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Abstract. Finding the exact integrality gap α for the LP relaxation of
the metric Travelling Salesman Problem (TSP) has been an open prob-
lem for over thirty years, with little progress made. It is known that
4/3 ≤ α ≤ 3/2, and a famous conjecture states α = 4/3. For this prob-
lem, essentially two “fundamental” classes of instances have been pro-
posed. This fundamental property means that in order to show that the
integrality gap is at most ρ for all instances of metric TSP, it is sufficient
to show it only for the instances in the fundamental class.

However, despite the importance and the simplicity of such classes,
no apparent effort has been deployed for improving the integrality gap
bounds for them. In this paper we take a natural first step in this endeav-
our, and consider the 1/2-integer points of one such class. We successfully
improve the upper bound for the integrality gap from 3/2 to 10/7 for a
superclass of these points, as well as prove a lower bound of 4/3 for the
superclass.

Our methods involve innovative applications of tools from combina-
torial optimization which have the potential to be more broadly applied.
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1 Introduction

Given the complete graph Kn = (Vn, En) on n nodes with non-negative edge
costs c ∈ R

En , the Traveling Salesman Problem (henceforth TSP) is to find a
Hamiltonian cycle of minimum cost in Kn. When the costs satisfy the triangle
inequality, i.e. cij + cjk ≥ cik for all i, j, k ∈ Vn, the problem is called the metric
TSP. If the metric is defined by the shortest (cardinality) paths of a graph, then it
is called a graph-metric; the TSP specialized to graph-metrics is the graph-TSP.

For G = (V,E), x ∈ R
E and F ⊆ E, x(F ) :=

∑
e∈F xe; for U ⊆ V , δ(U) :=

δG(U) := {uv ∈ E : u ∈ U, v ∈ V \U}; E[U ] := {uv ∈ E : u ∈ U, v ∈ U}.
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A natural linear programming relaxation for the TSP is the following
subtour LP :

minimize cx (1)
subject to: x(δ(v)) = 2 for all v ∈ Vn, (2)

x(δ(S)) ≥ 2 for all ∅ �= S � Vn, (3)
0 ≤ xe ≤ 1 for all e ∈ En. (4)

For a given cost function c ∈ R
En , we use LP (c) to denote the optimal solu-

tion value for the subtour LP and OPT (c) to denote the optimal solution value
for the TSP. The polytope associated with the subtour LP, called the subtour
elimination polytope and denoted by Sn, is the set of all vectors x satisfying the
constraints of the subtour LP, i.e. Sn = {x ∈ R

En : x satisfies (2), (3), (4)}.
The metric TSP is known to be NP-hard. One approach taken for finding

reasonably good solutions is to look for a ρ-approximation algorithm for the
problem, i.e. a polynomial-time algorithm that always computes a solution of
value at most ρ times the optimum. Currently the best such algorithm known
for the metric TSP is the algorithm due to Christofides [7] for which ρ = 3

2 .
Although it is widely believed that a better approximation algorithm is possible,
no one has been able to improve upon Christofides algorithm in four decades.
For arbitrary nonnegative costs not constrained by the triangle inequality there
does not exist a ρ-approximation algorithm for any ρ ∈ R, unless P = NP , since
such an algorithm would be able to decide if a given graph is Hamiltonian.

For an approximation guarantee of a minimization problem one needs lower
bounds for the optimum, often provided by linear programming. For the TSP a
commonly used lower bound is LP (c). Then finding a solution of objective value
at most ρLP (c) in polynomial time implies a ρ-approximation algorithm. The
theoretically best possible bound for ρ is the integrality gap α for the subtour
LP, which is the worst-case ratio between OPT (c) and LP (c) over all metric
cost functions c.

It is known that α ≤ 3
2 [19,20], however no example for which the ratio is

greater than 4
3 is known. In fact, a famous conjecture, often referred to as the 4

3
Conjecture, states the following:

Conjecture 1. The integrality gap for the subtour LP is at most 4
3 .

Well-known examples show that α is at least 4
3 . In almost thirty years, there

have been no improvements made for the upper bound of 3
2 or lower bound of

4
3 for the integrality gap for the subtour LP.

The definition of the integrality gap can be reformulated in terms of a con-
tainment relation between two polyhedra that do not depend on the objective
function and involve only a sparse subset of (less than 2n) edges, which is well-
known, but not always exploited. We will not only use it here, but it is the very
tool that we need.

Define a tour to be the edge-set of a spanning Eulerian (connected with
all degrees even) multi-subgraph of Kn. If none of the multiplicities can be
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decreased, then all multiplicities are at most two; however, there are some tech-
nical advantages to allowing higher multiplicities. Given a metric cost function,
a tour can always be shortcut to a Hamiltonian cycle of the same cost or less.

For any multi-set J ⊆ En, the incidence vector of J , denoted by χJ , is the
vector in R

En for which χJ
e is equal to the number of copies of edge e in J for

all e ∈ En.
Showing for some constant ρ ∈ N that ρ x is a convex combination of incidence

vectors of tours for each x ∈ Sn gives an upper bound of ρ on the integrality
gap for the subtour LP: it implies that for any cost function c ∈ R

En for which
cx = LP (c), at least one of the tours in the convex combination has cost at
most ρ (cx) = ρLP (c). If the costs are metric, this tour can be shortcut to a
TSP solution of cost at most ρLP (c), giving a ratio of OPT (c)/LP (c) ≤ ρ. The
essential part “(ii) implies (i)” of the following theorem asserts that the converse
is also true: if ρ is at least the integrality gap then ρSn := {y ∈ R

En : y =
ρx, x ∈ Sn} is a subset of the convex hull of incidence vectors of tours:

Theorem 1 [6]. Let Kn = (Vn, En) be the complete graph on n nodes and let
ρ ∈ R, ρ ≥ 1. The following statements are equivalent:

(i) For any weight function c : En → R+ : OPT (c) ≤ ρLP (c).
(ii) For any x ∈ Sn, ρx is in the convex hull of incidence vectors of tours.
(iii) For any vertex x of Sn, ρx is in the convex hull of incidence vectors of

tours.

So Conjecture 1 can also be reformulated as follows:

Conjecture 2. The polytope 4
3 Sn is a subset of the convex hull of the incidence

vectors of tours.

Given a vector x ∈ Sn, the support graph Gx = (Vn, Ex) of x is defined with
Ex = {e ∈ En : xe > 0}. We call a point x ∈ Sn

1
2 -integer if xe ∈ {0, 1

2 , 1} for all
e ∈ En. For such a vector we call the edges e ∈ En

1
2 -edges if xe = 1

2 and 1-edges
if xe = 1. Note that the 1-edges form a set of disjoint paths that we call 1-paths
of x, and the 1

2 -edges form a set of edge-disjoint cycles we call the 1
2 -cycles of x.

Cycles and paths are simple (without repetition of nodes) in this article.
For Conjecture 2, it seems that 1

2 -integer vertices play an important role (see
[1,5,14]). In fact it has been conjectured by Schalekamp et al. [14] that a subclass
of these 1

2 -integer vertices are the ones that give the biggest gap. Here we state
their conjecture more broadly:

Conjecture 3. The integrality gap for the subtour LP is reached on 1
2 -integer

vertices.

Very little progress has been made on the above conjectures, even though
they have been around for a long time and have been well-studied. For the
special case of graph-TSP an upper bound of 7

5 is known for the integrality
gap [17]. Conjecture 2 has been verified for the so-called triangle vertices x ∈ Sn

for which the values are 1
2 -integer, and the 1

2 -edges form triangles in the support
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graph [3]. The lower bound of 4
3 for the integrality gap is provided by triangle

vertices with just two triangles.
A concept first introduced by Carr and Ravi [5] (for the 2-edge-connected

subgraph problem) is that of a fundamental class, which is a class of points F in
the subtour elimination polytope with the following property: showing that ρ x is
in the convex hull of incidence vectors of tours for all vertices x ∈ F implies the
same holds for all vertices of the polytope, and thus implies that the integrality
gap for the subtour LP is at most ρ.

Two main classes of such vertices have been introduced, one by Carr and
Vempala [6], the other by Boyd and Carr [3]. In this paper we will focus on the
latter one, i.e. we define a Boyd-Carr point to be a point x ∈ Sn that satisfies
the following conditions:

(i) The support graph Gx of x is cubic and 3-edge connected.
(ii) In Gx, there is exactly one 1-edge incident to each node.
(iii) The fractional edges of Gx form disjoint 4-cycles.

A Carr-Vempala point is one that satisfies (i), (ii) and instead of (iii) the
fractional edges form a Hamiltonian cycle.

Despite their significance and simplicity, no effort has been deployed to
exploring new integrality gap bounds for these classes, and no improvement on
the general 3

2 upper bound on the integrality gap has been made for them, not
even for special cases. A natural first step in this endeavour is to try to improve
the general bounds for the special case of 1

2 -integer Boyd-Carr or Carr-Vempala
points.

In this paper we improve the upper bound for the integrality gap from 3
2

to 10
7 for 1

2 -integer Boyd-Carr points. In fact we prove this for a superclass of
these points. Replacing the 1-edges by paths of arbitrary length between their
two endpoints, we get all the 1

2 -integer vectors of Sn for which the 1
2 -edges form

disjoint 4-cycles, or squares in the support graph. We call these square points.
We also show that square points contain a subclass for which the integrality
gap is at least 4

3 . Note that this subclass is not in the class of 1
2 -integer vertices

conjectured by Schalekamp et al. [14] to give the biggest integrality ratio, which
makes the class of square points interesting with respect to this conjecture.

In the endeavour to find improved upper bounds on the integrality gap we
examine the structure of the support graphs of Boyd-Carr points, which we
call Boyd-Carr graphs. We show that they are all Hamiltonian, an important
ingredient of our bounding of their integrality gap. The proof uses a simple and
nice theorem by Kotzig [12] on Eulerian trails with forbidden transitions. An
Eulerian trail in a graph is a closed walk containing each of its edges exactly
once. Note that contrary to tours, it is more than just an edge-set.

Similarly, Carr-Vempala graphs are the support graphs of Carr-Vempala
points. These are by definition Hamiltonian.

In Sect. 2.1 we show a first, basic application of these ideas, where some parts
of the difficulties do not occur. We prove that all edges can be uniformly covered
6/7 times by tours in the support graphs of both fundamental classes. This is
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better than the conjectured general bound 8/9 that would follow for arbitrary
cubic graphs from Conjecture 2.

Another new way of using classical combinatorial optimization for the TSP
occurs in Sect. 2.2, where we use an application of Edmonds’ matroid intersection
theorem to write the optimum x of the subtour elimination polytope as the
convex hull of incidence vectors of “rainbow” spanning trees in edge-coloured
graphs. The idea of using spanning trees with special structures to get improved
results has recently been used successfully in [10] for graph-TSP, and in [11,18]
for a related problem, namely the metric s− t path TSP. However, note that we
obtain and use our trees in a completely different way.

Our main results concerning the integrality ratio of 1
2 -integer Boyd-Carr

points are proved in Sect. 3. We conclude that section by outlining a potential
strategy for using the Carr-Vempala points of [6] for proving the 4

3 Conjecture.

2 Polyhedral Preliminaries and Other Useful Tools

In this section we will discuss some useful and powerful tools that we will need
in the proof of our main result in Sect. 3. We begin with some preliminaries.

Given a graph G = (V,E) with a node in V labelled 1, a 1-tree is a subset F
of E such that |F ∩ δ(1)| = 2 and F\δ(1) forms a spanning tree on V \{1}. The
convex hull of the incidence vectors of 1-trees of G, which we will refer to as the
1-tree polytope of the graph G, is given by the following [13]:

{x ∈ R
E : x(δ(1)) = 2, x((E[U ])) ≤ |U | − 1 for all ∅ �= U ⊆ V \{1},

0 ≤ xe ≤ 1 for all e ∈ E, x(E) = |V |} . (5)

It is well-known that the 1-trees of a connected graph satisfy the basis axioms
of a matroid (see [13]).

Given G = (V,E) and T ⊆ V , |T | even, a T -join of G is a set J ⊆ E such
that T is the set of odd degree nodes of the graph (V, J). A cut C = δ(S) for
some S ⊂ V is called a T -cut if |S ∩ T | is odd. We say that a vector majorates
another if it is coordinatewise greater than or equal to it. The set of all vectors
x that majorate some vector y in the convex hull of incidence vectors of T -joins
of G is given by the following [9]:

{x ∈ R
E : x(C) ≥ 1for each T -cut C, xe ≥ 0 for al e ∈ E}. (6)

This is the T -join polyhedron of the graph G.
The following two results are well-known (see [19,20]), but we include the

proofs as they illustrate the methods we will use:

Lemma 1 [19,20]. If x ∈ Sn, then (i) it is a convex combination of incidence
vectors of 1-trees of Kn, and (ii) x/2 majorates a convex combination of inci-
dence vectors of T -joins of Kn for every T ⊆ Vn, |T | even.
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Proof. By using the Eq. (2) of the subtour LP, we see that x(En) = |Vn| and that
the inequalities (3) can be replaced by x(En[S]) ≤ |S| − 1, for all ∅ �= S � Vn.
Thus x ∈ Sn satisfies all of the constraints of the 1-tree polytope for Kn and
(i) of the lemma follows. To check (ii), note that x/2 satisfies the constraints of
the T -join polyhedron of Kn for all T ⊆ Vn, |T | even (in fact x(C)/2 ≥ 1 on
every cut C), that is, it majorates a convex combination of incidence vectors of
T -joins. ��
Theorem 2 [19,20]. If x ∈ Sn, 3

2x is in the convex hull of incidence vectors of
tours.

Proof. By (i) of Lemma 1, x is a convex combination of incidence vectors of
1-trees of Kn. Let F be any 1-tree of such a convex combination, and TF be
the set of odd degree nodes in the graph (Vn, F ). Then by (ii) of Lemma 1, x/2
majorates a convex combination of incidence vectors of TF -joins. So χF + x/2
majorates a convex combination of incidence vectors of tours, and taking the
average with the coefficients of the convex combination of 1-trees, we get that
x + x/2 majorates a convex combination of incidence vectors of tours. Since
adding 2 to the multiplicity of any edge in a tour results in another tour, it
follows that 3

2x is a convex combination of incidence vectors of tours. ��
The tools of the following two subsections are new for the TSP and appear

to be very useful.

2.1 Eulerian Trails with Forbidden Bitransitions

Let G = (V,E) be a connected 4-regular multigraph. For any node v ∈ V , a
bitransition (at v) means a partition of δ(v) into two pairs of edges. Clearly
every Eulerian trail of G uses exactly one bitransition at every node, meaning
the two disjoint pairs of consecutive edges of the trail at the node. There are 3
bitransitions at every node and the simple theorem below, which follows from
a nice result due to Kotzig [12], states that we can forbid one of these and still
have an allowed Eulerian trail. As we will show, this provides Hamiltonian cycles
containing all the 1-edges of square points.

Theorem 3 [12]. Let G = (V,E) be a 4-regular connected multigraph with a
forbidden bitransition for every v ∈ V . Then G has an Eulerian trail not using
the forbidden bitransition of any node.

Lemma 2. Let x be any square point, and let Gx = (Vn, Ex) be its support
graph. Then Gx has a Hamiltonian cycle H that contains all the 1-edges of Gx.

Proof. Shrinking all the 1/2-squares of Gx and replacing each path of 1-edges by
a single edge, we obtain a 4-regular connected multigraph G′ = (V ′, E′) whose
edges are precisely the 1-paths of Gx and whose nodes are precisely the squares
of Gx. To each contracted square we associate the forbidden bitransition consist-
ing of the pairs of 1-edges incident with the square in Gx which are diagonally
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opposite to each other, as shown in Fig. 1. By Theorem 3, there is an Eulerian
trail K of G′ that does not use these forbidden bitransitions. Consecutive edges
in K at each node in G′ are thus joined by a set of parallel edges in the corre-
sponding square in Gx, and by adding these edges to K and replacing the edges
in K with their corresponding 1-paths in Gx, we obtain the desired Hamiltonian
cycle for Gx. ��

Fig. 1. Shrinking a square in Gx to node u; forbidden: {(uv1, uv3), (uv2, uv4)}.

The exhibited connection of Eulerian graphs with forbidden bitransitions
sends us to a link on delta-matroids [2] with well-known optimization properties
that we wish to explore in a forthcoming work. We content ourselves in this
section by providing a simple first application of Lemma 2 which shows a basic
idea we will use in the proof of our main result in Sect. 3, without the additional
difficulty of the more refined application.

Given a graph G = (V,E) and a value k, we call y ∈ R
E|V | the everywhere k

vector for G if ye = k for all edges e ∈ E and ye = 0 for all the other edges in
the complete graph K|V |.

Theorem 4. If G = (V,E) is cubic, 3-edge-connected and Hamiltonian, so in
particular if it is a Boyd-Carr or Carr-Vempala graph, then the everywhere 6/7
vector for G is a convex combination of incidence vectors of tours.

Proof. Let H be a Hamiltonian cycle of G, and let M := E\H be the perfect
matching complementary to H. It can be easily seen that the point x ∈ R

E|V |

defined by xe = 1 if e ∈ M , xe = 1/2 if e ∈ H and xe = 0 otherwise is
in the subtour elimination polytope S|V |. By Theorem 2, 3

2x is then a convex
combination of incidence vectors of tours.

Now take the convex combination t := 3
7χH + 4

7
3
2x. Then for edges e ∈ M

we have te = 0 + 4
7
3
2 = 6

7 . For edges e ∈ H we have te = 3
7 + 4

7
3
2
1
2 = 6

7 , and
xe = 0 for all edges e not in G, finishing the proof. The additional statement
follows from the Hamiltonicity of the graphs (by Lemma 2 for Boyd-Carr, and
by definition for Carr-Vempala). ��
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Note that 6
7 < 8

9 , where 8
9 is the value one gets from Conjecture 2 applied to

the everywhere 2
3 vector for G, which is feasible for S|V |. However, the problem

of whether the everywhere 8
9 vector is a convex combination of incidence vectors

of tours remains open for general cubic 3-edge-connected graphs [16], while the
corresponding problem for the s − t path TSP has been solved [18].

2.2 Rainbow 1-trees

We now use matroid intersection to prove that not only is x is in the convex hull
of incidence vectors of 1-trees, but we can also require that these 1-trees satisfy
some additional useful properties.

Given a graph G = (V,E), let every edge of G be given a colour. We call a
1-tree F of G a rainbow 1-tree if every edge of F has a different colour. Rainbow
trees are discussed by Broersma and Li in [4], where they note they are the com-
mon independent sets of two matroids. Similarly, rainbow 1-trees are common
bases of two matroids, namely 1-trees, that we saw to be bases of a matroid (see
after (5)), and subsets of E containing exactly one edge of each colour, which
are bases of a partition matroid [15]. Luckily, 1

2 -integer points of x ∈ Sn will be
readily checked to be in the intersection of the convex hulls of each of these two
sets of matroid bases. A Corollary of Edmonds’ matroid intersection theorem [8]
then presents x as a convex combination of rainbow 1-trees:

Theorem 5. Let x ∈ Sn be 1
2 -integer, and let P be any partition of the 1

2 -edges
into pairs. Then x is in the convex hull of incidence vectors of 1-trees that each
contain exactly one edge from each pair in P.

Proof. Let Gx = (Vn, Ex) be the support graph of x. Consider the partition
matroid defined on Ex by the partition P ∪ {{e} : e ∈ Ex, e is a 1-edge}. By
Lemma 1, x is in the convex hull of incidence vectors of 1-trees in Ex; since
x(Q) = 1 for every class Q of the defined partition matroid, it is also in the
convex hull of its bases. Thus by [15, Corollary 41.12d], x is in the convex hull
of incidence vectors of the common bases of the two matroids. ��

3 Improved Bounds for 1/2-Integer Points

In this section we show that 10
7 x is a convex combination of incidence vectors of

tours for all square points x ∈ Sn, and thus for all 1
2 -integer Boyd-Carr points x

as well. We also analyze the possibility of a similar proof for Carr-Vempala points.
We begin by stating two properties which we will later prove to be sufficient to
guarantee this for any 1

2 -integer vector x in Sn:

(A) The support graph Gx of x has a Hamiltonian cycle H.
(B) Vector x is a convex combination of incidence vectors of 1-trees of Kn,

each containing exactly two edges in every cut of Gx consisting of four
1
2 -edges in H.
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We will use χH of (A) as part of the convex combination for 10
7 x, which is globally

good, since H has only n edges, but the 1
2 -edges of H have too high a value (equal

to 1), contributing too much in the convex combination. To compensate for this,
property (B) ensures that x is not only a convex combination of 1-trees, but these
1-trees are even for certain edge cuts δ(S), allowing us to use a value essentially
less than the x

2 = 1
4 for 1

2 edges in H for the corresponding T -join. The details
of how to ensure we still remain feasible for the T -join polyhedron overall will
be given in the proof of Theorem 6.

While condition (A) may look at first sight impossibly difficult to meet,
Lemma 2 shows that one can count on the bonus of the naturally arising proper-
ties: any square point x satisfies property (A), and the additional property stated
in this lemma together with the “rainbow 1-tree decomposition” of Theorem 5
will also imply (B) for square points. The reason we care about the somewhat
technical property (B) instead of its more natural consequences is future research:
in a new situation we may have to use the most general condition.

Lemma 3. Let x be any square point. Then x satisfies both (A) and (B).

Proof. Point x satisfies Property (A) by Lemma 2. Moreover, by the additional
statement in this lemma, H contains all the 1-edges in Gx: it follows that H
contains a perfect matching from each square of Gx.

Define P to be the partition of the set of 1
2 -edges of Gx into pairs whose

classes are the perfect matchings of squares. Then by Theorem 5, x is in the
convex hull of incidence vectors of 1-trees that contain exactly one edge from
each pair P ∈ P. Property (B) follows, since every cut that contains four 1

2 -edges
of H is partitioned by two classes P1, P2 ∈ P by the preceding first paragraph
of this proof, and both P1 and P2 are met by exactly one edge of each tree of
the just constructed convex combination. ��

Next we prove that properties (A) and (B) are sufficient to guarantee that
10
7 x is a convex combination of incidence vectors of tours for any 1

2 -integer point
of Sn. Recall that properties (A) and (B) are more general than what we need
for square points; the condition of the theorem we prove does not require that
the Hamiltonian cycle for property (A) contains the 1-edges of Gx, as Lemma 2
asserts for square points. However, we keep the generality of (A) and (B) to
remain open to eventual posterior demands of future research:

Theorem 6. Let x ∈ Sn be a 1
2 -integer point satisfying properties (A) and (B).

Then 10
7 x is in the convex hull of incidence vectors of tours.

Proof. Let H be the Hamiltonian cycle of (A) and let Gx = (Vn, Ex) be the
support graph of x. Let the 1-trees in the convex combination for property (B)
be Fi, i = 1, 2, ..., k, and for each tree Fi let TFi

be the set of odd degree nodes
in the graph (Vn, Fi). Consider the vector y ∈ R

En defined as follows:
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ye =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
6 if xe = 1

2 and e ∈ H,
1
3 if xe = 1

2 and e /∈ H,
1
2 if xe = 1 and e ∈ H,
2
3 if xe = 1 and e /∈ H,

0 if xe = 0.

Claim: Vector y is in the TFi
-join polyhedron for Kn for i = 1, . . . , k.

Let C be a TFi
-cut in Kn for some i ∈ {1, . . . , k}.

Case 1: Cut C contains a 1-edge of Gx. If C contains another 1-edge then y(C) ≥
1, as required. Otherwise it contains exactly one 1-edge. Since x(C) ≥ 2, and the
1
2 -edges in Gx form edge-disjoint cycles, C contains an even (non-zero) number of
1
2 -edges, thus |C∩Ex| is odd. Since |H ∩ C| is even and non-zero, at least one edge
e of C ∩Ex is not in H. If e is the single 1-edge in C, then y(C) ≥ 2

3 + 1
6 + 1

6 = 1.
If e is a 1

2 -edge, then y(C) ≥ 1
2 + 1

3 + 1
6 = 1.

Case 2: Cut C does not contain a 1-edge of Gx. Again using the facts that
x(C) ≥ 2 and the 1

2 -edges in Gx form edge-disjoint cycles, we have that C
contains an even number of 1

2 -edges, and |C ∩ Ex| ≥ 4. If |C ∩ Ex| ≥ 6, then
y(C) ≥ 6(16 ) = 1. Otherwise we have |C ∩ Ex| = 4 and |C ∩ H| = 2 or 4. If
|C ∩H| = 2, then y(C) = 2(16 )+2(13 ) = 1. If |C ∩H| = 4, then by property (B),
tree Fi has exactly two edges in C ∩ Ex (and thus in C as well), which means
that |C ∩ Fi| is even. Thus C is not a TFi

-cut, so y(C) ≥ 1 is not required. This
completes the proof of the claim.

Using the claim, it follows that χFi + y is in the convex hull of incidence
vectors of tours for all i = 1, . . . , k, and therefore x + y is in the convex hull of
incidence vectors of tours. Now z := 1

7χH + 6
7 (x + y) is also in the convex hull

of incidence vectors of tours, and z = 10
7 x is easy to check: indeed, the value of

χH
e + 6xe + 6ye (e ∈ Ex) is apparent from the definition of ye (above the claim):

this value is 5 if xe = 1
2 , and 10 if xe = 1. ��

Our main result is an immediate corollary of this theorem:

Theorem 7. Let x be a square point. Then 10
7 x is in the convex hull of incidence

vectors of tours. In particular, this holds if x is a 1
2 -integer Boyd-Carr point.

Proof. By Theorem 6 it is enough to make sure that x satisfies properties (A)
and (B), which is exactly the assertion of Lemma 3. ��

We can also show that square points are worst-case with respect to Conjecture
2, in that they have an integrality gap of at least 4

3 . Consider the subclass of
square points we call k-donuts, k ∈ Z, k ≥ 2, defined as follows: the support
graph Gx = (Vn, Ex) consists of k 1

2 -squares arranged in a circular donut fashion,
where the squares are joined by 1-paths, each of length k. In other words, Gx

consists of an outer cycle Cout and inner cycle Cin, both consisting of k paths of
k + 1 edges, the last of which is a 1

2 -edge, and the others are 1-edges. There are
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2k 1
2 -edges between the two cycles so that the 1

2 -edges form squares. In Fig. 2
the support graph of a 4-donut is shown. In the figure, dashed edges represent
1
2 -edges and solid edges represent 1-edges.

We define the cost of each edge in Ex to be 1, except for the 1
2 -edges in each

of Cout and Cin which are defined to have cost k (see the figure, where only
edges of cost k are labelled). The costs of other edges of Kn are defined by the
metric closure (cost of shortest paths in Gx). For these defined costs c(k), we have
OPT (c(k)) = 4k2 − 2k + 2 and LP (c(k)) = 3k2 + k, thus limk→∞

OPT (c(k))
LP (c(k))

= 4
3 .

Along with Theorem 7, this gives the following:

Corollary 1. The integrality gap for square points lies between 4
3 and 10

7 .

Fig. 2. Graph Gx for a k-donut x, k=4.

We finally discuss the structure of Carr-Vempala points.
Note that for the Boyd-Carr points that have been our focus, the trans-

formation used from general vertices x ∈ Sn to these Boyd-Carr points does
not completely preserve the denominators. In particular, 1

2 -integer vertices of
Sn get transformed into Boyd-Carr points x∗ with x∗

e values in {1, 1
2 , 3

4 , 1
4 , 0}.

However, for the Carr-Vempala points, general 1
2 -integer vertices of Sn lead to

1
2 -integer Carr-Vempala vertices. In fact we have the following theorem which,
if Conjecture 3 is true, would provide a nice approach for proving Conjecture 2,
since it is given for free that Carr-Vempala vertices satisfy property (A):

Theorem 8. If ρx is in the convex hull of incidence vetors of tours for each
1
2 -integer Carr-Vempala point x ∈ Sn, then ρx is in the convex hull of incidence
vectors of tours for every 1

2 -integer point x ∈ Sn.

In light of these results and conjectures it seems worthwhile to study further
“fundamental classes” and the role of 1

2 -integer points.
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