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Abstract

Recent advances in science have clarified the biosynthesis pathway and
functional role of secondary metabolites. They play a major role not only
for completion of the plant life cycle but also for communication with
other organisms. In Brassicaceae, including radish, the most
well-characterized secondary metabolite is glucosinolate. Glucosinolates
are sulfur-containing metabolite and their associated degradation products
have distinctive benefits for human diet and defense against pests. Plants
produce approximately 200 types of different glucosinolates and those
from different species show great diversity, with their contents being
affected by the environment, cultivation conditions, and genetic back-
ground. The profile of glucosinolates in radish is attractive, but its
biosynthesis pathway remains unclear. Here, we highlight recent progress
in glucosinolate research of model plant Arabidopsis thaliana. To
compare researches on glucosinolate between radish and A. thaliana, we
further discuss with specificity the nature of glucosinolate in radish.

10.1 Introduction

Glucosinolates are well-characterized plant sec-
ondary metabolites found in Brassicaceae (e.g.,
radish, cabbage, rapeseed, and Arabidopsis) and
related plant families. An overview of the
biosynthesis pathway of Arabidopsis thaliana
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variation in glucosinolate composition and
genetic analysis. Furthermore, the advent of
next-generation sequencing techniques allows for
transcriptome analysis of Brassicaceae plants,
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the glucosinolates biosynthesis pathway between
species.

The degradation products of glucosinolates,
primarily including isothiocyanates, are pungent
compounds specific to Brassicaceae plants,
which not only influence the taste of vegetables
but also act as an attractant or repellent to certain
insects. Isothiocyanates including sulforaphane
are reported to possess bioactivity beneficial to
humans, for example, anticarcinogenic activity or
induction of detoxification enzymes. Therefore,
the consumption of glucosinolate-containing
Brassicaceae vegetables is important in human
diet.

Radish (Raphanus sativus L., 2n = 18) is an
important Brassicaceae root vegetable, which has
been cultivated since ancient times. The com-
position of glucosinolate shows a simple profile
despite the root shape and weight showing large
variations among germplasms. The most abun-
dant glucosinolate in roots is glucoraphasatin
(4-methylthio-3-butenyl glucosinolate), derived
from methionine, and is essential for flavor and
nutritional quality of the taproot.

This chapter presents a summary of topics
related to the genes involved in glucosinolate
biosynthesis in Brassicaceae, especially in radish,
along with a summary of the chemical structures,
biosynthesis pathways, and importance in plant
breeding.

10.2 Structural Variations
in Glucosinolates

Glucosinolates are sulfur- and
nitrogen-comprising secondary metabolites hav-
ing a common basic structure containing a
B-D-thioglucose group, a sulfonated aldoxime
moiety, and a variable side chain (=R) derived
from amino acids (Fig. 10.1). Based on the pre-
cursor amino acid, glucosinolates can be classi-
fied into three groups: (1) aliphatic glucosinolates
derived from methionine, isoleucine, leucine, or
valine; (2) indolic glucosinolates derived from
tryptophan; and (3) aromatic glucosinolates
derived from phenylalanine or tryptophan. Thus,
the side-chain structure primarily results in a
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diversity of structure; more than 200 structures
have been identified (Clarke 2010; Fahey et al.
2001). Glucosinolates from different species
show great diversity, with their contents being
affected by the environment, cultivation condi-
tions, and genetic background (Fig. 10.2).
Genotype is the most important factor affecting
glucosinolate profiles, for example, 39 accessions
of A. thaliana possessed 34 types of glucosino-
lates containing aliphatic, indolic, and aromatic
glucosinolates in leaves and seed, which are
useful for the identification of genes encoding the
enzymes involved in biosynthesis pathways
(Kliebenstein et al. 2001a). Brassica vegetables
contain various aliphatic glucosinolates that vary
in length and modifications of the side chains
(Ishida et al. 2014). These variations are
explained based on the genomic structure of
Brassica species.

The number of chromosomes varies in different
species of Brassica. The genome relationship
between three monogenomic species (comprising
A, B, and C genomes) and three digenomic species
is known as Triangle of U. In general, Brassica
nigra (BB, 2n = 16) contains glucosinolates with
three carbon side chains derived from a single
elongation reaction; B. oleracea (CC, 2n = 18)
contains glucosinolates with three or four carbon
side chains; and B. rapa (AA, 2n = 20) contains
glucosinolates with either four or five carbon side
chains. The glucosinolate composition of three
amphidiploid Brassica species reflects two ele-
mentary species, for example, B. napus (AACC,
2n = 38), an amphidiploid having the B. rapa and
B. oleracea genomes, contains three, four, or five
carbon side chains.

Glucoraphasatin (4-methylthio-3-butenyl glu-
cosinolate), also known as dehydroerucin, glu-
codehydroerucin, or 4AMTB-GSL, is an aliphatic
glucosinolate predominantly found in radish
roots, and comprises >90% of the total glucosi-
nolates in Japanese white radish (Ishida et al.
2012). Although the presence of glucoraphasatin
was reported in five genera of the Brassicaceae
family, such as Brassica (Newkirk and Classen
2002; Thacker and Newkirk 2005), Bunias
(Bennett et al. 2006), Matthiola (Bennett et al.
2004), Raphanus (Carlson et al. 1985; Ishii et al.
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Fig. 10.1 Common basic (a)
structure a and representative

structure of the side chain b of beta-D-thioglucose
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1989), and Rapistrum (Curto et al. 2005), a
species with >90% of the total glucosinolate
content is restricted to R. sativus. In the 632
radish cultivars, glucoraphasatin content ranges
from 43.8 to 475.5 umol g~' dry weight at the
cotyledon stage (Ishida et al. 2015). Most culti-
vars contain two other related glucosinolates,
glucoraphenin (4-methylsulfinyl-3-butenyl glu-
cosinolate) and glucoerucin (4-methylthiobutyl
glucosinolate), in smaller quantities. Gluco-
raphasatin is detected in various radish organs
such as the seeds, seedlings, mature leaves,
stems, and roots (Beevi et al. 2009; Ciska et al.
2008; Griffiths et al. 2001; Yamada et al. 2003).

glucotropacolin

10.3 Degradation of Glucosinolates

When plant tissue is damaged, glucosinolates are
rapidly hydrolyzed by endogenous thioglucosi-
dases called myrosinases (Fig. 10.3) (Rask et al.
2000). Myrosinases are accumulated in myrosin
cells, which specifically form along the leaf veins
(Andreasson et al. 2001; Rask et al. 2000; Ueda
et al. 2006). In contrast, glucosinolates are stored
in S-cells that are physically separated from
myrosin cells (Koroleva et al. 2000, 2010). Once
the tissue is mechanically damaged, glucosino-
lates are hydrolyzed intensively by myrosinases.
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Fig. 10.2 Typical glucosinolate profile of radish (a) and

Retantion time (min)

method described by Bjerg and Serensen (1987) for

broccoli (b). Preparation of desulfoglucosinolates with  HPLC analysis. Asterisk shows internal control, sinigrin
sulfatase digestion was conducted according to the
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Fig. 10.3 Scheme of glucosinolate hydrolysis and struc-
ture of possible degradation products. Glucosinolates are
hydrolyzed by myrosinase when tissues are damaged. At
neutral pH (pH 5-7), the unstable aglucones change to
isothiocyanates. The interaction of epithiospecifier protein

As a result of myrosinase activity, glucose and
sulfate are released and some toxic/bioactive
products, such as isothiocyanates, thiocyanates,
nitriles, and epithionitriles, are formed depending
on the chemical structure of the side chain,
reaction conditions such as pH, presence of fer-
rous ions, and the modifier proteins (Kissen et al.
2009; Wittstock and Halkier 2002). The major
degradation products, i.e., isothiocyanates,
impart the characteristic taste and flavor to
Brassicaceae vegetables. Several in vitro and
in vivo studies have shown that sulforaphane
(4-methylsulfinylbutane  isothiocyanate), a
degradation product of glucoraphanin abundant
in broccoli sprouts, is associated with potential
health-promoting activity (Juge et al. 2007). In
radish, isothiocyanates derived from gluco-
raphasatin are pungent compounds that react
with water and produce a yellow pigment and
methanethiol, which are involved in the color
and smell of pickles made from Asian big radish
(Ozawa et al. 1990a, b).

10.4 Biosynthesis Pathway

Genetic and biochemical analyses show that the
biosynthesis pathway involves the natural varia-
tion in glucosinolate profiles among A. thaliana
accessions. Here, we focus on the biosynthesis
pathway of aliphatic glucosinolate, which is
abundant in A. thaliana, and outline the function
of each enzyme involved in the pathway
(Fig. 10.4).

Unstable aglycone
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(ESP) with myrosinase alters the reaction toward the
production of nitriles depending on the glucosinolate
structure and pH. Some glucosinolates can be hydrolyzed
to thiocyanates. R, variable side chain

The biosynthesis of aliphatic glucosinolates
can be divided into three independent steps. First,
the carbon chain of methionine is elongated
by a chain elongation cycle in the chloro-
plast. Second, the core structure, comprising a
B-D-thioglucose group and a sulfonated aldox-
ime moiety, is constructed. Third, the side chain
is modified. Polymorphism or the absence/
presence of respective genes determines the
glucosinolate profile.

10.4.1 Chain Elongation

The side-chain elongation step in A. thaliana and
Eruca sativa was confirmed by a feeding
experiment using radio-labeled acetate (Graser
et al. 2001, 2000). The side-chain elongation is
initiated by transamination of methionine to form
the corresponding 2-oxo acid. An A. thaliana
bcat4 mutant shows a decrease in aliphatic glu-
cosinolate levels and an increase in free
methionine levels, suggesting that BCAT4 cat-
alyzes this step (Schuster et al. 2006). The newly
formed 2-oxo acid is transported to the chloro-
plast via plastid-localized bile acid transporter 5
(BATS) and BAT5/bile acid: sodium symporter
family protein 5 (BASS5) (Gigolashvili et al.
2009; Sawada et al. 2009b). The transported
2-0xo0 acid is then involved in a cycle comprising
three  transformations:  condensation  with
acetyl-CoA catalyzed by a methylthioalkylmalate
(MAM) synthase, isomerization by an isopropy-
Imalate isomerase (IPMI), and oxidative
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Fig. 10.4 Biosynthesis pathway of aliphatic glucosino-
late. a Side-chain elongation steps. b Biosynthesis of core
glucosinolate structure. A. thaliana gene identifiers are as
follows: BCAT4 (At3g19710); MAMI (At5g23010),
MAM3 (At5g23020); IPMI LSUI (At4gl3430), IPMI
LSU2 (At2g43100), IPMI LSU3 (At3g58990); IPMDH1

decarboxylation by an isopropylmalate dehy-
drogenase (IPMDH) (Field et al. 2004; Knill
et al. 2009; Kroymann et al. 2001; Sawada et al.
2009a; Textor et al. 2007). The final step of the
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elongation cycle is the transamination by BCAT3
(Knill et al. 2008). The product of these reactions
is a 2-oxo acid that is elongated by a single
methylene (—CH,—) moiety at each cycle.
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10.4.2 Core Structure Formation

The aliphatic glucosinolate core structure is
formed in five biochemical steps catalyzed by 11
enzymes (Grubb and Abel 2006). The first step is
oxidation; precursor amino acids, which have
elongated side chains, are converted to aldoximes
by cytochrome P450 of the CYP79 family.
CYP79F1 oxidizes all elongated methionines (1—
6 carbons), while CYP79F2 only oxidizes
long-chained methionines (5 and 6 carbons)
(Chen et al. 2003; Hansen et al. 2001). The
aldoximes are oxidized by CYP83Al of the
CYP79 family to an aci-nitro compound (Bak
and Feyereisen 2001; Hemm et al. 2003). The
activated forms are transformed to thiohydroxi-
mates via glutathione conjugation and a C-S
lyase (SUR1) reaction (Mikkelsen et al. 2004).
Thiohydroximates are, in turn, S-glucosylated by
glucosyltransferases of the UGT74 family to

(a) Hydroxylation
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Fig. 10.5 Side-chain modification of aliphatic glucosi-
nolate. A. thaliana gene identifiers are as follows: FMOgs.
ox1 (At1g65860), FMOgs.ox> (Atlg62540), FMOgs.ox3

AOP3
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form desulfoglucosinolates. UGT74C1 was
shown to metabolize the methionine-derived
thiohydroximates (Grubb et al. 2014). Finally,
the thiohydroximates are converted to the glu-
cosinolate structure by S-glucosyltransferases of
the sulfotransferases (SOTs) (Piotrowski et al.
2004). After the glucosinolate structure is
formed, the side chains are modified by oxy-
genation, hydroxylation, alkenylation, benzoyla-
tion, and methoxylation.

10.4.3 Side-Chain Modification

S-oxygenation is the first modification of ali-
phatic glucosinolates (Fig. 10.5). S-oxygenation
of aliphatic glucosinolates is a common modifi-
cation undergone by flavin-containing monooxy-
genase (FMOgs.oxs)- Phylogenetic analysis of
plant FMOs revealed the presence of the
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Brassicaceae-specific clade, including FMOg.
s-oxss Which are involved in the S-oxygenation
of glucosinolates (Hansen et al. 2007; Li et al.
2008). Five FMOgs.oxs are encoded by the A.
thaliana genome and are closely linked at chro-
mosome 1. Using a recombinant enzyme assay, it
was revealed that FMOgs.ox1—FMOgs.oxs are
able to catalyze the S-oxygenation independent
of the side-chain length (Hansen et al. 2007; Li
et al. 2008). In contrast, FMOgs_oxs is specific to
long-chain (8C) glucosinolate (Li et al. 2008).

The next step of the side-chain modification is
performed by three 2-oxoglutarate-dependent
dioxygenases, AOP2 and AOP3, and GS-OH.
Kliebenstein et al. (2001b) demonstrated the
absence of methylsulfinylalkyl side-chain modi-
fication in null aop2 accessions among 39 A.
thaliana accessions. The over-expression line,
which is a transgenic Columbia (Col-0) line
having a functional AOP2 transgene with the
non-functional AOP2 and AOP3, accumulated a
methylsulfinylalkyl form (Neal et al. 2010).
Interestingly, the introduction of a functional
AOP2 into Col-0, which has a null AOP2,
showed that the total content of aliphatic glu-
cosinolate was increased (Wentzell et al. 2007).
AOP3 catalyzes the formation of hydroxyalkyl
glucosinolates from methylsulfinylalkyl glucosi-
nolates. None of the 21 A. thaliana accessions
express both AOPs (Kliebenstein et al. 2001b).
The GS-OH locus is responsible for the pro-
duction of 2-hydroxybut-3-butenyl glucosinolate
(Mithen et al. 1995; Parkin et al. 1994). The
2-oxoglutarate-dependent dioxygenase, required
for 2-hydroxybut-3-butenyl glucosinolate for-
mation, was identified using positional cloning of
GS-OH (Hansen et al. 2008).

Another modification is the benzoylation. The
high accumulation of benzoylated glucosinolates
in A. thaliana seeds is known (Kliebenstein et al.
2007). In silico analysis, it was revealed that the
three serine carboxypeptidase-like (SCPL) genes
are co-expressed with AOP3 and BZOI1, which
synthesize the benzoate precursor cinnamoyl
CoA in the seeds. A benzoate feeding experiment
suggested that SCPL17 is involved in the final
step of benzoylated glucosinolate biosynthesis
(Lee et al. 2012).
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10.5 Transcription Factors

The family of avian myeloblastosis virus
(MYB) domain transcription factors includes the
conserved MYB DNA-binding domain, which
can control the transcriptional state of target
genes in various plant secondary metabolism
pathways (Jin and Martin 1999). In A. thaliana,
MYB28, 29, and 76 orchestrate the transcription
of aliphatic glucosinolates biosynthesis genes,
while MYB34, 51, and 122 regulate the indolic
glucosinolate pathway (Frerigmann and Gigo-
lashvili 2014; Gigolashvili et al. 2008; Hirai et al.
2007; Malitsky et al. 2008; Sonderby et al.
2010). The functional role of MYB28 and
MYB29 was characterized using the omics
approach. Co-expression analysis demonstrated
the relationship between metabolic pathway
genes and transcription factor genes (Hirai et al.
2007). Double mutants in MYB28 and MYB29
showed complete absence of short- and
long-chain aliphatic glucosinolates, while some
indolic glucosinolates increased to a small extent.
Interestingly, the biosynthesis of long-chain ali-
phatic glucosinolates was blocked by the absence
of MYB28; however, short-chain aliphatic glu-
cosinolates were reduced by approximately 50%
in both the myb28 and myb29 single mutants
(Beekwilder et al. 2008; Sonderby et al. 2007). In
the case of indolic glucosinolate regulation,
MYB34, MYBS51, and MYB122 reciprocally
regulate their expression and perform a central
role in the gene expression of indolic glucosi-
nolates pathway under the influence of various
signals (Frerigmann and Gigolashvili 2014).
Because  glucosinolate  metabolism  has
evolved as a result of plant-environment inter-
action, its biosynthesis is regulated through var-
ious signals, including touch, injury, plant
hormones, and insect infestation (Textor and
Gershenzon 2008). Although glucosinolates
perform the role of a constitutive defense com-
pound during plant life cycle, insect herbivore
feeding increases their levels (Wittstock and
Halkier 2002); for example, mechanical wound-
ing induces the expression of MYB29 and
MYB76 within 1 min. Aliphatic glucosinolates
are accumulated by the activation of MYB28,
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MYB29, and MYB76, with each of these genes
upregulating the expression of the others. By
contrast, these MYBs downregulate the expres-
sion of genes involved in the control of indolic
glucosinolate biosynthesis (Gigolashvili et al.
2008). Therefore, external stimuli are believed to
be amplified by the expression control of tran-
scription factors.

10.6 Transcriptome Analysis
in Radish

Next-generation sequencing-based RNA
sequencing of the transcriptome enables com-
prehensive gene expression analysis for
non-model plants such as radish. Two indepen-
dent studies revealed the expression profile of
genes involved in the glucosinolate biosynthesis
of radish (Mitsui et al. 2015; Wang et al. 2013).
Mitsui et al. (2015) performed a comparison
between the transcriptional profiles of glucosi-
nolate biosynthesis in four tissues (root, root tip,
cortex, and xylem) at six developmental stages.
Interestingly, although the radish transcripts pool
contained the majority of genes required for
glucosinolate biosynthesis, nine genes (i.e.,
RsMAM3, RsIPMI-SSUS3, RsIPMDH3,
RsCYP79F2,  RsCYP8IFI, RsFMOgs.oxs,
RsFMOgs.ox4, RSAOP2, and RsAOP3) were not
identified. They suggested that the absence of
these genes in the genome might explain the
specific glucosinolate profile of radish. Wang
et al. (2013) constructed a de novo assembly data
set at three developmental stages (seedling, tap-
root thickening, and mature stages). Assembled
unigenes included almost ortholog genes for A.
thaliana glucosinolate biosynthesis genes and
their transcription factors, without APOs and
GS-OH (Wang et al. 2013). Accumulation of
glucoraphasatin is observed in the root tips and
outer zones, including the peels (Ishii 1991).
Gene expression profiles reflect the distribution
of glucoraphasatin. The results indicate that the
numerous biosynthesis-related genes were
strongly expressed in the root tip and cortex
(Mitsui et al. 2015). Moreover, the intensity of
gene expression appears to be more likely at a
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younger stage. These observations indicate that
the spacial and developmental controls of
biosynthesis genes are involved in gluco-
raphasatin  accumulation. Genetic  analysis
revealed that three loci containing RsMAMS3,
RsIPMDH]1, and RsBCAT4 responsible for con-
trolling the glucosinolate content in taproots were
identified by the quantitative trait loci analysis
using biparental F, populations. Furthermore, a
clear difference in gene expression levels of these
candidate genes was observed between parental
lines at the taproot stage (Zou et al. 2013). From
the transcriptome data, it is evident that there are
no ortholog genes for 2-oxoglutarate-dependent
dioxygenases, AOP2 and AOP3, which catalyze
the hydroxylation of side chains, in the radish
genome (Mitsui et al. 2015). Thus, the end pro-
duct of glucosinolate biosynthesis in radish
might be glucoraphenin alone. These observa-
tions, such as the absence of AOP2 and AOP3,
and the presence of desaturase (see below sec-
tion), could explain the dominant accumulation
of 4-carbon side-chain glucosinolates in radish.

10.7 A Radish Mutant
with an Altered Glucosinolate
Profile

Glucoraphasatin is the predominant glucosinolate
found in radish taproots (Carlson et al. 1985) and
accounts for >90% of the total GSLs in Japanese
cultivars (Ishida et al. 2012). Using a compre-
hensive analysis of glucosinolate profiles of
global radish accessions and cultivars, a sponta-
neous mutant having significantly low gluco-
raphasatin was identified, and a completely
glucoraphasatin-free line was generated by the
self-pollination of the genetic resource
(Fig. 10.6). Genetic analysis revealed that the
glucoraphasatin-free trait was controlled by a
single recessive locus, which is located at the
edge of the linkage group 1 (Ishida et al. 2015).

The glucoraphasatin-free line contains glu-
coerucin, which accounts for >85% of the total
glucosinolates, and 2% of glucoraphanin instead
of glucoraphasatin and glucoraphenin (Ishida
et al. 2015). Glucoraphasatin differs from
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Fig. 10.6 a Typical HPLC (a)

T. Kakizaki and M. Ishida

profile obtained for the 2
wild-type radish (black line) 400+
and glucoraphasatin-free
mutant (red line). Peak 1,
glucoerucin; peak 2,
glucoraphasatin. Asterisk =)
shows internal control, < 300
sinigrin. b A putative pathway §,
of glucosinolate biosynthesis g
in radish. GRS! encoding an &
enzyme catalyzing the g
desaturation of glucoerucin ® 200 1
side chain is deficient in o)
glucoraphasatin-free mutant 2
£
o
3
< 100
*
- ] . —
T T T T
0 5 10 15 20
Retantion time (min)
(b)
S COOH
- \/\r
NH,
¢ chain elongation
¢ core formation
GRS1
- S ~TONT —> - S NN
glucoerucin glucoraphasatin
¢ RSFMOgg oxs ¢
O O
/ g \/\/\ > ~ / g W ~ ~

glucoraphanin

glucoraphenin



10 Genetic Profile of Glucosinolate Biosynthesis

glucoerucin only by the presence of a double
bond in the side chain (Fig. 10.1b). These
genetic data and glucosinolate profile show that
the single gene, which encodes the enzyme
involved in the desaturation of the side chain of
glucoerucin, has lesions in the mutant line. In
other words, radish might have obtained a gene
that encodes desaturase, which is not present in
other Brassicaceae plants. Similarly, a mutant
which predominantly generates 4-methythiobutyl
isothiocyanate derived from glucoerucin was
identified in Japanese landrace ‘Shibori-daikon’
(Hori et al. 1999). Recently, we have identified a
gene encoding a desaturase of side chain, GLU-
CORAPHASATIN SYNTHASE 1 (GRS1), by
genetic mapping using a mutant that genetically
lacks glucoraphasatin (Fig. 10.6b) (Kakizaki
et al. 2017). GRS1 is a member of the
2-oxoglutarate and Fe(Il)-dependent dioxygenase
superfamily and transgenic A. thaliana which
overexpressed GRS1 cDNA, accumulated glu-
coraphasatin in the leaves. These data present
interesting observation that partly explains the
specific GSL profile for radish.

10.8 Conclusion

Radish is an important vegetable that is con-
sumed in a variety of ways: cooked, raw, pickled,
brined, or dried. Glucosinolates in the taproots
significantly affect the flavor and quality of rad-
ish. The glucosinolate profile of radish is found
to be amazingly simple when compared with the
other Brassicaceae, because glucoraphasatin
accounts for more than 90% of the total glu-
cosinolates in Japanese cultivars (Ishida et al.
2012). The breakdown product of gluco-
raphasatin by myrosinase generates yellow pig-
ment and a methanethiol component that is
responsible for the color and flavor of pickles
(Takahashi et al. 2015). In our preliminary data,
pickles made from the mutant having lesion in
GRSI was it did not generate appreciable
methanethiol. Utilization of non-functional GRS/
gene should be useful in metabolite engineering
for breeding of high-value vegetables.
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