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Abstract. In the maximum traveling salesman problem (Max TSP) we
are given a complete undirected graph with nonnegative weights on the
edges and we wish to compute a traveling salesman tour of maximum
weight. We present a fast combinatorial 4

5
– approximation algorithm

for Max TSP. The previous best approximation for this problem was
7
9
. The new algorithm is based on a technique of eliminating difficult

subgraphs via gadgets with half-edges, a new method of edge coloring
and a technique of exchanging edges.

1 Introduction

The Maximum Traveling Salesman Problem (Max TSP) is a classical variant of
the famous Traveling Salesman Problem. In the problem we are given a complete
undirected graph G = (V,E) with nonnegative weights on the edges and we
aim to compute a traveling salesman tour of maximum weight. Max TSP, also
informally known as the “taxicab ripoff problem”, is both of theoretical and
practical interest.

Previous approximations of Max TSP have found applications in combina-
torics and computational biology: the problem is useful in understanding RNA
interactions [27] and providing algorithms for compressing the results of DNA
sequencing [26]. It has also been applied to the problem of finding a maximum
weight triangle cover of the graph [14] and to a combinatorial problem called
bandpass-2 [7], where we are supposed to find the best permutation of rows in a
boolean-valued matrix, so that the weighted sum of structures called bandpasses
is maximised.

Previous Results. The first approximation algorithms for Max TSP were
devised by Fisher et al. [10]. They showed several algorithms having approxima-
tion ratio 1

2 and one with a guarantee of 2
3 . In [16] Kosaraju, Park and Stein pre-

sented an improved algorithm giving a ratio of 19
27 [4]. This was in turn improved
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by Hassin and Rubinstein, who gave a 5
7 - approximation [12]. In the meantime

Serdyukov [25] presented (in Russian) a simple and elegant 3
4 -approximation algo-

rithm. The algorithm is deterministic and runs in O(n3), where n denotes the num-
ber of vertices in the graph. Afterwards, Hassin and Rubinstein gave [13] a random-
ized algorithm with expected approximation ratio of at least 25(1−ε)

33−32ε and running
in O(n2(n + 21/ε)), where ε is an arbitrarily small constant. The first determinis-
tic approximation algorithm with the ratio better than 3

4 was given in [6] by Chen
et al. It is a 61

81 -approximation through a non-trivial derandomization of the algo-
rithm from [13] that runs in O(n3). The currently best known approximation given
by Paluch et al. [22] achieves the ratio of 7

9 . Its running time is also O(n3).

Related Work. It is known that Max TSP is max-SNP-hard [3], so a constant
δ < 1 exists, which is an upper bound on the approximation ratio of any algo-
rithm for this problem. The geometric version of the problem, where all vertices
are in Rd and the weight of each edge is defined as the Euclidean distance of its
endpoints, was considered in [2] and shown to be solvable in polynomial time for
d = 2 and NP-hard for d > 2. Other metrics are also considered in that paper.

Regarding the path version of Max TSP – Max TSPP (the Maximum Trav-
eling Salesman Path Problem), the approximation algorithms with ratios cor-
respondingly 1

2 and 2
3 have been given in [19]. The first one for the case when

both endpoints of the path are specified and the other for the case when only
one endpoint is given.

Another related problem is called the maximum scatter TSP (see [1]), where
the goal is to find a TSP tour (or a path) maximizing the weight of the lightest
edge selected in the solution. The problem is motivated by medical imaging and
some manufacturing applications. In general there is no constant approximation
for this problem, but if the weights of the edges obey the triangle inequality, it
is possible to give a 1

2 -approximation algorithm. That paper also studies a more
general version of the maximum scatter TSP – the max-min-m-neighbour TSP.
The improved approximation results for the max-min-2-neighbour problem have
been given in [8].

The maximum metric symmetric traveling salesman problem, in which the
edge weights satisfy the triangle inequality - the best approximation factor is
7
8 [18]. For the maximum asymmetric traveling salesman problem with triangle
inequality the best approximation ratio currently equals 35

44 [17].
In the Maximum Latency TSP problem we are given a complete undirected

graph with vertices v0, v1, . . . , vn. Our task is to find a Hamiltonian path starting
at a fixed vertex v0, which maximizes the total latency of the vertices. If in a
given path P the weight of the i-th edge is wi, then the latency of the j-th vertex
is Lj =

∑j
i=1 wi and the total latency is defined as L(P ) =

∑n
j=1 Lj . A ratio

1
2 -approximation algorithm for the metric version of the problem is presented
in [5]. Improved ratios for this and other versions (directed, nonmetric) of the
problem are shown in [11].
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Our Approach and Results. We begin with computing a maximum weight
cycle cover Cmax of G. A cycle cover of a graph G is a collection of cycles such
that each vertex belongs to exactly one of them. The weight of a maximum weight
cycle cover Cmax is an upper bound on OPT , where by OPT we denote the
weight of a maximum weight traveling salesman tour. By computing a maximum
weight perfect matching M we get another, even simpler than Cmax, upper
bound – on OPT/2. From Cmax and M we build a multigraph G1 which consists
of two copies of Cmax and one copy of M , (for each edge e of G the multigraph
G1 contains between zero and three copies of e). Thus the total weight of the
edges of G1 is at least 5

2 OPT . Next we would like to path-3-color G1, that is
to color the edges of G1 with three colors, so that each color class contains only
vertex-disjoint paths. The paths from the color class with maximum weight can
then be patched in an arbitrary manner into a tour of weight at least 5

6 OPT .

Technique of Eliminating Difficult Subgraphs via Half-edges. Not every multi-
graph G1 can, however, be path-3-colored. For example, a subgraph of G1

obtained from a triangle T of Cmax such that M contains one of the edges
of T (such triangle is called a 3-kite of G1) cannot be path-3-colored as, clearly,
it is impossible to color such seven edges with three colors and not create a
monochromatic triangle. Similarly, a subgraph of G1 obtained from a square S
(i.e., a cycle of length four) of Cmax such that M contains two edges connecting
vertices of S (such square is called a 4-kite) is not path-3-colorable. To find a way
around this difficulty, we compute another cycle cover C2 improving Cmax with
respect to M , which is a cycle cover that does not contain any 3-kite or 4-kite of
G1 and whose weight is also at least OPT . An important feature of C2 is that it
may contain half-edges. A half-edge of an edge e is, informally speaking, a half
of the edge e that contains exactly one of its endpoints. Half-edges have already
been introduced in [21]. Computing C2 is done via a tailored reduction to a
maximum weight perfect matching. It is, to some degree, similar to computing a
directed cycle cover without length-two cycles in [21], but for Max TSP we need
much more complex gadgets.

From one copy of C2 and M we build another multigraph G2 with weight at
least 3

2 OPT . It turns out that G2 can always be path-2-colored. The multigraph
G1 may be non-path-3-colorable – if it contains at least one kite. We notice,
however, that if we remove one arbitrary edge from each kite, then G1 becomes
path-3-colorable. The edges removed from G1 are added to G2. As a result, the
modified G2 may cease to be path-2-colorable. To remedy this, we in turn remove
some edges from G2 and add them to G1. In other words, we find two disjoint
sets of edges – a set F1 ⊆ G1 and a set F2 ⊆ G2, called exchange sets, such
that the multigraph G′

1 = G1\F1 ∪ F2 is path-3-colorable and the multigraph
G′

2 = G2\F2 ∪ F1 is path-2-colorable. Since G1 and G2 have the total weight
at least 4 OPT , by path-3-coloring G′

1 and path-2-coloring G′
2 we obtain a 4

5 -
approximate solution to Max TSP.
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Edge Coloring. The presented algorithms for path-3-coloring and path-2-coloring
are essentially based on a simple notion of a safe edge – an edge colored in such
a way that it is guaranteed not to belong to any monochromatic cycle, used
in an inductive way. The adopted approach may appear simple and straightfor-
ward. For comparison, let us point out that the method of path-3-coloring the
multigraph obtained from two directed cycle covers described in [15] is rather
convoluted.

Generally, the new techniques are somewhat similar to the ones used for
the directed version of the problem – Max ATSP – in [20]. We are convinced
that they will prove useful for other problems related with TSP, cycle covers or
matchings.

The main result of the paper is

Theorem 1. There exists a 4
5 -approximation algorithm for Max TSP. Its run-

ning time is O(n3) if the graph has an even number of vertices and O(n5) oth-
erwise.

Algorithm 1. A 4
5 -approximation for Max TSP

1: Cmax ← a maximum-weight cycle cover of G
2: M ← a maximum-weight perfect matching in G
3: G1 ← Cmax � Cmax � M
4: path-3-color G1 with colors of K3 = {1, 2, 3} leaving kites and edges of M incident

to kites uncolored. � Section 2
5: C2 ← a maximum-weight relaxed cycle cover improving Cmax with respect to M .

� Section 3
6: G2 ← C2 � M
7: F1 ⊂ Cmax, F2 ⊂ C2 ← sets of edges such that the multigraph G′

1 = G1\F1 ∪ F2 is
path-3-colorable and G′

2 = G2\F2 ∪ F1 is path-2-colorable. � Lemma 5
8: Path-2-color G′

2 with colors of K2 = {4, 5}. � Full version of the paper
9: Extend the partial path-3-coloring of G1 to the complete path-3-coloring of G′

1. �
Full version of the paper

10: Choose the heaviest color class k ∈ K3 ∪ K2. Complete the disjoint paths of color
k into a traveling salesman tour in an arbitrary way.

All missing proofs are contained in the full version of this paper [9].

2 Path-3-Coloring of G1

We compute a maximum weight cycle cover Cmax of a given complete undirected
graph G = (V,E) and a maximum weight perfect matching M of G. We are going
to call cycles of length i, i.e., consisting of i edges i-cycles. Also sometimes 3-
cycles will be called triangles and 4-cycles – squares. The multigraph G1

consists of two copies of Cmax and one copy of M . We want to color each edge
of G1 with one of three colors of K3 = {1, 2, 3} so that each color class consists
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of vertex-disjoint paths. The graph G1 is a subgraph of the multigraph G1 that
contains an edge (u, v) iff the multigraph G1 contains an edge between u and v.
The path-3-coloring of G1 can be equivalently defined as coloring each edge of
(the graph) G1 with the number of colors equal to the number of copies contained
in the multigraph G1. From this time on, unless stated otherwise, G1 denotes a
graph and not a multigraph.

We say that a colored edge e of G1 is safe if no matter how we color the so
far uncolored edges of G1 e is guaranteed not to belong to any monochromatic
cycle of G1. An edge e of M is said to be external if its two endpoints belong
to two different cycles of Cmax. Otherwise, e is internal. We say that an edge e
is incident to a cycle c if it is incident to at least one vertex of c.

We prove the following useful lemma.

Lemma 1. Consider a partial coloring of G1. Let c be any cycle of Cmax such
that for each color k ∈ K3 there exists an edge of M incident to c that is colored
k. Then we can color c so that each edge of c and each edge incident to one of
the edges of c is safe.

Proof. The proposed procedure of coloring c is as follows.

If there exists an edge of c that also belongs to M , we color it with all three
colors of K3. For each uncolored edge of M incident to c, we color it with an
arbitrary color of K3. Next, we orient the edges of c (in any of the two ways)
so that c becomes a directed cycle c. Let e = (u, v) be any uncolored edge of
c oriented from u to v. Then, there exists an edge e′ of M incident to u. If e′

is contained in c, then we color e with any two colors of K3. Otherwise e′ is
colored with some color k of K3. Then we color e with the two colors belonging
to K3\k. First, no vertex of c has three incident edges colored with the same
color, as for each vertex its outgoing edge is colored with different colors than
an incident matching edge. Second, as for each color k ∈ K3 there is a matching
edge incident to c colored with k, there exists an edge of c that is not colored k,
thus c does not belong to any color class, i.e. there exists no color k ∈ K3 such
that each edge of c is colored with k. Let us consider now any edge e = (u, v)
of M incident to some edge of c and not belonging to c. The edge e is colored
with some color k. Suppose also that vertex u belongs to c (v may or may not
belong to c.) Let u′ be any other vertex of c such that some edge of M\Cmax

colored k is incident to it (u′ may be equal to v if e is internal). To show that e
is safe, it suffices to show that there exists no path consisting of edges of c ∪ M
that connects u and u′ and whose every edge is colored k. However, by the way
we color edges of c we know that the outgoing edges of u and u′ are not colored
with k because of the way we oriented the cycle, there is no path connecting u
and u′ contained in c that starts and ends with incoming edge. �

For each cycle c of Cmax we define its degree of flexibility denoted as
flex(c) and its colorfulness, denoted as col(c). The degree of flexibility of a
cycle c is the number of internal edges of M incident to c and the colorfulness
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of c is the number of colors of K3 that are used for coloring the external edges
of M incident to c.

From Lemma 1 we can easily derive.

Lemma 2. If a cycle c of Cmax is such that flex(c) + col(c) ≥ 3, then we can
color c so that each edge of c and each edge incident to one of the edges of c is
safe.

Sometimes, even if a cycle c of Cmax is such that flex(c) + col(c) < 3, we
can color the edges of c so that each of them is safe. For example, suppose that
c is a square consisting of edges e1, . . . , e4 and there are four external edges of
M incident to c, all colored 1. Suppose also that each external edge incident to
c is already safe. Then we can color e1 with 1 and 2, e3 with 1 and 3 and both
e2 and e4 with 2 and 3. We can notice that e1 is guaranteed not to belong to a
cycle colored 1 because external edges incident to e1 are colored 1 and are safe.
Analogously, we can easily check that each other edge of c is safe. However, for
example, a triangle t of Cmax that has three external edges of M incident to it,
all colored with the same color of K3, cannot be colored in such a way that it
does not contain a monochromatic cycle.

Consider a cycle c of Cmax such that every external edge of M incident to c
is colored. We say that c is nice if and only if (1) flex(c) + col(c) ≥ 3 or (2)
c contains at least 3 − flex(c) − col(c) vertex-disjoint edges, each of which has
the property that it has exactly two incident external edges of M and the two
external edges of M incident to it are colored with the same color of K3 or (3)
c is a square such that flex(c) = 1.

Otherwise we say that c is blocked. We can see that a cycle c of Cmax is
blocked if and only if

– c is a triangle and all external edges of M incident to c are colored with the
same color of K3,

– c is a square with two internal edges of M incident to it (flex(c) = 2),
– c is a cycle of even length, flex(c) = 0 and there exist two colors k1, k2 ∈ K3

such that external edges of M incident to c are colored alternately with k1
and k2.

Among blocked cycles we distinguish kites. We say that a cycle c is a kite
if it is a triangle such that flex(c) = 1 and then we call it a 3-kite or it is a
square, whose two edges belong to M (so flex(c) = 2) - called a 4-kite. We can
assume that a square with two diagonals in M will not occur, as diagonals are
heavier than any two opposite edges in this square (as they are in M), so they
would be included in Cmax. A cycle of Cmax which is not a kite is said to be
non-kite.

Now, we are ready to state the algorithm for path-3-coloring G1. It is pre-
sented as Algorithm 2.

Lemma 3. Let c be a non-kite cycle of Cmax that at some step of Algorithm
Color G1 has the fewest uncolored external edges incident to it. Then, it is always
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Algorithm 2. Color G1

1: while ∃ an uncolored non-kite cycle of Cmax do
2: C ← a non-kite uncolored cycle of Cmax with the fewest uncolored external

edges incident to it.
3: Color uncolored external edges incident to C so that no other

cycle of Cmax becomes blocked and either flex(C) + col(C) ≥ 3 or
its external matching edges are all safe. � Lemma 3

4: Color C and internal edges incident to it in such a way, that each edge
incident to C is safe. � Lemma 4

5: end while

possible to color all uncolored external edges incident to c so that no non-kite
cycle of Cmax becomes blocked. Moreover, if c has at least two uncolored external
edges incident to c then, additionally, it is always possible to do it in such a way
that flex(c) + col(c) ≥ 3. If c has exactly one uncolored external edge e of M
incident to it, then we can color e so that flex(c) + col(c) ≥ 3 or so that e is
safe.

From the above lemma we get

Corollary 1. After all external edges are colored, each of them is incident to a
cycle c of Cmax such that flex(c) + col(c) ≥ 3 or is safe.

Lemma 4. Let c be a nice cycle of Cmax whose all incident external edges of M
are already colored and safe. Then it is always possible to color c and internal
edges incident to c in such a way that each edge incident to c is safe.

3 A Cycle Cover Improving Cmax with Respect to M

Since Cmax may contain kites, we may not be able to path-3-color G1. Therefore,
our next aim is to compute another cycle cover C2 of G such that it does not
contain any kite of Cmax and whose weight is an upper bound on OPT . Since
computing such C2 may be hard, we relax the notion of a cycle cover and allow
C2 to contain half-edges. A half-edge of the edge e is, informally speaking, a
half of the edge e that contains exactly one of the endpoints of e. Let us also
point out here that C2 may contain kites which do not belong to Cmax.

We say that an edge (u, v) is a kite-edge if u and v belong to the same kite
(so it can be a side of a kite, but also a diagonal of a 4-kite). Every kite-edge
e = (u, v) is split into two half edges (u, xe) and (xe, v), each carrying half of
the weight of e. The graph G̃ = (Ṽ , Ẽ) will be G with kite-edges replaced with
half-edges.

Definition 1. A relaxed cycle cover improving Cmax with respect to M
is a subset C̃ ⊆ Ẽ such that

(i) each vertex in V has exactly two incident edges in C̃;
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(ii) for each 3-kite T of Cmax the number of half-edges of kite-edges of T con-
tained in C̃ is even and not greater than four;

(iii) for each 4-kite S of Cmax the number of half-edges of kite-edges of S con-
tained in C̃ is even and not greater than six.

To compute a relaxed cycle cover C2 improving Cmax with respect to M we
construct the following graph G′ = (V ′, E′) (by replacing kites with gadgets).
The set of vertices V ′ is a superset of the set of verices V (G). For each kite-
edge (u, v) of G we add two vertices xu

v , xv
u to V ′ and edges (u, xu

v ), (xv
u, v) to E′

(these represent the half-edges). For each kite-edge (u, v) which is not a diagonal
of a 4-kite or one of the non-matching edges in 3-kite (for each 3-kite we choose
arbitrarily one of them) we add also an edge (xu

v , xv
u). The edge (xu

v , xv
u) has

weight 0 in G′ and each of the edges (u, xu
v ), (xv

u, v) has weight equal to 1
2w(u, v).

Each of the vertices xu
v , xv

u is called a splitting vertex of the edge (u, v).
For each 3-kite T on vertices u, v, w we add two vertices pT , qT to V ′. Let’s

assume that u is incident to external edge of M and that (xu
w, xw

u ) was the side
not added to G′. The vertex pT is connected to the splitting vertices of edges of
T that are neighbors of u, i.e. to vertices xu

v , xu
w and to vertex xv

w. The vertex
qT is connected to every other splitting vertex of T , i.e. xw

u , xw
v , xv

u. All edges
incident to vertices pT , qT have weight 0 in G′.

For each 4-kite S of Cmax on vertices u, v, w, z we add five vertices
pSu, pSv, pSw, pSz, q

S to V ′. Vertex pSu is connected to the splitting vertices of edges of
S that are neighbors of u, i.e. to vertices xu

v , xu
w, xu

z . Vertices pSv, pSw, pSz are con-

Fig. 1. Gadgets for 3-kites (a) and 4-kites (b) of G1 in graph G. Half-edges corre-
sponding to the original edges are thickened, the auxiliary edges are thin. Original
vertices (thick dots) are connected with all the other original vertices of graph G. The
auxiliary vertices have no connections outside of the gadget. The figures are subtitled
with the specifications of b(v) values for different vertices. For a vertex t with b(t) = i,
the resulting b-matching will contain exactly i edges ending in t.
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nected analogously. Vertex qS is connected to vertices pSu, pSv, pSw, pSz. All edges
incident to vertices pSu, pSv, pSw, pSz, q

S have weight 0.
For each edge (u, v) of G that is not a kite-edge we add it to E′ with weight

w(u, v).
We reduce the problem of computing a relaxed cycle cover improving Cmax

with respect to M , to the problem of computing a perfect b-matching in the
graph G′. We define the function b : V ′ → N in the following way. For each
vertex v ∈ V we set b(v) = 2. For each splitting vertex v′ of some problematic
edge we set b(v′) = 1. For all vertices pT and qT , where T denotes a 3-kite of
Cmax we have b(pT ) = b(qT ) = 1. For all vertices pSu and qS , where S denotes a
4-kite of Cmax and u one of its vertices we have b(pSu) = b(qS ) = 2 (Fig. 1).

Theorem 2. Any perfect b-matching of G′ yields a relaxed cycle cover C2

improving Cmax with respect to M . A maximum weight perfect b-matching of
G′ yields a relaxed cycle cover C2 improving Cmax with respect to M such that
w(C2) ≥ OPT .

4 Exchange Sets F1, F2 and Path-2-Coloring of G′
2

The multigraph G2 is constructed from one copy of the relaxed cycle cover C2

and one copy of the maximum weight perfect matching M . Since C2 may contain
half-edges and we want G2 to contain only edges of G, for each half-edge of edge
(u, v) contained in C2, we will either include the whole edge (u, v) in G2 or not
include it at all. While doing so we have to ensure that the total weight of the
constructed multigraph G2 is at least 3

2OPT .
The main idea behind deciding which half-edges are extended to full edges

and included in G2 is that we construct two sets Z1 and Z2 – for each kite
in G1 we distribute its edges corresponding to the half-edges so that half of
them go into the set Z1 and the other half to Z2. (Note that by Definition 1
each kite in G1 contains an even number of half-edges in C2.) Let I(C2) denote
the set consisting of whole edges of G contained in C2. This way w(C2) =
w(I(C2)) + 1

2 (w(Z1) + w(Z2)). Next, let Z denote the one of the sets Z1 and Z2

with larger weight. Then G2 is defined as a multiset consisting of edges of M ,
edges of I(C2) and edges of Z. We reach the following

Fact 1. The total weight of the constructed multigraph G2 is at least 3
2OPT .

Proof. The weight of M is at least 1
2OPT . The weight of w(C2) = w(I(C2)) +

1
2 (w(Z1) + w(Z2)) is at least OPT . Since w(Z) = max{w(Z1), w(Z2)}, we con-
clude that w(I(C2)) + w(Z) ≥ w(C2). ��

If Cmax contains at least one kite, G1 is non-path-3-colorable. We can however
notice, that if we remove one edge from each kite in the multigraph G1, then the
obtained multigraph is path-3-colorable.

If we manage to construct a set F1 containing one edge from each kite, such
that additionally the multigraph G2 ∪ F1 is path-2-colorable, then we have a
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4
5 -approximation of Max TSP immediately. Since computing such F1 may be
difficult, we allow, in turn, certain edges of C2 to be removed from G2 and
added to G1. Thus, roughly, our goal is to compute such disjoint sets F1, F2

that:

1. F1 ⊂ Cmax contains at least one edge of each kite;
2. F2 ⊂ I(C2) contains one edge per each kite C ∈ Cmax;
3. the multigraph G′

1 = G1\F1 ∪ F2 is path-3-colorable;
4. the multigraph G′

2 = G2\F2 ∪ F1 is path-2-colorable.

Let F1 and F2 be two sets of edges that satisfy properties 1. and 2. of the
above. Then the set of edges C ′

2 = (I(C2) ∪ Z ∪ F1)\F2 can be partitioned into
cycles and paths of G′

2, where G′
2 denotes the resulting multigraph G2\F2 ∪ F1.

The partition of C ′
2 into cycles and paths is carried out in such a way that two

incident edges of C ′
2 belonging to a common path or cycle of C2, belong also to

a common path or cycle of C ′
2 (and G′

2). Also, the partition is maximal, i.e., we
can’t add any edge e of C ′

2 to any path P of G′
2 so that P ∪ {e} is also a path or

cycle of G′
2.

We say that e is a double edge of G′
2 if the multigraph G′

2 contains two
copies of e. In any path-2-coloring of G′

2 every double edge must have both colors
of K2 assigned to it.

We observe that in order for G′
2 to be path-2-colorable, we have to guarantee

that there does not exist a cycle C of G′
2 of odd length l that has l incident double

edges. When every two consecutive edges of C are incident to some double edge,
they must be assigned different colors of K2 and if the length of C is odd, this
is clearly impossible. The way to avoid this is to choose one edge of each such
potential cycle and add it to F2.

We say that a path P of G′
2 beginning at w and ending at v is amenable if

(i) neither v nor w has degree 4 in G′
2, or

(ii) v has degree 4, w has degree smaller than 4 and P ends with a double
edge, the last-but-one edge of P is a double edge or the last-but-one and the
last-but-three vertices in P are matched in M .

It turns out that G′
2 that does not contain odd cycles described above and

whose every path is amenable is path-2-colorable — we show it in the full version
of the paper. To facilitate the construction of G′

2, whose every path is amenable
and to ensure that F1 and F2 have certain other useful properties we create
two opposite orientations of I(C2): D1 and D2. In each of these orientations
I(C2) contains directed cycles and paths and each kite has the same number of
incoming and outgoing edges. This can be achieved by pairing the endpoints of
paths ending at the same kite and combining them. For example, let us consider
a 3-kite in Fig. 2. C2 contains half-edges h1 = (w, x{u,w}) and h2 = (v, x{v,w}) of
a certain 3-kite T , so for the purpose of orientation we replace h1 and h2 with
an edge (v, w). Then, if for example C2 contains edges e1 = (w′, w), e2 = (v′, v)
in the orientation in which e1 is directed from w′ to w, the edge e2 is directed
from v to v′ and vice versa.
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Fig. 2. Example of creating orientations D1 and D2

Apart from the whole edges C2 also contains the half-edges. Let H(C2) denote
the set of the edges of G such that C2 contains exactly one half-edge of each of
these edges. We would like to partition H(C2) into two sets Z1, Z2 so that for
each kite c half of the edges of H(C2) is contained in Z1 and the other half in
Z2. We associate Z1 with orientation D1 and Z2 with orientation D2. Thus, we
assume that D1 contains Z1, with the edges of Z1 being oriented in a consistent
way with the edges of I(C2) under orientation D1, and D2 contains Z2, with
its edges being oriented accordingly. Depending on which of the sets Z1, Z2 has
bigger weight, we either choose the orientation D1 or D2. Hence, from now on,
we assume that the edges of I(C2) ∪ Z are directed.

For example, for the triangle T described above (and presented in Fig. 2),
the partition may be as follows. If e1 is oriented from w to w′ in D1, then we
assume that h1 is in Z1 and h2 is in Z2. Therefore, we can guarantee, that if h1

is in Z, e1 is oriented from v to v′.
The exact details of the construction of Z1 and Z2 are given in the proof of

Lemma 5.

Lemma 5. It is possible to compute the sets F1, F2 such that they, and the
resulting G′

2 satisfy:

1. F1 ⊂ Cmax\((Z ∪ I(C2)) ∩ M);
2. F2 ⊆ I(C2) ∪ Z;
3. for each kite C , (i) the set F1 contains exactly one edge of C and the set F2

contains zero edges of C or (ii) (it can happen only for 4-kites) the set F1

contains exactly two edges of C and the set F2 contains one edge of C\M ;
4. for each kite C the set F2 contains exactly one outgoing edge of C ;
5. for each kite C and each vertex v of C the number of edges of F2 incident to

v is at most greater by one than the number of edges of F1 incident to v;
6. there exists no cycle of G′

2 of odd length l that has l double edges incident to
it;

7. each path of G′
2 is amenable.

The property 1 of this lemma guarantees that G′
2 does not contain more than

two copies of any edge. It is shown in the full version of the paper that properties
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6. and 7. are essentially sufficient for the multigraph G′
2 to be path-2-colorable.

Properties 4 and 5 will be helpful in finding a path-3-coloring of G′
1. Property 5

ensures that no vertex v has six incident edges in G′
1.

5 Summary

After the construction and path-2-coloring of G′
2 we are presented with the task

of extending the partial path-3-coloring of G1 to the complete path-3-coloring
of G′

1. In particular, we have to color the edges of kites and edges of F2 that
have been added during the construction of G′

2. This part of the algorithm is
described in the full version of the paper.

The presented algorithm works for graphs with an even number of vertices.
If the number of vertices of a given graph is odd, we proceed as follows. We
select a vertex v ∈ V arbitrarily. Then we guess its predecessor u and successor
t in the optimal solution (O(n2) guesses). For each guess we replace the vertex v
with two new vertices v1, v2 (so we have an even number of vertices). The edge
(u, v1) has weight w(u, v), the edge (t, v2) has weight w(t, v) and all remaining
edges incident to v1 or v2 have weight equal to 0. Then we run our Algorithm 1
on these instances. The approximation ratio of 4

5 holds, because the computed
solution can be always transformed into a tour in the original graph of at least
the same weight, and the optimal tour is certainly present among the guesses.
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Ŕıos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 195–201. Springer,
Heidelberg (1998). doi:10.1007/3-540-69346-7 15

4. Bhatia, R.: Private communication
5. Chalasani, P., Motwani, R.: Approximating capacitated routing and delivery prob-

lems. SIAM J. Comput. 28(6), 2133–2149 (1999)
6. Chen, Z.Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algo-

rithms for max TSP. Inf. Process. Lett. 95(2), 333–342 (2005)
7. Chen, Z.-Z., Wang, L.: An improved approximation algorithm for the bandpass-2

problem. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 188–199. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31770-5 17

8. Chiang, Y.J.: New approximation results for the maximum scatter tsp. Algorith-
mica 41(4), 309–341 (2005)

9. Dudycz, S., Marcinkowski, J., Paluch, K.E., Rybicki, B.: A 4/5 - approximation
algorithm for the maximum traveling salesman problem. CoRR abs/1512.09236
(2015). http://arxiv.org/abs/1512.09236

http://dx.doi.org/10.1007/3-540-69346-7_15
http://dx.doi.org/10.1007/978-3-642-31770-5_17
http://arxiv.org/abs/1512.09236


Approximation Algorithm for the Maximum Traveling Salesman Problem 185

10. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
finding a maximum weight hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)

11. Hassin, R., Levin, A., Rubinstein, S.: Approximation algorithms for maximum
latency and partial cycle cover. Discrete Optim. 6(2), 197–205 (2009)

12. Hassin, R., Rubinstein, S.: An approximation algorithm for the maximum traveling
salesman problem. Inf. Process. Lett. 67(3), 125–130 (1998)

13. Hassin, R., Rubinstein, S.: Better approximations for max TSP. Inf. Process. Lett.
75(4), 181–186 (2000)

14. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle
packing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 403–413.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30140-0 37

15. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms
for asymmetric tsp by decomposing directed regular multigraphs. In: 44th Sympo-
sium on Foundations of Computer Science (FOCS 2003) (2003)

16. Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: 35th
Annual IEEE Symposium on Foundations of Computer Science (FOCS) (1994)

17. Kowalik, �L., Mucha, M.: 35/44-approximation for asymmetric maximum TSP
with triangle inequality. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 589–600. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73951-7 51

18. Kowalik, �L., Mucha, M.: Deterministic 7/8-approximation for the metric max-
imum TSP. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 132–145. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85363-3 11

19. Monnot, J.: Approximation algorithms for the maximum hamiltonian path problem
with specified endpoint(s). Eur. J. Oper. Res. 161(3), 721–735 (2005)

20. Paluch, K.E.: Better approximation algorithms for maximum asymmetric traveling
salesman and shortest superstring. CoRR (2014)

21. Paluch, K.E., Elbassioni, K.M., van Zuylen, A.: Simpler approximation of the max-
imum asymmetric traveling salesman problem. In: 29th International Symposium
on Theoretical Aspects of Computer Science, STACS (2012)

22. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - approximation algorithm for the max-
imum traveling salesman problem. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 298–311. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03685-9 23

23. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Math. Oper. Res. 18(1), 1–11 (1993)

24. Schrijver, A.: Nonbipartite matching and covering. In: Combinatorial Optimiza-
tion, vol. A, pp. 520–561. Springer (2003)

25. Serdyukov, A.I.: An algorithm with an estimate for the traveling salesman problem
of maximum. Upravlyaemye Sistemy 25, 80–86 (1984) (in Russian)

26. Sichen, Z., Zhao, L., Liang, Y., Zamani, M., Patro, R., Chowdhury, R., Arkin, E.M.,
Mitchell, J.S.B., Skiena, S.: Optimizing read reversals for sequence compression.
In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp. 189–202. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48221-6 14

27. Tong, W., Goebel, R., Liu, T., Lin, G.: Approximation algorithms for the maxi-
mum multiple RNA interaction problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.)
COCOA 2013. LNCS, vol. 8287, pp. 49–59. Springer, Cham (2013). doi:10.1007/
978-3-319-03780-6 5

http://dx.doi.org/10.1007/978-3-540-30140-0_37
http://dx.doi.org/10.1007/978-3-540-73951-7_51
http://dx.doi.org/10.1007/978-3-540-73951-7_51
http://dx.doi.org/10.1007/978-3-540-85363-3_11
http://dx.doi.org/10.1007/978-3-642-03685-9_23
http://dx.doi.org/10.1007/978-3-662-48221-6_14
http://dx.doi.org/10.1007/978-3-319-03780-6_5
http://dx.doi.org/10.1007/978-3-319-03780-6_5

	A 4/5 - Approximation Algorithm for the Maximum Traveling Salesman Problem
	1 Introduction
	2 Path-3-Coloring of G1
	3 A Cycle Cover Improving Cmax with Respect to M
	4 Exchange Sets F1, F2 and Path-2-Coloring of G'2
	5 Summary
	References


