
A Quasi-Polynomial Approximation
for the Restricted Assignment Problem

Klaus Jansen and Lars Rohwedder(B)

University of Kiel, 24118 Kiel, Germany
{kj,lro}@informatik.uni-kiel.de

Abstract. Scheduling jobs on unrelated machines and minimizing the
makespan is a classical problem in combinatorial optimization. A job
j has a processing time pij for every machine i. The best polynomial
algorithm known for this problem goes back to Lenstra et al. and has
an approximation ratio of 2. In this paper we study the Restricted
Assignment problem, which is the special case where pij ∈ {pj , ∞}.
We present an algorithm for this problem with an approximation ratio
of 11/6 + ε and quasi-polynomial running time nO(1/ε log(n)) for every
ε > 0. This closes the gap to the best estimation algorithm known for
the problem with regard to quasi-polynomial running time.

Keywords: Approximation · Scheduling · Unrelated machines · Local
search

1 Introduction

In the problem we consider, which is known as Scheduling on Unrelated
Machines, a schedule σ : J → M of the jobs J to the machines M has to be
computed. On machine i the job j has a processing time of pij . We want to min-
imize the makespan, i.e., maxi∈M

∑
j∈σ−1(i) pij . The classical 2-approximation

by Lenstra et al. [8] is still the algorithm of choice for this problem.
Recently a special case, namely the Restricted Assignment problem, has

drawn much attention in the scientific community. Here each job j has a process-
ing time pj , which is independent from the machines, and a set of machines Γ (j).
A job j can only be assigned to Γ (j). This is equivalent to the former problem
when pij ∈ {pj ,∞}. For both the general and the restricted variant there cannot
be a polynomial algorithm with an approximation ratio better than 3/2, unless
P = NP [8]. If the exponential time hypothesis (ETH) holds, such an algorithm
does not even exist with sub-exponential (in particular, quasi-polynomial) run-
ning time [5].

In a recent breakthrough, Svensson has proved that the configuration-LP,
a natural linear programming relaxation, has an integrality gap of at most
33/17 [10]. We have later improved this bound to 11/6 [7]. By approximating

Research supported by German Research Foundation (DFG) project JA 612/15-1.

c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 305–316, 2017.
DOI: 10.1007/978-3-319-59250-3 25

306 K. Jansen and L. Rohwedder

the configuration-LP this yields an (11/6 + ε)-estimation algorithm. However,
no polynomial algorithm is known that can produce a solution of this value.

For instances with only two processing times additional progress has been
made. Chakrabarty et al. gave a polynomial (2 − δ)-approximation for a very
small δ [4]. Later Annamalai surpassed this with a (17/9 + ε)-approximation for
every ε > 0 [1]. For this special case it was also shown that the integrality gap
is at most 5/3 [6].

In [6,7,10] the critical idea is to design a local search algorithm, which is
then shown to produce good solutions. However, the algorithm has a potentially
high running time; so it was only used to prove the existence of such a solution.
A similar algorithm was used in the Restricted Max-Min Fair Allocation
problem. Here a quasi-polynomial variant by Polácek et al. [9] and a polynomial
variant by Annamalai et al. [2] were later discovered.

In this paper, we present a variant of the local search algorithm, that admits
a quasi-polynomial running time. The algorithm is purely combinatorial and uses
the configuration-LP only in the analysis.

Theorem 1. For every ε > 0 there is an (11/6+ε)-approximation algorithm for
the Restricted Assignment problem with running time exp(O(1/ε · log2(n))),
where n = |J | + |M|.

The main idea is the concept of layers. The central data structure in the local
search algorithm is a tree of so-called blockers and we partition this tree into
layers, that are closely related to the distance of a blocker from the root. Roughly
speaking, we prevent the tree from growing arbitrarily high. A similar approach
was taken in [9].

1.1 The Configuration-LP

A well known relaxation for the problem of Scheduling on Unrelated
Machines is the configuration-LP (see Fig. 1). The set of configurations with
respect to a makespan T are defined as Ci(T) = {C ⊆ J :

∑
j∈C pij ≤ T}. We

refer to the minimal T for which this LP is feasible as the optimum or OPT∗.
In the Restricted Assignment problem a job j can only be used in configu-
rations of machines in Γ (j) given T is finite. We can find a solution for the LP
with a value of at most (1 + ε)OPT∗ in polynomial time for every ε > 0 [3].

1.2 Preliminaries

In this section we simplify the problem we need to solve. The approximation
ratio we will aim for is 1 + R, where R = 5/6 + 2ε. We assume that ε < 1/12 for
our algorithm, since otherwise the 2-approximation in [8] can be used.

We will use a binary search to obtain a guess T for the value of OPT∗. In each
iteration, our algorithm either returns a schedule with makespan at most (1+R)T
or proves that T is smaller than OPT∗. After polynomially many iterations, we
will have a solution with makespan at most (1 + R)OPT∗. To shorten notation,

A Quasi-Polynomial Approximation for the Restricted Assignment Problem 307

∑

C∈Ci(T)

xi,C ≤ 1 ∀i ∈ M

∑

i∈M

∑

C∈Ci(T):j∈C

xi,C ≥ 1 ∀j ∈ J

xi,C ≥ 0

min
∑

i∈M
yi −

∑

j∈J
zj

s.t.

yi ≥
∑

j∈C

zj ∀i ∈ M, C ∈ Ci(T)

yi, zj ≥ 0

Fig. 1. Primal (left) and dual (right) of the configuration-LP w.r.t. makespan T

we scale each size by 1/T within an iteration, that is to say our algorithm
has to find a schedule of makespan 1 + R or show that OPT∗ > 1. Unless
otherwise stated we will assume that T = 1 when speaking about configurations
or feasibility of the configuration-LP.

Definition 1 (Small, big, medium, huge jobs). A job j is small if pj ≤ 1/2
and big otherwise; A big job is medium if pj ≤ 5/6 and huge if pj > 5/6.

The sets of small (big, medium, huge) jobs are denoted by JS (respectively,
JB , JM , JH). Note that at most one big job can be in a configuration (w.r.t.
makespan 1).

Definition 2 (Valid partial schedule). We call σ : J → M ∪ {⊥} a valid
partial schedule if (1) for each job j we have σ(j) ∈ Γ (j) ∪ {⊥}, (2) for each
machine i ∈ M we have p(σ−1(i)) ≤ 1 + R, and (3) each machine is assigned at
most one huge job.

σ(j) = ⊥ means that job j has not been assigned. In each iteration of the binary
search, we will first find a valid partial schedule for all medium and small jobs and
then extend the schedule one huge job at a time. We can find a schedule for all
small and medium jobs with makespan at most 11/6 by applying the algorithm
by Lenstra, Shmoys, and Tardos [8]. This algorithm outputs a solution with
makespan at most OPT∗ + pmax, where pmax is the biggest processing time (in
our case at most 5/6). The problem that remains to be solved is given in below.

Input: An instance of Restricted Assignment, a valid partial schedule σ,
a huge job jnew with σ(jnew) = ⊥.

Output: Either: (1) A valid partial schedule σ′ with σ′(jnew) 	= ⊥ and σ(j) 	=
⊥ ⇒ σ′(j) 	= ⊥ for all j ∈ J , or (2) ‘error’ (indicating that OPT∗ > 1).

Without loss of generality let us assume that the jobs are identified by natural
numbers, that is J = {1, 2, . . . , |J |}, and p1 ≤ p2 ≤ . . . ≤ p|J |. This gives us a
total order on the jobs that will simplify the algorithm.

308 K. Jansen and L. Rohwedder

2 Algorithm

Throughout the paper, we make use of modified processing times P j and pj ,
which we obtain by rounding the sizes of huge jobs up or down, that is

P j =

{
1 if pj > 5/6,

pj if pj ≤ 5/6;
and pj =

{
5/6 if pj > 5/6,

pj if pj ≤ 5/6.

Definition 3 (Moves, valid moves). A pair (j, i) of a job j and a machine i
is a move, if i ∈ Γ (j)\{σ(j)}. A move (j, i) is valid, if (1) P (σ−1(i))+pj ≤ 1+R
and (2) j is not huge or no huge job is already on i.

We note that by performing a valid move (j, i) the properties of a valid partial
schedule are not compromised.

Definition 4 (Blockers). A blocker is a tuple (j, i, Θ), where (j, i) is a move
and Θ is the type of the blocker. There are 6 types with the following abbrevia-
tions: (SA) small-to-any blockers, (HA) huge-to-any blockers, (MA) medium-to-
any blockers, (BH) huge-/medium-to-huge blockers, (HM) huge-to-medium block-
ers, and (HL) huge-to-least blockers.

The algorithm maintains a set of blockers called the blocker tree T . We will
discuss the tree analogy later. The blockers wrap moves that the algorithm
would like to execute. By abuse of notation, we write that a move (j, i) is in
T , if there is a blocker (j, i, Θ) in T for some Θ. The type Θ determines how the
algorithm treats the machine i as we will elaborate below.

The first part of a type’s name refers to the size of the blocker’s job, e.g.,
small-to-any blockers are only used with small jobs, huge-to-any blockers only
with huge jobs, etc. The latter part of the type’s name describes the undesirable
jobs on the machine: The algorithm will try to remove jobs from this machine
if they are undesirable; at the same time it does not attempt to add such jobs
to the machine. On machines of small-/medium-/huge-to-any blockers all jobs
are undesirable; on machines of huge-/medium-to-huge blockers huge jobs are
undesirable; on machines of huge-to-medium blockers medium jobs are undesir-
able and finally on machines of huge-to-least blockers only those medium jobs
of index smaller or equal to the smallest medium job on i are undesirable.

The same machine can appear more than once in the blocker tree. In that
case, the undesirable jobs are the union of the undesirable jobs from all types.
Also, the same job can appear multiple times in different blockers.

The blockers corresponding to specific types are written as TSA, THA, etc.
From the blocker tree, we derive the machine set M(T) which consists of all
machines corresponding to moves in T . This notation is also used with subsets
of T , e.g., M(THA).

Definition 5 (Blocked small jobs, active jobs). A small job j is blocked,
if it is undesirable on all other machines it allowed on, that is Γ (j)\{σ(j)} ⊆

A Quasi-Polynomial Approximation for the Restricted Assignment Problem 309

M(TSA ∪TMA ∪THA). We denote the set of blocked small jobs by S(T). The set
of active jobs A includes jnew, S(T) as well as all those jobs, that are undesirable
on the machine, they are currently assigned to.

We define for all machines i the job sets Si(T) = S(T) ∩ σ−1(i), Ai(T) =
A(T)∩σ−1(i), Mi = σ−1(i)∩JM and Hi = σ−1(i)∩JH . Moreover, set Mmin

i =
{min Mi} if Mi 	= ∅ and Mmin

i = ∅ otherwise.

2.1 Tree and Layers

The blockers in T and an additional root can be imagined as a tree. The parent
of each blocker B = (j, i, Θ) is only determined by j. If j = jnew it is the root
node; otherwise it is a blocker B′ ∈ T for machine σ(j) with a type for which j
is regarded undesirable. If this applies to several blockers, we use the one that
was added to the blocker tree first. We say that B′ activates j.

Let us now introduce the notion of a layer. Each blocker is assigned to exactly
one layer. The layer roughly correlates with the distance of the blocker to the
root node. In this sense, the children of a blocker are usually in the next layer.
There are some exceptions, however, in which a child is in the same layer as its
parent. We now define the layer of the children of a blocker B in layer k.

1. If B is a huge-/medium-to-huge blocker, all its children are in layer k as well;
2. if B is a huge-to-any blocker, children regarding small jobs are in layer k as

well;
3. in every other case, the children are in layer k + 1.

We note that by this definition for an active job j all blockers (j, i, Θ) ∈ T must
be in the same layer; in other words, it is unambiguous in which layer blockers
for it would be placed in. We say j is k-headed, if blockers for j would be placed
in layer k. The blockers in layer k are denoted by T (k). The set of blockers in
layer k and below is referred to by T (≤k). We use this notation in combination
with qualifiers for the type of blocker, e.g., T (k)

HA.
We establish an order between the types of blockers within a layer and refer to

this order as the sublayer number. The huge-/medium-to-huge blockers form the
first sublayer of each layer, huge-to-any and medium-to-any blockers the second,
small-to-any blockers the third, huge-to-least the fourth and huge-to-medium
blockers the fifth sublayer (see also Table 1 and Fig. 2). By saying a sublayer is
after (before) another sublayer we mean that either its layer is higher (lower) or
both layers are the same and its sublayer number is higher (lower).

310 K. Jansen and L. Rohwedder

layer klayer k − 1 layer k + 1

BH HA/MA SA HL HM

Fig. 2. Example layer

Algorithm 1: Quasi-polynomial local search

1 i n i t i a l i z e empty b locke r t r e e T ;
2 loop
3 i f a move in T i s v a l i d then
4 choose a b locke r (j, i, Θ) in the lowest sublayer ,
5 where (j, i) i s v a l i d ;
6 let B be the b locke r that ac t i va t ed j ;
7 // Update the schedu l e
8 σ(j) ← i ;
9 remove a l l sub l aye r s a f t e r B from T ;

10 i f j = jnew then
11 return σ ;
12 end
13 i f not conditions∗(B) then
14 remove the sub layer o f B from T ;
15 end
16 else
17 let � be the minimum laye r to which we can
18 add a po t e n t i a l move ;
19 i f � > K or no such � e x i s t s then
20 return ’ e r ro r ’ ;
21 end
22 add po t e n t i a l move (j, i) o f h i ghe s t p r i o r i t y to l ay e r � ;
23 remove a l l sub l aye r s a f t e r (j, i) from T ;
24 end
25 end

In the final algorithm whenever we remove one blocker, we also remove all
blockers in its sublayer and all later sublayers (in particular, all descendants).
Also, when we add a blocker to a sublayer, we remove all later sublayers. Among
other properties, this guarantees that the connectivity of the tree is never com-
promised. It also means that, if j is undesirable regarding several blockers for
σ(j), then the parent is in the lowest sublayer among these blockers, since a
blocker in a lower sublayer cannot have been added after one in a higher sub-
layer.

The running time will be exponential in the number of layers; hence this
should be fairly small. We introduce an upper bound K = 2/εln(|M|) + 1� =
O(1/ε · log(|M|)) and will not add any blockers to a layer higher than K.

A Quasi-Polynomial Approximation for the Restricted Assignment Problem 311

2.2 Detailed Description of the Algorithm

The algorithm (see Algorithm 1) contains a loop that terminates once jnew is
assigned. In each iteration the algorithm performs a valid move in the blocker
tree if possible and otherwise adds a new blocker.

Adding blockers. We only add a move to T , if it meets certain requirements.
A move that does is called a potential move. For each type of blocker we also
define a type of potential move: Potential small-to-any moves, potential huge-
to-any moves, etc. When a potential move is added to the blocker tree, its type
will then be used for the blocker. Let k be a layer and let j ∈ A(T) be k-headed.
For a move (j, i) to be a potential move of a certain type, it has to meet the
following requirements.

1. (j, i) is not already in T ;
2. the size of j corresponds to the type, for instance, if j is big, (j, i) cannot be

a small-to-any move;
3. j is not undesirable on i w.r.t. T (≤k), i.e., (a) i /∈ M(T (≤k)

SA ∪ T (≤k)
MA ∪ T (≤k)

HA)
and (b) if j is huge, then i /∈ M(T (≤k)

BH); (c) if j is medium, then i /∈ M(T (≤k)
HM)

and either i /∈ M(T (≤k)
HL) or min Mi < j.

4. The load of the target machine has to meet certain conditions (see Table 1).

Comparing the conditions in the table we notice that for moves of small and
medium jobs there is always exactly one type that applies. For huge jobs

Table 1. Types of blockers/potential moves

Type Conditions S P Undesirable

Huge-/Medium-to-
huge (BH)

p(σ−1(i)\Hi) + pj ≤ 1 + R 1 5 Huge jobs

Small-to-any (SA) None 3 4 All jobs

Medium-to-any
(MA)

∗ p(σ−1(i)\Hi) + pj > 1 + R 2 3 All jobs

Huge-to-any (HA) ∗ p(σ−1(i)\Hi) + pj > 1 + R 2 3 All jobs

p(Si(T (≤k)) ∪ Mi) + pj ≤ 1 + R

Huge-to-least (HL) ∗ p(Si(T (≤k)) ∪ Mmin
i) + pj > 1 + R 4 2 Medium jobs jM

with
jM ≤ minMi

p(Si(T (≤k))) + pj ≤ 1 + R

Huge-to-medium
(HM)

∗ p(Si(T (≤k)) ∪ Mi) + pj > 1 + R 5 1 Medium jobs

∗ p(Si(T (≤k)) ∪ Mmin
i) + pj ≤ 1 + R

The conditions are meant in respect to a move (j, i) where j is k-headed. Column S
stands for the sublayer and P for the priority of a blocker type. Conditions marked
with a star (∗) are additionally checked whenever a job activated by this blocker is
moved.

312 K. Jansen and L. Rohwedder

there is exactly one type if p(Si(T (≤k))) + pj ≤ 1 + R and no type applies,
if p(Si(T (≤k))) + pj > 1 + R. The table also lists a priority for each type of
move. It is worth mentioning that the priority does not directly correlate with
the sublayer. The algorithm will choose the move that can be added to the low-
est layer and among those has the highest priority. After adding a blocker, all
higher sublayers are deleted.

Performing valid moves. The algorithm performs a valid move in T if there is
one. It chooses a blocker (j, i, Θ) in T , where the blocker’s sublayer is minimal
and (j, i) is valid. Besides assigning j to i, T has to be updated as well.

Let B be the blocker that activated j. When certain conditions for B are no
longer met, we will delete B and its sublayer. The conditions that need to be
checked depend on the type of B and are marked in Table 1 with a star (∗). In
any case, the algorithm will discards all blockers in higher sublayers than B is.

3 Analysis

The analysis of the algorithm has two critical parts. First, we show that it does
not get stuck, i.e., there is always a blocker that can be added to the blocker tree
or a move that can be executed. Then we show that the number of iterations is
bounded by exp(O(1/ε log2(n))).

Theorem 2. If the algorithm returns ‘error’, then OPT∗ > 1.

The proof consists in the construction of a solution (z∗, y∗) for the dual of the
configuration-LP. The value z∗

j is composed of pj and a scaling coefficient (a
power of δ := 1 − ε). The idea of the scaling coefficient is that values for jobs
activated in higher layers are supposed to get smaller and smaller. We set z∗

j = 0
if j /∈ A(T) and z∗

j = δk · pj , if j ∈ A(T) and k is the smallest layer such that j

is k-headed or j ∈ S(T (≤k)). For all i ∈ M let

wi =

⎧
⎪⎨

⎪⎩

z∗(Ai(T)) + δk 1
6 if i ∈ M(T (k)

HA),
z∗(Ai(T)) − δk 1

6 if i ∈ M(T (k)
SA),

z∗(Ai(T)) otherwise.

Finally set y∗
i = δK + wi. Note that w is well-defined, since a machine i can

be in at most one of the sets M(T (1)
HA),M(T (1)

SA),M(T (2)
HA),M(T (2)

SA), . . . On a
small-/huge-to-any blocker all jobs are undesirable, that is to say as long as one
of such blockers remains in the blocker tree, the algorithm will not add another
blocker with the same machine. Also note that z∗(Ai(T)) and z∗(σ−1(i)) are
interchangeable.

Lemma 1. If there is no valid move in T and no potential move of a k-headed
job for a k ≤ K, the value of the solution is negative, i.e.,

∑
j∈J z∗

j >
∑

i∈M y∗
i .

A Quasi-Polynomial Approximation for the Restricted Assignment Problem 313

Proof. Using the Taylor series and ε < 1/12 it is easy to check ln(1− ε) ≥ −ε/2.
This gives

K ≥ 2
ε
(ln(|M|) + 1) ≥ ln(2|M|)

ε/2
≥ − ln(2|M|)

ln(1 − ε)
= logδ

(
1

2|M|

)

.

Claim 1 (Proof is omitted to conserve space). For all k ≤ K we have
|M(T (k)

HA)| ≤ |M(T (k)
SA)|.

Using this claim we find that
∑

j∈J
z∗
j ≥ z∗

jnew
+

∑

i∈M
z∗(σ−1(i))

≥ δ1
5
6

+
∑

i∈M
y∗

i − δK |M| +
K∑

k=1

[δk 1
6
|M(T (k)

SA)| − δk 1
6
|M(T (k)

HA)|]

≥ δ1
5
6

+
∑

i∈M
y∗

i − 1
2

+ 0 >
∑

i∈M
y∗

i .
��

Lemma 2. If there is no valid move in T and no potential move of a k-headed
job for a k ≤ K, the solution is feasible, i.e., z∗(C) ≤ y∗

i for all i ∈ M, C ∈ Ci.

Proof. We will make the following assumptions, that can be shown with an
exhaustive case analysis.

Claim 2 (Proof is omitted to conserve space). Let k ≤ K, i /∈ M(T (≤k)
SA ∪

T (≤k)
MA ∪ T (≤k)

HA), C ∈ Ci, j ∈ C k-headed and big with σ(j) 	= i. Then z∗
j ≤

z∗(Ai(T (≤k))\C).

Claim 3 (Proof is omitted to conserve space). Let k ≤ K and i ∈ M(T (k)
SA ∪

T (k)
MA ∪ T (k)

HA). Then

wi ≥ z∗(Ai(T)) + δk · (1 − δp(Ai(T))).

Let C0 ∈ Ci and C ⊆ C0 denote the set of jobs j with z∗
j ≥ δKpj . In particular,

C does not contain jobs that have potential moves. It is sufficient to show that
z∗(C) ≤ wi, as this would imply

z∗(C0) = z∗(C) + z∗(C0\C) ≤ wi + δKp(C0) ≤ y∗
i .

Loosely speaking, the purpose of δK in the definition of y∗ is to compensate for
ignoring all (K + 1)-headed jobs.

First, consider the case where i /∈ M(TSA ∪ TMA ∪ THA). There cannot be a
small and activated job jS ∈ C with σ(jS) 	= i, because then (jS , i) would be a
potential move; hence C ∩ JS ∩ A(T) ⊆ C ∩ Ai(T). If there is a big job jB ∈ C
with σ(jB) 	= i, then

z∗(C) = z∗
jB + z∗(C ∩ JS) ≤ z∗(Ai(T)\C) + z∗(C ∩ Ai(T)) = z∗(Ai(T)) = wi.

314 K. Jansen and L. Rohwedder

If there is no such job, then C ∩ A(T) ⊆ Ai(T) and in particular z∗(C) ≤ wi.
In the remainder of this proof we assume that i ∈ M(T (�+1)

SA ∪T (�+1)
MA ∪T (�+1)

HA).
Note that for any k 	= � + 1 we have i /∈ M(T (k)

SA ∪ T (k)
MA ∪ T (k)

HA). Also, since all
jobs on i are active we have that z∗

j ≥ δ�+2pj for all j ∈ σ−1(i). Because there
is no potential move (jS , i) for a small job jS with z∗

jS
≥ δ�pjS , we have for all

small jobs jS ∈ C\Ai(T): z∗
jS

≤ δ�+1pjS .

Case 1. For every big job j ∈ C with σ(j) 	= i we have z∗
j ≤ δ�+1pj .

This implies

z∗(C\Ai(T)) ≤ δ�+1p(C\Ai(T)) = δ�+1(p(C) − p(Ai(T) ∩ C))

≤ δ�+1(1 − δp(Ai(T) ∩ C)).

Therefore

z∗(C) = z∗(Ai(T) ∩ C) + z∗(C\Ai(T))

≤ z∗(Ai(T) ∩ C) + δ�+1(1 − δp(Ai(T) ∩ C))

≤ z∗(Ai(T)) + δ�+1(1 − δp(Ai(T))) ≤ wi.

Case 2. There is a big job j ∈ C with σ(j) 	= i and z∗
j ≥ δ�pj .

Let k ≤ � with z∗
j = δkpj , that is to say j is k-headed. Then

z∗
j − δ�+1pj = (1 − δ�+1−k)z∗

j ≤ (1 − δ�+1−k)z∗(Ai(T (≤k))\C)

≤ z∗(Ai(T (≤k))\C) − δ�+2p(Ai(T (≤k))\C)

≤ z∗(Ai(T)\C) − δ�+2p(Ai(T)\C).

In the second inequality we use that for every j′ ∈ Ai(T (≤k)) we have z∗
j′ ≥

δk+1 · pj′ . This implies that

z∗(C) = z∗
j + z∗(C\{j})

= z∗
j + z∗(Ai(T) ∩ C) + z∗(C\({j} ∪ Ai(T)))

≤ z∗
j + z∗(Ai(T) ∩ C) + δ�+1(p(C) − pj − p(Ai(T) ∩ C))

≤ z∗
j + z∗(Ai(T) ∩ C) + δ�+1(1 − pj − δp(Ai(T) ∩ C))

≤ z∗(Ai(T)) + δ�+1(1 − δp(Ai(T))) ≤ wi.

��
We can now complete the proof of Theorem 2.

Proof (Theorem 2). Suppose toward contradiction there is no potential move of
a k-headed job, where k ≤ K, and no move in the blocker tree is valid. It is
obvious that since Lemmas 1 and 2 hold for (y∗, z∗), they also hold for a scaled
solution (α · y∗, α · z∗) with α > 0. We can use this to obtain a solution with
an arbitrarily low objective value; thereby proving that the dual is unbounded
regarding makespan 1 and therefore OPT∗ > 1. ��

A Quasi-Polynomial Approximation for the Restricted Assignment Problem 315

Theorem 3. The algorithm terminates in time exp(O(1/ε · log2(n))).

Proof. Let � ≤ K be the index of the last non-empty layer in T . We will define
the so-called signature vector as s(T , σ) = (s1, s2, . . . , s�), where sk is given by

sk =

⎛

⎜
⎝

∑

(j,i,Θ)∈T (k)
BH

[|J | − |Hi|],
∑

(j,i,Θ)∈T (k)
MA∪T (k)

HA

[|J | − |σ−1(i)|],

∑

(j,i,Θ)∈T (k)
SA

[|J | − |σ−1(i)|],
∑

(j,i,Θ)∈T (k)
HL

[min Mi],
∑

(j,i,Θ)∈T (k)
HM

[|J | − |Mi|]

⎞

⎟
⎠ .

Each component in sk represents a sublayer within layer k and it is the sum
over certain values associated with its blockers. Note that these values are all
strictly positive, since jnew is not assigned and therefore |σ−1(i)| < |J |.

Claim 4 (Proof is omitted to conserve space). The signature vector increases
lexicographically after polynomially many iterations of the loop.

This means that the number of possible vectors is an upper bound on the running
time (except for a polynomial factor). Each sublayer has at most |J | · |M| many
blockers (since there are at most this many moves) and the value for every blocker
in each of the five cases is easily bounded by O(|J |). This implies there are at
most (O(n3))5 = nO(1) values for each sk. Using K = O(1/ε log(n)) we bound
the number of different signature vectors by nO(K) = exp(O(1/ε log2(n))). ��

4 Conclusion

We have greatly improved the running time of the local search algorithm for the
Restricted Assignment problem. At the same time we were able to maintain
almost the same approximation ratio. We think there are two important direc-
tions for future research. The first is to improve the approximation ratio further.
For this purpose, it makes sense to first find improvements for the much simpler
variant of the algorithm given in [7].

The perhaps most important open question, however, is whether the run-
ning time can be brought down to a polynomial one. Recent developments in
the Restricted Max-Min Fair Allocation problem indicate that a layer
structure similar to the one in this paper may also help in that regard [2]. In
the mentioned paper moves are only performed in large groups. This concept is
referred to as laziness. The asymptotic behavior of the partition function (the
number of integer partitions of a natural number) is then used in the analysis
for a better bound on the number of possible signature vectors. This approach
appears to have a great potential for the Restricted Assignment problem as
well. In [1] it was already adapted to the special case of two processing times.

316 K. Jansen and L. Rohwedder

References

1. Annamalai, C.: Lazy local search meets machine scheduling. CoRR abs/1611.07371
(2016). http://arxiv.org/abs/1611.07371

2. Annamalai, C., Kalaitzis, C., Svensson, O.: Combinatorial algorithm for restricted
max-min fair allocation. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6
January 2015, pp. 1357–1372 (2015). doi:10.1137/1.9781611973730.90

3. Bansal, N., Sviridenko, M.: The santa claus problem. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May
2006, pp. 31–40 (2006). doi:10.1145/1132516.1132522

4. Chakrabarty, D., Khanna, S., Li, S.: On (1, ε)-restricted assignment makespan mini-
mization. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp.
1087–1101 (2015). doi:10.1137/1.9781611973730.73

5. Jansen, K., Land, F., Land, K.: Bounding the running time of algorithms for
scheduling and packing problems. SIAM J. Discrete Math. 30(1), 343–366 (2016).
doi:10.1137/140952636

6. Jansen, K., Land, K., Maack, M.: Estimating the makespan of the two-valued
restricted assignment problem. In: Proceedings of the 15th Scandinavian Sympo-
sium and Workshops on Algorithm Theory, SWAT 2016, Reykjavik, Iceland, 22–24
June 2016, pp. 24:1–24:13 (2016). doi:10.4230/LIPIcs.SWAT.2016.24

7. Jansen, K., Rohwedder, L.: On the Configuration-LP of the restricted assignment
problem. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19
January, pp. 2670–2678 (2017). doi:10.1137/1.9781611974782.176

8. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(3), 259–271 (1990). doi:10.1007/
BF01585745

9. Polácek, L., Svensson, O.: Quasi-polynomial local search for restricted max-min
fair allocation. ACM Trans. Algorithms 12(2), 13 (2016). doi:10.1145/2818695

10. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput.
41(5), 1318–1341 (2012). doi:10.1137/110851201

http://arxiv.org/abs/1611.07371
http://dx.doi.org/10.1137/1.9781611973730.90
http://dx.doi.org/10.1145/1132516.1132522
http://dx.doi.org/10.1137/1.9781611973730.73
http://dx.doi.org/10.1137/140952636
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.24
http://dx.doi.org/10.1137/1.9781611974782.176
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1145/2818695
http://dx.doi.org/10.1137/110851201

	A Quasi-Polynomial Approximation for the Restricted Assignment Problem
	1 Introduction
	1.1 The Configuration-LP
	1.2 Preliminaries

	2 Algorithm
	2.1 Tree and Layers
	2.2 Detailed Description of the Algorithm

	3 Analysis
	4 Conclusion
	References

