatenated vector [hf

t ,hb
t ]. In a deep

RNN multiple such bidirectional hidden layers are stacked.
RNNs are trained using Back-Propagation Through Time (BPTT) algorithm.

The training algorithm suffers from vanishing gradients problem which is over-
come by using a special unit in hidden layer called the Long Short Term Memory
(LSTM) [8,13].

3.2 Connectionist Temporal Classification

DNNs used in ASR systems are frame-level classifiers i.e., each frame of the input
sequence requires a class label in order for the DNN to be trained. The frame-
level labels are usually HMM states, obtained by first training a GMM/HMM
model and then by forced alignment of input sequences to the HMM states. CTC
objective function [9,10] obviates the need for such alignments as it enables the
network to learn over all possible alignments.

Let the input sequence be O = (O1, O2, ..., OT ) and a corresponding label
sequence l = (l1, l2, ..., lS) where S ≤ T . The RNN employs a soft-max output
layer containing one node for each element in L′ where L′ = L∪{φ}. The number
of output units is |L′| = |L| + 1. The additional symbol φ represents a blank
label meaning that the network has not produced an output for that input frame.
The additional blank label at the output allows us to define an alignment π of
length T containing elements of L′. For example, (AφφMφ), (φAφφM) are both
alignments of length 5 for the label sequence AM . Accordingly, a many to one
map B : L′T �−→ L≤T can be defined which generates the label sequence from
an alignment.

Assuming that the posterior probabilities obtained at soft-max layer, at each
instant are independent we get

P (π|O) =
T∏

t=1

P (kt|Ot) (3)
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where k ∈ L′ and

P (kt|Ot) =
exp(yk

t )
Σk′ exp(yk′

t )
(4)

where yk
t is the input to node k of the soft-max layer at time t

The likelihood of the label sequence given an observation sequence can be
calculated by summing (3) over all possible alignments.

P (l|O) =
∑

π∈B−1(l)

P (π|O) (5)

The goal is to maximize the log-likelihood log P (l|O) estimation of a
label sequence given an observation sequence. Equation 5 is computationally
intractable since the number of alignments increases exponentially with the num-
ber of labels. For efficient computation of (5), forward-backward algorithm is
used.

4 Feature Extraction

4.1 Audio Features

The sampling rate of audio data is converted to 16 kHz. For each frame of speech
signal of 25 ms duration, filter-bank features of 40 dimensions are extracted. The
filter-bank features are mean normalized and Δ and ΔΔ features are appended.
The final 120 dimensional features are used as audio features.

4.2 Visual Features

The video frame rate is increased to match the rate of audio frames through
interpolation. For AV-ASR, the ROI for visual features is the region surrounding
the speaker’s mouth. Each frame is converted to gray scale and face detection
is performed using Viola-Jones algorithm. The 64× 64 lip region is extracted
by detecting 68 landmark points [17] on the speakers face, and cropping the
ROI surrounding speakers mouth and chin. 100 dimensional DCT features are
extracted from the ROI.

After several experiments of training with DCT features, we found that RNN
training either exploded or converged poorly. In order improve the discriminatory
power of the visual features, we perform non-linear dimensionality reduction of
the features using a deep bottleneck network. Bottleneck features are obtained
by training a neural network in which one of the hidden layers has relatively
small dimension. The DNN is trained using cross-entropy cost function with
character labels as output. The frame-level character labels required for training
the DNN are obtained by first training an acoustic model (RNNa) and then
obtaining the outputs from the final soft-max layer of RNNa.

The DNN configuration is given by dim − 1024 − 1024 − 40 − 1024 − opdim
where dim = 1100 and is obtained by splicing each 100 dimensional video frame
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Fig. 2. Fusion models (a) Feature fusion (b) Decision fusion. The bottleneck network
for visual feature extraction is enclosed in the dotted box.

with a context of 10 frames - 5 on each side. opdim = |L′|. After training, the last
2 layers are discarded and 40-dimensional outputs are used as visual features.
The final dimension of visual feature vector is 120 including the Δ and ΔΔ
features.

5 Fusion Models

In this work, the fusion models are character based RNNs trained using CTC
objective function i.e. L′ is the set of English alphabet including a blank label.
The two fusion models are shown in Fig. 2.

5.1 Feature Fusion

In feature fusion technique, a single RNNav is trained by concatenating the
audio and visual features using the CTC objective function. In the test phase,
at each instant the concatenated features are forward propagated through the
network. In the CTC decoding step, the posterior probabilities obtained at the
soft-max layer are converted to pseudo log-likelihoods [26] as

log Pav(Oav,t|k) = log Pav(k|Oav,t) − log P (k) (6)

where k ∈ L′ and P (k) is the prior probability of class k obtained from the
training data [19].
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5.2 Decision Fusion

In decision fusion technique the audio and visual modalities are modeled by sep-
arate networks, RNNa and RNNv respectively. RNNv is a lip-reading system.
The networks are trained separately. In the test phase, for a given utterance the
frame level, the pseudo log-likelihoods of RNNa and RNNv are combined as

log Pav(Oa,t, Ov,t|k) = γ log Pa(k|Oa,t) + (1 − γ) log Pv(k|Ov,t) − log P (k) (7)

where 0 ≤ γ ≤ 1 is a parameter dependent on the noise level and the reliability
of each modality [5]. For example, at higher levels of noise in audio input, a low
value of γ is preferred. In this work, we adapt the parameter γ for each utterance
based on KL-divergence measure between the posterior probability distributions
of RNNa and RNNv. The divergence between the posterior probability distri-
butions is expected to vary as the noise in the audio modality increases. The
KL-divergence is scaled to a value in [0, 1] using logistic sigmoid. The parameter
b was determined empirically from validation dataset.

DKL(Pv||Pa) =
∑

i

PvlogPa (8)

where we consider the posteriors of RNNv as the true distribution based on the
assumption that video input is always free from noise.

γ =
1

1 + exp(−DKL + b)
(9)

6 Experiments

The system was trained and tested on GRID audio-visual corpus [4]. GRID
corpus is a collection of audio and video recordings of 34 speakers (18 male,
16 female) each uttering a 1000 sentences. Each utterance has a fixed length
of approximately 3 s. The total number of words in the vocabulary is 51. The
syntactic structures of all sentences are similar as shown below.

< command > < color > < preposition > < letter > < digit > < adverb >
Ex. PLACE RED AT M ZERO PLEASE

6.1 Training

In the corpus obtained, the video recordings for speaker 21 were not available. In
addition, 308 utterances by various speakers could not be processed due to vari-
ous errors. The dataset in effect consisted of 32692 utterances 90% of the which
(containing 29423 utterances) was used for training and cross validation while the
remaining (10%) data was used as test set. Both training and test data contain
utterances from all of the speakers. Models were trained and tested using Kaldi
speech recognition tool kit [25], Kaldi+PDNN [18] and EESEN framework [19].
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RNNa Acoustic Model. RNNa contains 2 bi-directional LSTM hidden layers.
Input to the network is 120-dimensional vector containing filter-bank coefficients
along with Δ and ΔΔ features. The model parameters are randomly initialized
within the range [−0.1, 0.1]. The initial learning rate is set to 0.00004. Learning
rate adaption is performed as follows: when the improvement in accuracy on the
cross-validation set between two successive epochs falls below 0.5%, the learning
rate is halved. The halving continues for each subsequent epoch until the training
stops when the increase in frame level accuracy is less than 0.1%.

Deep Bottleneck Network. The training protocol similar to [26] was followed
to train the bottleneck network. Input video features are mean normalized and
spliced. Cross-entropy loss function is minimized using mini-batch Stochastic
Gradient Descent (SGD). The frames are shuffled randomly before each epoch.
Batch size is set to 256 and initial learning rate is set to 0.008. Learning rate
adaptation similar to acoustic model is employed.

RNNv -Lip Reader. RNNv is trained with bottleneck network features as
input. The network architecture and training procedure is same as RNNa.
Figure 3 depicts the learning curves when trained with bottleneck features and
DCT features. The figure shows that bottleneck features are helpful in proper
convergence of the model.

RNNav . The feature fusion model RNNav consists of 3 bi-directional LSTM
hidden layers. The input dimension is 240, corresponding to filter-bank coeffi-
cients of audio modality, bottleneck features of visual modality and their respec-
tive Δ features. The initialization and learning rate adaption are similar to
acoustic model training. However, the learning rate adaptation is employed only
after a minimum number of (in this case 20) epochs are completed.

During each utterance in an epoch we first present the fused audio-visual
fused input sequence followed by the input sequence with audio input set to
very low values. This prevents the RNNav from over-fitting to audio only inputs.
Thus the effective number of sequences presented to the network in a given epoch
is twice the total number of training utterances (AV and V features). After the
training with AV and V features we train the network once again with two epochs
of audio only utterances obtained by turning off the visual modality.

6.2 Results

The audio-visual model is tested with three levels of babble noise 0 dB SNR,
10 dB SNR and clean audio. Noise was added to test data artificially by mixing
babble noise with clean audio .wav files. In order to show the importance of
visual modality under noisy environment, the model is tested with either audio
or video inputs turned off. A token WFST [19] is used to map the paths to
their corresponding label sequences. The token WFST obtains this mapping by
removing all the blanks and repeated labels. Character Error Rate (CER) is
obtained from the decoded and expected label sequences by calculating the edit
distance between them. The CER results are shown in Table 1.
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Fig. 3. Learning curves for bottleneck (bn) features and DCT features for training (tr)
and validation (cv) data sets.

We observe that with clean audio input, audio only RNNa performs signif-
icantly better (CER 2.45%) compared to audio-visual RNNav (CER 5.74%).
However as audio becomes noisy, the performance of RNNa deteriorates sig-
nificantly whereas the performance of RNNav remains relatively stable. Under
noisy conditions the feature fusion model behaves as if it is not receiving any
input from the audio modality.

Table 1 also gives a comparison between feature fusion model and decision
fusion model. We find that feature fusion model performs better than decision
fusion model in all cases except under clean audio conditions. The poor CER of
RNNa, RNNv model indicates that the frame level predictions between RNNa

and RNNv are not synchronous. However, both the fusion models provide sig-
nificant gains under noisy audio inputs. While there is large difference between
RNNa and other models with clean inputs, we believe this difference is due to
the nature of dataset and will reduce with larger datasets.

Comparison with Lip-Reading Systems. While a number of AV-ASR mod-
els exist, to our knowledge none of the methods were trained and tested on GRID
corpus. However, results on several lip-reading systems (visual only inputs) on
GRID corpus have been reported. Table 2 gives a comparison of lip-reading sys-
tems which employ recurrent neural networks. LipNet is a recent independent
work which uses spatio-temporal convolutions and Gated Recurrent Units. It is
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Table 1. % CER comparison for feature fusion (RNNav) and decision fusion
(RNNa, RNNv) models. RNNa is the acoustic model and RNNv is the lip reader.

Feature fusion Decision fusion

Model Input CER % Model Input CER %

Audio Visual Audio Visual

RNNav Clean OFF 7.35 RNNa, RNNv Clean OFF 2.45

RNNav Clean ON 5.74 RNNa, RNNv Clean ON 8.46

RNNav OFF ON 11.42 RNNa, RNNv OFF ON 11.06

RNNav 10 SNR dB OFF 38.31 RNNa, RNNv 10 SNR dB OFF 23.83

RNNav 10 SNR dB ON 10.24 RNNa, RNNv 10 SNR dB ON 14.83

RNNav 0 SNR dB OFF 59.65 RNNa, RNNv 0 SNR dB OFF 59.27

RNNav 0 SNR dB ON 11.57 RNNa, RNNv 0 SNR dB ON 16.84

trained using CTC at sentence level like our model whereas the RNN-LSTM
model in [27] is trained at word level. However, in contrast to LipNet our aim
in this paper was to present a noise-robust ASR which utilizes both audio and
visual modalities which we believe will perform better with larger vocabulary
datasets. Our model has the potential to switch from audio to a mixed modality
(by turning the camera on) based on an SNR measure (where we define the sig-
nal as a continually discernible linguistic content from an utterance as measured
perhaps using KL divergence described before). The %CER for LipNet [1] and
the RNN-LSTM model of Wand et al., [27] are reported from [1].

Table 2. % CER comparison of lip-reading systems employing RNNs. The audio
modality for the model in the last row is turned off.

Method CER %

LipNet 1.90

Wand et al. 15.20

RNNv 11.06

RNNav 11.42

7 Conclusions and Future Work

In this work we presented an audio-visual ASR system using deep RNNs trained
with CTC objective function. We described a feature processing step for visual
features using deep bottleneck layer and showed that it helps in faster conver-
gence of RNN model during training. We presented a training protocol in which
either of the modalities is turned off during training in order to avoid depen-
dency on a single modality. Our results indicate that the trained model is robust
to noise. In addition, we compared fusion strategies at the feature level and at
the decision level.
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While the use of bottleneck features for visual modality helps in training, it
requires frame level labels which involves an additional step of training audio
RNN. Therefore, our system is not yet end-to-end. Our experiments in visual fea-
ture engineering with unsupervised methods like multi-modal auto-encoder [22]
did not produce remarkable results. Currently, we are exploring visual features
like curl and divergence of optical flow field using the Fourier Transform based on
Clifford Algebra [6,20]. In future work we intend to explore other unsupervised
methods for visual feature extraction such as canonical correlation analysis.
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Abstract. In this work, a multi-modal pain intensity recognition system
based on both audio and video channels is presented. The system is
assessed on a newly recorded dataset consisting of several individuals,
each subjected to 3 gradually increasing levels of painful heat stimuli
under controlled conditions. The assessment of the dataset consists of
the extraction of a multitude of features from each modality, followed
by an evaluation of the discriminative power of each extracted feature
set. Finally, several fusion architectures, involving early and late fusion,
are assessed. The temporal availability of the audio channel is taken in
consideration during the assessment of the fusion architectures.

Keywords: Pain intensity recognition · Decision fusion · Multi-modal
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1 Introduction

An unreliable and inconsistent assessment of pain might lead to an unsuitable
and insufficient therapy. Such a scenario might occur due to countless factors,
among others, old age, mental impairment or degenerative diseases. Conse-
quently, instead of experiencing some relief, the patient would further suffer
from physical impairment and psychological discomfort. A reliable and auto-
matic pain recognition system would be beneficial, since it would allow a better
assessment of pain intensity, thus a better choice of therapy that would consid-
erably improve the quality of life of the patients.

In the last decades, approaches for automatic pain recognition have gone from
uni-modal systems focusing on one unique and specific modality such as video
signals [8,17,24] or bio-physiological signals [1,6,9,14], to multi-modal systems
where several modalities are combined to improve the pain intensity recognition
rate by using complementary features extracted from each of the modalities
[2,15,16,22,25]. The most common modalities involved in the assessment of the
pain intensity include both video and bio-physiological channels. To the author’s
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knowledge there have not been any studies involving the audio channel as an
additional modality for the assessment of pain.

Therefore, the following work aims to investigate the applicability of the
audio channel as well as the fusion of both audio and video channels in both par-
ticipant dependent and independent pain recognition scenarios. Furthermore, a
newly recorded dataset, upon which the present work is built, is presented. The
dataset targets the assessment and evaluation of pain in a controlled environ-
ment, as well as the analysis of the influence of emotions on pain perception.

The remainder of this work is organised as follows. Section 2 consists of the
description of the dataset. In Sect. 3 a description of the audio channel process-
ing, feature extraction and assessment pipeline is provided. In Sect. 4 the video
channel processing, feature extraction and assessment pipeline is described. The
conducted fusion experiments as well as the corresponding results are presented
in Sect. 5 followed by the discussion and conclusion in Sect. 6.

2 Dataset Description

The data utilized in the present work was recently collected with the goal of
generating a multimodal corpus designed specifically for research in the domain
of emotion and pain recognition. It consists of 40 participants (20 male, 20
female), each subjected to two sessions of experiments of about 40 min each,
during which several pain and emotion stimuli were triggered and the demeanour
of each participant was recorded using audio, video and bio-physiological sensors.

Fig. 1. Pain stimulation. T0: baseline temperature (32 ◦C); T1: pain threshold tem-
perature; T2: intermediate temperature; T3: pain tolerance temperature. (Color figure
online)

The pain stimuli were elicited through heat generated by a Medoc Pathway
thermal simulator1. The experiment was repeated for each participant twice,
each time with the ATS thermode attached to a different forearm (left and
right). Before the data was recorded, each participant’s pain threshold temper-
ature and pain tolerance temperature were determined. Based on both temper-
atures, an intermediate heat stimulation temperature was computed such that

1 http://medoc-web.com/products/pathway-model-ats/.

http://medoc-web.com/products/pathway-model-ats/
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the range between both the threshold and tolerance temperatures was divided
into 2 equally spaced ranges.

A specific emotional elicitation was triggered simultaneously to each pain
elicitation in the form of pictures and video clips. The latter were carefully
selected with the purpose of triggering specific emotional responses. This allowed
a categorisation of the emotion stimuli using a two dimensional valence-arousal
space in the following groups: positive (positive valence, high arousal); negative
(negative valence, low arousal); neutral (neutral valence, neutral arousal).

Each heat temperature (pain stimulation) was triggered randomly 30 times
with a randomised pause lasting between 8 and 12 s between consecutive stim-
uli. The randomised and simultaneous emotion stimuli were distributed for each
heat temperature (pain stimulation) as well as the baseline temperature (no pain
stimulation) as follows: 10 positive, 10 negative and 10 neutral emotion elicita-
tions. Each stimulation consisted of a 2 s onset during which the temperature
was gradually elevated starting from the baseline temperature until the specific
heat temperature was reached. Following, the attained temperature was main-
tained for 4 s before being gradually dropped until the baseline temperature was
reached. A recovery phase of 8–12 s followed before the next pain stimulation
was elicited (see Fig. 1 for more details).

Therefore, each participant is represented by two sets of data, each one repre-
senting the experiments conducted on each forearm (left and right). Each dataset
consists of 120 pain stimuli with 30 stimuli pro temperature (T0: baseline, T1:
threshold, T2: intermediate, T3: tolerance), and 120 emotion stimuli with 40
stimuli pro emotion category (positive, negative, neutral).

The synchronous data recorded from the experiments consists of 3 high reso-
lution video streams from 3 different perspectives, 2 audio lines recorded respec-
tively from a headset and a directional microphone, and 4 physiological channels,
namely the electromyographic activity of the trapezius muscle (EMG), the gal-
vanic skin response (GSR), the electrocardiogram (ECG) and the respiration
(RSP). Furthermore, an additional video and audio stream were recorded using
the Microsoft Kinect sensor.

The focus of the present work is the investigation of the relevance of both
audio and video channels regarding the task of pain intensity recognition. Thus
the recognition of the different categories of emotion or the impact of the emotion
stimuli on pain recognition will not be investigated.

3 Audio Channel Assessment

Since the conducted experiments did not include any type of verbal interaction,
the recorded audio signals consist mostly of breathing noises and sporadic moan-
ing sounds. These sounds represent the unique material that has to be exploited
in order to discriminate between the different pain stimulation levels. Hence, the
current work is based uniquely on the signals recorded with the headset which
are more suitable because of the headset’s proximity to the nasolabial region.
The audio recordings from the Microsoft Kinect sensor as well as those from the
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directional microphone could not capture the breathing noises satisfactorily, thus
were not further analysed. A preliminary analysis of the recordings was under-
taken in order to define an optimal window within which the feature extraction
and classification tasks should be realised.

3.1 Temporal Window Analysis

In order to determine an appropriate temporal window within which adequate
features for the discrimination of the different pain stimuli could be extracted,
an initial experiment, consisting of the analysis of the correlation between the
intensity of a pain stimulation and the energy within the recorded audio signal,
was undertaken. Therefore, the Root Mean Square (RMS) energy of each audio
signal was computed from frames of 25 ms sampled at a rate of 10 ms. The focus
was put on the stimulation phases during which the participants were subjected
to the highest heat temperatures (T3). From those phases, a 10 s window starting
from the point when the stimulation temperature starts to increase (see onset
in Fig. 1) was empirically chosen for further analysis after observing that most
of the participants reacted to the stimuli within this window. Furthermore, the
extracted RMS energy signals were preprocessed by first applying a Butterworth
bandpass filter to get rid of out of range noises and subsequently applying a
median filter in order to smooth the signals. Following the preprocessing of the
signals, the median value of each single frame was computed over the entire 40
participants. The results can be seen in Fig. 2.

Fig. 2. Median RMS energy over 40 participants subjected to the highest
heat temperature (T3). Left: left forearm. Right: right forearm. The green plot
represents the onset while the red plot represents the offset (see Fig. 1). (Color figure
online)

The green plot corresponds to the onset and the red plot corresponds to
the point when the heat temperature starts to sink (see offset in Fig. 1). The
plotted data suggests that there is a considerable increase of energy following
the heat stimulation. This increase of energy reaches a peak 2 or 3 s following
the offset before decreasing gradually. This observation is in concordance with
the observed demeanour of the participants during the experiments. Most of the
participants would hold their breath as soon as the stimuli would get painful
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and would heavily breathe out as soon as the temperatures would start sinking,
before breathing normally again.

Furthermore, in order to support this assumption, the data from both exper-
iments (left forearm and right forearm) for all 40 participants was merged. The
RMS energy was extracted and preprocessed as previously described from sev-
eral windows of length ±l seconds (l ∈ {1, 2, 3, 4}) corresponding respectively
to l seconds before (−l) and following (+l) the offset. The extracted energy
was then summed for each participant and for each specific window before the
median value was computed over all 40 participants. Moreover, the Wilcoxon
signed rank test with two significance levels of 10−2 and 10−4 was computed for
the significance assessment. The results are depicted in Fig. 3.

Fig. 3. Median of the sum of RMS energy over 40 participants subjected to
the highest heat stimuli. The energy from both experiments (left forearm and right
forearm) are merged together in order to generate the depicted results. The median
energy is significantly higher a couple of seconds following the offset than preceding
the offset with (*) p < 10−2 and (**) p � 10−4.

As assumed, Fig. 3 shows that the energy is significantly higher a couple of
seconds following the offset than before the offset. In other words, the level of
energy of the audio signal is low during the pain elicitation, before picking up
within the phase during which the elicited temperature decreases. Therefore, the
most relevant data for the audio-based classification task is not captured within
the pain elicitation phase but rather some couple of seconds following the pain
elicitation.

Subsequently an additional experiment was conducted to corroborate the
findings of the previous experiments. A grid search was performed within the
predefined 10 s window in order to determine an appropriate segment within
which the best discrimination between the baseline temperature and the highest
stimulation temperature could be attained. Thus, several segments, with lengths
ranging from 4 to 6.5 s were defined for the feature extraction and subsequent
classification. Those windows where temporally shifted starting from the onset.
The temporal shifts ranged between 0 and 6 s.

Within each segment a simple unsupervised and threshold based voice activ-
ity detection algorithm was applied on the extracted RMS energy signal of each
participant to distinguish between silence (or noise) frames and voice active
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frames. From the detected voice active frames 13 Mel frequency cepstral coef-
ficients (MFCC) [11], each combined with its first and second order frame to
frame difference, were extracted. Finally, the extracted features were used to
perform a 10-fold cross validation participant dependent classification using a
Random Forest classifier [5] with 30 decision trees. The model was trained using
the features extracted at the frame level from the voice active segments of each
window in the training set and subsequently applied on the unseen windows of
the left out set. The model would assign a label to each frame of the unseen
window before a simple majority vote would be applied in order to decide about
the final label of the whole window.

The results of the classification are depicted in Fig. 4. The latter depicts the
median of the classification accuracy of the baseline temperature against the
highest heat stimulation temperature corresponding to the highest pain level,
using the extracted MFCC features over the 40 participants, from each defined
segment and for each forearm. The depicted results confirm the findings of the
previous experiments, since the best classification performances are achieved for
both forearms with a temporal shift from the onset between 4 and 6 s and a
window length between 4 and 5.5 s. For the next experiments (including the
fusion experiments) a window length of 4.5 s with a temporal shift from the
onset of 4 s was selected for the audio channel.

Fig. 4. Audio signal window assessment (Baseline temperature (T0) vs High-
est heat temperature (T3)). Participant dependent 10-fold cross validation (median).
The best classification performance is achieved with a temporal shift from the onset
between 4 and 6 s and a window length between 4 and 5.5 s for both forearms.

3.2 Audio Features Extraction and Assessment

Based on the results described previously, several audio features were extracted
from the voice active frames within the previously specified window, obtained by
applying the threshold based voice activity detector. In addition to the MFCC
features extracted in the previous phase, 5 Relative Spectral Perceptual Linear
Predictive coefficients (RASTA-PLP) [10], each with its first and second order
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frame difference, as well as 8 Linear Predictive Coding Coefficients (LPC) [18]
were extracted. Additionally, 14 spectral features (e.g. Hammarberg index, spec-
tral flux, spectral centroid) were extracted as well as a combination of statistical
features extracted from the zero crossing rate signal (ZCR), both the RMS- and
log-energy, the voicing probability and the loudness contour [19]. All features
were extracted from 25 ms frames, sampled at a rate of 10 ms and using the
openSMILE features extraction tool [7].

Subsequently, the features were assessed by proceeding with a 10-fold par-
ticipant dependent cross validation classification. A Random Forest model was
trained as described in the previous Section and the label of each window was
determined by majority voting as well. This assessment was done by using the
data specific to both the baseline temperature (T0) and the highest heat tem-
perature (T3). In other words, the assessment of the features was realised by
performing a “pain” against “no pain” classification. Each set of features was
first considered individually, followed by an early fusion of all extracted features.
The classification results are depicted in Fig. 5. The depicted results show that
the performance of each feature set is quite similar. No feature set significantly
outperforms any other, and the mean classification accuracy of all feature sets
including the early fusion set is located between 60% and 65% in both experi-
ments (left and right forearm). Moreover the variance across the 40 participants
is quite large. This can be explained by the fact that some of the participants are
either unresponsive to the heat stimuli or no breathing noise could be recorded
to a satisfactory extent. Hence, the recorded audio signal did not contain enough
information that would allow a better discrimination between the different levels
of pain. Still, some recordings were good enough and could be exploited to per-
form the classification task to a satisfactory extent since for at least 25% of the
participants an accuracy above 70% could be achieved using the early feature
fusion.

Fig. 5. Feature performance analysis (Baseline temperature (T0) vs Highest
heat temperature (T3)). Participant dependent 10-fold cross validation. Within each
box plot the mean of the classification accuracy across all 40 participants is depicted
as a gray dot and the median as a red line. (Color figure online)
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4 Video Channel Assessment

The video channel assessment is performed using only the video stream captured
by the frontal camera (see Fig. 6) and consists of analysing the facial expressions
of the participants during the experiments. In order to determine an optimal
window within which the discrimination between the different pain intensities
based uniquely on the analysis of the facial region can be achieved at a satis-
factory extent, a set of facial landmarks (see Fig. 6(a)) is automatically detected
and tracked using the facial behaviour analysis toolkit OpenFace [3].

Fig. 6. Geometric features. (a) Facial landmarks. (b) Distances computed between
the tracked facial landmarks.

Subsequently a set of 2D distances (see Fig. 6(b)) is computed between the
tracked landmarks in order to capture the deformation of the facial area at the
frame level. Throughout a defined temporal window, each of these distances
yields a signal. These signals are low-pass filtered and the first and second deriv-
atives of the filtered signals are computed. Several functionals (mean, median,
maximum, minimum, range, standard deviation, kurtosis, skewness, first and sec-
ond quartile, inter quartile, 1%-percentile, 99%-percentile, range of 1%-percentile
and 99%-percentile) are subsequently applied on these signals to extract several
statistical parameters that are used as geometric-based facial expression features
for the classification task.

These features are extracted for each of the windows defined in Sect. 3.1 in
order to perform a grid search. A participant specific 10-fold cross validation
classification is subsequently performed using a Random Forest classifier with
300 decision trees and the median classification accuracy over all 40 participants
is plotted for each defined window. The grid search is performed using the data
specific to the baseline temperature (T0) and the highest heat temperature (T3).
Figure 7 depicts the results of the performed grid search. For both datasets (left
and right forearm) the best performance is yielded by choosing a window length
between 5 and 6.5 s, with the corresponding temporal shift. This implies that the
most relevant information for the classification task is located between the point
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Fig. 7. Video signal window assessment (Baseline temperature (T0) vs High-
est heat temperature (T3)). Participant dependent 10-fold cross validation (median).
The best performance is achieved for both datasets with a temporal shift from the onset
between 2 and 4 s and a corresponding window length between 5 and 6.5 s.

in time when the targeted heat temperature is attained until the point in time
when the decreasing temperature reaches the baseline temperature again. Thus,
for the following analysis we chose a window length of 6.5 s with a temporal shift
of 2 s from the onset. An overview of the selected windows for both audio and
video modalities can be seen in Fig. 8.

Fig. 8. Audio and video windows. Signal segmentation for feature extraction and
classification.

Based on these results additional features were extracted from the specified
window. Using the OpenFace toolkit [3], estimates of the head pose consisting
of 3 rotation angles and 3 position parameters were extracted. Using the same
feature extraction pipeline as the one defined previously for the geometric-based
features, window level features were extracted from the signals generated by the
head pose parameters.

Moreover, Local Binary Patterns from Three Orthogonal Planes (LBP-TOP)
[26] features were extracted. Prior to the extraction of the LBP-TOP features,
each 6.5 s window was divided in 3 overlapping segments of 2.5 s, with an overlap
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of 0.5 s between each consecutive segments. From each segment, the LBP-TOP
features were extracted and the final feature vector representing an entire win-
dow was obtained by concatenating the LBP-TOP features extracted from each
segment. Within each segment, each facial region was divided in a 4 × 4 grid of
cells with a 25% overlap from one cell to the next. From each resulting cuboid
a uniform LBP-TOP feature vector was extracted. These feature vectors were
subsequently concatenated to form the segment level feature vector.

Finally, Pyramid Histogram of Oriented Gradients (PHOG) [4] features were
also extracted. From each frame in the window, a 3 levels PHOG feature vector
with 20 bins was extracted from the facial region. The feature for the whole
window was subsequently generated by performing a max pooling from the frame
level feature vectors for the entire window of analysis.

The assessment of the extracted features was also performed through a par-
ticipant specific 10-fold cross validation classification using the data specific to
both the baseline temperature (T0) and the highest heat temperature (T3), using
a Random Forest classifier with its parameter optimised for each specific feature
set. Figure 9 depicts the results of the feature assessment. The LBP-TOP features
as well as the facial landmarks features (geometric-based features) outperform
both PHOG and head pose features. LBP-TOP features perform best and yield
a mean accuracy of 74.14% for the right forearm dataset and 72.94% for the left
forearm. Facial landmarks come next and yield a mean accuracy of 73.15% for
the right forearm and 72.64% for the left forearm. However the best performance
is attained by the early fusion of all the extracted features that yields a mean
accuracy of 75.86% on the right forearm dataset and 74.55% on the left forearm
dataset.

Fig. 9. Video features performance analysis (Baseline temperature (T0) vs
Highest heat temperature (T3)). Participant dependent 10-fold cross validation.
Within each box plot the mean of the classification accuracy across all 40 participants
is depicted as a gray dot and the median as a red line. (Color figure online)

Nonetheless, a great variance can be observed across the 40 participants. As
pointed out in Sect. 3.2, the level of expressiveness of each participant affects the
performance of the system. While responsive participants would display visible
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facial expressions when submitted to the highest heat temperature, unresponsive
participants would not react at all. For such participants the recognition system
would perform poorly. An issue may also be the individual heat temperature
calibration process, since several participants reported after the experiments not
being able to feel any pain at all due to the low stimulation temperatures.

5 Fusion Experiments and Results

Following the assessment of the extracted features from both audio and video
channels, several fusion architectures were experimented with in order to investi-
gate the discriminative power of the combined modalities. Since a voice activity
detection algorithm was applied on the audio channel to detect voice active seg-
ments and silent segments, the audio features are not always available at every
time step in comparison to the video channel. Moreover, the length of the voice
active segments is not constant and varies greatly from one audio window to
the next. Thus, an early fusion of the extracted features from both channels
is infeasible. Therefore, the fusion architectures that have been experimented
with are late fusion architectures. The fusion is performed using the features of
the modalities available at each time step. For each window, if the information
from the audio channel is not available, the classification is performed with the
features of the video channel uniquely.

Fig. 10. Fusion architectures. (a) a Random Forest classifier is trained on each early
fused feature set from both audio and video modalities. The scores of both trained
models are combined using the mean rule. (b) in this case a Random Forest classifier
is trained on each extracted video feature set and on the early fused audio feature set.
The mean rule is subsequently used to fuse the scores of the trained models.

Figure 10 depicts both fusion architectures that have been tested within the
scope of the current work. In Fig. 10(a), the extracted features from each modal-
ity are early fused and a Random Forest classifier is trained on each of the gen-
erated feature sets. A simple mean (average) rule [20] is subsequently applied on
the classification scores of both models in order to assign a label to an unseen
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window. In Fig. 10(b) the features extracted from the video channel are not early
fused. Instead, a Random Forest classifier is trained and optimized on each video
feature set as well as on the early fused audio feature set, before a simple mean
rule is applied on the scores of the individual models to assign a label to an
unseen window. The fusion architectures are subsequently tested in a “No Pain”
vs “Pain” scenario. We train and test the fusion architectures with the data spe-
cific to the baseline temperature (T0) in combination with the data specific to
each heat temperature (T1, T2, T3) successively. The performances of the fusion
architectures are compared with the performances yielded by both audio and
video modalities when the extracted feature vectors are early fused. Figure 11
depicts the results of the participant dependent scenario.

Fig. 11. Fusion architecture assessment (“No Pain” vs “Pain”). Participant
dependent 10-fold cross validation. Within each box plot the mean of the classification
accuracy across all 40 participants is depicted as a gray dot and the median as a blue
line. (Color figure online)

The first observation is the fact that the average accuracy of the classifica-
tion task increases with the pain intensity in both experimental settings (left
and right forearms) and for each tested classification system. However, lower
pain intensities which correspond to the temperatures T1 and T2 are very diffi-
cult to discriminate from the baseline temperature, since the best classification
performances in both experimental settings for such pairings (T0 vs T1, T0 vs
T2) are barely above chance. These findings can be explained by the fact that
high pain intensities cause more observable reactions in both audio and video
channels, which results into better classification performances.

Secondly, the video channel outperforms the audio channel in every experi-
mental setting. This can be explained by the fact that the classification task is
performed on breathing and moaning recordings. These recordings do not carry
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Table 1. Left forearm: participant dependent classification performance.
The mean classification accuracy as well as the standard deviation for 40 participants
is depicted for each classification task. The first fusion architecture (see Fig. 10(a))
outperforms the other classification systems. Still, its performance is not significantly
better than the one based uniquely on the video channel.

Pairing T0 vs T1 T0 vs T2 T0 vs T3

Audio (early fusion) 49.29% (±0.079) 53.61% (±0.082) 64.08% (±0.148)

Video (early fusion) 50.14% (±0.074) 54.1% (±0.102) 74.55% (±0.143)

Fusion (a) 50.91% (±0.062) 54.96% (±0.098) 75.44% (±0.141)

Fusion (b) 49.93% (±0.073) 54.6% (±0.096) 74.04% (±0.135)

as much relevant information as the facial region for the classification task and
thus perform worse. Moreover, Tables 1 and 2 depict the classification results
in form of average accuracy and standard deviation for each pairing and each
tested classification system. For the dataset specific to the left forearm, the late
fusion architecture consisting of fusing the scores of models trained on early fused
features from both audio and video modalities (see Fig. 10(a)) yields the best
performance for each pairing, followed by the video channel. For the pairing T0

vs T3 a maximum average classification accuracy of 75.44% could be attained.
Still, after investigating the significance of the results by using a Wilcoxon sign
rank test it was found that the fusion architecture does not outperform the video
channel significantly.

Table 2. Right forearm: participant dependent classification performance.
The mean classification accuracy as well as the standard deviation for 40 participants
is depicted for each classification task. The classification system based uniquely on the
video channel performs best in most cases but still not significantly, in comparison to
the first fusion architecture (see Fig. 10(a)).

Pairing T0 vs T1 T0 vs T2 T0 vs T3

Audio (early fusion) 50.87% (±0.077) 51.39% (±0.091) 63.25% (±0.155)

Video (early fusion) 51.17% (±0.078) 57.23% (±0.115) 75.86% (±0.134)

Fusion (a) 50.65% (±0.082) 57.67% (±0.111) 75.57% (±0.134)

Fusion (b) 49.61% (±0.091) 55.71% (±0.095) 74.47% (±0.141)

Concerning the data specific to the right forearm, the video channel performs
the best for the pairings T0 vs T1 and T0 vs T3, but still not significantly in
comparison to the first fusion architecture. The latter performs best for the
pairing T0 vs T2. A maximum average classification accuracy for the pairing T0

vs T3 of 75.86% could be attained.
Finally, the same experiments were performed in a leave one participant out

cross validation scenario in order to investigate the power of generalisation of the
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Fig. 12. Fusion architecture assessment (“No Pain” vs “Pain”). Participant
independent leave one participant out cross validation. Within each box plot the mean
of the classification accuracy across all 40 participants is depicted as a gray dot and
the median as a blue line. (Color figure online)

extracted features as well as the generalisation performance of the designed fusion
architectures. Figure 12 depicts the performance of each classification architecture
for each pairing. Identical to the participant dependent scenario, the higher the
considered heat temperature the better the classification performance. Lower tem-
peratures (T1 and T2) are even harder to discriminate from the baseline tempera-
ture (T0). Concerning the pairing T0 vs T3, both fusion architectures outperform
both single modality classification systems but still not significantly (in compari-
son to the video based classification system).

Tables 3 and 4 depict the classification performances of each system in the
form of average accuracy and standard deviation for both left and right fore-
arms datasets. Concerning the pairing T0 vs T3, the first fusion architecture
(see Fig. 10(a)), performs best with an average accuracy of 65.89% for the left

Table 3. Left forearm: participant independent leave one participant out
cross validation classification performance. The mean classification accuracy as
well as the standard deviation for 40 participants is depicted for each classification
task. Both fusion architectures outperform the single modality systems for the pairing
T0 vs T3, but still not significantly.

Pairing T0 vs T1 T0 vs T2 T0 vs T3

Audio (early fusion) 50.37% (±0.054) 51.45% (±0.064) 62.69% (±0.144)

Video (early fusion) 52.33% (±0.066) 54.59% (±0.062) 64.59% (±0.158)

Fusion (a) 51.86% (±0.049) 52.31% (±0.061) 65.89% (±0.172)

Fusion (b) 52.90% (±0.043) 51.78% (±0.065) 65.00% (±0.172)
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Table 4. Right forearm: participant independent leave one participant out
cross validation classification performance. The mean classification accuracy as
well as the standard deviation for 40 participants is depicted for each classification
task. Both fusion architectures outperform the single modality systems for the pairing
T0 vs T3, but still not significantly.

Pairing T0 vs T1 T0 vs T2 T0 vs T3

Audio (early fusion) 48.59% (±0.062) 49.55% (±0.054) 60.35% (±0.144)

Video (early fusion) 53.20% (±0.057) 55.16% (±0.069) 65.95% (±0.165)

Fusion (a) 52.09% (±0.060) 54.32% (±0.072) 66.36% (±0.165)

Fusion (b) 52.50% (±0.057) 55.33% (±0.073) 66.76%(±0.174)

forearm dataset, while the second fusion architecture (see Fig. 10(b)) performs
best with an average accuracy of 66.76% for the right forearm dataset.

In summary, the classification task becomes very challenging for lower stim-
ulation temperatures, in both participant dependent and independent settings.
The video channel outperforms the audio channel significantly in every classifica-
tion task. Thus, more relevant discriminative information can be extracted from
the facial region than in the recorded breathing noises. Still, for the pairing T0

vs T3, the audio channel performs significantly better than random classification
with performances above 60% in every classification task and setting. Moreover,
the considered fusion architectures would outperform both single modality clas-
sification architectures given that the performances of the latter are above a
certain threshold. Thus, further analyses are to be undertaken to optimize the
performance of the fusion architectures by introducing adequate weights and
investigating relevant levels of fusion, as suggested in related works [13,23].

6 Conclusion and Future Work

In the present work, a newly recorded dataset in the scope of pain and emo-
tion recognition research has been presented. The first analysis conducted on the
dataset consisting of uni-modal and multi-modal pain intensity recognition assess-
ment based on both audio and video channels has been described. The yielded
results show that the discrimination from the baseline temperature is easier for
higher stimulation temperatures. The video channel outperforms the audio chan-
nel in both participant dependent and independent settings. However, the audio
channel performs significantly better than average for the pairing T0 vs T3 (base-
line temperature vs highest heat temperature) and for each setting, thus is relevant
for the classification task. The tested fusion architectures improve the results of
the uni-modal systems but not significantly in comparison to the video based clas-
sification system. However, there is some room for improvement. This has to be
done by testing different fusion architectures and by introducing relevant weights
for the considered modalities. Moreover, relevant features from the bio-physiology
modalities should be extracted and experimented with, in order to improve the
classification accuracy in each setting. Furthermore, the classification task should
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be replaced by a regression task in order to proceed with a continuous evaluation
of pain intensities using a combination of the available modalities. Additionally,
since the performance of the whole system is affected by the level of expressiveness
of each participant, a personalisation scheme [12,14,21] is believed to be able to
improve the classification and regression performances. Therefore several person-
alisation settings should be assessed and experimented with.
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Abstract. In our modern industrial society the group of the older
(generation 65+) is constantly growing. Many subjects of this group
are severely affected by their health and are suffering from disability
and pain. The problem with chronic illness and pain is that it lowers
the patient’s quality of life, and therefore accurate pain assessment is
needed to facilitate effective pain management and treatment. In the
future, automatic pain monitoring may enable health care professionals
to assess and manage pain in a more and more objective way. To this
end, the goal of our SenseEmotion project is to develop automatic pain-
and emotion-recognition systems for successful assessment and effective
personalized management of pain, particularly for the generation 65+.
In this paper the recently created SenseEmotion Database for pain- vs.
emotion-recognition is presented. Data of 45 healthy subjects is collected
to this database. For each subject approximately 30 min of multimodal
sensory data has been recorded. For a comprehensive understanding of
pain and affect three rather different modalities of data are included in
this study: biopotentials, camera images of the facial region, and, for the
first time, audio signals. Heat stimulation is applied to elicit pain, and
affective image stimuli accompanied by sound stimuli are used for the
elicitation of emotional states.
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1 Introduction

The proportion of people aged 65 and over increases constantly over the years.
Pain is common among older population and can greatly impact older people’s
quality of life, their physical and psychological functioning and become a bar-
rier to social inclusion. In clinical and care home settings, accurate assessment
of pain is essential for successful pain management. A failure to recognize and
treat pain can lead to health problems and the unacceptable suffering of elderly.
For instance, the lack of sufficient pain management is associated with patho-
physiological effects, such as increased blood pressure and heart rate [24]. In
general, valid and reliable pain assessment is necessary to facilitate successful
pain management without complications [12,20] and enhance quality of life in
older adults.

To date, self-reporting is the standard method for assessing pain. However,
self-reporting requires the capacity to comprehend the task and to communi-
cate about the experienced pain [32]. This implies that self-report scales are
not always a valid and reliable tool for assessing pain in older people, especially
in those who have demonstrable cognitive impairment. Moreover, comprehensive
pain assessment should be regularly repeated, particularly if the individual is not
able to communicate with health care professionals. Previous research on auto-
matic pain recognition is considerable and can be mainly classified into video-
and biopotential-based approaches [6,8,11,19,28,29]. However, there is a rela-
tive scarcity of studies incorporating both approaches. To the best of authors’
knowledge, the study by Walter et al. [27] was the first one that developed a data-
base using biopotential and visual signals. A multimodal pain recognition system
incorporating a set of different modalities such as biosignals (e.g., cardiac electri-
cal activity, trapezius muscle activity, skin conductance and respiration), video
signals (e.g., facial expressions, skeleton data and head pose) and paralinguistic
information is becoming increasingly important for objective and accurate pain
assessment. The goal of the SenseEmotion project is the development of an auto-
matic pain- and emotion-recognition system for the successful assessment and
effective personalized management of pain in older people. Thus, a multimodal
dataset for pain- and emotion-recognition was developed based on physiological,
video- and audio-signals. Heat pain was induced experimentally in different lev-
els. In addition, affective image stimuli selected from the International Affective
Picture System (IAPS) [16] and the Emotional Picture Set (EmoPicS) [30] were
used to evoke positive, negative and neutral emotions. The image stimuli were
accompanied by affective sound stimuli so as to intensify affective reactions that
would be induced by the image stimuli.

The aim of the present study was to detect patterns of heat pain intensities
under the influence of emotional stimuli. The SenseEmotion Database contains
the below unique parameters:

– Highly computer-controlled pain stimulation
– Affective induction through emotional stimuli in a two-dimensional space

determined by pleasure and arousal ratings



The SenseEmotion Database 129

– Physiological measures - i.e., skin conductance level (SCL), electrocardiogra-
phy (ECG), electromyography (EMG) and respiration (RSP)

– Multiple camera setup
– Depth map video from a Microsoft Kinect V2 with integrated microphone
– Digital wireless headset microphone in combination with a directional micro-

phone

2 Methodology

2.1 Participants

A total of 45 healthy subjects participated in the experiment and received an
expense allowance. Participants were recruited through advertisements placed
on the campus of the University of Ulm. All participants were fully informed of
the study protocol and provided written informed consent for their participa-
tion at the beginning of the study. Subjects were excluded for being <18 years
old, having neurological problems, psychiatric disorders, chronic pain, headache
disorders, cardiovascular diseases, regular use of analgesic medication, or use of
analgesic medication directly before the experiment. The study was conducted
according to the ethical guidelines set out in the WMA Declaration of Helsinki
(ethical committee approval was granted: 196/10-UBB/bal). The study protocol
was approved by the ethics committee of the University of Ulm (Helmholtzstraße
20, 89081 Ulm, Germany).

2.2 Design of the Experiment

The Medoc Pathway thermal stimulator was employed to elicit pain [27]. ATS
thermode of 30 × 30 mm [22] was applied to the forearm of the participant (see
Fig. 1). During the entire experiment, participants were seated in a chair with
their arm resting on the desk in front of them. This system delivers precise
painful and non-painful thermal stimuli [22] under highly controlled conditions
without causing tissue damage [18]. Thermal stimuli temperatures range from
32 ◦C to 55 ◦C [22]. During the entire experiment, stimuli temperature did not
exceed 50.5 ◦C [28].

Fig. 1. Thermal pain stimulator that was applied to the participant’s forearm.
(Reprinted by kind permission of [5], p. 26)
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Heat Pain Calibration. At the beginning of the experimental session the
researchers determined individual pain threshold (T1) and pain tolerance thresh-
old (T3) for each participant. Pain threshold indicates the temperature that the
subject’s perception alters from heat to pain. Subjects were instructed to press
the stop button as soon as heat stimulus became painful: Please press imme-
diately the stop button, when a feeling of burn, sting, drill, or draw appears
in addition to the feeling of heat. Pain tolerance threshold indicates the tem-
perature that the subject’s perception alters from heat to pain and the level
that pain becomes intolerable. Hence, subjects were instructed to press the stop
button as soon as heat stimulus was barely tolerable: Please press immediately
the stop button, when you cannot accept heat with regard to the feeling of burn,
sting, drill, or draw any more. In order to measure thresholds T1 and T3, tem-
perature was gradually raised (1 ◦C/s) with a starting value of 32 ◦C (T0) (see
the below section). The researchers performed four measurements for T1 and T3

respectively. An average value was calculated for T1 and T3 thresholds for each
participant. Subsequently, the researchers calculated the mean value of T1 and
T3 determining one additional individual level T2 (see Fig. 2). After the calibra-
tion phase, Pathway software was calibrated with the three pain levels (T1, T2

and T3) separately for each participant for the main part of the experiment.

Fig. 2. Induced pain intensity depending on temperature. T0 represents baseline tem-
perature. T1, T2 and T3 represent the three pain levels that were separately calculated
for each participant.

Heat Pain Stimulation. During the main experimental phases each of the three
individualized stimuli was randomly applied 30 times for approximately 30 min,
resulting in a total of 90 stimuli. The T0 baseline temperature (no pain) was
32 ◦C. Figure 3 displays a temperature plot of a stimulus and the subsequent
pause. Each pain stimulus was performed for 4s. The pauses between the stimuli
were randomized between 8–13 s.

Affective Image Stimuli. 180 digital images were selected according to three
levels of affective valence (highly pleasant, neutral and highly unpleasant) and
two levels of arousal (low, high). During each experimental phase 30 pleasant
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Fig. 3. An example of a 4 s pain stimulus that represents T1 (pain threshold), and the
subsequent pause.

(i.e., erotic and sport categories), 30 unpleasant (i.e., fear and disgust categories)
and 30 neutral images were presented under the three pain levels. In total 90
image stimuli were presented with pain stimulation and 30 image stimuli were
displayed without pain to every participant in each experimental phase. For each
pain level and the baseline temperature all presented images were selected by
stratified randomization out of the three categories (pleasant, unpleasant and
neutral). The pleasant and unpleasant images were both high in arousal; the
neutral images were low in arousal. 108 images were selected from the IAPS [16]1.
These emotional stimuli have normative ratings on affective valence and arousal.
Moreover, these ratings have good stability and covary with physiological events
[4,15,17]. These images have been utilized extensively in psychophysiological
studies and affective computing research [2,21,23,25,27]. Furthermore, 72 images
were selected from the EmoPicS [30]2. The EmoPicS consists of photographic

1 The IAPS identification numbers for the pleasant images were: 1650, 2216, 4311,
4611, 4658, 4659, 4664, 4676, 4677, 4690, 4694, 4695, 4800, 4810, 5460, 5470, 5626,
5629, 7502, 8030, 8080,8178, 8179, 8180, 8185, 8186, 8191, 8193, 8210, 8251, 8300,
8340, 8341, 8370, 8499, 8501. The identification numbers for the unpleasant images
were: 1050, 1052, 1113, 1120, 1201, 1525, 1932, 2811, 3150, 3250, 3400, 3500, 5972,
6021, 6022, 6210, 6212, 6260, 6312, 6315, 6415, 6510, 6530, 6550, 6570, 6821, 8480,
8485, 9050, 9250, 9254, 9300, 9600, 9620, 9622, 9902, 9910, 9921. The identification
number for the neutral images were: 5471, 5731, 6150, 7002, 7009, 7025, 7030, 7034,
7035, 7036, 7038, 7040, 7041, 7050, 7052, 7053, 7055, 7056, 7057, 7059, 7090, 7100,
7130, 7140, 7150, 7161, 7170, 7185, 7233, 7235, 7493, 7500, 7547, 7705. Mean valence
and arousal ratings across image sets were: pleasant images (valance: M = 6.94,
arousal: M = 6.40), unpleasant images (valance: M = 2.72, arousal: M = 6.42), and
neutral images (valance: M = 5.03, arousal: M = 2.96).

2 The EmoPicS identification numbers for the pleasant images were: 006, 008, 028,
043, 050, 052, 053, 055, 056, 057, 058, 059, 061, 062, 063, 064, 065, 066, 067, 069,
070, 071, 075, 078. The identification numbers for the unpleasant images were: 207,
210, 211, 213, 214, 216, 219, 222, 229, 231, 232, 235, 238, 244, 250, 251, 252, 254,
321, 325, 326, 329. The identification numbers for the neutral images were: 123, 125,
127, 185, 188, 195, 196, 277, 281, 301, 302, 318, 335, 341, 342, 349, 354, 356, 365,
368, 371, 372, 373, 374, 376, 377. Mean valence and arousal ratings across image sets
were: pleasant images (valance: M = 6.94, arousal: M = 5.57), unpleasant images
(valance: M = 2.61, arousal: M = 6.26), and neutral images (valance: M = 5.02,
arousal: M = 2.84).
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affective stimuli with different content and validated normative ratings which
are expected to trigger primary motivational states as defined by the theoretical
concept of motivational systems [15]. The EmoPicS was developed to serve as
a supplement to IAPS. Each picture was presented on a computer screen for
6 s while the individual levels of pain were induced, and SCL, cardiac electrical
activity, EMG activity and respiration were measured; moreover, video and audio
signals were recorded. The order of the presentation was random.

Affective Sound Stimuli. Each image stimulus was accompanied by a sound
stimulus. In the present experiment, the sound stimuli were selected to intensify
emotional responses that would be induced by the image stimuli. To this end,
sounds were carefully matched to image stimuli in regard to affective valence and
arousal. For example, an image of a barking dog was accompanied by an aggres-
sive growling. Each sound stimulus was presented along with the corresponding
picture for 6 s over headphones.

2.3 Measured Parameters

Physiological measures and self-report were collected. Biosignal and event data
were recorded via Social Signal Interpretation (SSI) [26] (see Fig. 4). SSI pro-
vides a flexible open source framework to apply on-the-fly signal processing and
pattern recognition to extract higher-level information in real-time. Apart from
physiological sensory, a wide range of devices are supported, including audio-
visual sensory, motion capture suits, data gloves, pressure-sensitive mats, etc. A
core task of SSI is the creation of multimodal databases. To this end, SSI sup-
ports the realization of complex multimodal recording setups, possibly distrib-
uted over several machines in a network and mechanisms to keep captured data
in synchronization without time-stamping. An easy-to-use text-based interface
allows users to set up dedicated systems for recording and analyzing multimodal
signals without demanding any programming skills.

Biopotentials. g.MOBIlab+ (multi-purpose version) was utilized to acquire EMG
and ECG, g.GSRsensor was used to measure SCL. Piezo-electric crystal sen-
sor was utilized to record chest respiration waveforms (for further information:
www.gtec.at/Products/Electrodes-and-Sensors/g.Sensors-Specs-Features). The
following physiological parameters were measured.

SCL. Skin conductance is a measure of the conductivity of the skin, which
especially increases if the skin becomes sweaty [7]. Two electrodes were posi-
tioned on the volar pads of the distal phalanges of the index and ring finger to
measure SCL. Electrodermal activity is considered to be a sensitive indicator
of the inner tension of an individual because sweat glands are innervated by
the sympathetic branch of the autonomic nervous system (ANS). For instance,
a rapid increase in skin conductance response can be reproduced within 1–3 s
by the exposure to a stress stimulus - e.g., emotional arousal or intense mental
effort.

www.gtec.at/Products/Electrodes-and-Sensors/g.Sensors-Specs-Features


The SenseEmotion Database 133

Fig. 4. Overview of the main experimental phase and the parameters that were mea-
sured. First row: the right affective stimulus was selected from the IAPS; the identifica-
tion number of the image was 8186. Second row: the left affective stimulus was selected
from the EmoPicS; the identification number of the image was 325. The right affective
stimulus was selected from the IAPS; the identification number of the image was 7036.

ECG. Three pregelled single Ag/AgCl electrodes were utilized to measure the
average cardiac action potential on the skin. One electrode was placed below the
right clavicle (2nd interspace, right midclavicular line). The second electrode
was placed on the left lower rib cage (8th interspace, left midclavicular line).
The reference electrode was placed on the C7 spinous process. Common features
of the ECG signal are heart rate, interbeat interval and heart rate variability
(HRV). Heart rate reflects emotional activity [13]. In general, it has been used
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to distinguish positive from negative emotions. HRV refers to the oscillation of
the interval between consecutive heartbeats. It is an indicator of mental effort
and stress in adults.

EMG. Three pregelled single Ag/AgCl electrodes were utilized to quantify
muscle activity of the right upper trapezius muscle. Two electrodes were placed
on a straight line from the spine of the 7th cervical vertebra (C7) to the lat-
eral edge of acromion spanning the midpoint between the two landmarks [10].
The reference electrode was the same one that was used as reference for ECG.
Electrical muscle activity indicates general psychophysiological arousal [6]. In
particular, an increase in muscle tone reflects an increase in the activity of the
sympathetic nervous system, while a decrease in somatomotor activity is mainly
associated with parasympathetic arousal. The high level of muscle tension is an
indicator of stress [7], which is also expected to occur under the experience of
pain [6,27].

RSP. Respiration sensor using an elastic belt system was thoracically worn by
the participants over clothing. The most common measures of RSP are the rate
and depth of breathing. Evidence for links between emotions and RSP suggests
that different emotional states may give rise to different respiratory patterns [1].
Negative emotions can generally induce an irregular breathing pattern [13]. For
example, RSP rate usually decreases with relaxation; however, shock exposure
or tense situations may cause momentary RSP cessation. Furthermore, fast and
deep breathing can be an indicator of emotional arousal such as excitement and
joy [7]. Slow and deep breathing can indicate a relaxing state. Owing to the
strong effect of RSP on heart rate, RSP is an interesting physiological signal to
consider for affective computing both as a signal on its own and to investigate
in conjunction with cardiac function [9].

Video Signals. A synchronized camera system was utilized to capture the faces
of the participants (see Fig. 4). The camera system consisted of three indus-
trial cameras (iDS UI-3060CP-C-HQ), which were equipped with identical lenses
(Tevidon 1.8/16). This particular camera system allowed the participants to
move their heads freely ensuring that their faces were fully visible even in case
of large out of plane rotations. One camera was placed directly in front of the
participant and two at the side. The left and right cameras captured a frontal
face in case the participant turned their head 45◦ to the left or right, respec-
tively. Each camera was connected to a dedicated recording computer via a
USB 3.0 cable. Synchronization was realized by externally triggering the three
cameras using the ChibiOS real time operation system running on the Arduino
Due platform. The implemented setup was capable of constraining the temporal
differences of the captured frames within tens of microseconds. Before the record-
ing of participants, the researchers used a checkerboard pattern to calibrate the
three cameras. When the recording started, the SSI software [26] first triggered
the Arduino board. Then, the board sent triggering signals to all the cameras
frequently at a pre-specified frame rate. To optimize the illumination condition,
three large LED panels surrounding the participant were used. For the recordings
the researchers set the frame resolution to 1600 × 1200, the frame rate to 60 fps
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for the first 24 recording sessions and to 30 fps for the remaining 21 recordings.
Exposure time was set to 15 ms. To convert the raw data to accessible video
files, the researchers first performed demosaicing using the built-in function in
the OpenCV library and used the codec H.264 to compress the data losslessly.
For missing frames due to data transfer failure they reconstructed these frames
via temporal interpolation according to the camera time stamps. Additionally,
the setup featured a Microsoft Kinect V2. This device was used to record color
images at a resolution of 1920× 1080 pixels at 30fps. The built in depth camera
using a time-of-flight sensor was able to provide additional information about
the participant. The researchers recorded skeleton data in 3D describing the
position of 25 joints, head pose on three axes, 1347 face points in 3D and in 2D
for projection on the color image and 17 facial action units at 30 Hz.

Audio Signals. The audio recordings were performed using primarily a digital
wireless headset microphone (Line6 XD-V75HS) in combination with a direc-
tional microphone (Rode M3). The wireless headset allows unconstrained head
movements and records any sound produced by the participants. Typical sounds
recorded during these experiments are breathing, moaning and sighing sounds.
Meanwhile, the directional microphone records the ambient acoustic sounds.
An additional audio stream was recorded using the Microsoft Kinect V2 inte-
grated microphone. This microphone also records the ambient acoustic sounds.
All recordings were performed with the sample rate set to 48 kHz. The three
audio streams were synchronously recorded with the video and bio-physiological
streams using the SSI framework [26].

Visual Analogue Scale. To assess the consistency of subjective criteria utilized
to indicate T1 and T3 participants rated their pain intensity on the Visual Ana-
logue Scale (VAS) immediately after the end of each experimental phase. The
VAS consists of a 100 mm line whose anchors range from no pain sensation (score
of 0) to the most intense pain sensation imaginable (score of 100) [31]. Hence,
a higher score points out greater pain intensity. The VAS was administered as
a paper-and-pencil measure. Participants were asked to mark on the VAS hori-
zontal straight line the point that they felt best represented their pain intensity.

Self-Assessment Manikin. To verify whether image stimuli elicited the intended
emotional states, participants rated their subjective reaction to the induction
of affect using the Self-Assessment Manikin (SAM) [3,14] which measures the
valence and arousal with viewing each picture. It was emphasized that the
researchers were interested in personal feelings and that correct or wrong answers
were not possible. The scale includes two sets of five pictographs showing affec-
tive valence (unpleasant-pleasant) and arousal (calm-excited). The pleasure scale
depicts a smiling figure at one extreme and a frowning figure at the other. The
arousal scale represents a sleeping figure at the calm end and an excited and
wide-eyed figure at the other. Participants using the mid-point of each scale
indicate feeling neither happy nor unhappy, or neither calm nor excited (i.e.,
neutral). Both scales yielded ratings between 1 and 9 for each dimension, with
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higher scores being associated with greater subjective pleasure and arousal (lower
scores in pleasure dimension are associated with greater displeasure). Ratings
were made during picture presentation after the end of each experimental phase.
The paper-and-pencil version of the SAM scale was utilized for the present exper-
iment. Participants were instructed to make a mark under the scale of each
dimension.

2.4 Procedure

The experiments were conducted at the Emotion Lab3, Department of Psycho-
somatic Medicine and Psychotherapy, University of Ulm. First, the researchers
summarized each aspect of the content and procedures of the experiment, and
obtained informed consent. Each participant’s health status was determined by
a brief interview to define eligibility. If the participant was eligible, they were
seated in a sound and light attenuated room. Then, pain stimulator and phys-
iological sensors were applied. The sites were first slightly abraded with a skin
preparation gel and decreased with alcohol for attaching the physiological sen-
sors. Participants were acclimated to the experimental context while they com-
pleted several questionnaires. They were informed that no known risk was asso-
ciated with the procedures of the experiment but they might feel temporary
discomfort during skin preparation for the sensors and during heat pain stim-
ulation. The researchers emphasized that the discomfort would be temporary
and under participant’s control because they would define their pain threshold
and pain tolerance threshold. Additionally, participants were told that they were
able to leave the experiment at any time by pressing the emergency stop button.

The first 25 participants began with the right arm; the rest of them began
with the left arm. For both arms T1, T2 and T3 pain levels were determined and
finally both arms of each participant were stimulated with heat pain. The exper-
iment was organized into two phases as shown in Fig. 5. Phase 1 involved calibra-
tion phase that lasted 15 min. The main experimental phase involved inducing
the individual pain levels while the participant was viewing the image presen-
tation and listening to sound stimuli. The specific procedure was as follows: the
main experimental phase began with a preparatory cue which stayed on the
screen until the participant adjusted the volume of the headphones for listen-
ing to sound stimuli. Sound test was followed by instructions for the participant.
Participants were informed that a series of images would be showed on the screen
during which they would need to view each image the entire time and listen to
the respective sound allowing themselves to experience the potential emotions
evoked by the stimuli; they were also instructed that pain stimuli might be
induced during the presentation. After explaining the procedure, the researchers
left the experimental room and monitored the participants by video camera from
a control room. The main experimental phase lasted approximately 30 min. This
phase was followed by an after-rating condition. During this condition, each par-
ticipant rated the intensity of T1 and T3 on the VAS. They rated simultaneously

3 http://www.uni-ulm.de/∼hhoffman/emotions.

http://www.uni-ulm.de/~hhoffman/emotions


The SenseEmotion Database 137

valance and arousal of six affective stimuli that aimed to evoke positive, neg-
ative and neutral emotions using the SAM; they also rated three images from
the three sets of emotions without pain stimulation. The after-rating condition
began with a 6 s presentation of the to-be-rated picture and a 4 s induction of the
pain stimulus, directly after which the rating was made. The rating period was
30s, allowing sufficient time for ratings. There was an interval of 20 min between
Phase 1 and 2. The same process was followed for Phase 2. After the end of
Phase 1 and 2, participants were requested to apply a cold compress to the area
of heat pain stimulation for at least 5 min. At the end of the experiment, sensors
were removed and participants were debriefed and thanked.

Fig. 5. Experimental procedure

3 Conclusion

The goal of the SenseEmotion project is the development of an automatic pain-
and emotion-recognition system for the successful assessment and effective per-
sonalized management of pain in elderly. For this purpose, the present study was
designed to gather multiple sources of information under heat pain stimulation
and viewing image stimuli along with listening to sound stimuli aiming at emo-
tion activation. The SenseEmotion Database consists of biopotentials (i.e., SCL,
ECG, trapezius muscle EMG and RSP), video (facial expressions, skeleton data
and head pose) and audio (paralinguistic information) signals. The data will be
pre-analyzed with a variety of complex filter and decomposition techniques to
extract and select meaningful feature patterns that will contribute to the high-
est recognition rate for pain- and emotion-recognition, pain quantification and
differentiation between pain and emotion. Next steps will involve analyzing the
data utilizing machine learning algorithms for offline and online analysis for pain-
and emotion-recognition in real-time. Further, the researchers plan to advance
the present study with the following key aspects:

1. The researchers will test and improve the generalizability with a complex
pain model including phasic and tonic pain, heat pain and electrocutaneous
stimulation.

2. The research group plans to test the automatic pain- and emotion-recognition
system in clinical practice. One idea could be that the automatic recognition
system would be tested in a post-operative setting of a care unit for people
with dementia syndrome.
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To sum up, the SenseEmotion project advances towards its vision of an auto-
matic pain- and emotion-recognition system that will facilitate pain assessment
and management in older people in clinical and care home settings.

Acknowledgment. This paper is based on work done within the project SenseEmo-
tion funded by the German Federal Ministry of Education and Research (BMBF).
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11. Kächele, M., Amirian, M., Thiam, P., Werner, P., Walter, S., Palm, G.,
Schwenker, F.: Adaptive confidence learning for the personalization of pain inten-
sity estimation systems. Evolving Syst. 8(1), 71–83 (2017)

12. Kehlet, H.: Acute pain control and accelerated postoperative surgical recovery.
Surg. Clin. North Am. 79(2), 431–443 (1999)
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Abstract. Face recognition in presence of illumination changes, variant
pose and different facial expressions is a challenging problem. In this
paper, a method for 3D face reconstruction using photometric stereo
and without knowing the illumination directions and facial expression is
proposed in order to achieve improvement in face recognition. A dimen-
sionality reduction method was introduced to represent the face defor-
mations due to illumination variations and self shadows in a lower space.
The obtained mapping function was used to determine the illumina-
tion direction of each input image and that direction was used to apply
photometric stereo. Experiments with faces were performed in order to
evaluate the performance of the proposed scheme. From the experiments
it was shown that the proposed approach results very accurate 3D sur-
faces without knowing the light directions and with a very small differ-
ences compared to the case of known directions. As a result the proposed
approach is more general and requires less restrictions enabling 3D face
recognition methods to operate with less data.

Keywords: Face reconstruction · Face recognition · Photometric
stereo · 3D imaging · Non-linear dimensionality reduction · Illumina-
tion models

1 Introduction

Automatic face and facial expression recognition has become a very vibrant topic
in the last decade due to the fast progress of human computer intelligent interac-
tion (HCII). Face recognition on frontal faces under controlled condition, such as
known light condition, is a mature research field and high recognition accuracy
can be achieved. However, the performance decreases in presence of illumina-
tions changes, pose variations, facial expressions and a large number of subjects
[12]. A large amount of interest has been addressed towards 3D modeling and
reconstruction of faces in order to improve face and facial expression recognition.
Photometric stereo techniques are used to estimate the illumination condition
and to extract 3D geometry information of a face [2,17,18].
c© Springer International Publishing AG 2017
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Photometric stereo techniques are further categorised into constrained and
unconstrained. Unconstrained photometric stereo means that we do not have
any priori knowledge of the light-source direction or the light-source intensity.
However, in constrained photometric stereo the light-source direction is not an
unknown, and for this reason it is easier to determine the surface normal and
the surface reflectance. The main issue related to the unconstrained photometric
stereo approaches is that a large number of images is required captured while the
light source is moving around the observed object. Therefore, this process is not
convenient for real time applications since both the capturing and processing
time increases significantly. In this paper in order to solve these problems an
unconstrained photometric stereo approach for face reconstruction is proposed
requiring at least three images of the surface captured under different unknown
illumination directions. The primary contributions of this work are twofold. First,
we present a novel methodology for illumination direction estimation for human
faces based on low dimensional subspaces. Secondly, we perform an analysis
for the accuracy of the obtained lighting conditions in terms of reconstruction
accuracy and computational complexity.

This paper is organised as follows. In Sect. 2 previous work on photomet-
ric stereo and low dimensional subspaces is reviewed. In Sect. 3, we present an
overview of the proposed approach. In Sect. 4 experiments are performed using
different datasets and metrics indicating the advantages of the proposed app-
roach. Finally, conclusions on the proposed methodology and the evaluation
process are presented.

2 Previous Work

Woodham [30] was the first to introduce photometric stereo. He proposed a
method which was simple and efficient, but only dealt with Lambertian surfaces
and was sensitive to noise. An unconstrained photometric-stereo method for
estimating the surface normal and the surface reflectance of objects without a
priori knowledge of the light source directions was proposed in [7]. Also, worth
mentioning the work in [9,16,29] that are based on similar approaches. Recently
approaches for 3D reconstruction based on photometric stereo with unknown
lighting were proposed [1,4,21,22,25–27,31]. Regarding all these methods, the
main difference is that they require a significant amount of images captured while
the illumination direction is changing, which makes them unsuitable for real time
applications and scenarios that involve humans due to their unconstrained self-
movement.

To the best of our knowledge, few approaches based on low dimensional
subspaces have been used on photometrics. However, a few of them have potential
since they are able to consider explicitly the modelling of illumination changes
in their methodology. Georghiades et al. [9] a generative model is created by
using low dimensional linear subspaces in order to reconstruct new poses and
illuminations. Although useful for face recognition, the systems is face specific
and therefore unable to extrapolate to new subjects as required in photometrics.
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Hallinan [10] propose a low-dimensional model for human faces that can both
synthesize a face image when given lighting conditions and can estimate lighting
conditions when given a face image. Althugh based on PCA, the method is
designed to explain lighting conditions and not to discount them. However this
is achieve by limiting all the other sources of variability, including the usage of
different people, and will fail otherwise. Lee [20] also propose to represent the
illumination cone in a low dimensional space, similarly to [9], by using spherical
armonics. Again, the generated low dimensional spaces are person specific.

As a common limitation factor, all these approaches rely on linear method-
ologies, and therefore, on the assumption of linearity in the face subspace. This
assumption is only true under certain conditions, such as face specific appli-
cations, as we will explain in Sect. 3.1, which lead to poor performances for
realistic scenarios with multiple subjects, different illumination conditions and
facial expressions. Instead, we propose a non linear low dimensional space able
to model these factors and take advantage of it for 3D face reconstruction and
related recognition applications.

3 Proposed Methodology

In this work a novel two step approach for face reconstruction using photomet-
ric stereo is proposed. Initially, illumination direction is estimated using low
dimensional illumination models. During this step a large number of faces illu-
minated from all possible directions on a hemisphere is used for training and
to create a manifold that represents all the lighting directions in a 3D space.
In the second part of the proposed methodology, a new face is captured and at
least 3 images are obtained illuminated from different unknown directions. The
images are transferred to the new space using the mapping function obtained
from the previous step and the corresponding illumination direction is obtained.
Finally, photometric stereo is applied and the surface normals are estimated.
The proposed algorithm is analysed in the following sections.

3.1 Illumination Subspace

Using a set of training images from different people and lighting directions, a low
dimensional subspace can be generated [9]. In this subspace, the distribution of
the training samples allows us to estimate the illumination direction while the
usage of different subjects allow generalisation to new test subjects.

Dimensionality reduction techniques have been used frequently to model face
appearance and pose [11], but illumination variations have been rarely considered
or accepted as a factor to be removed [9,10,20]. This is mainly due to the false
assumption that the low dimensional subspace comprising the face samples is
linear. Belhumeur et al. [5] demonstrated that all images of a given Lambertian
surfaces, taken from a fixed point of view, and under varying illuminations can lie
in a 3D linear subspace, but they also pointed that shadowing, facial expressions
and other factors produce that regions of the face may exhibit deviation from
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a linear subspace. The required usage of several subjects in the dataset, and
therefore different Lambertian surfaces, implies a substantial factor that affects
this linearity.

In order to deal with all the possible, we propose a nonlinear dimensionality
reduction (DR) technique, as oppose to other approaches which try to linearise
the space by choosing an ad-hoc optimal linear and discarding non linear factors.
Many different non linear DR techniques could be used, both mapping based
(GPLVM [19], GPDM [14]) or spectral based (LE [6], LLE [24], Isomap [13]).
However, the big differences among the face surfaces can hide the illumination
information, being discarded during the DR process by conventional techniques.
Among these methodologies, t-Stochastic Neighbour Embedding (t-SNE) [28]
has been proposed to provide a mathematical framework where new constrains
can easily be introduced.

3.1.1 Illumination Manifold Using Stochastic Neighbour Embedding
t-Stochastic Neighbour Embedding (t-SNE) [28] is a non-linear dimensionality
reduction technique used to embed high-dimensional data into a low-dimensional
space (e.g., two or three dimensions for human-intuitive visualization). Given a
set of N high-dimensional faces of people under different illumination conditions
(i.e. data-points) x1, ..., xN , t-SNE starts by converting the high-dimensional
Euclidean distances between data-points (‖xi − xj‖)into pairwise similarities
given by symmetrized conditional probabilities. In particular, the similarity
between data-points xi and xj is calculated from (1) as:

pij =
pi|j + pj|i

2N
(1)

where pi|j is the conditional probability that xi will choose xj as its neighbour if
neigbours were picked in proportion to their probability density under a Gaussian
centred at xi with variance σ2

i , given by (2):

pi|j =
exp (−‖xi − xj‖2/2σ2

i )
∑

k �=i exp (−‖xk − xi‖2/2σ2
i )

(2)

In the low-dimensional space the Student-t distribution (with a single degree
of freedom: f(x) = 1/(π(1 + x2))) that has much heavier tails than a Gaussian
(in order to allow dissimilar objects to be modelled far apart in the map) is used
to convert distances into joint probabilities. Therefore, the joint probabilities qij

for the low-dimensional counterparts yi and yj of the high-dimensional points xi

and xj are given by

qij =
(1 + ‖yi − yj‖2)−1

∑
k �=l(1 + ‖yk − yl‖2)−1

. (3)

The objective of the embedding is to match these two distributions (i.e.,
(1) and (2)), as well as possible. This can be achieved by minimizing a cost
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function which is the Kullback-Leibler divergence between the original (pij) and
the induced (qij) distributions over neighbours for each object

DKL(P‖Q) =
∑

i

∑

j

pij log
pij

qij
. (4)

The minimization of the cost function is performed using a gradient decent
method which have the following simple form:

δDKL

δyi
= 4

∑

j

(pij − qij)(yi − yj)
(1 + ‖yi − yj‖2) (5)

3.1.2 Mapping Functions
Once the low dimensional illumination space is obtained, a mapping mechanism
is needed in order to project a new face or a subset of them and estimate the
most likely illumination direction. Methods such as t-SNE allow unsupervised
generation of embedded spaces, but they do not provide explicitly any mapping
mechanism between the low and high dimensional spaces. This issue has been
tackled very effectively by Radial Basis Function Networks (RBFN) [8]. Projec-
tion functions are produced by training direct φ and inverse φ′ sets of functions
between high and low dimensional spaces.

φ : RN → R
n and φ′ : Rn → R

N (6)

In our framework, multi-dimensional Gaussian activation functions φj (Eq. 7) are
employed because of its flexibility and superior performance to fit the subspace.

φj = e(−(X−μj)
T ·Σ−1

j ·(X−μj)) (7)

for j = 1, ..., ng, where X is the input feature vector, ng the number of Gaussian
functions to be discovered and μj and Σj the mean and covariance respectively
of each Gaussian function.

3.1.3 Illumination Estimation
In order to estimate the most likely illumination directions for a new face sample,
a nearest neighbour classifier is used in the embedded space. The embedded
space is composed of 9 different subspaces, each of them comprising all the
possible azimut angles from 0 to 360, at 9 different elevation angles from 10
to 90◦. Each subspace generated with t-SNE produces a radial manifold, were
people are overlaping and distributed according to both their appearance and the
illumination angle of the lighting. The overall embedded space can be represented
as a hemisphere compose of radial manifolds (see Fig. 1).

By projecting a new sample in this space and pairing with the nearest neigh-
bour, the illumination direction is estimated as the same belonging to this near-
est neighbour. This strategy has been proved enough for providing a sufficient
estimation, as depicted in Fig. 1 and in the result section.
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Fig. 1. Left. The obtained 3-dimensional manifold using t-SNE corresponding to the
hemispherical embedded space for azimuth and elevation angles. Right. Angular error
obtained for this sequence using nearest neighbour classifier for subject 3 projected on
illumination subspace composed by subjects [1,2,4–7].

3.2 Photometric Stereo Without Illumination Information

Since a mapping function from the high dimensional space of all possible shadow
and highlight deformations that could occur on a human face to a 3D space is
obtained, the illumination direction for any face could be estimated using the
same mapping mechanism. Regarding the illumination deformations over a face
and in general a surface, it is well known that the fraction of light reflected on an
object’s surface in a certain direction depends upon the optical properties of the
surface material. In this paper we use the Lambertian model, thus the fraction
of the incident illumination reflected in a particular direction depends only on
the surface normals.

All faces share common surface characteristics, which therefore result in sim-
ilar statistical distributions of normal vectors, and therefore the shadow and
highlight deformations share common characteristics too, independent of the
human face. This approach can be extended to any class of surface, not only
faces, as long as they share similar facet normal distributions.

Based on the Lambertian model that is used, if n is the normal vector of a
surface facet, ρ its albedo with the cosine of the incidence angle θi (the angle
between the direction of the incident light and the surface normal), L is the light
direction and I the corresponding brightness value recorded for that facet, we
have

I = ρ cos(θi) = ρ(L · n) (8)

Let us now consider a Lambertian surface patch with albedo ρ and normal
n, illuminated in turn by several fixed and known illumination sources with
directions L1, L2, ..., LÑ . In this case we can express the intensities of the
obtained pixels as:

Ik = ρ(Lk · n), where k = 1, 2, ..., Ñ. (9)

If we move to a matrix form, Eq. (9) could then be rewritten as

I = ρ[L]n (10)
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If there are at least three illumination vectors which are not coplanar, we can
calculate ρ and n using the Least Squares Error technique, which amounts to
applying the left inverse of [L]:

([L]T [L])−1[L]T I = ρn (11)

Since n has unit length, we can estimate both the surface normal (as the direction
of the obtained vector) and the albedo (as its length). Extra images allow one
to recover the surface parameters more robustly.

The problem of reconstructing the surface from the modified normals is con-
sidered next and the depth map needs to be obtained. Therefore, the surface is
represented as (x, y, f(x, y)), and the normal as a function of (x, y) is

N (x, y) =
1

√
1 + ∂f

∂x

2
+ ∂f

∂y

2

(

−∂f

∂x
,−∂f

∂y
, 1

)T

(12)

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal. There are a number of ways in which a surface may be recovered
from a field of surface normals [15,23]. There are local and global methods based
on trigonometry and the minimisation of error functionals, respectively and the
most suitable could be selected for this part of the process.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=

a(x, y)
c(x, y)

∂f

∂y
=

b(x, y)
c(x, y)

(13)

At this stage we may perform another check on our data set. Because

∂2f

∂x∂y
=

∂2f

∂y∂x
(14)

we expect

A(x, y) ≡
∂

(
a(x,y)
c(x,y)

)

∂y
−

∂
(

b(x,y)
c(x,y)

)

∂x
(15)

to be small (close to zero) at each point.
Assuming that the partial derivatives pass the above sanity test, we can

reconstruct the surface up to some constant error in depth. The partial deriva-
tives give the change in surface height with a small step in either the x or the y
direction. This means that we can get the surface by summing these changes in
height along some path. In particular, we have

f(x, y) =
∮

C

(
∂f

∂x
,
∂f

∂y

)

· dl + c (16)

where C is a curve starting at some fixed point and ending at (x, y), dl is the
infinitesimal element along the curve and c is a constant of integration, which
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represents the unknown height of the surface at the starting point. In order to
improve further the reconstruction we combine it with a multigrid 2D integration
algorithm, which iteratively solves a global minimization problem, and is less
sensitive to the propagation of local errors.

4 Experiments and Results

In order to evaluate the accuracy of the proposed methodology a set of experi-
ments was performed using two different datasets and metrics. In more details
the first database (see Fig. 2) was captured in our lab and contains 7 faces male
and female all of them facing the camera. The second dataset (see Fig. 2) that
was used is the Photometric Database presented in [3] captured under a similar
setup having more than 300 faces. In both cases, the persons are assumed to
be still during the acquisition stage since a high speed camera was used for the
acquisition (i.e. 200 frames per second), eliminating the registration problem. In
the second stage of the evaluation procedure, photometric stereo is applied on
the input images of the databases and the 3D surface of each face is obtained.
The faces are aligned using manually placed markers and an affine transforma-
tion algorithm. Since the 3D faces are aligned a Lambertian model is used to
generate 2D images and shadow maps illuminated under all possible directions
(all the possible azimuth angles from 0 to 360, every 10◦, and elevation angles
from 10 to 90◦, every 10◦) on a hemisphere as it is shown in Fig. 3. These images
at a resolution of 144 × 144 are using as input at the t-SNE as a training set to
generate a embedded low dimensional space representation of the illumination
variations and shadow deformations on a human face in a low dimensional space.
Consecutively, using the one leave out process, where each subject is removed
from the training set dataset and used for testing, the faces are reconstructed
using the estimated illumination directions for the input images.

4.1 Illumination Estimation

By using the previously mentioned leave-one-out schema, the performance of the
automatic illumination estimation can be evaluated as well as the capability of
the embedded space to generalise to new subjects out of the training dataset.
Results of the average angular error for each of the datasets are reported in
Table 1. Regarding the average angular error it was expected to be in that range
since two consecutive illumination sources are in range of 15◦, which explains
the results indicating that the estimated direction is always in the second-order
neighborhood. A particular case for subject 3 is depicted in Fig. 1.

Table 1. Overall performance of the angular estimation provided by the nearest neigh-
bour classifier on the illumination embedded space

Dataset 1 Dataset 2 [3]

Angular error [Degrees] 32.7536 33.5571
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Fig. 2. (Left) An example of faces part of the first dataset. (Right) An example of
faces part of the second dataset [3].

Fig. 3. Examples of possible illumination directions. Each dot on the hemisphere cor-
responds to a possible light l. It may be identified by its azimuth angle ϕl and its zenith
angle θl.

It can be concluded that the illumination embedded space is able to provide
a reasonably accurate estimation of the lighting direction, which can be now feed
into the reconstruction module.

4.2 Reconstruction Performance

In order to evaluate the performance the average difference of the real and the
estimated heightmaps was used and furthermore the Hausdorff distance was used
to compare the reconstructions with the original profiles.

In more details for the first dataset the results are summarized in Table 2
and examples of the reconstructed surfaces and the height maps are shown in
Fig. 4. Also, the error difference between the reconstructed faces knowing the
light directions and the one without is shown in Fig. 5. The same experiments
were also performed for the second dataset and the obtained results are shown
in Table 3 and examples of the obtained surfaces are shown in Figs. 6 and 7. In

Table 2. The accuracy of the proposed photometric stereo method for faces with
unknown illumination directions in terms of height map percentage error over the
ground truth (case of known directions) for the first dataset.

Average height error Scenario A Scenario B

Proposed method 1.4974% 1.1161%

Schindler [25] 2.1775% 1.5553%
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Fig. 4. Reconstructed surfaces using the proposed method with unknown illumination
on the right and the ground truth on the left under different view points for the first
dataset.

Fig. 5. The error difference between the reconstructed faces knowing the light direc-
tions and the one without for the first dataset.

Table 3. The accuracy of the proposed photometric stereo method for faces with
unknown illumination directions in terms of height map percentage error over the
ground truth (case of known directions) for the second dataset [3].

Average height error Scenario A Scenario B

Proposed method 3.0963% 2.7450%

Schindler [25] 3.7831% 2.9806%

Fig. 6. Reconstructed surfaces using the proposed method with unknown illumination
on the right and the ground truth on the left under different view points for the second
dataset.

Fig. 7. The error difference between the reconstructed faces knowing the light direc-
tions and the one without for the second dataset.
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Fig. 8. Examples of profile views used to calculate the Hausdorff distance.

Table 4. The average Hausdorff distance was used to compare the reconstructed with
the original profiles.

Average hausdorff distance Dataset 1 Dataset 2

Proposed method 0.0097 0.0055

Schindler [25] 0.0124 0.0083

more details, for each dataset two tests were performed and in each test scenario
three or four different images were used as input to the reconstruction system.
The obtained height map in each scenario was compared with the equivalent
height map obtained by the same input images but knowing the illumination
directions.

The proposed algorithm was further evaluated using the Hausdorff distance
comparing the surfaces obtained with and without any illumination information.
In Fig. 8 results of the reconstructed faces obtained from the two cases are shown.
Observing the results it can be inferred that the proposed methodology results
very accurate estimates without knowing the light directions. In particularly,
the side view was used to evaluate the performance of the proposed approach.
The background was extracted manually and the Hausdorff distance was used to
compare the reconstructions with the original profiles. Table 4 shows the average
results for all the faces.

5 Conclusions

In this paper, a method for 3D face reconstruction using photometric stereo
with unknowing lights was proposed. A dimensionality reduction method was
introduced to represent the face deformations due to the illumination variations
and the self shadows in a lower space. The obtained mapping function was used
to determine the illumination direction of each input image and that direction
was used to apply photometric stereo. Experiments with faces were performed in
order to evaluate the performance of the proposed scheme in a comparative study.
From the experiments it was shown that the proposed approach results very
accurate 3D surfaces without knowing the light directions and with a very small
differences compared to the case of known directions. As a result the proposed
approach is more general and requires less restrictions and information for the
acquisition environment, allowing further applications on 3D face recognition
and tracking.



Photometric Stereo for 3D Face Reconstruction 151

References

1. Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief
ambiguity by entropy minimization. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–7, June 2007

2. Argyriou, V., Zafeiriou, S., Villarini, B., Petrou, M.: A sparse representation
method for determining the optimal illumination directions in photometric stereo.
Signal Process. 93(11), 3027–3038 (2013)

3. Atkinson, G.A., Hansen, M.F., Smith, W.A.P., Argyriou, V., Petrou, M., Smith,
M.L., Smith, L.N.: Face recognition and verification using photometric stereo: the
photoface database and a comprehensive evaluation. In: IEEE Transactions on
Information Forensics and Security (2013)

4. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown
lighting. IJCV 72(3), 239–257 (2007)

5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: recog-
nition using class-specific linear projection. IEEE Trans. Pattern Anal. Mach.
Intell. 19(7), 711–720 (1997)

6. Belkin, M., Nivogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NISP 14 (2001)

7. Chandraker, M.K., Agarwal, S., Kriegman, D.J.: Shadowcuts: photometric stereo
with shadows. In: CVPR, June 2007

8. Elgammal, A., Lee, C.: Body pose tracking from uncalibrated camera using super-
vised manifold learning. In: NIPS EHuM Workshop (2006)

9. Georghiades, A.: Incorporating the torrance and sparrow model of reflectance in
uncalibrated photometric stereo. In: 9th ICCV, vol. 2 (2003)

10. Hallinan, P.: A low-dimensional representation of human faces for arbitrary light-
ing conditions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (1994)

11. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces.
IEEE Trans. PAMI 27, 328–340 (2005)

12. Hong, J., Song, K.: Facial expression recognition under illumination variation. In:
IEEE Workshop on Advanced Robotics and Its Social Impacts, pp. 1–6 (2007)

13. Silva, V., Tenenbaum, J., Langford, J.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

14. Fleet, D., Wang, J., Hertzmann, A.: Gaussian process dynamical models. In: NISP,
vol. 18 (2006)

15. Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, M.N., Lu, Y., Karampatzi-
akis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial
expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal.
Mach. Intell. 29(4), 640–649 (2007)

16. Kautkar, S.N., Atkinson, G.A., Smith, M.L.: Face recognition in 2d and 2.5d using
ridgelets and photometric stereo. Pattern Recogn. 45, 3317–3327 (2012)

17. Kemelmacher-Shlizerman, I.: Internet based morphable model. In: 2013 IEEE
International Conference on Computer Vision, pp. 3256–3263, December 2013

18. Kemelmacher-Shlizerman, I., Seitz, S.M.: Face reconstruction in the wild. In: 2011
International Conference on Computer Vision, pp. 1746–1753, November 2011

19. Lawrence, N.: Gaussian process latent variable models for visualisation of high
dimensional data. In: NISP, vol. 16 (2004)

20. Lee, K.C.: Acquiring linear subspaces for face recognition under variable lighting.
IEEE PAMI (2005)



152 B. Villarini et al.

21. Lu, F., Matsushita, Y., Sato, I., Okabe, T., Sato, Y.: Uncalibrated photometric
stereo for unknown isotropic reflectances. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1490–1497, June 2013

22. Papadhimitri, T., Favaro, P.: A closed-form, consistent and robust solution to
uncalibrated photometric stereo via local diffuse reflectance maxima. Int. J. Com-
put. Vis. 107(2), 139–154 (2014)

23. Robles-Kelly, A., Hancock, E.R.: A graph-spectral approach to shapefrom-shading.
IEEE Trans. Image Process. 13(7), 912–926 (2004)

24. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326 (2000)

25. Schindler, G.: Photometric stereo via computer screen lighting for real-time surface
reconstruction. In: Proceedings of the 3DPVT 2008 (2008)

26. Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating photometric
stereo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1118–1125, June 2010

27. Shi, B., Wu, Z., Mo, Z., Duan, D., Yeung, S., Tan, P.: A benchmark dataset and
evaluation for non-lambertian and uncalibrated photometric stereo. In: IEEE Con-
ference on CVPR, pp. 3707–3716 (2016)

28. van Der-Maaten, G., Hinton, L.: Visualizing data using t-sne. J. Mach. Learn. Res.
9, 2579–2605 (2008)

29. Argyriou, V., Petrou, M.: Recursive photometric stereo when multiple shadows
and highlights are present. In: Proceedings of CVPR (2008)

30. Woodham, R.: Photometric method for determining surface orientation from mul-
tiple images. Opt. Eng. 19(1), 139–144 (1980)

31. Wu, Z., Tan, P.: Calibrating photometric stereo by holistic reflectance symmetry
analysis. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1498–1505, June 2013



Recursively Measured Action Units

Xiang Xiang1(B) and Trac D. Tran2

1 Department of Computer Science, Johns Hopkins University,
3400 N. Charles Street, Baltimore, MD 21218, USA

xxiang@cs.jhu.edu
2 Department of Electrical and Computer Engineering,

Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

Abstract. Video is a recursively measured signal where frames are
highly correlated with structured sparsity and low-rankness. A simple
example is facial expression - multiple measurements of a face. Several
salient facial action units (AU) are often enough for a correct expression
recognition. We hope that AUs are not stored when the face remains
neutral until they become salient when expression occurs, as well as
that the recognizer is still able to restore historic salient AUs. A tem-
poral memory mechanism is appealing for a real-time system to reduce
rich redundancy in information coding. We formulate expression recog-
nition as a video Sparse Representation based Classification (SRC) with
Long Short-Term Memory (LSTM) mechanism, which is applicable for
human actions yet requiring a careful design of sparse representation due
to possible changing scenes. Preliminary experiments are conducted on
the MPI Face Video Database (MPI-VDB). We compare the proposed
sparse coding with temporal modeling using LSTM against the baseline
of sparse coding with simultaneous recursive matching pursuit (SRMP).

1 Introduction

As shown by Fig. 1, the primary problem for a computer to read faces in the
wild is the head pose variation [1]. For non-well-aligned faces, it is infeasible to
extract a dominant neutral face assumed in the [2]. The solution is to either align
faces or design a model robust to pose variation [1]. The way of first aligning
the faces and then applying sparse representation counts heavily on the explicit
face alignment. In order to relax the constraint of well-aligned faces, we choose
to get rid of the low-rank term from the model proposed in [2]. Namely, we hope
to represent an expressive face in a certain pose over a dictionary of expressive
faces under various poses. As a similar pose or a similar identity can both confuse
a similar expression, we rule out the identity by construction of the data. Our
observation is that a weighted combination of cropped faces under various poses
can also give a probabilistic meaningful face.

As shown in Fig. 2, it is easily observed that several salient facial action units
(AU) are often enough for a correct recognition. We hope that AUs are not stored
when the face remains neutral until they become salient when expression occurs,
as well as that the recognizer is still able to restore historic salient AUs. There
exits rich redundancy if we simply code all AUs over time.
c© Springer International Publishing AG 2017
F. Schwenker and S. Scherer (Eds.): MPRSS 2016, LNAI 10183, pp. 153–159, 2017.
DOI: 10.1007/978-3-319-59259-6 13
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Fig. 1. Faces in the wild are under various poses. Images from the Web.

Fig. 2. Salient facial action units (AU) are often enough for expression recognition.

2 A Bayes Probabilistic Model

A face Y is visually affected by confounding factors the primary of which are the
identity I, the head pose P and the facial expression E. Thus, we can represent
Y as a function of random variables I, P,E: Y = f(I, P,E). Then, we denote a
specific face as f(i, p, e) := f(I = i, P = p,E = e) given specific i, p, e. If we fix I,
the face of a specific person is f(P,E) := f(I = i, P,E). Then, the probability of

Fig. 3. Illustration of the pose-specific expression model per quantized pose and the
expression-specific pose model per quantized expression. Images from the MPI-VDB.
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having a specific expression e is P(e) := P(E = e) = P(f(P=p,E)|P=p)·P(P=p)
P(f(P )|E=e) =

P(f(E)|p)·P(p)
P(f(P )|e) according to the Bayes’ Theorem. The likelihood P(f(E)|p) is

modelled using pose-specific expression-varying face videos as shown in Fig. 3-
left. The likelihood P(f(P )|e) is modelled using expression-specific pose-varying
face videos as shown in Fig. 3-right. In the following, we take the pose-specific
expression case as an example to elaborate the model. The coding for expression-
specific poses follows the same algorithm.

3 Coding Pose-Specific Expression with Temporal LSTM

Now, we model an implicit latent representation X ∈ R
n×τ of an input test face

Y ∈ R
d×τ as a sparse linear combination of prepared fixed training emotions

D ∈ R
d×n: Y = DX, where the dictionary matrix D is an arrangement of all

sub-matrices D[j], j = 1, ..., �n
τ �. Notably, n is assumed to be much larger than

d and rank(D)= d. Namely, our task is to sequentially find a small subset (i.e.,
basis set) of columns from D for the Multiple Measurement Vectors (MMV) X.

3.1 Recursive Matching Pursuit Using RNN

As we build up the basis set by adding a single column vector at a time, we denote
the residual matrix after the p-th iteration by R(p) ∈ R

n×τ with R(0) = Y. The
i-th column of Y(p) is denoted by y(p)

i . The indices of the p vectors selected are
stored in the index set denoted by I

(p); where I
(p) = {k1, k2, ..., kp} and I

(0) = ∅.
The selected columns vectors are stored in a matrix S(p) = [dk1 ,dk2 , ...,dkp

]
and S(0) = ∅. The orthogonal projection matrix onto the column space of S(p)

is denoted by PS(p) and its orthogonal complement P⊥
S(p) = (I − PS(p)) and

PS(0) = 0, P⊥
S(0) = I where I is an identity matrix and 0 is a zero matrix.

The basic idea of the Recursive Matching Pursuit (RMP) algorithm is the
pursuit of the matching p-th basis vector conceptually involves solving (n−p+1)
order recursive least squares problems and selecting the vector that reduces the
residual the most.

We initialize d(0)
k = dk(∀k = 1, ..., n) and choose a column of D indexed by

kp = argmax
k

(
τ∑

i=1

∣∣∣∣(d(p−1)
k

)T

r(p)i

∣∣∣∣
2 /

‖d(p−1)
k ‖2

)
. (1)

As S(p) is augmented, we then update PS(p) by

PS(p),kp
= PS(p) + q(p)

(
q(p)

)T (2)

where

q(p) =
d(p−1)

kp

‖d(p−1)
kp

‖
. (3)
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Now we project columns of D and R to the column space of S(p), and get

d(p)
i = P⊥

S(p)d
(p−1)
i = d(p−1)

i −
((

q(p)
)T

d(p−1)
i

)
q(p), (4)

r(p)i = P⊥
S(p)r

(p−1)
i = r(p−1)

i −
((

q(p)
)T

r(p−1)
i

)
q(p), (5)

respectively, ∀i = 1, 2, ..., τ . Note that no orthogonal projection is employed in
the updates. Selection of a column of D corresponds to selecting a nonzero row
of X. The nonzero rows of X form XI which is given by (S(p))†Y where † denotes
pseudo-inverse.

Algorithm 1. RMP using Recurrent Neural Network.
1 function X = RMP-RNN(Y,D, resMin);

Input : measurement matrix Y ∈ R
d×τ , dictionary matrix D ∈ R

d×n,
minimum Frobenius norm resMin, trained RNN model.

Output: sparse-codes matrix X ∈ R
n×τ

2 Initialization D(0) = D, X(0) = 0, R(0) = Y;
3 while i ≤ τ and ‖R‖F ≤ resMin do
4 p ← p + 1

5 r
(p)
i ← r

(p)
i−1

max
(
|r(p)i−1|

)

6 hi ← RNN(r
(p)
i ,hi−1, ci−1)

7 ci ← softmax(Uhj)
8 kp ← Support(max(c))

9 I
(p) ← I

(p−1) ∪ kp

10 S(p) ← [S(p−1),dkp ]
11 PS(p) ← PS(p),kp

by Eq. (2)

12 d
(p)
i ← Eq. (4)

13 x
(p)I
i ← (S(p)

)†
yi

14 r
(p)
i ← Eq. (5)

15 end

3.2 RNN Using Long Short-Term Memory (LSTM)

hi = oi ∗ tanh(fi ∗ ci−1 + ei ∗ ci) (6)

where the information memorizing cell is given by

ci = tanh(Wc[hi−1, ri] + bc), (7)

the vector of information forgetting gates is given by

fi = σ(Wf [hi−1, ri] + bf ), (8)
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the vector of information entering gates is given by

fe = σ(We[hi−1, ri] + be), (9)

and the vector of information outputing gates is given by

fo = σ(Wo[hi−1, ri] + bo). (10)

4 Related Works

Sparse coding has its root in neuroscience and has been well exploited in har-
monic analysis, signal processing and compressive sensing. Matching Pursuit
dates back to 1993 in [3] and Recursive Matching Pursuit for sparsely coding
Multi-Measurement Vectors can be traced back to 1998 in [4].

Algorithm 2. Baseline: simultaneous recursive matching pursuit (SRMP).
1 function X = RMP (Y,D, resMin);

Input : measurement matrix Y ∈ R
d×τ and minimum Frobenius norm

resMin as stopping criterion.
Output: Approximation matrix A ∈ R

d×τ and a set Λp containing p indices
where p is the number of iterations.

2 Initialization D(0) = D, X(0) = 0, R(0) = Y;
3 while i ≤ τ and ‖R‖F ≤ resMin do
4 p ← p + 1
5 kp ← Eq. (1)

6 I
(p) ← I

(p−1) ∪ kp

7 S(p) ← [S(p−1),dkp ]

8 x
(p)I
i ← (S(p)

)†
yi

9 d
(p)
i ← Eq. (4)

10 r
(p)
i ← Eq. (5)

11 end

Recurrent Neural Network (RNN) is deep in time and thus can be treated as
a deep neural network with the issue of vanishing gradients. Long Short-Term
Memory network [5] dating back to 1997 is a type of RNN that gets around of
vanishing gradient problem. Note that there also exists a type of network called
Recursive Neural Network [6] which is generalized RNN with a deep structure
of a skewed tree. There are connections among all those models and hidden
Markov models. Both a feed-forward multilayer neural network and a hidden
Markov model can be seen as a directed acyclic graph with hidden nodes. Both a
recurrent neural network and a hidden Markov model map a sequence of inputs to
a sequence of outputs via a sequence of hidden states. Long Short-Term Memory
learns a function of inputs and hidden states using perceptron-like network with
gating weights further learned using perceptrons.
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5 Experiments

Experiments are conducted on the MPI-VDB consisting of long expression videos
simultaneously capture at 6 views. In each video, the same expression repeats
several times. Please see http://vdb.kyb.tuebingen.mpg.de for the raw data and
https://github.com/eglxiang/FacialAU for the cropped data. Images are cropped
using the Viola-Jones face detector. We randomly choose half videos for forming
the dictionary and the other half for testing. Figure 4 shows the detected salient
AU for different expressions. Figure 5 presents the confusion matrix of sparse
coding with LSTM (left) vs. with SRMP (right).

Fig. 4. Detection of salient AU occurrence. Left: the peak frame of an expression
sequence at a random view. Right: the peak frame containing a detected salient AU
which correctly helps recognizing the expression (shown all at the right profile view).

Fig. 5. Confusion matrix of the proposed model (left, with LSTM) and the baseline
model (right, with SRMP) on MPI-VDB over 20 runs. There are 7 emotion categories
including the 6 basic ones and contempt. Columns: prediction. Rows: ground truth.
The average recognition rates are 0.85 for LSTM and 0.80 for SRMP.

6 Conclusions

In this paper, We formulate expression recognition as a video Sparse Repre-
sentation based Classification (SRC) with Long Short-Term Memory (LSTM)
mechanism. The proposed sparse coding with temporal modelling using LSTM
successfully detects salient AUs over the time of repeated expressions. With a
much lower computation cost due to the selective AUs, our model performs even
better (on MPI-VDB) than the baseline of sparse coding with SRMP which
analyzes the full visual signal over all frames.

http://vdb.kyb.tuebingen.mpg.de
https://github.com/eglxiang/FacialAU
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