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Preface

This volume contains the 36 extended abstracts presented at IPCO 2017, the 19th
Conference on Integer Programming and Combinatorial Optimization, held during
June 26–28, 2017, in Waterloo, Canada. IPCO is under the auspices of the Mathe-
matical Optimization Society. The first IPCO conference took place at the University of
Waterloo in May 1990 and it returned to Waterloo for the first time this year. IPCO is
held every year, except for those in which the International Symposium on Mathe-
matical Programming is held.

The conference had a Program Committee consisting of 14 members. In response to
the call for papers, we received 125 submissions, of which three were withdrawn prior
to the decision progress. The Program Committee met in Leysin, Switzerland, in
January 2017. Each submission was reviewed by at least three Program Committee
members. There were many high-quality submissions, of which the committee selected
36 to appear in the conference proceedings. We expect the full versions of the extended
abstracts appearing here to be submitted for publication in refereed journals.

This year, IPCO was preceded by a Summer School during June 24–25, 2017, with
lectures by Sanjeeb Dash, Anupam Gupta, and Aleksander Madry. We would like to
thank:

– The authors who submitted their research to IPCO
– The members of the Program Committee, who spent much time and energy

reviewing the submissions
– The expert additional reviewers whose opinion was crucial in the paper selection
– The members of the local Organizing Committee, who made this conference

possible

April 2017 Friedrich Eisenbrand
Jochen Koenemann
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The Two-Point Fano and Ideal Binary Clutters

Ahmad Abdi(B) and Bertrand Guenin

Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada

{a3abdi,bguenin}@uwaterloo.ca

Abstract. Let F be a binary clutter. We prove that if F is non-ideal,
then either F or its blocker b(F) has one of L7,O5,LC7 as a minor. L7 is
the non-ideal clutter of the lines of the Fano plane, O5 is the non-ideal
clutter of odd circuits of the complete graph K5, and the two-point Fano
LC7 is the ideal clutter whose sets are the lines, and their complements,
of the Fano plane that contain exactly one of two fixed points. In fact,
we prove the following stronger statement: if F is a minimally non-ideal
binary clutter different from L7,O5, b(O5), then through every element,
either F or b(F) has a two-point Fano minor.

1 Introduction

Let E be a finite set. A clutter F over ground set E(F) := E is a family of subsets
of E, where no subset is contained in another. We say that F is binary if the
symmetric difference of any odd number of sets in F contains a set of F. We say
that F is ideal if the polyhedron

Q(F) :=
{

x ∈ R
E
+ :

∑
(xe : e ∈ C) ≥ 1 C ∈ F

}

has only integral extreme points; otherwise it is non-ideal. When is a binary
clutter ideal? We will be studying this question.

Let us describe some examples of ideal and non-ideal binary clutters. Given
a graph G and distinct vertices s, t, the clutter of st-paths of G over the edge-set
is binary. An immediate consequence of Menger’s theorem [12], as well as Ford
and Fulkerson’s theorem [6], is that this binary clutter is ideal [3]. The clutter
of lines of the Fano plane

L7 :=
{{1, 2, 6}, {1, 4, 7}, {1, 3, 5}, {2, 5, 7}, {2, 3, 4}, {3, 6, 7}, {4, 5, 6}}

is binary, and it is non-ideal as
(
1
3 , 1

3 , . . . , 1
3

)
is an extreme point of Q(L7). (See

Fig. 1.) The clutter of odd circuits of K5 over its ten edges, denoted O5, is also
binary, and it is non-ideal as

(
1
3 , 1

3 , . . . , 1
3

)
is an extreme point of Q(O5).

We say that two clutters are isomorphic if relabeling the ground set of one
yields the other. There are two fundamental clutter operations that preserve
being binary and ideal, let us describe them. The blocker of F, denoted b(F),
is another clutter over the same ground set whose sets are the (inclusionwise)
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 1–12, 2017.
DOI: 10.1007/978-3-319-59250-3 1



2 A. Abdi and B. Guenin

minimal sets in {B ⊆ E : B ∩ C �= ∅ ∀C ∈ F}. It is well-known that b(b(F)) =
F [5]. We may therefore call F, b(F) a blocking pair. A clutter F is binary if, and
only if, |B ∩ C| is odd for all B ∈ b(F) and C ∈ F [9]. Hence, if F is binary, then
so is b(F). Lehman’s Width-Length Inequality shows that if F is ideal, then so
is b(F) [10]. In particular, since L7 and O5 are non-ideal, then so are b(L7) = L7

and b(O5). Let I, J be disjoint subsets of E. Denote by F\I/J the clutter over
E − (I ∪ J) of minimal sets of {C − J : C ∈ F, C ∩ I = ∅}.1 We say that F\I/J ,
and any clutter isomorphic to it, is a minor of F obtained after deleting I and
contracting J . If I ∪ J �= ∅, then F\I/J is a proper minor of F. It is well-known
that b(F\I/J) = b(F)/I\J [16]. If a clutter is binary, then so is every minor of
it, and if a clutter is ideal, then so is every minor of it [17].

Let F be a binary clutter. Regrouping what we discussed, if F or b(F) has
one of L7, O5 as a minor, then it is non-ideal. Seymour [17] (p. 200) conjectures
the converse is also true:

The flowing conjecture. Let F be a non-ideal binary clutter. Then F or b(F)
has one of L7, O5 as a minor.

1

2

6

7

4

3

5

Fig. 1. The Fano plane

The two-point Fano clutter, denoted by LC7,
is the clutter over ground set {1, . . . , 7} whose
sets are the lines, and their complements, of the
Fano plane that intersect {1, 4} exactly once, i.e.
LC7 consists of {1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {2, 5, 7} and
{3, 4, 5, 7}, {2, 4, 6, 7}, {1, 5, 6, 7}, {1, 3, 4, 6}. Observe
that changing the two points 1, 4 yields an isomorphic
clutter. It can be readily checked that LC7 is binary
and ideal. In this paper, we prove the following weak-
ening of the flowing conjecture:

Theorem 1. Let F be a non-ideal binary clutter.
Then F or b(F) has one of L7, O5, LC7 as a minor.

What makes this result attractive is its relatively simple proof. The techniques
used in the proof give hope of resolving the flowing conjecture. An interesting
feature of the proof is the interplay between the clutter F and its blocker b(F);
if we fail to find one of the desired minors in the clutter, we switch to the
blocker and find a desired minor there. Theorem 1 is a consequence of a stronger
statement stated in the next section.

2 Preliminaries and the Main Theorem

2.1 Minimally Non-ideal Binary Clutters

A clutter is minimally non-ideal (mni) if it is non-ideal and every proper minor of
it is ideal. Notice that every non-ideal clutter has an mni minor, and if a clutter
1 Given sets A,B we denote by A − B the set {a ∈ A : a /∈ B} and, for element a, we

write A − a instead of A − {a}.



The Two-Point Fano and Ideal Binary Clutters 3

is mni, then so is its blocker. Justified by this observation, instead of working
with non-ideal binary clutters, we will work with mni binary clutters. The three
clutters L7, O5, b(O5) are mni, and the flowing conjecture predicts that these are
the only mni binary clutters. We will need the following result of the authors:

Theorem 2 ([1]). L7, O5 are the only mni binary clutters with a set of size 3.

We will also need the following intermediate result of Alfred Lehman on mni
clutters, stated only for binary clutters. Let F be a clutter over ground set E.
Denote by F̄ the clutter of minimum size sets of F. Denote by M(F) the 0 − 1
matrix whose columns are labeled by E and whose rows are the incidence vectors
of the sets of F. For an integer r ≥ 1, a square 0 − 1 matrix is r-regular if every
row and every column has precisely r ones.

Theorem 3 ([2,11,15]). Let F be an mni binary clutter where n := |E(F)|, and
let K := b(F). Then

(1) M(F̄) and M(K̄) are square and non-singular matrices,
(2) M(F̄) is r-regular and M(K̄) is s-regular, for some integers r ≥ 3 and s ≥ 3

such that rs − n is even and rs − n ≥ 2,
(3) after possibly permuting the rows of M(K̄), we have that

M(F̄)M(K̄)� = J + (rs − n)I = M(K̄)�M(F̄).

Here, J denotes the all-ones matrix, and I the identity matrix. Given a ground
set E and a set C ⊆ E, denote by χC ⊆ {0, 1}E the incidence vector of C. We
will make use of the following corollary:

Corollary 4. Let F be an mni binary clutter. Then the following statements
hold:

(1) For C1, C2 ∈ F̄, the only sets of F contained in C1 ∪ C2 are C1, C2 [7,8].
(2) Choose C1, C2, C3 ∈ F̄ and e ∈ E(F) such that C1∩C2 = C2∩C3 = C3∩C1 =

{e}. If C,C ′ are sets of F such that C ∪C ′ ⊆ C1 ∪C2 ∪C3 and C ∩C ′ ⊆ {e},
then {C,C ′} = {Ci, Cj} for some distinct i, j ∈ {1, 2, 3}.

Proof. (2) Denote by r the minimum size of a set in F. As F is binary, C1
C2

C3
C
C ′ contains another set C ′′ of F. Notice that C ′′∩C ⊆ {e} and C ′′∩C ′ ⊆
{e}. If k many of C,C ′, C ′′ contain e, then

3r − 3 = |(C1 ∪ C2 ∪ C3) − e| ≥ |(C ∪ C′ ∪ C′′) − e| = |C| + |C′| + |C′′| − k ≥ 3r − k,

implying in turn that k = 3 and equality must hold throughout. In particular,
C,C ′, C ′′ ∈ F̄ and χC1 +χC2 +χC3 = χC +χC′ +χC′′ , so as M(F̄) is non-singular
by Theorem 3 (1), we get that {C1, C2, C3} = {C,C ′, C ′′}. ��
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2.2 Signed Matroids

All matroids considered in this paper are binary; we follow the notation used
in Oxley [14]. Let M be a matroid over ground set E. Recall that a circuit is a
minimal dependent set of M and a cocircuit is a minimal dependent set of the
dual M�. A cycle is the symmetric difference of circuits, and a cocycle is the
symmetric difference of cocircuits. It is well-known that a nonempty cycle is a
disjoint union of circuits ([14], Theorem 9.1.2). Let Σ ⊆ E. The pair (M,Σ) is
called a signed matroid over ground set E. An odd circuit of (M,Σ) is a circuit
C of M such that |C ∩ Σ| is odd.

Proposition 5 ([9,13], also see [4]). The clutter of odd circuits of a signed
matroid is binary. Conversely, a binary clutter is the clutter of odd circuits of a
signed matroid.

A representation of a binary clutter F is a signed matroid whose clutter of odd
circuits is F. By the preceding proposition, every binary clutter has a repre-
sentation. For instance, L7 is represented as

(
F7, E(F7)

)
, where F7 is the Fano

matroid. A signature of (M,Σ) is any subset of the form Σ
D, where D is a
cocycle of M ; to resign is to replace (M,Σ) by (M,Σ
D). Notice that resigning
does not change the family of odd cycles. We say that two signed matroids are
isomorphic if one can be obtained from the other after a relabeling of the ground
set and a resigning.

Remark 6. Take an arbitrary element ω of F7. Then (F7, E(F7)−ω) represents
LC7.

Proof. Suppose E(F7) = {1, . . . , 7}, and since F7 is transitive, we may assume
that ω = 7. Consider the following representation of F7,⎛

⎝
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

⎞
⎠

where the columns are labeled 1, . . . , 7 from left to right. Since {2, 3, 5, 6} is
a cocycle of F7, (F7, {1, . . . , 6}) is isomorphic to (F7, {1, . . . , 6}
{2, 3, 5, 6}) =
(F7, {1, 4}). It can be readily checked that the odd circuits of (F7, {1, 4}) are
precisely the sets of LC7, thereby proving the remark. ��
Proposition 7 ([9,13], also see [8]). In a signed matroid, the clutter of mini-
mal signatures is the blocker of the clutter of odd circuits.

Let I, J be disjoint subsets of E. The minor (M,Σ)\I/J obtained after deleting I
and contracting J is the signed matroid defined as follows: if J contains an
odd circuit, then (M,Σ)\I/J := (M\I/J, ∅), and if J does not contain an odd
circuit, then there is a signature Σ′ of (M,Σ) disjoint from J by the preceding
proposition, and we let (M,Σ)\I/J := (M\I/J,Σ′ − I). Observe that minors
are defined up to resigning.

Proposition 8 ([13], also see [4]). Let F be a binary clutter represented
as (M,Σ), and take disjoint I, J ⊆ E(F). Then F\I/J is represented as
(M,Σ)\I/J .
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2.3 Hubs and the Main Theorem

Let (M,Σ) be a signed matroid, and take e ∈ E(M). An e-hub of (M,Σ) is a
triple (C1, C2, C3) satisfying the following conditions:

(h1) C1, C2, C3 are odd circuits such that, for distinct i, j ∈ {1, 2, 3}, Ci ∩ Cj =
{e},

(h2) for distinct i, j ∈ {1, 2, 3}, the only nonempty cycles contained in Ci ∪ Cj

are Ci, Cj , Ci
Cj ,
(h3) a cycle contained in C1 ∪ C2 ∪ C3 is odd if and only if it contains e.

A strict e-hub is an e-hub (C1, C2, C3) such that the following holds:

(h4) if C,C ′ are odd cycles contained in C1 ∪ C2 ∪ C3 such that C ∩ C ′ = {e},
then for some distinct i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}.

Given I ⊆ E, denote by M |I the minor M \ (E − I), and by (M,Σ)|I the
minor (M,Σ) \ (E − I). The following is the main result of the paper:

Theorem 9. Let F, K be a blocking pair of mni binary clutters over ground set
E, neither of which has a set of size 3. Let (M,Σ) represent F and let (N,Γ )
represent K. Then, for a given e ∈ E, the following statements hold:

(1) (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ ) has a strict e-hub (B1, B2,
B3) where for i, j ∈ {1, 2, 3},

|Ci ∩ Bj |
{≥ 3 if i = j

= 1 if i �= j,

(2) either M |(C1 ∪ C2 ∪ C3) or N |(B1 ∪ B2 ∪ B3) is non-graphic,
(3) if M |(C1 ∪ C2 ∪ C3) is non-graphic, then (M,Σ)\I/J ∼= (F7, E(F7) − ω) for

some disjoint I, J ⊆ E−e, and similarly, if N |(B1∪B2∪B3) is non-graphic,
then (N,Γ )\I/J ∼= (F7, E(F7) − ω) for some disjoint I, J ⊆ E − e.

Given this result, let us prove Theorem 1:

Proof (of Theorem 1). Let F be a non-ideal binary clutter, let F
′ be an mni

minor of F, and let K
′ := b(F′). If F

′ has a set of size 3, then by Theorem 2,
F

′ ∼= L7 or O5. If K
′ has a set of size 3, then by Theorem 2, K

′ ∼= L7 or O5. Thus,
if one of F

′, K′ has a set of size 3, then either F or b(F) has one of L7, O5 as a
minor. We may therefore assume that neither F

′ nor K
′ has a set of size 3. Let

(M,Σ) represent F
′ and let (N,Γ ) represent K

′, whose existence are guaranteed
by Proposition 5. It then follows from Theorem 9 (2)–(3) that either (M,Σ) or
(N,Γ ) has an (F7, E(F7) − ω) minor. By Remark 6 and Proposition 8, we see
that either F

′ or K
′ has an LC7 minor, implying in turn that either F or b(F)

has an LC7 minor, as required. ��
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In the remainder of this paper, we prove Theorem 9.

3 Proof of Theorem 9 Part (1)

Let F, K be blocking mni binary clutters over ground set E, neither of which
has a set of size 3. By Theorem 3, there are integers r ≥ 4 and s ≥ 4 such that
M(F̄) is r-regular, M(K̄) is s-regular, and after possibly permuting the rows of
M(K̄), M(F̄)M(K̄)� = J + (rs − n)I = M(K̄)�M(F̄). Thus, there is a labeling
F̄ = {C1, . . . , Cn} and K̄ = {B1, . . . , Bn} so that, for all i, j ∈ {1, . . . , n},

(�) |Ci ∩ Bj | =
{

rs − n + 1 if i = j
1 if i �= j

and for all g, h ∈ E,

(�) |{i ∈ {1, . . . , n} : g ∈ Ci, h ∈ Bi}| =
{

rs − n + 1 if g = h
1 if g �= h.

Take an element e ∈ E. Since rs−n ≥ 2, we may assume by (�) that e ∈ Ci ∩Bi

for i ∈ {1, 2, 3}. Recall that (M,Σ) represents F and that (N,Γ ) represents K.
We will show that (C1, C2, C3) is a strict e-hub of (M,Σ).

Claim 1. C1, C2, C3 are odd circuits of (M,Σ) such that, for distinct i, j ∈
{1, 2, 3}, Ci ∩ Cj = {e}, i.e. (h1) holds.

Proof of Claim. By definition, C1, C2, C3 are odd circuits of (M,Σ). To see C1∩
C2 = {e}, notice that if f ∈ (C1 ∩ C2) − e, then {1, 2} ⊆ {i ∈ {1, . . . , n} : f ∈
Ci, e ∈ Bi}, which cannot be the case as the latter set has size 1 by (�). Similarly,
C2 ∩ C3 = C3 ∩ C1 = {e}. ♦

Claim 2. For distinct i, j ∈ {1, 2, 3}, the only nonempty cycles of M contained
in Ci ∪ Cj are Ci, Cj , Ci
Cj, so (h2) holds.

Proof of Claim. By symmetry, we may only analyze the cycles of M contained
in C1 ∪ C2. By Corollary 4 (1), the only odd circuits of (M,Σ) contained in
C1 ∪ C2 are C1, C2. We first show that C1, C2 are the only odd cycles of (M,Σ)
in C1∪C2. Suppose otherwise. Let A be an odd cycle different from C1, C2. Write
C as the disjoint union of circuits A1, . . . , Ak for some k ≥ 2. Since |Σ ∩ A| =∑k

i=1 |Σ ∩ Ai| and |Σ ∩ A| is odd, we may assume that |Σ ∩ A1| is odd, so
A1 ∈ {C1, C2}, and we may assume that A1 = C1. But then A2 ⊆ C2 − e,
a contradiction as both A2, C2 are circuits of M . Let C be a nonempty cycle
of M contained in C1 ∪ C2. If C is an odd cycle of (M,Σ), then as we just
showed, C ∈ {C1, C2}. Otherwise, C is an even cycle, so C
C1 is an odd cycle,
so C
C1 ∈ {C1, C2}, implying in turn that C = C1
C2, as required. ♦

Claim 3. Every odd cycle of (M,Σ) contained in C1 ∪ C2 ∪ C3 uses e, so (h3)
holds.
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Proof of Claim. Since s ≥ 4 and M(K̄) is s-regular, there is a B ∈ K̄ − {B1, B2,
B3} such that e ∈ B. Then, for each i ∈ {1, 2, 3}, |B ∩ Ci| = 1 by (�), so
B ∩ (C1 ∪ C2 ∪ C3) = {e}. It follows from Proposition 7 that B is a signature
of (M,Σ). Thus, if C is an odd cycle of (M,Σ) contained in C1 ∪ C2 ∪ C3, then
|C ∩ B| is odd and therefore nonzero, so e ∈ C. ♦

Claim 4. If C,C ′ are odd cycles of (M,Σ) contained in C1 ∪ C2 ∪ C3 such that
C ∩ C ′ = {e}, then for some distinct i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}, so
(h4) holds.

Proof of Claim. Let D,D′ be odd circuits contained in C,C ′, respectively. It
follows from Corollary 4 (2) that, for some distinct i, j ∈ {1, 2, 3}, {D,D′} =
{Ci, Cj}. Since there is no even cycle contained in (C1 ∪ C2 ∪ C3) − (Ci
Cj), it
follows that D = C and D′ = C ′, and the claim follows. ♦

Hence, (C1, C2, C3) is a strict e-hub of (M,Σ). Similarly, (B1, B2, B3) is a strict
e-hub of (N,Γ ). This finishes the proof of Theorem 9 part (1). ��

4 Hypergraphs, the Trifold, and Graphic Hubs

Let M be a binary matroid over ground set E. By definition, the cycles of M
form a linear space modulo 2, so there is a 0−1 matrix A such that the incidence
vectors of the cycles in M are

{
x ∈ {0, 1}E : Ax ≡ 0 (mod 2)

}
. The matrix A

is referred to as a representation of M. Notice that elementary row operations
modulo 2 applied to A yield another representation, and if a ∈ {0, 1}E belongs

to the row space of A modulo 2, then
(

A
a�

)
is also a representation.

A hypergraphic representation of M is a representation where every col-
umn has an even number of ones. If a� is the sum of the rows of A mod-

ulo 2, then
(

A
a�

)
is a hypergraphic representation. In particular, a binary

matroid always has a hypergraphic representation. A hypergraph is a pair
G = (V,E), where V is a finite set of vertices and E is a family of even
subsets of V , called edges. Note that if A is a hypergraphic representation
of M , then A may be thought of as a hypergraph whose vertices are labeled
by the rows and whose edges are labeled by the columns. For instance, the
Fano matroid F7 may be represented as a hypergraph on vertices {1, . . . , 4}
and edges

{
T ⊆ {1, . . . , 4} : |T | ∈ {2, 4}}. Denote by S8 the binary matroid

represented as the hypergraph displayed in Fig. 2, which has vertices {1, . . . , 5}
and edges {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {2, 3, 4, 5}. Label γ :=
{2, 3, 4, 5} ∈ E(S8). A trifold is any signed matroid isomorphic to

(
S8, E(S8)−γ

)
.

Remark 10. A trifold has an (F7, E(F7)) minor.

Proof. Observe that S8/γ ∼= F7, implying in turn that (S8, E(S8) − γ)/γ ∼=
(F7, E(F7)). ��
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1 2

34

1 2

4

3

5

Fig. 2. The hypergraph on the left represents F7, and the one on the right represents S8.
Line segments represent edges of size 2, and square vertices form the edges of size 4.

Given a hypergraph G = (V,E) and F ⊆ E, let oddG(F ) := 
(e : e ∈
F ) ⊆ V . Observe that oddG(F ) is an even subset of V . We will make use of the
following remark throughout the paper:

Remark 11. Let M be a binary matroid over ground set E∪{e}, where M \e is
represented by the hypergraph G = (V,E). If for some F ⊆ E, F ∪{e} is a cycle
of M , then the hypergraph on vertices V and edges E∪{oddG(F )} represents M .

Recall that a binary matroid is graphic if it can be represented by a graph.
We will also need the following result, whose proof is straight-forward:

Proposition 12. Take a signed matroid (M,Σ), e ∈ E(M) and an e-hub (C1,
C2, C3). Then there is a signature Σ′ such that Σ′ ∩ (C1 ∪ C2 ∪ C3) = {e}.
Moreover, the following statements are equivalent:

(i) M |(C1 ∪ C2 ∪ C3) is graphic,
(ii) C1, C2, C3, C1
C2
C3 are the only odd cycles contained in C1 ∪ C2 ∪ C3.

5 Proof of Theorem 9 Part (2)

Let F, K be blocking mni binary clutters over ground set E, neither of which
has a set of size 3. Recall that (M,Σ) represents F and that (N,Γ ) represents
K. Take an element e ∈ E. By Theorem 9 part (1), (M,Σ) has a (strict) e-hub
(C1, C2, C3) and (N,Γ ) has a (strict) e-hub (B1, B2, B3), where for i ∈ {1, 2, 3},
|Ci ∩ Bi| ≥ 3 and, for distinct i, j ∈ {1, 2, 3}, Ci ∩ Bj = {e}. By Proposition 12,
after a possible resigning of (M,Σ), we may assume that Σ∩(C1∪C2∪C3) = {e}.
Notice further that by Proposition 7, the odd circuits of (N,Γ ) are (minimal)
signatures of (M,Σ). We need to show that either M |(C1 ∪C2 ∪C3) or N |(B1 ∪
B2 ∪ B3) is non-graphic. Suppose otherwise. Since N |(B1 ∪ B2 ∪ B3) is graphic,
it follows from Proposition 12 that B1, B2, B3 are the only odd circuits of (N,Γ )
contained in B1 ∪ B2 ∪ B3. In other words, the only sets of K contained in
B1 ∪ B2 ∪ B3 are B1, B2, B3.

Claim 1. There is an odd circuit C of (M,Σ) such that e /∈ C and, for each
i ∈ {1, 2, 3}, C ∩ Bi ⊆ Ci.
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Proof of Claim. Let B be the union of (B1 ∪B2 ∪B3)− (C1 ∪C2 ∪C3) and {e}.
Since B1 ∩ C1 �= {e}, it follows that B1 �⊆ B. Similarly, B2 �⊆ B and B3 �⊆ B.
Thus, since the only sets of K contained in B1 ∪ B2 ∪ B3 are B1, B2, B3, we
get that B does not contain a set of K = b(F). In other words, there is a set
C ∈ F such that C ∩ B = ∅. By definition, C is an odd circuit of (M,Σ).
Clearly, e /∈ C. Consider the intersection C ∩ B1. Since C ∩ B = ∅, it follows
that C ∩ B1 ⊆ C1 ∪ C2 ∪ C3. Moreover, as B1 ∩ C2 = B1 ∩ C3 = {e}, we see that
C ∩ B1 ⊆ C1. Similarly, C ∩ B2 ⊆ C2 and C ∩ B3 ⊆ C3. ♦

Since e /∈ C, we get that C ∩ Σ ⊆ C − (C1 ∪ C2 ∪ C3), and as C is odd, it
follows that C �⊆ C1 ∪ C2 ∪ C3.

Claim 2. (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ C) has a trifold minor.

Proof Sketch. Let S be a minimal subset of C − (C1 ∪ C2 ∪ C3) such that (m1)
M |(C1 ∪ C2 ∪ C3 ∪ S) has a cycle containing S, and (m2) |S ∩ Σ| is odd. Note
that S is well-defined, since C − (C1 ∪ C2 ∪ C3) satisfies both (m1)–(m2). Let

(M ′, Σ′) := (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ S).

The minimality of S implies that the elements of S are in series in M ′. In
particular, after a possible resigning, we may assume that Σ′ ∩ (C1 ∪ C2 ∪
C3 ∪ S) = {e, f} for some element f ∈ S. Let

(M ′′, {e, f}) := (M ′, Σ′)/(S − f).

Since B1 is a signature for (M,Σ), and B1 ∩ (C1 ∪ C2 ∪ C3 ∪ C) = B1 ∩ C1

by our choice of C, it follows that B1 ∩ C1 is a signature for (M ′′, {e, f}).
We have M ′′\f = M ′/(S − f)\f = M ′\S = M |(C1 ∪ C2 ∪ C3), where the
second equality follows from the fact that the elements of M ′ in S are in
series. Since M |(C1 ∪ C2 ∪ C3) is graphic, M ′′\f may be represented as a
graph G = (V,C1 ∪ C2 ∪ C3). It follows from (h2) that the circuits C1, C2, C3

are pairwise vertex-disjoint except at the ends of e = {x, y} ⊆ V . By (m1),
M |(C1 ∪ C2 ∪ C3 ∪ S) has a cycle containing S, so M ′′ has a cycle P ∪ {f}, for
some P ⊆ C1 ∪ C2 ∪ C3. By replacing P by P
C1, if necessary, we may assume
that e /∈ P . For each i ∈ {1, 2, 3}, let Pi := P ∩Ci and Qi := Ci−(Pi∪{e}). After
possibly rearranging the edges of G within each series class Ci−e, we may assume
that each Pi is a path that starts from x. It follows from Remark 11 that M ′′ is
represented as the hypergraph on vertices V and edges C1 ∪ C2 ∪ C3∪{oddG(P )}.
We may therefore label f = oddG(P ), and represent M ′′ with the following
hypergraph

P1

P2

P3

e

Q1

Q2

Q3
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where f consists of the square vertices. Since P ∪ {f} is an odd cycle of
(M ′′, {e, f}), it must contain an odd number of edges of the signature B1 ∩ C1,
implying in turn that each of P1, Q1 contains an odd number of edges of B1,
so P1 �= ∅ and Q1 �= ∅. Similarly, for each i ∈ {1, 2, 3}, Pi �= ∅ and Qi �= ∅, so
there are pi ∈ Pi and qi ∈ Qi. Since {e, p1, p2, p3, q1, q2, q3} is a signature for
(M ′′, {e, f}), we see that

(M ′′, {e, f}) ∼= (M ′′, {e, p1, p2, p3, q1, q2, q3}).

Observe however that the right signed matroid has a trifold minor, obtained
after contracting each Ci −{e, pi, qi}. As a result, (M,Σ)|(C1 ∪C2 ∪C3 ∪C) has
a trifold minor. ♦

However, by Remark 10, a trifold has an (F7, E(F7)) minor, so (M,Σ) has
an (F7, E(F7)) minor. As a consequence, Proposition 8 implies that F has an L7

minor. Since F is mni, we must have that F ∼= L7, but F has no set of size 3, a
contradiction. This finishes the proof of Theorem 9 part (2). ��

6 Non-graphic Strict Hubs

In this section, we prove the following result needed for Theorem 9 part (3):

Proposition 13. Take a signed matroid (M,Σ), e ∈ E(M) and a strict
e-hub (C1, C2, C3) such that M |(C1 ∪ C2 ∪ C3) is non-graphic. Then there exist
I ⊆ C3 − e and distinct g1, g2 ∈ (C3 − I) − e where

(1) (C1, C2, C3 − I) is an e-hub of (M,Σ)/I,
(2) (M/I)|(C1 ∪ C2 ∪ {gi}

)
has a circuit containing gi, for each i ∈ {1, 2},

(3) (M/I)|(C1 ∪ C2 ∪ {g1, g2}
)
is non-graphic.

Proof Sketch. By Proposition 12, after a possible resigning, we may assume that
Σ ∩ (C1 ∪ C2 ∪ C3) = {e}. Let I be a maximal subset of C3 − e such that
every cycle of M |(C1 ∪ C2 ∪ I) is disjoint from I. Let (M ′, {e}) := (M,Σ)|(C1 ∪
C2 ∪ C3)/I and C ′

3 := C3 − I. Then (C1, C2, C
′
3) is an e-hub of (M ′, {e}), and

as M |(C1 ∪ C2 ∪ C3) is non-graphic, it follows from Proposition 12 that M ′ is
non-graphic. Moreover, the maximality of I implies that, for each g ∈ C ′

3 − e,
there is a cycle Dg of M ′|(C1 ∪ C2 ∪ {g}) using g, where after possibly replacing
Dg by Dg
C1, we may assume that e /∈ Dg. Note that Dg
C1
C2 is another
cycle of M ′|(C1 ∪ C2 ∪ {g}) that uses g and excludes e. For each such g, refer to
Dg − g and (Dg
C1
C2) − g as the outer joins of g. Notice that an outer join
intersects both C1, C2. As 
(

Dg − g : g ∈ C ′
3 − e

)
is either C1 − e or C2 − e by

(h2), there exist h1, h2 ∈ C ′
3 −{e} and respective outer joins Jh1 , Jh2 that cross,

that is, Jh1 ∩ Jh2 �= ∅, Jh1 − Jh2 �= ∅, Jh2 − Jh1 �= ∅ and Jh1 ∪ Jh2 �= C1
C2. If
M ′|(C1 ∪ C2 ∪ {h1, h2}) is non-graphic, then we are done. Otherwise, it may be
represented as a graph H = (V,C1 ∪C2 ∪{h1, h2}), displayed below (left figure),
where C1 = {e} ∪ P1 ∪ Q1 ∪ R1, C2 = {e} ∪ P2 ∪ Q2 ∪ R2, Jh1 = P1 ∪ P2 ∪ Q2,
and Jh2 = P1 ∪ P2 ∪ Q1. Notice that Pi, Qi, Ri �= ∅ for each i ∈ {1, 2}. Let
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D1 := {e, h1} ∪ P1 ∪ R2 and D2 := {e, h2} ∪ {P2, R1}. For i ∈ {1, 2}, let D′
i

be a cycle of M such that Di ⊆ D′
i ⊆ Di ∪ I; as D′

i ∩ Σ = {e}, D′
i is an odd

cycle of (M,Σ). Note further, for i ∈ {1, 2}, that D′
i is different from C1, C2, C3.

Thus, since (C1, C2, C3) is a strict e-hub of (M,Σ) and therefore satisfies (h4),
we must have that {e} � D′

1 ∩ D′
2. Because D1 ∩ D2 = {e}, there is an element

f ∈ I such that {e, f} ⊆ D′
1 ∩ D′

2. Consider now the minor (M,Σ)/(I − f);
note that D1 ∪ {f} and D2 ∪ {f} are odd cycles of this signed matroid. We
may represent M/(I − f) as a hypergraph G = (V ∪ {w}, C1 ∪ C2 ∪ {h1, h2, f})
obtained from H by adding a vertex w, displayed below (right figure), where
the square vertices form the edge h1. Now let J := I
{f, h2}. Observe that
(M/J)|(C1 ∪ C2 ∪ {f, h1}) is non-graphic, as it has an F7 minor obtained after
contracting P1∪R2 and contracting each of Q1, R1, P2, Q2 to a single edge. Thus,
J ⊆ C ′

3 − {e} and f, h1 satisfy (3), and it can be readily checked that they also
satisfy (1)–(2).

h1 h2
e

P1

Q1

R1 R2

Q2

P2
h2

f

w

��

7 A Sketch of the Proof of Theorem 9 Part (3)

Let F, K be blocking mni clutters over ground set E, neither of which has a set
of size 3, where (M,Σ) represents F and (N,Γ ) represents K. By Theorem 9
part (1), (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ ) has a strict e-hub
(B1, B2, B3) such that for i ∈ {1, 2, 3}, |Ci ∩ Bi| ≥ 3 and, for distinct i, j ∈
{1, 2, 3}, Ci ∩ Bj = {e}. Assume further that M |(C1 ∪ C2 ∪ C3) is non-graphic.
We need to show that (M,Σ) has an (F7, E(F7) − ω) minor going through e.
By Proposition 12, after a possible resigning, we may assume that Σ ∩ (C1 ∪
C2 ∪ C3) = {e}. By Proposition 13, there exist I ⊆ C3 − e and distinct g1, g2 ∈
(C3 − I) − e such that (1)–(3) hold. For each i ∈ {1, 2}, after possibly replacing
Di by Di
C1, we may assume that e /∈ Di; as (C1, C2, C3 − I) is an e-hub of
(M,Σ)/I, it follows from (h2) that Di ∩ C1 �= ∅ and Di ∩ C2 �= ∅. Notice that,
for each i ∈ {1, 2}, Bi ∩ I = ∅, so Bi is a signature of (M,Σ)/I.

Claim 1. There exists an odd circuit C of (M,Σ)/I such that e /∈ C and, for
each i ∈ {1, 2}, C ∩ Bi ⊆ Ci.

Let (M ′, Σ) := (M,Σ)/I. Let S be a minimal subset of C − (C1 ∪ C2)
such that (m1) M ′|(C1 ∪ C2 ∪ S) has a cycle containing S, and (m2) |S ∩ Σ|
is odd. Note that S is well-defined as C − (C1 ∪ C2) satisfies (m1)–(m2). The
minimality of S implies that S ∩{g1, g2} = ∅, and the elements of S are in series
in M ′|(C1 ∪C2 ∪{g1, g2}∪S). Thus, there exists a signature Σ′ of (M ′, Σ) such
that Σ′ ∩ (C1 ∪ C2 ∪ {g1, g2} ∪ S) = {e, f}, for some f ∈ S. Consider the minor

(M ′′, {e, f}) := (M ′, Σ′)|(C1 ∪ C2 ∪ {g1, g2} ∪ S)/(S − f).
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For each i ∈ {1, 2}, our choice of C implies that Bi ∩ S = ∅, so Bi ∩ (C1 ∪ C2 ∪
{g1, g2}) = Bi ∩ Ci is a signature of (M ′′, {e, f}).

Claim 2. If M ′′\gi is graphic for each i ∈ {1, 2}, then (M ′′, {e, f}) has an
(F7, E(F7)) minor.

Assume that M ′′\gi is graphic for each i ∈ {1, 2}. Then by the preceding
claim, (M ′′, {e, f}) has an (F7, E(F7)) minor, implying in turn that (M,Σ) has
an (F7, E(F7)) minor. So by Proposition 8, F has an L7 minor, and since F is mni,
this means F ∼= L7, which cannot be as F has no set of size 3. Hence, by symmetry,
we may assume that M ′′\g2 is non-graphic. Thus, there exists I ⊆ C1
C2 such
that M ′′\g2/I ∼= F7. Then (M ′′, {e, f}) \ g2/I ∼= (F7, E(F7)−ω), and so (M,Σ)
has an (F7, E(F7) − ω) minor going through e, as required. This finishes the
proof of Theorem 9 part (3). ��
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Abstract. Applications designed for data-parallel computation frame-
works such as MapReduce usually alternate between computation and
communication stages. Coflow scheduling is a recent popular networking
abstraction introduced to capture such application-level communication
patterns in datacenters. In this framework, a datacenter is modeled as
a single non-blocking switch with m input ports and m output ports. A
coflow j is a collection of flow demands {dj

io}i∈m,o∈m that is said to be
complete once all of its requisite flows have been scheduled.

We consider the offline coflow scheduling problem with and without
release times to minimize the total weighted completion time. Coflow
scheduling generalizes the well studied concurrent open shop schedul-
ing problem and is thus NP-hard. Qiu, Stein and Zhong [15] obtain
the first constant approximation algorithms for this problem via LP
rounding and give a deterministic 67

3
-approximation and a randomized

(9 + 16
√
2

3
) ≈ 16.54-approximation algorithm. In this paper, we give

a combinatorial algorithm that yields a deterministic 5-approximation
algorithm with release times, and a deterministic 4-approximation for
the case without release time.

Keywords: Coflow scheduling · Concurrent open shop

1 Introduction

Large scale data centers have emerged as the dominant form of computing
infrastructure over the last decade. The success of data-parallel computing frame-
works such as MapReduce [9], Hadoop [1], and Spark [19] has led to a prolif-
eration of applications that are designed to alternate between computation and
communication stages. Typically, the intermediate data generated by a compu-
tation stage needs to be transferred across different machines during a commu-
nication stage for further processing. For example, there is a “Shuffle” phase
between every consecutive “Map” and “Reduce” phase in MapReduce. With an
increasing reliance on parallelization, these communication stages are responsi-
ble for a large amount of data transfer in a datacenter. Chowdhury and Stoica
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[5] introduced coflows as an effective networking abstraction to represent the
collective communication requirements of a job. In this paper, we consider the
problem of scheduling coflows to minimize weighted completion time and give
improved approximation algorithms for this basic problem.

The communication phase for a typical application in a modern data center
may contain hundreds of individual flow requests, and the phase ends only when
all of these flow requests are satisfied. A coflow is defined as the collection of
these individual flow requests that all share a common performance goal. The
underlying data center is modeled as a single m × m non-blocking switch that
consists of m input ports and m output ports. We assume that each port has unit
capacity, i.e. it can handle at most one unit of data per unit time. Modeling the
data center itself as a simple switch allows us to focus solely on the scheduling
task instead of the problem of routing flows through the network. Each coflow j
is represented as a m×m integer matrix Dj = [djio] where the entry djio indicates
the number of data units that must be transferred from input port i to output
port o for coflow j. Figure 1 shows a single coflow over a 2 × 2 switch. For
instance, the coflow depicted needs to transfer 2 units of data from input a to
output b and 3 units of data from input a to output d. Each coflow j also has a
weight wj that indicates its relative importance and a release time rj .

Input 
Ports

2

3 1

4

2 3

1 4

a

c

b d
a b

c d

Output 
Ports

Bipartite Graph 
Representation

Matrix
 Representation

[ ]

Fig. 1. An example coflow over a 2 × 2 switch. The figure illustrates two equivalent
representations of a coflow - (i) as a weighted, bipartite graph over the set of ports,
and (ii) as a m × m integer matrix.

A coflow j is available to be scheduled at its release time rj and is said to
be completed when all the flows in the matrix Dj have been scheduled. More
formally, the completion time Cj of coflow j is defined as the earliest time such
that for every input i and output o, djio units of its data have been transferred
from port i to port o. We assume that time is slotted and data transfer within
the switch is instantaneous. Since each input port i can transmit at most one
unit of data and each output port o can receive at most one unit of data in
each time slot, a feasible schedule for a single time slot can be described as
a matching. Our goal is to find a feasible scheduling that minimizes the total
weighted completion time of the coflows, i.e. minimize

∑
j wjCj .
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1.1 Related Work

Chowdhury and Stoica [5] introduced the coflow abstraction to describe the
prevalent communication patterns in data centers. Since then coflow scheduling
has been a topic of active research [6,7,15,20] in both the systems and theory
communities. Although coflow aware network schedulers have been found to
perform very well in practice in both the offline [7] and online [6] settings, no O(1)
approximation algorithms were known even in the offline setting until recently.
Since the coflow scheduling problem generalizes the well-studied concurrent open
shop scheduling problem, it is NP-hard to approximate within a factor better
than (2 − ε) [3,17].

For the special case when all coflows have zero release time, Qiu, Stein and
Zhong [15] obtain a deterministic 64

3 approximation and a randomized (8+ 16
√
2

3 )
approximation algorithm for the problem of minimizing the weighted completion
time. For coflow scheduling with arbitrary release times, Qiu et al. [15] claim a
deterministic 67

3 approximation and a randomized (9 + 16
√
2

3 ) approximation
algorithm. However in the full version [2], we demonstrate a subtle error in their
proof that deals with non-zero release times. We show that their techniques in
fact only yield a deterministic 76

3 -approximation algorithm for coflow scheduling
with release times. However their result holds for the case with equal release
times.

By exploiting a connection with the well-studied concurrent open shop
scheduling problem, Luo et al. [13] claim a 2-approximation algorithm for coflow
scheduling when all the release times are zero. Unfortunately, as we show in the
full version [2], their proof too is flawed and the result does not hold.

In a recent work, Khuller et al. [11] study coflow scheduling in the online
setting where the coflows arrive online over time. Using the results of this paper
(Theorem 2), they obtain an exponential time 7-competitive algorithm and a
polynomial time 14-competitive algorithm.

1.2 Our Contributions

The main algorithmic contribution of this paper is a deterministic, primal-dual
algorithm for the offline coflow scheduling problem with improved approximation
guarantees.

Theorem 1. There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for coflow scheduling with release times.

Theorem 2. There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for coflow scheduling without release times.

Our results significantly improve upon the approximation algorithms devel-
oped by Qiu et al. [15] whose techniques yield an approximation factors of
76
3 = 25.33 and (8 + 16

√
2

3 ) ≈ 15.54 (see the full version [2]) respectively for the
two cases. In addition, our algorithm is completely combinatorial and does not
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require solving a linear program. A LP-based version is also provided together
with its proof, to help show the intuition behind the primal-dual one.

We also extend the primal dual algorithm by Mastrolilli et al. [14] to give a
3-approximation algorithm for the concurrent open shop problem when the jobs
have arbitrary release times.

Theorem 3. There exists a deterministic, combinatorial, polynomial time 3-
approximation algorithm for concurrent open shop scheduling with release times.

Due to space constraints, we defer all proofs to the full version [2].

1.3 Connection to Concurrent Open Shop

The coflow scheduling problem generalizes the well-studied concurrent open shop
problem [4,10,12,14,18]. In the concurrent open shop problem, we have a set of
m machines and each job j with weight wj is composed of m tasks {tji}mi=1, one
on each machine. Let pji denote the processing requirement of task tji . A job j is
said to be completed once all its tasks have completed. A machine can perform at
most one unit of processing at a time. The goal is to find a feasible schedule that
minimizes the total weighted completion time of jobs. An LP-relaxation yields a
2-approximation algorithm for concurrent open shop scheduling when all release
times are zero [4,10,12] and a 3-approximation algorithm for arbitrary release
times [10,12]. Mastrolilli et al. [14] show that a simple greedy algorithm also
yields a 2-approximation for concurrent open shop without release times. We
develop a primal-dual algorithm that yields a 3-approximation for concurrent
open shop with release times.

The concurrent open shop problem can be viewed as a special case of coflow
scheduling when the demand matrices Dj for all coflows j are diagonal [7,15].
At first glance, it appears that coflow scheduling is much harder than concurrent
open shop. For instance, while concurrent open shop always admits an optimal
permutation schedule, such a property is not be true for coflows [7]. In fact, even
without release times, the best known approximation algorithm for scheduling
coflows has an approximation factor of ≈ 15.54 [15], in contrast to the many
2-approximations known for the concurrent open shop problem. Surprisingly,
we show that using a similar LP relaxation as for the concurrent open shop
problem, we can design a primal dual algorithm to obtain a permutation of
coflows such that sequentially scheduling the coflows after some post-processing
in this permutation leads to provably good coflow schedules.

2 Preliminaries

We first introduce some notation to facilitate the following discussion. For every
coflow j and input port i, we define the load Li,j =

∑m
o=1 djio to be the total

amount of data that coflow j needs to transmit through port i. Similarly, we
define Lo,j =

∑m
i=1 djio for every coflow j and output port o. Equivalently, a

coflow j can be represented by a weighted, bipartite graph Gj = (I,O,Ej) where
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the set of input ports (I) and the set of output ports (O) form the two sides
of the bipartition and an edge e = (i, o) with weight wGj

(e) = djio represents
that the coflow j requires djio units of data to be transferred from input port i
to output port o. We will abuse notation slightly and refer to a coflow j by the
corresponding bipartite graph Gj when there is no confusion.

Representing a coflow as a bipartite graph simplifies some of the notation
that we have seen previously. For instance, for any coflow j, the load of j on
port i is simply the weighted degree of vertex i in graph Gj , i.e., if NGj

(i) denotes
the set of neighbors of node i in the graph Gj .

Li,j = degGj
(i) =

∑

o∈NGj
(i)

wGj
(i, o) (1)

For any graph Gj , let Δ(Gj) = maxs∈I∪O degGj
(s) = max{maxi Li,j ,maxo Lo,j}

denote the maximum degree of any node in the graph, i.e., the load on the most
heavily loaded port of coflow j.

In our algorithm, we consider coflows obtained as the union of two or
more coflows. Given two weighted bipartite graphs Gj = (I,O,Ej) and Gk =
(I,O,Ek), we define the cumulative graph Gj ∪ Gk = (I,O,Ej ∪ Ek) to be a
weighted bipartite graph such that wGj∪Gk

(e) = wGj
(e) + wGk

(e). We extend
this notation to the union of multiple graphs in the obvious manner.

2.1 Scheduling a Single Coflow

Before we present our algorithm for the general coflow scheduling problem, it is
instructive to consider the problem of feasibly scheduling a single coflow subject
to the matching constraints. Given a coflow Gj , the maximum degree of any
vertex in the graph Δ(Gj) = maxv degG(v) is an obvious lower bound on the
amount of time required to feasibly schedule coflow Gj . In fact, the following
lemma by Qiu et al. [15] shows that this bound is always achievable for any
coflow. The proof follows by repeated applications of Hall’s theorem on the
existence of perfect matchings in bipartite graphs.

Lemma 1 ([15]). There exists a polynomial time algorithm that schedules a
single coflow Gj in Δ(Gj) time steps.

Lemma 1 also implicitly provides a way to decompose a bipartite graph G
into two graphs G1 and G2 such that Δ(G) = Δ(G1) + Δ(G2). Given a time
interval (ts, te], the following corollary uses such a decomposition to obtain a
feasible coflow schedule for the given time interval by partially scheduling a
coflow if necessary. We defer the proof to the full version [2].

Corollary 1. Given a sequence of coflows G1, G2, . . . , Gn, a start time ts, and
an end time te such that te ≥ ts+

∑j−1
k=1 Δ(Gk) and te < ts+

∑j
k=1 Δ(Gk), there

exists a polynomial time algorithm that finds a feasible coflow schedule for the
time interval (ts, te] such that:
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– coflows G1, G2, . . . , Gj−1 are completely scheduled.
– coflow Gj is partially scheduled so that Δ(G̃j) = ts +

∑j
k=1 Δ(Gk)− te where

G̃j denotes the subset of coflow j that has not yet been scheduled.
– coflows Gj+1, . . . , Gn are not scheduled.

2.2 Linear Programming Relaxation

By exploiting the connection with concurrent open-shop scheduling, we adapt
the LP relaxation used for the concurrent open-shop problem [10,12] to formulate
the following linear program as a relaxation of the coflow scheduling problem.
We introduce a variable Cj for every coflow j to denote its completion time. Let
J = {1, 2, . . . , n} denote the set of all coflows and M = I ∪ O denote the set of
all the ports. Figure 2 shows our LP relaxation.

min
∑
j∈J

wjCj

subject to, Cj ≥ rj + Li,j ∀j ∈ J, ∀i ∈ M (2)

∑
j∈S

Li,jCj ≥ 1

2

(∑
j∈S

L2
i,j + (

∑
j∈S

Li,j)
2

)
∀i ∈ M, ∀S ⊆ J (3)

Fig. 2. LP1 for coflow scheduling

The first set of constraints (2) ensure that the completion time of any job j
is at least its release time rj plus the load of coflow j on any port i. The second
set of constraints (3) are standard in parallel scheduling literature (e.g. [16]) and
are used to effectively lower bound completion time variables. For simplicity, we
define fi(S) for any subset S ⊆ J and each port i as follow

fi(S) =

∑
j∈S L2

i,j + (
∑

j∈S Li,j)2

2
(4)

3 High Level Ideas

We use the LP above in Fig. 2 and its dual to develop a combinatorial algorithm
(Algorithm 1) in Sect. 4.1 to obtain a good permutation of the coflows. This
primal dual algorithm is inspired by Davis et al. [8] and Mastrolilli et al. [14].
As we show in Lemma 5, once the coflows are permuted as per this algorithm,
we can bound the completion time of a coflow j in an optimal schedule in terms
of Δ(

⋃
k≤j Gk), the maximum degree of the union of the first j coflows in the

permutation.
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Fig. 3. Example that illustrates sequentially scheduling coflows independently can lead
to bad schedules.

A näıve approach now would be to schedule each coflow independently and
sequentially using Lemma 1 in this permutation. Since all coflows k ≤ j would
need to be scheduled before starting to schedule j, the completion time of coflow
j under such a scheme would be

∑
k≤j Δ(Gk). Unfortunately, for arbitrary

coflows we can have
∑

k≤j Δ(Gk) � Δ(
⋃

k≤j Gk). For instance, Fig. 3 shows
three coflows such that Δ(G1)+Δ(G2)+Δ(G3) = 300 > Δ(G1∪G2∪G3) = 101.

One key insight is that sequentially scheduling coflows one after another may
waste resources. Since the amount of time required to completely schedule a
single coflow k only depends on the maximum degree of the graph Gk, if we
augment graph Gk by adding edges such that its maximum degree does not
increase, the augmented coflow can still be scheduled in the same time interval.
This observation leads to the natural idea of “shifting” edges from a coflow j
later in the permutation to a coflow k (k < j), so long as the release time of j
is still respected, as such a shift does not delay coflow k further but may sig-
nificantly reduce the requirements of coflow j. Consider for instance the coflows
in Fig. 3 when all release times are zero; shifting the edge (c, d) from graph G2

to G1 and the edge (e, f) from G3 to G1 leaves Δ(G1) unchanged but drasti-
cally reduces Δ(G2) and Δ(G3). In Algorithm 3 in Sect. 4.2, we formalize this
notion of shifting edges and prove that after all such edges have been shifted,
sequentially scheduling the augmented coflows leads to provably good coflow
schedules.

In Sect. 6 we present an alternative approach using LP Rounding for finding
a good permutation of coflows. Then we schedule the coflows using Algorithm 3
and give alternative proofs for Theorems 1 and 2.

4 Approximation Algorithm for Coflow Scheduling with
Release Times

In this section we present a combinatorial 5-approximation algorithm for min-
imizing the weighted sum of completion times of a set of coflows with release
times. Our algorithm consists of two stages. In the first stage, we design a primal-
dual algorithm to find a good permutation of the coflows. In the second stage,
we show that scheduling the coflows sequentially in this ordering after some
postprocessing steps yields a provably good coflow schedule.
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max
∑
j∈J

∑
i∈M

αi,j(rj + Li,j) +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

subject to,
∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S ≤ wj ∀j ∈ J

αi,j ≥ 0 ∀j ∈ J, i ∈ M

βi,S ≥ 0 ∀i ∈ M, ∀S ⊆ J

Fig. 4. Dual of LP1

4.1 Finding a Permutation of Coflows Using a Primal Dual
Algorithm

Although our algorithm does not require solving a linear program, we use the
linear program in Fig. 2 and its dual (Fig. 4) in the design and analysis of the
algorithm.

Our algorithm works as follows. We build up a permutation of the coflows
in the reverse order iteratively. Let κ be a constant that we optimize later. In
any iteration, let j be the unscheduled job with the latest release time, let μ be
the machine with the highest load and let Lµ be the load on machine μ. Now if
rj > κLµ, we raise the dual variable αµ,j until the corresponding dual constraint
is tight and place coflow j to be last in the permutation. But if rj ≤ κLµ, then
we raise the dual variable βµ,J until the dual constraint for some job j′ becomes
tight and place coflow j′ to be last in the permutation. Algorithm 1 gives the
formal description of the complete algorithm.

4.2 Scheduling Coflows According to a Permutation

We assume without loss of generality that the coflows are ordered based on the
permutation given by Algorithm 1, i.e. σ(j) = j.

As we discussed in Sect. 3, näıvely scheduling the coflows sequentially in
this order may not be a good idea. However, by appropriately moving edges
from a coflow j to an earlier coflow k (k < j), we can get a provably good
schedule. The crux of our algorithm lies in the subroutine MoveEdgesBack defined
in Algorithm 2.

Given two bipartite graphs Gk and Gj (k < j), MoveEdgesBack greedily
moves weighted edges from graph Gj to Gk so long as the maximum degree of
graph Gk does not increase. The key idea behind this subroutine is that since
the coflow k requires Δ(Gk) time units to be scheduled feasibly, the edges moved
back can now also be scheduled in those Δ(Gk) time units for “free”.

If all coflows have zero release times, then we can safely move edges of a
coflow Gj to any Gk such that k < j. However, with the presence of arbitrary
release times, we need to ensure that edges of coflow Gj do not violate their
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Algorithm 1. Permuting Coflows
1 J is the set of unscheduled jobs and initially J = {1, 2, · · · , n};
2 Initialize αi,j = 0 for all i ∈ M, j ∈ J and βi,S = 0 for all i ∈ M, S ⊆ J ;
3 Li =

∑
j∈J Lij ∀i ∈ M ; // load of machine i

4 for k = n, n − 1, · · · , 1 do
5 μ(k) = arg maxi∈M Li ; // determine the machine with highest load

6 j = arg max�∈J r� ; // determine job that released last

7 if rj > κ · Lμ(k) then
8 αμ(k),j = (wj −∑i∈M

∑
S�j Li,jβi,S);

9 σ(k) ← j;

10 end
11 else if rσ(k) ≤ κ · Lμ(k) then

12 j′ = arg minj∈J

(
wj−∑i∈M

∑
S�j Li,jβi,S

Lµ(k),j

)
;

13 βμ(k),J =
(

wj′ −∑i∈M

∑
S�j′ Li,j′ βi,S

Lµ(k),j′

)
;

14 σ(k) ← j′;
15 end
16 J ← J \ σ(k);
17 Li ← Li − Li,σ(k), ∀i ∈ M ;

18 end
19 Output permutation σ(1), σ(2), · · · , σ(n);

Algorithm 2. The MoveEdgesBack subroutine.
1 Function MoveEdgesBack(Gk, Gj)
2 for e = (u, v) ∈ Gj do
3 δ = min(Δ(Gk) − degGk

(u), Δ(Gk) − degGk
(v), wGj (e));

4 wGj (e) = wGj (e) − δ;
5 wGk(e) = wGk(e) + δ;

6 end
7 return Gk, Gj ;

release time, i.e. they are scheduled only after they are released. Algorithm 3
describes the pseudo-code for coflow scheduling with arbitrary release times.
Here q denote the number of distinct values taken by the release times of the n
coflows. Further, let t1 < t2 < . . . < tq be the ordered set of the release times.
For simplicity, we define tq+1 = T as a sufficiently large time horizon.

At any time step ti, let G′
j ⊆ Gj denote the subgraph of coflow j that has

not been scheduled yet. We consider every ordered pair of coflows k < j such
that both the coflows have been released and MoveEdgesBack from graph G′

j to
graph G′

k. Finally, we begin to schedule the coflows sequentially in order using
Corollary 1 until all coflows are scheduled completely or we reach time ti+1 when
a new set of coflows gets released and the process repeats.
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Algorithm 3. Coflow Scheduling
1 q ← number of distinct release times; tq+1 ← T ;
2 t1, t2, . . . , tq ← distinct release time in increasing order ;
3 for i = 1, 2, . . . , q do
4 // Each loop finds a schedule for time interval (ti, ti+1]
5 for j = 1, 2, . . . , n do
6 G′

j ← unscheduled part of Gj ;
7 end
8 for k = 1, 2, . . . , n − 1 do
9 if rk ≤ ti then

10 for j = k + 1, . . . , n do
11 if rj ≤ ti then G′

k, G′
j ← MoveEdgesBack(G′

k, G′
j) ;

12 end

13 end

14 end
15 Schedule (G′

1, G
′
2, . . . , G

′
n) in (ti, ti+1] using Corollary 1;

16 end

5 Analysis

We first analyze Algorithm 3 and upper bound the completion time of a coflow j
in terms of the maximum degree of the cumulative graph obtained by combining
the first j coflows in the given permutation. For simplicity, we first state the
proof when all release times are zero, then proceed to the case with non-zero
release time.

5.1 Coflows with Zero Release Times

For ease of presentation we first analyze the special case when all coflows are
released at time zero. In this case, we have q = 1 in Algorithm 3 and thus the
outer for loop is only executed once. The following lemma shows that after the
MoveEdgesBack subroutine has been executed on every ordered pair of coflows,
for any coflow j, the sum of maximum degrees of graphs G′

k (k ≤ j) is at most
twice the maximum degree of the cumulative graph obtained by combining the
first j coflows.

Lemma 2. For all j ∈ {1, 2, . . . n}, ∑
k≤j Δ(G′

k) ≤ 2Δ(
⋃

k≤j Gk).

Lemma 3. Consider any coflow j and let Cj(alg) denote the completion time
of coflow j when scheduled as per Algorithm 3. Then Cj(alg) ≤ 2Δ(

⋃
k≤j Gk).

5.2 Coflows with Arbitrary Release Times

When the coflows have arbitrary release times, we can bound the completion
time of each coflow j in terms of the maximum degree of the cumulative graph
obtained by combining the first j coflows and the largest release time of all the
jobs before j in the permutation.
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Lemma 4. For any coflow j, let Cj(alg) denote the completion time of coflow j
when scheduled as per Algorithm 3. Then Cj(alg) ≤ maxk≤j rk + 2Δ(

⋃
k≤j Gk).

5.3 Analyzing the Primal-Dual Algorithm

We are now in a position to analyze Algorithm 1. Recall that we assume that
the jobs are sorted as per the permutation obtained by Algorithm 1, i.e., σ(k) =
k,∀k ∈ [n]. We first give a lemma,

Lemma 5. If there is an algorithm that generates a feasible coflow schedule such
that for any coflow j, Cj(alg) ≤ amaxk≤j rk + bΔ(

⋃
k≤j Gk) for some constants

a and b, then the total cost of the schedule is bounded as follows.

∑

j

wjCj(alg) ≤ (a +
b

κ
)

n∑

j=1

∑

i∈M

αi,jrj + 2(aκ + b)
∑

i∈M

∑

S⊆J

βi,Sfi(S)

Proof Sketch. Algorithm 1 judiciously sets the dual variables such that the dual
constraint for any coflow j is tight. Analyzing the cost of schedule obtained in
terms of the dual variables yields the lemma. The formal proof is available in
the full version [2].

Lemmas 3 and 4 along with Lemma 5 and an appropriate choice of κ now give
the desired theorems. Proof in journal version.

Theorem 1. There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for coflow scheduling with release times.

Theorem 2. There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for coow scheduling without release times.

6 An Alternative Approach Using LP Rounding

This alternative approach also consists of two stages. First, we find a good per-
mutation of coflows and after that we schedule the coflows sequentially in this
ordering using Algorithm 3.

Let Cj denote the completion time of job j in an optimal LP1 solution.
We assume without loss of generality that the coflows are ordered so that the
following holds.

C1 ≤ C2 ≤ . . . ≤ Cn (5)

We can use the LP-constraints to provide a lower bound on Cj in terms of
the maximum degree of the cumulative graph obtained by combining the first j
coflows. In particular, the following lemma follows from the constraints of LP1.

Lemma 6. For each coflow j = 1, 2, . . . , n, the following inequality holds.

Cj ≥ 1
2

max
i

{
j∑

k=1

Li,k

}

=
1
2
Δ(

⋃

k≤j

Gk)

Lemmas 3 and 4 along with Lemma 6 give alternative proofs for Theorems 1
and 2.
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Abstract. We obtain optimal lower and upper bounds for the (additive)
integrality gaps of integer knapsack problems. In a randomised setting,
we show that the integrality gap of a “typical” knapsack problem is
drastically smaller than the integrality gap that occurs in a worst case
scenario.

1 Introduction

Given an integer m × n matrix A, integer vector b ∈ Z
m and a cost vector

c ∈ Q
n, consider the linear integer programming problem

min{c · x : Ax = b,x ∈ Z
n
≥0} . (1)

The linear programming relaxation to (1) is obtained by dropping the integrality
constraint

min{c · x : Ax = b,x ∈ R
n
≥0} . (2)

We will denote by IPc(A, b) and LPc(A, b) the optimal values of (1) and (2),
respectively.

While the problem (2) is polynomial time solvable [20], it is well known
that (1) is NP-hard [14]. There are many examples, where relaxation on the
integrality constraints are used to approximate, or even to solve, integer pro-
gramming problems. Prominent examples can be found in the areas of cutting
plane algorithms, such us Gomory cuts [15], and approximation algorithms for
combinatorial problems. For further details see [3,8,28]. Therefore, a natural
question is to compare the optimal values IPc and LPc with each other.

Suppose that (1) is feasible and bounded. The (additive) integrality gap
IGc(A, b) is a fundamental characteristic of the problem (1), defined as

IGc(A, b) = IPc(A, b) − LPc(A, b) .

The problem of computing bounds for the additive integrality gaps has been
studied by Hoşten and Sturmfels [18], Sullivant [27], Eisenbrand and Shmonin [12]
and, more recently, by Eisenbrand et al. [11]. Specifically, given a tuple (A, c) one
asks for the upper bounds on IGc(A, b) as b varies. In this setting, the optimal
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 25–38, 2017.
DOI: 10.1007/978-3-319-59250-3 3
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bound is given by the integer programming gap Gapc(A), defined by Hoşten and
Sturmfels [18] as

Gapc(A) = max
b

IGc(A, b) ,

where b ranges over integer vectors such that (1) is feasible and bounded. Note
that, Gapc(A) = 0 for all c ∈ Z

n, if and only if A is totally unimodular [25,
Theorem 19.2]. Hoşten and Sturmfels [18] showed that for fixed n the value of
Gapc(A) can be computed in polynomial time. Eisenbrand and Shmonin [12]
extended this result to integer programs in the canonical form.

Eisenbrand et al. [11] studied a closely related problem of testing upper
bounds for IGc(A, b) in context of a generalised integer rounding property. Fol-
lowing [11], the tuple (A, c) with c ∈ Z

n has the additive integrality gap of at
most γ if

IPc(A, b) ≤ �LPc(A, b)� + γ

for each b for which the linear programming relaxation (2) is feasible.
The classical case γ = 0 corresponds to the integer rounding property and

can be tested in polynomial time [25, Sect. 22.10]. The integer rounding property,
in its turn, implies solvability of (1) in polynomial time [7]. The computational
complexity of the problem drastically changes already for γ = 1. Eisenbrand
et al. [11] showed that it is NP-hard to test whether (A, c) has additive gap of
at most γ even if m = γ = 1.

A bound for the additive integrality gap in terms of A and c can be derived
from the results of Cook et al. [9] on distances between optimal solutions to
integer programs in canonical form and their linear programming relaxations.
Let Â be an integer d × n matrix and let b̂ and c be rational vectors such that
Âx ≤ b̂ has an integer solution and min{c · x : Âx ≤ b̂,x ∈ R

n} exists. Note
that, in this setting b̂ is not required to be integer. Then Corollary 2 in [9],
applied in the minimisation setting, gives the bound

min{c · x : Âx ≤ b̂,x ∈ Z
n} − min{c · x : Âx ≤ b̂,x ∈ R

n}
≤ nΔ(A)‖c‖1 ,

(3)

where Δ(A) stands for the maximum sub-determinant of A and ‖c‖1 =
∑n

i=1 |ci|
denotes the l1-norm of c. The estimate (3) strengthened previous results of Blair
and Jeroslow [4,5]. Given that b̂ does not have to be integer, one can show that
the bound (3) is essentially tight (see Remark 1). However, considering that we
study linear integer programming, it is natural to assume that also b̂ is integer,
but then it is not clear whether (3) remains optimal. By studying linear integer
programming problems in standard form we naturally require b and respectively
b̂ to be integer.

This paper will focus on the problem (1) with m = 1, to which we refer to as
the integer knapsack problem. Note that usually the integer knapsack problem
is defined in the literature as min{c̄ · x : Āx ≤ b,x ∈ Z

n
≥0}. However, this
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problem can be brought into standard form (1), by lifting the polytope by one
dimension and defining A = (Ā 1) and c =

(
c̄
0

)
. We will assume that the entries

of A are positive. For the integer knapsack problem the positivity assumption
guarantees that the feasible region of its linear programming relaxation (2) is
bounded (or empty) for all b. Conversely, for m = 1 any linear problem (2)
with bounded feasible region can be written with A satisfying the positivity
assumption. Without loss of generality, we also assume that n ≥ 2 and the
entries of A are coprime. That is the following conditions are assumed to hold:

(i) A = (a1, . . . , an) , n ≥ 2 , ai ∈ Z>0 , i = 1, . . . , n ,
(ii) gcd(a1, . . . , an) = 1 .

(4)

For A ∈ Z
1×n we denote by ‖A‖∞ its maximum norm, i.e., ‖A‖∞ =

maxi=1,...,n |ai|. Applying (3) with

Â =

⎛

⎝
A

−A
−In

⎞

⎠ , b̂ =

⎛

⎝
b

−b
0

⎞

⎠ ,

where In is the n × n identity matrix and 0 is the n dimensional zero vector, we
obtain the bound

Gapc(A) ≤ n‖A‖∞‖c‖1 . (5)

How far is the bound (5) from being optimal? Does Gapc(A) admit a natural
lower bound? To answer these questions we will establish a link between the
integer programming gaps, covering radii of simplices and Frobenius numbers.
Our first result gives an upper bound on the integer programming gap that
improves (5) with factor 1/n. We also show that the obtained bound is optimal.

Theorem 1. (i) Let A satisfy (4) and let c ∈ Q
n. Then

Gapc(A) ≤ (‖A‖∞ − 1) ‖c‖1 . (6)

(ii) For any positive integer k there exist A with ‖A‖∞ = k satisfying (4) and
c ∈ Q

n such that

Gapc(A) = (‖A‖∞ − 1) ‖c‖1 . (7)

We will say that the tuple (A, c) is generic if for any positive b ∈ Z the linear
programming relaxation (2) has a unique optimal solution. An optimal lower
bound for Gapc(A) with generic (A, c) can be obtained using recent results [1]
on the lattice programming gaps associated with the group relaxations to (1).

A subset τ of {1, . . . , n} partitions x ∈ R
n as x τ and x τ̄ , where x τ consists

of the entries indexed by τ and x τ̄ the entries indexed by the complimentary set
τ̄ = {1, . . . , n} \ τ . Similarly, the matrix A is partitioned as Aτ and Aτ̄ . Assume
that (A, c) is generic and (4) holds. Then, let τ = τ(A, c) denote the unique
index of the basic variable for the optimal solution to the linear relaxation (2)
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with a positive b ∈ Z. The index τ is well-defined. We also define l(A, c) =
cτ̄ − cτA−1

τ Aτ̄ . Note that the vector l = l(A, c) is positive for generic tuples
(A, c).

Let ρd denote the covering constant of the standard d-dimensional simplex,
defined in Sect. 2.

Theorem 2. (i) Let A satisfy (4) and let c ∈ Q
n. Suppose that (A, c) is generic.

Then for τ = τ(A, c) and l = l(A, c) we have

Gapc(A) ≥ ρn−1(|Aτ |l1 · · · ln−1)1/(n−1) − ‖l‖1 . (8)

(ii) For any ε > 0, there exists a matrix A, satisfying (4) and c ∈ Q
n such that

(A, c) is generic and, in the notation of part (i), we have

Gapc(A) < (ρn−1 + ε)(|Aτ |l1 · · · ln−1)1/(n−1) − ‖l‖1 . (9)

The only known values of ρd are ρ1 = 1 and ρ2 =
√

3 (see [13]). It was proved
in [2], that ρd > (d!)1/d > d/e. For sufficiently large d this bound is not far from
being optimal. Indeed, ρd ≤ (d!)1/d(1 + O(d−1 log d)) (see [10,21]).

How large is the integer programming gap of a “typical” knapsack problem?
To tackle this question we will utilize the recent strong results of Strömbergsson
[26] (see also Schmidt [24] and references therein) on the asymptotic distribution
of Frobenius numbers. The main result of this paper will show that for any
ε > 2/n the ratio

Gapc(A)
‖A‖ε∞‖c‖1

is bounded, on average, by a constant that depends only on dimension n. Hence,
for fixed n > 2 and a “typical” integer knapsack problem with large ‖A‖∞, its
linear programming relaxation provides a drastically better approximation to
the solution than in the worst case scenario, determined by the optimal upper
bound (6).

For T ≥ 1, let Q(T ) be the set of A ∈ Z
1×n that satisfy (4) and

‖A‖∞ ≤ T .

Let N(T ) be the cardinality of Q(T ). For ε ∈ (0, 1) let

Nε(t, T ) = #
{

A ∈ Q(T ) : max
c∈Qn

Gapc(A)
‖A‖ε∞‖c‖1 > t

}

. (10)

In what follows, 	n will denote the Vinogradov symbol with the constant
depending on n. That is f 	n g if and only if |f | ≤ c|g|, for some positive constant
c = c(n). The notation f 
n g means that both f 	n g and g 	n f hold.
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Theorem 3. For n ≥ 3

Nε(t, T )
N(T )

	n t−α(ε,n) (11)

uniformly over all t > 0 and T ≥ 1. Here

α(ε, n) =
n − 2

(1 − ε)n
.

From (11) one can derive an upper bound on the average value of the (nor-
malised) integer programming gap.

Corollary 4. Let n ≥ 3. For ε > 2/n

1
N(T )

∑

A∈Q(T )

max
c∈Qn

Gapc(A)
‖A‖ε∞‖c‖1 	n 1 . (12)

The last theorem of this paper shows that the bound in Corollary 4 is not
far from being optimal. We include its proof in the Appendix.

Theorem 5. For T large

1
N(T )

∑

A∈Q(T )

max
c∈Qn

Gapc(A)

‖A‖1/(n−1)
∞ ‖c‖1

�n 1 . (13)

Hence, the optimal value of ε in (12) cannot be smaller than 1/(n − 1).

Remark 1.

(i) An example due to L. Lovász [25, Sect. 17.2], with Δ(A) = 1, shows that
the bound (3) is best possible in this particular case. We would like to point
out that by a small adaptation of Lovász’s example one can show that this
bound is, in all its generality, best possible up to a constant factor, i.e., the
upper bound for the additive integrality gap is in Θ(Δ(A)n). Let δ ∈ Z>0

and 0 < β < 1. We define

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
−1 1

. . .
−1 1

−δ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎝

β
...
β

⎞

⎟
⎠ and c =

⎛

⎜
⎝

−1
...

−1

⎞

⎟
⎠ .

By construction Δ(A) = δ. The unique solution of the linear relaxation is
xT = (β, 2β, . . . , (n − 1)β, (δ(n − 1) + 1)β) and the unique optimal integer
solution is zT = (0, . . . , 0). Thus ‖x − z‖∞ = (δ(n − 1) + 1)β ≈ nΔ(A).
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(ii) In the proof of Theorem 1 (and, subsequently, Theorem 3) we estimate the
integrality gap using a covering argument that guarantees existence of a solu-
tion to (1) in an (n − 1)-dimensional simplex of sufficiently small diameter,
translated by a solution to (2). Here the diameter of the simplex is indepen-
dent of c. The argument allows us, in particular, to restate Theorem 1 (i)
in terms of the infinity norm:

Gapc(A) ≤ 2 (‖A‖∞ − 1) ‖c‖∞ .

Depending on c this gives a stronger bound.

2 Coverings and Frobenius Numbers

In what follows, Kd will denote the space of all d-dimensional convex bodies,
i.e., closed bounded convex sets with non-empty interior in the d-dimensional
Euclidean space R

d.
By Ld we denote the set of all d-dimensional lattices in R

d. Given a matrix
B ∈ R

d×d with detB = 0 and a set S ⊂ R
d let BS = {Bx : x ∈ S} be the

image of S under linear map defined by B. Then we can write Ld = {B Z
d :

B ∈ R
d×d, det B = 0}. For Λ = B Z

d ∈ Ld, det(Λ) = |det B| is called the
determinant of the lattice Λ.

Recall that the Minkowski sum X + Y of the sets X,Y ⊂ R
d consists of all

points x + y with x ∈ X and y ∈ Y . For K ∈ Kd and Λ ∈ Ld the covering
radius of K with respect to Λ is the smallest positive number μ such that any
point x ∈ R

d is covered by μK + Λ, that is

μ(K,Λ) = min{μ > 0 : Rd = μK + Λ} .

For further information on covering radii in the context of the geometry of num-
bers see e.g. Gruber [16] and Gruber and Lekkerkerker [17].

Let Δ = {x ∈ R
d
≥0 : x1 + · · · + xd ≤ 1} be the standard d-dimensional

simplex. The optimal lower bound in Theorem 2 is expressed using the covering
constant ρd = ρd(Δ) defined as

ρd = inf{μ(Δ,Λ) : det(Λ) = 1} .

We will be also interested in coverings of Zd by lattice translates of convex
bodies. For this purpose we define

μ(K,Λ;Zd) = min{μ > 0 : Zd ⊂ μK + Λ} .

Given A = (a1, . . . , an) satisfying (4) the Frobenius number g(A) is least so
that every integer b > g(A) can be represented as b = a1x1 + · · · + anxn with
nonnegative integers x1, . . . , xn.

Kannan [19] found a nice and very useful connection between g(A) and geom-
etry of numbers. Let us consider the (n − 1)-dimensional simplex

SA =
{
x ∈ R

n−1
≥0 : a1 x1 + · · · + an−1 xn−1 ≤ 1

}
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and the (n − 1)-dimensional lattice

ΛA =
{
x ∈ Z

n−1 : a1 x1 + · · · + an−1 xn−1 ≡ 0 mod an

}
.

Kannan [19] established the identities

μ(SA, ΛA) = g(A) + a1 + · · · + an

and
μ(SA, ΛA;Zn−1) = g(A) + an. (14)

3 Proof of Theorem 1

The proof of the upper bound in part (i) will be based on two auxiliary lemmas.
First we will need the following property of μ(K,Λ;Zn−1).

Lemma 1. For any y ∈ Z
n−1 the set μ(K,Λ;Zn−1)K contains a point of the

translated lattice y + Λ.

Proof. By the definition of μ(K,Λ;Zn−1) we have Z
n−1 ⊂ μ(K,Λ;Zn−1)K + Λ.

Therefore for any integer vector y we have (y + Λ) ∩ μ(K,Λ;Zn−1)K = ∅. ��
The next lemma gives an upper bound for the integer programming gap in

terms of the Frobenius number associated with vector A.

Lemma 2. For A satisfying (4) and c ∈ Q
n

Gapc(A) ≤ (g(A) + ‖A‖∞)‖c‖1
mini ai

. (15)

Proof. Let b be a nonnegative integer. Consider the knapsack polytope

P (A, b) = {x ∈ R
n
≥0 : Ax = b} .

Clearly, P (A, b) is a simplex with vertices

(b/a1, 0, . . . , 0), (0, b/a2, . . . , 0), . . . , (0, . . . , 0, b/an)

and

P (A, b) ⊂
[

0,
b

mini ai

]n

. (16)

Notice also that

bSA = πn(P (A, b)) , (17)

where πn(·) : Rn → R
n−1 is the projection that forgets the last coordinate.

Rearranging the entries of A, if necessary, we may assume that the optimal
value LPc(A, b) is attained at the vertex v = (0, . . . , 0, b/an) of P (A, b).
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If b ≤ μ(SA, ΛA;Zn−1) then (14) and (16) imply that the integrality gap is
bounded by the right hand side of (15).

Suppose now that b > μ(SA, ΛA;Zn−1). Then, in view of (17),

μ(SA, ΛA;Zn−1)SA ⊂ πn(P (A, b)) . (18)

Let Λ(A, b) = {x ∈ Z
n : Ax = b} be the set of integer points in the affine

hyperplane Ax = b. There exists y ∈ Z
n−1 such that

πn(Λ(A, b)) = y + ΛA . (19)

By Lemma 1, there is a point (z1, . . . , zn−1) ∈ πn(Λ(A, b))∩μ(SA, ΛA;Zn−1)SA.
Hence

z =
(

z1, . . . , zn−1,
b

an
− a1z1 + · · · + an−1zn−1

an

)

∈ Λ(A, b) ∩ P (A, b) (20)

is a feasible integer point for the knapsack problem (1).
Since (z1, . . . , zn−1) ∈ μ(SA, ΛA;Zn−1)SA, we have

||v − z ||∞ ≤ μ(SA, ΛA;Zn−1)
mini ai

≤ g(A) + ‖A‖∞
mini ai

, (21)

where the last inequality follows from (14). Therefore, the integrality gap is
bounded by the right hand side of (15). ��

To complete the proof of part (i) we need the classical upper bound for the
Frobenius number due to Schur (see Brauer [6]):

g(A) ≤ (min
i

ai)‖A‖∞ − (min
i

ai) − ‖A‖∞ . (22)

Combining (15) and (22) we obtain (6).
To prove part (ii), we set A = (k, . . . , k, 1), b = k − 1 and c = en, where e i

denotes the i-th unit-vector. Note that A fulfils the conditions (4). The inte-
ger programming problem (1) has precisely one feasible, and therefore optimal,
integer point, namely (k − 1) · en. Thus IPc(A, b) = k − 1. The corresponding
linear relaxation (2) has the, in general not unique, optimal solution k−1

k · e1

with LPc(A, b) = 0. Hence, Gapc(A) ≥ IGc(A, b) = k − 1 = (‖A‖∞ − 1)‖c‖1.

4 Proof of Theorem 2

We will first establish a connection between Gapc(A) and the lattice program-
ming gap associated with a certain lattice program.

For a vector w ∈ Q
n−1
>0 , a (n−1)-dimensional lattice Λ ⊂ Z

n−1 and r ∈ Z
n−1

consider the lattice program (also referred to as the group problem)

min{w · x : x ≡ r(mod Λ),x ∈ R
n−1
≥0 } . (23)
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Here x ≡ r(mod Λ) if and only if x − r is a point of Λ.
Let m(Λ,w , r) denote the value of the minimum in (23). The lattice pro-

gramming gap Gap(Λ,w) of (23) is defined as

Gap(Λ,w) = max
r∈Zn−1

m(Λ,w , r) . (24)

The lattice programming gaps were introduced and studied for sublattices of all
dimensions in Z

n−1 by Hoşten and Sturmfels [18].
To proceed with the proof of the part (i), we assume without loss of generality

that τ(A, c) = {n}. Then for l = l(A, c) the lattice programs

min{l · x : x ≡ r (mod ΛA),x ∈ R
n−1
≥0 } , r ∈ Z

n−1 (25)

are the group relaxations to (1).
Indeed, for any positive b ∈ Z and any integer solution z of the equation

Ax = b the lattice program (25) with r = πn(z ), is a group relaxation to (1).
On the other hand, for any integer vector r the lattice program (25) is a group
relaxation to (1) with b = πn(A)u for a nonnegative integer vector u from
r + ΛA.

In both cases

IGc(A, b) ≥ m(ΛA, l , r)

and, consequently,

Gapc(A) ≥ Gap(ΛA, l) . (26)

Note that for n = 2 we have Gap(ΛA, l) = l1(|Aτ | − 1) and thus (26) implies
(8). For n > 2, the bound (8) immediately follows from (26) and Theorem 1.2
(i) in [1].

The proof of the part (ii) will be based on the following lemma.

Lemma 3. Let A satisfy (4), c = (a1, . . . , an−1, 0)t ∈ Q
n and l= (a1, . . . , an−1)t

∈ Q
n−1
>0 . Then

Gapc(A) = Gap(ΛA, l) . (27)

Proof. Observe that assumption (i) in (4) implies that the linear programming
relaxation (2) is feasible if and only if b is nonnegative. Recall that Λ(A, b) =
{x ∈ Z

n : Ax = b} denotes the set of integer points in the affine hyperplane
Ax = b and P (A, b) = {x ∈ R≥0 : Ax = b} denotes the knapsack polytope.
Suppose that for a nonnegative b the knapsack problem (1) is feasible, with
solution y ∈ Z

n
≥0. Then for r = πn(y) ∈ Z

n−1
≥0

πn(Λ(A, b)) = r + ΛA .

As cn = 0, the optimal value of the linear programming relaxation LPc(A, b) = 0.
Therefore, noting that c = (a1, . . . , an−1, 0)t and l = πn(c),

IGc(A, b) = min{l · x : x ∈ r + ΛA ,x ∈ πn(P (A, b))} . (28)
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Since

πn(P (A, b)) = bSA = {x ∈ R
n−1
≥0 : l · x ≤ b}

and l · r ≤ Ay = b, the constraint x ∈ πn(P (A, b)) in (28) can be removed.
Consequently, we have

IGc(A, b) = m(ΛA, l , r) .

Hence, by (24), we obtain

Gapc(A) ≤ Gap(ΛA, l) . (29)

Suppose now that Gap(ΛA, l) = m(ΛA, l , r0). Then

IGc(A,Ar0) = m(Λ, l , r0) .

Together with (29), this implies (27). ��
As was shown in the proof of Theorem 1.1 in [1], for l = (a1, . . . , an−1)t

Gap(ΛA, l) = g(A) + an .

Thus we obtain the following corollary.

Corollary 6. Let A = (a1, . . . , an) satisfy (4) and c = (a1, . . . , an−1, 0)t. Then

Gapc(A) = g(A) + an . (30)

For n = 2, we have

g(A) = a1a2 − a1 − a2 (31)

by a classical result of Sylvester (see e.g. [22]). Hence the part (ii) immediately
follows from Corollary 6. For n > 2, noting that |Aτ | = an, the part (ii) follows
from Corollary 6 and Theorem 1.1 (ii) in [2].

5 Proof of Theorem 3

For convenience, we will work with the quantity

f(A) = g(A) + a1 + · · · + an

and the set

R = {A ∈ Z
1×n : 0 < a1 ≤ · · · ≤ an} .

By Lemma 2, we have

Nε(t, T ) ≤ n!#
{

A ∈ Q(T ) ∩ R :
f(A)
a1aε

n

> t

}

. (32)
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We may assume t ≥ 10 since otherwise (11) follows from Nε(t, T )/N(T ) ≤ 1.
We keep t′ ∈ [1, t], to be fixed later. Then, setting s(A) = an−1a

1/(n−1)
n and

noting (32), we get

Nε(t, T ) ≤ n!#
{

A ∈ Q(T ) ∩ R :
f(A)
s(A)

> t′ or
s(A)
a1aε

n

>
t

t′

}

≤ n!#
{

A ∈ Q(T ) ∩ R :
f(A)
s(A)

> t′
}

+n!#

{

A ∈ Q(T ) ∩ R :
an−1

a1a
ε−1/(n−1)
n

>
t

t′

}

.

(33)

The first of the last two terms in (33) can be estimated using a special case
of Theorem 3 in Strömbergsson [26].

Lemma 4

#
{

A ∈ Q(T ) ∩ R :
f(A)
s(A)

> r

}

	n
1

rn−1
N(T ) . (34)

Proof. The inequality (34) immediately follows from Theorem 3 in [26] applied
with D = [0, 1]n−1. ��

To estimate the last term, we will need the following lemma.

Lemma 5.

#

{

A ∈ Q(T ) ∩ R :
an−1

a1a
ε−1/(n−1)
n

> r

}

	n
1

rT ε−1/(n−1)
N(T ) . (35)

Proof. Since A ∈ R, we have an−1 ≤ an. Hence

#

{
A ∈ Q(T ) ∩ R :

an−1

a1a
ε−1/(n−1)
n

> r

}
≤ #

{
A ∈ Q(T ) ∩ R : a1+1/(n−1)−ε

n > ra1

}
.

Furthermore, all A ∈ Q(T ) ∩ R with a
1+1/(n−1)−ε
n > ra1 are in the set

U = {A ∈ Z
1×n : 0 < a1 < T 1+1/(n−1)−ε/r, 0 < ai ≤ T, i = 2, . . . , n} .

Since #(U ∩ Z
n) < Tn+1/(n−1)−ε/r and N(T ) 
n Tn (see e.g. Theorem 1 in

[23]), the result follows. ��
Then by (33), (34) and (35)

Nε(t, T )
N(T )

	n
1

(t′)n−1
+

t′

tT ε−1/(n−1)
. (36)
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Next, we will bound T from below in terms of t, similar to Theorem 3 in [26].
The upper bound of Schur (22) implies f(A) < na1an. Thus, using (32),

Nε(t, T ) ≤ #
{

A ∈ Q(T ) ∩ R :
f(A)
a1aε

n

> t

}

≤ #
{

A ∈ Q(T ) ∩ R : a1−ε
n >

t

n

}

.

The latter set is empty if T ≤ (t/n)
1

1−ε . Hence we may assume

T >

(
t

n

) 1
1−ε

. (37)

Using (36) and (37), we have

Nε(t, T )
N(T )

	n
1

(t′)n−1
+

t′

t1+
1

1−ε (ε− 1
n−1 )

. (38)

To minimise the exponent of the right hand side of (38), set t′ = tβ and
choose β with

β(n − 1) = 1 +
1

1 − ε

(

ε − 1
n − 1

)

− β . (39)

We get

β =
n − 2

n(n − 1)(1 − ε)

and, by (38) and (39),

Nε(t, T )
N(T )

	n t−α(ε,n)

with α(ε, n) = β(n − 1). The theorem is proved.

6 Proof of Corollary 4

For the upper bound we observe, that the conditions n ≥ 3 and ε > 2/n imply
that in (11) α(ε, n) > 1. Consider vectors A ∈ Q(T ) with

es−1 ≤ max
c∈Qn

Gapc(A)
‖A‖ε∞‖c‖1 < es . (40)

The contribution of vectors satisfying (40) to the sum

∑

A∈Q(T )

max
c∈Qn

Gapc(A)
‖A‖ε∞‖c‖1
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on the left hand side of (12) is

≤ Nε(es−1, T )es 	n e−α(ε,n)sesN(T ) ,

where the last inequality holds by (11). Therefore

1
N(T )

∑

A∈Q(T )

max
c∈Qn

Gapc(A)
‖A‖ε∞‖c‖1 	n

∞∑

s=1

es(1−α(ε,n)) .

Finally, observe that the series

∞∑

s=1

es(1−α(ε,n))

is convergent for α(ε, n) > 1.
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Abstract. We construct an improved integrality gap instance for the
Călinescu-Karloff-Rabani LP relaxation of the Multiway Cut problem.
For k � 3 terminals, our instance has an integrality ratio of 6/(5+ 1

k−1
)−

ε, for every constant ε > 0. For every k � 4, this improves upon a long-
standing lower bound of 8/(7 + 1

k−1
) by Freund and Karloff [7]. Due to

the result by Manokaran et al. [9], our integrality gap also implies Unique
Games hardness of approximating Multiway Cut of the same ratio.

1 Introduction

In the Multiway Cut problem, we are given a weighted undirected graph and
k terminal vertices. The goal is to find a set of edges of minimum total weight
whose removal disconnects all the terminals. Equivalently, an optimal solution is
a partition of the graph into k clusters, each containing one terminal, such that
the total weight of edges across clusters is minimized. Such a partition is called
a k-way cut and its cost is the total weight of edges across clusters.

Since its introduction [6], Multiway Cut has been extensively studied in the
approximation algorithms community [2–8,10]. Despite this, its approximability
when k � 4 still remains open.

When k = 2, Multiway Cut is simply Minimum s-t Cut, which is solvable in
polynomial time. For k � 3, Dahlhaus et al. [6] showed that the problem becomes
APX-hard and gave the first approximation algorithm for the problem, which
achieves a (2−2/k)-approximation. Due to the combinatorial nature of the algo-
rithm, several LPs were subsequently proposed but it was not until Călinescu,
Karloff and Rabani’s work [4] that a significant improvement in the approxima-
tion ratio was made. Their relaxation, also known as the CKR relaxation, on a
graph G = (V,E,w) and terminals {t1, . . . , tk} ⊆ V , can be formulated as
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minimize
∑

e=(u,v)∈E

w(e) · 1
2
‖xu − xv‖1

subject to ∀u ∈ V, xu ∈ Δk,

∀i ∈ [k], xti = ei,

where [k] = {1, . . . , k}, Δk = {(x1, . . . , xk) ∈ [0, 1]k | x1 + · · · + xk = 1}
denotes the k-simplex and ei is the i-th vertex of the simplex, i.e. ei

i = 1.
Călinescu et al. [4] gave a rounding scheme for this LP that yields a (3/2−1/k)-
approximation for Multiway Cut. Exploiting the geometric nature of the relax-
ation even further, Karger et al. [8] gave an 1.3438-approximation algorithm for
the problem. They also conducted experiments that led to improvements over
small k’s; specifically, for k = 3, they gave a 12/11-approximation algorithm
and proved that it is tight by constructing an integrality gap example of ratio
12/11 − ε, for every ε > 0. The same result was also independently discovered
by Cunningham and Tang [5]. In 2013, Buchbinder et al. [2] gave a neat 4/3-
approximation algorithm to the problem for general k and additionally showed
how to push the ratio down to 1.3239. This result was later improved by Sharma
and Vondrák [10], who obtained an approximation ratio of 1.2965. The algorithm
by Sharma and Vondrák is quite difficult, and its analysis is computer-assisted.
Very recently, Buchbinder et al. [3] came up with a much simpler algorithm and
analytically showed that it yields roughly the same approximation ratio.

The CKR relaxation can be used not only for designing approximation algo-
rithms but also for proving hardness results for Multiway Cut. Manokaran
et al. [9] showed, assuming the Unique Games Conjecture (UGC), that, if the
integrality gap of the CKR relaxation is (at least) τ , then it is NP-hard to
approximate Multiway Cut to within a factor of τ − ε, for every ε > 0. Roughly
speaking, this means that, assuming UGC, the CKR relaxation gives essentially
the best approximation one can get in polynomial time. Despite this connection,
few lower bounds for the integrality gap of the relaxation are known. Apart
from the aforementioned 12/11− ε integrality gap for k = 3 [5,8], the only other
known lower bound is an 8/(7+ 1

k−1 )-integrality gap constructed by Freund and
Karloff [7] not long after the introduction of the relaxation.

1.1 Our Contributions

We provide a new construction of integrality gap instances for Multiway Cut,
which achieves an integrality gap of 6/(5 + 1

k−1 ) − ε, for every k � 3, as stated
formally below. For every k � 4, our integrality gap improves on the best known
integrality gap of 8/(7 + 1

k−1 ) of Freund and Karloff [7].

Theorem 1. For every k � 3 and every ε > 0, there exists an instance Ik,ε of
Multiway Cut with k terminals such that the integrality gap of the CKR relaxation
for Ik,ε is at least 6/(5 + 1

k−1 ) − ε.

Thanks to the aforementioned result of Manokaran et al. [9], the following
corollary is an immediate consequence of Theorem 1.
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Corollary 1. Assuming UGC, for every k � 3 and every ε > 0, it is NP-hard
to approximate Multiway Cut with k terminals to within 6/(5 + 1

k−1 ) − ε of the
optimum.

Techniques. To see the motivation behind our construction, it is best to first
gain additional intuition for the geometry of the CKR relaxation.

Geometric Interpretation of the CKR relaxation. A solution of the CKR relax-
ation embeds the graph into a simplex; each vertex u becomes a point xu ∈ Δk,
while each edge (u, v) becomes a segment (xu, xv). To construct a random-
ized rounding scheme for the relaxation, it suffices to define a randomized k-
partitioning scheme of the simplex: a distribution P on k-way cuts of Δk that
separates the vertices ei of the simplex Δk. We will identify each partition P in
P with a map P : Δk → [k]; P (x) = i if x lies in part i of the partition. Then,
for every P in P and every i ∈ [k], P (ei) = i. Define the maximum density of P
as follows,

τk(P) := sup
x�=y∈Δk

PrP∼P [P (x) �= P (y)]
1
2‖x − y‖1

.

In words, for any x, y ∈ Δk, a random k-way cut P sampled from P assigns
x, y to different clusters with probability at most τk(P) · 1

2‖x − y‖1. This imme-
diately yields the following randomized rounding scheme: pick a random P ∼ P
and place each u ∈ V in cluster P (xu). The expected cost of the obtained solu-
tion is at most τk(P) · ∑

e=(u,v)∈E w(e) · 1
2‖xu − xv‖1. Therefore, the rounding

scheme gives a τk(P)-approximation for Multiway Cut with k terminals.
The above observation was implicit in [4] and was first made explicit by

Karger et al. [8], who also proved the opposite inequality: for every ε > 0, there
is an instance of Multiway Cut with k terminals whose integrality gap is at
least τ∗

k − ε, where τ∗
k is the minimum1 of τk(P) among all P’s. In other words,

integrality gaps for Multiway Cut and lower bounds for τ∗
k are equivalent.

Non-Opposite Cuts. Let us consider a special class of partitions of the simplex,
which we call non-opposite cuts. A non-opposite cut of Δk is a function P :
Δk → [k + 1] such that P (ei) = i for every i ∈ [k] and, for every x ∈ Δk,
P (x) ∈ supp(x) ∪ {k + 1}, where supp(x) := {i ∈ [k] | xi �= 0} is the set of
all non-zero coordinates of x. The representative case to keep in mind is when
k = 3; in this case, a non-opposite cut partitions Δ3 into four parts and any
point on the border of Δ3 is not assigned to the cluster corresponding to the
opposite vertex of Δ3. Figure 1 demonstrates non-opposite cuts and 3-way cuts
of Δ3.

We define τk for a distribution on non-opposite cuts similarly. Additionally,
let τ̃∗

k be the infimum of τk(P) among all distributions P on non-opposite cuts of
Δk. Observe that τ∗

k � τ̃∗
k because each non-opposite cut P of Δk can be turned

into a k-way cut without separating additional pairs of points by merging the
1 In [8], τ∗

k is defined as the infimum of τk(P) among all P’s but it was proved in the
same work that there exists P that achieves the infimum.
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e1

e2 e3

2 3

1

(a) A 3-way cut that is not
non-opposite

e1

e2 e3

1

2 3

(b) A non-opposite 3-way
cut

e1

e2 e3

1

2 3

4

(c) A non-opposite cut that
is not 3-way

Fig. 1. Illustrations of cuts of Δ3.

(k + 1)-th cluster into the first cluster. However, it is not right away clear how
to lower bound τ∗

k in terms of τ̃∗
k . Our plan is as follows: define a “discretized”

version τ̃∗
k,n of τ̃∗

k , give a lower bound for τ∗
K in terms of τ̃∗

k,n for K > k, and
then prove a lower bound for τ̃∗

k,n.
Consider a discretization Δk,n := {x ∈ Δk | ∀i ∈ [k], xi is a multiple of 1/n}

of the simplex Δk. For every distribution P on non-opposite cuts of Δk, define

τk,n(P) := max
x�=y∈Δk,n

PrP∼P [P (x) �= P (y)]
1
2‖x − y‖1

and τ̃∗
k,n as the minimum2 of τk,n(P) over all distributions P. The simple obser-

vation that allows us to construct our integrality gap is the following relation
between τ∗

K and τ̃∗
k,n: for every K > k,

τ∗
K � τ̃∗

k,n − O(kn/(K − k)). (1)

In fact, we only use this inequality for k = 3 and, hence, we only sketch the
proof of this case here. See the full version of this work [1] for the proof of the
general case.

Let us note that the result by Freund and Karloff [7] can be seen as a proof
of τ̃∗

3,2 � 8/7 (see Appendix A of the full version [1]). The bound τ̃∗
3,2 � 8/7,

together with (1), immediately implies that τ∗
K � 8/7 − O(1/K). Barring the

dependency on K, this is the gap proven in [7]. With this in mind, the rest of
our work can be mostly seen as proving that τ̃∗

3,n � 6/5 − O(1/n). By selecting
n = Θ(

√
K), this implies that τ∗

K � 6/5 − O(1/
√

K); more care can then be
taken to get the right dependency on K.

We now sketch the proof of (1) for k = 3. Suppose that P is a distribution
on K-way cuts such that τK(P) = τ∗

K . We sample a non-opposite cut P̃ of Δ3,n

as follows. First, sample P ∼ P. Then, randomly select three different indices
i1, i2, i3 from [K]. Let P{i1,i2,i3} : Δ3 → [4] be the cut induced by P on the
face with vertices i1, i2, i3. More formally, let f(ij) = j for every j ∈ [3] and
g(x) = x1e

i1 + x2e
i2 + x3e

i3 for every x ∈ Δ3. Define P{i1,i2,i3} by

2 The minimum exists since there is only a finite number of k-way cuts of the dis-
cretized simplex Δk,n.
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P{i1,i2,i3}(x) =

{
f(P (g(x))), if P (g(x)) ∈ {i1, i2, i3},

4, otherwise.

If P{i1,i2,i3} is a non-opposite cut, we simply let P̃ = P{i1,i2,i3}. Otherwise,
we “fix” P{i1,i2,i3} by changing its value at every point x that violates the non-
opposite cut condition; we call such points “bad”. Specifically, we let

P̃ (x) =

{
P{i1,i2,i3}(x), if P{i1,i2,i3}(x) ∈ supp(x) ∪ {4},

4, otherwise.

It is obvious that P̃ is a non-opposite cut. Moreover, if any two points x, y ∈
Δ3,n are separated in P̃ , then either P{i1,i2,i3}(x) �= P{i1,i2,i3}(y) or exactly one
of x, y is bad. From the definition of P{i1,i2,i3}, the former implies P (g(x)) �=
P (g(y)), which happens with probability at most τ∗

K · 1
2‖x − y‖1. Hence, we are

left to show that the probability that any x ∈ Δ3,n is bad is at most O(1/K);
this immediately yields the intended bound since ‖x − y‖1 � 2/n for every
x �= y ∈ Δ3,n.

If x is bad, then P{i1,i2,i3}(x) ∈ [3]\supp(x), which implies that |supp(x)| = 2.
Assume w.l.o.g. that supp(x) = {1, 2}. We want to bound Pr[P{i1,i2,i3}(x) = 3].
Fix P, i1 and i2 (so that only i3 is random). Note that now the value of P (g(x))
is also fixed, since x3 = 0. Finally, observe that P{i1,i2,i3}(x) = 3 iff i3 = P (g(x)).
Since i3 is a random element of [K] \ {i1, i2}, this happens with probability at
most 1/(K − 2), completing our proof sketch.

Lower Bound for τ̃∗
3,n. To lower bound τ̃∗

3,n, it suffices to construct a weighted
undirected graph with vertices Δ3,n such that the CKR LP has a small value
but every non-opposite cut has a large cost. Similar to Karger et al.’s integrality
gap instance for k = 3 [8], a crucial component in our proof is a characterization
of candidate optimal non-opposite cuts. This allows us to restrict our attention
to certain types of cuts, for which it is easier to prove lower bounds.

2 Preliminaries and Notation

Henceforth, we consider graphs (Δk,n, Ek,n) on Δk,n with the edge set Ek,n :=
{(x, y) | x, y ∈ Δk,n, ‖x − y‖1 = 2/n} for some k and n. The terminals are the k
vertices of the simplex Δk. To avoid confusion, we refer to the simplex vertices
simply as vertices and to the vertices of the graph as points.

We denote the value of the LP solution in which each point is assigned to
itself with respect to w : Ek,n → R≥0 by

L(w) :=
∑

(x,y)∈Ek,n

w(x, y) · 1
2
‖x − y‖1 =

1
n

∑

(x,y)∈Ek,n

w(x, y).

For every cut P : Δk,n → N, we denote its cost with respect to w by

C(P,w) :=
∑

(x,y)∈Ek,n

w(x, y) · 1[P (x) �= P (y)],

where 1[P (x) �= P (y)] is the indicator variable of the event P (x) �= P (y).
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3 A Lower Bound on τ̃ ∗
3,n

We will first construct an integrality gap on the graph (Δ3,n, E3,n) such that its
CKR LP value is small but every non-opposite cut has a large cost. The main
result of this section is that τ̃∗

3,n � 6/5−O(1/n), equivalently stated as follows.

Lemma 1. For every n divisible by 3, there is w : E3,n → R≥0 such that L(w) =
5/6 + O(1/n) and, for every non-opposite cut P of (Δ3,n, E3,n), C(P,w) � 1.

To prove Lemma 1, we start by characterizing optimal non-opposite cuts.

3.1 A Characterization of Non-opposite Cuts of Δ3,n

We now characterize non-opposite cuts in (Δ3,n, E3,n); we do so by extending a
characterization of 3-way cuts by Karger et al. [8].

To characterize 3-way cuts, Karger et al. [8] consider the dual graph of an
augmented version of (Δ3,n, E3,n), in which each simplex vertex has an edge
heading out infinitely. This augmentation creates three outer faces O1, O2 and
O3 (opposite to e1, e2 and e3 respectively). For convenience, we disregard the
edges among O1, O2, O3 in the dual. Figure 2a and b illustrate an augmented
graph and its planar dual. They are reproduced from Figs. 1 and 2 in [8].

A cut in the original graph can be viewed as a collection of edges in the
dual graph; an edge in the dual graph between two faces corresponding to the
shared edge of the faces being cut. With this interpretation, Karger et al. give
the following characterization for candidate optimal cuts of any weight function.

Observation 2 ([8]). For every w : E3,n → R≥0, there exists a least-cost 3-way
cut P that is of one of the following forms:

– P contains three non-intersecting paths from a triangle to O1, O2 and O3.
Such P is called a ball cut. (See Fig. 2c, reproduced from Fig. 3 of [8].)

– P contains two non-intersecting paths among O1, O2 and O3. Such P is called
a 2-corner cut. (See Fig. 2d, reproduced from Fig. 4 of [8].)

In other words, to prove that every 3-way cut incurs large cost against w,
it suffices to consider only ball cuts and 2-corner cuts, which are more conve-
nient to work with. Karger et al. take advantage of this when constructing their
gap for Multiway Cut with three terminals. We make the following analogous
observation for non-opposite cuts. Since the proof is straightforward, we omit it
here.

Observation 3. For every w : E3,n → R≥0, there exists a least-cost non-
opposite cut P that is of one of the following forms:

– P is a ball cut.
– P contains three non-intersecting paths among O1, O2 and O3. Such P is

called a 3-corner cut or simply a corner cut. (See Fig. 2e.)
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Fig. 2. The augmented (Δ3,6, E3,6), its dual and various types of cuts.

3.2 The Integrality Gap

With the characterization in place, we are now ready to prove Lemma 1.

Proof of Lemma 1. To construct the instance, we first divide the vertex set into
corner triangles T1, T2, T3 and a middle hexagon H as follows3. H contains all
points x ∈ Δ3,n such that x1, x2, x3 � 2/3, whereas each Ti contains all the
points x’s such that xi � 2/3. Note that this is not a partition since H and Ti

share the line xi = 2/3, but this notation will be more convenient for us.
Every edge in H, including its border, has weight ρ := 1/(2n). For each i,

every non-border edge in Ti not parallel to the opposite side of ei also has weight
ρ, whereas the non-border edges parallel to the opposite side of ei have weight
zero. Finally, for each of the two borders of Ti containing ei, the edge closest to
ei is assigned weight (n/3)ρ, the second closest is assigned (n/3 − 1)ρ, and so
on. An illustration of the construction is shown in Fig. 3a.

It is easy to check that L(w) = 5/6 + O(1/n). We will next prove that, for
any non-opposite cut P , C(P,w) � 1. From Observation 3, we can assume that
P is either a ball cut or a corner cut. Recall that each node in the dual graph
is either O1, O2, O3 or a triangle. We represent each triangle by its median. For
each i, we define the potential function Φi on Oi and all the triangles as follows.

3 This terminology is from [5] but our instance differs significantly from theirs.
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Φi(F ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if F = Oi,

(4n/3)ρ if x ∈ Ti,

(n/3 + n(xi − x�))ρ if x ∈ Tj ,

(n/3 + n(xi − xj))ρ if x ∈ T�,

�2nxi�ρ if x ∈ H,

where {i, j, �} = {1, 2, 3} and x = (x1, x2, x3) is the middle point of F . An
example illustrating the potential function can be found in Fig. 3b.

It is easy to check that, for any two triangles F1, F2 that share an edge, the
difference |Φi(F1) − Φi(F2)| is no more than the weight of the shared edge. The
same remains true even when one of F1, F2 is Oi. This implies that, in the dual
graph, the shortest path from Oi to any triangle F is at least Φi(F ). With these
observations in mind, we are ready to show that C(P,w) � 1. Let us consider
the two cases based on whether P is a corner cut or a ball cut.

Case 1. Suppose that P is a corner cut. Observe that, for any j ∈ [3] \ {i} and
for any triangle F sharing an edge with the outer face Oj , we always have Φi(F )
plus the weight of the shared edge being at least (2n/3)ρ = 1/3. Hence, the
shortest path from Oi to Oj in the dual graph has weight at least 1/3. Since P
contains three paths among O1, O2, O3, the cost of P is at least 1.

Case 2. Suppose that P is a ball cut. Let F be the triangle which the three
paths to O1, O2, O3 in P originate from and x be the median of F . To show that
C(P,w) � 1, it is enough to show that the total length of the shortest paths from
F to O1, O2 and O3 is at least one. Since these shortest paths are lower bounded
by the potential functions, we only need to prove that Φ1(F )+Φ2(F )+Φ3(F ) � 1.

Fig. 3. The integrality gap instance and a potential function when n = 9 are shown in
(a) and (b) respectively. The middle hexagon H is shaded.
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If x ∈ H, then
∑

i∈[3] Φi(F ) =
∑

i∈[3]�2nxi�ρ �
∑

i∈[3](2nxi)ρ = 1. Oth-
erwise, if x /∈ H, assume without loss of generality that x ∈ T1. We also have∑

i∈[3] Φi(F ) = (4n/3)ρ + (n/3 + n(x2 − x3)) ρ + (n/3 + n(x3 − x2)) ρ = 1.

In both cases, we have C(P,w) � 1, thus completing the proof of
Lemma 1. �

4 Proof of the Main Theorem

We will now construct an integrality gap for Multiway Cut with k � 3 terminals
on the graph (Δk,n, Ek,n) and prove our main theorem, which is stated below.
Clearly, by taking n sufficiently large, Theorem 4 implies Theorem 1.

Theorem 4. For every n divisible by 3 and k � 3, there exists w̃ : Ek,n → R≥0

such that L(w̃) � (5+ 1
k−1 )/6+O(1/n) and, for every k-way cut P , C(P, w̃) � 1.

4.1 An Integrality Gap for Δk,n from Δ3,n

To prove Theorem 4, we first construct a simple integrality gap for Δk,n from
our gap for Δ3,n in Sect. 3; this is similar to the proof of τ̃∗

3,n − O(n/k) � τ∗
k

sketched in the introduction, although we will need to be more precise in order
to get the right dependency on k. We will later tweak this instance slightly to
arrive at our final integrality gap for Multiway Cut. We start by proving the
following proposition, which is crucial in the analysis of the gap.

Proposition 1. Given arbitrary k � 3 and n, let P be a k-way cut of Δk,n. For
every {i1, i2, i3} ⊆ [k], let P{i1,i2,i3} be defined as in the introduction. Moreover,
for each {i, j} ⊆ [k], let us define Di,j(P ) to be the set of all clusters that the
points on the line between ei and ej (inclusive) are assigned to, i.e., Di,j(P ) =
{P (x) | x ∈ Δk,n, supp(x) ⊆ {i, j}}. Finally, let D(P ) = E{i,j}⊆[k][|Di,j(P )|]. If
i1, i2, i3 are three randomly selected distinct elements of [k], then

Pr
i1,i2,i3

[P{i1,i2,i3} is non-opposite] � 1 − 3(D(P ) − 2)/(k − 2).

Proof. If P{i1,i2,i3} is not non-opposite, there is x such that supp(x) ⊆ {i1, i2, i3}
and P (x) ∈ {i1, i2, i3} \ supp(x). Such x must have |supp(x)| = 2. Thus,

Pr
i1,i2,i3

[P{i1,i2,i3} is not non-opposite]

�
∑

{j1,j2}⊆{i1,i2,i3}
Pr

i1,i2,i3
[∃x, supp(x) = {j1, j2} and P (x) ∈ {i1, i2, i3} \ {j1, j2}]

= 3 Pr
i1,i2,i3

[∃x, supp(x) = {i1, i2} and P (x) = i3],

where the last equality comes from symmetry. Now, let us fix i1, i2. There is
an x with supp(x) = {i1, i2} such that P (x) = i3 if and only if i3 ∈ Di1,i2(P ).
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Observe that i1, i2 ∈ Di1,i2(P ). Hence, the probability that i3, a uniformly ran-
dom element from [k]\{i1, i2}, lies in Di1,i2(P ) is exactly (|Di1,i2(P )|−2)/(k−2).
Thus,

Pr
i1,i2,i3

[∃x, supp(x) = {i1, i2} and P (x) = i3] = E
i1,i2

[(|Di1,i2(P )| − 2)/(k − 2)]

= (D(P ) − 2)/(k − 2).

Hence, Pri1,i2,i3 [P{i1,i2,i3} is non-opposite] � 1 − 3(D(P ) − 2)/(k − 2). �
Another component in our analysis is the observation that, even when a 3-

way cut is non-opposite, it still incurs some cost against w (defined in Lemma 1).

Observation 5. For every 3-way cut P of (Δ3,n, E3,n), C(P,w) � 2/3.

To see that the observation is true, recall Observation 2; we only need to
consider ball cuts and 2-corner cuts. Moreover, we showed in Subsect. 3.2 that
the cost of any ball cut and 3-corner cut against w is at least one. This implies
that the cost of any 2-corner cut is at least 2/3, meaning that Observation 5 is
true.

We are now ready to describe and analyze the integrality gap instance for
(Δk,n, Ek,n).

Lemma 2. For every n divisible by 3 and k � 3, there is w : Ek,n → R≥0

such that L(w) = 5/6 + O(1/n) and, for every k-way cut P of (Δk,n, Ek,n),
C(P,w) � 1 − (D(P ) − 2)/(k − 2).

Proof. Our instance is created by embedding the weight w from Lemma 1 to
every triangular face of Δk,n. Specifically, for each {i1, i2, i3} ∈ (

[k]
3

)
, the weight

w{i1,i2,i3} : Ek,n → R≥0 of the gap embedded to the face of ei1 , ei2 , ei3 is

w{i1,i2,i3}(x, y) =

{
w((xi1 , xi2 , xi3 ), (yi1 , yi2 , yi3 )) if supp(x), supp(y) ⊆ {i1, i2, i3},
0 otherwise.

Finally, let w = Ei1,i2,i3

[
w{i1,i2,i3}

]
where the expectation is over all random

distinct i1, i2, i3 ∈ [k]. Note that L(w) = L(w) = 5/6 + O(1/n).
Next, consider any k-way cut P . Observe that C(P,w) = Ei1,i2,i3

[C(P,w{i1,i2,i3})] � Ei1,i2,i3 [C(P{i1,i2,i3}, w)]. Let E{i1,i2,i3} be the event that
P{i1,i2,i3} is non-opposite. We can lower bound C(P,w) further as follows.

E
i1,i2,i3

[C(P{i1,i2,i3}, w)] = Pr
i1,i2,i3

[E{i1,i2,i3}] E
i1,i2,i3

[C(P{i1,i2,i3}, w) | E{i1,i2,i3}]+

Pr
i1,i2,i3

[¬E{i1,i2,i3}] E
i1,i2,i3

[C(P{i1,i2,i3}, w) | ¬E{i1,i2,i3}]

(Lemma 1, Observation 5) �Pr[E{i1,i2,i3}] + (2/3)Pr[¬E{i1,i2,i3}]

(Proposition 1) �1 − (D(P ) − 2)/(k − 2). �
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4.2 The Final Integrality Gap

Since w does not work well against P with large D(P ), we need another integral-
ity gap instance to deal with this case. This instance is constructed simply by
distributing the weight equally on simplex edges. Its properties are stated below;
we defer the straightforward analysis of this instance to the full version [1].

Lemma 3. For every n � 2 and every k � 2, there exists w′ : Ek,n → R≥0 such
that L(w′) = 1 and, for every k-way cut P , C(P,w′) � D(P ) − 1.

Our final weight w̃ is simply an appropriate linear combination of w and w′.

Proof of Theorem 4. Let w̃ =
(

k−2
k−1

)
w +

(
1

k−1

)
w′. Note that L(w̃) =

(
k−2
k−1

)
L(w) +

(
1

k−1

)
L(w′) =

5+ 1
k−1
6 + O(1/n). Moreover, for any k-way cut P ,

C(P, w̃) �
(

k − 2
k − 1

) (
1 − D(P ) − 2

k − 2

)
+

(
1

k − 1

)
(D(P ) − 1) = 1

where the inequality comes from Lemmas 2 and 3. �

5 Conclusion

We construct integrality gap instances of ratio 6/(5 + 1
k−1 ) − ε for the CKR

relaxation of Multiway Cut with k � 3 terminals. Thanks to Manokaran et al.’s
result [9], this implies UGC-hardness of approximating Multiway Cut with simi-
lar ratios. Our construction is based on the observation that τ̃∗

3,n−O(n/K) � τ∗
K ;

from there, we extend Karger et al.’s characterization of 3-way cuts [8] to non-
opposite cuts, leading to a lower bound of 6/5−O(1/n) for τ̃∗

3,n. We also observe
that Freund and Karloff’s integrality gap [7] is subsumed by our approach.

Even with our result, the approximability of Multiway Cut is far from
resolved; the best known approximation ratio [10] is 1.2965 as k → ∞ whereas
our gap is only 1.2. Note also that a modification of Karger et al.’s algorithm
shows that τ̃∗

3 � 1.2 (see Appendix C of [1]), meaning that our lower bound
for τ̃∗

3 is the best possible. Thus, to construct better gaps, one likely needs to
exploit properties of higher-dimensional simplexes, which seems challenging as
all known gaps, including ours, only deal with Δ3, whose cuts can be conveniently
characterized.
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Abstract. We study the problem of approximating the corner polyhe-
dron using intersection cuts derived from families of lattice-free sets. In
particular, we look at the problem of characterizing families that approx-
imate the corner polyhedron up to a constant factor in fixed dimension
n (the constant depends on n). The literature already contains several
results in this direction. In this paper, we use the maximum number of
facets of a lattice-free set in a family as a measure of its complexity and
precisely characterize the level of complexity of a family required for con-
stant factor approximations. As one of the main results, we show that
for each natural number n, a corner polyhedron for n integer variables
is approximated by intersection cuts from lattice-free sets with at most
i facets up to a constant factor (depending only on n) if i > 2n−1 and
that no such approximation is possible if i ≤ 2n−1. When the approxi-
mation factor is allowed to depend on the denominator of the underlying
fractional point of the corner polyhedron, we show that the threshold is
i > n versus i ≤ n. The tools introduced for proving such results are of
independent interest for studying intersection cuts.

1 Introduction

Given n, k ∈ N, a matrix R := (r1, . . . , rk) ∈ R
n×k with columns r1, . . . , rk ∈ R

n,
and a vector f ∈ R

n\Zn, the set

Cor(R, f) := conv
{

s ∈ R
k
≥0 : f +

∑k
i=1 siri ∈ Z

n
}

has been studied in the integer programming literature, as a framework for
deriving cutting planes (cuts) for general mixed-integer programs; see Chap. 6
of [10] for a detailed discussion. When both R and f are rational, the well-known
Meyer’s theorem (see [14]) implies that Cor(R, f) is a rational polyhedron. In
the case of rational (R, f), we will refer to Cor(R, f) as the corner polyhedron
for (R, f). The original definition of the corner polyhedron going back to [12]
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involved the condition s ∈ Z
k
≥0, but the term has since been used with s allowed

to take mixed-integer values (see Chap. 6 of [10] and the references therein).
An inequality description of Cor(R, f) can be obtained via gauge functions

of lattice-free sets. A set B ⊆ R
n is lattice-free if B is n-dimensional, closed,

convex, and the interior of B does not contain points of Zn. A lattice-free set is
called maximal if it is not a proper subset of another lattice-free set1. Let B ⊆ R

n

be a closed and convex set with 0 ∈ int(B). The gauge function ψB : Rn → R of
B is ψB(r) := inf {λ > 0 : r ∈ λB} .

Given a lattice-free set B with f ∈ int(B), the intersection cut for (R, f)
generated by B (or the B-cut of (R, f)) is

CB(R, f) :=
{

s ∈ R
k
≥0 :

∑k
i=1 siψB−f (ri) ≥ 1

}
.

In the degenerate case where f ∈ R
n\ int(B), we define CB(R, f) := R

k
≥0. Given

a family B of lattice-free subsets of Rn we call the set

CB(R, f) :=
⋂

B∈B CB(R, f)

the B-closure of (R, f). If the family B is empty, we define CB(R, f) = R
k
≥0.

Intersection cuts can be partially ordered by set inclusion. If B1, B2 are
lattice-free sets then the inclusion B1 ⊆ B2 implies CB2(R, f) ⊆ CB1(R, f) for
all (R, f). Hence maximal lattice-free sets produce the strongest cuts [8,9]. Fur-
thermore, all lattice-free sets are contained in maximal lattice-free sets, and all
maximal lattice-free sets are polyhedra [13]. Therefore our focus can be directed
towards intersection cuts from polyhedra.

Definition 1 (Ln
i , i-hedral closures, and Ln

∗ ). For i ∈ N, let Ln
i denote the

family of all lattice-free (not necessarily maximal) polyhedra in R
n with at most i

facets; we call CLn
i
(R, f) the i-hedral closure of (R, f). Let Ln

∗ denote the family
of all lattice-free (not necessarily maximal) polyhedra in R

n.

For every B, the B-closure CB(R, f) is a relaxation of Cor(R, f), which
means the inclusion Cor(R, f) ⊆ CB(R, f) holds for every choice of (R, f).
Furthermore, the equality Cor(R, f) = CB(R, f) is attained when B contains
all maximal lattice-free polyhedra and (R, f) is rational [16]. This implies that
one approach to computing Cor(R, f) for rational (R, f) is to classify maxi-
mal lattice-free sets and compute cuts using the corresponding gauge functions.
Recent work has focused on this classification [1,3,4,11]. The classification was
given for n = 2 in [11], but a classification is not known even for n = 3. Further-
more, even if such a classification was available for an arbitrary dimension n, the
respective gauge functions would be difficult to compute, in general. In fact, the
number i of facets of an arbitrary maximal lattice-free polyhedron B ⊆ R

n can
be as large as 2n, while the computation of the respective gauge function would

1 Some sources do not impose the condition dim(B) = n in the definition of maximal
lattice-free sets, but the case dim(B) < n is not needed for this paper.
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require evaluation of i scalar products if B is not required to have any particular
structure.

In light of these difficulties, instead of fully describing Cor(R, f) by classify-
ing lattice-free sets, one can aim to find a small and simple family of lattice-free
sets whose closure approximates Cor(R, f) within a desired tolerance [2,5,7].
In other words, for a fixed n ∈ N, one can search for a simple family B and a
constant α ≥ 1 (potentially depending on n) such that the inclusions

Cor(R, f) ⊆ CB(R, f) ⊆ 1
α Cor(R, f)

hold for all (R, f) (it is well known that Cor(R, f) ⊆ 1
α Cor(R, f) for α ≥ 1).

The inclusion Cor(R, f) ⊆ CB(R, f) always holds, so we are led to consider the
following main question:

Question 1. Let B and L be families of lattice-free sets in R
n. Under what

conditions does there exist some α > 1 such that the inclusion CB(R, f) ⊆
1
αCL(R, f) holds for all pairs (R, f)? Moreover, for a fixed f ∈ Q

n\Zn, when
does there exist α such that CB(R, f) ⊆ 1

αCL(R, f) holds for all rational R?

If such an α exists, then the B-closure approximates the L-closure within a
factor of α, that is the B-closure provides a finite approximation of the L-closure
for all choices of (R, f) (or for a fixed f and all R). In this paper, we focus on
answering Question 1. Since for rational (R, f), the corner polyhedron of (R, f)
coincides with CLn∗ (R, f), we are particularly interested in studying the case of
L = Ln

∗ . On the other hand, as the number of facets is a natural measure for
describing the complexity of maximal lattice-free sets, we are interested in the
case B = Ln

i with i ∈ N.

Notation and Preliminaries. For background information on convex sets,
polyhedra, and integer programming, see for example [10,15].

We use N to denote the set of all positive integers and [m] := {1, . . . , m} for
m ∈ N. For X ⊆ R

n, we use cone(X), conv(X), int(X), relint(X) to denote the
conic hull, the convex hull, the interior, and the relative interior of X, respec-
tively. For i ∈ [n], the vector ei ∈ R

n denotes the i-th standard basis vector. The
value n ∈ N will always denote the dimension of the ambient space Rn, k ∈ N will
always represent the number of columns of R, and r1, . . . , rk will always denote
the columns of R. Stating that a condition holds for every R means that the con-
dition holds for every R ∈ ⋃∞

k=1 R
n×k. Stating that a condition holds for every

(R, f) means the condition holds for every R ∈ ⋃∞
k=1 R

n×k and f ∈ R
n\Zn.

Due to space constraints, most proofs appear exclusively in the journal version
of this paper.

2 Summary of Results

For α ≥ 1, we call 1
αCB(R, f) the α-relaxation of the cut CB(R, f). Analogously,

for a family of lattice-free sets B, we call 1
αCB(R, f) the α-relaxation of the

B-closure CB(R, f). Using α-relaxations, the relative strength of cuts and
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closures can be quantified naturally as follows. For f ∈ R
n\Zn and lattice-free

subsets B and L of Rn, we define

ρf (B,L) := inf
{
α > 0 : CB(R, f) ⊆ 1

αCL(R, f) ∀R
}

. (1)

The value ρf (B,L) quantifies up to what extent CB(R, f) can ‘replace’
CL(R, f). For α ≥ 1, the inclusion CB(R, f) ⊆ 1

αCL(R, f) says that the
cut CB(R, f) is at least as strong as the α-relaxation of the cut CL(R, f).
For α < 1, the previous inclusion says that not just CB(R, f) but also the
1
α -relaxation of the cut CB(R, f) is at least as strong as the cut CL(R, f).
Thus, if ρf (B,L) ≤ 1, the B-cut of (R, f) is stronger than the L-cut of (R, f)
for every R, and the value ρf (B,L) quantifies how much stronger they are. If
1 < ρf (B,L) < ∞, then the B-cut of (R, f) is not stronger than the L-cut of
(R, f) but stronger than the α-relaxation of the L-cut for some α > 0 inde-
pendent of R, where the value ρf (B,L) quantifies up to what extent the L-cut
should be relaxed. If ρf (B,L) = ∞, then CB(R, f) cannot ‘replace’ CL(R, f)
as there is no α ≥ 1 independent of R such that CB(R, f) is stronger than the
α-relaxation of CL(R, f).

In addition to comparing the cuts coming from two lattice-free sets, we want
to compare the relative strength of a family B to a single set L, and the relative
strength of two families B and L. We consider these comparisons when f is fixed
or arbitrary. For the case of a fixed f ∈ R

n\Zn we introduce the functional

ρf (B, L) := inf
{
α > 0 : CB(R, f) ⊆ 1

αCL(R, f) ∀R
}

,

which compares B-closures to L-cuts for a fixed f . We also introduce

ρf (B,L) := inf
{
α > 0 : CB(R, f) ⊆ 1

αCL(R, f) ∀R
}

for comparing B-closures to L-closures for a fixed f . The analysis of ρf (B,L)
can be reduced to the analysis of ρf (B, L) for L ∈ L, since one obviously has

ρf (B,L) = sup {ρf (B, L) : L ∈ L} . (2)

For the analysis in the case of varying f , we introduce the functionals:

ρ(B, L) := sup {ρf (B, L) : f ∈ R
n\Zn} ,

ρ(B,L) := sup {ρf (B,L) : f ∈ R
n\Zn} .

Observe that

ρ(B, L) = sup {ρf (B, L) : f ∈ int(L)} , (3)
ρ(B,L) = sup {ρf (B, L) : f ∈ int(L), L ∈ L} . (4)

The functional ρ(B,L) was introduced in [5, Sect. 1.2], where the authors
initiated a systematic study for the case of n = 2. In the case that (R, f) is
rational, since CLn∗ (R, f) = Cor(R, f), the value ρ(B,Ln

∗ ) ≥ 1 describes how
well CB(R, f) approximates Cor(R, f).

Our first main result examines i-hedral closures using the functional ρ(B,L).
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Theorem 1. Let i ∈ {2, . . . , 2n}. Then ρ(Ln
i ,Ln

i+1) = ∞ if i ≤ 2n−1 and
ρ(Ln

i ,Ln
∗ ) ≤ 4Flt(n) if i > 2n−1, where Flt(n) is the flatness constant2.

Another way to examine the relative strength of i-hedral closures is with the
functional ρf (B,L) for a fixed f ∈ R

n\Zn. As ρf (Ln
i ,Ln

∗ ) < ρ(Ln
i ,Ln

∗ ) for every
f ∈ R

n\Zn and i ∈ N, Theorem 1 immediately implies that ρf (Ln
i ,Ln

∗ ) < ∞
for i > 2n−1. It turns out that in the case of a fixed rational f , the finiteness
ρf (Ln

i ,Ln
∗ ) < ∞ holds for every i > n (that is, already starting from i = n + 1).

The denominator of f is the minimal s ∈ N such that sf ∈ Z
n.

Theorem 2. Let f ∈ Q
n\Zn and i ∈ {2, . . . , 2n}. Then ρf (Ln

i ,Ln
i+1) = ∞ for

every i ≤ n and ρf (Ln
i ,Ln

∗ ) < Flt(n)4n−1s for every i > n, where s is the
denominator of f .

In light of Theorems 1 and 2, upper bounds on ρf (Ln
i ,Ln

∗ ) necessarily depend
on f for n < i ≤ 2n−1. An important point to note is that Theorem 2 assumes
rationality of f . Rationality on f or R is not required for the other results in this
paper. The finite approximation directions of Theorems 1 and 2 are provided in
Sect. 5.1, and the inapproximability results are shown in Sect. 5.2.

Our main tool used in proving Theorems 1 and 2 is Theorem 3, which is
geometric in nature. We set up some notation necessary to state the result.

Definition 2 (Cf and Bf). For f ∈ R
n\Zn, let Cf be the collection of all closed,

full-dimensional, convex sets with f in the interior. For a family of lattice-free
sets B, define Bf := Cf ∩ B.

Theorem 3 requires a metric on the space Cf . For f ∈ R
n\Zn, we require a

topology that allows us to take limits of the inequalities defining intersection cuts,
that is, we need a topology that considers the convergence of gauge functions.
To this end, we say that a sequence of sets Bt converges to B in the f-metric
if f ∈ int(B), f ∈ int(Bt) for t ∈ N, and ψBt−f converges to ψB−f pointwise
as t → ∞. The formal definition of the f -metric appears in Sect. 3. We believe
that this topology on the collection of lattice-free sets could be useful in future
research. We use clf to denote the closure operator with respect to the f -metric.

Theorem 3 (Geometric One-for-all Theorem for two families). Let B be
a family of lattice-free subsets of Rn. Let L ⊆ Ln

∗ be such that there is a constant
N ∈ N satisfying the following condition: every L ∈ L has a representation
L = conv(V ) + cone(W ) using a nonempty finite subset V of Rn and a finite
(possible empty) subset W of Rn\{0} such that |V | + |W | + 1 ≤ N holds. Then
the following hold:

(a) Suppose clf (Bf ) = Bf for a fixed f ∈ R
n\Zn. Then ρf (B,L) < ∞ if and

only if there exists μ ∈ (0, 1) such that for every L ∈ Lf , there exists some
B ∈ B satisfying B ⊇ μL + (1 − μ)f .

(b) Suppose clf (Bf ) = Bf for all f ∈ R
n\Zn. Then ρ(B,L) < ∞ if and only if

there exists μ ∈ (0, 1) such that for every f ∈ R
n\Zn and each L ∈ Lf , there

exists some B ∈ B satisfying B ⊇ μL + (1 − μ)f .
2 The flatness constant Flt(n) is known to be upper bounded by n5/2 [6, p. 317].
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Let B and L be families of lattice-free sets. A B-closure approximates an
L-closure if and only if the B-closure approximates the L-cut for each L ∈ L.
The somewhat surprising message of Theorem 3 is that in order for the B-closure
to approximate an L-cut for some L ∈ L, it is necessary that there exists a single
B ∈ B such that the corresponding B-cut approximates the L-cut. So with a
view towards constant factor approximations of L-cuts, there is no synergy of
all B-cuts for B ∈ B that contributes to the approximation. In Theorem 3,
which is proved in Sect. 4, the above informal message is expressed rigorously in
convenient geometric terms.

3 The f-metric

Theorem 3 requires one to consider the closure of a family Bf under the f -metric.
The following example shows it is not always sufficient to consider only Bf when
examining the approximation functional ρf (B, L).

Example. Let L ⊆ R
2 be a lattice-free split (see [10, p. 196]). Choose f ∈ int(L)

and let B := L2
3 ∩ Cf be the set of all maximal lattice-free triangles containing

f in the interior. Since L is a split, there is a nonzero vector r in the lineality
space of L. The intersection cut CL((r), f) is an empty set while CB((r), f) is
nonempty for each B ∈ B. Hence ρf (B,L) = ∞ for each B ∈ B. However, it is
not hard to see that ρf (B, L) ≤ 1, see also [7, Theorem 1.4]. �

The issue in this example is that L is a ‘limit point’ of B, but L �∈ B. Examples
such as this motivate the use of a metric such that these ‘limit points’ can be
considered.

For f ∈ R
n\Zn, recall that Cf is the collection all closed, full-dimensional,

convex sets in R
n that contain f in their interior. We define the f -metric df :

Cf × Cf → R≥0 on Cf to be df (B1, B2) := dH ((B1 − f)◦, (B2 − f)◦) , where
B1, B2 ∈ Cf , (Bi − f)◦ denotes the polar of Bi − f for i = 1, 2, and dH denotes
the Hausdorff metric3. Since f is in the interior of B1 and B2, the sets (B1 −f)◦

and (B2 − f)◦ are compact, which shows that df (B1, B2) is well-defined.

4 One-for-all Theorems and Proof of Theorem 3

For proving Theorem 3, we first derive an analogous result about approximation
of a single set L by a family B in the case of a fixed f .

Theorem 4 (One-for-all Theorem for a family B and a set L). Let f ∈
R

n\Zn, let B be a family of lattice-free subsets of Rn satisfying clf (Bf ) = Bf ,
and let L be a lattice-free polyhedron given by L = conv(V )+ cone(W ), where V

3 For a set B ⊆ R
n, the polar of B is B◦ := {r ∈ R

n : r ·x ≤ 1 ∀x ∈ B}. The Hausdorff
metric is defined on the family of compact sets of Rn as follows: dH(A, B) for compact
sets A, B is the minimum γ > 0 such that A ⊆ B + D(0, γ) and B ⊆ A + D(0, γ),
where D(0, γ) is the closed ball of radius γ around the origin.
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is a nonempty finite subset of Rn and W is a finite (possibly empty) subset of
R

n\{0}. Then
1

|V |+|W |+1 infB∈B ρf (B,L) ≤ ρf (B, L) ≤ infB∈B ρf (B,L). (5)

Proof (Sketch). Note that for every B ∈ B, ρf (B, L) ≤ ρf (B,L) and so the right
inequality of (5) holds. For the left inequality of (5), first suppose that L is a
polytope, i.e. W = ∅. We may assume f ∈ int(L), otherwise all the functionals
evaluate to 0. We may also assume ρf (B, L) < ∞, which implies Bf �= ∅. Using
the fact that ρf (B, L) < ∞, one can show that for ε∗ := 1/((|V | + 1)ρf (B, L)),
there is some B ∈ Bf ⊆ B satisfying ε∗L+(1− ε∗)f ⊆ B. Therefore CB(R, f) ⊆
ε∗CL(R, f) for all R. From (1), ρf (B,L) ≤ (|V | + 1)ρf (B, L). This yields

1
|V |+1 infB∈B ρf (B,L) ≤ 1

|V |+1ρf (B,L) ≤ ρf (B, L).

If L is not a polytope, we can restrict ourselves to the polytope case by
representing L using a sequence of polytopes and employing a limiting argument.
A complete proof appears in the journal version of this paper. ��

An immediate corollary of Theorem 4 handles the case of arbitrary f .

Corollary 1. Let B and L be as in Theorem 4. Further assume that clf (Bf ) =
Bf for all f ∈ R

n\Zn. Then

1
|V | + |W | + 1

sup
f∈Rn\Zn

inf
B∈B

ρf (B,L) ≤ ρ(B, L) ≤ sup
f∈Rn\Zn

inf
B∈B

ρf (B,L). (6)

Corollary 1 and Theorem 4 together give a more general One-for-all type
result where L is a family of sets.

Theorem 5 (One-for-all Theorem for two families). Let B, L, and N be
as in Theorem 3. Then the following hold:

(a) Let f ∈ R
n\Zn. If clf (Bf ) = Bf then

1
N

sup
L∈L

inf
B∈B

ρf (B,L) ≤ ρf (B,L) ≤ sup
L∈L

inf
B∈B

ρf (B,L). (7)

(b) If clf (Bf ) = Bf for all f ∈ R
n\Zn, then

1
N

sup
L∈L,f∈int(L)

inf
B∈B

ρf (B,L) ≤ ρ(B,L) ≤ sup
L∈L,f∈int(L)

inf
B∈B

ρf (B,L). (8)

Note that (7) follows from (5), and (8) follows from (6). Theorem 5 shows
that finiteness of ρf (B,L) and ρ(B,L) depends on the individual values ρf (B,L)
for sets B ∈ B and L ∈ L. The following proposition gives a geometric charac-
terization of ρf (B,L); this combined with Theorem5 implies Theorem 3.

Proposition 1. Let f ∈ R
n\Zn, and let B and L be lattice-free subsets of Rn.

Then

ρf (B,L) = inf
{
α > 0 : B ⊇ 1

α (L − f) + f
}

if f ∈ int(L) and ρf (B,L) = 0, otherwise.
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5 The Relative Strength of i-hedral Closures

From Theorem 3, identifying the values of i yield ρ(Ln
i ,Ln

∗ ) < ∞ or ρf (Ln
i ,Ln

∗ ) <
∞ can be done by analyzing the structure of polyhedra with at most i facets. In
order to help with this geometric analysis, we make use of the flatness constant.
For every nonempty subset X of Rn, the width function w(X, · ) : Rn → [0,∞]
of X is defined to be w(X,u) := supx∈X x · u − infx∈X x · u. The value w(X) :=
infu∈Zn\{0} w(X,u) is called the lattice width of X.

Theorem 6 (Flatness Theorem). The flatness constant in dimension n is
finite, i.e. Flt(n) := sup {w(B) : B lattice-free set in R

n} < ∞.

For upper bounds on Flt(n) see, for example, [6, p. 317]. Theorem 3 also
requires clf (Ln

i ∩ Cf ) = Ln
i ∩ Cf for every f ∈ R

n\Zn.

Proposition 2. Let i ∈ N and f ∈ R
n\Zn. Then clf (Ln

i ∩ Cf ) = Ln
i ∩ Cf .

5.1 On the Approximability of i-hedral Closures

For Propositions 3 and 4 below, most of the proof is contained in Lemma 1.

Lemma 1. Let L ∈ Ln
∗ and f ∈ int(L). Assume there exist values m ∈ N and

t ∈ Z, and a maximal lattice-free set D ∈ Ln−1
m such that L∩(Rn−1×{t}) ⊆ D×

{t}. Assume there exists γ ∈ (0, 1] such that w(L′, en) ≤ 1 and L′ ∩ (Rn−1 ×{t})
is nonempty, where L′ := γ(L− f)+ f . Then there exists a B ∈ Ln

m+1 such that
1
4γ(L − f) + f ⊆ B.

Proposition 3. ρ(Ln
i ,Ln

∗ ) ≤ 4Flt(n) for i > 2n−1.

Proof. It suffices to consider the case i = 2n−1 + 1, as every Ln
i with i > 2n−1

contains Ln
2n−1+1 as a subset. The assertion is trivial for n = 1, and so we assume

that n ≥ 2. Using the definitions of the functionals ρf (B,L) and ρf (B, L), and
Eq. (4), it follows that

ρ(Ln
i ,Ln

∗ ) ≤ sup
L∈Ln∗ ,f∈int(L)

inf
B∈Ln

i

ρf (B,L).

Let L ∈ Ln
∗ and f ∈ int(L). From the previous inequality, it is enough to show

that there exists a B ∈ Ln
i such that ρf (B,L) ≤ 4Flt(n). From Proposition 1,

this condition is equivalent to the geometric condition 1
4 (L′ −f)+f ⊆ B, where

L′ := 1
Flt(n) (L − f) + f.

Thus we aim to find a B ∈ Ln
i such that 1

4 (L′ − f) + f ⊆ B.
By Theorem 6, there exists a u ∈ Z

n\{0} such that w(L, u) ≤ Flt(n). After
a unimodular transformation, we may assume u = en. For t ∈ Z, let Ut :=
R

n−1 × {t}. If 1
4 (L′ − f) + f ⊆ conv(Ut ∪ Ut+1) for some t ∈ Z, then setting

B := conv(Ut ∪ Ut+1) yields the desired result. Otherwise fix t ∈ Z such that

∅ �= ( 14 (int(L′) − f) + f) ∩ Ut ⊆ int(L′) ∩ Ut ⊆ int(L) ∩ Ut.
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Since L is lattice-free and int(L) ∩ Ut �= ∅, the set {x ∈ R
n−1 : (x, t) ∈ L}

is lattice-free. The latter set is a subset of a maximal lattice-free polyhedron
D ⊆ R

n−1. We have thus shown that the assumptions of Lemma 1 are fulfilled
with m = 2n−1. Applying Lemma 1, we get the desired conclusion. ��
Proposition 4. Let f ∈ Q

n\Zn and let s ∈ N be the denominator of f . Let
i ∈ N with i ≥ n + 1. Then ρf (Ln

i ,Ln
∗ ) ≤ Flt(n)4n−1s.

Proof. For each L ∈ Ln
∗ ∩ Cf , we introduce two homothetical copies of L:

L′ := 1
Flt(n)4n−2s (L − f) + f,

L′′ := 1
4 (L′ − f) + f = 1

Flt(n)4n−1s (L − f) + f.

Using the definitions of ρf (B,L) and ρf (B, L), and Eq. (2), it follows that

ρf (Ln
i ,Ln

∗ ) ≤ sup
L∈Ln∗

inf
B∈Ln

i

ρf (B,L).

From the previous inequality and Proposition 1, it is enough to show that for
an arbitrary L ∈ Ln

∗ with f ∈ int(L), there exists a B ∈ Ln
i such that L′′ ⊆ B.

We verify this by induction on n. The assertion is clear for n = 1 by setting
B = L. Consider n ≥ 2 such that for every f ′ ∈ Q

n−1/Zn−1 with denominator
s and for every L̄ ∈ Ln−1

∗ there exists B̄ ∈ Ln−1
n satisfying L̄′′ ⊆ B̄.

Let L ∈ Ln
∗ with f ∈ int(L). Let u ∈ Z

n\{0} be the primitive vector for
which the lattice width of L is attained. One has u · f ∈ 1

sZ. After a unimodular
transformation, we may assume u = en (recall that unimodular transformations
do not change the denominator of rational vectors). For t ∈ Z let Ut := R

n−1 ×
{t}. Since w(L′, en) ≤ 1, there is some m ∈ Z such that L′ ⊆ conv(Um−1, Um+1).
We may assume that m = 0 and so L′ ⊆ conv(U−1, U1).

Consider cases on the integrality of fn. First suppose fn �∈ Z. Without loss
of generality, we may assume that fn ∈ (0, 1). Thus f ∈ R

n−1 × [1s , 1 − 1
s ].

Furthermore, w(L′′, en) ≤ 1
s by the choice of L′′. Consequently L′′ is a subset of

the lattice-free split B := R
n−1 × [0, 1].

For the case when fn ∈ Z, we use the induction assumption. Observe f =
(f ′, 0), where f ′ ∈ Q

n−1\Zn−1 has the same denominator as f . Also, the set
{x ∈ R

n−1 : (x, 0) ∈ L} is a lattice-free polyhedron in U0. Thus there is a (n−1)-
dimensional maximal lattice-free set M0 such that

{
x ∈ R

n−1 : (x, 0) ∈ L
} ⊆

M0 ∈ Ln−1
2n−1 .

Applying the induction assumption to M0, we obtain a lattice-free set D ∈
Ln−1

n with respect to the lattice Z
n−1 × {0} satisfying 1

Flt(n−1)4n−2s (M0 − f ′) +
f ′ ⊆ D. From the fact that Flt(n) ≥ Flt(n − 1), one also has

L′ ∩ U0 ⊆ ( 1
Flt(n)4n−2s (M0 − f ′) + f ′) × {0} ⊆ D × {0}.

Since fn = 0, the set L′ ∩ U0 is nonempty. Observe that L′, γ = 1, t = 0, and
D satisfy the assumptions of Lemma 1. Thus there is some B ∈ Ln

n+1 such that
L′′ = 1

4L′ + 3
4f ⊆ B, as desired. ��
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5.2 On the Inapproximability of i-hedral Closures

The following lemmas help prove ρ(Ln
i ,Ln

i+1) = ∞ for 2 ≤ i ≤ 2n−1.

Lemma 2. Let M ⊆ R
n be a maximal lattice-free polyhedron with m facets

and let c ∈ int(M). Then there exists an ε ∈ (0, 1) such that every lattice-free
polyhedron containing (1 − ε)M + εc has at least m facets.

Lemma 3. Let i ∈ N such that 2 ≤ i ≤ 2n. Then there exists an n-dimensional
maximal lattice-free set with exactly i facets.

Proposition 5. ρ(Ln
i ,Ln

i+1) = ∞ for i ≤ 2n−1.

Proof. Assuming ρ(Ln
i ,Ln

i+1) < ∞, we derive a contradiction. Let M ∈
Ln−1

i \Ln−1
i−1 be maximal lattice-free in R

n−1 as guaranteed by Lemma 3. Since
M is maximal, after applying an appropriate unimodular transformation we may
write M = D × R

n−m−1 with D ⊆ R
m a maximal lattice-free polytope in R

m

for 1 ≤ m ≤ n − 1 and D having i facets (see [13]). We consider D as embedded
in R

m × {0}n−m and M in {x ∈ R
n : xm+1 = 0}. For z ∈ relint(M), let ε(z)

denote the value obtained from Lemma 2 by setting c = z.
Fix z = (zD, 0) ∈ relint(M) with zD ∈ D. For ε > 0, consider the polyhedron

Lε := conv
({z + εem+1} ∪ ((

1 + 1
ε

)
(D − z) + z − em+1

)) ⊆ R
m+1. Note Lε ×

R
n−m−1 ∈ Ln

i+1 is maximal lattice-free with exactly i + 1 facets. Theorem 3(b)
and Proposition 2 imply the existence of μ ∈ (0, 1) independent of ε > 0 such that
for every f ∈ Lε ×R

n−m−1 some Bε ∈ Ln
i satisfies μ(Lε ×R

n−m−1)+(1−μ)f ⊆
Bε. Let ε > 0 and γ ∈ (0, ε) be chosen such that

(a) ε(1 − μ) − μ < 0, and
(b) μ(1 + γ

ε ( 1−μ
μ )) > 1 − ε(z).

For example, one can choose ε = 1
2 ( μ

1−μ ) and γ = max{ ε
2 , ε

2 (1 + 1−ε(z)−μ
1−μ )}.

Choose f = z + γem+1.
Note that D ∪ {zD, f} ⊆ R

m+1 × {0}n−m−1. Conserving notation, we use
D, zD, and f to denote the respective projections of D, zD, and f onto R

m+1.
With our choice of f , L′ := μLε + (1 − μ)f = conv({a} ∪ Δ) is a pyramid in
R

m+1 with apex a := zD + (με + (1 − μ)γ)em+1 and base Δ := μ
(
1 + 1

ε

)
(D −

zD)+ zD +(γ(1−μ)−μ)em+1. From (a) and the fact that γ < ε, we obtain that
γ(1 − μ) < μ, i.e., γ(1 − μ) − μ < 0. Thus the base of L′ is below the hyperplane
R

m × {0}.
For λ ∈ R, define Lε

λ := Lε ∩ (Rm × {λ}) and L′
λ := L′ ∩ (Rm × {λ}).

Claim 1. Let λ ∈ [−1, 0]. Then Lε
λ =

(
1 − λ

ε

)
(D − zD) + zD + λem+1.

Proof of Claim. Using the definitions of Lε
λ and Lε, we see x ∈ Lε

λ if and only if

iff xm+1 = λ and x ∈ Lε
m+1

iff x =
(
1 − λ

ε

)
(y − zD) + zD + λem+1, for y ∈ D

iff x ∈ (
1 − λ

ε

)
(D − zD) + zD + λem+1. �
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Define β := −γ(1−μ)
μ . From (a) and the fact that γ < ε, we see that β ∈ (−1, 0).

Claim 2. L′
0 = μLε

β + (1 − μ)f .

Proof of Claim. L′
0 is the set of points y ∈ L′ with ym+1 = 0. L′ is the set of

points that can be written as μx + (1 − μ)f for x ∈ Lε. All points of this form
that have 0 in the last coordinate must satisfy xm+1 = −γ(1−μ)

μ = β. Thus L′ is
the set of points that can be written as μx + (1 − μ)f for some x ∈ Lε

β . �
We now follow this sequence of equalities:

L′
0 = μLε

β + (1 − μ)f from Claim 2

= μ((1 − β
ε )(D − zD) + zD + βem+1) + (1 − μ)(zD + γem+1) from Claim 1

= μ(1 − β
ε )D + (1 − μ(1 − β

ε ))zD.

From (a) and (b), μ(1 − β
ε ) > 1 − ε(z) = 1 − ε(zD). Thus the definition of

ε(zD) implies that any lattice-free polyhedron containing L′
0 requires i facets.

In particular, Bε must have at least i facets since the cross-section of Bε by
the hyperplane R

m+1 × {0} contains L′
0. Since Bε ∈ Ln

i , Bε must have exactly
i facets. However, for small enough ε, w(Δ) > Flt(m). This would imply that
Bε is not a cylinder since it must contain Δ. Therefore Bε must have a full-
dimensional recession cone. However, this contradicts that Bε is lattice-free. ��

Proving ρf (Ln
i ,Ln

∗ ) = ∞ requires us to identify, for every μ ∈ (0, 1), some
L ∈ Ln

k with k > i satisfying B �⊇ μL + (1 − μ)f for every B ∈ Ln
i . However,

unlike in the proof of Proposition 5 where we first fix L and then choose f in
the interior of L, proving ρf (Ln

i ,Ln
∗ ) = ∞ requires us to construct L for any

arbitrary fixed f . The next result helps us overcome this complication.

Lemma 4. Let f ∈ Q
n\Zn and μ ∈ (0, 1). Then

(a) There exists a maximal lattice-free simplex L ∈ Ln
n+1∩Cf such that, for some

choice of n+1 integer points z1, . . . , zn+1 in the relative interior of the n+1
distinct facets of L, the following is fulfilled: every closed half-space disjoint
from int(μL+(1−μ)f) contains at most one point of the set {z1, . . . , zn+1}.

(b) For every simplex L in (a), B �⊇ μL + (1 − μ)f for every B ∈ Ln+1
n ∩ Cf .

Proposition 6. ρf (Ln
i ,Ln

i+1) = ∞ for each f ∈ Q
n\Zn and every i ≤ n.

Proof. From Theorem 3, it suffices to show that for all i ∈ {1, . . . , n}, f ∈ Q
n\Zn

and μ ∈ (0, 1), there exists L ∈ Ln
i+1 ∩ Cf satisfying B �⊇ μL + (1 − μ)f for all

B ∈ Ln
i ∩ Cf . For i = n, the assertion follows by choosing L as in Lemma 4.

Consider the case i < n. After applying an appropriate unimodular trans-
formation we may assume that f = (f ′, 0, . . . , 0) ∈ R

n for some f ′ ∈ Q
i\Zi.

Application of Lemma 4 in dimension i yields the existence of a maximal lattice-
free simplex L′ ∈ Li

i+1 such that B′ �⊇ μL′+(1−μ)f ′ holds for every B′ ∈ Li
i. We

choose L = L′ ×R
n−i and show that B �⊇ μL + (1 − μ)f for every B ∈ Ln

i . Note
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that μL + (1 − μ)f contains the affine space A := {f ′} × R
n−i. If B �⊇ A,

we get B �⊇ μL + (1 − μ)f . Otherwise, B ⊇ A and thus B can be repre-
sented as B = B′ × R

n−i with B′ ∈ Li
i. In this case, B �⊇ μL + (1 − μ)f

since (B ∩ R
i) �⊇ μL′ + (1 − μ)f ′. ��
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3. Averkov, G., Krümpelmann, J., Weltge, S.: Notions of maximality for integral
lattice-free polyhedra: the case of dimension three (2015). http://arxiv.org/abs/
1509.05200

4. Averkov, G., Wagner, C., Weismantel, R.: Maximal lattice-free polyhedra: finite-
ness and an explicit description in dimension three. Math. Oper. Res. 36(4), 721–
742 (2011)
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Abstract. The infinite models in integer programming can be described
as the convex hull of some points or as the intersection of halfspaces
derived from valid functions. In this paper we study the relationships
between these two descriptions. Our results have implications for finite
dimensional corner polyhedra. One consequence is that nonnegative con-
tinuous functions suffice to describe finite dimensional corner polyhedra
with rational data. We also discover new facts about corner polyhedra
with non-rational data.

1 Introduction

Let b ∈ R
n\Z

n. The mixed-integer infinite group relaxation Mb is the set of all
pairs of functions (s, y) with s : R

n → R+ and y : R
n → Z+ having finite support

(that is, {r : s(r) > 0} and {p : y(p) > 0} are finite sets) satisfying
∑

r∈Rn

rs(r) +
∑

p∈Rn

py(p) ∈ b + Z
n. (1.1)

Mb is a subset of the infinite dimensional vector space R
(Rn) × R

(Rn), where
R

(Rn) denotes the set of finite support functions from R
n to R (similarly, R

(Rn)
+

will denote the set of finite support functions from R
n to R that are nonnegative).

We will work with this vector space throughout the paper. A tuple (ψ, π, α),
where ψ, π : R

n → R and α ∈ R, is a valid tuple for Mb if
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α (1.2)

for every (s, y) ∈ Mb. Since for λ > 0 the inequalities (1.2) associated with
(ψ, π, α) and (λψ, λπ, λα) are equivalent, from now on we assume α ∈ {−1, 0, 1}.

The set of functions y : R
n → Z+ such that (0, y) ∈ Mb will be called the

pure integer infinite group relaxation Ib. In other words, Ib = {y : (0, y) ∈ Mb}.
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By definition, Ib ⊆ R
(Rn). However, when convenient we will see Ib as a subset

of Mb. A tuple (π, α), where π : R
n → R and α ∈ R, is called a valid tuple for

Ib if
∑

p∈Rn

π(p)y(p) ≥ α (1.3)

for every y ∈ Ib. Again, we will assume α ∈ {−1, 0, 1}.
Models Mb and Ib were defined by Gomory and Johnson in a series of

papers [10–12,14] as a template to generate valid inequalities, derived from (1.2)
and (1.3), for general integer programs. They have been the focus of extensive
research, as summarized, e.g., in [3,4] and [6, Chap. 6].

Our Results. One would expect that the intersection of (1.2) for all valid
tuples for Mb would be equal to conv(Mb), where conv(·) denotes the convex
hull operator. However, this is not true: this intersection is a strict superset of
conv(Mb). One of our main results (Theorem 2.13) shows that the intersection of
all valid tuples for Mb is, in fact, the closure of conv(Mb) under a norm topology
on R

(Rn)×R
(Rn) that was first defined by Basu et al. [2]. We then give an explicit

characterization that shows that this closure coincides with conv(Mb)+(R(Rn)
+ ×

R
(Rn)
+ ). A similar phenomenon happens for Ib (Theorem 2.14).

A valid tuple (ψ, π, α) for Mb is minimal if there does not exist a pair of
functions (ψ′, π′) different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that (ψ′, π′, α)
is a valid tuple for Mb. Our main tool is a characterization of the minimal
tuples (Theorem 2.4) that extends a result of Johnson (see, e.g., Theorem 6.34
in [6]), that was obtained under the assumption that π ≥ 0. The main novelty
of our result over Johnson’s is that minimality of a valid tuple (ψ, π, α) implies
nonnegativity of π (no need to assume it). Moreover, π has to be continuous (in
fact, it is Lipschitz continuous.)

Most of the prior literature on valid tuples (π, α) for Ib proceeds under
the restrictive assumption that π is nonnegative (in fact, Gomory and
Johnson included the assumption π ≥ 0 in their original definition of valid
tuple for Ib). This assumption has been criticized in more recent work on Ib, as
there are valid functions not satisfying π ≥ 0. In this paper, we prove that every
valid tuple for Ib has an equivalent representation (π, α) where π ≥ 0. More
specifically, we show that for every valid tuple (π, α), there exist θ : R

n → R

and β ∈ R such that both (θ, β), (−θ,−β) are valid tuples and the valid tuple
(π′, α′) = (π + θ, α + β) satisfies π′ ≥ 0 (Theorem 3.5). This settles an open
question in [3, Open Question 2.5]. Being able to restrict to nonnegative valid
tuples without loss of generality has the added advantage that nonnegative min-
imal valid tuples form a compact, convex set under the natural product topology
on functions. Thus, one approach to understanding valid tuples is to understand
the extreme points of this compact convex set, which are termed extreme func-
tions/tuples in the literature. While this approach was standard for the area, our
result about nonnegative valid tuples now gives a rigorous justification for this.

A valid tuple (π, α) for Ib is liftable if there there exists ψ : R
n → R such

that (ψ, π, α) is a valid tuple for Mb. Minimal valid tuples (π, α) that are liftable
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are a strict subset of minimal valid tuples, as we show that such π have to be
nonnegative and Lipschitz continuous (Proposition 2.6 and Remark 2.7). This
has some consequences for finite dimensional corner polyhedra that have rational
data, which are sets of the form conv(Ib) ∩ {y : yr = 0, r ∈ R

n\P}, where P is
a finite subset of Q

n. Corollary 4.4 shows that inequalities (1.3) associated with
liftable tuples, when restricted to the space {y : yr = 0, r ∈ R

n\P}, suffice to
provide a complete inequality description for such corner polyhedra. Literature
on valid tuples contains constructions of families of extreme valid tuples (π, α)
such that π is discontinuous [7,8,13,15,17,18] (or continuous but not Lipschitz
continuous [15]). Our result above shows that such functions may be disregarded,
if one is interested in valid inequalities or facets of rational corner polyhedra.
Similarly, valid tuples (π, α) where π �≥ 0 are also superfluous for such polyhedra.
This is interesting, in our opinion, as it shows that such extreme tuples are
redundant within the set of valid tuples, as far as rational corner polyhedra
are concerned. Some further characterizations of rational corner polyhedra are
derived in Theorem 4.3.

Crucial to the proof of the above result on rational corner polyhedra is
our characterization of the equations defining the affine hull of conv(Ib), which
extends a result in [3]. This characterization is also essential in understanding
the recession cone of conv(Ib) ∩ {y : yr = 0, r ∈ R

n\P}, where P is a finite
subset of R

n. We use this to prove that conv(Ib) ∩ {y : yr = 0, r ∈ R
n\P} is a

polyhedron, even if P ∪ {b} contains non-rational vectors (Theorem 4.2).
Due to space constraints, all missing proofs will appear in the journal version

of this extended abstract.

2 The Structure of conv(Mb) and conv(Ib)

A valid tuple (ψ, π, α) for Mb is said to be minimal if there does not exist a
pair of functions (ψ′, π′) different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that
(ψ′, π′, α) is a valid tuple for Mb. Similarly, we say that a valid tuple (π, α) for
Ib is minimal if there does not exist a function π′ different from π, with π′ ≤ π,
such that (π′, α) is a valid tuple for Ib.

Remark 2.1. An application of Zorn’s lemma (see, e.g., [5, Proposition A.1])
shows that, given a valid tuple (ψ, π, α) for Mb, there exists a minimal valid
tuple (ψ′, π′, α) for Mb with ψ′ ≤ ψ and π′ ≤ π. Similarly, given a valid tuple
(π, α) for Ib, there exists a minimal valid tuple (π′, α) for Ib with π′ ≤ π. We
will use this throughout the paper.

Given a tuple (ψ, π, α), we define

Hψ,π,α =
{

(s, y) ∈ R
(Rn) × R

(Rn) :
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α

}
.

A valid tuple (ψ, π, α) for Mb is trivial if R
(Rn)
+ × R

(Rn)
+ ⊆ Hψ,π,α. This

happens if and only if ψ ≥ 0, π ≥ 0 and α ∈ {0,−1}. Similarly, a valid tuple
(π, α) for Ib is trivial if π ≥ 0 and α ∈ {0,−1}.
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A function φ : R
n → R is subadditive if φ(r1) + φ(r2) ≥ φ(r1 + r2) for every

r1, r2 ∈ R
n, and is positively homogenous if φ(λr) = λφ(r) for every r ∈ R

n and
λ ≥ 0. If φ is subadditive and positive homogenous, then φ is called sublinear.

Proposition 2.2. Let (ψ, π, α) be a minimal valid tuple for Mb. Then ψ is
sublinear and π ≤ ψ.

Lemma 2.3. Suppose π : R
n → R is subadditive and supε>0

π(εr)
ε < ∞ for all

r ∈ R
n. Define ψ(r) = supε>0

π(εr)
ε . Then ψ is sublinear and π ≤ ψ.

Proof. Since π is subadditive, ψ is readily checked to be subadditive as well.
The fact that π ≤ ψ follows by taking ε = 1. Finally, positive homogeneity of ψ
follows from the definition of ψ. ��
Theorem 2.4. Let ψ : R

n → R, π : R
n → R be any functions, and α ∈

{−1, 0, 1}. Then (ψ, π, α) is a nontrivial minimal valid tuple for Mb if and only
if the following hold:

(a) π is subadditive;
(b) ψ(r) = supε>0

π(εr)
ε = limε→0+

π(εr)
ε = lim supε→0+

π(εr)
ε for every r ∈ R

n;
(c) π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r);
(d) π ≥ 0, π(z) = 0 for every z ∈ Z

n, and α = 1;
(e) (symmetry condition) π satisfies π(r) + π(b − r) = 1 for all r ∈ R

n.

The above theorem can be deduced from a result of Yıldız and Cornuéjols
[19, Theorem 37] by using the characterization of the nontrivial minimal valid
tuples for Ib due to Gomory and Johnson (see, e.g., [6, Theorem 6.22]).

Corollary 2.5. Let (π, α) be a nontrivial minimal valid tuple for Ib such that
supε>0

π(εr)
ε < ∞ for every r ∈ R

n. Define ψ(r) = supε>0
π(εr)

ε . Then (ψ, π, α)
satisfies conditions (a)–(e) of Theorem 2.4 and therefore is a nontrivial minimal
valid tuple for Mb.

Conversely, if (ψ, π, α) is a nontrivial minimal valid tuple for Mb, then (π, α)
is a nontrivial minimal valid tuple for Ib.

Proof. Since (π, α) is minimal, the same argument as in the proof of Proposition
2.2 shows that π is subadditive. Let ψ be defined as above. Following the proof of
Theorem 2.4 it can be checked that minimality and nontriviality of (π, α) suffice
to show that (ψ, π, α) satisfies (a)–(e), and therefore (ψ, π, α) is a nontrivial
minimal valid tuple for Mb.

For the converse, we use a theorem of Gomory and Johnson (see, e.g., [6,
Theorem 6.22]) stating that if (π, 1) is a nontrivial valid tuple with π ≥ 0, then
(π, 1) is minimal if and only if π is subadditive, π(z) = 0 for every z ∈ Z

n, and
π satisfies the symmetry condition. Let (ψ, π, α) be a nontrivial minimal valid
tuple for Mb. By Theorem 2.4, π ≥ 0, α = 1, π is subadditive, π(z) = 0 for
every z ∈ Z

n, and π satisfies the symmetry condition. Therefore, by the above
theorem, (π, α) is a nontrivial minimal valid tuple for Ib. ��
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A valid tuple (π, α) for Ib is called liftable if there exists a function ψ : R
n → R

such that (ψ, π, α) is a valid tuple for Mb.

Proposition 2.6. Let (π, α) be a nontrivial valid tuple for Ib. Then (π, α)
is liftable if and only if there exists a minimal valid tuple (π′, α) such that
π′ ≤ π and supε>0

π′(εr)
ε < ∞ for every r ∈ R

n. In this case, defining
ψ(r) = supε>0

π′(εr)
ε gives a valid tuple (ψ, π′, α) for Mb satisfying conditions

(a)–(e) of Theorem 2.4.

Proof. If (π, α) is nontrivial and liftable, then there exists ψ such that (ψ, π, α)
is a valid tuple for Mb. Let (ψ′, π′, α) be a minimal valid tuple with ψ′ ≤ ψ and
π′ ≤ π. Since (π, α) is nontrivial, so is (ψ′, π′, α). By Theorem 2.4, α = 1, π′ ≥ 0,
and supε>0

π′(εr)
ε < ∞ for every r ∈ R

n. By Corollary 2.5, (π′, α) is minimal.
Conversely, let (π, α) be a nontrivial valid tuple for Ib, and let π′ ≤ π be

such that (π′, α) is minimal (and nontrivial) and ψ(r) := supε>0
π′(εr)

ε is finite
for every r ∈ R

n. By Corollary 2.5, (ψ, π′, α) is a nontrivial minimal valid tuple
for Mb, and therefore (π′, α) is liftable. Since π ≥ π′, (π, α) is liftable as well. ��
Remark 2.7. Let (π, α) be a nontrivial minimal valid tuple for Ib that is liftable.
It follows from Proposition 2.6 (with π′ = π) that ψ(r) := supε>0

π(εr)
ε is finite

for all r ∈ R
n, and (ψ, π, α) is a minimal valid tuple for Mb that satisfies con-

ditions (a)–(e) of Theorem 2.4. Therefore π is Lipschitz continuous and π ≥ 0.
There are nontrivial minimal valid tuples (π, α) for Ib for which π is not con-
tinuous, or π is continuous but not Lipschitz continuous, see the construction
in [15, Sect. 5]. There are also nontrivial minimal valid tuples (π, α) for Ib with
π �≥ 0. None of these minimal tuples is liftable.

2.1 The Closure of conv(Mb)

Lemma 2.8. The following sets coincide:

(a)
(
R

(Rn)
+ × R

(Rn)
+

) ∩ ⋂{Hψ,π,α : (ψ, π, α) valid tuple}
(b)

(
R

(Rn)
+ × R

(Rn)
+

) ∩ ⋂{Hψ,π,α : (ψ, π, α) nontrivial valid tuple}
(c)

(
R

(Rn)
+ × R

(Rn)
+

) ∩ ⋂{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple}
(d)

(
R

(Rn)
+ × R

(Rn)
+

)∩ ⋂{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple, ψ, π ≥
0, α = 1}.

Proof. The equivalence of (a) and (b) follows from the definition of nontrivial
valid tuple. The sets (b) and (c) coincide by Remark 2.1. Finally, Theorem 2.4
shows that (c) is equal to (d). ��
From now on, we denote by Qb the set(s) in Lemma 2.8.

While conv(Mb) ⊆ Qb, this containment is strict, as shown in Remark 4.6.
However, Theorem 2.13 below proves that, under an appropriate topology, the
closure of conv(Mb) is exactly Qb. In order to show this result, we need the
following lemma, that may be of independent interest.
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Lemma 2.9. If C ⊆ R
n
+ is closed, then conv(C) + R

n
+ is also closed.

Define the following norm on R
(Rn)×R

(Rn), which was first introduced in [2]:

|(s, y)|∗ = |s(0)| +
∑

r∈Rn

‖r‖|s(r)| + |y(0)| +
∑

p∈Rn

‖p‖|y(p)|.

Define cl(·) as the closure operator with respect to the topology induced by
|(·, ·)|∗. For any two functions ψ : R

n → R, π : R
n → R, we define a linear

functional Fψ,π on the space R
(Rn) × R

(Rn) as follows:

Fψ,π(s, y) =
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p). (2.1)

Lemma 2.10. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous
if (ψ, π, 1) is a nontrivial minimal valid tuple for Mb.

Lemma 2.11. Under the topology induced by |(·, ·)|∗, the set Qb is closed.

For any subsets R,P ⊆ R
n, define

VR,P =
{
(s, y) ∈ R

(Rn) × R
(Rn) : s(r) = 0 ∀r �∈ R, y(p) = 0 ∀p �∈ P

}
.

When convenient, we will see VR,P as a subset of R
R × R

P by dropping the
variables set to 0. Similarly, VP will denote {y ∈ R

(Rn) : y(p) = 0 ∀p �∈ P}.

Lemma 2.12. For any R,P ⊆ R
n, VR,P is a closed subspace of R

(Rn) × R
(Rn).

Theorem 2.13. Qb = cl(conv(Mb)) = conv(Mb) + (R(Rn)
+ × R

(Rn)
+ ).

Proof. We first show that Qb ⊇ cl(conv(Mb)). By definition, Qb is convex, and
by Lemma 2.11, Qb is closed. Thus, it suffices to show that Qb ⊇ Mb. This
follows from the fact that Mb ⊆ R

(Rn)
+ × R

(Rn)
+ and every inequality that defines

Qb is valid for Mb.
We next show that Qb ⊆ cl(conv(Mb)). Consider a point (s, y) �∈

cl(conv(Mb)). By the Hahn-Banach theorem, there exists a continuous linear
functional that separates (s, y) from cl(conv(Mb)). In other words, there exist
two functions ψ, π : R

n → R and a real number α such that Fψ,π(s, y) < α and
cl(conv(Mb)) ⊆ Hψ,π,α, implying that (ψ, π, α) is a valid tuple for Mb. Thus
(s, y) /∈ Qb.

We now show that conv(Mb) + (R(Rn)
+ × R

(Rn)
+ ) ⊆ Qb. Consider any point

(s1, y1) + (s2, y2), where (s1, y1) ∈ conv(Mb) and s2 ≥ 0, y2 ≥ 0. Since Qb can
be written as the set (d) in Lemma 2.8 and conv(Mb) ⊆ R

(Rn)
+ × R

(Rn)
+ , we just

need to verify that (s1, y1) + (s2, y2) ∈ Hψ,π,1 for all valid ψ, π ≥ 0. This follows
because (s1, y1) ∈ Hψ,π,1 and (s2, y2) and ψ, π are all nonnegative.

We finally show that conv(Mb) + (R(Rn)
+ × R

(Rn)
+ ) ⊇ Qb. Consider (s∗, y∗) �∈

conv(Mb) + (R(Rn)
+ × R

(Rn)
+ ). We prove that (s∗, y∗) �∈ Qb. This is obvious when
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(s∗, y∗) /∈ R
(Rn)
+ × R

(Rn)
+ . Therefore we assume s∗ ≥ 0, y∗ ≥ 0. Let R ⊆ R

n be
a finite set containing the support of s∗ and satisfying cone(R) = R

n (where
cone(R) denotes the conical hull of R), and let P ⊆ R

n be a finite set containing
the support of y∗. Then (s∗, y∗) �∈ conv(Mb∩VR,P )+(RR

+×R
P
+). (We use the same

notation (s∗, y∗) to indicate the restriction of (s∗, y∗) to R
R × R

P .) Since Mb ∩
VR,P is the inverse image of the closed set b+Z

n under the linear transformation
given by the matrix (R,P ), Mb ∩ VR,P is closed in the usual finite dimensional
topology of VR,P . Therefore, by Lemma 2.9, conv(Mb ∩ VR,P ) + (RR

+ × R
P
+)

is closed as well. This implies that there exists a valid inequality in R
R × R

P

separating (s∗, y∗) from conv(Mb ∩ VR,P ) + (RR
+ × R

P
+). Since the recession cone

of conv(Mb ∩ VR,P ) + (RR
+ × R

P
+) contains (RR

+ × R
P
+) and because s∗, y∗ ≥ 0,

this valid inequality is of the form
∑

r∈R h(r)s(r) +
∑

p∈P d(p)y(p) ≥ 1 where
h(r) ≥ 0 for r ∈ R and d(p) ≥ 0 for p ∈ P .

Now define the functions

ψ(r) = inf
{∑

r′∈R h(r′)s(r′) : r =
∑

r′∈R r′s(r′), s : R → R+

}
,

π(p) = inf
{ ∑

r′∈R
h(r′)s(r′) +

∑
p′∈P

d(p′)y(p′) :

p =
∑

r′∈R r′s(r′) +
∑

p′∈P p′y(p′), s : R → R+, y : P → Z+

}
.

Since cone(R) = R
n, ψ and π are well-defined functions. As the sum only involves

nonnegative terms, ψ, π ≥ 0. It can be checked that (ψ, π, 1) is a valid tuple for
Mb, and since (s∗, y∗) /∈ Hψ,π,1, we have (s∗, y∗) �∈ Qb. ��

2.2 The Closure of conv(Ib)

In the following, we see R
(Rn) as a topological vector subspace of the space

R
(Rn) × R

(Rn) endowed with the topology induced by the norm |(·, ·)|∗. With a
slight abuse of notation, for any y ∈ R

(Rn), |y|∗ = |y(0)|+∑
p∈Rn ‖p‖|y(p)|. Also,

given π : R
n → R and α ∈ R, we let Hπ,α =

{
y ∈ R

(Rn) :
∑

p∈Rn π(p)y(p) ≥ α
}
.

We define Gb = {y ∈ R
(Rn) : (0, y) ∈ Qb}. Since Qb can be written as the set

(d) in Lemma 2.8, by Corollary 2.5 we have that

Gb = R
(Rn)
+ ∩

⋂
{Hπ,α : (π, α) minimal nontrivial liftable tuple}. (2.2)

Similar to the mixed-integer case, conv(Ib) � Gb (this will be shown in
Remark 3.3).

Theorem 2.14. Gb = cl(conv(Ib)) = conv(Ib) + R
(Rn)
+ .

Proof. By Theorem 2.13, Qb = conv(Mb)+(R(Rn)
+ ×R

(Rn)
+ ). Since the inequality

s ≥ 0 is valid for Mb, by taking the intersection with the subspace {(s, y) : s = 0}
we obtain the equality Gb = conv(Ib) + R

(Rn)
+ . Furthermore, since Gb coincides

with the intersection of the closed set Qb with the closed subspace defined by
s = 0 (this subspace is closed by Lemma 2.12), Gb is a closed set. Therefore,
conv(Ib) + R

(Rn)
+ is a closed set, and we have cl(conv(Ib)) ⊆ conv(Ib) + R

(Rn)
+ .
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It remains to show that conv(Ib) + R
(Rn)
+ ⊆ cl(conv(Ib)). To prove this, it

suffices to show that for every ȳ ∈ Ib and r ∈ R
n, the point ȳ + ŷr, where

ŷr(r) = 1 and ŷr(p) = 0 for p �= r, is the limit of a sequence of points in conv(Ib)
with respect to our topology. So fix ȳ ∈ Ib and r ∈ R

n. For every integer k ≥ 1,
there exist qk ∈ Z

n and a real number λk ≥ 1 such that ‖qk − λkr‖ < 1
k .

Define yk by setting yk(r) = yk

(
qk−λkr

λk

)
= 1, and yk(p) = 0 for p �= r. Since∑

p∈Rn p · (λkyk(p)) = qk ∈ Z
n, every point of the form ȳ + λkyk is in Ib. Since

λk ≥ 1 for every k ≥ 1, we have ȳ + yk = λk−1
λk

ȳ + 1
λk

(ȳ + λkyk) ∈ conv(Ib).
Furthermore, ‖yk − ŷr‖∗ =

∥∥ qk−λkr
λk

∥∥ < 1
k . Therefore, the sequence of points

ȳ + yk converges to ȳ + ŷr as k → ∞. ��

3 Affine Hulls and Nonnegative Representation of Valid
Tuples

In any vector space (possibly infinite dimensional) the affine hull of any subset
C can be equivalently described as the set of affine combinations of points in C
or the intersection of all hyperplanes containing C. The next proposition shows
that there is no hyperplane containing Mb.

Proposition 3.1. aff(Mb) = R
(Rn) × R

(Rn).

The characterization of aff(Ib) is more involved and requires some preliminary
notions. A function θ : R

n → R is said to be additive if θ(u + v) = θ(u) + θ(v)
for all u, v ∈ R

n; see [1] for a survey on this family of functions. The following
result is an immediate extension of a result of Basu, Hildebrand and Köppe (see
[3, Propositions 2.2–2.3]).

Proposition 3.2. The affine hull of Ib is described by the equations
∑

p∈Rn θ(p)y(p) = θ(b) (3.1)

for all additive functions θ : R
n → R such that θ(p) = 0 for every p ∈ Q

n.

Remark 3.3. Proposition 3.2 shows that conv(Ib) is contained in some hyper-
plane; thus, conv(Ib) � conv(Ib) + R

(Rn)
+ = Gb, by Theorem 2.14.

Proposition 3.4. Let P be a finite subset of R
n. Then aff(Ib)∩VP is a rational

affine subspace of R
P , i.e., there exist a natural number m ≤ |P |, a rational

matrix Θ ∈ Q
m×|P | and a vector d ∈ R

m such that aff(Ib) ∩ VP = {s ∈ R
P :

Θs = d}. Moreover, aff(Ib) ∩ VP = VP if and only if P ⊆ Q
n.

3.1 Sufficiency of Nonnegative Functions to Describe conv(Ib)

As mentioned in the introduction, to the best of our knowledge the study of valid
tuples for Ib in prior literature is restricted to nonnegative valid tuples, with the
exception of [4]. The standard justification behind this assumption is the fact
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that valid tuples are nonnegative on the rational vectors. Since in practice we
are interested in finite dimensional faces of conv(Ib) that correspond to ratio-
nal vectors, such an assumption seems reasonable. However, no mathematical
evidence exists in the literature that a complete inequality description of these
faces can be obtained from the nonnegative valid tuples only.1 We prove below
that any valid tuple is equivalent to a nonnegative valid tuple, modulo the affine
hull. This gives the first proof of the above assertion and puts the nonnegativ-
ity assumption on a sound mathematical foundation. Later we will show that
even a smaller class of nonnegative valid tuples suffices to describe the finite
dimensional faces of conv(Ib) that correspond to rational vectors, in particular
the nontrivial minimal liftable tuples suffice (Corollary 4.4).

Theorem 3.5. For every valid tuple (π, α) for Ib, there exists a unique additive
function θ : R

n → R such that θ(p) = 0 for every p ∈ Q
n and the valid tuple

(π′, α′) = (π + θ, α + θ(b)) satisfies π′ ≥ 0.

This answers Open Question 2.5 in [3].

4 Recession Cones and Canonical Faces

A canonical face of conv(Mb) is a face of the form F = conv(Mb) ∩ VR,P for
some R,P ⊆ R

n. If R and P are finite, F is a finite canonical face of conv(Mb).
The same definitions can be given for conv(Ib). The corner polyhedra defined by
Gomory and Johnson [10–12] are precisely the finite canonical faces of conv(Ib).

The notion of recession cone of a closed convex set is standard (see, e.g., [16]).
We extend it to general convex sets in general vector spaces (possibly infinite
dimensional) in the following way. Let V be a vector space and let C ⊆ V be a
convex set. For any x ∈ C, define

C∞(x) = {r ∈ V : x + λr ∈ C for all λ ≥ 0}.

We define the recession cone of a nonempty convex set C as rec(C) =⋂
x∈C C∞(x). Theorem 2.13 yields the following result.

Corollary 4.1. Let F = conv(Mb)∩VR,P be a canonical face of conv(Mb). Then
F is a face of cl(conv(Mb)) if and only if F + (RR

+ × R
P
+) = F , i.e., rec(F ) is

the nonnegative orthant.

Proof. By Theorem 2.13,

cl(conv(Mb)) ∩ VR,P =
(
conv(Mb) + (R(Rn)

+ × R
(Rn)
+ )

) ∩ VR,P

= (conv(Mb) ∩ VR,P ) + (RR
+ × R

P
+)

= F + (RR
+ × R

P
+)

The results follows from the observation that F is a face of cl(conv(Mb)) if and
only if F = cl(conv(Mb)) ∩ VR,P . ��
1 Such results are obtainable in the case n = 1 by more elementary means such as

interpolation. We are unaware of a way to establish these results for general n ≥ 2
without using the technology developed in this paper.
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Define L to be the linear space parallel to the affine hull of conv(Ib); Proposi-
tion 3.2 shows that L is the set of all y ∈ R

(Rn) that satisfy
∑

p∈Rn θ(p)y(p) = 0
for all additive functions θ : R

n → R such that θ(p) = 0 for all p ∈ Q
n. For any

P ⊆ R
n, define the face CP = conv(Ib) ∩ VP of conv(Ib).

Theorem 4.2. For every finite subset P ⊆ R
n such that CP �= ∅, the following

are all true:

(a) the face CP = conv(Ib) ∩ VP is a rational polyhedron in R
P ;

(b) every extreme ray of CP is spanned by some r ∈ Z
P
+ such that

∑
p∈P pr(p) ∈

Z
n;

(c) rec(CP ) = L ∩ R
(Rn)
+ ∩ VP = (L ∩ VP ) ∩ R

P
+.

Proof. By dropping variables set to zero, Ib∩VP is the set of vectors y ∈ Z
P
+ such

that
∑

p∈P py(p) ∈ b+Z
n. We say that a feasible point y ∈ Ib ∩VP is minimal if

there is no feasible point y′ �= y such that y′ ≤ y. Every vector d ∈ Z
P
+ such that∑

p∈P pd(p) ∈ Z
n is called a ray. A ray d is minimal if there is no ray d′ �= d

such that d′ ≤ d.
We claim that every feasible point y is the sum of a minimal feasible point and

a nonnegative integer combination of minimal rays. To see this, as long as there
is a ray d such that d ≤ y, replace y with y − d. Note that this operation can be
repeated only a finite number of times. Denote by ȳ the feasible point obtained
at the end of this procedure. Then y is the sum of ȳ and a nonnegative integer
combination of rays. We observe that ȳ is minimal: if not, there would exist a
feasible point y′ �= ȳ such that y′ ≤ ȳ; but then the vector d := ȳ − y′ would be
a ray satisfying d ≤ ȳ, contradicting the fact that the procedure has terminated.
Therefore y is the sum of a minimal feasible point ȳ and a nonnegative integer
combination of rays. Since every ray is a nonnegative integer combination of
minimal rays (argue as above), we conclude that y is the sum of a minimal
feasible point and a nonnegative integer combination of minimal rays.

By the Gordan–Dickson lemma (see, e.g., [9]), the set of minimal feasi-
ble points and the set of minimal rays are both finite. Let Y be the set of
points that are the sum of a minimal feasible point and a nonnegative inte-
ger combination of minimal rays. Thus, there exist finite sets E ⊆ Z

P
+ and

R ⊆ Z
P
+ such that Y = E + integ.cone(R), where integ.cone(R) denotes the

set of all nonnegative integer combinations of vectors in R. So conv(Y ) =
conv(E+integ.cone(R)) = conv(E)+conv(integ.cone(R)) = conv(E)+cone(R).
Hence, conv(Y ) is a rational polyhedron, by the Minkowski-Weyl Theorem [6,
Theorem 3.13]. The above observation proves that Ib ∩ VP ⊆ Y . On the other
hand, by using the fact that if y is a feasible point and d is a ray then y + d is
a feasible point, one readily verifies that Y ⊆ Ib ∩ VP . Then Ib ∩ VP = Y and
therefore conv(Ib) ∩ VP = conv(Ib ∩ VP ) = conv(Y ). Hence, conv(Ib) ∩ VP is a
rational polyhedron.

The above analysis proves (a) and (b) simultaneously. We now prove (c).
We first show that rec(CP ) ⊆ L ∩ R

(Rn)
+ ∩ VP . Consider any d̄ ∈ rec(CP ).

By part (b), d̄ is a nonnegative combination of vectors d ∈ Z
P
+ such that
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∑
p∈P pr(p) ∈ Z

n. Observe that each such d ∈ L. Thus, d̄ ∈ L since L is a

linear space. Therefore, rec(CP ) ⊆ L ∩ R
(Rn)
+ ∩ VP .

We now want to establish that L∩R
(Rn)
+ ∩VP ⊆ rec(CP ). First, consider any

d ∈ L ∩ R
(Rn)
+ ∩ VP such that d ∈ Q

P , i.e., d has only rational coordinates. Let
λ > 0 be such that d̄ = λd ∈ Z

P
+. We claim that

∑
p∈P pd̄(p) ∈ Q

n. Otherwise,
there exists2 an additive function θ : R

n → R such that 0 �= θ
( ∑

p∈P pd̄(p)
)

=∑
p∈P θ(p)d̄(p) = λ

∑
p∈P θ(p)d(p), which violates the fact that d ∈ L. Since

∑
p∈P pd̄(p) ∈ Q

n, there exists a positive scaling d̃ of d such that
∑

p∈P pd̃(p) ∈
Z

n. It is easy to verify that d̃ ∈ rec(CP ) and therefore d ∈ rec(CP ). This shows
that all rational vectors in L ∩ R

(Rn)
+ ∩ VP are in rec(CP ). Since, by Proposition

3.4, L ∩ VP is a rational subspace, L ∩ R
(Rn)
+ ∩ VP ⊆ rec(CP ). ��

Theorem 4.3. Let P ⊆ R
n be finite such that CP �= ∅. Then the following are

equivalent:

(a) P ⊆ Q
n;

(b) rec(CP ) = R
P
+;

(c) the dimension of CP is |P |;
(d) CP = Gb ∩ VP .

Proof. (a) is equivalent to (b) by Proposition 3.4 and Theorem 4.2. (b) is equiv-
alent to (c) by Proposition 3.4. The equivalence of (a) and (d) follows from the
equivalence of (a) and (b), Corollary 4.1 and Theorem 2.14.

��
By applying (2.2) to condition (d) in Theorem 4.3, we get

Corollary 4.4. A finite dimensional corner polyhedron CP can be expressed as
CP = {y ∈ R

P
+ :

∑
p∈P π(p)y(p) ≥ 1, (π, 1) is minimal and liftable} if and only

if P ⊆ Q
n.

Example 4.5. There are finite dimensional faces of conv(Mb) that are not closed.
Let n = 1, b ∈ Q, ω ∈ R \ Q, R = {−1}, P = {b, ω}. Consider the point (s̄, ȳ)
defined by s̄(−1) = 0 and ȳ(b) = ȳ(ω) = 1. Note that (s̄, ȳ) /∈ conv(Mb) ∩ VR,P ,
as the only point in Mb satisfying s(−1) = 0 and y(b) ≤ 1 has y(b) = 1, y(ω) = 0.

We now show that (s̄, ȳ) ∈ cl(conv(Mb) ∩ VR,P ) by constructing for every
ε > 0 a point in conv(Mb) ∩ VR,P whose Euclidean distance from (s̄, ȳ) is at
most ε. So fix ε > 0. Let ŷ(ω) be a positive integer such that the fractional part
of ωŷ(ω) is at most ε. Let ŝ(−1) be equal to this fractional part, and ŷ(b) = 1.
Then (ŝ, ŷ) ∈ Mb ∩ VR,P . By taking a suitable convex combination of (ŝ, ŷ) and
the point of Mb ∩ VR,P defined by y(b) = 1, s(−1) = y(ω) = 0, we find a point
in conv(Mb) ∩ VR,P whose distance from (s̄, ȳ) is at most ε.

Remark 4.6. Since Qb = cl(conv(Mb)) by Theorem 2.13, for every R,P ⊆ R
n

the set Qb ∩VR,P is closed by Lemma 2.12. The previous example gives sets R,P
such that conv(Mb)∩VR,P is not closed. Thus conv(Mb) is a strict subset of Qb.
2 For an explicit construction of such a function, see the journal version of the paper.
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Abstract. Jeroslow and Lowe gave an exact geometric characterization
of subsets of Rn that are projections of mixed-integer linear sets, a.k.a
MILP-representable sets. We give an alternate algebraic characterization
by showing that a set is MILP-representable if and only if the set can
be described as the intersection of finitely many affine Chvátal inequal-
ities. These inequalities are a modification of a concept introduced by
Blair and Jeroslow. This gives a sequential variable elimination scheme
that, when applied to the MILP representation of a set, explicitly gives
the affine Chvátal inequalities characterizing the set. This is related to
the elimination scheme of Wiliams and Williams-Hooker, who describe
projections of integer sets using disjunctions of affine Chvátal systems.
Our scheme extends their work in two ways. First, we show that dis-
junctions are unnecessary, by showing how to find the affine Chvátal
inequalities that cannot be discovered by the Williams-Hooker scheme.
Second, disjunctions of Chvátal systems can give sets that are not pro-
jections of mixed-integer linear sets; so the Williams-Hooker approach
does not give an exact characterization of MILP representability.

1 Introduction

Researchers are interested in characterizing sets that are projections of mixed-
integer sets described by linear constraints. Such sets have been termed MILP-
representable sets; see [8] for a thorough survey. Knowing which sets are MILP-
representable is important because of the prevalence of good algorithms and
software for solving MILP formulations. Therefore, if one encounters an applica-
tion that can be modeled using MILP-representable sets, then this sophisticated
technology can be used to solve the application.

A seminal result of Jeroslow and Lowe [4] provides a geometric character-
ization of MILP-representable sets as the sum of a finitely generated monoid,
and a disjunction of finitely many polytopes (see Theorem1 below for a precise
statement). An algebraic approach based on an explicit elimination scheme for
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integer variables was first developed by Williams in [9–11]. Williams (and later
Williams and Hooker) adapted the Fourier-Motzkin elimination approach for
linear inequalities to handle integer variables. Balas, in [1], also explores how
to adapt Fourier-Motzkin elimination in the case of binary variables. In both
instances, there is a need to introduce disjunctions of inequalities that involve
either rounding operations or congruence relations. We emphasize that the
geometric approach of Jeroslow-Lowe and the algebraic approach of Williams-
Hooker-Balas both require the use of disjunctions.

Our point of departure is that we provide a constructive algebraic charac-
terization of MILP-representability that does not need disjunctions, but instead
makes use of affine Chvátal inequalities, i.e. affine linear inequalities with round-
ing operations (for a precise definition see Definition 1 below). We show that
MILP-representable sets are exactly those sets that satisfy a finite system of
affine Chvátal inequalities. In contrast, Williams and Hooker [9–11] require dis-
junctions of systems of affine Chvátal inequalities. Another disadvantage in their
work is the following: there exist sets given by disjunctions of affine Chvátal sys-
tems that are not MILP-representable. Finally, our proof of the non-disjunctive
characterization is constructive and implies a sequential variable elimination
scheme for mixed-integer linear sets (see Sect. 5).

We thus simultaneously show three things: (1) disjunctions are not necessary
for MILP-representability (if one allows affine Chvátal inequalities), an operation
that shows up in both the Jeroslow-Lowe and the Williams-Hooker approaches,
(2) our algebraic characterization comes with a variable elimination scheme,
which is an advantage, in our opinion, to the geometric approach of Jeroslow-
Lowe, and (3) our algebraic characterization is exact, as opposed to the algebraic
approach of Williams-Hooker, whose algebraic descriptions give a strictly larger
family of sets than MILP-representable sets.

Our algebraic characterization could be useful to obtain other insights into
the structure of MIP representable sets that is not apparent from the geometric
perspective. As an illustration, we resolve an open question posed in Ryan [6]
on the representability of integer monoids using our characterization. Theorem1
in [6] shows that every finitely-generated integer monoid can be described as
a finite system of Chvátal inequalities but leaves open the question of how to
construct the associated Chvátal functions via elimination. Ryan states that the
elimination methods of Williams in [9,10] do not address her question because of
the introduction of disjunctions. Our work provides a constructive approach for
finding a Chvátal inequality representation of finitely-generated integer monoids
using elimination.

Our new algebraic characterization could also lead to novel algorithmic ideas
where researchers optimize by directly working with affine Chvatal functions,
rather than using traditional branch-and-cut/cutting plane type of methods for
mixed-integer optimization.
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2 Preliminaries

Z,Q,R denote the set of integers, rational numbers and reals, respectively. Any of
these sets subscripted by a plus means the nonnegative elements of that set. For
instance, Q+ is the set of nonnegative rational numbers. The projection operator
projZ where Z ⊆ {x1, . . . , xn} projects a vector x ∈ R

n onto the coordinates
in Z. Following [4] we say a set S ⊆ R

n is mixed integer linear representable
(or MILP-representable) if there exists rational matrices A,B,C and a rational
vector d such that

S = projx {(x, y, z) ∈ R
n × R

p × Z
q : Ax + By + Cz ≥ d} . (1)

The following is the main result from [4] stated as Theorem 4.47 in [3]:

Theorem 1. A set S ⊂ R
n is MILP-representable if and only if there exists

rational polytopes P1, . . . , Pk ⊆ R
n and vectors r1, . . . , rt ∈ Z

n such that

S =
k⋃

i=1

Pi + intcone
{
r1, . . . , rt

}
, (2)

where intcone
{
r1, . . . , rt

}
denotes the set of nonnegative integer linear combi-

nations of r1, . . . , rt.

The ceiling operator �a� gives the smallest integer no less than a ∈ R. Chvátal
functions, first introduced by [2], are obtained by taking linear combinations of
linear functions and using the ceiling operator. We extend this original definition
to allow for affine linear functions, as opposed to homogenous linear functions.
Consequently, we term our functions affine Chvátal functions. We use the concept
of finite binary trees from [5] to formally define these functions.

Definition 1. An affine Chvátal function f : Rn → R is constructed as follows.
We are given a finite binary tree where each node of the tree is either: (i) a leaf,
which corresponds to an affine linear function on R

n with rational coefficients;
(ii) has one child with corresponding edge labeled by either a �·� or a number in
Q+, or (iii) has two children, each with edges labelled by a number in Q+.

The function f is built as follows. Start at the root node and (recursively)
form functions corresponding to subtrees rooted at its children. If the root has a
single child whose subtree is g, then either (a) f = �g� if the corresponding edge
is labeled �·� or (b) f = αg if the corresponding edge is labeled by a ∈ Q+. If the
root has two children with corresponding edges labeled by a ∈ Q+ and b ∈ Q+

then f = ag + bh where g and h are functions corresponding to the respective
children of the root.1

The depth of a binary tree representation T of an affine Chvátal function is
the length of the longest path from the root to a node in T , and cc(T ) denotes
the ceiling count of T , i.e., the total number of edges of T labeled �·�.
1 The original definition of Chvátal function in [2] does not employ binary trees. Ryan

shows the two definitions are equivalent in [5].
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The original definition of Chvátal function in the literature requires the leaves
of the binary tree to be linear functions, and the domain of the function to be Qn

(see [2,5,6]). Our definition above allows for affine linear functions at the leaves,
and the domain of the functions to be R

n. We use the term Chvátal function, as
opposed to affine Chvátal function, to refer to the setting where the leaves are
linear functions. In this paper, the domain of all functions is R

n.
An inequality f(x) ≤ b, where f is an affine Chvátal function and b ∈ R, is

called an affine Chvátal inequality. A mixed-integer Chvátal (MIC) set is a mixed-
integer set described by finitely many affine Chvátal inequalities. That is, a set S
is a mixed integer Chvátal set if there exist affine Chvátal functions fi and bi ∈ R

for i = 1, . . . ,m such that S = {(x, z) ∈ R
n×Z

q : fi(x, z) ≤ bi for i = 1, . . . ,m}.
A set S is a disjunctive mixed-integer Chvátal (DMIC) set if there exist affine
Chvátal functions fij and bij ∈ R for i = 1, . . . ,m and j = 1, . . . , t such that
S =

⋃t
j=1{(x, z) ∈ R

n × Z
q : fij(x, z) ≤ bij for i = 1, . . . ,m}.

3 MILP-representable Sets as DMIC Sets

From the perspective of MILP-representability, the following result summarizes
the work in [9–11] that relates affine Chvátal functions and projections of integer
variables.

Theorem 2. Every MILP-representable set is a DMIC set.

Theorem 2 is not explicitly stated in [9–11], even though it summarizes the
main results of these papers, for two reasons: (i) the development in [11] works
with linear congruences and inequalities as constraints and not affine Chvátal
inequalities and (ii) they only treat the pure integer case. These differences are
only superficial. For (i), an observation due to Ryan in [6] shows that congruences
can always be expressed equivalently as affine Chvátal inequalities. For (ii),
continuous variables (the y variables in (1)) can first be eliminated using Fourier-
Motzkin elimination, which introduces no complications.

The converse of Theorem 2 is not true. As the following example illustrates,
not every DMIC set is MILP-representable.

Example 1. Consider the set E:={(λ, 2λ) : λ ∈ Z+} ∪ {(2λ, λ) : λ ∈ Z+} as
illustrated in Fig. 1. This set is a DMIC set because it can be expressed as
E = {x ∈ Z

2
+ : 2x1 − x2 = 0} ∪ {x ∈ Z

2
+ : x1 − 2x2 = 0}.

E is not the projection of any mixed integer linear program. Indeed, by
Theorem 1 every MILP-representable set has the form (2). Suppose E has such
a form. Consider the integer points in E of the form (λ, 2λ) for λ ∈ Z+. There
are infinitely many such points and so cannot be captured inside of the finitely-
many polytopes Pk in (2). Thus, the ray λ(1, 2) for λ ∈ Z+ must lie inside
intcone{r1, . . . , rt}. Identical reasoning implies the ray λ(2, 1) for λ ∈ Z+ must
also lie inside intcone{r1, . . . , rt}. But then, every conic integer combination of
these two rays must lie in E. Observe that (3, 3) = (2, 1) + (1, 2) is one such
integer combination but (3, 3) /∈ E. We conclude that E cannot be represented
in the form (2) and hence E is not MILP-representable.
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Fig. 1. A DMIC set that is not MILP-representable.

4 Characterization of MILP-representable Sets as MIC
Sets

In this section we characterize MILP-representable sets as MIC sets. This is
achieved in two steps across two subsections. The main results are Theorems 4
and 6, which are converses of each other.

4.1 MIC Sets are MILP-representable

We show how to “lift” a MIC set to a mixed-integer linear set. The idea is
simple – replace ceiling operators with additional integer variables. However, we
need to work with an appropriate representation of an affine Chvátal function in
order to implement this idea. The next result provides the correct representation.

Theorem 3. For every affine Chvátal function f represented by a binary tree
T , one of the following cases hold:

Case 1: cc(T ) = 0, which implies that f is an affine linear function.
Case 2: f = γ�g1� + g2, where γ > 0 and g1, g2 are affine Chvátal functions

such that there exist binary tree representations T1, T2 for g1, g2 respectively,
with cc(T1) + cc(T2) + 1 ≤ cc(T ).

Proof. We use induction on the depth of the binary tree T . For the base case, if
T has depth 0, then cc(T ) = 0 and we are in Case 1. The inductive hypothesis
assumes that for some k ≥ 0, every affine Chvátal function f with a binary tree
representation T of depth less or equal to k, can be expressed in Case 1 or 2.

For the inductive step, consider an affine Chvátal function f with a binary
tree representation T of depth k + 1. If the root node of T has a single child,
let T ′ be the subtree of T with root node equal to the child of the root node
of T . We now consider two cases: the edge at the root node is labeled with a
�·�, or the edge is labeled with a scalar α > 0. In the first case, f = �g� where
g is an affine Chvátal function which has T ′ as a binary tree representation.
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Also, cc(T ′) + 1 = cc(T ). Thus, we are done by setting g1 = g, g2 = 0 and
γ = 1. In the second case, f = αg where g is an affine Chvátal function which
has T ′ as a binary tree representation, with cc(T ′) = cc(T ). Note that T ′ has
smaller depth than T . Thus, we can apply the induction hypothesis on g with
representation T ′. If this ends up in Case 1, then 0 = cc(T ′) = cc(T ) and f is in
Case 1. Otherwise, we obtain γ′ > 0, affine Chvátal functions g′

1, g
′
2, and binary

trees T ′
1, T

′
2 representing g′

1, g
′
2 respectively, with

cc(T ′
1) + cc(T ′

2) + 1 ≤ cc(T ′) = cc(T ) (3)

such that g = γ′�g′
1� + g′

2. Now set γ = αγ′, g1 = g′
1, g2 = αg′

2, T1 = T ′
1 and

T2 to be the tree whose root node has a single child with T ′
2 as the subtree, and

the edge at the root labeled with α. Note that cc(T2) = cc(T ′
2). Also, observe

that T1, T2 represents g1, g2 respectively. Combined with (3), we obtain that
cc(T1) + cc(T2) + 1 ≤ cc(T ).

If the root node of T has two children, let S1, S2 be the subtrees of T with
root nodes equal to the left and right child, respectively, of the root node of T .
Then, f = αh1 + βh2, where α, β > 0 and h1, h2 are affine Chvátal functions
with binary tree representations S1, S2 respectively. Also note that the depths
of S1, S2 are both strictly less than the depth of T , and

cc(S1) + cc(S2) = cc(T ) (4)

By the induction hypothesis applied to h1 and h2 with representations S1, S2,
we can assume both of them end up in Case 1 or 2 of the statement of the
theorem. If both of them are in Case 1, then cc(S1) = cc(S2) = 0, and by (4),
cc(T ) = 0. So f is in Case 1.

Thus, we may assume that h1 or h2 (or both) end up in Case 2. There are
three subcases, (i) h1, h2 are both in Case 2, (ii) h1 is Case 2 and h2 in Case
1, or (iii) h2 in Case 2 and h1 in Case 1. We analyze subcase (i), the other
two subcases are analogous. This implies that there exists γ′ > 0, and affine
Chvátal functions g′

1 and g′
2 such that h1 = γ′�g′

1� + g′
2, and there exist binary

tree representations T ′
1, T

′
2 for g′

1, g
′
2 respectively, such that

cc(T ′
1) + cc(T ′

2) + 1 ≤ cc(S1). (5)

Now set γ = αγ′, g1(x) = g′
1(x) and g2(x) = αg′

2(x) + βh2(x). Then f =
γ�g1� + g2. Observe that g2 has a binary tree representation T2 such that the
root node of T2 has two children: the subtrees corresponding to these children
are T ′

2 and S2, and the edges at the root node of T2 are labeled by α and β
respectively. Therefore,

cc(T2) ≤ cc(T ′
2) + cc(S2). (6)

Moreover, we can take T1 = T ′
1 as the binary tree representation of g1. We

observe that

cc(T1) + cc(T2) + 1 ≤ cc(T ′
1) + cc(T ′

2) + cc(S2) + 1
≤ cc(S1) + cc(S2) = cc(T )
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where the first inequality is from the fact that T1 = T ′
1 and (6), the second

inequality is from (5) and the final equation is (4). ��
For a system of affine Chvátal inequalities where each affine Chvátal function

is represented by a binary tree, the total ceiling count of this representation is
the sum of the ceiling counts of all these binary trees. The next lemma shows
how to reduce the total ceiling count of a MIC set by one, in exchange for an
additional integer variable.

Lemma 1. Given a system C = {x ∈ R
n × Z

q : fi(x) ≤ bi} of affine Chvátal
inequalities with a total ceiling count c ≥ 1, there exists a system P = {(x, z) ∈
R

n ×Z
q ×Z : f ′

i(x) ≤ b′
i} of affine Chvátal inequalities with a total ceiling count

of at most c − 1, and C = projx(P ).

Proof. Since c ≥ 1, at least one of the fi is given with a binary tree representation
T with strictly positive ceiling count. Without loss of generality we assume it is
f1. This means f1, along with its binary tree representation T , falls in Case 2 of
Theorem 3. Therefore, one can write f as f1 = γ�g1�+g2, with γ > 0, and g1, g2
are affine Chvátal functions such that there exist binary tree representations
T1, T2 for g1, g2 respectively, with cc(T1) + cc(T2) + 1 ≤ cc(T ). Dividing by γ on
both sides, the inequality f1(x) ≤ b1 is equivalent to �g1(x)�+(1/γ)g2(x) ≤ b1/γ.
Moving (1/γ)g2(x) to the right hand side, we get �g1(x)� ≤ −(1/γ)g2(x)+ b1/γ.
This inequality is easily seen to be equivalent to two inequalities, involving an
extra integer variable z ∈ Z: �g1(x)� ≤ z ≤ −(1/γ)g2(x) + b1/γ, which, in turn
is equivalent to g1(x) ≤ z ≤ −(1/γ)g2(x) + b1/γ, since z ∈ Z. Therefore, we can
replace the constraint f1(x) ≤ b1 with the two constraints

g1(x) − z ≤ 0, (7)
(1/γ)g2(x) + z ≤ b1/γ ⇔ g2(x) + γz ≤ b1 (8)

as long as we restrict z ∈ Z. Note that the affine Chvátal functions on the left
hand sides of (7) and (8) have binary tree representations with ceiling count
equal to cc(T1) and cc(T2) respectively. Since cc(T1) + cc(T2) + 1 ≤ cc(T ), the
total ceiling count of the new system is at least one less than the total ceiling
count of the previous system. ��

The key result of this subsection is an immediate consequence.

Theorem 4. Every MIC set is MILP-representable.

Proof. Consider any system of affine Chvátal inequalities describing the MIC
set, with total ceiling count c ∈ N. Apply Lemma 1 at most c times to get the
desired result. ��

4.2 MIP-representable Sets Are MIC Sets

We now turn to showing the converse of Theorem4, that every MILP-
representable set is a MIC set (Theorem 6 below). This direction leverages some
established theory in integer programming, in particular,
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Theorem 5. For any rational m×n matrix A, there exists a finite set of Chvátal
functions fi : Rm → R, i ∈ I with the following property: for every b ∈ R

m,
{x ∈ Z

n : Ax ≥ b} is nonempty if and only if fi(b) ≤ 0 for all i ∈ I. Moreover,
these functions can be explicitly constructed from the matrix A.

The above result is quite similar to Corollary 23.4 in [7]. This result from [7]
was originally obtained by Blair and Jeroslow in [2, Theorem 5.1]). This work in
turn builds on seminal work on integer programming duality by Wolsey in [12].
Wolsey showed that the family of subadditive functions suffices to give a result
like Theorem 5; Blair and Jeroslow improved this to show that the smaller family
of Chvatal functions suffice. The main difference between Corollary 23.4 in [7]
and our result here is that we allow the right hand side b to be non rational. This
difference is indispensable in our analysis (see the proof of Theorem 6). Although
our proof of Theorem5 is conceptually similar to the approach in [7], we need
to handle some additional technicalities related to irrationality. We omit this
analysis from this extended abstract; it will be included in the full version. The
following lemma is easy to verify.

Lemma 2. Let T : Rn1 → R
n2 be an affine transformation involving rational

coefficients, and let f : Rn2 → R be an affine Chvátal function. Then f ◦ T :
R

n1 → R can be expressed as f ◦ T (x) = g(x) for some affine Chvátal function
g : Rn1 → R.

Theorem 6. Every MILP-representable set is a MIC set. Moreover, given an
explicit inequality description of the MILP-representable set, the MIC set can be
obtained algorithmically.

Proof. Let m,n, p, q ∈ N. Let A ∈ Q
m×n, B ∈ Q

m×p, C ∈ Q
m×q be any rational

matrices, and let d ∈ Q
m. Define F = {(x, y, z) ∈ R

n×R
p×Z

q : Ax+By+Cz ≥
d}. It suffices to show that the projection of F onto the x space is a MIC set.

By applying Fourier-Motzkin elimination on the y variables, we obtain ratio-
nal matrices A′, C ′ with m′ rows for some natural number m′, and a vector
d′ ∈ Q

m′
such that the projection of F onto the (x, z) space is given by

F := {(x, z) ∈ R
n × Z

q : A′x + C ′z ≥ d′}.
Let fi : Rm′ → R, i ∈ I be the set of Chvátal functions obtained by applying

Theorem 5 to the matrix C ′. It suffices to show that the projection of F onto
the x space is F̂ := {x ∈ R

n : fi(d′ − A′x) ≤ 0, i ∈ I} since for every i ∈ I,
fi(d′ − A′x) ≤ 0 can be written as gi(x) ≤ 0 for some affine Chvátal function gi,
by Lemma 2.2 This follows from the following sequence of equivalences.

x ∈ projx(F) ⇔ x ∈ projx(F)
⇔ ∃z ∈ Z

q such that (x, z) ∈ F
⇔ ∃z ∈ Z

q such that C ′z ≥ d′ − A′x
⇔ fi(d′ − A′x) ≤ 0 for all i ∈ I (By Theorem 5)
⇔ x ∈ F̂ . (By definition of F̂) ��

2 This is precisely where we need to allow the arguments of the fi’s to be non rational
because the vector d′ −A′x that arise from all possible x is sometimes non rational.
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Remark 1. We note in the proof of Theorem6 that if the right hand side d of the
mixed-integer set is 0, then the affine Chvátal functions gi are actually Chvátal
functions. This follows from the fact that the function g in Lemma 2 is a Chvátal
function if f is a Chvátal function and T is a linear transformation.

5 An Sequential Variable Elimination Scheme
for Mixed-Integer Chvátal Sytems

Ryan shows (see Theorem 1 in [6]) that Y is a finitely generated integral monoid
if and only if there exist Chvátal functions f1, . . . , fp such that Y = {b : fi(b) ≤
0, i = 1, . . . , p}. By definition, a finitely generated integral monoid Y is MILP
representable since Y = {b : b = Ax, x ∈ Z

n
+} where A is an m × n inte-

gral matrix. Thus, an alternate proof of Ryan’s characterization follows from
Theorems 4 and 6 and Remark 1.

Ryan [6] further states that “It is an interesting open problem to find an
elimination scheme to construct the Chvátal constraints for an arbitrary finitely
generated integral monoid.” The results of Sect. 4 provide such an elimination
scheme, as we show below.

A number of authors have studied sequential projection algorithms for linear
integer programs [1,9–11]. However, their sequential projection algorithms do
not resolve Ryan’s open question because they do not generate the Chvátal
functions fi(b) required to describe Y . Below, we show that, in fact, all these
schemes have to necessarily resort to the use of disjunctions because they try
to adapt the classical Fourier-Motzkin procedure and apply it to the system
b = Ax, x ∈ Z

n
+.

Our resolution to Ryan’s open question hinges on the observation that the
Chvátal functions that define Y can be generated if certain redundant linear
inequalities are added to those generated by the Fourier-Motzkin procedure, and
then the ceiling operator is applied to these redundant inequalities. We illustrate
the idea with Example 2 below and then outline the general procedure. Rather
than work with Ax = b, x ∈ Z

n
+ we work with the system Ax ≥ b and x ∈ Z

n.

Example 2. Let B denote the set of all b = (b1, . . . , b5) ∈ R
5 such that there

exist x1, x2, x3 ∈ Z satisfying the following inequalities.

−x1 + 1
2x2 − 1

10x3 ≥ b1
x1 − 1

4x2 ≥ b2
−x2 +x3 ≥ b3

x3 ≥ b4
−x3 ≥ b5

(9)

Performing Fourier-Motzkin elimination on the linear relaxation of (9) gives

0 ≥ 2b1 + 2b2 + 1
2b3 + 3

10b5 (10)

0 ≥ 1
10b4 + 1

10b5. (11)
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Unfortunately, there is no possible application of the ceiling operator to any
combination of terms in these two inequalities that results in affine Chvátal
functions that characterize B. In particular, b1 = (0, 0, 0, 1,−1) /∈ B while b2 =
(−1, 0, 0, 1,−1) ∈ B. Consider b1. This forces x3 = 1 and the only feasible
values for x1 are 1/10 ≤ x1 ≤ 4/10. Therefore, for this set of b values applying
the ceiling operator to some combination of terms in (10)–(11) must result in
either (10) positive or (11) positive. Since b1 = b2 = b3 = 0 and b5 = −1 there
is no ceiling operator that can be applied to any term in (10) to make the right
hand side positive. Hence a ceiling operator must be applied to (11) in order to
make the right hand side positive for b4 = 1 and b5 = −1. However, consider b2.
For this right-hand-side, x1 = x2 = x3 = 1 is feasible. Since we still have b4 = 1
and b5 = −1, the ceiling operator applied to (11) will incorrectly conclude that
there is no integer solution with b2.

However, Fourier-Motzkin elimination will work in conjunction with ceiling
operations appropriate redundant inequalities are added. Consider the inequality
x1 ≥ b1 + 2b2 + 1

10b4which is redundant to (9). Integrality of x1 implies x1 ≥
�b1 + 2b2 + 1

10b4�. Applying Fourier-Motzkin elimination to (9) along with x1 ≥
�b1 + 2b2 + 1

10b4� generates the additional inequality 0 ≥ b1 + 1
2b3 + �b1 + 2b2 +

1
10b4� + 4

10b5, which separates b1 and b2.

Our proofs in Sect. 4 give a general method to systematically add the nec-
essary redundant constraints, such as x1 ≥ b1 + 2b2 + 1

10b4 in Example 2. This
results in the following variable elimination scheme: at iterative step k maintain a
MIC set with variables (xk, . . . , xn) that is indeed the true projection of the orig-
inal set onto these variables. By Theorem 4, this MIC set is MILP representable
with a set of variables (xk, . . . , xn, z). Then by Theorem 6 we can project out
variable xk and additional auxiliary z variables that were used to generate the
MILP representation and obtain a new MIC in only variables (xk+1, . . . , xn).
The key point is that adding these auxiliary variables and then using Theorem 6
introduces the necessary redundant inequalities. Repeat until all variables are
eliminated and a MIC set remains in the b variables. This positively answers the
question of Ryan [6] and provides a projection algorithm in a similar vein to
Williams [9–11] and Balas [1] but without use of disjunctions.
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Abstract. We consider the problems of maintaining approximate max-
imum matching and minimum vertex cover in a dynamic graph. Starting
with the seminal work of Onak and Rubinfeld [STOC 2010], this problem
has received significant attention in recent years. Very recently, extend-
ing the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon
[FOCS 2016] gave a randomized 2-approximation dynamic algorithm for
this problem that has amortized update time of O(1) with high probabil-
ity. We consider the natural open question of derandomizing this result.
We present a new deterministic fully dynamic algorithm that main-
tains a O(1)-approximate minimum vertex cover and maximum frac-
tional matching, with an amortized update time of O(1). Previously, the
best deterministic algorithm for this problem was due to Bhattacharya,
Henzinger and Italiano [SODA 2015]; it had an approximation ratio of
(2 + ε) and an amortized update time of O(log n/ε2). Our result can be
generalized to give a fully dynamic O(f3)-approximation algorithm with
O(f2) amortized update time for the hypergraph vertex cover and frac-
tional matching problems, where every hyperedge has at most f vertices.

1 Introduction

Computing a maximum cardinality matching is a fundamental problem in com-
puter science with applications, for example, in operations research, computer
science, and computational chemistry. In many of these applications the underly-
ing graph can change. Thus, it is natural to ask how quickly a maximum match-
ing can be maintained after a change in the graph. As nodes usually change less
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frequently than edges, dynamic matching algorithms usually study the problem
where edges are inserted and deleted, which is called the (fully) dynamic match-
ing problem. The goal of a dynamic matching algorithm is to maintain either
an actual matching (called the matching version) or the value of the matching
(called the value version) as efficiently as possible.

Unfortunately, the problem of maintaining even just the value of the maxi-
mum cardinality matching is hard: There is a conditional lower bound that shows
that no (deterministic or randomized) algorithm can achieve at the same time an
amortized update time of O(m1/2−ε) and a query (for the size of the matching)
time of O(m1−ε) for any small ε > 0 [9] (see [1] for conditional lower bounds
using different assumptions). The best upper bound is Sankowski’s randomized
algorithm [14] that solves the value problem in time O(n1.495) per update and
O(1) per query. Thus, it is natural to study the dynamic approximate maximum
matching problem, and there has been a large body [2,5,6,8,11,12,15] of work
on it and its dual, the approximate vertex cover problem, in the last few years.

Dynamic algorithms can be further classified into two types: Algorithms that
require an oblivious (aka non-adaptive) adversary, i.e., an adversary that does
not base future updates and queries on the answers to past queries, and algo-
rithms that work even for an adaptive adversary. The earlier kind of algorithms
are less general than the later. Unfortunately, all randomized dynamic approxi-
mate matching and vertex cover algorithms so far do not work for an adaptive
adversary [2,12,15]. Solomon [15] gives the best such randomized algorithm: It
achieves O(1) amortized update time (with high probability) and maintains a
2-approximate maximum matching and a 2-approximate minimum vertex cover.

We present the first deterministic algorithm that maintains an O(1) approx-
imation to the size of the maximum matching in O(1) amortized update time.
We also maintain an O(1)-approximate vertex cover in the same update time.
Note that this is the first deterministic dynamic algorithm with constant update
time for any non-trivial dynamic graph problem. This is significant as for other
dynamic problems such as the dynamic connectivity problem or the dynamic
planarity testing problem there are non-constant lower bounds in the cell probe
model on the time per operation [10,13]. Thus, we show that no such lower
bound can exist for the dynamic approximate matching problem.

There has been prior work on deterministic algorithms for dynamic approxi-
mate matching, but they all have Ω(poly(log n)) update time. One line of work
concentrated on reducing the approximation ratio as much as possible, or at
least below 2: Neiman and Solomon [11] achieved an update time O(

√
m) for

maintaining a 3/2-approximate maximum matching and 2-approximate mini-
mum vertex cover. This result was improved by Gupta and Peng [8] who gave
an algorithm with update time O(

√
m/ε2) for maintaining a (1+ε)-approximate

maximum matching. Recently, Bernstein and Stein [3] gave an algorithm with
O(m1/4/ε2) amortized update time for maintaining a (3/2 + ε)-approximate
maximum matching. Another line of work, and this paper fits in this line,
concentrated on getting a constant approximation while reducing the update
time to polylogarithmic: Bhattacharya, Henzinger and Italiano [5] achieved an
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O(log n/ε2) update time for maintaining a (2 + ε)-approximate maximum frac-
tional matching and a (2+ε)-approximate minimum vertex cover. Note that any
fractional matching algorithm solves the value version of the dynamic matching
problem while degrading the approximation ratio by a factor of 3/2. Thus, the
algorithm in [5] maintains a (3 + ε)-approximation of the value of the maxi-
mum matching. The fractional matching in this algorithm was later “determin-
istically rounded” by Bhattacharya, Henzinger and Nanongkai [6] to achieve a
O(poly(log n, 1/ε)) update time for maintaining a (2+ε)-approximate maximum
matching.

Our method also generalizes to the hypergraph vertex (set) cover and hyper-
graph fractional matching problem which was considered by [4]. In this problem
the hyperedges of a hypergraph are inserted and deleted over time. f indicates
the maximum cardinality of any hyperedge. The objective is to maintain a hyper-
graph vertex cover, that is, a set of vertices that hit every hyperedge. Similarly
a fractional matching in the hypergraph is a fractional assignment (weights) to
the hyperedges so that the total weight faced by any vertex is at most 1. We
give an O(f3)-approximate algorithm with amortized O(f2) update time.

Our Techniques. Our algorithm builds and simplifies the framework of hierar-
chical partitioning of vertices proposed by Onak and Rubinfeld [12], which was
later enhanced by Bhattacharya, Henzinger and Italiano [5] to give a determin-
istic fully-dynamic (2 + ε)-approximate vertex cover and maximum matching in
O(log n/ε2)-amortized update time. The hierarchical partition divides the ver-
tices into O(log n)-many levels and maintains a fractional matching and vertex
cover. To prove that the approximation factor is good, Bhattacharya et al. [5]
also maintain approximate complementary slackness conditions. An edge inser-
tion or deletion can disrupt these conditions (and indeed at times the feasibility
of the fractional matching), and a fixing procedure maintains various invariants.
To argue that the update time is bounded, [5] give a rather involved potential
function argument which proves that the update time bounded by O(L), the
number of levels, and is thus O(log n). It seems unclear whether the update time
can be argued to be a constant or not.

Our algorithm is similar to that in Bhattacharya et al. [5], except that we are
a bit stricter when we fix nodes. As in [5], whenever an edge insertion or deletion
or a previous update violates an invariant condition, we move nodes across the
partitioning (incurring update costs), but after a node is fixed we often ensure
it satisfies a stronger condition than what the invariant requires. For example,
suppose a node v violates the upper bound of a fractional matching, that is, the
total fractional weight it faces becomes larger than 1, then the fixing subroutine
will at the end ensure that the final weight the node faces is significantly less than
1. Intuitively, this slack allows us to make a charging argument of the following
form – if this node violates the upper bound again, then a lot of “other things”
must have occurred to increase its weight (for instance, maybe edge insertions
have occurred). Such a charging argument, essentially, allows us to bypass the
O(log n)-update time to an O(1)-update time. The flip side of the slack is that
our complementary slackness conditions become weak, and therefore instead of
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a 2 + ε-approximation we can only ensure an O(1)-approximation. The same
technique easily generalizes to the hypergraph setting. It would be interesting
to see other scenarios where approximation ratios can be slightly traded in for
huge improvements in the update time.

Remark. Independently of our work, Gupta et al. [7] achieved a O(f3) approx-
imation algorithm for maximum fractional matching and minimum vertex cover
in a hypergraph in O(f2) amortized update time. Here, the symbol f denotes
the maximum number of nodes that can be incident on a hyperedge. Due to
space limitations, some proofs are deferred to the full version of the paper.

2 Notations and Preliminaries

Since the hypergraph result implies the graph result, henceforth we consider the
former problem. The input hypergraph G = (V,E) has |V | = n nodes. Initially,
the set of hyperedges is empty, i.e., E = ∅. Subsequently, an adversary inserts
or deletes hyperedges in the hypergraph G = (V,E). The node-set V remains
unchanged with time. Each hyperedge contains at most f nodes. We say that
f is the maximum frequency of a hyperedge. If a hyperedge e has a node v
as one of its endpoints, then we write v ∈ e. For every node v ∈ V , we let
Ev = {e ∈ E : v ∈ e} denote the set of hyperedges that are incident on v. In
this fully dynamic setting, our goal is to maintain an approximate maximum
fractional matching and an approximate minimum vertex cover in G. The main
result of this paper is summarized in Theorem 1. Throughout the rest of the
paper, we fix two parameters α, β as follows.

β = 17, and α = 1 + 36f2β2. (1)

Theorem 1. We can maintain an O(f3) approximate maximum fractional
matching and an O(f3) approximate minimum vertex cover in the input hyper-
graph G = (V,E) in O(f2) amortized update time.

We will maintain a hierarchical partition of the node-set V into L + 1 levels
{0, . . . , L}, where L = �f · logβ n�+1. We let �(v) ∈ {0, . . . , L} denote the level of
a node v ∈ V . We define the level of a hyperedge e ∈ E to be the maximum level
among its endpoints, i.e., �(e) = maxv∈e �(v). The levels of nodes (and therefore
hyperedges) induce the following weights on hyperedges: w(e) := β−�(e) for every
hyperedge e ∈ E. For all nodes v ∈ V , let Wv :=

∑
e∈Ev

w(e) be the total weight
received by v from its incident hyperedges. We will satisfy the following invariant
after processing a hyperedge insertion or deletion.

Invariant 2. Every node v ∈ V at level �(v) > 0 has weight 1/(αβ2) < Wv < 1.
Every node v ∈ V at level �(v) = 0 has weight 0 ≤ Wv ≤ 1/β2.

Corollary 3. The nodes in levels {1, . . . , L} form a vertex cover in G.
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Proof. Suppose that there is a hyperedge e ∈ E with �(v) = 0 for all v ∈ e. Then
we also have �(e) = 0 and w(e) = 1/β�(e) = 1/β0 = 1. So for every node v ∈ e,
we get: Wv ≥ w(e) = 1. This violates Invariant 2.

Invariant 2 ensures that w(e)’s form a fractional matching satisfying approx-
imate complementary slackness conditions with the vertex cover defined in
Corollary 3.

Theorem 4. In our algorithm, the hyperedge weights {w(e)} form a fαβ2-
approximate maximum fractional matching, and the nodes in levels {1, . . . , L}
form a fαβ2-approximate minimum vertex cover.

For each node v, let W+
v :=

∑
e∈Ev :�(e)>�(v) w(e) be the total up-weight

received by v, that is, weight from those incident hyperedges whose levels are
strictly greater than �(v). For all levels i ∈ [0, L], let Wv→i and W+

v→i respec-
tively denote the values of Wv and W+

v if the node v were to go to level i
and the levels of all the other nodes were to remain unchanged. More precisely,
for every hyperedge e ∈ E and node v ∈ e, let �v(e) = maxu∈e:u�=v �(u) be
the maximum level among the endpoints of e that are distinct from v. Then
Wv→i :=

∑
e∈Ev

β−max(�v(e),i) and W+
v→i :=

∑
e∈Ev:�v(e)>i β−�v(e). We maintain

a notion of time such that in each time step the algorithm performs one elemen-
tary operation. Let Wv(t) denote the weight (resp, up-weight) faced by v right
before the operation at time t. Similarly define Wv→i(t),W+

v (t), and W+
v→i(t).

Before the insertion/deletion of a hyperedge in G, all nodes satisfy
Invariant 2. When a hyperedge is inserted (resp. deleted), it increases (resp.
decreases) the weights of its endpoints. Accordingly, one or more endpoints can
violate Invariant 2 after the insertion/deletion of a hyperedge. Our algorithm
fixes these nodes by changing their levels, which may lead to new violations, and
so on and so forth. To describe the algorithm, we need to define certain states
of the nodes.

Definition 5. A node v ∈ V is Down-Dirty iff �(v) > 0 and Wv ≤ 1/(αβ2).
A node v ∈ V is Up-Dirty iff either {�(v) = 0,Wv > 1/β2} or {�(v) >
0,Wv ≥ 1}. A node is Dirty if it is either Down-Dirty or Up-Dirty. Note
that Invariant 2 is satisfied if and only if no node is Dirty.

Definition 6. A node v ∈ V is Super-Clean iff either (1) We have �(v) = 0
and Wv ≤ 1/β2, or (2) We have �(v) > 0, 1/β2 < Wv ≤ 1/β, and W+

v ≤ 1/β2.

Note that a Super-Clean node v with �(v) > 0 has a stronger upper bound
on the weight Wv it faces and also an even stronger upper bound on the up-weight
W+

v it faces. At a high level, one of our subroutines will lead to Super-Clean
nodes, and the slack in the parameters is what precisely allows us to perform an
amortized analysis in the update time.

Data Structures. For all nodes v ∈ V and levels i ∈ [0, L], let Ev,i := {e ∈
Ev : �(e) = i} be the set of hyperedges incident on v that are at level i. Note
that Ev,i = ∅ for all i < �(v). We maintain the following data structures. (1) For
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every level i ∈ [0, L] and node v ∈ V , we store the set of hyperedges Ev,i as a
doubly linked list, and maintain a counter that stores the number of hyperedges
in Ev,i. (2) For every node v ∈ V , we store the weights Wv and W+

v , its level
�(v) and an indicator variable for each of the states Down-Dirty, Up-Dirty,
Dirty and Super-Clean. (3) For each hyperedge e ∈ E, we store the values of
its level �(e) and therefore its weight w(e). Finally, using appropriate pointers,
we ensure that a hyperedge can be inserted into or deleted from any given linked
list in constant time. We now state two lemmas that will be useful in analysing
the update time of our algorithm.

Lemma 7. Suppose that a node v is currently at level �(v) = i ∈ [0, L − 1] and
we want to move it to some level j ∈ [i + 1, L]. Then it takes O(f · |{e ∈ Ev :
�v(e) < j}|) time to update the relevant data structures.

Proof. If a hyperedge e is not incident on the node v, then the data structures
associated with e are not affected as v moves up from level i to level j. Further,
among the hyperedges e ∈ Ev, only the ones with �v(e) < j get affected (i.e.,
the data structures associated with them need to be changed) as v moves up
from level i to level j. Finally, for every hyperedge that gets affected, we need
to spend O(f) time to update the data structures for its f endpoints.

Lemma 8. Suppose that a node v is currently at level �(v) = i ∈ [1, L] and we
want to move it down to some level j ∈ [0, i − 1]. Then it takes O(f · |{e ∈ Ev :
�v(e) ≤ i}|) time to update the relevant data structures.

Proof. Similar to the proof of Lemma 7.

3 Handling the Insertion/Deletion of a Hyperedge

Initially, the graph G is empty, every node is at level 0, and Invariant 2 holds.
By induction, we will ensure that the following property is satisfied just before
the insertion/deletion of a hyperedge.

Proposition 9. No node v ∈ V is Dirty.

Insertion of a hyperedge e. When a hyperedge e is inserted into the input
graph, it is assigned a level �(e) = maxv∈e �(v) and a weight w(e) = β−�(e).
The hyperedge gets inserted into the linked lists Ev,�(e) for all nodes v ∈ e.
Furthermore, for every node v ∈ e, the weights Wv increases by w(e). For every
endpoint v ∈ e, if �(v) < �(e), then the weight W+

v increases by w(e). As a result
of these operations, one or more endpoints of e can now become Up-Dirty and
Property 9 might no longer be satisfied. Hence, in order to restore Property 9 we
call the subroutine described in Fig. 1.

Deletion of a hyperedge e. When a hyperedge e is deleted from the input
graph, we erase all the data structures associated with it. We remove the hyper-
edge from the linked lists Ev,�(e) for all v ∈ e, and erase the values w(e) and
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01. While the set of Dirty nodes is nonempty
02. If there exists some Up-Dirty node v:
03. FIX-UP-DIRTY(v).
04. Else if there exists some Down-Dirty node v:
05. FIX-DOWN-DIRTY(v).

Fig. 1. FIX-DIRTY(·)

�(e). For every node v ∈ e, the weight Wv decreases by w(e). Further, for every
endpoint v ∈ e, if �(v) < �(e), then we decrease the weight W+

v by w(e). As a
result of these operations, one or more endpoints of e can now become Down-
Dirty, and Property 9 might get violated. Hence, in order to restore Property 9
we call the subroutine described in Fig. 1.

The algorithm is simple – as long as some Dirty node remains, it runs either
FIX-UP-DIRTY or FIX-DOWN-DIRTY to take care of Up-Dirty and Down-
Dirty nodes respectively. One crucial aspect is that we prioritize Up-Dirty
nodes over Down-Dirty ones.

FIX-DOWN-DIRTY (v): Suppose that �(v) = i when the subroutine is called
at time t. By definition, we have i > 0 and Wv(t) ≤ 1/(αβ2). We need to increase
the value of Wv if we want to ensure that v no longer remains Dirty. This means
that we should decrease the level of v, so that some of the hyperedges incident
on v can increase their weights. Accordingly, we find the largest possible level
j ∈ {1, . . . , (i − 1)} such that Wv→j(t) > 1/β2, and move the node v down to
this level j. If no such level exists, that is, if even Wv→1(t) ≤ 1/β2, then we move
the node v down to level 0. Note that in this case there is no hyperedge e ∈ Ev

with �v(e) = 0 for such a hyperedge would have w(e) = β−1 > 1/β2 when v is
moved to level 1. In particular, we get Wv→0(t) = Wv→1(t).

Claim 10. FIX-DOWN-DIRTY (v) makes the node v Super-Clean.

FIX-UP-DIRTY (v): Suppose that �(v) = i when the subroutine is called at
time t. At this stage, we have either {i = 0,Wv(t) > 1/β2} or {i > 1,Wv(t) ≥
1}. We need to increase the level of v so as to reduce the weight faced by
it. Accordingly, we find the smallest possible level j ∈ {i + 1, . . . , L} where
Wv→j(t) ≤ 1/β and move v up to level j. Such a level j always exists because
Wv→L(t) ≤ nf · β−L ≤ 1/β.

Claim 11. After a call to the subroutine FIX-UP-DIRTY (v) at time t, we have
1/β2 < Wv ≤ 1/β.

It is clear that if and when FIX-DIRTY() terminates, we are in a state which
satisfies Invariant 2. In the next section we show that after T hyperedge insertions
and deletions, the total update time is indeed O(f2 · T ) and so our algorithm
has O(f2)-amortized update time.
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4 Analysis of the Algorithm

Starting from an empty graph G = (V,E), fix any sequence of T updates. The
term “update” refers to the insertion or deletion of a hyperedge in G. We show
that the total time taken by our algorithm to handle this sequence of updates is
O(f2 ·T ). We also show that our algorithm has an approximation ratio of O(f3).

Relevant counters. We define three counters Cup, Cdown and Idown. The first two
counters account for the time taken to update the data structures while the third
accounts for the time taken to find the index j in both FIX-DOWN-DIRTY(v)
and FIX-UP-DIRTY(v). Initially, when the input graph is empty, all the three
counters are set to zero. Subsequently, we increment these counters as follows.

1. Suppose node v moves from level i to level j > i upon a call of FIX-UP-
DIRTY(v). Then for every hyperedge e ∈ Ev with �v(e) ≤ j−1, we increment
Cup by one.

2. Suppose node v moves from level i to level j < i upon a call of FIX-DOWN-
DIRTY(v). Then for every hyperedge e ∈ Ev with �v(e) ≤ i, we increment
the value of Cdown by one. Furthermore, we increment the value of Idown by
βi−2/α.

The next lemma upper bounds the total time taken by our algorithm in terms
of the values of these counters. The proof of Lemma 12 appears in Sect. 4.5.

Lemma 12. Our algorithm takes Θ(f · (Cup + Cdown + T ) + f2Idown) time to
handle a sequence of T updates.

We will show that Cup = Θ(f) · T and Cdown + Idown = O(1) · T , which will
imply an amortized update time of O(f2) for our algorithm. Towards this end,
we now prove three lemmas that relate the values of these three counters.

Lemma 13. We have: Cdown ≤ Idown.

Lemma 14. We have: Idown ≤ f
α−1 · (T + Cup).

Lemma 15. We have: Cup ≤ 9fβ2 · (T + Cdown).

The proofs of Lemmas 13, 14 and 15 appear in Sects. 4.2, 4.3 and 4.4 respec-
tively. All these three proofs use the concepts of epochs, jumps and phases as
defined in Sect. 4.1. The main result of our paper (see Theorem 1) now follows
from Theorem 4, Lemmas 12 and 16.

Lemma 16 (Corollary to Lemma 13, 14, and 15). We have: Cup = Θ(f)·T
and Cdown + Idown = Θ(1) · T .
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Proof. Replacing Cdown in the RHS of Lemma 15 by the upper bounds from
Lemmas 13 and 14, we get:

Cup ≤ (9fβ2) · T + (9fβ2) · Cdown

≤ (9fβ2) · T + (9fβ2) · Idown

≤ (9fβ2) · T +
(9fβ2)f
(α − 1)

· (T + Cup)

≤ (9fβ2) · T + (1/4) · T + (1/4) · Cup (see Eq. (1))

Rearranging the terms in the above inequality, we get: (3/4) ·Cup ≤ (9fβ2 +
1/4) · T = (36fβ2 + 1) · (T/4). Multiplying both sides by (4/3), we get: Cup ≤
(12fβ2 + 1/3) · T ≤ (13fβ2)T . Since β = 17, we get:

Cup ≤ Θ(f) · T (2)

Since α = Θ(f2), Lemmas 13 and 14 and Eq. (2) imply that:

Cdown ≤ Idown ≤ Θ(1) · T (3)

4.1 Epochs, Jumps and Phases

Fix any node v ∈ V . An epoch of v is a maximal time-interval during which the
node stays at the same level. An epoch ends when either (a) the node v moves
up to a higher level due to a call to FIX-UP-DIRTY, or (b) the node v moves
down to a lower level due to a call to the subroutine FIX-DOWN-DIRTY. These
events are called jumps. Accordingly, there are Up-Jumps and Down-Jumps.
Next, we define a phase of a node to be a maximal sequence of consecutive
epochs where the levels of the node keep on increasing. The phase of a node v is
denoted by Φv. Suppose that a phase Φv consists of k consecutive epochs of v at
levels i1, . . . , ik ∈ {0, 1, . . . , L}. Then we have: i1 < i2 < · · · < ik. By definition,
the epoch immediately before Φv must have level larger than i1 implying FIX-
DOWN-DIRTY(v) landed v at level i1. Similarly, the epoch subsequent to ik is
smaller than ik implying FIX-DOWN-DIRTY(v) is called again.

4.2 Proof of Lemma 13

Suppose that a node v moves down from (say) level j to level i < j at time
(say) t due to a call to the subroutine FIX-DOWN-DIRTY(v). Let Δdown and
Δdown

I respective denote the increase in the counters Cdown and Idown due to
this event. We will show that Δdown ≤ Δdown

I , which will conclude the proof of
the lemma. By definition, we have:

Δdown
I = βi−2/α (4)

Let X = {e ∈ Ev : �v(e) ≤ i} be the set of hyperedges incident on v that
contribute to the increase in Cdown due to the Down-Jump of v at time t. We
have: |X| = Δdown. Each edge e ∈ X contributes β−i towards the node-weight
Wv→i(t). Thus, we get: |X| ·β−i ≤ Wv→i(t) ≤ 1/(αβ2). The last inequality holds
since v is Down-Dirty in the beginning of time-step t. Rearranging the terms,
we get: Δdown = |X| ≤ βi−2/α. The lemma now follows from Eq. (4).
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4.3 Proof of Lemma 14

Suppose we call FIX-DOWN-DIRTY(v) at some time t2. Let �(v) = i just before
the call, and let [t1, t2] be the epoch with level of v being i. Let X := {e ∈
Ev : �v(e) ≤ i} at time t2. By definition, Idown increases by βi−2/α during the
execution of FIX-DOWN-DIRTY(v); let us call this increase Δdown

I . Thus:

Δdown
I = βi−2/α (5)

Consider the time between [t1, t2] and let us address how Wv can decrease in
this time while v’s level is fixed at i. Either some hyperedge incident on v is
deleted, or some hyperedge e ∈ Ev incident on it decreases its weight. In the
latter case, the level �(e) of such an hyperedge e must increase above i. Let ΔT

denote the number of hyperedge deletions incident on v during the time-interval
[t1, t2]. Let Δup denote the increase in the value of Cup during the time-interval
[t1, t2] due to the hyperedges incident on v. Specifically, at time t1, we have
ΔT = Δup = 0. Subsequently, during the time-interval [t1, t2], we increase the
value of Δup by one each time we observe that a hyperedge e ∈ Ev increases
its level �(e) to something larger than i. Note that �(v) = i throughout the
time-interval [t1, t2]. Hence, each time we observe an unit increase in ΔT + Δup,
this decreases the value of Wv by at most β−i. Just before time t1, the node
v made either an Up-Jump, or a Down-Jump. Hence, Claims 10 and 11 imply
that Wv→i(t1) > 1/β2. As Wv(t2) ≤ 1/(αβ2) at time t2, we infer that Wv has
dropped by at least (1 − 1/α) · β−2 during the time-interval [t1, t2]. In order to
account for this drop in Wv, the value of ΔT + Δup must have increased by at
least (1 − 1/α) · β−2/β−i = (1 − 1/α) · βi−2. Since ΔT = Δup = 0 at time t1, at
time t2 we get: ΔT + Δup ≥ (1 − 1/α) · βi−2. Hence, (5) gives us:

Δdown
I ≤ (α − 1)−1 · (ΔT + Δup) (6)

Each time the value of Idown increases due to FIX-DOWN-DIRTY on some
node, inequality (6) applies. If we sum all these inequalities, then the left hand
side (LHS) will be exactly equal to the final value of Idown, and the right hand
side (RHS) will be at most (α−1)−1 · (f ·T +(f −1) ·Cup). The factor f appears
in front of T because each hyperedge deletion can contribute f times to the sum∑

ΔT , once for each of its endpoints. Similarly, the factor (f − 1) appears in
front of Cup because whenever the level of an hyperedge e moves up due to the
increase in the level �(v) of some endpoint v ∈ e, this contributes at most (f −1)
times to the sum

∑
Δup, once for every other endpoint u ∈ e, u 	= v. Since LHS

≤ RHS, we get: Idown ≤ (α−1)−1 ·(f ·T +(f −1) ·Cup) ≤ (f/(α−1)) ·(T +Cup).

4.4 Proof Sketch of Lemma15

In this extended abstract we give a sketch; the full proof can be found in the
full version. For a vertex v, we fix a phase Φv and we account for the total up-
movement ΔCup in this phase. Note that a phase could have many up-jumps.
After a node performs an up-jump, its total weight is bounded and this in turn
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bounds the number of hyperedges that have contributed to ΔCup. For all but
the last up-jump, this can be charged to incident hyperedges being inserted or
some neighboring vertices making a down jump; the last one is an outlier since
the node may never become UP-DIRTY at that level. To argue about the last
level, we focus on two cases. One, when the last level is not much larger than
the last-but-one, in which case we can charge the last level to the remaining.
Otherwise, the last up-jump is a large jump. But this implies that v must fact
significant W+

v weight just before the last up-jump. This was, in particular, not
true at the beginning of the phase. So either some hyperedges have been inserted
or some vertices have made down-jumps.

4.5 Proof of Lemma 12

For technical reasons, we assume that we end with the empty graph as well.
This is without loss of generality due to the following reason. Suppose we made
T updates and the current graph is G. At this point, the graph has T ′ ≤ T
edges. Suppose the time taken by our algorithm till now is T1. Now delete all
the T ′ edges, and let the time taken by our algorithm to take care of these T ′

updates be T2. If T1 + T2 = Θ(f2(T + T ′)) = Θ(f2T ), then T1 = Θ(T ) as well.
Therefore, we assume we end with an empty graph.

When a hyperedge e is inserted into or deleted from the graph, we take O(f)
time to update the relevant data structures for its f endpoints. The rest of the
time is spent in implementing the While loop in Fig. 1. We take care of the two
subroutines separately.

Case 1. The subroutine FIX-DOWN-DIRTY(v) is called which moves the node
v from level i to level j < i (say). We need to account for the time to find the
relevant index j and the time taken to update the relevant data structures. By
Lemma 8, the time taken for the latter is proportional Θ(f · ΔCdown). Further,
the value of Cup remains unchanged. For finding the index j < i, it suffices to
focus on the edges Ev,i = {e ∈ Ev : �v(e) ≤ i} since these are the only edges that
change weight as v goes down. Therefore, this takes time Θ(|{e ∈ Ev : �v(e) ≤
i}|). Since each of these edges had w(e) = β−i and since Wv ≤ 1

αβ2 before the
FIX-DOWN-DIRTY(v) call, we have |{e ∈ Ev : �v(e) ≤ i}| ≤ βi−2/α which is
precisely ΔIdown. Therefore, the time taken to find the index j is Θ(ΔIdown).

Case 2. The subroutine FIX-UP-DIRTY(v) is called which moves the node v
from level i to level j > i, say. Once again, we need to account for the time to find
the relevant index j and the time taken to update the relevant data structures,
and once again by Lemma 7 the time taken for the latter is Θ(f ·ΔCup). Further,
the value of Cdown remains unchanged. We now account for the time taken to
find the index j.

Claim 17. j can be found in time Θ(j − i).

Proof. To see this note that for k ≥ i,

Wv→k(t) =
∑

�≥k

∑
e∈Ev,�

w(e) +
∑

�<k
1

βk−�

∑
e∈Ev,�

w(e)
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since (a) edges not incident on v are immaterial, (b) the edges incident on v
whose levels are already ≥ k do not change their weight, and (c) edges whose
levels are � < k have their weight go from β−� to β−k. The above implies that
for k ≥ i,

Wv→(k+1)(t) = Wv→k(t)−
(
1− 1

β

)∑
e∈Ev,k

w(e) = Wv→k(t)−
(
1− 1

β

)
|Ev,k| · β−k

That is, Wv→(k+1) can be evaluated from Wv→k(t) in Θ(1) time since we store
|Ev,k| in our data structure. The claim follows.

Note that the LHS of Claim 17 can be as large as Θ(log n). To account for the
movement, we again fix a vertex v and a phase Φv where the level of v changes
from i1 to say ik. The total time for finding indices is Θ(ik − i1). After this,
there must be a DOWN-JUMP due to a call to FIX-DOWN-DIRTY(v) since
the final graph is empty. Thus, we can charge the time taken in finding indices
in this phase Φv to ΔIdown in the FIX-DOWN-DIRTY(v) call right at the end
of this phase. We can do so since ΔIdown = βik−2/α = 1

f2 Θ(ik) since β = Θ(1)
and α = Θ(f2) by (1). Therefore, the total time taken to find indices in the
FIX-UP-DIRTY(v) calls in all is at most f2Idown.

In sum, the total time taken to initialize update data structures is at most
Θ

(
f · (

Cup + Cdown + T
))

and the total time taken to find indices is at most
Θ(f2 · Idown). This proves Lemma 12.
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Abstract. In this paper, we discuss an extension of split cuts that is
based on widening the underlying disjunctions. That the formula for
deriving intersection cuts based on splits can be adapted to this case
has been known for a decade now. For the first time though, we present
applications and computational results. We further provide some the-
ory that supports our findings, discuss extensions with respect to cut
strengthening procedures and present some ideas on how to use the wider
disjunctions also in branching.

1 Introduction

As many authors have noted before us, cutting planes are nowadays an essential
ingredient in virtually all Mixed Integer Linear Programming (MILP) codes.
Several classes of cutting planes are derived from disjunctions whose validity
can be easily verified by the integrality requirements of the underlying MILP.
For example, split cuts [6] make use of the fact that inside the feasible set, the dot
product of the MILP’s integer variables with an integral vector never maps to a
fractional value, i.e., into the open interval between any two consecutive integers.
In this paper, we study situations in which more information is available, and we
can exclude the whole interval between two not necessarily consecutive integers
from the feasible set.

Our study is motivated by simple observations regarding the modeling tech-
niques used in Constraint Programming (CP). As an illustrative example, con-
sider a sudoku game as in Fig. 1. In CP, we are allowed to work with finite
domains, and the domain of the variable y5,5, that is to model the number in
the 5th row of the 5th column, can simply be written as D(y5,5) = {1, 2, 5, 6, 8}.
In MILP instead, we would write 1 ≤ y5,5 ≤ 8 and y5,5 ∈ Z, but we have not
yet accounted for the constraint y5,5 /∈ {3, 4, 7}, which in this direct form is not
foreseen in the modeling tools provided by MILP. Of course, all integer program-
mers would object and (correctly) assert that it is an easy exercise to introduce
auxiliary variables that impose this condition. This is what has been done in
integer programming for roughly 50 years now and is thus well-proven practice.
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 99–110, 2017.
DOI: 10.1007/978-3-319-59250-3 9
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2 1 7 8 3
3 2 9

1 6
8 3 5

3 4
6 7 9 2

9 2
8 9 1 6
1 4 3 6 5

y5,5

Fig. 1. A 3 × 3 sudoku

Yet, it highlights exactly the point we want to make
with our admittedly informal example. In order to
express the condition that a variable be different
from a value in the “interior” of its domain, we have
to use auxiliary variables. In CP, such constraints
are routinely expressed and, much more important,
also exploited algorithmically, e.g., through filter-
ing and propagation. Our aim here is to analyze
whether and how we can exploit such explicit rep-
resentations in MILP.

In the above case, one could also say that y5,5

has holes in its domains. For example, it is allowed
to take the values 2 and 5, but nothing in between.
More formally, this can be expressed by the
disjunction

y5,5 ≤ 2 ∨ y5,5 ≥ 5. (1)

As stated earlier, in the theory of classical split cuts, the right-hand sides of
such two disjunctive terms are always consecutive integers. One special case of
split cuts are intersection cuts [3] from split sets, for which a closed form for-
mula exists, and that this formula can be easily extended to disjunctions with
non-consecutive right-hand sides has already been proven in [2]. Nevertheless,
in more than ten years since, nobody has ever applied it in practice in order
to conduct computational results. While the authors in [2] use the term general
split disjunctions, we will call constructs like (1) wide split disjunctions, and the
resulting cutting planes wide split cuts. Our contribution is to revive the afore-
mentioned formula of [2]. We focus on computational aspects and experiments.
We are interested, in particular, in recognizing examples where wide split dis-
junctions occur and in exploring to what extent the use of wide split cuts in
practical MILP codes can be advantageous. In addition, we back our findings up
by some theoretical observations.

The rest of the paper is organized as follows. We provide examples of the
validity of wide split disjunctions in Sect. 2, and show that exploiting this “hole
information” algorithmically through cutting planes can be advantageous in
Sect. 3. Finally, in Sect. 4, we examine the combination of wide split cuts with
branching on wide split disjunctions inside a branch-and-cut tree.

Throughout the text, we use the notation [n] := {1, . . . , n} for any positive
integer n.

2 Validity of Wide Split Disjunctions

For the moment, we assume the existence of an underlying MILP

min cT x (2)
s.t. Ax = b (3)

x ∈ R
n−p
+ × Z

p
+. (4)
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Wide split disjunctions are of the form

πT x ≤ πl ∨ πT x ≥ πu, (5)

where the triple (πT , πl, πu) belongs to the set

Π := {(πT , πl, πu) ∈ Z
n+2 | πi = 0 ∀ i = 1, . . . , n − p}.

A natural question that arises is the one about the validity of a wide split
disjunction for a MILP. While it is easy to see that any solution to (2)–(4)
satisfies any split disjunction with consecutive right-hand sides, in the following
called ordinary split, this is not necessarily true for wide splits. Finding wide
split cuts in MILPs is very difficult by itself: While it is not our main focus in
this paper, we provide here some examples where wide splits can be found.

2.1 Certifying Split Validity by Primal Information

We first give examples in which wide split disjunctions in the form of holes in
the domains of variables are implied by the constraints present in an underlying
MILP. This happens, e.g., when some modeling tricks with auxiliary binary
variables as mentioned in the introduction are applied. The first of these tricks
involves big-M constraints.

Consider an integer variable y and the set of constraints

lj − y ≤ (1 − xj) · (lj − l1) ∀ j ∈ [m],

y−uj ≤ (1 − xj) · (uL − uj) ∀ j ∈ [m],
m∑

j=1

xj = 1,

and assume uj−1 < lj . In any feasible solution, y will lie in exactly one of the
intervals [lj , uj ]. It is easy to check that the above set of constraints implies
validity of the simple wide split disjunctions y ≤ uj−1 ∨ y ≥ lj , j = 2, . . . , m.
Clearly, if uj−1 + 1 < lj for some j, there is at least one non-ordinary wide split
disjunction. The above constraint structure can be found, e.g., in straightforward
MILP formulations for the Traveling Salesman Problem with Multiple Time
Windows (TSPMTW) [5].

A GUB-link constraint is characterized by a pair of equations,

y =
m∑

j=1

λjxj ,

m∑

j=1

xj = 1. (6)

Here, the wide split disjunctions y ≤ λj−1 ∨ y ≥ λj , j = 2, . . . ,m are valid.
Clearly, if the λj are non-consecutive integers, there are non-ordinary wide split
disjunctions. Such structures can be found in time-indexed MILP formulations
for scheduling problems, see, e.g., [7].
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2.2 Certifying Split Validity by Dual Information

In the previous section, we deduced the validity of wide split disjunctions by
primal information: every (primal) feasible solution was assured to satisfy them.
Now instead, we allow that disjunctions are imposed that not every primal feasi-
ble solution satisfies. In the following MILP, however, we will see that for every
solution that is excluded in this way, there is at least one other feasible solution
with identical objective value. The resulting problem and the original MILP are
thus equivalent in the sense that they have the same optimal objective value.
Hence, we can characterize these domains to be derived from dual information.

The MILP we are going to analyze is a formulation for the so-called Lazy
Bureaucrat Problem (LBP), and strictly speaking, it is a pure Integer Linear
Program (ILP). The LBP can be seen as a lazy counterpart of the classical
Knapsack Problem [11]. Similar to therein, we are given a set of items i ∈ [n]
with non-negative profits pi and non-negative weights wi, both of which we
assume to be integral, and a knapsack with capacity C. The objective is to pack
a subset of items into the knapsack such that:

– the profit of all packed items is minimized,
– their weight does not exceed the capacity,
– but adding any non-packed item would exceed it.

The task is thus to find a so-called maximal packing with minimum profit.
In [8], several ILP formulations for LBP are proposed. We present here the most
promising one according to [8]. Assuming that the items are ordered increas-
ingly according to their weight, i.e., wi ≤ wj for i < j, the critical item
is defined as the first item that exceeds the capacity in a complete packing,
ic := min{i ∈ [n] | ∑

j≤i wj > C}. The critical weight is wc := wic . A valid
formulation is then given by

min
n∑

i=1

pixi (7)

s.t.
n∑

i=1

wixi ≤ C (8)

n∑

i=1

wixi + z ≥ C + 1 (9)

z ≤ wc − (wc − wi)(1 − xi) ∀ i ∈ [ic] (10)
(x, z) ∈ {0, 1}n × Z+. (11)

The variable z models the weight of the smallest item left out of the packing,
and it is easy to construct examples of feasible solutions with z /∈ {wi | i ≤ ic}.
Yet, we have the following simple result.

Lemma 1. For every feasible solution (x̄, z̄) of (7)–(11), there is another fea-
sible solution (x̄, z̃) with the same cost and z̃ ∈ {wi | i ≤ ic}.
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Proof. Denote the packing corresponding to (x̄, z̄) by A := {i ∈ [n] | x̄i = 1}.
Further, let ī := min{i ∈ [n] | i /∈ A}. Clearly, ī ≤ ic, and from (10) we
get z̄ ≤ wī. Because increasing the value of z̄ does not violate (9), (x̄, z̃) with
z̃ := wī ∈ {wi | i ≤ ic} is feasible and clearly has the same cost as (x̄, z̄). ��
In the end, if the weights are non-consecutive integers, we can consider a version
of the problem with valid wide split disjunctions.

3 Cut Derivation and Computation

In this section, before coming to our main contributions, we first recall how to
algebraically derive wide split cuts. We denote the points of the feasible region
of (2)–(4), that in addition satisfy the wide split disjunction (5), by F . Also, we
denote the feasible region of the LP relaxation of (2)–(4) by P , i.e., P = {x ∈
R

n | Ax = b, x ≥ 0}. Thus, we set

P
(π,πl)
l := {x ∈ P | πT x ≤ πl}, P (π,πu)

u := {x ∈ P | πT x ≥ πu},

and P (π,πl,πu) := conv(P (π,πl)
l ∪ P

(π,πu)
u ). By definition, a wide split cut is any

linear inequality that is valid for P (π,πl,πu). Since F ⊆ P (π,πl,πu), any wide split
cut is also valid for F . We pick up on what has been shown in [2], i.e., how to
derive wide split cuts as intersection cuts, but we note that it is also possible to
derive wide split cuts in a lift-and-project fashion, see [13, Sect. 4.2.2].

3.1 Intersection Cuts from Wide Split Disjunctions

We assume that the LP relaxation of (2)–(4) has been solved to the point x̂ by
means of the simplex method and that we are given the optimal basis B ⊆ [n]
and simplex tableau T = T (B) of P ,

xi = x̂i +
∑

j∈N

ri
jxj ∀ i ∈ B, xi ≥ 0 ∀ i ∈ [n], (12)

where the index set of variables is partitioned into basic and non-basic variables,
N = [n]\B, respectively. We state the aforementioned result of [2].

Proposition 1. Assume that x̂ violates the wide split disjunction (πT , πl, πu),
i.e., πl < πT x̂ < πu, and ∀ j ∈ N , define fj := πj +

∑
i∈B πir

i
j. A valid

inequality for P (π,πl,πu) is then given by

∑

j∈N

max
{ −fj

πT x̂ − πl
,

fj

πu − πT x̂

}
xj ≥ 1. (13)

The valid inequality of Proposition 1 is clearly a wide split cut, and it is easy
to check that it is violated by x̂. If in (12) one relaxes the non-negativity on the
basic variables, then the resulting set can be shown to be a translated polyhedral
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Fig. 2. Intersection cuts in the plane

cone, often denoted by P (B). Geometrically, (13) can be obtained by computing
the intersection points of the extreme rays of P (B) with the boundary of the split
set S := {x ∈ R

n | πl ≤ πT x ≤ πu}. Figure 2 (a) and (b) depict an example of
P (B), and the split sets with corresponding cuts of an ordinary split disjunction
and a wide split disjunction, respectively, in a two-dimensional basic space. We
now give an algebraic example of Proposition 1.

Example 1. Consider the MILP with GUB-Link constraints

min − x2 (14)
s.t. x1 + x2 ≤ 6 (15)

−x1 + x2 ≤ 0 (16)
x1 = x3 + 2x4 + 4x5 + 8x6 (17)
1 = x3 + x4 + x5 + x6 (18)

(x1, x2, x3, x4, x5, x6) ∈ Z
6
+. (19)

Note that variables x3, x4, x5, x6 are implicitly binary constrained due to (18).
Therefore, it is easy to see that x1 ≤ 2 ∨ x1 ≥ 4 is a valid (simple) wide split
disjunction. Introducing slack variables s1 and s2 for (15) and (16), respectively,
one can check that the basic row of x1 in the optimal simplex tableau is x1 =
3− 1

2s1+ 1
2s2, showing that x̂1 = 3 and that the wide split disjunction is violated.

This equation can be used together with (13) to calculate the wide split cut
s1 + s2 ≥ 2, that, after substituting slacks, is equivalent to x2 ≤ 2. One can
check that the wide split cut is a facet of the integer hull of the MILP in the
(x1, x2)-space. Clearly, in the optimal solution of the LP relaxation, there will
be two fractional binary variables, one between x3 and x4, and one between
x5 and x6. Assume that 0 < x̂4 < 1 and 0 < x̂5 < 1. The two intersection
cuts corresponding to these two violated split disjunctions can be checked to be
x2 − 3x3 − 4x6 ≤ 2 and x2 −x3 − 6x6 ≤ 2. Both cut off the optimal LP-solution,
but are dominated by the wide split cut. ��
In the above example, the advantage of wide splits over ordinary splits lies
in the fact that no ordinary split cut with the same split vector would have
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been separated, because x̂1 is not fractional. We highlight though that even in
situations where the split vector gives rise to a fractional value, a theoretical
dominance of wide split cuts as in Proposition 1 over corresponding ordinary
split cuts can be shown, see [13, Proposition 4.7].

We showed in Example 1 that in the case of GUB-Links, a wide split cut
can dominate simple ordinary split cuts on the involved binary variables. In this
special case however, there is another type of ordinary but non-simple split cuts,
that seems superior to the simple one, and that we analyze in the following.
Formally, given the GUB-link (6), let W denote the wide split disjunction y ≤
λ� ∨ y ≥ λ�+1. Also, assume the λj to be ordered increasingly and let Q denote
the ordinary split disjunction

∑
j∈L xj ≤ 0 ∨ ∑

j∈L xj ≥ 1 with L = {1, . . . , �}.
The relationship between the cuts obtained by both disjunctions is settled by
the two following lemmata.

Lemma 2. Let C(D) denote the split closure, i.e., the set of all split cuts that
can be obtained from a split disjunction D (see, e.g., [2]). Then, C(Q) dominates
C(W ), i.e., C(Q) ⊆ C(W ).

Proof. Define W0 := {(x, y) ∈ P | y ≤ λ�}, W1 := {(x, y) ∈ P | y ≥ λ�+1},
Q0 := {(x, y) ∈ P | ∑

j∈L xj ≤ 0}, and Q1 := {(x, y) ∈ P | ∑
j∈L xj ≥ 1}. The

closure C(Q) is simply C(Q) = conv(Q0∪Q1), while C(W ) = conv(W0∪W1). It
holds that

∑
j∈L xj ≥ 1 implies y ≤ λ�, therefore Q1 ⊆ W0. Also,

∑
j∈L xj ≤ 0

implies y ≥ λ�+1, and thus Q0 ⊆ W1. The claim follows. ��
Lemma 3. The dominance in Lemma 2 only applies to closures. In particular,
given an optimal tableau T , the wide split cut associated with T and W is not
necessarily dominated by the split cut associated with T and Q, and it could even
happen that the reverse is true (i.e., the cut from W dominates the cut from Q).

Proof. In Example 1, assuming again that x4 and x5 are basic in the optimal
simplex solution, the split Q is given by x3 + x4 ≤ 0 ∨ x3 + x4 ≥ 1, and is
violated. One can show that the intersection cut from the above binarization
split is x2 − x3 − 4x6 ≤ 2. This cut is still weaker than the wide split cut: point
(3, 3, 1

5 , 3
5 , 0, 1

5 ) satisfies it. ��

3.2 Computation

We now present the results of computational experiments with wide split cuts
applied to the LBP introduced in Sect. 2.2. Recall that the valid wide split dis-
junctions in this case are simple ones, i.e., we have holes in the domains of integer
variables. We are particularly interested in testing the computational advantage
of wide split cuts over corresponding cuts from ordinary splits. Therefore, we
include intersection cuts from simple, ordinary splits in our experiments. How-
ever, we do not only include such cuts corresponding to fractional values that
fall into a hole, but also to fractional values that do not, and in particular cor-
responding to all integer and binary variables in the model. That is, we do not
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restrict to the simple split vectors that appear in valid wide split disjunctions.
This will give us more flexibility in testing different cut separation strategies.

In general, we perform several rounds of separation. In a single round, we
solve the LP relaxation of the underlying MILP to optimality, separate cuts
according to the chosen strategy, add all separated cuts to the model and solve
again. The strategies we test are

– w/o (without wide splits): For each basic fractional binary or integer variable,
we compute an intersection cut from an ordinary split.

– w (with wide splits): For each basic integer variable, we compute a wide
split cut if its value lies in a hole, or otherwise an intersection cut from an
ordinary split, if its value is fractional. In addition, for each basic fractional
binary variable, we compute an intersection cut from an ordinary split.

– o (only wide splits): For each basic integer variable, we compute a wide split
cut if its value lies in a hole.

The procedure has been coded in C/C++ with CPLEX 12.6.1 as LP solver.
Throughout the following, we usually report the percentage of the initial dual
gap that is closed by the separated cuts. Also, the total number of cuts that
have been generated is sometimes shown. In order to create test instances, we
used class 4 of the knapsack instance generator presented in [10] and available
at [12]. As in [8], this led to a total of 54 instances with different combinations
of the parameters.

Table 1. Separation of wide split cuts on LBP instances

Instance % gap closed #cuts
w/o w o w/o w o

10000-4-100-75 9.21 12.53 11.73 139 62 5
10000-4-10-25 32.97 34.28 28.40 46 27 2
10000-4-10-50 79.12 100.00 100.00 1 1 1
...

...
...

1000-4-40-75 8.92 42.90 41.38 150 53 5
1000-4-500-75 2.97 5.10 4.89 134 73 6
1000-4-50-50 13.01 17.12 15.26 113 60 4
Mean 19.81 31.95 28.13 89.92 49.16 3.28

Table 1 shows
an excerpt (and
mean values) of
those 25 out of
the 54 instances in
which we can close
significantly more
gap with strategy
w than with w/o
in 10 rounds of
separation. That
means that the sep-
aration of wide split
cuts on top of
ordinary split cuts
is highly advanta-
geous. Interestingly, on these instances the separation of only wide split cuts
(strategy o) already leads to significantly more gap closure than strategy w/o,
and almost reaches the one of strategy w. A (positive) side effect of wide split
cuts is the reduction of the number of cuts that are separated in total. Apart
from closing more gap, strategy w also decreases this number significantly with
respect to strategy w/o. This is a desirable effect since the number of constraints
in an LP, to which separated cutting planes have to be added in order to benefit
from closing additional gap, influences the computational effort when solving it.
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Remarkably, the significant gap closed by strategy o requires a small number of
separated cuts. We note that the side effect of reducing the number of cuts also
persists in instances that do not benefit significantly from the separation of wide
split cuts in terms of the gap closed. In particular, in 14 out of the remaining
29 instances, the same gap can be closed with a significantly lower number of
separated cuts. In the remaining 15 instances, strategy o is often highly compet-
itive and requires a small number of cuts in total to close almost the same gap
as strategies w/o and w.

3.3 Cut Strengthening

Ordinary split cuts can be seen to exploit the integrality requirements on the
basic variables. In fact, since all non-basic variables are zero in the optimal sim-
plex solution x̂, the split violation is determined by the basic variables only. Intu-
itively, deriving a cutting plane by taking into account the integrality require-
ments of the non-basic variables as well should result in stronger cutting planes.
This idea leads to the integer strengthening principle of intersection cuts from
split disjunctions, outlined for example in [1], or recovered from the concept of
monoidal strengthening introduced in [4]. An extension of this concept to wide
split disjunctions is presented in [13, Sect. 4.2.3]. It turns out, however, that this
strengthening is rather weak for wide split cuts, meaning that the improvement
of the strengthened cutting plane is marginal. We experienced this weakness
computationally: substituting every wide split cut in the experiments in Table 1
by its strengthened version leads to a negligible improvement in almost all cases.
Again in [13, Sect. 4.2.3] is developed some interesting and promising theory on
the strengthening of wide split cuts when holes in domains are distributed regu-
larly. However, the detection of regularly distributed holes and the corresponding
strengthening is outside the scope of this paper.

Table 2. GMI vs. wide split cuts
on LBP instances

Instance % gap closed
w w-g

10000-4-100-75 12.53 9.21
10000-4-10-25 34.28 32.96
10000-4-10-75 42.21 34.31
...

...
1000-4-40-75 42.90 8.55
1000-4-500-75 5.10 3.04
1000-4-50-50 17.12 13.01
Mean 29.11 17.07

The aforementioned strengthening princi-
ple of intersection cuts from ordinary split dis-
junctions can be shown to give precisely one
of Gomory’s Mixed Integer (GMI) cuts [9],
see [1]. While the strengthening of wide split
cuts is relatively weak, GMI cuts are gener-
ally considered to be able to give quite strong
improvements. This can be seen as some kind
of dilemma. Whenever we have a violated wide
split disjunction, it is not clear whether the
best strategy is to separate a wide split cut
that can then be strengthened only weakly, or
to weaken the disjunction to an ordinary split
and separate a cut that can then be strength-
ened strongly to a GMI cut. To analyze this
dilemma computationally, we introduce the
new cut generation strategy w-g (with GMI
cuts instead of wide splits): equal to w, except that for every basic variable that
violates a wide split disjunction (in which case with strategy w we separate a
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wide split cut), we separate a GMI cut. Table 2 compares the gap closed by
strategies w and w-g on the instances of Table 1. Strategy w beats w-g, meaning
that GMI cuts are not able to close the gap that can be closed by exploiting the
wide split disjunction on these instances.

3.4 MIPLIB2010 Instances

Table 3. Wide split cuts on top of CPLEX cuts

Instance % gap closed
cpx d cpx d+w cpx a cpx a+w

sp97ar 16.71 18.94 16.71 19.64
leo2 23.57 25.00 23.75 25.56
ns1830653 37.80 37.80 39.65 40.34
blp-ar98 77.86 78.40 80.98 81.27
n3div36 48.74 48.77 49.05 49.05
geo mean 35.51 36.90 36.24 38.14

In order to conclude this section,
we performed a preliminary
experiment on five MIPLIB2010
instances in which, by inspect-
ing the cliques explicitly present
in the problem, GUB-Link con-
straints with an auxiliary integer
variable containing holes in its
domain can be defined. Table 3
reports the gap closed by adding
five rounds of wide split cuts at
the end of CPLEX 12.6.1’s root
node executed in either default
(cpx d) or aggressive cuts (cpx a) mode. This admittedly limited experiment
shows that there seems to be a value in adding wide split cuts on top of CPLEX
12.6.1’s existing cut separation procedures, i.e., the information associated with
the holes of the integer variables does not seem to be recovered by standard cuts.

4 Branching on Wide Split Disjunctions in a Search Tree

In this final section we present some additional considerations and experimental
algorithms on how wide split disjunctions can be useful not only for deriving
cutting planes and thus strengthening the LP relaxation of a MILP, but also for
solving the MILP to optimality. We assume to have a MILP as in (2)–(4) with
the additional condition that some integer variables satisfy simple wide split
disjunctions, which is imposed by means of the mixed integer constraints

x + Exa = g, xa ∈ {0, 1}k. (20)

These constraints can be thought of as big-M or GUB-Link constraints including
the auxiliary binary variables xa. In order to solve the resulting MILP given by
(2)–(4) and (20), we explore the following three strategies:

– B&C-F: Apply a MILP solver to the full model (2)–(4), (20).
– B&C-R: Apply a MILP solver to the relaxed model (2)–(4), but whenever an

incumbent is found, check for satisfaction of the wide split disjunctions. If
some disjunction (eT

i , πl, πu) for xi is violated, branch with πl and πu as new
upper and lower bound, respectively: xi ≤ πl OR xi ≥ πu.

– B&C-R+cuts: the same as B&C-R with the separation of r rounds of wide
split cuts at the root node.
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Of course, all three strategies are ways of solving model (2)–(4), (20) exactly.
The motivation behind B&C-R is that the model size is reduced with respect
to B&C-F, depending on the number of holes, more or less significantly. An
additional advantage of B&C-R+cuts is that information used for strengthening
the LP relaxation contained in (20) is potentially preserved by wide split cuts.

All three procedures have been implemented in C/C++ with CPLEX
12.6.1 as a MILP-solver. B&C-R and B&C-R+cuts can be implemented using
incumbent- and branch-callbacks. We further used randomly generated test
instances. In particular, we took all MIP or IP instances from MIPLIB2010
(with problem status easy as per January 2016), and randomly generated holes,
distributed in the domains of the involved integer variables. Here, we discuss an
excerpt of the outcome for 25 such random instances based on the MIPLIB2010
one neos-555424. Table 4 shows solution times in seconds and number of branch-
and-bound nodes explored for all three strategies in that case. A time limit of two
hours was imposed, the number of rounds r was set to 10 and (20) were encoded
by big-M constraints. We immediately note that B&C-R hits the time limit in
almost all cases. Essentially, the algorithm keeps finding incumbent solutions
that are then rejected. Remarkably, the separation of wide split cuts in B&C-
R+cuts consistently avoids this phenomenon. In the second instance for example,
a total of two separated cuts is enough to avoid hitting the time limit. More
importantly, B&C-R+cuts clearly beats B&C-F, showing how the exploitation
of wide split disjunctions in branching and through cuts can lead to significant
computational advantages.

The picture of Table 4 does not persist throughout all variations of all the
original MIPLIB2010 instances we tested. There are cases in which already B&C-
R wins over B&C-F, but also cases in which B&C-F is clearly the winning strat-
egy. In general, there seem to be problems that suffer the step from B&C-F to
B&C-R, like in the case of neos-555424, and others that do not. A problem from
the literature that belongs to the latter class is the TSPMTW, where B&C-R

Table 4. Comparison of B&C-F, B&C-R and B&C-R+cuts on neos-555424 instances

Instance B&C-F B&C-R B&C-R+cuts

time nodes time nodes time nodes

1-1 540.78 66302 ∞ ∞ 287.02 39925

1-2 930.40 108000 ∞ ∞ 134.33 19451

1-3 384.16 39605 159.64 25244 158.93 25244

...
...

...
...

5-3 86.06 15599 ∞ ∞ 33.30 7803

5-4 4339.04 137497 ∞ ∞ 17.70 3788

5-5 37.43 9077 ∞ ∞ 6.61 1326

Mean 621.67 51667.00 - - 107.55 16357.04
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led to an average reduction in computing times of around 20% with respect to
B&C-F on our testbed. However, B&C-R+cuts does not lead to an additional
improvement. This is probably due to the fact that wide split cuts act on the
scheduling component of the TSPMTW, leaving the LP relaxation at the root
node still very weak due to the TSP component. A future direction of the con-
siderations in this section is therefore the experimentation of the separation of
wide split cuts at nodes inside the search tree. Also, there is clearly a more effi-
cient way of replicating strategy B&C-R, that is, by incorporating the branching
on wide split disjunctions directly in the branching process of the MILP-solver
instead of applying it only when incumbent solutions are found. However, both
aspects are outside the scope of this paper.
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Abstract. Finding the exact integrality gap α for the LP relaxation of
the metric Travelling Salesman Problem (TSP) has been an open prob-
lem for over thirty years, with little progress made. It is known that
4/3 ≤ α ≤ 3/2, and a famous conjecture states α = 4/3. For this prob-
lem, essentially two “fundamental” classes of instances have been pro-
posed. This fundamental property means that in order to show that the
integrality gap is at most ρ for all instances of metric TSP, it is sufficient
to show it only for the instances in the fundamental class.

However, despite the importance and the simplicity of such classes,
no apparent effort has been deployed for improving the integrality gap
bounds for them. In this paper we take a natural first step in this endeav-
our, and consider the 1/2-integer points of one such class. We successfully
improve the upper bound for the integrality gap from 3/2 to 10/7 for a
superclass of these points, as well as prove a lower bound of 4/3 for the
superclass.

Our methods involve innovative applications of tools from combina-
torial optimization which have the potential to be more broadly applied.

Keywords: TSP · Approximation · Cubic graphs · LP · Integrality gap

1 Introduction

Given the complete graph Kn = (Vn, En) on n nodes with non-negative edge
costs c ∈ R

En , the Traveling Salesman Problem (henceforth TSP) is to find a
Hamiltonian cycle of minimum cost in Kn. When the costs satisfy the triangle
inequality, i.e. cij + cjk ≥ cik for all i, j, k ∈ Vn, the problem is called the metric
TSP. If the metric is defined by the shortest (cardinality) paths of a graph, then it
is called a graph-metric; the TSP specialized to graph-metrics is the graph-TSP.

For G = (V,E), x ∈ R
E and F ⊆ E, x(F ) :=

∑
e∈F xe; for U ⊆ V , δ(U) :=

δG(U) := {uv ∈ E : u ∈ U, v ∈ V \U}; E[U ] := {uv ∈ E : u ∈ U, v ∈ U}.
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A natural linear programming relaxation for the TSP is the following
subtour LP :

minimize cx (1)
subject to: x(δ(v)) = 2 for all v ∈ Vn, (2)

x(δ(S)) ≥ 2 for all ∅ �= S � Vn, (3)
0 ≤ xe ≤ 1 for all e ∈ En. (4)

For a given cost function c ∈ R
En , we use LP (c) to denote the optimal solu-

tion value for the subtour LP and OPT (c) to denote the optimal solution value
for the TSP. The polytope associated with the subtour LP, called the subtour
elimination polytope and denoted by Sn, is the set of all vectors x satisfying the
constraints of the subtour LP, i.e. Sn = {x ∈ R

En : x satisfies (2), (3), (4)}.
The metric TSP is known to be NP-hard. One approach taken for finding

reasonably good solutions is to look for a ρ-approximation algorithm for the
problem, i.e. a polynomial-time algorithm that always computes a solution of
value at most ρ times the optimum. Currently the best such algorithm known
for the metric TSP is the algorithm due to Christofides [7] for which ρ = 3

2 .
Although it is widely believed that a better approximation algorithm is possible,
no one has been able to improve upon Christofides algorithm in four decades.
For arbitrary nonnegative costs not constrained by the triangle inequality there
does not exist a ρ-approximation algorithm for any ρ ∈ R, unless P = NP , since
such an algorithm would be able to decide if a given graph is Hamiltonian.

For an approximation guarantee of a minimization problem one needs lower
bounds for the optimum, often provided by linear programming. For the TSP a
commonly used lower bound is LP (c). Then finding a solution of objective value
at most ρLP (c) in polynomial time implies a ρ-approximation algorithm. The
theoretically best possible bound for ρ is the integrality gap α for the subtour
LP, which is the worst-case ratio between OPT (c) and LP (c) over all metric
cost functions c.

It is known that α ≤ 3
2 [19,20], however no example for which the ratio is

greater than 4
3 is known. In fact, a famous conjecture, often referred to as the 4

3
Conjecture, states the following:

Conjecture 1. The integrality gap for the subtour LP is at most 4
3 .

Well-known examples show that α is at least 4
3 . In almost thirty years, there

have been no improvements made for the upper bound of 3
2 or lower bound of

4
3 for the integrality gap for the subtour LP.

The definition of the integrality gap can be reformulated in terms of a con-
tainment relation between two polyhedra that do not depend on the objective
function and involve only a sparse subset of (less than 2n) edges, which is well-
known, but not always exploited. We will not only use it here, but it is the very
tool that we need.

Define a tour to be the edge-set of a spanning Eulerian (connected with
all degrees even) multi-subgraph of Kn. If none of the multiplicities can be
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decreased, then all multiplicities are at most two; however, there are some tech-
nical advantages to allowing higher multiplicities. Given a metric cost function,
a tour can always be shortcut to a Hamiltonian cycle of the same cost or less.

For any multi-set J ⊆ En, the incidence vector of J , denoted by χJ , is the
vector in R

En for which χJ
e is equal to the number of copies of edge e in J for

all e ∈ En.
Showing for some constant ρ ∈ N that ρ x is a convex combination of incidence

vectors of tours for each x ∈ Sn gives an upper bound of ρ on the integrality
gap for the subtour LP: it implies that for any cost function c ∈ R

En for which
cx = LP (c), at least one of the tours in the convex combination has cost at
most ρ (cx) = ρLP (c). If the costs are metric, this tour can be shortcut to a
TSP solution of cost at most ρLP (c), giving a ratio of OPT (c)/LP (c) ≤ ρ. The
essential part “(ii) implies (i)” of the following theorem asserts that the converse
is also true: if ρ is at least the integrality gap then ρSn := {y ∈ R

En : y =
ρx, x ∈ Sn} is a subset of the convex hull of incidence vectors of tours:

Theorem 1 [6]. Let Kn = (Vn, En) be the complete graph on n nodes and let
ρ ∈ R, ρ ≥ 1. The following statements are equivalent:

(i) For any weight function c : En → R+ : OPT (c) ≤ ρLP (c).
(ii) For any x ∈ Sn, ρx is in the convex hull of incidence vectors of tours.
(iii) For any vertex x of Sn, ρx is in the convex hull of incidence vectors of

tours.

So Conjecture 1 can also be reformulated as follows:

Conjecture 2. The polytope 4
3 Sn is a subset of the convex hull of the incidence

vectors of tours.

Given a vector x ∈ Sn, the support graph Gx = (Vn, Ex) of x is defined with
Ex = {e ∈ En : xe > 0}. We call a point x ∈ Sn

1
2 -integer if xe ∈ {0, 1

2 , 1} for all
e ∈ En. For such a vector we call the edges e ∈ En

1
2 -edges if xe = 1

2 and 1-edges
if xe = 1. Note that the 1-edges form a set of disjoint paths that we call 1-paths
of x, and the 1

2 -edges form a set of edge-disjoint cycles we call the 1
2 -cycles of x.

Cycles and paths are simple (without repetition of nodes) in this article.
For Conjecture 2, it seems that 1

2 -integer vertices play an important role (see
[1,5,14]). In fact it has been conjectured by Schalekamp et al. [14] that a subclass
of these 1

2 -integer vertices are the ones that give the biggest gap. Here we state
their conjecture more broadly:

Conjecture 3. The integrality gap for the subtour LP is reached on 1
2 -integer

vertices.

Very little progress has been made on the above conjectures, even though
they have been around for a long time and have been well-studied. For the
special case of graph-TSP an upper bound of 7

5 is known for the integrality
gap [17]. Conjecture 2 has been verified for the so-called triangle vertices x ∈ Sn

for which the values are 1
2 -integer, and the 1

2 -edges form triangles in the support
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graph [3]. The lower bound of 4
3 for the integrality gap is provided by triangle

vertices with just two triangles.
A concept first introduced by Carr and Ravi [5] (for the 2-edge-connected

subgraph problem) is that of a fundamental class, which is a class of points F in
the subtour elimination polytope with the following property: showing that ρ x is
in the convex hull of incidence vectors of tours for all vertices x ∈ F implies the
same holds for all vertices of the polytope, and thus implies that the integrality
gap for the subtour LP is at most ρ.

Two main classes of such vertices have been introduced, one by Carr and
Vempala [6], the other by Boyd and Carr [3]. In this paper we will focus on the
latter one, i.e. we define a Boyd-Carr point to be a point x ∈ Sn that satisfies
the following conditions:

(i) The support graph Gx of x is cubic and 3-edge connected.
(ii) In Gx, there is exactly one 1-edge incident to each node.
(iii) The fractional edges of Gx form disjoint 4-cycles.

A Carr-Vempala point is one that satisfies (i), (ii) and instead of (iii) the
fractional edges form a Hamiltonian cycle.

Despite their significance and simplicity, no effort has been deployed to
exploring new integrality gap bounds for these classes, and no improvement on
the general 3

2 upper bound on the integrality gap has been made for them, not
even for special cases. A natural first step in this endeavour is to try to improve
the general bounds for the special case of 1

2 -integer Boyd-Carr or Carr-Vempala
points.

In this paper we improve the upper bound for the integrality gap from 3
2

to 10
7 for 1

2 -integer Boyd-Carr points. In fact we prove this for a superclass of
these points. Replacing the 1-edges by paths of arbitrary length between their
two endpoints, we get all the 1

2 -integer vectors of Sn for which the 1
2 -edges form

disjoint 4-cycles, or squares in the support graph. We call these square points.
We also show that square points contain a subclass for which the integrality
gap is at least 4

3 . Note that this subclass is not in the class of 1
2 -integer vertices

conjectured by Schalekamp et al. [14] to give the biggest integrality ratio, which
makes the class of square points interesting with respect to this conjecture.

In the endeavour to find improved upper bounds on the integrality gap we
examine the structure of the support graphs of Boyd-Carr points, which we
call Boyd-Carr graphs. We show that they are all Hamiltonian, an important
ingredient of our bounding of their integrality gap. The proof uses a simple and
nice theorem by Kotzig [12] on Eulerian trails with forbidden transitions. An
Eulerian trail in a graph is a closed walk containing each of its edges exactly
once. Note that contrary to tours, it is more than just an edge-set.

Similarly, Carr-Vempala graphs are the support graphs of Carr-Vempala
points. These are by definition Hamiltonian.

In Sect. 2.1 we show a first, basic application of these ideas, where some parts
of the difficulties do not occur. We prove that all edges can be uniformly covered
6/7 times by tours in the support graphs of both fundamental classes. This is
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better than the conjectured general bound 8/9 that would follow for arbitrary
cubic graphs from Conjecture 2.

Another new way of using classical combinatorial optimization for the TSP
occurs in Sect. 2.2, where we use an application of Edmonds’ matroid intersection
theorem to write the optimum x of the subtour elimination polytope as the
convex hull of incidence vectors of “rainbow” spanning trees in edge-coloured
graphs. The idea of using spanning trees with special structures to get improved
results has recently been used successfully in [10] for graph-TSP, and in [11,18]
for a related problem, namely the metric s− t path TSP. However, note that we
obtain and use our trees in a completely different way.

Our main results concerning the integrality ratio of 1
2 -integer Boyd-Carr

points are proved in Sect. 3. We conclude that section by outlining a potential
strategy for using the Carr-Vempala points of [6] for proving the 4

3 Conjecture.

2 Polyhedral Preliminaries and Other Useful Tools

In this section we will discuss some useful and powerful tools that we will need
in the proof of our main result in Sect. 3. We begin with some preliminaries.

Given a graph G = (V,E) with a node in V labelled 1, a 1-tree is a subset F
of E such that |F ∩ δ(1)| = 2 and F\δ(1) forms a spanning tree on V \{1}. The
convex hull of the incidence vectors of 1-trees of G, which we will refer to as the
1-tree polytope of the graph G, is given by the following [13]:

{x ∈ R
E : x(δ(1)) = 2, x((E[U ])) ≤ |U | − 1 for all ∅ �= U ⊆ V \{1},

0 ≤ xe ≤ 1 for all e ∈ E, x(E) = |V |} . (5)

It is well-known that the 1-trees of a connected graph satisfy the basis axioms
of a matroid (see [13]).

Given G = (V,E) and T ⊆ V , |T | even, a T -join of G is a set J ⊆ E such
that T is the set of odd degree nodes of the graph (V, J). A cut C = δ(S) for
some S ⊂ V is called a T -cut if |S ∩ T | is odd. We say that a vector majorates
another if it is coordinatewise greater than or equal to it. The set of all vectors
x that majorate some vector y in the convex hull of incidence vectors of T -joins
of G is given by the following [9]:

{x ∈ R
E : x(C) ≥ 1for each T -cut C, xe ≥ 0 for al e ∈ E}. (6)

This is the T -join polyhedron of the graph G.
The following two results are well-known (see [19,20]), but we include the

proofs as they illustrate the methods we will use:

Lemma 1 [19,20]. If x ∈ Sn, then (i) it is a convex combination of incidence
vectors of 1-trees of Kn, and (ii) x/2 majorates a convex combination of inci-
dence vectors of T -joins of Kn for every T ⊆ Vn, |T | even.
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Proof. By using the Eq. (2) of the subtour LP, we see that x(En) = |Vn| and that
the inequalities (3) can be replaced by x(En[S]) ≤ |S| − 1, for all ∅ �= S � Vn.
Thus x ∈ Sn satisfies all of the constraints of the 1-tree polytope for Kn and
(i) of the lemma follows. To check (ii), note that x/2 satisfies the constraints of
the T -join polyhedron of Kn for all T ⊆ Vn, |T | even (in fact x(C)/2 ≥ 1 on
every cut C), that is, it majorates a convex combination of incidence vectors of
T -joins. ��
Theorem 2 [19,20]. If x ∈ Sn, 3

2x is in the convex hull of incidence vectors of
tours.

Proof. By (i) of Lemma 1, x is a convex combination of incidence vectors of
1-trees of Kn. Let F be any 1-tree of such a convex combination, and TF be
the set of odd degree nodes in the graph (Vn, F ). Then by (ii) of Lemma 1, x/2
majorates a convex combination of incidence vectors of TF -joins. So χF + x/2
majorates a convex combination of incidence vectors of tours, and taking the
average with the coefficients of the convex combination of 1-trees, we get that
x + x/2 majorates a convex combination of incidence vectors of tours. Since
adding 2 to the multiplicity of any edge in a tour results in another tour, it
follows that 3

2x is a convex combination of incidence vectors of tours. ��
The tools of the following two subsections are new for the TSP and appear

to be very useful.

2.1 Eulerian Trails with Forbidden Bitransitions

Let G = (V,E) be a connected 4-regular multigraph. For any node v ∈ V , a
bitransition (at v) means a partition of δ(v) into two pairs of edges. Clearly
every Eulerian trail of G uses exactly one bitransition at every node, meaning
the two disjoint pairs of consecutive edges of the trail at the node. There are 3
bitransitions at every node and the simple theorem below, which follows from
a nice result due to Kotzig [12], states that we can forbid one of these and still
have an allowed Eulerian trail. As we will show, this provides Hamiltonian cycles
containing all the 1-edges of square points.

Theorem 3 [12]. Let G = (V,E) be a 4-regular connected multigraph with a
forbidden bitransition for every v ∈ V . Then G has an Eulerian trail not using
the forbidden bitransition of any node.

Lemma 2. Let x be any square point, and let Gx = (Vn, Ex) be its support
graph. Then Gx has a Hamiltonian cycle H that contains all the 1-edges of Gx.

Proof. Shrinking all the 1/2-squares of Gx and replacing each path of 1-edges by
a single edge, we obtain a 4-regular connected multigraph G′ = (V ′, E′) whose
edges are precisely the 1-paths of Gx and whose nodes are precisely the squares
of Gx. To each contracted square we associate the forbidden bitransition consist-
ing of the pairs of 1-edges incident with the square in Gx which are diagonally
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opposite to each other, as shown in Fig. 1. By Theorem 3, there is an Eulerian
trail K of G′ that does not use these forbidden bitransitions. Consecutive edges
in K at each node in G′ are thus joined by a set of parallel edges in the corre-
sponding square in Gx, and by adding these edges to K and replacing the edges
in K with their corresponding 1-paths in Gx, we obtain the desired Hamiltonian
cycle for Gx. ��

Fig. 1. Shrinking a square in Gx to node u; forbidden: {(uv1, uv3), (uv2, uv4)}.

The exhibited connection of Eulerian graphs with forbidden bitransitions
sends us to a link on delta-matroids [2] with well-known optimization properties
that we wish to explore in a forthcoming work. We content ourselves in this
section by providing a simple first application of Lemma 2 which shows a basic
idea we will use in the proof of our main result in Sect. 3, without the additional
difficulty of the more refined application.

Given a graph G = (V,E) and a value k, we call y ∈ R
E|V | the everywhere k

vector for G if ye = k for all edges e ∈ E and ye = 0 for all the other edges in
the complete graph K|V |.

Theorem 4. If G = (V,E) is cubic, 3-edge-connected and Hamiltonian, so in
particular if it is a Boyd-Carr or Carr-Vempala graph, then the everywhere 6/7
vector for G is a convex combination of incidence vectors of tours.

Proof. Let H be a Hamiltonian cycle of G, and let M := E\H be the perfect
matching complementary to H. It can be easily seen that the point x ∈ R

E|V |

defined by xe = 1 if e ∈ M , xe = 1/2 if e ∈ H and xe = 0 otherwise is
in the subtour elimination polytope S|V |. By Theorem 2, 3

2x is then a convex
combination of incidence vectors of tours.

Now take the convex combination t := 3
7χH + 4

7
3
2x. Then for edges e ∈ M

we have te = 0 + 4
7
3
2 = 6

7 . For edges e ∈ H we have te = 3
7 + 4

7
3
2
1
2 = 6

7 , and
xe = 0 for all edges e not in G, finishing the proof. The additional statement
follows from the Hamiltonicity of the graphs (by Lemma 2 for Boyd-Carr, and
by definition for Carr-Vempala). ��
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Note that 6
7 < 8

9 , where 8
9 is the value one gets from Conjecture 2 applied to

the everywhere 2
3 vector for G, which is feasible for S|V |. However, the problem

of whether the everywhere 8
9 vector is a convex combination of incidence vectors

of tours remains open for general cubic 3-edge-connected graphs [16], while the
corresponding problem for the s − t path TSP has been solved [18].

2.2 Rainbow 1-trees

We now use matroid intersection to prove that not only is x is in the convex hull
of incidence vectors of 1-trees, but we can also require that these 1-trees satisfy
some additional useful properties.

Given a graph G = (V,E), let every edge of G be given a colour. We call a
1-tree F of G a rainbow 1-tree if every edge of F has a different colour. Rainbow
trees are discussed by Broersma and Li in [4], where they note they are the com-
mon independent sets of two matroids. Similarly, rainbow 1-trees are common
bases of two matroids, namely 1-trees, that we saw to be bases of a matroid (see
after (5)), and subsets of E containing exactly one edge of each colour, which
are bases of a partition matroid [15]. Luckily, 1

2 -integer points of x ∈ Sn will be
readily checked to be in the intersection of the convex hulls of each of these two
sets of matroid bases. A Corollary of Edmonds’ matroid intersection theorem [8]
then presents x as a convex combination of rainbow 1-trees:

Theorem 5. Let x ∈ Sn be 1
2 -integer, and let P be any partition of the 1

2 -edges
into pairs. Then x is in the convex hull of incidence vectors of 1-trees that each
contain exactly one edge from each pair in P.

Proof. Let Gx = (Vn, Ex) be the support graph of x. Consider the partition
matroid defined on Ex by the partition P ∪ {{e} : e ∈ Ex, e is a 1-edge}. By
Lemma 1, x is in the convex hull of incidence vectors of 1-trees in Ex; since
x(Q) = 1 for every class Q of the defined partition matroid, it is also in the
convex hull of its bases. Thus by [15, Corollary 41.12d], x is in the convex hull
of incidence vectors of the common bases of the two matroids. ��

3 Improved Bounds for 1/2-Integer Points

In this section we show that 10
7 x is a convex combination of incidence vectors of

tours for all square points x ∈ Sn, and thus for all 1
2 -integer Boyd-Carr points x

as well. We also analyze the possibility of a similar proof for Carr-Vempala points.
We begin by stating two properties which we will later prove to be sufficient to
guarantee this for any 1

2 -integer vector x in Sn:

(A) The support graph Gx of x has a Hamiltonian cycle H.
(B) Vector x is a convex combination of incidence vectors of 1-trees of Kn,

each containing exactly two edges in every cut of Gx consisting of four
1
2 -edges in H.
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We will use χH of (A) as part of the convex combination for 10
7 x, which is globally

good, since H has only n edges, but the 1
2 -edges of H have too high a value (equal

to 1), contributing too much in the convex combination. To compensate for this,
property (B) ensures that x is not only a convex combination of 1-trees, but these
1-trees are even for certain edge cuts δ(S), allowing us to use a value essentially
less than the x

2 = 1
4 for 1

2 edges in H for the corresponding T -join. The details
of how to ensure we still remain feasible for the T -join polyhedron overall will
be given in the proof of Theorem 6.

While condition (A) may look at first sight impossibly difficult to meet,
Lemma 2 shows that one can count on the bonus of the naturally arising proper-
ties: any square point x satisfies property (A), and the additional property stated
in this lemma together with the “rainbow 1-tree decomposition” of Theorem 5
will also imply (B) for square points. The reason we care about the somewhat
technical property (B) instead of its more natural consequences is future research:
in a new situation we may have to use the most general condition.

Lemma 3. Let x be any square point. Then x satisfies both (A) and (B).

Proof. Point x satisfies Property (A) by Lemma 2. Moreover, by the additional
statement in this lemma, H contains all the 1-edges in Gx: it follows that H
contains a perfect matching from each square of Gx.

Define P to be the partition of the set of 1
2 -edges of Gx into pairs whose

classes are the perfect matchings of squares. Then by Theorem 5, x is in the
convex hull of incidence vectors of 1-trees that contain exactly one edge from
each pair P ∈ P. Property (B) follows, since every cut that contains four 1

2 -edges
of H is partitioned by two classes P1, P2 ∈ P by the preceding first paragraph
of this proof, and both P1 and P2 are met by exactly one edge of each tree of
the just constructed convex combination. ��

Next we prove that properties (A) and (B) are sufficient to guarantee that
10
7 x is a convex combination of incidence vectors of tours for any 1

2 -integer point
of Sn. Recall that properties (A) and (B) are more general than what we need
for square points; the condition of the theorem we prove does not require that
the Hamiltonian cycle for property (A) contains the 1-edges of Gx, as Lemma 2
asserts for square points. However, we keep the generality of (A) and (B) to
remain open to eventual posterior demands of future research:

Theorem 6. Let x ∈ Sn be a 1
2 -integer point satisfying properties (A) and (B).

Then 10
7 x is in the convex hull of incidence vectors of tours.

Proof. Let H be the Hamiltonian cycle of (A) and let Gx = (Vn, Ex) be the
support graph of x. Let the 1-trees in the convex combination for property (B)
be Fi, i = 1, 2, ..., k, and for each tree Fi let TFi

be the set of odd degree nodes
in the graph (Vn, Fi). Consider the vector y ∈ R

En defined as follows:
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ye =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
6 if xe = 1

2 and e ∈ H,
1
3 if xe = 1

2 and e /∈ H,
1
2 if xe = 1 and e ∈ H,
2
3 if xe = 1 and e /∈ H,

0 if xe = 0.

Claim: Vector y is in the TFi
-join polyhedron for Kn for i = 1, . . . , k.

Let C be a TFi
-cut in Kn for some i ∈ {1, . . . , k}.

Case 1: Cut C contains a 1-edge of Gx. If C contains another 1-edge then y(C) ≥
1, as required. Otherwise it contains exactly one 1-edge. Since x(C) ≥ 2, and the
1
2 -edges in Gx form edge-disjoint cycles, C contains an even (non-zero) number of
1
2 -edges, thus |C∩Ex| is odd. Since |H ∩ C| is even and non-zero, at least one edge
e of C ∩Ex is not in H. If e is the single 1-edge in C, then y(C) ≥ 2

3 + 1
6 + 1

6 = 1.
If e is a 1

2 -edge, then y(C) ≥ 1
2 + 1

3 + 1
6 = 1.

Case 2: Cut C does not contain a 1-edge of Gx. Again using the facts that
x(C) ≥ 2 and the 1

2 -edges in Gx form edge-disjoint cycles, we have that C
contains an even number of 1

2 -edges, and |C ∩ Ex| ≥ 4. If |C ∩ Ex| ≥ 6, then
y(C) ≥ 6(16 ) = 1. Otherwise we have |C ∩ Ex| = 4 and |C ∩ H| = 2 or 4. If
|C ∩H| = 2, then y(C) = 2(16 )+2(13 ) = 1. If |C ∩H| = 4, then by property (B),
tree Fi has exactly two edges in C ∩ Ex (and thus in C as well), which means
that |C ∩ Fi| is even. Thus C is not a TFi

-cut, so y(C) ≥ 1 is not required. This
completes the proof of the claim.

Using the claim, it follows that χFi + y is in the convex hull of incidence
vectors of tours for all i = 1, . . . , k, and therefore x + y is in the convex hull of
incidence vectors of tours. Now z := 1

7χH + 6
7 (x + y) is also in the convex hull

of incidence vectors of tours, and z = 10
7 x is easy to check: indeed, the value of

χH
e + 6xe + 6ye (e ∈ Ex) is apparent from the definition of ye (above the claim):

this value is 5 if xe = 1
2 , and 10 if xe = 1. ��

Our main result is an immediate corollary of this theorem:

Theorem 7. Let x be a square point. Then 10
7 x is in the convex hull of incidence

vectors of tours. In particular, this holds if x is a 1
2 -integer Boyd-Carr point.

Proof. By Theorem 6 it is enough to make sure that x satisfies properties (A)
and (B), which is exactly the assertion of Lemma 3. ��

We can also show that square points are worst-case with respect to Conjecture
2, in that they have an integrality gap of at least 4

3 . Consider the subclass of
square points we call k-donuts, k ∈ Z, k ≥ 2, defined as follows: the support
graph Gx = (Vn, Ex) consists of k 1

2 -squares arranged in a circular donut fashion,
where the squares are joined by 1-paths, each of length k. In other words, Gx

consists of an outer cycle Cout and inner cycle Cin, both consisting of k paths of
k + 1 edges, the last of which is a 1

2 -edge, and the others are 1-edges. There are
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2k 1
2 -edges between the two cycles so that the 1

2 -edges form squares. In Fig. 2
the support graph of a 4-donut is shown. In the figure, dashed edges represent
1
2 -edges and solid edges represent 1-edges.

We define the cost of each edge in Ex to be 1, except for the 1
2 -edges in each

of Cout and Cin which are defined to have cost k (see the figure, where only
edges of cost k are labelled). The costs of other edges of Kn are defined by the
metric closure (cost of shortest paths in Gx). For these defined costs c(k), we have
OPT (c(k)) = 4k2 − 2k + 2 and LP (c(k)) = 3k2 + k, thus limk→∞

OPT (c(k))
LP (c(k))

= 4
3 .

Along with Theorem 7, this gives the following:

Corollary 1. The integrality gap for square points lies between 4
3 and 10

7 .

Fig. 2. Graph Gx for a k-donut x, k=4.

We finally discuss the structure of Carr-Vempala points.
Note that for the Boyd-Carr points that have been our focus, the trans-

formation used from general vertices x ∈ Sn to these Boyd-Carr points does
not completely preserve the denominators. In particular, 1

2 -integer vertices of
Sn get transformed into Boyd-Carr points x∗ with x∗

e values in {1, 1
2 , 3

4 , 1
4 , 0}.

However, for the Carr-Vempala points, general 1
2 -integer vertices of Sn lead to

1
2 -integer Carr-Vempala vertices. In fact we have the following theorem which,
if Conjecture 3 is true, would provide a nice approach for proving Conjecture 2,
since it is given for free that Carr-Vempala vertices satisfy property (A):

Theorem 8. If ρx is in the convex hull of incidence vetors of tours for each
1
2 -integer Carr-Vempala point x ∈ Sn, then ρx is in the convex hull of incidence
vectors of tours for every 1

2 -integer point x ∈ Sn.

In light of these results and conjectures it seems worthwhile to study further
“fundamental classes” and the role of 1

2 -integer points.

Acknowledgements. We are indebted to Michel Goemans for an email from his
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Takazawa and Anke van Zuylen for helpful discussions.
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Abstract. In this paper we initiate the study of the heterogeneous
capacitated k-center problem: we are given a metric space X = (F ∪C, d),
and a collection of capacities. The goal is to open each capacity at a
unique facility location in F , and also to assign clients to facilities so
that the number of clients assigned to any facility is at most the capac-
ity installed; the objective is then to minimize the maximum distance
between a client and its assigned facility. If all the capacities ci’s are iden-
tical, the problem becomes the well-studied uniform capacitated k-center
problem for which constant-factor approximations are known [7,22]. The
additional choice of determining which capacity should be installed in
which location makes our problem considerably different from this prob-
lem and the non-uniform generalizations studied thus far in literature.
In fact, one of our contributions is in relating the heterogeneous problem
to special-cases of the classical santa-claus problem. Using this connec-
tion, and by designing new algorithms for these special cases, we get the
following results for Heterogeneous Cap-k-Center.

• A quasi-polynomial time O(log n/ε)-approximation where every
capacity is violated by (1 + ε) factor.

• A polynomial time O(1)-approximation where every capacity is vio-
lated by an O(log n) factor.

We get improved results for the soft-capacities version where we can place
multiple facilities in the same location.

1 Introduction

The capacitated k-center problem is a classic optimization problem where a
finite metric space (X, d) needs to be partitioned into k clusters so that every
cluster has cardinality at most some specified value L, and the objective is to
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minimize the maximum intra-cluster distance. This problem was introduced by
Bar-Ilan et al. [7] and has many applications [26–28] such as resource allocation
in networks (e.g., where to place servers to minimize the total load and client
latency), vehicle routing, etc. The basic problem is homogeneous in the sizes of
the clusters, that is, it has the same cardinality constraint L for each cluster. In
certain applications however, a heterogeneous version of the problem where we
have different cardinality constraints for the clusters might be more applicable.
For example, consider the following problem: given a set of demands/clients
in a network, and a collection of heterogeneous machines/servers of different
capacities, where do we place the servers and how do we assign the clients to
servers so that machine capacities are respected and the maximum client-server
distance is minimized. Motivated by such applications, we study the worst-case
complexity of this heterogenous version in this paper1.

Definition 1 (The Heterogeneous Cap-k-Center Problem2). We are given a met-
ric space (X = F ∪ C, d) where C and F represent the clients and facility
locations. We are also given a collection of heterogeneous capacities: (k1, c1),
(k2, c2), . . . , (kP , cP ) with ki copies of capacity ci. The objective is to install these
capacities at unique locations F ′ ⊆ F , and find an assignment φ : C → F ′ of
clients to these locations, such that for any i ∈ F ′ the number of clients j with
φ(j) = i is at most the capacity installed at i, and maxj∈C d(j, φ(j)) is min-
imized. A weaker version, which we call Heterogeneous Cap-k-Center with soft
capacities, allows multiple capacities to be installed at the same location.

Note that when all cp = L and
∑

p kp = k, we get back the usual capaci-
tated k-center problem. The Heterogeneous Cap-k-Center problem is relevant in
many applications where the resources available are heterogenous. The machine
placement problem is one example which has applications in network schedul-
ing [20,30] and distributed databases [27,32]. Another example is that of vehicle
routing problems with fleets of different speeds [17]. A third relevant application
may be clustering; often clusters of equal sizes are undesirable [18] and explicitly
introducing heterogeneous constraints might lead to desirable clusters.

For the homogeneous (uniform capacities) problem, Bar-Ilan et al. [7] gave
a 10-approximation which was improved to a 6-factor approximation by Khuller
and Sussmann [22]. One cannot get a better than 2-approximation even for the
uncapacitated k-center problem [19]. Recently, some works [1,13] study the non-
uniform capacitated k-center problem and get constant-factor approximations:
in this problem, every facility location v ∈ F has a pre-determined capacity cv

if opened (and 0 otherwise), and the objective is again to minimize the maxi-
mum distance of a client to its assigned open facility while opening k facilities.

1 Due to the page limits, we have provided only a very high-level overview of our
algorithms and completely omitted the details and all the proofs. We recommend
reading the full version available online [12].

2 Technically, we should call our problem the Heterogeneous Capacitated k-Supplier
Problem since we can only open centers in F . However, we avoid making this dis-
tinction throughout this paper.
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We remark that the non-uniform version and our heterogeneous version seem
unrelated in the sense that none is a special case of the other, and moreover,
they present different sets of technical challenges to overcome.

1.1 Main Results

As mentioned above, both the uniform and the non-uniform capacitated k-center
problems described above admit O(1)-approximation. In contrast, we show using
a simple reduction that, assuming P �= NP , no non-trivial approximation exists
for even the soft-version of Heterogeneous Cap-k-Center, unless we violate the
capacities. This observation (a) highlights the technical differences between our
problem and these versions studied previously, and (b) motivates us to look at
bicriteria approximations: an (a, b)-bicriteria approximation approximates the
distance objective by a factor of a, while violating capacities by a factor of b.

Theorem 1. Fix an ε > 0. There exists an (O(log n/ε), (1 + ε))-bicriteria
approximation algorithm for the Heterogeneous Cap-k-Center problem running
in time C

Õ(log3 n)
ε for a constant Cε depending only on ε. For Heterogeneous

Cap-k-Center with soft capacities, there exists an (O(log n/ε), (1 + ε))-bicriteria
approximation algorithm running in time nO(1/ε).

We prove the above theorem by reducing the Heterogeneous Cap-k-Center
problems to a class of max-min allocation problems for which we design good
algorithms (details appear below). Our next set of results, which also forms one
of the main technical contributions of the paper, aims at reducing the logarithmic
factor in the approximation to the distance.

Theorem 2. There is a polynomial time (O(1), O(log n))-bicriteria approxima-
tion algorithm for the Heterogeneous Cap-k-Center problem.

Theorem 3. For any δ > 0, there is a polynomial time (Õ(1/δ), 2+δ)-bicriteria
approximation for Heterogeneous Cap-k-Center problem with soft capacities.

Connection to Non-uniform Max-Min Allocation Problems. One main
finding of this paper is the connection of Heterogeneous Cap-k-Center to the non-
uniform max-min allocation (also known as Santa Claus [6]) problem. We now
define these max-min allocation problems using scheduling parlance.

Definition 2 (Q||Cmin and Q|fi|Cmin). In the3 Q||Cmin problem, one is given
m machines with demands D1, . . . , Dm and n jobs with capacities c1, . . . , cn, and
the objective is to find an assignment of the jobs to machines satisfying each
demand (i.e., the total capacity of jobs assigned to machine i must be at least
Di). In the cardinality constrained non-uniform max-min allocation problem,
denoted as the Q|fi|Cmin problem, each machine further comes with a cardinality
constraint fi, and a feasible solution cannot allocate more than fi jobs to machine
i. The objective remains the same. An α-approximate feasible solution assigns
each machine i total capacity at least Di/α.
3 (Ab)using Graham’s notation.
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To show one side of the connection, we sketch how these problems arise as
special cases of Heterogeneous Cap-k-Center, even with soft capacities.

Remark 1 (Reduction from Q|fi|Cmin). Given an instance I of Q|fi|Cmin, con-
struct the instance of Heterogeneous Cap-k-Center as follows. The capacities
available to us are precisely the capacities of the jobs in I. The metric space is
divided into m groups (F1 ∪ C1), . . . , (Fm ∪ Cm) such that the distance between
nodes in any group is 0 and across groups is 1. Furthermore, for 1 ≤ i ≤ m,
|Fi| = fi and |Ci| = Di. Observe that the Heterogeneous Cap-k-Center instance
has a 0-cost, capacity-preserving solution iff I has a feasible assignment.

Indeed, the strong NP-hardness4 of Q|fi|Cmin and Q||Cmin shows that we
cannot get true approximations for Heterogeneous Cap-k-Center, with or with-
out soft-capacities. As mentioned before, our main technical contribution is in
showing a connection in the reverse direction as well. Indeed, our algorithms in
Theorems 1 to 3 use the following results we obtain for Q|fi|Cmin and Q||Cmin.

Theorem 4. There is a QPTAS for the Q|fi|Cmin problem.

Theorem 5. There is a poly-time logarithmic approximation algorithm for
Q|fi|Cmin.

Theorem 6. There is a simple greedy 2-approximation algorithm for Q||Cmin.

To our knowledge, Q|fi|Cmin has not been explicitly studied in the litera-
ture. However, in a straightforward manner one can reduce Q|fi|Cmin to non-
uniform, restricted-assignment max-min allocation problem (which we denote
as Q|restr|Cmin) where, instead of the cardinality constraint dictated by fi,
we restrict jobs to be assigned only to a subset of the machines.5 Clearly
Q|restr|Cmin is a special case of the general max-min allocation problem [10]
and therefore for any ε > 0, there are nO(1/ε)-time algorithms achieving O(nε)-
approximation. We do not know of any better approximations for Q|restr|Cmin.
The uniform version P |restr|Cmin where all demands are the same [6] has several
O(1)-approximations [3,15,29]. However all these algorithms use the configura-
tion LP, which unfortunately has an integrality gap of Ω(

√
n) for the non-uniform

version Q|restr|Cmin (see the full version for details).

1.2 Outline of Techniques

As mentioned before, we obtain our results by reducing Heterogeneous Cap-k-
Centerto the Q|fi|Cmin problem (complementing the from reduction discussed in

4 A simple reduction from 3-dimensional matching shows NP-hardness of Q|fi|Cmin

and Q||Cmin even when the demands and capacities are polynomially bounded.
5 The reduction proceeds as follows: for every machine i and job j, restrict j to be

assigned to i iff cj ≥ Di/2fi. It is not hard to see that a ρ-approximation for the
Q|restr|Cmin implies a 2ρ-approximation for the Q|fi|Cmin instance.
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Remark 1). We provide two reductions – the first incurs logarithmic approxima-
tion to the cost but uses black-box algorithms for Q|fi|Cmin, the second incurs
O(1)-approximation to the cost but uses “LP-based” algorithms for Q|fi|Cmin.

Warm-up: Weak Decompostion. Given a Heterogeneous Cap-k-Center
instance, suppose we guess the optimal objective value, which we can assume to
be 1 after scaling. Then, we construct a graph connecting client j with facility
location i iff d(i, j) ≤ 1. Then, starting at an arbitrary client and using a simple
region-growing technique (like those used for the graph cut problems [16,23]),
we can find a set of clients J1 of along with their neighboring facility locations
T1 = Γ (J1)6, such that: (a) the diameter of J1 is O(log n/ε), and (b) the number
of additional clients in the boundary |Γ (T1)\J1| is at most ε|J1|. Now, we sim-
ply delete these boundary clients and charge them to J1, incurring a capacity
violation of (1 + ε). Moreover, note that in an optimal solution, all the clients
in J1 must be assigned to facilities opened in T1. Using this fact, we define our
first demand in the Q|fi|Cmin instance by D1 = |J1| and f1 = |T1|. Repeating
this process, we get a collection of pairs {(Ji, Ti)} which naturally defines our
Q|fi|Cmin instance. It is then easy to show that an α-approximation to this
instance then implies an (O(log n/ε), α(1+ ε))-bicriteria algorithm for Heteroge-
neous Cap-k-Center.

LP-Based Strong Decompostion. To get O(1)-approximations, we resort to
linear programming relaxations. Indeed, one can write the natural LP relaxation
(L1)–(L6) described in Sect. 2 – the relaxation has yip variables which denote
opening a facility with capacity cp at i. Armed with a feasible solution to the LP,
we prove a stronger decomposition theorem (Theorem 7): we show that we can
delete a set of clients Cdel which can be charged to the remaining ones, and then
partition the remaining clients and facilities into two classes. One class T is the
so-called complete neighborhood sets of the form {(Ji, Ti)} with Γ (Ji) ⊆ Ti as
described above — we define our Q|fi|Cmin instance using these sets. The other
class S is of, what we call, roundable sets (Definition 3). Roundable sets have
“enough” y-mass such that installing as many capacities as prescribed by the
LP (rounded down to the nearest integer) supports the total demand incident
on the set (with a (1 + ε)-factor capacity violation). Moreover, the diameter of
any of these sets constructed is Õ(1/ε).

Technical Roadblock. It may seem that the above decomposition theorem
implies a reduction to the Q|fi|Cmin problem – the class T defines a Q|fi|Cmin

instance and we can use black-box algorithms, while the roundable sets in S are
taken care of almost by definition. The nub of the problem lies in the supply of
capacities to each of these classes. Indeed, the Q|fi|Cmin instance formed from
T must have a solution if the Heterogeneous Cap-k-Center problem is feasible,
but only if all the kp copies of capacity cp are available to it. However, we have
already used up some of these copies to take care of the S sets, and what we
actually have available for T is what the LP prescribes. In fact, this natural LP

6 For S ⊆ C ∪ F , Γ (S) denotes the neighboring vertices of S.
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relaxation (and the natural LP for Q|fi|Cmin) have arbitrarily bad integrality
gaps, even for bicriteria algorithms.

The Supply Polyhedra. We circumvent this issue in the following manner:
the above method would be fine if the supply of facility capacities prescribed by
the LP to the complete-neighborhood sets in T can approximately satisfy the
demands in the corresponding Q|fi|Cmin instance. This motivates us to define
supply polyhedra for Q|fi|Cmin. Informally, the supply polyhedron (Definition 6)
of a Q|fi|Cmin instance is supposed to capture all the vectors (s1, . . . , sn) such
that sj copies of capacity cj can approximately satisfy the demands of all the
machines. Conversely, any vector in this polyhedron should also be a feasible (or
approximately feasible) supply vector for this instance.

If such an object P existed, then we could strengthen our natural LP relax-
ation as follows. For every collection T of complete-neighborhood sets, we add
a constraint (described as (L7)) stating that the fractional capacity allocated
to the facilities in T should lie in the supply polyhedron of the corresponding
Q|fi|Cmin instance. Note that this LP has exponentially many constraints, and
it is not clear how to solve it. However, we can use the “round-and-cut” frame-
work (of inferring a separating hyperplane if our rounding fails, and then using
the ellipsoid algorithm overall) exploited earlier in many papers [2,8,9,14,24,25].

Using this decomposition, in Theorem 8, we effectively reduce Heterogeneous
Cap-k-Center to the task of designing good supply polyhedra for Q|fi|Cmin.

Supply Polyhedron for Q|fi|Cmin and Q||Cmin. Do good supply polyhedra
exist for Q|fi|Cmin or even the simpler Q||Cmin problem? On the positive side,
we can show that the natural assignment LP is a 2-approximate supply polyhe-
dron for Q||Cmin. For Q|fi|Cmin we describe a supply polyhedron based on the
configuration LP and prove that it is O(log D)-approximate (Theorem 9) where
D is the ratio of maximum and minimum demand. This along with our strong
decomposition proves Theorem 2. We note that this also implies a polynomial
time O(log D)-approximation algorithm for the Q|fi|Cmin problem, improving
considerably over the guarantees implied by the current santa-claus algorithms.
We complement this by showing (in the full version) that the integrality gap of
the configuration LP is Ω(log D/ log log D), using which we also show a lower-
bound on the approximation factor possible using supply polyhedra: any supply
polyhedra for Q|fi|Cmin must violate the demands by Ω(log D/ log log D). This
shows that our approach inherently needs to violate capacities by this factor.

1.3 Related Work

Capacitated Location problems have a rich literature although most of the work
has focused on versions where each facility arrives with a predetermined capacity
and the decision process is to whether open a facility or not. We have already
mentioned the state of the art for capacitated k-center problems. For the capac-
itated facility location problem a 5-approximation is known via local search [5],
while more recently an O(1)-approximate LP-based algorithm was proposed [2].
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All these are true approximation algorithms in that they do not violate capac-
ities. It is an outstanding open problem to obtain true approximations for the
capacitated k-median problem. The best known algorithm is the recent work of
Demirci and Li [14] who for any ε > 0 give a ploy(1/ε)-approximate algorithm
violating the capacities by (1 + ε)-factor. The technique of this algorithm and
its precursors [2,24,25] are similar to ours in that they follow the round-and-cut
strategy to exploit exponential sized linear programming relaxations.

The Q|fi|Cmin problem is a cardinality constrained max-min allocation prob-
lem. There has been some work in the scheduling literature on cardinality-
constrained min-max problem. When all the machines are identical, the prob-
lem is called the ki-partitioning problem [4]. When the number of machines is a
constant, Woeginger [34] gives a FPTAS for the problem, and the best known
result is a 1.5-approximation due to Kellerer and Kotov [21]. To the best of our
knowledge, the related machines case where machines have different speeds has
not been looked at. When the machines are unrelated, Saha and Srinivasan [31]
showed a 2-approximation; in fact this follows from the Shmoys-Tardos rounding
of the assignment LP [33].

As we have discussed above, the Heterogeneous Cap-k-Center problem behaves
rather differently than the usual homogeneous capacitated k-center problem.
This distinction in complexity when we have heterogeneity in resource is a curi-
ous phenomenon which deserves more attention. A previous work [11] of the
first two authors (with P. Goyal) looked at the (uncapacitated) k-center prob-
lem where the heterogeneity was in the radius of the balls covering the metric
space. As in our work, even for that problem one needs to resort to bicriteria
algorithms where the two criteria are cost and number of centers opened. That
paper gives an (O(1), O(1))-bicriteria approximation algorithm. In contrast, we
do not wish to violate the number of capacities available at all (in fact, the prob-
lem is considerably easier if we are allowed to do so – we do not expand on this
any further).

2 Preliminaries

Given a Heterogeneous Cap-k-Center instance, we start by guessing OPT. We
either prove OPT is infeasible, or find an (a, b)-bicriteria approximate allocation
of clients to facilities. We define the bipartite graph G = (F ∪ C,E) where
(i, j) ∈ E iff d(i, j) ≤ OPT. If OPT is feasible, then the following assignment LP
(L1)–(L6) must have a feasible solution. In this LP, we have opening variables
yip for every i ∈ F, p ∈ [P ] indicating whether we open a facility with capacity
cp at location i. Recall that the capacities available to us are c1, c2, . . . , cP – a
facility with capacity cp installed on it will be referred to as a type p facility.
We have connection variables xijp indicating the fraction to which client j ∈ C
connects to a facility at location i where a type p facility has been opened. We
force xijp = 0 for all pairs i, j and type p such that d(i, j) > OPT.
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∀j ∈ C,
∑

i∈F

∑
p∈[P ] xijp ≥ 1 (L1)

∀i ∈ F, p ∈ [P ],
∑

j∈C xijp ≤ cpyip (L2)

∀p ∈ [P ],
∑

i∈F yip ≤ kp (L3)

∀i ∈ F, j ∈ C, p ∈ [P ], xijp ≤ yip (L4)

∀i ∈ F,
∑

p∈[P ] yip ≤ 1 (L5)

∀i ∈ F, j ∈ C, p ∈ [P ], xijp, yip ≥ 0 (L6)

We say a solution (x, y) is (a, b)-feasible if it satisfies (L1), (L3)–(L6), and (L2)
with the RHS replaced by bcpy

int
ip , and xijp > 0 only if d(i, j) ≤ a · OPT.

Claim. Given an (a, b)-feasible solution (x, yint) where yint
ip ∈ {0, 1}, we can get

an (a, b)-approximate solution to the Heterogeneous Cap-k-Center problem.

We remark that as it is, the LP has an unbounded integrality gap for Het-
erogeneous Cap-k-Center, and indeed, the gap instances also happen to be of the
Q|fi|Cmin variety. So we strengthen it by adding some additional constraints
which we explain later. However, since our strong decomposition theorem merely
uses these yip and xijp values, we present that first.

Definition 3 (Roundable Sets). A set of facilities S ⊆ F is said to be (a, b)-
roundable w.r.t (x, y) if

(a) diamG(S) ≤ a
(b) there exists a rounding yint

ip ∈ {0, 1} for all i ∈ S, p ∈ [P ] such that
1.

∑
q≥p

∑
i∈S yint

iq ≤ �
∑

q≥p

∑
i∈S yiq� for all p, and

2.
∑

j∈C

∑
i∈S,p∈[P ] xijp ≤ b ·

∑
i∈S

∑
p∈[P ] cpy

int
ip

So if we can partition the facilities into roundable sets with reasonable parame-
ters, we would be done. It turns out that sets which are not roundable have a
non-expanding structure, and indeed we define our Q|fi|Cmin instance over such
sets. The following definition comes handy in this case.

Definition 4 (Complete Neighborhood Sets). A subset T ⊆ F of facili-
ties is called a complete neighborhood if there exist clients J ⊆ C such that
Γ (J) ⊆ T . In this case J is said to be responsible for T . Additionally, a com-
plete neighborhood T is said to be an α-complete neighborhood if diam(T ) ≤ α.

If we find a complete neighborhood T of facilities with a set J of clients
responsible for it, then we know that the optimal solution must satisfy all the
demand in J by suitably opening facilities of sufficient capacity in T . Thus,
if we can partition the entire instance into a collection T = (T1, . . . , Tm) of
disjoint α-complete neighborhood sets with Ji responsible for Ti, we can define an
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instance I of Q|fi|Cmin with m machines with demands Di = |Ji| and cardinality
constraint fi = |Ti|, and there are ni jobs of capacities ci for 1 ≤ i ≤ P .

Our next definition is that of (τ, ρ)-deletable clients that can be removed from
the instance since they can be “ρ-charged” to the remaining clients that are at
most τ -away. In other words, such clients (with constant values of τ and ρ) can
be safely removed at the expense of violating capacities and increasing objective
value by small factors.

Definition 5 (Deletable Clients). A subset Cdel ⊆ C of clients is (τ, ρ)-
deletable if there exists a mapping φj,j′ ∈ [0, 1] for j ∈ Cdel and j′ ∈ C \ Cdel

satisfying (a)
∑

j′∈C\Cdel
φj,j′ = 1 for all j ∈ Cdel, and (b)

∑
j∈Cdel

φj,j′ ≤ ρ for
all j′ ∈ C\Cdel. Furthermore, φj,j′ > 0 only if d(j, j′) ≤ τ · OPT.
We now state our decomposition result.

Theorem 7 (Decomposition Theorem). Given a feasible solution (x, y) to
LP(L1)–(L6), and δ > 0, there is a polynomial time algorithm which finds a
solution x satisfying (L2) and (L4), and a decomposition as follows.

1. The facility set F is partitioned into two families S = (S1, S2, . . . , SK) and
T = (T1, T2, . . . , TL) of mutually disjoint subsets. The client set C is par-
titioned into three disjoint subsets C = Cdel ∪ Cblack ∪ Cblue where Cdel is a
(Õ(1/δ), δ)-deletable subset.

2. Each Sk ∈ S is (Õ(1/δ), (1 + δ))-roundable with respect to (x, y), and more-
over, each client in Cblue satisfies

∑
i∈S,p xijp ≥ 1 − δ

100 .
3. Each T� is a Õ(1/δ)-complete neighborhood with a corresponding set J� of

clients responsible for it, and Cblack = ∪L
�=1J�.

In general, our decomposition theorem only ensures that we can partition the
instance into sets which are either roundable or are complete neighborhoods
(after removing the deletable clients), and the crux of the rounding algorithm
lies in combining the two cases while meeting the ki bounds for all capacities.

Our final ingredient is that of supply polyhedra. Recall that an instance
of Q|fi|Cmin has m machines M with demands D1, . . . , Dm and cardinality
constraints f1, . . . , fm, and n jobs J with capacities c1, . . . , cn respectively. Now,
we generalize this in the following manner: A supply vector (s1, . . . , sn) where
each sj is a non-negative integer is called feasible for this instance if the ensemble
formed by sj copies of jobs of capacity cj can satisfy all the demands. The supply
polyhedra then desires to capture these feasible supply vectors.

Definition 6 (Supply Polyhedron). Given an instance I for a max-min allo-
cation problem, a polyhedron P(I) is called an α-approximate supply polyhedron
if (a) all feasible supply vectors lie in P(I), and (b) given any non-negative
integer vector (s1, . . . , sn) ∈ P(I) there exists an assignment of the sj jobs of
capacity cj to the machines such that machine i receives capacity ≥ Di/α.

Ideally, we would like exact supply polyhedra, and one choice would be
the convex hull of all the feasible supply vectors; indeed this is the tight-
est polytope satisfying condition (a). Unfortunately, there are instances of
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Q|fi|Cmin where the convex hull contains infeasible integer points for which
α = Θ(log n/ log log n).

3 Heterogeneous Cap-k-Center via Supply Polyhedra

In this section, we prove the following theorem.

Theorem 8. Suppose there exists β-approximate supply polyhedra for all
instances of Q|fi|Cmin (resp., Q||Cmin) which have γ-approximate separation ora-
cles. Then for any δ ∈ (0, 1), there is an

(
Õ(1/δ), γβ(1 + 5δ)

)
-bicriteria approx-

imation algorithm for Heterogeneous Cap-k-Center (resp., with soft capacities).

Our results for Heterogeneous Cap-k-Center follow from Theorem 8 and results
about supply polyhedra. For example, Theorem2 follows from Theorem 8 (using
δ = 0.5, say) and Theorem 9, and also noting that Dmax/Dmin ≤ n in our
reduction. The proof of Theorem8 is based on the decomposition theorem.

Proof (Proof Sketch of Theorem 8). Let us first describe an approach which
fails. Let (x, y) be a feasible solution to LP (L1)–(L6), and apply Theorem7.
Although the sets in S by definition are roundable which takes care of the
clients in Cblue, the issue arises in assigning clients of Cblack. In particular,
yT

p :=
∑

i∈T yip for all 1 ≤ p ≤ P which indicates the “supply” of capacity
cp available for the Cblack clients. However, this may not be enough for serving
all these clients (even with violation). That is, the vector yT may not lie in the
(approximate) supply polyhedra of the Q|fi|Cmin instance defined by T . That
we fail is not surprising; after all, we have so far only used the natural LP which
has a bad integrality gap. To resolve this issue, we strengthen the LP by explic-
itly requiring yT to be in the supply polyhedra. Since we do not know T before
solving the LP (after all our LP rounding generated it), we enforce this for all
collections of complete-neighborhood sets. More precisely, for T := (T1, . . . , TL)
of L disjoint complete neighborhood sets, let IT denote the associated Q|fi|Cmin

demands.

∀T := (T1, . . . , TL) disjoint neighborhood subsets, yT ∈ P(IT ) (L7)

Note that this is a feasible constraint to add to LP (L1)–(L6). In the OPT solu-
tion, for any T there must be enough supply dedicated for the clients responsible
for these complete neighborhood sets. We don’t know how (and don’t expect) to
check feasibility of (L7) for all collections T . However, we can still run ellipsoid
method using the “round-and-cut” framework of [8,9,24,25]. To begin with, we
start with the LP (L1)–(L6) and obtain feasible solution (x, y). Subsequently, we
apply the decomposition Theorem 7 to obtain the collection T = (T1, . . . , TL).
We then check if yT ∈ P(IT ) or not. Since we have a γ-approximate separa-
tion oracle for P(IT ), we are either guaranteed that yT ∈ P(I ′

T ) where the �th

demand is now D�/γ; or we get a hyperplane separating yT from P(IT ) which
also gives us a hyperplane separating y from LP (L1)–(L7). This can be fed to
the ellipsoid algorithm to obtain a new (x, y) and the above process is repeated.
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When this process stops, we will have a solution (x, y) such that the supply
{yT

p } lies in the supply polyhedra P(IT ). So our overall algorithm is to simply
round the roundable sets (by rounding down), and solve the instance IT with
the supply vector {yT

p } using a suitable Q|fi|Cmin algorithm.

We end the main body by noting that the configuration LP relaxation is in
fact nearly the best possible supply polyhedra for Q|fi|Cmin.

Theorem 9. For any instance I of Q|fi|Cmin, the natural configuration LP
for I is an O(log D)-approximate supply polyhedron with (1 + ε)-approximate
separation oracle for any ε > 0, where D := Dmax/Dmin. Moreover, there exists
no supply polyhedra with approximation o(log D/ log log D).

4 Conclusion

In this paper we introduced and studied the Heterogeneous Cap-k-Center prob-
lem, and highlighted its connection to an interesting special case of the max-
min allocation problems, namely Q|fi|Cmin. In our main result, we showed,
using a decomposition theorem and the notion of supply polyhedra, a log-
arithmic approximation for Q|fi|Cmin, using which we showed a bicrite-
ria (O(1), O(log n))-approximation for Heterogeneous Cap-k-Center. We believe
designing polynomial-time O(1)-approximations for Q|fi|Cmin and bicriteria
(O(1), O(1)) algorithms for Heterogeneous Cap-k-Center are very interesting open
problems.
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tated network design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 78–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20807-2 7

10. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fair-
ness. In: 50th Annual IEEE FOCS 2009, Atlanta, Georgia, USA, 25–27 October
2009, pp. 107–116 (2009)

11. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
In: 43rd ICALP 2016, pp. 67:1–67:15 (2016)

12. Chakrabarty, D., Krishnaswamy, R., Kumar, A.: The heterogeneous capacitated
k-center problem. CoRR, abs/1611.07414 (2016)

13. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-
uniform hard capacities. In: 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012,
pp. 273–282 (2012)

14. Demirci, H.G., Li, S.: Constant approximation for capacitated k-median with
(1+epsilon)-capacity violation. In: 43rd ICALP 2016, pp. 73:1–73:14 (2016)

15. Feige, U.: On allocations that maximize fairness. In: Proceedings of the Nineteenth
Annual ACM-SIAM SODA 2008, pp. 287–293 (2008)

16. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

17. Gørtz, I.L., Molinaro, M., Nagarajan, V., Ravi, R.: Capacitated vehicle routing
with nonuniform speeds. Math. Oper. Res. 41(1), 318–331 (2016)

18. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large
databases. Inf. Syst. 26(1), 35–58 (2001)

19. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

20. Im, S., Moseley, B.: Scheduling in bandwidth constrained tree networks. In: Pro-
ceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2015, Portland, OR, USA, 13–15 June 2015, pp. 171–180 (2015)

21. Kellerer, H., Kotov, V.: A 3/2-approximation algorithm for 3/2-partitioning. Oper.
Res. Lett. 39(5), 359–362 (2011)

22. Khuller, S., Sussmann, Y.J.: The capacitated K-center problem. SIAM J. Discrete
Math. 13(3), 403–418 (2000)

23. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

24. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. In:
Proceedings of the Twenty-Sixth Annual ACM-SIAM SODA 2015, pp. 696–707
(2015)

25. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp. 786–796 (2016)

26. Lupton, R., Maley, F.M., Young, N.E.: Data collection for the sloan digital sky
survey - a network-flow heuristic. J. Algorithms 27(2), 339–356 (1998)

27. Morgan, H.L., Levin, K.D.: Optimal program and data locations in computer net-
works. Commun. ACM 20(5), 315–322 (1977)

28. Murthy, K., Kam, J.B., Krishnamoorthy, M.S.: An approximation algorithm to the
file allocation problem in computer networks. In: PODS (1983)
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Abstract. Correlation Clustering is an elegant model that captures fun-
damental graph cut problems such as Min s − tCut, Multiway Cut, and
Multicut, extensively studied in combinatorial optimization. Here, we are
given a graph with edges labeled + or − and the goal is to produce a
clustering that agrees with the labels as much as possible: + edges within
clusters and − edges across clusters. The classical approach towards Cor-
relation Clustering (and other graph cut problems) is to optimize a global
objective. We depart from this and study local objectives: minimizing the
maximum number of disagreements for edges incident on a single node,
and the analogous max min agreements objective. This naturally gives
rise to a family of basic min-max graph cut problems. A prototypical rep-
resentative is Min Max s − t Cut: find an s − t cut minimizing the largest
number of cut edges incident on any node. We present the following
results: (1) an O(

√
n)-approximation for the problem of minimizing the

maximum total weight of disagreement edges incident on any node (thus
providing the first known approximation for the above family of min-max
graph cut problems), (2) a remarkably simple 7-approximation for mini-
mizing local disagreements in complete graphs (improving upon the pre-
vious best known approximation of 48), and (3) a 1/(2+ε)-approximation
for maximizing the minimum total weight of agreement edges incident on
any node, hence improving upon the 1/(4+ε)-approximation that follows
from the study of approximate pure Nash equilibria in cut and party
affiliation games.

Keywords: Approximation algorithms · Graph cuts · Correlation clus-
tering · Linear programming

1 Introduction

Graph cuts are extensively studied in combinatorial optimization, including fun-
damental problems such as Min s − tCut, Multiway Cut, and Multicut. Typically,
given an undirected graph G = (V,E) equipped with non-negative edge weights
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c : E → R+ the goal is to find a constrained partition S = {S1, . . . , S�} of V
minimizing the total weight of edges crossing between different clusters of S. e.g.,
in Min s − tCut, S has two clusters, one containing s and the other containing t.
Similarly, in Multiway Cut, S consists of k clusters each containing exactly one
of k given special vertices t1, . . . , tk. In Multicut, the clusters of S must separate
k given pairs of special vertices {si, ti}k

i=1.
The elegant model of Correlation Clustering captures all of the above funda-

mental graph cut problems, and was first introduced by Bansal et al. [5] more
than a decade ago. In Correlation Clustering, we are given an undirected graph
G = (V,E) equipped with non-negative edge weights c : E → R+. Additionally,
E is partitioned into E+ and E−, where edges in E+ (E−) are considered to be
labeled as + (−). The goal is to find a partition of V into an arbitrary number
of clusters S = {S1, . . . , S�} that agrees with the edges’ labeling as much as
possible: the endpoints of + edges are supposed to be placed in the same cluster
and endpoints of − edges in different clusters. Typically, the objective is to find
a clustering that minimizes the total weight of misclassified edges. This models,
e.g., Min s − tCut, since one can label all edges in G with +, and add (s, t) to E
with a label of − and set its weight to cs,t = ∞ (Multiway Cut and Multicut are
modeled in a similar manner).

Correlation Clustering has been studied extensively for more than a decade
[1,2,9,10,13,26]. In addition to the simplicity and elegance of the model, its
study is also motivated by a wide range of practical applications: image segmen-
tation [26], clustering gene expression patterns [3,7], cross-lingual link detection
[25], and the aggregation of inconsistent information [15], to name a few (refer
to the survey [26] and the references therein for additional details).

Departing from the classical global objective approach towards Correlation
Clustering, we consider a broader class of objectives that allow us to bound
the number of misclassified edges incident on any node (or alternatively edges
classified correctly). We refer to this class as Correlation Clustering with local
guarantees. First introduced by Puleo and Milenkovic [20], Correlation Clustering
with local guarantees naturally arises in settings such as community detection
without antagonists, i.e., objects that are inconsistent with large parts of their
community, and has found applications in diverse areas, e.g., recommender sys-
tems, bioinformatics, and social sciences [11,18,20,24].

Local Minimization of Disagreements and Graph Cuts. A prototypical
example when considering minimization of disagreements with local guarantees
is the Min Max Disagreements problem, whose goal is to find a clustering that
minimizes the maximum total weight of misclassified edges incident on any node.

Formally, given a partition S = {S1, . . . , S�} of V , for u ∈ Si, define:

disagreeS(u) �
∑

v/∈Si:(u,v)∈E+

cu,v +
∑

v∈Si:(u,v)∈E−
cu,v .

The objective of Min Max Disagreements is: minS maxu∈V {disagreeS(u)}. This
is NP-hard even on complete unweighted graphs and approximations are known
for only a few special cases [20]. No approximation is known for general graphs.
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Just as minimization of total disagreements in Correlation Clustering models
fundamental graph cut problems, Min Max Disagreements gives rise to a variety
of basic min-max graph cut problems. A natural problem here is Min Max s − t
Cut: Its input is identical to that of Min s − tCut, however its objective is to
find an s − t cut (S, S) minimizing the total weight of cut edges incident on any
node: minS⊆V :s∈S,t/∈S maxu∈V {∑

v:(u,v)∈δ(S) cu,v}.1 Despite the fact that Min
Max s − t Cut is a natural graph cut problem, no approximation is known for
it. Min Max Disagreements also gives rise to Min Max Multiway Cut and Min Max
Multicut, defined similarly; no approximation is known for these. One of our
goals is to highlight this family of min-max graph cut problems which we believe
deserve further study. Other graph cut problems were studied from the min-max
perspective, e.g., [6,22]. However, the goal there is to find a constrained partition
that minimizes the total weight of cut edges incident on any cluster (as opposed
to incident on any node).

Min Max Disagreements is a special case of the more general Min Local Dis-
agreements problem. Given a clustering S, consider the vector of all disagreement
values disagreeS(V ) ∈ RV

+, where (disagreeS(V ))u = disagreeS(u) ∀u ∈ V . The
objective of Min Local Disagreements is to find a partition S that minimizes
f(disagreeS(V )) for a given function f . For example, if f is the max function Min
Local Disagreements reduces to Min Max Disagreements, and if f is the summation
function Min Local Disagreements reduces to the classic objective of minimizing
total disagreements.

Local Maximization of Agreements. Another natural objective of Correla-
tion Clustering is that of maximizing the total weight of edges correctly clas-
sified [5,23]. A prototypical example for local guarantees is Max Min Agree-
ments, i.e.finding a clustering that maximizes the minimum total weight of
correctly classified edges incident on any node. Formally, given a partition
S = {S1, . . . , S�} of V , for u ∈ Si, define:

agreeS(u) �
∑

v∈Si:(u,v)∈E+

cu,v +
∑

v/∈Si:(u,v)∈E−
cu,v .

The objective of Max Min Agreements is: maxS minu∈V {agreeS(u)}.
This is a special case of the more general Max Local Agreements problem.

Given a clustering S, consider the vector of all agreement values agreeS(V ) ∈
RV

+, where (agreeS(V ))u = agreeS(u) ∀u ∈ V . The objective of Max Local
Agreements is to find a partition S that maximizes g(agreeS(V )) for a given
function g, where, g is required to satisfy the following two conditions: (1) for
any x,y ∈ RV

+ if x ≤ y then g(x) ≤ g(y) (monotonicity), and (2) g(αx) ≥ αg(x)
for any α ≥ 0 and x ∈ RV

+ (reverse scaling). Note that g is not required to be
concave. For example, if g is the min function Max Local Agreements reduces to
Max Min Agreements, and if g is the summation function Max Local Agreements
reduces to the classic objective of maximizing total agreements.

Max Local Agreements is closely related to the computation of local optima
for Max Cut, and the computation of pure Nash equilibria in cut and party

1 δ(S) denotes the collection of edges crossing the cut (S, S).
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affiliation games [4,8,12,14,21] (a well studied special class of potential games
[19]). In the setting of party affiliation games, each node of G is a player that
can choose one of two sides of a cut. The player’s payoff is the total weight of
edges incident on it that are classified correctly. It is well known that such games
admit a pure Nash equilibria via the best response dynamics (also known as Nash
dynamics), and that each such pure Nash equilibrium is a (1/2)-approximation
for Max Local Agreements. Unfortunately, in general the computation of a pure
Nash equilibria in cut and party affiliation games is PLS-complete [17], and thus
it is widely believed no polynomial time algorithm exists for solving this task.
Nonetheless, one can apply the algorithm of Bhalgat et al. [8] for finding an
approximate pure Nash equilibrium and obtain a 1/(4+ε)-approximation for Max
Local Agreements (for any constant ε > 0). This approximation is also the best
known for the special case of Max Min Agreements.

Our Results. Focusing first on Min Max Disagreements on general graphs we
prove that both the natural LP and SDP relaxations admit a large integral-
ity gap of n/2. Nonetheless, we present an O(

√
n)-approximation for Min Max

Disagreements, bypassing the above integrality gaps.

Theorem 1. The natural LP and SDP relaxations for Min Max Disagreements
have an integrality gap of n/2.

Theorem 2. Min Max Disagreements admits an O(
√

n)-approximation for gen-
eral weighted graphs.

Since Min Max s−t Cut, along with Min Max Multiway Cut and Min Max Multicut,
are a special case of Min Max Disagreements, Theorem 2 applies to them as well,
thus providing the first known approximation for this family of cut problems.2

When considering the more general Min Local Disagreements problem, we
present a remarkably simple approach that achieves an improved approximation
of 7 for both complete graphs and complete bipartite graphs (where disagree-
ments are measured w.r.t one side only). This improves upon and simplifies [20]
who presented an approximation of 48 for the former and 10 for the latter.

Theorem 3. Min Local Disagreements admits a 7-approximation for complete
graphs.
where f is required to satisfy the following three conditions: (1) for any x,y ∈ RV

+

if x ≤ y then f(x) ≤ f(y) (monotonicity), (2) f(αx) ≤ αf(x) for any α ≥ 0
and x ∈ RV

+ (scaling), and (3) f is convex.

Theorem 4. Min Local Disagreements admits a 7-approximation for complete
bipartite graphs where disagreements are measured w.r.t. one side of the graph.
where f is required to satisfy the following three conditions: (1) for any x,y ∈ RV

+

if x ≤ y then f(x) ≤ f(y) (monotonicity), (2) f(αx) ≤ αf(x) for any α ≥ 0
and x ∈ RV

+ (scaling), and (3) f is convex.

2 Theorem 1 can be easily adapted to apply also for Min Max s − t Cut, Min Max
Multiway Cut, and Min Max Multicut, resulting in a gap of (n−1)/2.
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Focusing on local maximization of agreements, we present a 1/(2+ε) approx-
imation for Max Min Agreements without any assumption on the edge weights.
This improves upon the previous known 1/(4+ε)-approximation that follows from
the computation of approximate pure Nash equilibria in party affiliation games
[8]. As before, we show that both the natural LP and SDP relaxations for Max
Min Agreements have a large integrality gap of n

2(n−1) .

Theorem 5. For any ε > 0, Max Min Agreements admits a 1/(2+ε)-
approximation for general weighted graphs, where the running time of the algo-
rithm is poly(n, 1/ε).

Theorem 6. The natural LP and SDP relaxations for Max Min Agreements have
an integrality gap of n

2(n−1) .

Our main algorithmic results are summarized in Table 1.

Table 1. Results for Correlation Clustering with local guarantees.

Problem Input graph Approximation

This work Previous work

Min Local Disagreements Complete 7 48 [20]

Complete bipartite (one sided) 7 10 [20]

Min Max Disagreements General weighted O(
√
n) −

Min Max s − t Cut General weighted O(
√
n) −

Min Max Multiway Cut

Min Max Multicut

Max Min Agreements General weighted 1/(2+ε) 1/(4+ε) [8]

Approach and Techniques. The non-linear nature of Correlation Clustering
with local guarantees makes problems in this family much harder to approximate
than Correlation Clustering with classic global objectives.

Firstly, LP and SDP relaxations are not always useful when considering local
objectives. For example, the natural LP relaxation for the global objective of
minimizing total disagreements on general graphs has a bounded integrality gap
of O(log n) [9,13,16]. However, we prove that for its local objective counterpart,
i.e., Min Max Disagreements, both the natural LP and SDP relaxations have
a huge integrality gap of n/2 (Theorem 1). To overcome this our algorithm for
Min Max Disagreements on general weighted graphs uses a combination of the LP
lower bound and a combinatorial bound. Even though each of these bounds on its
own is bad, we prove that their combination suffices to obtain an approximation
of O(

√
n), thus bypassing the huge integrality gaps of n/2.

Secondly, randomization is inherently difficult to use for local guarantees,
while many of the algorithms for minimizing total disagreements, e.g., [1,2,10],
as well as maximizing total agreements, e.g., [23], are all randomized in nature.
The reason is that a bound on the expected weight of misclassified edges incident
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on any node does not translate to a bound on the maximum of this quantity
over all nodes (similarly the expected weight of correctly classified edges incident
on any node does not translate to a bound on the minimum of this quantity
over all nodes). To overcome this difficulty, all the algorithms we present are
deterministic, e.g., for Min Local Disagreements we propose a new remarkably
simple method of clustering that greedily chooses a center node s∗ and cuts a
sphere of a fixed and predefined radius around s∗, and for Max Min Agreements
we present a new non-oblivious local search algorithm that runs on a graph with
modified edge weights and circumvents the need to compute approximate pure
Nash equilibria in party affiliation games.

Paper Organization. Section 2 contains the improved approximations for Min
Max Disagreements on general weighted graphs and for Min Local Disagreements
on complete and complete bipartite graphs (Theorems 2, 3, and 4), along with the
integrality gaps of the natural LP and SDP relaxations (Theorem1). Section 3
contains the improved approximation for Max Min Agreements as well as the
integrality gaps of the natural LP and SDP relaxations (Theorems 5 and 6).

2 Local Minimization of Disagreements and Graph Cuts

We consider the natural convex programming relaxation for Min Local Disagree-
ments. The relaxation imposes a metric d on the vertices of the graph. For each
node u ∈ V we have a variable D(u) denoting the total fractional disagreement
of edges incident on u. Additionally, we denote by D ∈ RV

+ the vector of all
D(u) variables. Note that the relaxation is solvable in polynomial time since f
is convex.3

min f (D) (1)
∑

v:(u,v)∈E+

cu,vd (u, v) +
∑

v:(u,v)∈E−
cu,v (1 − d (u, v)) = D(u) ∀u ∈ V

d(u, v) + d(v, w) ≥ d(u,w) ∀u, v, w ∈ V

D(u) ≥ 0, 0 ≤ d(u, v) ≤ 1 ∀u, v ∈ V

For the special case of Min Max Disagreements, i.e., f is the max function, (1)
can be written as an LP. The proof of Theorem1, which states that even for
the special case of Min Max Disagreements the above natural LP and in addition
the natural SDP both have a large integrality gap of n/2, appears in the full
version of this paper. We note that Theorem 1 also applies to Min Max s− t Cut,
a further special case of Min Max Disagreements.

2.1 Min Max Disagreements on General Weighted Graphs

Our algorithm for Min Max Disagreements on general weighted graphs cannot
rely solely on the the lower bound of the LP relaxation, since it admits an inte-
grality gap of n/2 (Theorem 1). Thus, a different lower bound must be used.
3 The convexity of f is used only to show that relaxation (1) can be solved, and it is

not required in the rounding process.
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Let cmax be the maximum weight of an edge that is misclassified in some opti-
mal solution S∗. Clearly, cmax also serves as a lower bound on the value of
an optimal solution. Hence, we can mix these two lower bounds and choose
max {maxu∈V {D(u)} , cmax} to be the lower bound we use. Note that we can
assume w.l.o.g. that cmax is known to the algorithm, as one can simply execute
the algorithm for every possible value of cmax and return the best solution.

Our algorithm consists of two main phases. In the first we compute the LP
metric d but require additional constraints that ensure no heavy edge, i.e., an
edge e having ce > cmax, is (fractionally) misclassified by d. In the second phase,
we perform a careful layered clustering of an auxiliary graph consisting of all +
edges whose length in the metric d is short. At the heart of the analysis lies a
distinction between + edges whose length in the metric d is short and all other
edges. The contribution of the former is bounded using the combinatorial lower
bound, i.e., cmax, whereas the contribution of the latter is bounded using the
LP. Our algorithm also ensures that in the final clustering no heavy edge is
misclassified. Let us now elaborate on the two phases, before providing an exact
description of the algorithm (Algorithm1).

Phase 1 (constrained metric computation). Denote by,

E+
heavy � {e ∈ E+ : ce > cmax} and E−

heavy � {e ∈ E− : ce > cmax}

the collection of all heavy + and − edges, respectively. We solve the LP relaxation
(1) (recall that f is the max function) while adding the following additional
constraints that ensure d does not (fractionally) misclassify heavy edges:

d(u, v) = 0 ∀e = (u, v) ∈ E+
heavy (2)

d(u, v) = 1 ∀e = (u, v) ∈ E−
heavy (3)

If no feasible solution exists then our current guess for cmax is incorrect.

Phase 2 (layered clustering). Denote the collections of + and − edges which
are almost classified correctly by d as E+

bad � {e = (u, v) ∈ E+ : d(u, v) < 1/
√

n}
and E−

bad � {e = (u, v) ∈ E− : d(u, v) > 1 − 1/
√

n}, respectively. Intuitively, any
edge e /∈ E+

bad ∪ E−
bad can use its length d to pay for its contribution to the cost,

regardless of what the output is. This is not the case with edges in E+
bad and

E−
bad, therefore all such edges are considered bad. Additionally, denote by E+

0 �
{e = (u, v) ∈ E+ : d(u, v) = 0} the collection of + edges for which d assigns a
length of 0.4

We design the algorithm so it ensures that no mistakes are made for edges in
E+

0 and E−
bad. However, the algorithm might make mistakes for edges in E+

bad,
thus a careful analysis is required. To this end we consider the auxiliary graph
consisting of all edges in E+

bad, i.e., G+
bad �

(
V,E+

bad

)
, and equip it with the

distance function dist� defined as the shortest path metric with respect to the
length function � : E+

bad → {0, 1}:

4 Note that E+
heavy ⊆ E+

0 ⊆ E+
bad and E−

heavy ⊆ E−
bad.
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�(e) �
{

0 e ∈ E+
0

1 e ∈ E+
bad \ E+

0

Assume E−
bad contains k edges and denote the endpoints of the ith edge by si

and ti. The algorithm partitions every connected component X of G+
bad into

clusters as follows: as long as X contains si and ti for some i, we examine the
layers dist�(si, ·) defines and perform a carefully chosen level cut. This layered
clustering suffices as we can prove that our choice of a level cut ensures (1) no
mistakes are made for edges in E+

0 and E−
bad, and (2) the number of misclassified

edges from E+
bad \ E+

0 incident on any node is at most O(
√

n). This ends the
description of the second phase.

Algorithm 1. Layered Clustering (G = (V,E), cmax)
1: C ← ∅.
2: let d be a solution to LP (1) with the additional constraints (2) and (3)
3: for every connected component X in G+

bad do
4: while X contains {si, ti} for some i do
5: ri ← dist�(si, ti) and Li

j ← {u : dist�(si, u) = j} for every j = 0, 1, . . . , ri.
6: choose j∗ ≤ (

√
n−1)/2 s.t. |Li

j∗ |, |Li
j∗+1|, |Li

j∗+2| ≤ 16
√

n.

7: S ← ∪j∗
j=0L

i
j .

8: X ← X \ S and C ← C ∪ {S}.
9: end while

10: C ← C ∪ {X}.
11: end for
12: Output C.

Refer to Algorithm 1 for a precise description of the algorithm. The following
Lemma states that the distance between any {si, ti} pair with respect to the
metric dist� is large, its proof appears in the full version of this paper.

Lemma 1. For every i = 1, . . . , k, dist�(si, ti) >
√

n − 1.

The following Lemma simply states that only a few layers could be too large,
its proof appears in the full version of this paper. It implies Corollary 1, whose
proof appears in the full version of this paper.

Lemma 2. For every i = 1, . . . , k, the number of layers Li
j for which |Li

j | >
16

√
n is at most

√
n/16.

Corollary 1. Algorithm 1 can always find j∗ as required.

Lemma 3 proves that no mistakes are made for edges in E+
0 and E−

bad, whereas
Lemma 4 bounds the number of misclassified edges from E+

bad \ E+
0 incident on

any node. Their proofs appear in the full version of this paper.

Lemma 3. Algorithm1 never misclassifies edges in E+
0 and E−

bad.
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Lemma 4. Let u ∈ V and S be the cluster in C Algorithm1 assigned u to. Then,∣∣{e ∈ E+
bad \ E+

0 : e = (u, v), v /∈ S
}∣∣ ≤ 48

√
n.

We are now ready to prove the main result, Theorem2.

Proof (of Theorem 2). We prove that Algorithm1 achieves an approximation
of 49

√
n. The proof considers edges according to their type: (1) E+

0 and E−
bad

edges, (2) E+
bad \ E+

0 edges, and (3) all other edges. It is worth noting that
the contribution of edges of type (2) is bounded using the combinatorial lower
bound, i.e., cmax, whereas the contribution of edges of type (3) is bounded using
the LP, i.e., D(u) for every node u ∈ V (as defined by the relaxation (1)).

First, consider edges of type (1). Lemma 3 implies Algorithm 1 does not make
any mistakes with respect to these edges, thus their contribution to the value of
the output C is always 0. Second, consider edges of type (2). Lemma 4 implies
that every node u has at most 48

√
n edges of type (2) incident on it that are

classified incorrectly. Additionally, the weight of every edge of type (2) is at most
cmax since E+

heavy ⊆ E+
0 and edges of type (2) do not contain any edge of E+

0 .
Thus, we can conclude that for every node u the total weight of edges of type
(2) that touch u and are misclassified is at most 48

√
n · cmax.

Finally, consider edges of type (3). Fix an arbitrary node u and let D(u) be
the fractional disagreement value the LP assigned to u (see (1)). Edge e of type
(3) is either an edge e ∈ E+ whose d length is at least 1/

√
n, or an edge e ∈ E−

whose d length is at most 1−1/
√

n. Hence, in any case the fractional contribution
of such an edge e to D(u) is at least ce/

√
n. Therefore, regardless of what the

output is, the total weight of misclassified edges of type (3) incident on u is at
most

√
n · D(u).

Summing over all types of edges, we can conclude that the total weight of
misclassified edges incident on u in C (the output of Algorithm1) is at most
48

√
ncmax +

√
n ·D(u). Since both cmax and D(u) are lower bounds on the value

of an optimal solution, the proof is concluded. ��

2.2 Min Local Disagreements on Complete Graphs

We consider a simple deterministic greedy clustering algorithm for complete
graphs that iteratively partitions the graph. In every step it does the following:
(1) greedily chooses a center node s∗ that has many nodes close to it, and (2)
removes from the graph a sphere around s∗ which constitutes a new cluster. The
greedy choice of s∗ is similar to that of [20]. However, our algorithm departs from
the approach of [20], as it always cuts a large sphere around s∗. The algorithm
of [20], on the other hand, outputs either a singleton cluster containing s∗ or
some other large sphere around s∗ (the average distance within the large sphere
determines which of the two options is chosen), thus mimicking the approach of
[9]. Surprisingly, restricting the algorithm’s choice enables us not only to obtain
a simpler algorithm, but also to improve upon the approximation guarantee from
48 to 7.

Algorithm 2 receives as input the metric d as computed by the relaxation (1),
whereas the variables D(u) are required only for the analysis. Additionally, we
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Algorithm 2. Greedy Clustering ({d(u, v)}u,v∈V )
1: S ← V and C ← ∅.
2: while S �= ∅ do
3: s∗ ← argmax {|BallS(s, 1/7)| : s ∈ S}.
4: C ← C ∪ {BallS(s∗, 3/7)}.
5: S ← S \ BallS(s∗, 3/7).
6: end while
7: Output C.

denote by BallS(u, r) � {v ∈ S : d(u, v) < r} the sphere of radius r around u in
subgraph S.

The following lemma summarizes the guarantee achieved by Algorithm 2 (its
proof appears in the full version of this paper, which also contains an overview
of our charging scheme).

Lemma 5. Assuming the input is a complete graph, Algorithm2 guarantees that
disagreeC(u) ≤ 7D(u) for every u ∈ V .

Proof (of Theorem 3). Apply Algorithm2 to the solution of the relaxation (1).
Lemma 5 guarantees that for every node u ∈ V we have that disagreeC(u) ≤
7D(u), i.e., disagreeC(V ) ≤ 7D. The value of the output of the algorithm is
f (disagreeC(V )) and one can bound it as follows:

f (disagreeC(V ))
(1)

≤ f (7D)
(2)

≤ 7f (D) .

Inequality (1) follows from the monotonicity of f , whereas inequality (2) follows
from the scaling property of f . This concludes the proof since f (D) is a lower
bound on the value of any optimal solution. ��

2.3 Min Local Disagreements on Complete Bipartite Graphs

Our algorithm for Min Local Disagreements on complete bipartite graphs (with
one sided disagreements) is a natural extension of Algorithm 2. Similarly to the
complete graph case, we are able to present a remarkably simple algorithm
achieving an improved approximation of 7. The description of the algorithm
and the proof of Theorem4 appear in the full version of this paper.

3 Local Maximization of Agreements

As previously mentioned, Max Local Agreements is closely related to the com-
putation of local optima for Max Cut and pure Nash equilibria in cut and party
affiliation games, both of which are PLS-complete problems. We focus on the
special case of Max Min Agreements.

The natural local search algorithm for Max Min Agreements can be defined
similarly to that of Max Cut: it maintains a single cut S ⊆ V ; a node u moves
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to the other side of the cut if the move increases the total weight of correctly
classified edges incident on u. This algorithm terminates in a local optimum that
is a (1/2)-approximation for Max Min Agreements. Unfortunately, it is known that
such a local search algorithm can take exponential time, even for Max Cut.

When considering Max Cut, this can be remedied by altering the local search
step as follows: a node u moves to the other side of the cut S if the move increases
the total weight of edges crossing S by a multiplicative factor of at least (1 + ε)
(for some ε > 0). This approach fails for the computation of (approximate) pure
Nash equilibria in party affiliation games, as well as for Max Min Agreements.
The reason is that both of these problems have local requirements from nodes,
as opposed to the global objective of Max Cut. Thus, not surprisingly, the cur-
rent best known 1/(4+ε)-approximation for Max Min Agreements follows from [8]
who present the state of the art algorithm for finding approximate pure Nash
equilibria in party affiliation games.

We propose a direct approach for approximating Max Min Agreements that
circumvents the need to compute approximate pure Nash equilibria in party
affiliation games. We improve upon the 1/(4+ε)-approximation by considering a
non-oblivious local search that is executed with altered edge weights. We are
able to change the edges’ weights in such a way that: (1) any local optimum
is a 1/(2+ε)-approximation, and (2) the local search performs at most O(n/ε)
iterations. The proof of Theorem5 appears in the full version of this paper, along
with some intuition for our non-oblivious local search algorithm. Additionally,
we prove that the natural LP and SDP relaxations for Max Min Agreements on
general graphs admit an integrality gap of n

2(n−1) (Theorem 6). This appears in
the full version of this paper.
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22. Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim,
J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 207–218.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27821-4 19

23. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In: SODA 2004, pp. 526–527 (2004)

24. Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-
biclusters collaborative filtering with constant values. In: Nasraoui, O.,
Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD
2006. LNCS, vol. 4811, pp. 36–55. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77485-3 3

25. Van Gael, J., Zhu, X.: Correlation clustering for crosslingual link detection. In:
IJCAI, pp. 1744–1749 (2007)

26. Wirth, A.: Correlation clustering. In: Sammut, C., Webb, G. (eds.) Encyclopedia
of Machine Learning, pp. 227–231. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/11672142_28
http://dx.doi.org/10.1007/978-3-540-27821-4_19
http://dx.doi.org/10.1007/978-3-540-77485-3_3
http://dx.doi.org/10.1007/978-3-540-77485-3_3


Verifying Integer Programming Results

Kevin K.H. Cheung1, Ambros Gleixner2, and Daniel E. Steffy3(B)

1 School of Mathematics and Statistics, Carleton University,
Ottawa, ON, Canada

kevin.cheung@carleton.ca
2 Department of Mathematical Optimization, Zuse Institute Berlin,

Takustr. 7, 14195 Berlin, Germany
gleixner@zib.de

3 Department of Mathematics and Statistics, Oakland University,
Rochester, MI, USA
steffy@oakland.edu

Abstract. Software for mixed-integer linear programming can return
incorrect results for a number of reasons, one being the use of inexact
floating-point arithmetic. Even solvers that employ exact arithmetic may
suffer from programming or algorithmic errors, motivating the desire for
a way to produce independently verifiable certificates of claimed results.
Due to the complex nature of state-of-the-art MIP solution algorithms,
the ideal form of such a certificate is not entirely clear. This paper pro-
poses such a certificate format designed with simplicity in mind, which is
composed of a list of statements that can be sequentially verified using a
limited number of inference rules. We present a supplementary verifica-
tion tool for compressing and checking these certificates independently
of how they were created. We report computational results on a selection
of MIP instances from the literature. To this end, we have extended the
exact rational version of the MIP solver SCIP to produce such certifi-
cates.

Keywords: Correctness · Verification · Proof · Certificate · Optimal-
ity · Infeasibility · Mixed-integer linear programming

1 Introduction

The performance of algorithms for solving mixed-integer linear programs to opti-
mality has improved significantly over the last decades [3,4]. As the complexity
of the solvers increases, a question emerges: How does one know if the computa-
tional results are correct?

Although rarely, MIP solvers do occasionally return incorrect or dubious
results [13]. Despite such errors, maintaining a skeptical attitude that borders
on paranoia is arguably neither healthy nor practical. After all, machines do
outperform humans on calculations by orders of magnitude and many tasks in life
are now entrusted to automation. Hence, the motivation for asking how to verify
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correctness of computational results is not necessarily because of an inherent
distrust of solvers. Rather, it is the desire to seek ways to identify and reduce
errors and to improve confidence in the computed results. Previous research on
computing accurate solutions for MIP has utilized various techniques including
interval arithmetic [37], exact rational arithmetic [6,13,17], and safely derived
cuts [12]. Nevertheless, as stated in [13], “even with a very careful implementation
and extensive testing, a certain risk of an implementation error remains”.

One way to satisfy skeptics is formal code verification as is sometimes found in
software for medical applications and avionics. For global optimization, progress
in this direction has been made very recently [36,41]. For modern MIP solvers,
which easily consist of several 100,000 lines of code, this may be an ambitious
goal. An alternative is to build solvers that output extra information that facil-
itates independent checking. We shall use the word certificate to refer to such
extra information for a given problem that has been solved. Ideally, the certifi-
cate should allow for checking the results using fewer resources than what are
needed to solve the problem from scratch. Such a certificate could in principle
be used in formal verification using a proof checker as done in the Flyspeck
Project [19,39,42] for a formal proof of Kepler’s Conjecture, or informal ver-
ification as done by Applegate et al. [5] for the Traveling Salesman Problem
and by Carr et al. [11] in their unpublished work for MIP in general. Naturally,
certificates should be as simple to verify as possible if they are to be convincing.

We highlight two specific applications where solution verification is desirable.
First, Achterberg [1] presented MIP formulations for circuit design verification
problems, for which solvers have been shown to return incorrect results [13].
Second, Pulaj [40] has recently used MIP to settle open questions related to
Frankl’s conjecture. Software developed in connection with this paper has been
successfully used to generate and check certificates for MIP models coming from
both of these applications.

For linear programming, duality theory tells us that an optimal primal solu-
tion and an optimal dual solution are sufficient to facilitate effective verification
of optimality. In the case of checking infeasibility, a Farkas certificate will do.
Therefore, verifying LP results, at least in the case when exact rational arith-
metic is used, is rather straightforward. However, the situation with MIP is
drastically different. From a theoretical perspective, even though some notions
of duality for MIP have been formulated [24], small (i.e. polynomial size) cer-
tificates for infeasibility or optimality may not even exist. As a result, there
are many forms that certificates could take: a branch-and-bound tree, a list of
derived cutting planes, a superadditive dual function, or other possibilities for
problems with special structures such as pure integer linear programming and
binary programming [10,16,31,33]. Which format would be preferred for cer-
tificate verification is not entirely clear, and in this paper we provide reasoning
behind our choice.

From a software perspective, MIP result certification is also considerably
more complicated than LP certification. Even though most solvers adopt
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the branch-and-cut paradigm, they typically do not make the computed branch-
and-bound tree or generated cuts readily available, and they may also utilize
many other techniques including constraint propagation, conflict analysis, or
reduced cost fixing. Thus, even if a solver did print out all information used
to derive its solution, a verifier capable of interpreting such information would
itself be highly complex, contradicting our desire for a simple verifier. As a result,
other than accepting the results of an exact solver such as [13], the best that
many people can do today to “verify” the results of a solver on a MIP instance is
to solve the instance by several different solvers and check if the results match or
minimally check that a returned solution is indeed feasible and has the objective
function value claimed, as is done by the solution checker in [32].

The main contribution of this paper is the development of a certificate format
for the verification of mixed-integer linear programs. Compared to the previous
work of Applegate et al. [5] for the Traveling Salesman Problem and the unpub-
lished work of Carr et al. [11] for general MIP, our certificate format has a
significantly simpler structure. It consists of a sequence of statements that can
be verified one by one using simple inference rules, facilitating verification in
a manner akin to natural deduction. The approach is similar to that for ver-
ification of unsatisfiability proofs for SAT formulas. (See for example [27,43].)
This simple certificate structure makes it easier for researchers to develop their
own independent certificate verification programs, or check the code of existing
verifiers, even without any expert knowledge of MIP solution algorithms.

To demonstrate the utility of the proposed certificate format, we have devel-
oped a reference checker in C++ and added the capability to produce such
certificates to the exact version of the MIP solver SCIP [13,21]. We used these
tools to verify results reported in [13]. To the best of our knowledge, this work
also represents the first software for general MIP certificate verification that has
been made available to the mathematical optimization community.

Organization of the paper. Even though the proposed format for the certificate is
straightforward, some of the details are nevertheless technical. Therefore, in this
paper, we discuss the certificate format at a conceptual level. The full technical
specification is found in the accompanying computer files.1 We begin with the
necessary ingredients for the simple case of LP in Sect. 2. In Sect. 3, the ideas
for dealing with LP are extended to pure integer linear programming. The full
conceptual description of the format of the certificate is then given in Sect. 4.
Computational experiments are reported in Sect. 5, and concluding remarks are
given in Sect. 6. Throughout this paper, we assume that problems are specified
and solved with exact rational arithmetic.

2 Certificates for Linear Programming

A certificate of optimality for an LP is a dual feasible solution whose objective
function value matches the optimal value. However, there is no need to specify

1 See https://github.com/ambros-gleixner/VIPR.

https://github.com/ambros-gleixner/VIPR
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the dual when one views the task of certification as an inference procedure, see,
e.g., [28]. Suppose we are given the system of linear constraints

Ax ≥ b, A′x ≤ b′, A′′x = b′′, (S)

where x is a vector of variables, A ∈ R
m×n, A′ ∈ R

m′×n, A′′ ∈ R
m′′×n, b ∈ R

m,
b′ ∈ R

m′
, and b′′ ∈ R

m′′
for some nonnegative integers n, m, m′, and m′′.

We say that cTx ≥ v is obtained by taking a suitable linear combination of
the constraints in (S) if

cT = dTA + d′TA′ + d′′TA′′, v = dTb + d′Tb′ + d′′Tb′′

for some d ∈ R
m, d′ ∈ R

m′
, and d′′ ∈ R

m′′
with d ≥ 0 and d′ ≤ 0. If x satisfies

(S), then it necessarily satisfies cTx ≥ v. We say that the inequality cTx ≥ v
is inferred from (S). We will refer to this general inference procedure as linear
inequality inference.

Remark 1. Together, d, d′, d′′ is simply a feasible solution to the linear program-
ming dual of the linear program

min{cTx | Ax ≥ b, A′x ≤ b′, A′′x = b′′}. (LP)

The inequality cTx ≥ v is sometimes called a surrogate of (S). (See [28].)

Suppose that an optimal solution to (LP) exists and the optimal value is v.
Linear programming duality theory guarantees that cTx ≥ v can be inferred
from (S). Therefore, linear inequality inference is sufficient to certify optimality
for linear programming. Conceptually, the certificate that we propose is a listing
of the constraints in (S) followed by the inequality cTx ≥ v with the associated
multipliers used in the inference as illustrated in the following example.

Example 2. The following shows an LP problem and its associated certificate.

min 2x + y
s.t.

C1 : 5x − y ≥ 2
C2 : 3x − 2y ≤ 1

Given
C1 : 5x − y ≥ 2
C2 : 3x − 2y ≤ 1

Derived Reason
obj : 2x + y ≥ 1 {1 × C1 + (−1) × C2}

Here, C1 and C2 are constraint labels. Taking the suitable linear combination
1 × C1 + (−1) × C2 gives 2x + y ≥ 1, thus establishing that 1 is a lower bound
for the optimal value.

Remark 3. This type of linear inference can also be used to derive ≤-inequalities
or equality constraints. Assuming that all problem data is rational, rational
multipliers are sufficient to certify infeasibility or optimality.
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3 Handling Chvátal-Gomory Cutting Planes

Gomory [23] showed in theory that, for pure integer linear programming (IP),
optimality or infeasibility can be established by a pure cutting-plane approach.
Such an approach can also work in practice [8,44]. In addition to linear inequality
inference, a rounding operation is needed.

Suppose that cTx ≥ v can be inferred from (S) by taking a suitable linear
combination of the constraints. If ci ∈ Z for i ∈ I for some I ⊆ {1, . . . , n} and
ci = 0 for i /∈ I, then any x ∈ R

n satisfying (S) with xi ∈ Z for i ∈ I must
also satisfy cTx ≥ �v�. We say that cTx ≥ �v� is obtained from cTx ≥ v by
rounding. When I = {1, . . . , n}, the inequality cTx ≥ �v� is known as a Chvátal-
Gomory cut (CG-cut in short). It can then be added to the system and the
process of obtaining another CG-cut can be repeated. Conceptually, a certificate
for an IP instance solved using only CG-cuts can be given as a list of the original
constraints followed by the derived constraints.

Example 4. The following shows an IP problem and its associated certificate.

min x + y
s.t.

C1 : 4x + y ≥ 1
C2 : 4x − y ≤ 2

x, y ∈ Z

Given
x, y ∈ Z

C1 : 4x + y ≥ 1
C2 : 4x − y ≤ 2

Derived Reason
C3 : y ≥ − 1

2

{
1
2

× C1 +
(− 1

2

)× C2
}

C4 : y ≥ 0 {round up C3}
C5 : x + y ≥ 1

4

{
1
4

× C1 + 3
4

× C4
}

C6 : x + y ≥ 1 {round up C5}

Note that the derived constraints in the certificate can be processed in a
sequential manner. In the next section, we see how to deal with branching with-
out sacrificing sequential processing.

4 Branch-and-Cut Certificates

In practice, most MIP instances are not solved by cutting planes alone. Thus, cer-
tificates as described in the previous section are of limited utility. We now propose
a type of certificate for optimality or infeasibility established by a branch-and-cut
procedure in which the generated cuts at any node can be derived as split cuts
and branching is performed on a disjunction of the form aTx ≤ δ ∨ aTx ≥ δ + 1
where δ ∈ Z and aTx is integral for all feasible x.

The use of split disjunctions allows us to consider branching and cutting
under one umbrella. Many of the well-known cuts generated by MIP solvers can
be derived as split cuts [14] and they are effective in closing the integrality gap in
practice [18]. Branching typically uses only simple split disjunctions (where the a
above is a unit vector), although some studies have considered the computational
performance of branching on general disjunctions [15,20,30,38].
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Recall that each branching splits the solution space into two subcases. At
the end of a branch-and-bound (or branch-and-cut) procedure, each leaf of the
branch-and-bound tree corresponds to one of the cases and the leaves together
cover all the cases that need to be considered. Hence, if the branch-and-bound
tree is valid, all one needs to look at are the LP results at the leaves.

Our proposal is to “flatten” the branch-and-bound tree into a list of state-
ments that can be verified sequentially. Thus, our approach departs from the
approaches in [5,11], which require explicit handling of the tree structure. The
price we pay is that we can no longer simply examine the leaves of the tree.
Instead, we process the nodes in a bottom-up fashion and discharge assump-
tions as we move up towards the root. We illustrate the ideas with an example.

Example 5. It is known that the following has no solution.

C1 : 2x1 + 3x2 ≥ 1
C2 : 3x1 − 4x2 ≤ 2
C3 : −x1 + 6x2 ≤ 3

x1, x2 ∈ Z

Note that (x1, x2) = (1017 ,− 1
17 ) is an extreme point of the region defined by

C1, C2, and C3. Branching on the integer variable x1 leads to two cases:

– Case 1. A1 : x1 ≤ 0
Note that (x1, x2) = (0, 1

3 ) satisfies C1, C2, C3, A1. We branch on x2:
Case 1a. A3 : x2 ≤ 0
Taking C1 + (−2) × A1 + (−3) × A3 gives the absurdity C4 : 0 ≥ 1.
Case 1b. A4 : x2 ≥ 1
Taking

(− 1
3

)×C3+
(− 1

3

)×A1+2×A4 gives the absurdity C5 : 0 ≥ 1.
– Case 2. A2 : x1 ≥ 1

Taking
(− 1

4

)×C2+
(
3
4

)×A2 gives C6 : x2 ≥ 1
4 . Rounding gives C7 : x2 ≥ 1.

Taking
(− 1

3

) × C2 + (−1) × C3 + 14
3 × C7 gives the absurdity C8 : 0 ≥ 1.

As all cases lead to 0 ≥ 1, we conclude that there is no solution. To issue a
certificate as a list of derived constraints, we need a way to specify the different
cases. To this end, we allow the introduction of constraints as assumptions.

Figure 1 shows a conceptual certificate for the instance. Notice how the con-
straints A1, A2, A3, and A4 are introduced to the certificate as assumptions.
Since we want to end with 0 ≥ 1 without additional assumptions attached, we
get there by gradually undoing the case-splitting operations. We call the undo-
ing operation unsplitting. For example, C4 and C5 are both the absurdity 0 ≥ 1
with a common assumption A1. Since A3 ∨ A4 is true for all feasible x, we can
infer the absurdity C9 : 0 ≥ 1 assuming only A1 in addition to the original con-
straints. We say that C9 is obtained by unsplitting C4, C5 on A3, A4. Similarly,
both C8 and C9 are the absurdity 0 ≥ 1 and A2 ∨ A1 is true for all feasible x,
we can therefore unsplit on C8, C9 on A2, A1 to obtain C10 : 0 ≥ 1 without
any assumption in addition to the original constraints.
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Given
x ,y ∈ Z

C1 : 2x1

1 1
+ 3x2 ≥ 1

C2 : 3x1 − 4x2 ≤ 2
C3 : −x1 + 6x2 ≤ 3

snoitpmussAnosaeRdevireD
A1 : x1 ≤ 0 {assume}
A2 : x1 ≥ 1 {assume}
A3 : x2 ≤ 0 {assume}
C4 : 0 ≥ 1 {C1 + (−2) × A1 + (−3) × A3} A1, A3
A4 : x2 ≥ 1 {assume}
C5 : 0 ≥ 1 − 1

3

) × C3 + − 1
3

) × A1 + 2 × A4
}

A1, A4
C6 : x2 ≥ 1

4
− 1

4

) × C2 + 3
4

) × A2
}

A2
C7 : x2 ≥ 1 {round up C6} A2
C8 : 0 ≥ 1 − 1

3

) × C2 + (−1) × C3 + 14
3

× C7
}

A2
C9 : 0 ≥ 1 {unsplit C4, C5 on A3, A4} A1

C10 : 0 ≥ 1 {unsplit C8, C9 on A2, A1}

Fig. 1. Certificate for Example 5

In practice, the list of assumptions associated with each derived constraint
needs not be specified explicitly in the certificate, but can be deduced on the
fly by a checker. For example, when processing C4, we see that it uses A1 and
A3, both of which are assumptions. Hence, we associate C4 with the list of
assumptions A1, A3. As any linear inequality can be introduced as an assump-
tion, branching can be performed on general disjunctions.

Remark 6. Our proposed certificate can also be used to represent split cuts. Split
cuts are inequalities that are valid for the defining inequalities taken together
with each one of the inequalities in a split disjunction, aTx ≤ δ ∨ aTx ≥ δ + 1,
where δ is an integer and a is an integer vector that is nonzero only in components
corresponding to integer variables. To derive a proof of a split cut’s validity, the
inequalities in the split disjunction can each be introduced as assumptions, the
cut can be derived for each side of the split disjunction using linear inequality
inference, and then unsplitting can be applied to discharge the assumptions.

5 Computational Experiments

In this section, we describe software developed to produce and check certificates
for MIP results using the certificate format developed in this paper. It is freely
available for download, along with a precise technical specification of the file
format.2 One of its features is that after each derived constraint an integer is
printed to specify the largest index of any derived constraint that references it.
This allows constraints to be freed from memory when they will no longer be
needed. The following C++ programs are provided:
2 See https://github.com/ambros-gleixner/VIPR.

https://github.com/ambros-gleixner/VIPR
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– viprchk verifies MIP results provided in our specified file format. All compu-
tations are performed in exact rational arithmetic using the GMP library [22].

– viprttn performs simple modifications to “tighten” certificates. It removes
unnecessary derived constraints to reduce the file size. In order to decrease
peak memory usage during checking, it reorders the remaining ones using a
depth-first topological sort and for each derived constraint that remains, it
computes the largest index over constraints that references it.

– vipr2html converts a certificate file to a “human-readable” HTML file.

We again emphasize that the format was designed with simplicity in mind;
the certificate verification program we have provided is merely a reference and
others should be able to write their own verifiers without much difficulty.

In addition, we created a modified version of the exact rational MIP solver
described in [13] and used it to compute certificates for several MIP instances
from the literature. The exact rational MIP solver is based on SCIP [21] and uses
a hybrid of floating-point and exact rational arithmetic to efficiently compute
exact solutions using a pure branch-and-bound algorithm. In our experiments,
the rational MIP solver uses CPLEX 12.6.0.0 [29] as its underlying floating-point
LP solver and a modified version of QSopt ex 2.5.10 [7] as its underlying exact
LP solver. The exact MIP solver supports several methods for computing valid
dual bounds and our certificate printing functionality is currently supported by
the Project-and-shift method (for dual solutions only) and the Exact LP method
(for both dual solutions and Farkas proofs), for details on these methods see [13].
This developmental version is currently available from the authors by request.
We note that the certificate is printed concurrently with the solution process
which leads to certificates that have potential for reduction and simplification
by viprttn, or other routines. For example, as each node is processed its derived
dual bound is printed to the certificate even though it may become redundant if
branching is performed and new dual bounds are computed at the child nodes;
also, discovery of a new primal solution might allow pruning of a large subtree,
rendering many bound derivations redundant.

The program viprttn processes the list of derived constraints in two passes.
In the first pass, it builds the dependency graph with nodes representing the
derived constraints and arcs uv such that the derived constraint represented by
u is referenced by the reason for deriving the constraint represented by v. In
the second pass, it performs a topological sort using depth-first search on the
component that contains the final constraint and writes out the reordered list of
derived constraints with updated constraint indices.

In the following, we report some computational results on the time and
memory required to produce and verify certificates. We considered the easy
and numerically difficult (referred to here as ‘hard ’) test sets from [13]; these
test sets consist of instances from well known libraries including [2,9,32,34,35].
Experiments were conducted on a cluster of Intel(R) Xeon(R) CPU E5-2660
v3 at 2.60 GHz; jobs were run exclusively to ensure accurate time measure-
ment. Table 1 reports a number of aggregate statistics on these experiments. The
columns under the heading SCIP report results from tests using the exact version
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of SCIP, using its default dual bounding strategy. The columns under SCIP+C
report on tests involving the version of exact SCIP that generates certificates
as it solves instances; it uses only the dual bounding methods Project-and-shift
and Exact LP that support certificate printing, contributing to its slower speed.
Columns under the heading VIPR report time and memory usage for certificate
checking.

For each of the easy and hard test sets, we report information aggregated
into four categories: ‘all’ reports statistics over all instances; ‘solved’ reports
over instances solved by both SCIP and SCIP+C within a 1 h time limit and a
10 GB limit on certificate file size; ‘memout’ reports on instances where SCIP+C
stopped because the certificate file size limit was reached; and ‘timeout’ reports
on the remaining instances, where one of the solvers hit the time limit. All
averages are reported as shifted geometric means with a shift of 10 s. for time
and 1 MB for memory. The column N represents the number of instances in
each category; Nsol represents the number in each category that were solved to
optimality (or infeasibility) by a given solver; tMIP represents the time (sec.)
used to solve the instance and, when applicable, output a certificate; tttn is the
time (sec.) required by the viprttn routine to tighten the certificate file; tchk is
the time (sec.) required to for viprchk to check the certificate file – on instances
in the memout and timeout rows this represents the time to verify the primal
and dual bounds present in the intermediate certificate printed before the solver
was halted. The final three columns list the size of the certificate (in MB), before
tightening, after tightening and then after being compressed to a gzipped file.
Timings and memory usage for individual instances are available in a document
hosted together with the accompanying software.

Table 1. Aggregated computational results over 107 instances from [13].

SCIP SCIP+C VIPR

Test set N Nsol tMIP Nsol tMIP tttn tchk sizeraw sizettn sizegz

easy-all 57 54 63.3 39 190.9 8.9 27.2 227 77 24

-solved 39 39 23.2 39 48.0 3.6 11.5 77 34 10

-memout 5 4 600.6 0 1760.4 47.8 138.3 10286 513 157

-timeout 13 11 338.3 0 3600.0 23.3 102.7 1309 434 129

hard-all 50 23 725.2 14 975.6 7.9 12.1 373 38 11

-solved 13 13 22.9 13 40.7 2.2 5.3 49 15 5

-memout 12 2 2476.4 0 1713.1 32.7 59.8 10266 235 67

-timeout 25 8 2052.1 1 3518.1 4.3 5.3 216 25 7

From this table, we can make a number of observations. First, there is a
noticeable, but not prohibitive, cost to generate the certificates. The differences
in tMIP between SCIP and SCIP+C are due to both the difference in dual bound-
ing strategies, and the overhead for writing the certificate files. In some additional
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experiments, we observed that on the 39 instances in the easy-solved category,
the file I/O amounted to roughly 7% of the solution time, based on this we
believe that future modifications to the code will allow us to solve and print
certificates in times much closer to those in the SCIP column. Perhaps most
importantly, we observe that the time to check the certificates is significantly
less than the time to solve the instances.

Moreover, the certificate tightening program viprttn is able to make signifi-
cant reductions in the certificate size, and the resulting certificate sizes are often
surprisingly manageable. Most striking is the tightening in the memout cate-
gories, which significantly exceed the approximately 50% reduction that could
be expected by removing the redundant linear inferences derived for internal
nodes of the branch-and-bound tree. The most extreme tightening was achieved
for the instance markshare1 1 in ‘easy-memout’, from 10 GB to 8 kB. This is
explained by the fact that the root dual bound is already zero and the tree
search is only performed for finding the optimal solution. Hence, the certificate
is highly redundant and the derived constraints for all but the root node can be
removed.

The average reductions in the other categories are smaller, but also strictly
above 50%. This shows that viprttn performs more than just a removal of
internal nodes. These results also show two aspects in which SCIP’s certificate
printing can be improved: by avoiding printing dual bound derivations for inter-
nal nodes using a buffering scheme, and by not generating dual bound derivations
for nodes that do not improve upon the bound of the parent node.

6 Conclusion

This paper presented a certificate format for verifying integer programming
results. We have demonstrated the practical feasibility of generating and check-
ing such certificates on well-known MIP instances. We see this as the first step
of many in verifying the results of integer programming solvers. We now discuss
some future directions made possible by this work.

Even in the context of floating-point arithmetic, our certificate format could
serve a number of purposes. Using methods described by [12,37], directed round-
ing and interval arithmetic may allow us to compute and represent valid certifi-
cates exclusively using floating-point data, allowing for faster computation and
smaller certificate size. Additionally, generating approximate certificates with
inexact data could be used for debugging solvers, or measuring the maximum
or average numerical violation over all derivations. In a more rigorous direction,
one could also convert our certificates to a form that could be formally verified
by a proof assistant such as HOL Light [25].
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2 Facultad de Ingenieŕıa Industrial, Universidad de Chile, Santiago, Chile

3 Department of Econometrics and Operations Research,
Vrije Universiteit Amsterdam, Amsterdam, Netherlands

n.olver@vu.nl
4 CWI, Amsterdam, Netherlands

Abstract. A fluid queuing network constitutes one of the simplest mod-
els in which to study flow dynamics over a network. In this model we
have a single source-sink pair and each link has a per-time-unit capac-
ity and a transit time. A dynamic equilibrium (or equilibrium flow over
time) is a flow pattern over time such that no flow particle has incentives
to unilaterally change its path. Although the model has been around for
almost fifty years, only recently results regarding existence and charac-
terization of equilibria have been obtained. In particular the long term
behavior remains poorly understood. Our main result in this paper is to
show that, under a natural (and obviously necessary) condition on the
queuing capacity, a dynamic equilibrium reaches a steady state (after
which queue lengths remain constant) in finite time. Previously, it was
not even known that queue lengths would remain bounded. The proof
is based on the analysis of a rather non-obvious potential function that
turns out to be monotone along the evolution of the equilibrium. Fur-
thermore, we show that the steady state is characterized as an optimal
solution of a certain linear program. When this program has a unique
solution, which occurs generically, the long term behavior is completely
predictable. On the contrary, if the linear program has multiple solutions
the steady state is more difficult to identify as it depends on the whole
temporal evolution of the equilibrium.

1 Introduction

A fluid queuing network is a directed graph G = (V,E) where each arc e ∈ E
consists of a fluid queue with capacity νe > 0 followed by a link with constant
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delay τe ≥ 0 (see Fig. 1). A constant inflow rate u0 > 0 enters the network at
a fixed source s ∈ V and travels towards a terminal node t ∈ V . A dynamic
equilibrium models the temporal evolution of the flows in the network. Loosely
speaking, it consists of a flow pattern in which every particle travels along a
shortest path, accounting for the fact that travel times depend on the instant at
which a particle enters the network as well as the state of the queues that will
be encountered along its path by the time at which they are reached.

(inflow) (outflow)
νe τe

(queue) (link)

Fig. 1. An arc in the fluid queuing network.

Intuitively, if the queues are initially empty, the equilibrium should start by
sending all the flow along shortest paths considering only the free-flow delays τe.
These paths are likely to become overloaded so that queues will grow on some of
its edges and at some point in time new paths will become competitive and will
be incorporated into the equilibrium. These new paths may in turn build queues
so that even longer paths may come into play. Hence one might expect that
the equilibrium proceeds in phases in which the paths used by the equilibrium
remain stable. However, it is unclear if the number of such phases is finite and
whether the equilibrium will eventually reach a steady state in which the queues
and travel times stabilize.

Although dynamic equilibria have been around for almost fifty years (see,
e.g., [2–4,6,7,9–12]), their existence has only been proved recently by Zhu and
Marcotte [13] though in a somewhat different setting, and by Meunier and
Wagner [8] who gave the first existence result for a model that covers the case of
fluid queuing networks. These proofs, however, rely heavily on functional analysis
techniques and provide little intuition on the combinatorial structure of dynamic
equilibria, their characterization, or feasible approaches to compute them. Sub-
stantial progress was recently achieved by Koch and Skutella [5] by introducing
the concept of thin flows with resetting that characterize the time derivatives
of a dynamic equilibrium, and which provide in turn a method to compute an
equilibrium by integration. A slightly refined notion of normalized thin flows
with resetting was considered by Cominetti et al. [1], who proved existence and
uniqueness, and provided a constructive proof for the existence of a dynamic
equilibrium.

In this paper we focus on the long term behavior of dynamic equilibria in
fluid queuing networks. Clearly if the inflow u0 is very large compared to the
queuing capacities, the queues will grow without bound, and no steady state
can be expected. More precisely, let δ(S) be an st-cut with minimum queuing
capacity ν̄ =

∑
e∈δ(S) νe; if there are multiple options, choose S (containing

s) to be setwise minimal. If u0 > ν̄ all the arcs in δ(S) will grow unbounded
queues, whereas for u0 ≤ ν̄, it is natural to expect that the equilibrium should
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eventually reach a steady state, where queue lengths remain constant. This was
not known—in fact, it was not even known that queue lengths remain bounded!

Our main goal in this paper is to show that both these properties do indeed
hold: more precisely, when u0 ≤ ν̄, the dynamic equilibrium reaches a steady
state in finite time. At first glance, these convergence properties might seem
“obvious”, and it might seem surprising that they are at all difficult to prove.
We will present some examples that illustrate why this is not the case. For
instance, it may occur that the flow across the cut δ(S) may temporarily exceed
its capacity ν̄ by an arbitrarily large factor, forcing the queues to grow very large.
This phenomenon may occur since the inflow u0 entering the network at different
points in time may experience different delays and eventually superpose at δ(S)
which gets an inflow larger than u0. In other cases some queues may grow during
a period of time after which they reduce to zero and then grow again later on,
so that no simple monotonicity arguments can be used to study the long term
behavior.

Along the way to our main result, we provide a characterization of the steady
state as an optimal solution of a certain linear programming problem and we dis-
cuss when this problem has a unique solution. Despite the fact that convergence
to a steady state occurs in finite time, it remains as an open question whether
this state is attained after finitely many phases or whether the dynamic equilib-
rium may exhibit Zeno-like oscillations in which queues alternate infinitely often
over a finite time interval. In such a case the computation by integration would
not yield a finite procedure. While this seems very unlikely, we have not been
able to prove that it will never happen.

The paper is structured as follows. Section 2 reviews the model of fluid queu-
ing networks, including the precise definition of dynamic equilibrium and the
main results known so far. Then, in Sect. 3 we discuss the notion of steady state
and provide a characterization in terms of a linear program. Inspired by the
objective function of this linear program, in Sect. 4 we introduce a potential
function and we prove that it is a Lyapunov function for the dynamics. This
potential turns out to be piecewise linear in time with finitely many possible
slopes. We then prove that the potential remains bounded so that there is a
finite time at which its slope is zero, and we show that in that case the system
has reached a steady state. Further, we provide an explicit pseudopolynomial
bound on the convergence time. Finally, in Sect. 5 we discuss some counterex-
amples that rule out some natural properties that one might expect to hold in
a dynamic equilibrium, and we state some related open questions.

2 Dynamic Equilibria in Fluid Queing Networks

In this section we recall the definition of dynamic equilibria in fluid queuing
networks, and we briefly review the known results on their existence, character-
ization, and computation. The results are stated without proofs for which we
refer to Koch and Skutella [5] and Cominetti et al. [1].
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2.1 The Model

Consider a fluid queuing network G = (V,E) with arc capacities νe and delays
τe. The network dynamics are described in terms of the inflow rates f+

e (θ) that
enter each arc e ∈ E at time θ, where f+

e : [0,∞) → [0,∞) is measurable.

Arc Dynamics. If the inflow f+
e (θ) exceeds νe a queue ze(θ) will grow at the

entrance of the arc. The queues are assumed to operate at capacity, that is to
say, when ze(θ) > 0 the flow is released at rate νe, whereas when the queue is
empty the outflow is the minimum between f+

e (θ) and the capacity νe. Hence
the queue evolves from its initial state ze(0)=0 according to

że(θ) =
{

f+
e (θ) − νe if ze(θ) > 0

[f+
e (θ) − νe]+ if ze(θ) = 0.

(1)

These dynamics uniquely determine the queue lengths ze(θ) as well as the
arc outflows (Fig. 2)

f−
e (θ+τe) =

{
νe if ze(θ) > 0

min{f+
e (θ), νe} if ze(θ) = 0.

(2)

f+
e (θ) f−

e (θ+τe)ze(θ)
νe τe

(inflow) (queue) (link) (outflow)

Fig. 2. Dynamics of an arc in the queuing network.

Flow Conservation. A flow over time is a family (f+
e )e∈E of arc inflows such

that flow is conserved at every node v ∈ V \{t}, namely for a.e. θ ≥ 0

∑

e∈δ+(v)

f+
e (θ) −

∑

e∈δ−(v)

f−
e (θ) =

{
u0 if v = s
0 if v �= s, t.

(3)

Dynamic Shortest Paths. A particle entering an arc e at time θ experiences a
queuing delay ze(θ)/νe plus a free-flow delay τe to traverse the arc after leaving
the queue, so that it will exit the arc at time

Te(θ) = θ +
ze(θ)
νe

+ τe. (4)

Consider a particle entering the source node s at time θ. If this particle
follows a path p = e1e2 · · · ek, it will reach the end of the path at time

Tp(θ) = Tek
◦ · · · ◦ Te2 ◦ Te1(θ). (5)

Denoting Pv the set of all sv-paths, the minimal time at which node v can
be reached is
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�v(θ) = min
p∈Pv

Tp(θ). (6)

The paths attaining these minima are called dynamic shortest paths. The
arcs in these paths are said to be active at time θ and we denote them by E′

θ.
Observe that �v(θ) can also be defined through the dynamic Bellman’s equations

{
�s(θ) = θ

�w(θ) = min
e=vw∈E

Te(�v(θ)) (7)

so that e = vw is active iff �w(θ) = Te(�v(θ)).

Dynamic Equilibrium. A dynamic equilibrium is a flow pattern that uses
only dynamic shortest paths. More precisely, let Θe = {θ : e ∈ E′

θ} be the set of
entrance times θ at which the arc e is active, and Ξe = �v(Θe) the set of local
times ξ = �v(θ) at which e will be active. A flow over time (f+

e )e∈E is called a
dynamic equilibrium iff for a.e. ξ ≥ 0 we have f+

e (ξ) > 0 ⇒ ξ ∈ Ξe.

2.2 Characterization of Dynamic Equilibria

Since the inflows f+
e (·) are measurable the same holds for f−

e (·) and we may
define the cumulative inflows and cumulative outflows as

F+
e (θ) =

∫ θ

0

f+
e (z) dz

F−
e (θ) =

∫ θ

0

f−
e (z) dz.

These cumulative flows allow to express the queues as ze(θ) = F+
e (θ)−F−

e (θ+τe).
It turns out that a dynamic equilibrium can be equivalently characterized by the
fact that for each arc e = vw ∈ E we have

F+
e (�v(θ)) = F−

e (�w(θ)) ∀ θ ≥ 0. (8)

In this case, the functions xe(θ) � F+
e (�v(θ)) are static flows with

∑

e∈δ+(v)

xe(θ) −
∑

e∈δ−(v)

xe(θ) =

⎧
⎨

⎩

u0θ if v = s
−u0θ if v = t

0 if v �= s, t.
(9)

2.3 Derivatives of a Dynamic Equilibrium

The labels �v(θ) and the static flows xe(θ) are nondecreasing functions which
are also absolutely continuous so that they can be reconstructed from their
derivatives by integration.1 Moreover, from these functions one can recover the
equilibrium inflows f+

e (·) using the relation x′
e(θ) = f+

e (�v(θ))�′
v(θ). Hence,

1 These derivatives exist almost everywhere and are locally integrable.
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finding a dynamic equilibrium reduces essentially to computing the derivatives
�′
v(θ), x′

e(θ).
Let θ be a point of differentiability and set �′

v = �′
v(θ) ≥ 0 and x′

e = x′
e(θ) ≥ 0.

From (9) we see that x′ is a static st-flow of size u0, namely,

∑

e∈δ+(v)

x′
e −

∑

e∈δ−(v)

x′
e =

⎧
⎨

⎩

u0 if v = s
−u0 if v = t

0 if v �= s, t
(10)

while using (7), (4), (1) and the differentiation rule for a minimum we get
⎧
⎨

⎩

�′
s = 1

�′
w = min

e=vw∈E′
θ

ρe(�′
v, x′

e)
(11)

where

ρe(�′
v, x′

e) =
{

x′
e/νe if e ∈ E∗

θ

max{�′
v, x′

e/νe} if e �∈ E∗
θ

(12)

with E∗
θ the set of arcs e = vw with positive queue ze(�v(θ)) > 0. In addition to

this, the conditions for dynamic equilibria imply E∗
θ ⊂ E′

θ as well as

(∀ e ∈ E′
θ) x′

e > 0 ⇒ �′
w = ρe(�′

v, x′
e)

(∀ e �∈ E′
θ) x′

e = 0.
(13)

These equations fully characterize the derivatives of a dynamic equilibrium.
In fact, for all subsets E∗ ⊆ E′ ⊆ E the system (10)–(13) admits at least one
solution (�′, x′) and moreover the �′ component is unique. These solutions are
called normalized thin flows with resetting (ntfr) and can be used to reconstruct
a dynamic equilibrium by integration, proving the existence of equilibria. We
refer to [1] for the existence and uniqueness of ntfr’s and to [5] for a description
of the integration algorithm and how to find the equilibrium inflows f+

e (·).
Observe that there are only finitely many options for E∗ and E′. Since the

corresponding �′ is unique, it follows that the functions �v(θ) will be uniquely
defined and piecewise linear with finitely many options for the derivatives.
Although the static flows xe(θ) are not unique in general, one can still find an
equilibrium in which these functions are also piecewise linear by fixing a specific
x′ in the ntfr for each pair E∗, E′.

3 Steady States

We say that a dynamic equilibrium attains a steady state if for sufficiently large
times all the queues are frozen to a constant ze(θ) ≡ z∗

e . This is clearly equivalent
to the fact that the arc travel times become constant equal to τ∗

e = τe + q∗
e with

q∗
e = z∗

e/νe the corresponding queuing times.

Lemma 1. A dynamic equilibrium attains a steady state iff there exists some
θ∗ ≥ 0 such that �′

v(θ) = 1 for every node v ∈ V and all θ ≥ θ∗.
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Proof. In a steady state we clearly have �v(θ) = θ+d∗
v where d∗

v is the minimum
travel time from s to v with arc times τ∗

e , so that �′
v(θ) = 1. Conversely, if all

these derivatives are equal to 1 then �v(θ) = θ + d∗
v for some constant d∗

v and
θ ≥ θ∗. Moreover, an arc e = vw with nonempty queue must be active so that
�w(θ) = Te(�v(θ)) which yields

ze(θ + d∗
v) = ze(�v(θ)) = νe(�w(θ) − �v(θ) − τe) = νe(d∗

w − d∗
v − τe)

which shows that all queues eventually become constant. ��
Theorem 2. Consider a steady state with queues z∗

e ≥ 0 and let d∗
v be the min-

imum travel times with arc times τ∗
e = τe +q∗

e where q∗
e = z∗

e/νe. Let (�′, x′) with
�′
v = 1 be a corresponding ntfr and denote by F0 the set of st-flows satisfying

(10). Then x′ and (d∗, q∗) are optimal solutions for the following pair of dual
linear programs:

min
x′

∑

e∈E

τex
′
e

s.t. x′ ∈ F0

0 ≤ x′
e ≤ νe ∀e ∈ E,

(P)

max
d,q

u0dt −
∑

e∈E

νeqe (D)

s.t. ds = 0
dw ≤ dv + τe + qe ∀e = vw ∈ E

qe ≥ 0 ∀e ∈ E.

Proof. Clearly (d∗, q∗) is feasible for (D). Also (10) gives x′ ∈ F0, while (13)
implies that if x′

e > 0 then 1 = ρe(1, x′
e). This implies that x′

e ≤ νe, so x′ is
feasible for (P). If x′

e > 0 then by (13) the arc e is active, and hence d∗
w =

d∗
v + τe + q∗

e . And if q∗
e > 0, then (11) implies that 1 ≤ ρe(1, x′

e) = x′
e/νe, which

yields x′
e = νe. This proves that x′ and (d∗, q∗) are complementary solutions,

and hence are optimal for (P) and (D) respectively. ��
According to this result, if a dynamic equilibrium eventually settles to a

steady state then the corresponding queue lengths must be optimal for (D).
Generically (after perturbing capacities) this linear program has a unique solu-
tion in which case the steady state is fully characterized. Otherwise, if (D) has
multiple solutions it is not evident which queue lengths will be obtained in steady
state. Note that even if the min cost flow for (P) is unique, this does not mean
that only one steady state situation is possible because there may be flexibility in
the queue lengths. For instance, if u0 = 1 and the network has a single link from
s to t of unit capacity, if we create a queue of some length at time 0 this queue
will remain in the steady state solution. This point will be further discussed in
Example 3 in Sect. 5.
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Remark. It is not difficult to show that when we start with initial conditions
ze(0) = z∗

e where z∗
e = νeq

∗
e with q∗ optimal for (D), then the dynamic equilib-

rium is already at a steady state and the queues remain constant.

4 Convergence to a Steady State

In this section we prove that a steady state exists and that it is actually reached
in finite time. To this end we introduce a Lyapunov potential function that
increases along the evolution of the dynamic equilibrium. The potential function
is inspired from the previous dual program and is given by

Φ(θ) := u0(�t(θ) − �s(θ)) −
∑

e=vw∈E

ze(�v(θ)).

Theorem 3. Φ′(θ) is nonnegative for all θ and strictly positive unless the
dynamic equilibrium has reached a steady state.

Proof. The queues can be expressed as ze(�v(θ)) = νe [�w(θ) − �v(θ) − τe]+.
Using the derivative of a max function and taking a ntfr (�′, x′) at time θ,
we thus obtain

Φ′(θ) = u0(�′
t − �′

s) −
∑

e∈E′
θ\E∗

θ

νe[�′
w − �′

v]+ −
∑

e∈E∗
θ

νe(�′
w − �′

v).

Now, for e ∈ E′
θ\E∗

θ we have �′
w ≤ ρe(�′

v, x′
e) = �′

v if x′
e = 0 and �′

w = ρe(�′
v, x′

e) ≥
�′
v if x′

e > 0, so that letting E+
θ = E∗

θ ∪ {e ∈ E′
θ\E∗

θ : x′
e > 0} we may write

Φ′(θ) = u0(�′
t − �′

s) −
∑

e∈E+
θ

νe(�′
w − �′

v).

Let us introduce a return arc ts with capacity νts = u0 and flow x′
ts = u0 so

that x′ is a circulation. Let Er
θ = E+

θ ∪ {ts} and for each e = vw ∈ Er
θ define

the function

He(z) =

⎧
⎪⎨

⎪⎩

1 if �′
v ≤ z < �′

w

−1 if �′
w ≤ z < �′

v

0 otherwise.

Then the derivative Φ′(θ) can be expressed as

Φ′(θ) = −
∫ ∞

0

∑

e∈Er
θ

νeHe(z) dz.

For the remainder of the proof, let δ(S) denote the edges in Er
θ crossing S

(and similarly for δ+(S) and δ−(S)). Let Vz = {v : �′
v ≤ z} and consider an

arc e = vw ∈ E+
θ . If e ∈ δ+(Vz) then �′

v ≤ z < �′
w and therefore �′

w = x′
e/νe.

Similarly, if e ∈ δ−(Vz) then �′
w ≤ z < �′

v which implies e ∈ E∗
θ and again
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�′
w = x′

e/νe. Hence x′
e = νe�

′
w for all e ∈ E+

θ ∩ δ(Vz). This equality also holds for
the return arc ts, while in the remaining arcs x′

e = 0. Hence
∑

e∈δ+(Vz)

νez ≤
∑

e=vw∈δ+(Vz)

νe�
′
w =

∑

e∈δ+(Vz)

x′
e =

∑

e∈δ−(Vz)

x′
e =

∑

e=vw∈δ−(Vz)

νe�
′
w ≤

∑

e∈δ−(Vz)

νez

with strict inequality if δ+(Vz) is nonempty. It follows that for all z > 0 we have
∑

e∈Er
θ

νeHe(z) =
∑

e∈δ+(Vz)

νe −
∑

e∈δ−(Vz)

νe ≤ 0

and therefore Φ′(θ) ≥ 0 with strict inequality unless δ+(Vz) is empty for almost
all z ≥ 0. The latter occurs iff all �′

v are equal. Since �′
s = 1 it follows that

Φ′(θ) = 0 iff �′
v = 1 for all v which by Lemma 1 characterizes a steady state. ��

Theorem 4. Let ν̄ =
∑

e∈C νe be the minimal queuing capacity among all st-
cuts C. If u0 ≤ ν̄ then the dynamic equilibrium attains a steady state in finite
time.

Proof. From Theorem 3 it follows that there is some κ > 0 such that Φ′(θ) ≥ κ
for every phase other than the steady state. This is simply because the thin flow
depends only on the current shortest path network E′

θ and the set of queuing
edges E∗

θ , and so there are only finitely many possible derivatives.
Thus, in order to prove that a steady state is reached in finite time it suffices

to show that Φ(θ) remains bounded. To this end we note that the condition
u0 ≤ ν̄ implies that (P) is feasible and hence it has a finite optimal value α. The
conclusion then follows by noting that the point (d, q) with dv = �v(θ) − �s(θ)
and qe = ze(�v(θ))/νe is feasible for the dual (D) so that Φ(θ) ≤ α. ��

Given that convergence to a steady state does happen in finite time, it is
natural to ask for explicit bounds. It is easy to see that a polynomial (in the
input size encoding) is impossible; simply consider a network consisting of two
parallel links, one with capacity 1−2L and length zero, the other with capacity 1
and length 1. The first phase, where all traffic takes the shorter edge, lasts until
time 2L. However, we can give a pseudopolynomial bound on the convergence
time (and hence, queue lengths).

Theorem 5. Consider an instance for which u0 ∈ Z+ and νe ∈ Z+ for all
e ∈ E. Let M =

∑
e∈E νe and T =

∑
e∈E τe. Then assuming the dynamic

equilibrium attains a steady state, it is reached by time O(MT ), and moreover,
the waiting time in any queue never exceeds O(M3T ).

The argument to bound the convergence time involves showing that the dif-
ference between the smallest and largest label derivative is not too small. Com-
bining this with an upper bound on the rate at which any queue can grow yields
the second claim. We delay the proof to the full version of the paper.
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5 Some Conjectures and Counterexamples

While we have settled the finite-time convergence to a steady state, there are a
number of questions about dynamic equilibria that remain open. In this section
we discuss some conjectures and provide counterexamples to some of them.

As mentioned in the introduction a first conjecture would be that, similarly
to what happens for static flows, the flow across any cut is always bounded
by the inflow. This would provide a way to estimate the queues and to prove
their boundedness. Unfortunately the property fails in a dynamic equilibrium.
The reason for this is that flow entering the network at different times may
experience different delays in such a way that they later superpose across an
intermediate cut. The following instance with unit inflow u0 = 1 exhibits an
outflow rate of 13/12 during a time interval.

Example 1. Consider the network consisting of the vertices {s, v, t} with edges
e1 = (s, t), e2 = (s, v), e3 = (v, t), e4 = (v, t) and inflow u0 = u. Capacities are
ν1 = u/3, ν2 = 3u/4, ν3 = u/3, and ν4 = u, and delays are τ1 = τ4 = τ , and
τ2 = τ3 = 0. In this instance one can compute the derivative of the distance
labels at node t as

�′
t(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

3 for θ ∈ [0, τ/2)
3/2 for θ ∈ [τ/2, τ/2 + τ/5)

12/13 for θ ∈ [τ/2 + τ/5, 2τ)
1 for θ ∈ [2τ,∞)

.

s t

v

ν 1
=

u/
3

τ1 = τ

ν
2 =

3u
/4

τ
2 = 0

ν 3
=

u/
3

τ3
= 0

ν4 = u

τ 4
=

τ

Thus the amount of flow arriving at t at time �t(θ) can readily be computed as
u/�′

t(θ). If we consider the local time at node t this flow is then

f−
1 (θ) + f−

3 (θ) + f−
4 (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

u/3 for θ ∈ [0, 3τ/2)
2u/3 for θ ∈ [3τ/2, 9τ/5)

13u/12 for θ ∈ [9τ/5, 3τ)
u for θ ∈ [3τ,∞).

By chaining together slightly modified copies of this instance, one can blow
up the maximum outflow to any desired quantity, even with unit inflow. Notice
that the length of the “pulse” in the above construction can be made as large as
required, by choosing τ appropriately. This pulse can be used to drive a second
copy of the construction, with larger u. Figure 3 shows the construction with two
copies; there is a phase with outflow (13/12)2. The phases before the pulse of
the left gadget only produce a queue on e′, which has no impact on the behavior
except for essentially shortening e′ and h′. We delay the details to the full version
of the paper.
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s t

v v′

t′

νe
=

1/
3

τe = 2

ν
f

=
3/4

τ
f =

0

ν g
=

1/
3

τg
=

0

νh = 1

τh
=

2

νe
′ =

u
′ /3

τe′ = 2

ν
f ′

=
3u ′/4

τ
f ′ = 0

ν g
′
=

u
′ /3

τg′
=

0

νh′ = u
′

τ h
′ =

2

Fig. 3. Creating a larger pulse. Here, u′ = 13/12.

Even though the previous example shows that intermediate flows can grow
very large our main result states that a steady state is actually reached after finite
time. This indeed implies that the queues remain bounded along the evolution
of a dynamic equilibrium. However this also raises further questions. Indeed it
is unclear whether the steady state is attained after finitely many phases of the
Koch-Skutella algorithm. It is conceivable that in some situations the phases
become shorter and shorter and that infinitely many of them occur in the finite
time span before steady state is reached. The next example shows that there
may actually be an exponential (in the input size) number of phases.

Example 2. Here we sketch the construction of an instance with an exponential
number of phases; we defer the details to the full version of the paper. More pre-
cisely, for a given d we construct an instance with Ω(2d) phases and O(d2) nodes.
The main idea is to construct a “2-pulse” gadget, based on the “1-pulse” gadget
described in Example 1. The outflow rate of this gadget has two, well-separated,
periods where the outflow is large; outside of these two periods, the outflow is
much smaller. Given a gadget with Ω(2d) phases (call it H), we construct one
with Ω(2d+1) phases roughly as follows. We begin with the 2-pulse gadget. To
the output of this gadget, we attach both a single edge of small capacity and
length 0 to the sink; and in parallel, we attach H. In between pulses, all flow
uses the short low-capacity edge, and any queues in H decay. During each of the
two pulses, flow enters H; inductively, this yields Ω(2d) phases each time.

Knowing that the dynamic equilibrium always reaches a steady state, a nat-
ural question is whether steady state queues can be characterized without having
to compute the full equilibrium evolution. While we already observe that this is
the case when the dual problem (D) has a unique solution, which occurs gener-
ically, the following example suggests that this is likely not possible in general.

Example 3. Consider the network of Example 1, setting τ = 2 and u = 1, with
an extra node t̂, which becomes the new sink, and two additional arcs, a = (t, t̂)
and b = (t, t̂). Let νa = 2/3, νb = 1/3, τa = 0, and τb = 1. Clearly, up to time
3 + 3/5 all flow will simply take arc a and will not queue at t. Therefore we can
ignore this initial phase, and the queues that will form at equilibrium in arcs a
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and b are the same as those that we would have in a network consisting of just
nodes t (the source) and t̂ (the sink) and inflow

u0(θ) =
{

13/12 for θ ∈ [0, 2 + 2/5)
1 for θ ∈ [2 + 2/5,∞).

In this instance all flow will take arc a for time θ ∈ [0, 8/5), forming a queue
ze(8/5) = 2/3. At this point flow will start splitting between arcs a and b in
proportions 2/3, 1/3, implying that queues will grow on both arcs until time
2 + 2/5 where the steady state is achieved. The steady state queues will thus be
z∗
a = 32/45 and z∗

b = 1/45. This example shows that the steady state queues are
not minimal in any reasonable sense and that, furthermore, slightly changing the
instance (e.g. τ4) will change the steady state queues. Furthermore, if we slightly
increase the capacity of arc b, say to 1/3 + ε the steady state queues jump to
z∗
a = 2/3 and z∗

b = 0.
Additionally, one can observe from a slight variant of this instance, namely

taking τ large and νb = 1/3+ε, that queues may grow very large in the transient
and then go down to zero at steady state.
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Abstract. In the maximum traveling salesman problem (Max TSP) we
are given a complete undirected graph with nonnegative weights on the
edges and we wish to compute a traveling salesman tour of maximum
weight. We present a fast combinatorial 4

5
– approximation algorithm

for Max TSP. The previous best approximation for this problem was
7
9
. The new algorithm is based on a technique of eliminating difficult

subgraphs via gadgets with half-edges, a new method of edge coloring
and a technique of exchanging edges.

1 Introduction

The Maximum Traveling Salesman Problem (Max TSP) is a classical variant of
the famous Traveling Salesman Problem. In the problem we are given a complete
undirected graph G = (V,E) with nonnegative weights on the edges and we
aim to compute a traveling salesman tour of maximum weight. Max TSP, also
informally known as the “taxicab ripoff problem”, is both of theoretical and
practical interest.

Previous approximations of Max TSP have found applications in combina-
torics and computational biology: the problem is useful in understanding RNA
interactions [27] and providing algorithms for compressing the results of DNA
sequencing [26]. It has also been applied to the problem of finding a maximum
weight triangle cover of the graph [14] and to a combinatorial problem called
bandpass-2 [7], where we are supposed to find the best permutation of rows in a
boolean-valued matrix, so that the weighted sum of structures called bandpasses
is maximised.

Previous Results. The first approximation algorithms for Max TSP were
devised by Fisher et al. [10]. They showed several algorithms having approxima-
tion ratio 1

2 and one with a guarantee of 2
3 . In [16] Kosaraju, Park and Stein pre-

sented an improved algorithm giving a ratio of 19
27 [4]. This was in turn improved
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by Hassin and Rubinstein, who gave a 5
7 - approximation [12]. In the meantime

Serdyukov [25] presented (in Russian) a simple and elegant 3
4 -approximation algo-

rithm. The algorithm is deterministic and runs in O(n3), where n denotes the num-
ber of vertices in the graph. Afterwards, Hassin and Rubinstein gave [13] a random-
ized algorithm with expected approximation ratio of at least 25(1−ε)

33−32ε and running
in O(n2(n + 21/ε)), where ε is an arbitrarily small constant. The first determinis-
tic approximation algorithm with the ratio better than 3

4 was given in [6] by Chen
et al. It is a 61

81 -approximation through a non-trivial derandomization of the algo-
rithm from [13] that runs in O(n3). The currently best known approximation given
by Paluch et al. [22] achieves the ratio of 7

9 . Its running time is also O(n3).

Related Work. It is known that Max TSP is max-SNP-hard [3], so a constant
δ < 1 exists, which is an upper bound on the approximation ratio of any algo-
rithm for this problem. The geometric version of the problem, where all vertices
are in Rd and the weight of each edge is defined as the Euclidean distance of its
endpoints, was considered in [2] and shown to be solvable in polynomial time for
d = 2 and NP-hard for d > 2. Other metrics are also considered in that paper.

Regarding the path version of Max TSP – Max TSPP (the Maximum Trav-
eling Salesman Path Problem), the approximation algorithms with ratios cor-
respondingly 1

2 and 2
3 have been given in [19]. The first one for the case when

both endpoints of the path are specified and the other for the case when only
one endpoint is given.

Another related problem is called the maximum scatter TSP (see [1]), where
the goal is to find a TSP tour (or a path) maximizing the weight of the lightest
edge selected in the solution. The problem is motivated by medical imaging and
some manufacturing applications. In general there is no constant approximation
for this problem, but if the weights of the edges obey the triangle inequality, it
is possible to give a 1

2 -approximation algorithm. That paper also studies a more
general version of the maximum scatter TSP – the max-min-m-neighbour TSP.
The improved approximation results for the max-min-2-neighbour problem have
been given in [8].

The maximum metric symmetric traveling salesman problem, in which the
edge weights satisfy the triangle inequality - the best approximation factor is
7
8 [18]. For the maximum asymmetric traveling salesman problem with triangle
inequality the best approximation ratio currently equals 35

44 [17].
In the Maximum Latency TSP problem we are given a complete undirected

graph with vertices v0, v1, . . . , vn. Our task is to find a Hamiltonian path starting
at a fixed vertex v0, which maximizes the total latency of the vertices. If in a
given path P the weight of the i-th edge is wi, then the latency of the j-th vertex
is Lj =

∑j
i=1 wi and the total latency is defined as L(P ) =

∑n
j=1 Lj . A ratio

1
2 -approximation algorithm for the metric version of the problem is presented
in [5]. Improved ratios for this and other versions (directed, nonmetric) of the
problem are shown in [11].
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Our Approach and Results. We begin with computing a maximum weight
cycle cover Cmax of G. A cycle cover of a graph G is a collection of cycles such
that each vertex belongs to exactly one of them. The weight of a maximum weight
cycle cover Cmax is an upper bound on OPT , where by OPT we denote the
weight of a maximum weight traveling salesman tour. By computing a maximum
weight perfect matching M we get another, even simpler than Cmax, upper
bound – on OPT/2. From Cmax and M we build a multigraph G1 which consists
of two copies of Cmax and one copy of M , (for each edge e of G the multigraph
G1 contains between zero and three copies of e). Thus the total weight of the
edges of G1 is at least 5

2 OPT . Next we would like to path-3-color G1, that is
to color the edges of G1 with three colors, so that each color class contains only
vertex-disjoint paths. The paths from the color class with maximum weight can
then be patched in an arbitrary manner into a tour of weight at least 5

6 OPT .

Technique of Eliminating Difficult Subgraphs via Half-edges. Not every multi-
graph G1 can, however, be path-3-colored. For example, a subgraph of G1

obtained from a triangle T of Cmax such that M contains one of the edges
of T (such triangle is called a 3-kite of G1) cannot be path-3-colored as, clearly,
it is impossible to color such seven edges with three colors and not create a
monochromatic triangle. Similarly, a subgraph of G1 obtained from a square S
(i.e., a cycle of length four) of Cmax such that M contains two edges connecting
vertices of S (such square is called a 4-kite) is not path-3-colorable. To find a way
around this difficulty, we compute another cycle cover C2 improving Cmax with
respect to M , which is a cycle cover that does not contain any 3-kite or 4-kite of
G1 and whose weight is also at least OPT . An important feature of C2 is that it
may contain half-edges. A half-edge of an edge e is, informally speaking, a half
of the edge e that contains exactly one of its endpoints. Half-edges have already
been introduced in [21]. Computing C2 is done via a tailored reduction to a
maximum weight perfect matching. It is, to some degree, similar to computing a
directed cycle cover without length-two cycles in [21], but for Max TSP we need
much more complex gadgets.

From one copy of C2 and M we build another multigraph G2 with weight at
least 3

2 OPT . It turns out that G2 can always be path-2-colored. The multigraph
G1 may be non-path-3-colorable – if it contains at least one kite. We notice,
however, that if we remove one arbitrary edge from each kite, then G1 becomes
path-3-colorable. The edges removed from G1 are added to G2. As a result, the
modified G2 may cease to be path-2-colorable. To remedy this, we in turn remove
some edges from G2 and add them to G1. In other words, we find two disjoint
sets of edges – a set F1 ⊆ G1 and a set F2 ⊆ G2, called exchange sets, such
that the multigraph G′

1 = G1\F1 ∪ F2 is path-3-colorable and the multigraph
G′

2 = G2\F2 ∪ F1 is path-2-colorable. Since G1 and G2 have the total weight
at least 4 OPT , by path-3-coloring G′

1 and path-2-coloring G′
2 we obtain a 4

5 -
approximate solution to Max TSP.
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Edge Coloring. The presented algorithms for path-3-coloring and path-2-coloring
are essentially based on a simple notion of a safe edge – an edge colored in such
a way that it is guaranteed not to belong to any monochromatic cycle, used
in an inductive way. The adopted approach may appear simple and straightfor-
ward. For comparison, let us point out that the method of path-3-coloring the
multigraph obtained from two directed cycle covers described in [15] is rather
convoluted.

Generally, the new techniques are somewhat similar to the ones used for
the directed version of the problem – Max ATSP – in [20]. We are convinced
that they will prove useful for other problems related with TSP, cycle covers or
matchings.

The main result of the paper is

Theorem 1. There exists a 4
5 -approximation algorithm for Max TSP. Its run-

ning time is O(n3) if the graph has an even number of vertices and O(n5) oth-
erwise.

Algorithm 1. A 4
5 -approximation for Max TSP

1: Cmax ← a maximum-weight cycle cover of G
2: M ← a maximum-weight perfect matching in G
3: G1 ← Cmax � Cmax � M
4: path-3-color G1 with colors of K3 = {1, 2, 3} leaving kites and edges of M incident

to kites uncolored. � Section 2
5: C2 ← a maximum-weight relaxed cycle cover improving Cmax with respect to M .

� Section 3
6: G2 ← C2 � M
7: F1 ⊂ Cmax, F2 ⊂ C2 ← sets of edges such that the multigraph G′

1 = G1\F1 ∪ F2 is
path-3-colorable and G′

2 = G2\F2 ∪ F1 is path-2-colorable. � Lemma 5
8: Path-2-color G′

2 with colors of K2 = {4, 5}. � Full version of the paper
9: Extend the partial path-3-coloring of G1 to the complete path-3-coloring of G′

1. �
Full version of the paper

10: Choose the heaviest color class k ∈ K3 ∪ K2. Complete the disjoint paths of color
k into a traveling salesman tour in an arbitrary way.

All missing proofs are contained in the full version of this paper [9].

2 Path-3-Coloring of G1

We compute a maximum weight cycle cover Cmax of a given complete undirected
graph G = (V,E) and a maximum weight perfect matching M of G. We are going
to call cycles of length i, i.e., consisting of i edges i-cycles. Also sometimes 3-
cycles will be called triangles and 4-cycles – squares. The multigraph G1

consists of two copies of Cmax and one copy of M . We want to color each edge
of G1 with one of three colors of K3 = {1, 2, 3} so that each color class consists
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of vertex-disjoint paths. The graph G1 is a subgraph of the multigraph G1 that
contains an edge (u, v) iff the multigraph G1 contains an edge between u and v.
The path-3-coloring of G1 can be equivalently defined as coloring each edge of
(the graph) G1 with the number of colors equal to the number of copies contained
in the multigraph G1. From this time on, unless stated otherwise, G1 denotes a
graph and not a multigraph.

We say that a colored edge e of G1 is safe if no matter how we color the so
far uncolored edges of G1 e is guaranteed not to belong to any monochromatic
cycle of G1. An edge e of M is said to be external if its two endpoints belong
to two different cycles of Cmax. Otherwise, e is internal. We say that an edge e
is incident to a cycle c if it is incident to at least one vertex of c.

We prove the following useful lemma.

Lemma 1. Consider a partial coloring of G1. Let c be any cycle of Cmax such
that for each color k ∈ K3 there exists an edge of M incident to c that is colored
k. Then we can color c so that each edge of c and each edge incident to one of
the edges of c is safe.

Proof. The proposed procedure of coloring c is as follows.

If there exists an edge of c that also belongs to M , we color it with all three
colors of K3. For each uncolored edge of M incident to c, we color it with an
arbitrary color of K3. Next, we orient the edges of c (in any of the two ways)
so that c becomes a directed cycle c. Let e = (u, v) be any uncolored edge of
c oriented from u to v. Then, there exists an edge e′ of M incident to u. If e′

is contained in c, then we color e with any two colors of K3. Otherwise e′ is
colored with some color k of K3. Then we color e with the two colors belonging
to K3\k. First, no vertex of c has three incident edges colored with the same
color, as for each vertex its outgoing edge is colored with different colors than
an incident matching edge. Second, as for each color k ∈ K3 there is a matching
edge incident to c colored with k, there exists an edge of c that is not colored k,
thus c does not belong to any color class, i.e. there exists no color k ∈ K3 such
that each edge of c is colored with k. Let us consider now any edge e = (u, v)
of M incident to some edge of c and not belonging to c. The edge e is colored
with some color k. Suppose also that vertex u belongs to c (v may or may not
belong to c.) Let u′ be any other vertex of c such that some edge of M\Cmax

colored k is incident to it (u′ may be equal to v if e is internal). To show that e
is safe, it suffices to show that there exists no path consisting of edges of c ∪ M
that connects u and u′ and whose every edge is colored k. However, by the way
we color edges of c we know that the outgoing edges of u and u′ are not colored
with k because of the way we oriented the cycle, there is no path connecting u
and u′ contained in c that starts and ends with incoming edge. �

For each cycle c of Cmax we define its degree of flexibility denoted as
flex(c) and its colorfulness, denoted as col(c). The degree of flexibility of a
cycle c is the number of internal edges of M incident to c and the colorfulness
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of c is the number of colors of K3 that are used for coloring the external edges
of M incident to c.

From Lemma 1 we can easily derive.

Lemma 2. If a cycle c of Cmax is such that flex(c) + col(c) ≥ 3, then we can
color c so that each edge of c and each edge incident to one of the edges of c is
safe.

Sometimes, even if a cycle c of Cmax is such that flex(c) + col(c) < 3, we
can color the edges of c so that each of them is safe. For example, suppose that
c is a square consisting of edges e1, . . . , e4 and there are four external edges of
M incident to c, all colored 1. Suppose also that each external edge incident to
c is already safe. Then we can color e1 with 1 and 2, e3 with 1 and 3 and both
e2 and e4 with 2 and 3. We can notice that e1 is guaranteed not to belong to a
cycle colored 1 because external edges incident to e1 are colored 1 and are safe.
Analogously, we can easily check that each other edge of c is safe. However, for
example, a triangle t of Cmax that has three external edges of M incident to it,
all colored with the same color of K3, cannot be colored in such a way that it
does not contain a monochromatic cycle.

Consider a cycle c of Cmax such that every external edge of M incident to c
is colored. We say that c is nice if and only if (1) flex(c) + col(c) ≥ 3 or (2)
c contains at least 3 − flex(c) − col(c) vertex-disjoint edges, each of which has
the property that it has exactly two incident external edges of M and the two
external edges of M incident to it are colored with the same color of K3 or (3)
c is a square such that flex(c) = 1.

Otherwise we say that c is blocked. We can see that a cycle c of Cmax is
blocked if and only if

– c is a triangle and all external edges of M incident to c are colored with the
same color of K3,

– c is a square with two internal edges of M incident to it (flex(c) = 2),
– c is a cycle of even length, flex(c) = 0 and there exist two colors k1, k2 ∈ K3

such that external edges of M incident to c are colored alternately with k1
and k2.

Among blocked cycles we distinguish kites. We say that a cycle c is a kite
if it is a triangle such that flex(c) = 1 and then we call it a 3-kite or it is a
square, whose two edges belong to M (so flex(c) = 2) - called a 4-kite. We can
assume that a square with two diagonals in M will not occur, as diagonals are
heavier than any two opposite edges in this square (as they are in M), so they
would be included in Cmax. A cycle of Cmax which is not a kite is said to be
non-kite.

Now, we are ready to state the algorithm for path-3-coloring G1. It is pre-
sented as Algorithm 2.

Lemma 3. Let c be a non-kite cycle of Cmax that at some step of Algorithm
Color G1 has the fewest uncolored external edges incident to it. Then, it is always
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Algorithm 2. Color G1

1: while ∃ an uncolored non-kite cycle of Cmax do
2: C ← a non-kite uncolored cycle of Cmax with the fewest uncolored external

edges incident to it.
3: Color uncolored external edges incident to C so that no other

cycle of Cmax becomes blocked and either flex(C) + col(C) ≥ 3 or
its external matching edges are all safe. � Lemma 3

4: Color C and internal edges incident to it in such a way, that each edge
incident to C is safe. � Lemma 4

5: end while

possible to color all uncolored external edges incident to c so that no non-kite
cycle of Cmax becomes blocked. Moreover, if c has at least two uncolored external
edges incident to c then, additionally, it is always possible to do it in such a way
that flex(c) + col(c) ≥ 3. If c has exactly one uncolored external edge e of M
incident to it, then we can color e so that flex(c) + col(c) ≥ 3 or so that e is
safe.

From the above lemma we get

Corollary 1. After all external edges are colored, each of them is incident to a
cycle c of Cmax such that flex(c) + col(c) ≥ 3 or is safe.

Lemma 4. Let c be a nice cycle of Cmax whose all incident external edges of M
are already colored and safe. Then it is always possible to color c and internal
edges incident to c in such a way that each edge incident to c is safe.

3 A Cycle Cover Improving Cmax with Respect to M

Since Cmax may contain kites, we may not be able to path-3-color G1. Therefore,
our next aim is to compute another cycle cover C2 of G such that it does not
contain any kite of Cmax and whose weight is an upper bound on OPT . Since
computing such C2 may be hard, we relax the notion of a cycle cover and allow
C2 to contain half-edges. A half-edge of the edge e is, informally speaking, a
half of the edge e that contains exactly one of the endpoints of e. Let us also
point out here that C2 may contain kites which do not belong to Cmax.

We say that an edge (u, v) is a kite-edge if u and v belong to the same kite
(so it can be a side of a kite, but also a diagonal of a 4-kite). Every kite-edge
e = (u, v) is split into two half edges (u, xe) and (xe, v), each carrying half of
the weight of e. The graph G̃ = (Ṽ , Ẽ) will be G with kite-edges replaced with
half-edges.

Definition 1. A relaxed cycle cover improving Cmax with respect to M
is a subset C̃ ⊆ Ẽ such that

(i) each vertex in V has exactly two incident edges in C̃;
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(ii) for each 3-kite T of Cmax the number of half-edges of kite-edges of T con-
tained in C̃ is even and not greater than four;

(iii) for each 4-kite S of Cmax the number of half-edges of kite-edges of S con-
tained in C̃ is even and not greater than six.

To compute a relaxed cycle cover C2 improving Cmax with respect to M we
construct the following graph G′ = (V ′, E′) (by replacing kites with gadgets).
The set of vertices V ′ is a superset of the set of verices V (G). For each kite-
edge (u, v) of G we add two vertices xu

v , xv
u to V ′ and edges (u, xu

v ), (xv
u, v) to E′

(these represent the half-edges). For each kite-edge (u, v) which is not a diagonal
of a 4-kite or one of the non-matching edges in 3-kite (for each 3-kite we choose
arbitrarily one of them) we add also an edge (xu

v , xv
u). The edge (xu

v , xv
u) has

weight 0 in G′ and each of the edges (u, xu
v ), (xv

u, v) has weight equal to 1
2w(u, v).

Each of the vertices xu
v , xv

u is called a splitting vertex of the edge (u, v).
For each 3-kite T on vertices u, v, w we add two vertices pT , qT to V ′. Let’s

assume that u is incident to external edge of M and that (xu
w, xw

u ) was the side
not added to G′. The vertex pT is connected to the splitting vertices of edges of
T that are neighbors of u, i.e. to vertices xu

v , xu
w and to vertex xv

w. The vertex
qT is connected to every other splitting vertex of T , i.e. xw

u , xw
v , xv

u. All edges
incident to vertices pT , qT have weight 0 in G′.

For each 4-kite S of Cmax on vertices u, v, w, z we add five vertices
pSu, pSv, pSw, pSz, q

S to V ′. Vertex pSu is connected to the splitting vertices of edges of
S that are neighbors of u, i.e. to vertices xu

v , xu
w, xu

z . Vertices pSv, pSw, pSz are con-

Fig. 1. Gadgets for 3-kites (a) and 4-kites (b) of G1 in graph G. Half-edges corre-
sponding to the original edges are thickened, the auxiliary edges are thin. Original
vertices (thick dots) are connected with all the other original vertices of graph G. The
auxiliary vertices have no connections outside of the gadget. The figures are subtitled
with the specifications of b(v) values for different vertices. For a vertex t with b(t) = i,
the resulting b-matching will contain exactly i edges ending in t.
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nected analogously. Vertex qS is connected to vertices pSu, pSv, pSw, pSz. All edges
incident to vertices pSu, pSv, pSw, pSz, q

S have weight 0.
For each edge (u, v) of G that is not a kite-edge we add it to E′ with weight

w(u, v).
We reduce the problem of computing a relaxed cycle cover improving Cmax

with respect to M , to the problem of computing a perfect b-matching in the
graph G′. We define the function b : V ′ → N in the following way. For each
vertex v ∈ V we set b(v) = 2. For each splitting vertex v′ of some problematic
edge we set b(v′) = 1. For all vertices pT and qT , where T denotes a 3-kite of
Cmax we have b(pT ) = b(qT ) = 1. For all vertices pSu and qS , where S denotes a
4-kite of Cmax and u one of its vertices we have b(pSu) = b(qS ) = 2 (Fig. 1).

Theorem 2. Any perfect b-matching of G′ yields a relaxed cycle cover C2

improving Cmax with respect to M . A maximum weight perfect b-matching of
G′ yields a relaxed cycle cover C2 improving Cmax with respect to M such that
w(C2) ≥ OPT .

4 Exchange Sets F1, F2 and Path-2-Coloring of G′
2

The multigraph G2 is constructed from one copy of the relaxed cycle cover C2

and one copy of the maximum weight perfect matching M . Since C2 may contain
half-edges and we want G2 to contain only edges of G, for each half-edge of edge
(u, v) contained in C2, we will either include the whole edge (u, v) in G2 or not
include it at all. While doing so we have to ensure that the total weight of the
constructed multigraph G2 is at least 3

2OPT .
The main idea behind deciding which half-edges are extended to full edges

and included in G2 is that we construct two sets Z1 and Z2 – for each kite
in G1 we distribute its edges corresponding to the half-edges so that half of
them go into the set Z1 and the other half to Z2. (Note that by Definition 1
each kite in G1 contains an even number of half-edges in C2.) Let I(C2) denote
the set consisting of whole edges of G contained in C2. This way w(C2) =
w(I(C2)) + 1

2 (w(Z1) + w(Z2)). Next, let Z denote the one of the sets Z1 and Z2

with larger weight. Then G2 is defined as a multiset consisting of edges of M ,
edges of I(C2) and edges of Z. We reach the following

Fact 1. The total weight of the constructed multigraph G2 is at least 3
2OPT .

Proof. The weight of M is at least 1
2OPT . The weight of w(C2) = w(I(C2)) +

1
2 (w(Z1) + w(Z2)) is at least OPT . Since w(Z) = max{w(Z1), w(Z2)}, we con-
clude that w(I(C2)) + w(Z) ≥ w(C2). ��

If Cmax contains at least one kite, G1 is non-path-3-colorable. We can however
notice, that if we remove one edge from each kite in the multigraph G1, then the
obtained multigraph is path-3-colorable.

If we manage to construct a set F1 containing one edge from each kite, such
that additionally the multigraph G2 ∪ F1 is path-2-colorable, then we have a
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4
5 -approximation of Max TSP immediately. Since computing such F1 may be
difficult, we allow, in turn, certain edges of C2 to be removed from G2 and
added to G1. Thus, roughly, our goal is to compute such disjoint sets F1, F2

that:

1. F1 ⊂ Cmax contains at least one edge of each kite;
2. F2 ⊂ I(C2) contains one edge per each kite C ∈ Cmax;
3. the multigraph G′

1 = G1\F1 ∪ F2 is path-3-colorable;
4. the multigraph G′

2 = G2\F2 ∪ F1 is path-2-colorable.

Let F1 and F2 be two sets of edges that satisfy properties 1. and 2. of the
above. Then the set of edges C ′

2 = (I(C2) ∪ Z ∪ F1)\F2 can be partitioned into
cycles and paths of G′

2, where G′
2 denotes the resulting multigraph G2\F2 ∪ F1.

The partition of C ′
2 into cycles and paths is carried out in such a way that two

incident edges of C ′
2 belonging to a common path or cycle of C2, belong also to

a common path or cycle of C ′
2 (and G′

2). Also, the partition is maximal, i.e., we
can’t add any edge e of C ′

2 to any path P of G′
2 so that P ∪ {e} is also a path or

cycle of G′
2.

We say that e is a double edge of G′
2 if the multigraph G′

2 contains two
copies of e. In any path-2-coloring of G′

2 every double edge must have both colors
of K2 assigned to it.

We observe that in order for G′
2 to be path-2-colorable, we have to guarantee

that there does not exist a cycle C of G′
2 of odd length l that has l incident double

edges. When every two consecutive edges of C are incident to some double edge,
they must be assigned different colors of K2 and if the length of C is odd, this
is clearly impossible. The way to avoid this is to choose one edge of each such
potential cycle and add it to F2.

We say that a path P of G′
2 beginning at w and ending at v is amenable if

(i) neither v nor w has degree 4 in G′
2, or

(ii) v has degree 4, w has degree smaller than 4 and P ends with a double
edge, the last-but-one edge of P is a double edge or the last-but-one and the
last-but-three vertices in P are matched in M .

It turns out that G′
2 that does not contain odd cycles described above and

whose every path is amenable is path-2-colorable — we show it in the full version
of the paper. To facilitate the construction of G′

2, whose every path is amenable
and to ensure that F1 and F2 have certain other useful properties we create
two opposite orientations of I(C2): D1 and D2. In each of these orientations
I(C2) contains directed cycles and paths and each kite has the same number of
incoming and outgoing edges. This can be achieved by pairing the endpoints of
paths ending at the same kite and combining them. For example, let us consider
a 3-kite in Fig. 2. C2 contains half-edges h1 = (w, x{u,w}) and h2 = (v, x{v,w}) of
a certain 3-kite T , so for the purpose of orientation we replace h1 and h2 with
an edge (v, w). Then, if for example C2 contains edges e1 = (w′, w), e2 = (v′, v)
in the orientation in which e1 is directed from w′ to w, the edge e2 is directed
from v to v′ and vice versa.
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Fig. 2. Example of creating orientations D1 and D2

Apart from the whole edges C2 also contains the half-edges. Let H(C2) denote
the set of the edges of G such that C2 contains exactly one half-edge of each of
these edges. We would like to partition H(C2) into two sets Z1, Z2 so that for
each kite c half of the edges of H(C2) is contained in Z1 and the other half in
Z2. We associate Z1 with orientation D1 and Z2 with orientation D2. Thus, we
assume that D1 contains Z1, with the edges of Z1 being oriented in a consistent
way with the edges of I(C2) under orientation D1, and D2 contains Z2, with
its edges being oriented accordingly. Depending on which of the sets Z1, Z2 has
bigger weight, we either choose the orientation D1 or D2. Hence, from now on,
we assume that the edges of I(C2) ∪ Z are directed.

For example, for the triangle T described above (and presented in Fig. 2),
the partition may be as follows. If e1 is oriented from w to w′ in D1, then we
assume that h1 is in Z1 and h2 is in Z2. Therefore, we can guarantee, that if h1

is in Z, e1 is oriented from v to v′.
The exact details of the construction of Z1 and Z2 are given in the proof of

Lemma 5.

Lemma 5. It is possible to compute the sets F1, F2 such that they, and the
resulting G′

2 satisfy:

1. F1 ⊂ Cmax\((Z ∪ I(C2)) ∩ M);
2. F2 ⊆ I(C2) ∪ Z;
3. for each kite C , (i) the set F1 contains exactly one edge of C and the set F2

contains zero edges of C or (ii) (it can happen only for 4-kites) the set F1

contains exactly two edges of C and the set F2 contains one edge of C\M ;
4. for each kite C the set F2 contains exactly one outgoing edge of C ;
5. for each kite C and each vertex v of C the number of edges of F2 incident to

v is at most greater by one than the number of edges of F1 incident to v;
6. there exists no cycle of G′

2 of odd length l that has l double edges incident to
it;

7. each path of G′
2 is amenable.

The property 1 of this lemma guarantees that G′
2 does not contain more than

two copies of any edge. It is shown in the full version of the paper that properties
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6. and 7. are essentially sufficient for the multigraph G′
2 to be path-2-colorable.

Properties 4 and 5 will be helpful in finding a path-3-coloring of G′
1. Property 5

ensures that no vertex v has six incident edges in G′
1.

5 Summary

After the construction and path-2-coloring of G′
2 we are presented with the task

of extending the partial path-3-coloring of G1 to the complete path-3-coloring
of G′

1. In particular, we have to color the edges of kites and edges of F2 that
have been added during the construction of G′

2. This part of the algorithm is
described in the full version of the paper.

The presented algorithm works for graphs with an even number of vertices.
If the number of vertices of a given graph is odd, we proceed as follows. We
select a vertex v ∈ V arbitrarily. Then we guess its predecessor u and successor
t in the optimal solution (O(n2) guesses). For each guess we replace the vertex v
with two new vertices v1, v2 (so we have an even number of vertices). The edge
(u, v1) has weight w(u, v), the edge (t, v2) has weight w(t, v) and all remaining
edges incident to v1 or v2 have weight equal to 0. Then we run our Algorithm 1
on these instances. The approximation ratio of 4

5 holds, because the computed
solution can be always transformed into a tour in the original graph of at least
the same weight, and the optimal tour is certainly present among the guesses.
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Abstract. The growing popularity of bike-sharing systems around the
world has motivated recent attention to models and algorithms for the
effective operation of these systems. Most of this literature focuses on
their daily operation for managing asymmetric demand. In this work,
we consider the more strategic question of how to allocate dock-capacity
in such systems. Our main result is a practically fast polynomial-time
allocation algorithm to compute optimal solutions for this problem, that
can also handle a number of practically motivated constraints, such as
a limit on the number of docks moved from a given allocation. Our
work further develops connections between bike-sharing models and the
literature on discrete convex analysis and optimization.

1 Introduction

As shared vehicle systems, such as bike-sharing and car-sharing, become an
integral part of urban landscapes, novel lines of research seek to model and
optimize the operations of these systems. In many systems, such as New York
City’s Citi Bike, users can rent and return bikes at any location throughout the
city. This flexibility makes the system attractive for commuters and tourists alike.
From an operational point of view, however, this flexibility leads to imbalances
when demand is asymmetric as is commonly the case. The main contribution
of this paper is to identify key questions in the design of operationally efficient
bike-sharing systems, and to provide a polynomial algorithm for the associated
discrete optimization problems.

Most bike-sharing systems are dock-based, meaning that they consist of sta-
tions, spread across the city, each of which has a number of docks in which bikes
are locked. If a bike is present in a dock, users can rent it and return it at any
other station with an open dock. However, system imbalance often causes some
stations to have only empty docks and others to have only full docks. In the for-
mer case, users need to find alternate modes of transportation, whereas in the
latter they might not be able to end their trip at the intended destination. In
many bike-sharing systems, this has been found to be a leading cause of customer
dissatisfaction (see e.g., [2]).
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In order to meet demand in the face of asymmetric traffic, bike-sharing system
operators seek to rebalance the system by moving bikes from locations with too
few open docks to locations with too few bikes. To facilitate these operations,
a burst of recent research has investigated models and algorithms to increase
their efficiency and increase customer satisfaction. While similar in spirit to
some of the literature on rebalancing, in this work we use a different control to
increase customer satisfaction. Specifically, we answer the question how should
bike-sharing systems allocate dock capacity to stations within the system so as
to minimize the number of dissatisfied customers?

Related Work. Raviv and Kolka [17] defined a user dissatisfaction function
that measures the expected number of out-of-stock events at an individual bike-
share station. To do so, they define a continuous-time Markov chain on the
possible number of bikes (between 0 and the capacity of the station). Bikes
are rented with rate λ(t) and returned with rate μ(t). Each arrival triggers a
change in the state, either decreasing (rental) or increasing (return) the number
of available bikes by one. When the number of bikes is 0 and a rental occurs,
the customer experiences an out-of-stock event. Using a discrete Markov Chain,
they approximate the expected number of out-of-stock events over a finite time-
horizon. For fixed rates, the work of Schuijbroek et al. [19] and O’Mahony [15]
give different techniques to compute the expected number of out-of-stock events
exactly. A recursion suggested by Parikh and Ukkusuri [16] shows that these
methods extend to settings in which rates are constant over intervals.

The definition of the user dissatisfaction function triggered a line of work
around static rebalancing problems, in which a capacitated truck (or a fleet
of trucks) is routed over a limited time horizon. The truck may pick up and
drop off bikes at each station, so as to minimize the expected number of out-
of-stock events that occur after the completion of the route. Variations of this
setting include Raviv et al. [18], Forma et al. [4], Kaspi et al. [11], Ho et al. [8],
and Freund et al. [6]. As in our work, all of these papers make the assumption
that demand is exogeneous and independent among stations, i.e., reducing the
number of bikes available for rentals upstream has no effect on the number of
returns downstream.

In contrast to the other papers mentioned, O’Mahony [15] addressed the ques-
tion of allocating both docks and bikes; he uses the user dissatisfaction function
to design a mixed integer program over the possible allocations of bikes and
docks. In essence, our work extends upon this by providing a fast polynomial-
time algorithm for that same problem and an extension thereof. Optimal allo-
cations of bikes and docks have also been studied by Jian and Henderson [10],
Datner et al. [3], and by Jian et al. [9] who develop frameworks based on ideas
from simulation optimization: while they also treat demand for bikes as being
exogeneous, their framework captures the downstream effects of changes in sup-
ply upstream.

The work of Kaspi et al. [11] investigates the effects that broken bikes can
have on the cost-function. Interestingly, some of their results can be viewed
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as analogous to ours. They prove that the cost-function at one station is M -
convex (see the book by Murota [13] and the references therein); surprisingly,
the existing literature on the minimization of naturally M convex functions does
not seem to capture the optimization problems we consider. We discuss the
similarities and differences below.

A broader overview of the related work can be found in the full version [5].

Our Contribution. We consider the problem of allocating dock capacity in
bike-share systems in a setting in which we are given distributional knowledge
about exogeneous demand at each station that is independent of our solution.
This allows us, using techniques from [15,16,19] to compute the expected number
of out-of-stock events ci(di, bi) at each station i for a given allocation of bi bikes
and di empty docks (i.e., di + bi docks in total) to station i.

Given this cost-function, we want to find the allocation of bikes and docks
in the system that minimizes the total expected number of out-of-stock events
within a system of n stations, i.e.,

∑n
i=1 ci(di, bi). However, due to the number

of bikes and docks being limited, we need to accommodate a budget constraint B
on the number of bikes in the system and another on the number of docks D+B
in the system. Other constraints are often important, such as lower and upper
bounds on the allocation for a particular station; furthermore, one important
issue that has arisen in our collaboration with Citi Bike in NYC is that we
seek to optimize the allocation while limiting the number of docks moved from
the current system configuration. Our methods are amenable to these operational
constraints. Finally, one additional type of constraint is that the allocation given
to disjoint neighborhoods must provide equitable access to the system; this can
be modeled through a laminar family of set constraints, and our techniques can
be extended to handle these by a standard dynamic programming approach,
albeit with somewhat slower running times.

We design an algorithm that provably solves the minimization problem in
O

(
nT + (T + log(n))(B + D)

)
when given access to an oracle that computes

ci(d, b) in O(T ) — [15] takes O((d + b)3). Our algorithm exploits the fact that
the cost-function c(·, ·) is multimodular (cf. Definition 1) at each station.

Multimodularity provides an interesting connection to the literature on dis-
crete convex analysis. Recent work [11] has shown independently that the num-
ber of out-of-stock events F (b, U − d − b) at a bike-share station with fixed
capacity U , b bikes and U − d − b unusable bikes is M -natural convex in b and
U − d − b. Unusable bikes effectively reduce the capacity at the station, since
they are assumed to remain in the station over the entire time horizon. A station
with capacity U , b bikes, and U − b − d unusable bikes, must then have d empty
docks; hence, c(d, b) = F (b, U − d − b) for d + b ≤ U , which parallels our result
that c(·, ·) is multimodular. Though this would suggest that algorithms to mini-
mize M -convex functions could solve our problem optimally, we show in the full
version that M -convexity is not preserved, even in the version with only budget
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constraints.1 However, since multimodularity is preserved we believe that tech-
niques by Murota [14], combined with the submodular function minimization
algorithms of Lee et al. [12], give a O(n3T + n4(D + B)) algorithm to solve the
version with only budget constraints. By exploiting the separability of our objec-
tive function and the associated multimodularity of each station’s cost function,
we obtain algorithms with significantly stronger running-time guarantees that
quickly yield solutions for instances at the scales that typically arise in practice.

2 Model

We denote by X = (X1, . . . , Xs) ∈ {±1}s a sequence of s customers at a bike-
share station. The sign of Xt identifies whether customer t arrives to rent or
to return a bike, i.e., if Xt = 1 customer t wants to return a bike and if
Xt = −1 customer t wants to rent a bike. The truncated sequence (X1, . . . , Xt)
is written as X(t). We denote throughout by d and b the number of open docks
and available bikes at a station before any customer has arrived. Notice that a
station with d open docks and b available bikes has d+b docks in total. Whenever
a customer arrives to return a bike at a station and there is an open dock, the
customer returns the bike, the number of available bikes increases by 1 and the
number of open docks decreases by 1. Similarly, a customer arriving to rent a
bike when one is available decreases the number of available bikes by 1 and
increases the number of open docks by 1. If however a customer arrives to rent
(return) a bike when no bike (open dock) is available, then she disappears with
an out-of-stock event. We assume that only customers affect the inventory-level
at a station, i.e., no rebalancing occurs. It is useful then to write

δX(t)(d, b) := max{0,min{d + b, δX(t−1) − Xt}}, δX(0)(d, b) = d

βX(t)(d, b) := max{0,min{d + b, βX(t−1) + Xt}}, βX(0)(d, b) = b

as a shorthand for the number of open docks and available bikes after the first
t customers.

Our cost function is based on the number of out-of-stock events. In accor-
dance with the above-described model, customer t experiences an out-of-stock
event if and only if δX(t)(d, b) = δX(t−1)(d, b). Since d+b = δX(t)(d, b)+βX(t)(d, b)
for every t, this happens if and only if βX(t)(d, b) = βX(t−1)(d, b). As we are inter-
ested in the number of out-of-stock events as a function of the initial number of
open docks and available bikes, we can write our cost-function cX(t)(d, b)

= |{τ : τ ≤ t, Xτ = 1, δX(τ−1)(d, b) = 0}| + |{τ : τ ≤ t, Xτ = −1, βX(τ−1)(d, b) = 0}|.

1 Specifically, we (i) give an example in which a M -convex function restricted to a
M -convex set is not M -convex, and (ii) show that this indeed means that Murota’s
algorithm for M -convex function minimization is not provably optimal in our setting.



190 D. Freund et al.

It is then easy to see that with cX(0)(d, b) = 0, cX(t)(d, b) fulfills the recursion

cX(t)(d, b) = cX(t−1)(d, b) + 1{βX(t)(d,b)=βX(t−1)(d,b)}.

Given for each station i ∈ [n] a distribution, which we call demand-profile,
pi over {(±1)s, s ∈ N}, we can then write ci(d, b) = EX∼pi

[cX(d, b)] for the
expected number of out-of-stock events at station i and c(d, b) =

∑
i ci(di, bi).

We then want to solve, for parameters D, B, (d̄, b̄), and z, as well as li, ui for
each i ∈ [n], the following minimization problem

minimize(d,b)

∑
i ci(di, bi)

s.t.
∑

i di + bi ≤ D + B,
∑

i bi ≤ B,
∑

i |(d̄i + b̄i) − (di + bi)| ≤ z,

∀i ∈ [n] : li ≤ di + bi ≤ ui.

Here, the first constraint corresponds to a budget on the number of docks,
the second to a budget on the number of bikes, the third to the operational
constraints and the fourth to the lower and upper bound on the number of docks
at each station. We assume without loss of generality that there exists an optimal
solution in which the second constraint holds with equality; to ensure that, we
may add a dummy (“depot”) station D that has cD(·, ·) = 0, lD = uD = B, and
run the algorithm with the budget on docks (D + B) increased by B.

In Sect. 3 we prove that cX(·, ·) fulfills a particular set of inequalities making
it a so-called multimodular function.

Definition 1. [1,7] A function f : N2
0 → R is called multimodular if

f(d + 1, b + 1) − f(d + 1, b) ≥ f(d, b + 1) − f(d, b); (1)
f(d − 1, b + 1) − f(d − 1, b) ≥ f(d, b) − f(d, b − 1); (2)
f(d + 1, b − 1) − f(d, b − 1) ≥ f(d, b) − f(d − 1, b); (3)

for all d, b such that all terms are well-defined.
For future reference, we define the following additional inequalities, which

are implied2 by the above:

f(d + 2, b) − f(d + 1, b) ≥ f(d + 1, b) − f(d, b); (4)
f(d, b + 2) − f(d, b + 1) ≥ f(d, b + 1) − f(d, b); (5)

f(d + 1, b + 1) − f(d, b + 1) ≥ f(d + 1, b) − f(d, b). (6)

Even though we are motivated by the cost-functions defined in this section,
our main results hold for arbitrary sums of such two-dimensional functions.

2 (6) and (1) are equivalent, (1) and (2) imply (5), and (3) and (6) imply (4).
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3 Multimodularity and an Allocation Algorithm

We first prove that the cost-functions defined in Sect. 2 are multimodular.

Lemma 2. cX(·, ·) is multimodular for all X.

Proof. The proof of the lemma is straightforward by induction in t = |X| and is
left for the full version due to space constraints [5].

Corollary 3. ci(·, ·) is multimodular for any demand-profile pi.

Proof. The proof is immediate from Lemma 2 and linearity of expectation. ��

3.1 An Allocation Algorithm

In this section, we present our algorithm for settings without the operational
constraints. Intuitively, in each iteration the algorithm picks one dock and at
most one bike within the system and moves them from one station to another. It
chooses the dock, and the bike, so as to maximize the reduction in objective value.
To formalize this notion, we define the movement of a dock via the following
transformations.

Definition 4. We shall use the notation (v−i, v̂i) := (v1 . . . vi−1, v̂i, vi+1 . . . vn).
Similarly, (v−i,−j , v̂i, v̂j) := (v1 . . . v̂i . . . v̂j . . . vn). Then a dock-move from i to
j corresponds to one of the following transformations of feasible solutions:

1. oij(d, b) =
(
(d−i,−j , di − 1, dj + 1), b

)
– Moving one open dock from i to j;

2. eij

(
d, b) =

(
d, (b−i,−j , bi − 1, bj + 1)

)
– Moving a dock & a bike from i to j;

3. Eijh(d, b) =
(
(d−i,−h, di − 1, dh + 1), (b−j,−h, bj + 1, bh − 1)

)
– Moving one

open dock from i to j and one bike from h to j;
4. Oijh(d, b) =

(
(d−j,−h, dj + 1, dh − 1), (b−i,−h, bi − 1, bh + 1)

)
– Moving one

bike from i to h and one open dock from i to j.

Further, we define the neighborhood N(d, b) of (d, b) as the set of allocations
that are one dock-move away from (d, b). Formally,

N(d, b) := {oij(d, b), eij(d, b), Eijh(d, b), Oijh(d, b) : i, j, h ∈ [n]}.

Finally, define the dock-move distance between (d, b) and (d′, b′) as
∑

i

|(di + bi) − (d′
i + b′

i)|.

This gives rise to a very simple algorithm: we first find the optimal allocation
of bikes for the current allocation of docks; the convexity of each ci in the number
of bikes, with fixed number of docks, implies that this can be done greedily by
taking out all the bikes and then adding them one by one. Then, while there
exists a dock-move that improves the objective, we find the best possible such
dock-move and update the allocation accordingly (cf. Algorithm1).
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Remark: Each iteration of the algorithm can be implemented in (amortized)
O(T +log(n)) time by maintaining six binary heaps that contain for each change
a dock-move could have at each station (i.e., add/take an open dock, add/take a
bike, and add/take a bike and a dock) the change in objective this would yield.
Instead of comparing all O(n2) possible moves, one can then find the argument
of the minimum and update (d, b) in constant time, and then update the lists
(for the stations involved in the dock-move) in O(T + log(n)).

Algorithm 1. Greedy
1: Find optimal allocation of bikes for current dock allocation
2: while c(d, b) > min(d′,b′)∈N(d,b) c(d

′, b′) do
3: (d, b) ← arg min(d′,b′)∈N(d,b) c(d

′, b′)
4: end while

3.2 Proof of Optimality

We prove that the algorithm returns an optimal solution by showing that the
condition in the while-loop is false only if (d, b) globally minimizes the objective;
else, the algorithm moves a dock to find a better solution. Thus, if the algorithm
terminates, then the solution is optimal. Before we prove Lemma 7 to establish
this, we first define an allocation of bikes and docks as bike-optimal if it minimizes
the objective among allocations with the same number of docks at each station
and prove that bike-optimality is an invariant of the while-loop.

Definition 5. We call an allocation (d, b) bike-optimal if

(d, b) ∈ arg min
(d̂,b̂):∀i,di+bi=d̂i+b̂i,

∑
i b̂i=B

{c(d̂, b̂)}.

Lemma 6. Suppose (d, b) is bike-optimal. Given i and j, one of the possible
dock-moves from i to j, i.e., eij(d, b), oij(d, b), Eijh(d, b), or Oijh(d, b), is bike-
optimal, i.e., when moving a dock from i to j, one has to move at most one bike
within the system to maintain bike-optimality.

Proof. It is known that multimodular functions fulfill certain convexity prop-
erties (see e.g., [13,17]); in particular, for fixed d and b it is known that
ci(k, d + b − k) is a convex function of k ∈ {0, . . . , d + b}. Thus, if the best allo-
cation out of eij(d, b), oij(d, b), Eijh(d, b), and Oijh(d, b), was not bike-optimal,
there would have to be two stations such that moving a bike from one to the other
improves the objective. By the bike-optimality of (d, b), at least one of these two
stations must have been involved in the move. We prove that the result holds
if eij was the best of the set of possible moves {eij , oij , Eijh, Oi,j,h}i,j,h∈[n] – the
other three cases are almost symmetric. Let � denote a generic third station.
Then a bike improving the objective could correspond to one being moved from
� to j, from i to j, from i to �, from � to i, from j to � or from j to i. In this case,
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a move from � to j, i to j and i to � yield the allocations Eij�(d, b), oij(d, b)
and Oij�(d, b), respectively. Since eij is assumed to be the minimizer among the
possible dock-moves, none of these have objective smaller than that of eij(d, b).
It remains to show that moving a bike from � to i, j to � or j to i yields no
improvement. These all follow from bike-optimality of (d, b) and the multimod-
ular inequalities. Specifically, an additional bike at i yields less improvement and
a bike fewer at j has greater cost in eij(d, b) than in (d, b), since

ci(di − 1, bi) − ci(di − 2, bi + 1) ≤ ci(di, bi) − ci(di − 1, bi + 1)
cj(dj + 2, bj − 1) − cj(dj + 1, bj) ≥ cj(dj + 1, bj − 1) − cj(dj , bj).

Both of the above inequalities follow from inequality (3). ��
We are now ready to prove that when the algorithm terminates it must have

found an optimal solution.

Lemma 7 (Neighborhood). Suppose (d, b) is bike-optimal, but does not min-
imize c(·, ·) subject to budget constraints. Let (d∗, b∗) denote a feasible solu-
tion with better objective at minimal dock-distance from (d, b). As (d, b) is bike-
optimal, there exist j and k such that bj + dj < b∗

j + d∗
j and bk + dk > b∗

k + d∗
k.

Pick any such j and k; then there exists a dock-move to j or a dock-move from
k that improves the objective of (d, b).

Proof. The proof of the lemma follows a a case-by-case analysis, each of which
resembles the same idea: (d∗, b∗) minimizes the dock-move distance to (d, b)
among solutions with lower function value than (d, b), i.e., among all (d∗, b∗)
such that

∑
i di+bi =

∑
i d∗

i +b∗
i ,

∑
i bi =

∑
i b∗

i , and c(d∗, b∗) < c(d, b), (d∗, b∗)
has minimum dock-move distance to (d, b). We show that with j and k as in
the statement of the lemma, either there exists a dock-move to j/from k that
improves the objective or there exists a solution (d∗∗, b∗∗) with objective value
lower than (d, b),

∑
i di + bi =

∑
i d∗∗

i + b∗∗
i ,

∑
i bi =

∑
i b∗∗

i and smaller dock-
move distance to (d, b). Since the latter contradicts our choice of (d∗, b∗), this
proves, that in (d, b) there must be a dock-move to j/from k that yields a lower
objective. We distinguish among the following cases:

1. dj < d∗
j and dk > d∗

k;
2. bj < b∗

j and bk > b∗
k;

3. dj < d∗
j , bk > b∗

k, and bj ≥ b∗
j

(a) and there exists � with dl + bl ≥ d∗
l + b∗

l , bl < b∗
l ;

(b) and there exists � with dl + bl < d∗
l + b∗

l , bl < b∗
l ;

(c) for all � 	∈ {j, k}, we have bl ≥ b∗
l , so

∑
i bi >

∑
i b∗

i ;
4. bj < b∗

j , dj ≥ d∗
j , bk ≤ b∗

k and dk > d∗
k,

(a) and there exists � with d� + b� > d∗
� + b∗

� and b� > b∗
� ;

(b) and there exists � with d� + b� ≤ d∗
� + b∗

� and b� > b∗
� ;

(c) for all � 	∈ {j, k}, we have b� ≤ b∗
� , so

∑
i bi <

∑
i b∗

i .
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In the full version, we show that in case (1) a move from k to j yields
improvement [5]. The proof for case (2) is symmetric. Thus, in cases (3a) and (4a)
there exists a move from k to �, respectively from � to j, that yields improvement.
The proofs for cases (3b) and (4b) are also symmetric and we present the proof
for (3b) in the full version. Cases (3c) and (4c) contradict our assumption that∑

i bi =
∑

i b∗
i and can thus be excluded.

4 Operational Constraints and Running Time

In this section, we show that the allocation algorithm is optimal for the opera-
tional constraints introduced in Sect. 2 and thereby also provide an analysis of
the running-time of the algorithm. To do so, we first define the set of feasible
solutions with respect to those constraints.

Definition 8. Define the z-dock ball Sz(d, b) around (d, b) as the set of alloca-
tions with dock-move distance at most 2z, i.e., S0(d, b) = {(d, b)} and

Sz(d, b) = Sz−1(d, b) ∪ ( ⋃

(d′,b′)∈Sz−1(d,b)

N(d′, b′)})
.

We now want to prove that Lemma 7 continues to hold in the constrained
setting; in particular, we show that even with the operational constraints, local
optima are global optima.

Lemma 9 (z-step neighborhood). If (d̂, b̂) ∈ Sz(d, b) \ Sz−1(d, b) is bike-
optimal and c(d∗, b∗) < c(d̂, b̂) for some (d∗, b∗) ∈ Sz(d, b) \ Sz−1(d, b), then
there exists (d′, b′) ∈ Sz(d, b) ∩ N(d̂, b̂) such that c(d′, b′) < c(d̂, b̂).

Proof. Notice that this lemma closely resembles Lemma 7: the sole difference lies
in Lemma 7 not enforcing the dock-move to maintain a bound on the distance
to some allocation (d, b).

Define (d∗, b∗) as in Lemma 7 with the additional restriction that (d∗, b∗)
be in Sz(d, b), i.e., pick a solution in Sz(d, b) that minimizes the dock-move
distance to (d̂, b̂) among solutions with strictly smaller objective value. We argue
again that bike-optimality of (d̂, b̂) implies that there exist j and k, such that
d̂j + b̂j < d∗

j + b∗
j , and d̂k + b̂k > d∗

k + b∗
k. Further, for any such j and k, we can

apply the proof of Lemma7 to find a move involving at least one of the two that
decreases both the objective value and the dock-move distance to (d∗, b∗).

We aim to find j and k such that the move identified, say from � to m, is
guaranteed to remain within Sz(d, b). Notice that |{j} ∩ {m}| + |{k} ∩ {�}| ≥ 1.
We know that d∗

m + b∗
m > d̂m + b̂m and d∗

� + b∗
� < d̂� + b̂�. Suppose the move from

� to m yields a solution outside of Sz(d, b). It follows that d̂m + b̂m ≥ dm + bm

and d̂� + b̂� ≤ d� +b�, so in particular either d̂j + b̂j ≥ dj +bj or d̂k + b̂k ≤ dk +bk.
Thus, if we can identify j and k such that those two inequalities do not hold, we
are guaranteed that the identified move remains within Sz(d, b).
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Define

k := arg maxi{d̂i + b̂i − max{di + bi, d
∗
i + b∗

i }}
We can then write

max
i

{
d̂i + b̂i − max{di + bi, d

∗
i + b∗

i }
} ≥

min
i

{
1, max

i:d̂i+b̂i>di+bi

{(d̂i + b̂i) − (d∗
i + b∗

i )}
}

The latter is at least 1 unless it is the case for all i that if d̂i + b̂i > di + bi then
d̂i + b̂i ≤ d∗

i + b∗
i . Thus, unless the above condition fails, we have identified a k

with the required properties. Suppose the condition does fail. Then

2z =
∑

i

|(di + bi) − (d∗
i + b∗

i )| =
∑

i

|(di + bi) − (d̂i + b̂i)|

and
∑

i

di + bi =
∑

i

d∗
i + b∗

i =
∑

i

d̂i + b̂i

imply that for all i with max{d̂i + b̂i, d
∗
i +b∗

i } > di +bi, we have d̂i + b̂i = d∗
i +b∗

i .
Thus, it must be the case that m fulfills d̂m + b̂m < dm + bm.

The argument for j is symmetric. ��
Theorem 10. Starting with a bike-optimal allocation (d, b), in the z-th itera-
tion, the greedy algorithm finds an optimal allocation among those in Sz(d, b).

Proof. We prove the theorem by induction in z. The base-case z = 0 holds triv-
ially. Suppose in the zth iteration, the greedy algorithm has found the allocation
(dz, bz) ∈ arg min(d∗,b∗)∈Sz(d,b) c(d∗, b∗). We need to show that

(dz+1, bz+1) := arg min
(dz+1,bz+1)∈N(dz,bz))

{c(dz+1, bz+1)}

minimizes the cost function among solutions in Sz+1(d, b).
We first observe that by Lemma 9, it suffices to show that there is no bet-

ter solution in Sz+1(d, b) that is just one dock-move away from (dz+1, bz+1).
Further, by Lemma 6 and the choice of dock-moves in the greedy algorithm we
know that (dz+1, bz+1) must be bike-optimal. Let i be the station from which a
dock was moved and let j be the station to which it was moved in the z + 1st
iteration. We denote a third station by h if the z + 1st move involved a third
one (recall that a dock-move from i to j can take an additional bike from i to a
third station h or take one from h to j). We can then immediately exclude the
following cases:

1. Any dock-move in which i receives a dock from some station �, including
possibly � = j or � = h, can be excluded since the greedy algorithm could
have chosen to take a dock from � instead of i and found a bike-optimal
allocation (by Lemma 6).
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2. The same holds for any dock-move in which a dock is taken from j.
3. A dock-move not involving either of i, j, and h yields the same improvement

as it would have prior to the z + 1st iteration. Furthermore, if such a dock-
move yields a solution within Sz+1(d, b), then prior to the z + 1st iteration
it would have yielded a solution within Sz(d, b). Hence, by the induction
assumption, it cannot yield any improvement.

4. A dock-move from station i (or to j), as is implied by the fourth, fifth, and
sixth inequality in the definition of multimodularity increases the objective
at i more (decreases the objective at j less) than it would have prior to the
z + 1st iteration.

We are left with a dock-move from or to h as well as dock-moves that involve
one of the three stations only via a bike being moved. Suppose that the dock-
move in iteration z + 1 was Eijh; the case of Oijh is symmetric. In this case,
a subsequent move of a dock and a bike from h, i.e., oh� or Oh�m for some m,
increases the objective at h by at least as much as it did before (by inequality
(2)) and can thus be excluded. The same holds for the move of an empty dock
to h (by inequality (3)).

However, subsequent moves of an empty dock from h (or a full dock to h) have
a lower cost (greater improvement) and require a more careful argument. Suppose
eh� yielded an improvement – the cases for Eh�m, o�h, and E�hm are similar.
Notice first that if it were the case that dz

h + bz
h > dh + bh and dz

� + bz
� < d� + b�,

then eh�(Eijh(dz, bz)) ∈ Sz(d, b) and has a lower objective than (dz, bz) which
contradicts the inductive assumption. Furthermore, since it must be the case
that eh�(Eijh(dz, bz)) ∈ Sz+1(d, b) \ Sz(d, b), it must also follow that either

1. dz
h + bz

h > dh + bh and dz
� + bz

� ≥ d� + b� or
2. dz

h + bz
h ≤ dh + bh and dz

� + bz
� < d� + b�,

since otherwise a dock-move from h to � would either yield a solution in Sz

or one not in Sz+1. Notice further that the inductive assumption implies that
(dz+1, bz+1) 	∈ Sz(d, b). Thus, it must be the case that dz+1

i + bz+1
i < di + bi and

dz+1
j + bz+1

j < dj + bj . We can thus argue in the following way about

c(eh�(dz+1, bz+1)) − c(dz+1, bz+1) =
ch(dz

h, bz
h − 1) − ch(dz

h + 1, bz
h − 1) + cl(dz

� + 1, bz
� ) − cl(dz

� , b
z
� ).

In the first case, since oh�(dz, bz) ∈ Sz(d, b), the inductive assumption implies
that ch(dz

h, bz
h −1)+cj(dz

j , b
z
j +1) ≥ ch(dz

h, bz
h)+cj(dz

j , b
z
j ). Further, by the choice

of the greedy algorithm, an additional empty dock at � has no more improvement
than an additional dock and an additional bike at j minus the cost of taking the
bike from h; otherwise, the greedy algorithm would have moved an empty dock
from h to � in the z + 1st iteration. Thus,
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c�(dz
� + 1, bz

� ) − c�(dz
� , b

z
� )

≤ cj(dz
j , b

z
j ) − cj(dz

j , b
z
j + 1) − ch(dz

h + 1, bz
h − 1) + ch(dz

h, bz
h)

≤ ch(dz
h, bz

h − 1) − ch(dz
h, bz

h) − ch(dz
h + 1, bz

h − 1) + ch(dz
h, bz

h)
≤ ch(dz

h, bz
h − 1) − ch(dz

h + 1, bz
h − 1),

implying that c(eh�(dz+1, bz+1)) − c(dz+1, bz+1) ≥ 0.
In the second case, since we know that ei�(dz, bz) ∈ Sz(d, b), the inductive

assumption implies c�(dz
� +1, bz

� )+ci(dz
i −1, bz

i ) ≥ c�(dz
� , b

z
� )+ci(dz

i , b
z
i ). Further,

the choice of the greedy algorithm to take the dock from i, not h, implies that
ci(dz

i , b
z
i ) − ci(dz

i − 1, bz
i ) ≤ ch(dz

h, bz
h − 1) − ch(dz

h + 1, bz
h − 1). Combining these

two inequalities again implies that eh� does not yield an improvement.
The remaining cases, in which a move only involves i, j, or h as the third

station that a bike is taken from/added to, can be found in the full version [5].

An immediate corollary of the above result yields a bound on the number of
iterations the greedy algorithm may run for.

Corollary 11. The greedy algorithm terminates in at most
∑

i di+bi iterations.

Technically, we might view the size of the input as log(B + D); however, in
our application the physical entities of docks and bikes are truly given in an
unary encoding.

Conclusion. Our work provides a fast and provably efficient algorithm for
the problem of minimizing the sum of two-dimensional multimodular functions
under constraints. It has strong connections to the literature on discrete convex
analysis as well as more novel work on the optimization of bike-sharing systems.
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Abstract. We develop polynomial-size LP-relaxations for orienteer-
ing and the regret-bounded vehicle routing problem (RVRP) and devise
suitable LP-rounding algorithms that lead to various new insights and
approximation results for these problems. In orienteering, the goal is
to find a maximum-reward r-rooted path, possibly ending at a specified
node, of length at most some given budget B. In RVRP, the goal is to find
the minimum number of r-rooted paths of regret at most a given bound
R that cover all nodes, where the regret of an r-v path is its length − crv.
For rooted orienteering, we introduce a natural bidirected LP-relaxation
and obtain a simple 3-approximation algorithm via LP-rounding. This is
the first LP-based guarantee for this problem. We also show that point-
to-point (P2P) orienteering can be reduced to a regret-version of rooted
orienteering at the expense of a factor-2 loss in approximation. For RVRP,
we propose two compact LPs that lead to significant improvements, in
both approximation ratio and running time, over the approach in [10].
One is a natural modification of the LP for rooted orienteering; the other
is an unconventional formulation motivated by certain structural prop-
erties of an RVRP-solution, which leads to a 15-approximation for RVRP.

1 Introduction

Vehicle-routing problems (VRPs) constitute a broad class of optimization prob-
lems that find a wide range of applications and have been widely studied in the
Operations Research and Computer Science literature (see, e.g. [2,4,8,14,18]).
Despite this extensive study, we have rather limited understanding of
LP-relaxations for VRPs (with TSP and the minimum-latency problem, to a
lesser extent, being exceptions), and this has been an impediment in the design
of approximation algorithms for these problems.
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Motivated by this gap in our understanding, we investigate whether one
can develop polynomial-size (i.e., compact) LP-relaxations with good integral-
ity gaps for VRPs, focusing on the fundamental orienteering problem [4,8,13]
and the related regret-bounded vehicle routing problem (RVRP) [5,10]. In orien-
teering, we are given rewards associated with clients located in a metric space,
a length bound B, a start, and possibly end, location for the vehicle, and we
seek a route of length at most B that gathers maximum reward. This prob-
lem frequently arises as a subroutine when solving VRPs, both in approximation
algorithms—e.g., for minimum-latency problems (MLPs) [3,6,9,16], TSP with
time windows [2], RVRP [5,10]—as well as in computational methods where ori-
enteering corresponds to the “pricing” problem encountered in solving set cover-
ing/partitioning LPs (a.k.a configuration LPs) for VRPs via a column-generation
or branch-cut-and-price method. In RVRP, we have a metric space {cuv} on client
locations, a start location r, and a regret bound R. The regret of a path P start-
ing at r and ending at location v is c(P ) − crv. The goal in RVRP is to find a
minimum number of r-rooted paths of regret at most R that visit all clients.

Our contributions. We develop polynomial-size LP-relaxations for orienteering
and RVRP and devise suitable rounding algorithms for these LPs, which lead to
various new insights and approximation results for these problems.

In Sect. 3, we introduce a natural, compact LP-relaxation for rooted orien-
teering, wherein only the vehicle start node is specified, and design a simple
rounding algorithm to convert an LP-solution to an integer solution losing a
factor of at most 3 in the objective value. This is the first LP-based approxima-
tion guarantee for orienteering. In contrast, all other approaches for orienteering
utilize dynamic programming (DP) to stitch together suitable subpaths.

In Sect. 4, we consider the more-general point-to-point (P2P) orienteering
problem, where both the start and end nodes of the vehicle are specified. We
present a novel reduction showing that P2P-orienteering can be reduced to a
regret-version of rooted orienteering, wherein the length bound is replaced by a
regret bound, incurring a factor-2 loss (Theorem 6). No such reduction to a rooted
problem was known previously, and all known algorithms for P2P-orienteering
rely on approximations to suitable P2P-path problems. Typically, constraining
a VRP by requiring that routes include a fixed node t causes an increase in the
route lengths of the unconstrained problem (as we need to attach t to the routes);
this would violate the length bound in orienteering, but, notably, we devise a
way to avoid this in our reduction. We believe that the insights gained from
our reduction may find further application. Our results for rooted orienteering
translate to the regret-version of orienteering, and combined with the above
reduction, give a compact LP for P2P-orienteering having integrality gap at
most 6.

Although we do not improve the current-best approximation factor of (2+ ε)
for orienteering [8], we believe that our LP-based approach is nevertheless appeal-
ing for various reasons. First, our LP-rounding algorithms are quite simple, and
arguably, simpler than the DP-based approaches in [4,8]. Second, our LP-based
approach offers the promising possibility that, by leveraging the key underlying
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ideas, one can obtain strong, compact LP-relaxations for other problems that
utilize orienteering. Indeed, we already present evidence of such benefits by show-
ing in Sect. 5.1 that our LP-insights for rooted orienteering yield a compact,
provably-good LP for RVRP. (We remark that various configuration LPs con-
sidered for VRPs give rise to P2P-orienteering as the dual-separation problem,
and utilizing our compact orienteering-LP in the dual could yield another way
of obtaining a compact LP.) Finally, LP-based insights often tend to be powerful
and have the potential to result in both improved guarantees, and algorithms
for variants of the problem. In fact, we suspect that our orienteering LPs are
better than what we have accounted for, and believe that they are a promising
means of improving the state-of-the-art for orienteering.

Section 5 considers RVRP, and proposes two compact LP-relaxations for
RVRP and corresponding rounding algorithms. Our LP-based algorithms
not only yield improvements over the current-best 28.86-approximation for
RVRP [10], but also result in substantial savings in running time compared to
the algorithm in [10], which involves solving a configuration LP (with an expo-
nential number of path variables) using the Ω(n1/ε)-time (2 + ε)-approximation
algorithm for orienteering in [8] as a subroutine. The first LP for RVRP is a
natural modification of our LP for rooted orienteering, which we show has inte-
grality gap at most 27 (Theorem 7). In Sect. 5.2, we formulate a rather atypical
LP-relaxation (R2) for RVRP by exploiting certain key structural insights for
RVRP. We observe that an RVRP-solution can be regarded as a collection of
distance-increasing rooted paths covering some sentinel nodes S and a low-cost
way of connecting the remaining nodes to S, and our LP aims to find the best
such solution. We design a rounding algorithm for this LP that leads to a 15-
approximation algorithm for RVRP, which is a significant improvement over the
guarantee obtained in [10].

Finally, in Sect. 6, we observe that our techniques imply that the integrality
gap of a Held-Karp style LP for the asymmetric-TSP (ATSP) path problem is 2
for the class of asymmetric metrics induced by the regret objective.

To give an overview of our techniques, a key tool that we use in our rounding
algorithms, which also motivates our LP-relaxations, is an arborescence-packing
result of [1] showing that an r-preflow x ∈ R

A
+ in a digraph D = (N,A) (i.e.,

x
(
δin(v)

)
≥ x

(
δout(v)

)
∀v �= r) dominates a weighted collection of r-rooted

(non-spanning) out-arborescences (Theorem 3). An r-preflow x in the bidirected
version of our metric, D, is a natural relaxation of an r-rooted path, and the
r � u connectivity under x abstracts whether u lies on this path. This leads to
our LP (R-O) for (rooted) orienteering. The idea behind the rounding is that if
we know the node v on the optimum path with maximum crv value, then we can
enforce that our the LP-preflow x is consistent with v. Hence, we can decompose
x into arborescences containing v of average length at most B, which yield r-v
paths of average regret at most 2(B − crv). These in turn can be converted (see
Lemma 1) into a weighted collection of paths of total weight at most 3, where
each path has regret at most B − crv and ends at some node u with cru ≤ crv;
returning the maximum-reward path in this collection yields a 3-approximation.
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Related work. The orienteering problem seems to have been first defined in [13].
Blum et al. [4] gave the first O(1)-factor approximation for rooted orienteer-
ing. They obtained an approximation ratio of 4, which was generalized to P2P-
orienteering, and improved to 3 [2] and then to 2 + ε [8].

Orienteering is closely related to the k-{stroll, MST, TSP} problems, which
seek a minimum-cost rooted {path,tree,tour} respectively spanning at least k
nodes (so the roles of objective and constraint are interchanged). k-MST has a
rich history of study that culminated in a factor-2 approximation for both k-MST
and k-TSP [11]. Chaudhuri et al. [7] obtained a (2+ ε)-approximation algorithm
for k-stroll. They also showed that for certain values of k, one can obtain a tree
spanning k nodes and containing two specified nodes r, t, of cost at most the
cheapest r-t path spanning k nodes. In particular, this holds for k = n, and yields
an alternative way of obtaining a 2-approximation algorithm for the minimum-
regret TSP-path problem considered in Sect. 6. The orienteering algorithms in [2,
4,8] are all based on first obtaining suitable subpaths by approximating the min-
excess path problem using a k-stroll algorithm as a subroutine, and then stitching
together these subpaths via a DP. (For a rooted path, the notions of excess and
regret coincide; we use the term regret as it is more in line with the terminology
used in the vehicle-routing literature [15,17].)

The use of regret as a vehicle-routing objective seems to have been first con-
sidered in [17], who present various heuristics, and RVRP is sometimes referred to
as the schoolbus problem in the literature [5,15,17]. Bock et al. [5] were the first
to consider RVRP from an approximation-algorithms perspective. They obtain
approximation factors of O(log n) for general metrics and 3 for tree metrics. Sub-
sequently, Friggstad and Swamy [10] gave the first constant-factor approximation
algorithm for RVRP, obtaining a 28.86-approximation via an LP-rounding pro-
cedure for a configuration LP.

2 Preliminaries and Notation

Both orienteering and RVRP involve a complete undirected graph G = ({r} ∪
V,E), where r is a distinguished root (or depot) node, and metric edge costs
{cuv}. Let n = |V |+1. We call a path P in G rooted if it begins at r. We always
think of the nodes on P as being ordered in increasing order of their distance
along P from r, and directing P away from r means that we direct each edge
uv ∈ P from u to v if u precedes v (under this ordering). We use Dv to denote
crv for all v ∈ V ∪{r}. Let T denote the collection of all r-rooted trees in G. For
a vector d ∈ R

E , and a subset F ⊆ E, we use d(F ) to denote
∑

e∈F de. Similarly,
for a vector d ∈ R

V and S ⊆ V , we use d(S) to denote
∑

v∈S dv.

Regret metric and RVRP. For every ordered pair u, v ∈ V ∪{r}, define the regret
distance (with respect to r) to be creguv := Du + cuv − Dv. The regret distances
{creguv } form an asymmetric metric that we call the regret metric. The regret of a
node v lying on a rooted path P is given by cregP (v) := cP (v) − Dv = (creg-length
of the r-v portion of P ), where cP (v) is the length of the r-v subpath of P .
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Define the regret of P to be creg(P ), which is also the regret of the end-node of
P . Observe that creg(Z) = c(Z) for any cycle Z. We utilize the following results
from [10].

Lemma 1 [10]. Let R ≥ 0. Given rooted paths P1, . . . , Pk with total regret αR,
we can efficiently find at most k + α rooted paths, each having regret at most R,
that cover

⋃k
i=1 Pi.

Theorem 2 [10]. Let x = (xP )P∈P be a weighted collection of rooted paths
such that

∑
P∈P:v∈P xP ≥ 1 for all v ∈ V . Let R ≥ 0 be some given parameter.

Let k =
∑

P∈P xP and
∑

P∈P creg(P )xP = αR. Then, for any θ ∈ (0, 1), we can
round x to obtain a collection of at most

(
6

1−θ + 1
θ

)
α +

⌈
k
θ

⌉
rooted paths each of

regret at most R that cover all nodes in V .

Preflows and arborescence packing. Let D = ({r} ∪ V,A) be a digraph. We say
that a vector x ∈ R

A
+ is an r-preflow if x

(
δin(v)

)
≥ x

(
δout(v)

)
for all v ∈ V .

When r is clear from the context, we simply say preflow. A key tool that we
exploit is an arborescence-packing result of Bang-Jensen et al. [1] showing that
we can decompose a preflow into out-arborescences rooted at r, and this can be
done in polytime [16]. By an out-arborescence rooted at r, we mean a subgraph B
whose undirected version is a tree containing r, and where every node spanned
by B except r has exactly one incoming arc in B.

Theorem 3 [1,16]. Let D = ({r}∪V,A) be a digraph and x ∈ R
A
+ be a preflow.

Let λv := min{v}⊆S⊆V x
(
δin(S)

)
be the r � v “connectivity” in D under capaci-

ties {xa}a∈A. Let K > 0 be rational. We can obtain out-arborescences B1, . . . , Bq

rooted at r, and rational weights γ1, . . . , γq ≥ 0 such that
∑q

i=1 γi = K,∑
i:a∈Bi

γi ≤ xa for all a ∈ A, and
∑

i:v∈Bi
γi = min

{
K,λv} for all v ∈ V .

Moreover, such a decomposition can be computed in time poly(|V |, size of K).

3 Rooted Orienteering

In the rooted orienteering problem, we have a complete undirected graph G =
({r} ∪ V,E), metric edge costs {cuv}, a distance bound B ≥ 0, and nonnegative
node rewards {ρ(v)}v∈V . The goal is to find a rooted path with cost at most B
that collects the maximum reward. Whereas all current approaches for orienteer-
ing rely on a dynamic program to stitch together suitable subpaths, we present
a simple LP-rounding-based 3-approximation algorithm for rooted orienteering.

Let D = ({r} ∪ V,A) denote the bidirected version of G, where both (u, v)
and (v, u) get cost cuv. To introduce our LP and our rounding algorithm, first
suppose that we know a node v on the optimum path that has maximum distance
Dv among all nodes on the optimum path. In our relaxation, we model the path
as one unit of flow x ∈ R

A
+ that exits r, visits only nodes u with Du ≤ Dv and v

to an extent of 1, and has cost at most B. Since we do not know the endpoint of
our path, we relax x to be a preflow. Letting zv

u denote the r � u connectivity
(under capacities {xa}), the reward earned by x is rewd(x) :=

∑
u∈V ρ(u)zv

u.



204 Z. Friggstad and C. Swamy

Our rounding procedure is based on the insight that Theorem 3 allows us to
view x as a convex combination of arborescences, which we regard as r-rooted
trees in G. Converting each tree into an r-v path (by standard doubling and
shortcutting), we get a convex combination of rooted paths of average reward
rewd(x), and average cost at most 2B − Dv, and hence average creg-cost at most
2(B − Dv). Applying Lemma 1 to this collection, we then obtain a weighted
collection of rooted paths of total weight at most 3 earning the same total reward,
where each path has regret at most B − Dv, and hence, cost at most B (since it
ends at some node u with Du ≤ Dv). Thus, the maximum-reward path in this
collection yields a feasible solution with reward at least rewd(x)/3.

Finally, we circumvent the need for “guessing” v by using variables zv
v to

indicate if v is the maximum-distance node on the optimum path. We impose
that we have a preflow xv of value zv

v that visits v to an extent of zv
v , and only

visits nodes u with Du ≤ Dv, and zv
u is now the r � u connectivity under

capacities xv. (Note that r /∈ V ).

max
∑

u,v∈V

ρ(u)zv
u (R-O)

s.t. xv(δin(u)
)

≥ xv
(
δout(u)

)
∀u, v ∈ V (1)

xv
(
δin(u)

)
= 0 ∀u, v ∈ V : Du > Dv (2)

xv
(
δin(S)

)
≥ zv

u ∀v ∈ V, S ⊆ V, u ∈ S (3)
∑

a∈A

caxv
a ≤ Bzv

v ∀v ∈ V (4)

xv
(
δout(r)

)
= zv

v ∀v ∈ V,
∑

v

zv
v = 1, x, z ≥ 0.

This formulation can be converted to a compact LP by introducing flow variables
fu,v = {fu,v

a }a∈A, and encoding the cut constraints (3) by imposing that fu,v ≤
xv, and that fu,v sends zv

u units of flow from r to u. Observe that: (a) if Du > Dv

then zv
u ≤ xv

(
δin(u)

)
= 0; (b) we have zv

u ≤ xv
(
δin(V )

)
= xv

(
δout(r)

)
= zv

v for
all u, v. Let (x∗, z∗) be an optimal solution to (R-O), of value OPT .

Theorem 4. We can round (x∗, z∗) to a rooted-orienteering solution of value
at least OPT/3.

Proof. For each v with z∗v
v > 0 we apply Theorem 3 with K = z∗v

v to obtain
r-rooted out-arborescences, which we view as rooted trees in G, and associated
nonnegative weights {γv

T }T∈T ; recall that T is the collection of all r-rooted trees.
So we have

∑
T γv

T = z∗v
v ,

∑
T γv

T c(T ) ≤
∑

a cax∗v
a ≤ Bz∗v

v , and
∑

T :u∈T γv
T ≥

z∗v
u for all u ∈ V . Note that for every T with γT

v > 0, we have v ∈ T , and
Du ≤ Dv for all u ∈ T (as otherwise, we have x∗v

(
δin(u)

)
= 0). For every v and

every tree T with γv
T > 0, we do the following. First, we double the edges not

lying on the r-v path of T and shortcut to obtain a simple r-v path P v
T . So

∑

T

γv
T creg(P v

T ) ≤ 2
∑

T

γv
T

(
c(T ) − Dv

)
= 2z∗v

v (B − Dv). (5)



Compact, Provably-Good LPs 205

Next, we use Lemma 1 with regret-bound B − Dv to break P v
T into a collection

Pv
T of at most 1 + creg(Pv

T )
B−Dv

rooted paths, each having creg-cost at most B − Dv.
Note that if B = Dv, then creg(P v

T ) = 0, and we use the convention that 0/0 = 0,
so |Pv

T | = 1 in this case. Each path in Pv
T ends at a vertex u with Du ≤ Dv, so

its c-cost is at most B. Now, for all v ∈ V , we have
∑

T

γv
T

∑

P∈Pv
T

ρ(P ) =
∑

T

γv
T ρ(P v

T ) ≥
∑

u

ρ(u)z∗v
u (6)

∑

T

γv
T |Pv

T | ≤
∑

T

γv
T

(
1 + creg(Pv

T )
B−Dv

)
≤ z∗v

v + 2z∗v
v = 3z∗v

v (7)

where the last inequality in (7) follows from (5). Therefore, the maximum-reward
path in

⋃
v,T :γv

T >0 Pv
T earns reward at least

(∑

v,T

γv
T

∑

P∈Pv
T

ρ(P )
)/(∑

v,T

γv
T |Pv

T |
)

≥
∑

v,u ρuz∗v
u

3
∑

v z∗v
v

= OPT/3.
	


The following variant of rooted orienteering, which we call regret orienteering,
will be useful in Sect. 4. In regret orienteering, instead of a cost bound B, we are
given a regret bound R, and we seek a rooted path of regret at most R that collects
the maximum reward. The LP-relaxation for regret-orienteering is very similar
to (R-O); the only changes are that zv

v now indicates if v is the end node of the
optimum path, and so we drop (2) and replace (4) with

∑
a∈A caxv

a ≤ (Dv+R)zv
v .

The rounding algorithm is essentially unchanged: we convert the trees obtained
from xv into r-v paths, which are then split into paths of regret at most R.
Theorem 4 yields the following corollary.

Corollary 5. There is an LP-based 3-approximation for regret orienteering.

4 Point-to-Point Orienteering

We now consider the generalization of rooted orienteering, where we have a start
node r and an end node t, and we seek an r-t path with cost at most B that
collects the maximum reward. We may assume that r and t have 0 reward, i.e.,
ρ(r) = ρ(t) = 0. The main result of this section is a novel reduction showing that
point-to-point (P2P) orienteering problem can be reduced to regret orienteering
losing a factor of at most 2 (Theorem 6). Combining this with our LP-approach
for regret orienteering and Corollary 5, we obtain an LP-relaxation for P2P-
orienteering having integrality gap at most 6 (described in the full version). We
believe that the insights gained from this reduction may find further application.

Theorem 6. An α-approximation algorithm for regret orienteering (where
α ≥ 1) can be used to obtain a 2α-approximation algorithm for P2P-orienteering.

Proof. Let
(
G = ({r, t} ∪ V,E), {cuv}, {ρ(u)}, B

)
be a P2P-orienteering

instance. Our reduction is simple. Let P ∗ be an optimal solution. We “guess” a
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node v ∈ P ∗ (which could be r or t) such that Dv + cvt = maxu∈P ∗(Du + cut).
(That is, we enumerate over all choices for v.) Let S = {u ∈ {r, t} ∪ V :
Du + cut ≤ Dv + cvt}. We then consider two regret orienteering problems,
both of which have regret bound R = B − Dv − cvt and involve only nodes
in S (i.e., we equivalently set ρ(u) = 0 for all u /∈ S); the first problem has
root r, and the second has root t. Let P1 and P2 be the solutions obtained
for these two problems respectively by our α-approximation algorithm. So for
some u1, u2 ∈ S, P1 is an r-u1 path, and P2 may be viewed as a u2-t path.
Notice that P1 appended with the edge u1t yields an r-t path of cost at most
Du1 + creg(P1) + cu1t ≤ Du1 + cu1t + B − Dv − cvt ≤ B, since u1 ∈ S. Similarly
P2 appended with the edge ru2 yields an r-t path of cost at most B. We return
P1 + u1t or ru2 + P2, whichever has higher reward.

To analyze this, we observe that the r-v portion of P ∗ is a feasible solution to
the regret-orienteering instance with root r, since its cost is at most B −cvt, and
hence, its regret is at most R. Similarly, the v-t portion of P ∗ (viewed in reverse)
is a feasible solution to the regret-orienteering instance with root t. Therefore,
max

{
ρ(P1 + u1t), ρ(ru2 + P2)} ≥ ρ(P ∗)/2α. 	


5 Compact LPs and Improved Guarantees for RVRP

Recall that in the regret-bounded vehicle routing problem (RVRP), we are given
an undirected complete graph G = ({r} ∪ V,E) on n nodes with a distinguished
root (depot) node r, metric edge costs or distances {cuv}, and a regret-bound
R. The goal is to find the minimum number of rooted paths that cover all nodes
so that the regret of each node with respect to the path covering it is at most R.
Throughout, let O∗ denote the optimal value of the RVRP instance. We describe
two compact LP-relaxations for RVRP and corresponding rounding algorithms
that yield improvements, in both approximation ratio and running time, over
the RVRP-algorithm in [10]. In Sect. 5.1, we observe that the compact LP for ori-
enteering (R-O) yields a natural LP for RVRP; by combining the rounding ideas
used for orienteering and Theorem 2, we obtain a 27-approximation algorithm
for RVRP. In Sect. 5.2, we formulate an unorthodox, stronger LP-relaxation (R2)
for RVRP by leveraging some key structural insights in [10]. We devise a round-
ing algorithm for this LP that leads to a 15-approximation algorithm for RVRP,
which is a significant improvement over the guarantee obtained in [10].

5.1 Extending the Orienteering LP to RVRP

The LP-relaxation below can be viewed as a natural variant of the orienteering
LP adapted to RVRP. As before, let D = ({r} ∪ V,A) be the bidirected version
of G. For each node v, xv is a preflow (constraint (8)) of value zv

v such that the
r � u connectivity under capacities {xv

a} is at least zv
u for all u, v (constraint (9)).

As before, we can obtain a compact formulation by replacing the cut constraints
(9) with constraints involving suitable flow variables.
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min
∑

v

zv
v (R1)

s.t. xv(δin(u)
)

≥ xv
(
δout(u)

)
∀u, v ∈ V (8)

xv
(
δin(S)

)
≥ zv

u ∀v ∈ V, S ⊆ V, u ∈ S (9)
∑

a∈A

caxv
a ≤ (Dv + R)zv

v ∀v ∈ V

xv
(
δout(r)

)
= zv

v ∀v ∈ V,
∑

v∈V

zv
u ≥ 1 ∀u ∈ V, x, z ≥ 0.

Theorem 7. We can round an optimal solution to (R1) to obtain a 27-
approximation for RVRP.

5.2 A New Compact LP for RVRP Leading to a 15-Approximation

We now propose a different LP for RVRP, which leads to a much-improved
15-approximation for RVRP. To motivate this LP, we first collect some facts
from [4,10] pertaining to the regret objective. By merging all nodes at distance
0 from each other, we may assume that cuv > 0 for all u, v ∈ V ∪{r}, and hence
Dv > 0 for all v ∈ V .

Definition 8 [10]. Let P be a rooted path ending at w. Consider an edge (u, v)
of P , where u precedes v on P . We call this a red edge of P if there exist nodes x
and y on the r-u portion and v-w portion of P respectively such that Dx ≥ Dy;
otherwise, we call this a blue edge of P . (Note that the first edge of P is always
a blue edge).

For a node x ∈ P , let red(x, P ) denote the maximal subpath Q of P contain-
ing x consisting of only red edges (which might be the trivial path {x}). Call
the collection

{
red(x, P ) : x ∈ P

}
of subpaths, the red intervals of P .

Lemma 9 [4]. For any rooted path P , we have
∑

e red on P ce ≤ 3
2creg(P ).

Lemma 10 [10]. (i) Let u, v be nodes on a rooted path P such that u precedes
v on P and red(u, P ) �= red(v, P ); then Du < Dv. (ii) If P ′ is obtained by
shortcutting P so that it contains at most one node from each red interval of P ,
then for every edge (x, y) of P ′ with x preceding y on P ′, we have Dx < Dy.

We say that a node u on a rooted path of P is a sentinel of P if u is the
first node of red(u, P ). Part (ii) above shows that if we shortcut each path
P of an optimal RVRP-solution past the non-sentinel nodes of P , then we
obtain a distance-increasing collection of paths. Moreover, part (i) implies that
if x and y are sentinels on P with x appearing before y, then maxu∈red(x,P )

Du < minu∈red(y,P ) Du. Finally, every non-sentinel node is connected to the sen-
tinel corresponding to its red interval via red edges, and Lemma 9 shows that
the total (c-) cost of these edges at most 1.5R(optimal value).
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Thus, we can view an RVRP-solution as a collection of distance-increasing
rooted paths covering some sentinel nodes S, and a low-cost way of connecting
the nodes in V \ S to S. Our LP-relaxation searches for the best such solution.
Let D := {Dv : v ∈ V }. For every u ∈ V , define Du to be the collection

{
[d1, d2] :

d1, d2 ∈ D, d1 ≤ Du ≤ d2
}

of (closed) intervals. We have variables xu,I,u for
every node u ∈ V and interval I = [d1, d2] ∈ Du to indicate if u is a sentinel and
d1, d2 are the minimum and maximum distances (from r) respectively of nodes in
the red interval corresponding to u; we say that I is u’s distance interval. We also
have variables xu,I,v for v �= u to indicate that v is connected to sentinel u with
distance interval I, and edge variables {ze}e∈E that encode these connections.
Finally, we have flow variables fr,u,I , fu,I,v,J , fu,I,t for all u, v ∈ V and I ∈ Du,
J ∈ Dv that encode the distance-increasing rooted paths on the sentinels, with
t representing a fictitious sink. We include constraints that encode that the
distance intervals of sentinels lying on the same path are disjoint, and a non-
sentinel v can be connected to (u, I) only if Dv ∈ I. We obtain the following LP.

min
∑

u∈V,I∈Du

fr,u,I (R2)

s.t.
∑

u∈V,I∈Du

xu,I,v ≥ 1 ∀v ∈ V (10)

xu,I,v ≤ xu,I,u, xu,I,v = 0 ifDv /∈ I ∀u, v ∈ V, I ∈ Du (11)

z
(
δ(S)

)
≥

∑

u/∈S,I∈Du

xu,I,v ∀v ∈ V, {v} ⊆ S ⊆ V (12)

fr,u,I +
∑

v∈V,J∈Dv

fv,J,u,I = xu,I,u ∀u ∈ V, I ∈ Du (13)

∑

v∈V,J∈Dv

fu,I,v,J + fu,I,t = xu,I,u ∀u ∈ V, I ∈ Du (14)

fu,I,v,J = 0 ∀u, v ∈ V, I ∈ Du, J ∈ Dv : I ∩ J �= ∅ or Dv ≤ Du (15)
∑

u,v∈V,I∈Du,J∈Dv

creguv fu,I,v,J ≤ R ·
∑

u∈V,I∈Du

fr,u,I (16)

∑

e∈E

ceze ≤ 1.5R ·
∑

u∈V,I∈Du

fr,u,I (17)

x, z, f ≥ 0.

Constraint (10) encodes that every node v is either a sentinel or is connected to
a sentinel; (11) ensures that if v is assigned to (u, I), then u is indeed a sentinel
with distance interval I and that Dv ∈ I. Constraints (12) ensure that the zes
(fractionally) connect each non-sentinel v to the sentinel specified by the xu,I,v

variables. Constraints (13), (14) encode that each sentinel (u, I) lies on rooted
paths, and (15) ensures that these paths are distance increasing and moreover
the distance intervals of the sentinels on the paths are disjoint. Finally, letting
k denote the number of paths used (16), (17) encode that the total regret of
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the distance-increasing paths is at most kR (note that cregru = 0 for all u), and
the total cost of the edges used to connect non-sentinels to sentinels is at most
1.5kR. As before, the cut constraints (12) can be equivalently stated using flows
to obtain a polynomial-size LP. Let (x∗, z∗, f∗) be an optimal solution to (R2)
and OPT denote its objective value. We have already argued that an optimal
RVRP-solution yields an integer solution to (R2), so we obtain that OPT� is
at most the optimal value, O∗, of the RVRP instance.

Our rounding algorithm proceeds in a similar fashion as the RVRP-algorithm
in [10]; yet, we obtain an improved guarantee since one can solve (R2) exactly
whereas one can only obtain a (2 + ε)-approximate solution to the configuration
LP in [10]. Let θ ∈ (0, 1) be a parameter that we will set later. We first obtain
a forest F of c-cost at most 3R

1−θ · OPT such that every component Z contains
a witness node v that is assigned to an extent of at least θ to sentinels in Z.
We argue that if we contract the components of F , then the distance-increasing

A1. For S ⊆ V , define h(S) = 1 if
∑

u∈S,I∈Du
x∗

u,I,v < θ for all v ∈ S, and 0 otherwise.
h is a downwards-monotone cut-requirement function: if ∅ �= A ⊆ B, then h(A) ≥
h(B). Use the LP-relative 2-approximation algorithm in [12] for {0, 1} downwards-
monotone functions to obtain a forest F such that |δ(S)∩F | ≥ h(S) for all S ⊆ V .

A2. For every component Z of F with r /∈ Z, pick a witness node w ∈ Z such that∑
u∈Z,I∈Du

x∗
u,I,w ≥ θ. Let σ(w) = {(u, I) : u ∈ Z, x∗

u,I,w > 0}. Let W ⊆ V be the
set of all such witness nodes.

A3. f∗ is an r � t flow in an auxiliary graph having nodes r, t, and (u, I) for all u ∈
V, I ∈ Du, edges (r, (u, I)), ((u, I), t) for all u ∈ V, I ∈ Du, and edges ((u, I), (v, J))
for all u, v ∈ V, I ∈ Du, J ∈ Dv such that Du < Dv and I ∩J = ∅. Let {f∗

P }P∈P be
a path-decomposition of this flow. Modify each flow path P ∈ P as follows. First,
drop t from P . Shortcut P past the nodes in P that are not in {r} ∪⋃w∈W σ(w).
The resulting path maps naturally to a rooted path in G (obtained by simply
dropping the distance intervals), which we denote by π(P ). Clearly, creg

(
π(P )

) ≤∑
((u,I),(v,J))∈P creguv since shortcutting does not increase the regret cost.

A4. Let Q be the collection of rooted paths obtained by taking the paths {π(P ) : P ∈
P} and contracting the components of F . Let H be the directed graph (which we
prove is acyclic) obtained by directing the paths in Q away from r. To avoid nota-
tional clutter, for a component Z of F , we use Z to also denote the corresponding
contracted node in H. For each Q ∈ Q, define yQ =

∑
P∈P:π(P ) maps to Q f∗

P .

A5. Use the integrality property of flows to round the flow
{ yQ

θ

}
Q∈Q to an integer

flow of value k ≤ ⌈OPT
θ

⌉
and regret-cost at most R

θ
·OPT . Since H is acyclic, this

yields rooted paths P̂1, . . . , P̂k so that every component Z of F lies on exactly one
P̂i path.

A6. We map the P̂is to rooted paths in G that cover V as follows. Consider a path P̂i.
Let Z be a component lying on P̂i, and u, v ∈ Z be the nodes where P̂i enters and
leaves Z respectively. We add to P̂i a u-v path that covers all nodes of Z obtained
by doubling all edges of Z except those on the u-v path in Z and shortcutting. Let
P̃i be the rooted path in G obtained by doing this for all components lying on P̂i.

A7. Finally, we use Lemma 1 to convert P̃1, . . . , P̃k to an RVRP-solution.



210 Z. Friggstad and C. Swamy

sentinel flow paths yield an acyclic flow that covers every contracted component
to an extent of at least θ. Hence, using the integrality property of flows, we obtain
an integral flow, and hence a collection of at most

⌈
OPT

θ

⌉
rooted paths, that

covers every component and has cost at most R
θ · OPT . Next, we show that we

can uncontract the components and attach the component-nodes to these rooted
paths incurring an additional cost of at most 6R

1−θ · OPT . Finally, by applying
Lemma 1, we obtain an RVRP solution with at most

(
6

1−θ + 1
θ

)
OPT +

⌈
OPT

θ

⌉

rooted paths.

Theorem 11. The above algorithm returns an RVRP-solution with at most(
6

1−θ + 1
θ

)
OPT +

⌈
OPT

θ

⌉
paths. Thus, taking θ = 1

3 , we obtain at most 15 · O∗

paths.

6 Minimum-Regret TSP-path

We now consider the minimum-regret TSP-path problem, wherein we have (as
before), a complete graph G = (V ′, E), r, t ∈ V ′, metric edge costs {cuv}, and
we seek a minimum-regret r-t path that visits all nodes. Observe that this is
precisely the ATSP-path problem under the asymmetric regret metric creg. We
establish a tight bound of 2 on the integrality gap of the standard ATSP-path
LP for the class of regret-metrics (induced by a symmetric metric). We consider
the following LP for min-regret TSP path. Let D = (V ′, A) be the bidirected
version of G. Let bt = 1 = −br and bv = 0 for all v ∈ V ′ \ {r, t}.

min
∑

a∈A

crega xa s.t. x
(
δin(v)

)
− x

(
δout(v)

)
= bv∀v ∈ V ′, x ≥ 0 (R-TSP)

x(δin(S)) ≥ 1 ∀∅ �= S ⊆ V \ {r}.

Theorem 12. The integrality gap of (R-TSP) is 2 for regret metrics, and we
can obtain in polytime a Hamiltonian r-t path P with creg(P ) ≤ 2 · OPTR−TSP .
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Abstract. We consider the line search problem in a submodular poly-
hedron P (f) ⊆ R

n: Given an arbitrary a ∈ R
n and x0 ∈ P (f), compute

max{δ : x0 + δa ∈ P (f)}. The use of the discrete Newton’s algorithm
for this line search problem is very natural, but no strongly polynomial
bound on its number of iterations was known (Iwata 2008). We solve
this open problem by providing a quadratic bound of n2 + O(n log2 n)
on its number of iterations. Our result considerably improves upon the
only other known strongly polynomial time algorithm, which is based
on Megiddo’s parametric search framework and which requires Õ(n8)
submodular function minimizations (Nagano 2007). As a by-product of
our study, we prove (tight) bounds on the length of chains of ring fam-
ilies and geometrically increasing sequences of sets, which might be of
independent interest.

Keywords: Discrete Newton’s algorithm · Submodular functions · Line
search · Ring families · Geometrically increasing sequence of sets · Frac-
tional combinatorial optimization

1 Introduction

Let f be a submodular function on V , where |V | = n. We often assume that
V = [n] := {1, 2, · · · , n}. Let P (f) = {x ∈ R

n | x(S) ≤ f(S) for all S ⊆ V }. The
only assumption we make on f is that f(∅) ≥ 0 (otherwise P (f) is empty). Given
x0 ∈ P (f) (this condition can be verified by performing a single submodular
function minimization) and a ∈ R

n, we would like to find the largest δ such that
x0 + δa ∈ P (f). For any vector b ∈ R

n and any set S ⊆ V , it is convenient to
use the notation b(S) :=

∑
e∈S be. By considering the submodular function f ′

taking the value f ′(S) = f(S) − x0(S) for any set S, we can equivalently find
the largest δ such that δa ∈ P (f ′). Since x0 ∈ P (f) we know that 0 ∈ P (f ′) and
thus f ′ is nonnegative. Thus, without loss of generality, we consider the problem

δ∗ = max
{

δ : min
S⊆V

f(S) − δa(S) ≥ 0
}

, (1)

for a nonnegative submodular function f .

c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 212–227, 2017.
DOI: 10.1007/978-3-319-59250-3 18
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Since x0 = 0 ∈ P (f) we know that δ∗ ≥ 0 and that the minimum could be
taken only over the sets S with a(S) > 0, although we will not be using this
fact. To make this problem nontrivial, we assume that there exists some i with
ai > 0. Geometrically, the problem of finding δ∗ is a line search problem. As we
go along the line segment �(δ) = x0 + δa (or just δa if we assume x0 = 0), when
do we exit the submodular polyhedron P (f)? This is a basic subproblem needed
in many algorithmic applications. For example, for the algorithmic version of
Carathéodory’s theorem (over any polytope), one typically performs a line search
from a vertex of the face being considered in a direction within the same face.
This is, for example, also the case for variants of the Frank-Wolfe algorithm (see
for instance (Freund et al. 2015)).

A natural way to solve this line search problem is to use a cutting plane app-
roach. Start with any upper bound δ1 ≥ δ∗ and define the point x(1) = δ1a. One
can then generate a most violated inequality for x(1), where most violated means
the one minimizing f(S)− δ1a(S) over all sets S. The hyperplane corresponding
to a minimizing set S1 intersects the line in x(2) = δ2a. Proceeding analogously,
we obtain a sequence of points and eventually will reach the optimum δ.

This cutting-plane approach is equivalent to Dinkelbach’s algorithm or the
discrete Newton’s algorithm for solving (1). At the risk of repeating ourselves,
we let δ1 ≥ δ∗. For example we could set δ1 = mini:ai>0 f({i})/ai. At iteration
i ≥ 1 of Newton’s algorithm, we consider the submodular function ki(S) =
f(S) − δia(S), and compute

hi = min
S

ki(S),

and define Si to be any minimizer of ki(S). Now, let fi = f(Si) and gi = a(Si).
As long as hi < 0, we proceed and set

δi+1 =
fi

gi
.

As soon as hi = 0, Newton’s algorithm terminates and we have that δ∗ = δi. We
give the full description of the discrete Newton’s algorithm in Algorithm 1.

Algorithm 1. Discrete Newton’s algorithm

input : submodular f : 2V → R, f nonnegative, a ∈ R
n

output: δ∗ = max {δ : minS f(S) − δa(S) ≥ 0}
i = 0, δ1 = mini∈V,a({i})>0 f({i})/a({i});
repeat

i = i + 1;
hi = minS⊆V f(S) − δia(S);
Si ∈ argminS⊆V f(S) − δia(S);

δi+1 = f(Si)
a(Si)

;

until hi = 0;
Return δ∗ = δi.
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When a ≥ 0, it is known that Newton’s algorithm terminates in at most n
iterations (for e.g. (Topkis 1978)). Even more, the function g(δ) := minS f(S) −
δa(S) is a concave, piecewise affine function with at most n breakpoints (and
n + 1 affine segments) since for any set {δi}i∈I of δ values, the submodular
functions f(S) − δia(S) for i ∈ I form a sequence of strong quotients (ordered
by the δi’s), and therefore the minimizers form a chain of sets. See (Iwata et al.
1997) for definitions of strong quotients and details.

When a is arbitrary (not necessarily nonnegative), little is known about the
number of iterations of the discrete Newton’s algorithm. The number of itera-
tions can easily be bounded by the number of possible distinct positive values
of a(S), but this is usually very weak (unless, for example, the support of a is
small as is the case in the calculation of exchange capacities). A weakly poly-
nomial bound involving the sizes of the submodular function values is easy to
obtain, but no strongly polynomial bound was known, as mentioned as an open
question in (Nagano 2007, Iwata 2008). In this paper, we show that the number
of iterations is quadratic. This is the first strongly polynomial bound in the case
of an arbitrary a.

Theorem 1. For any submodular function f : 2[n] → R+ and an arbitrary
direction a, the discrete Newton’s algorithm takes at most n2 + O(n log2(n))
iterations.

Previously, the only strongly polynomial algorithm to solve the line search
problem in the case of an arbitrary a ∈ R

n was an algorithm of Nagano et al.
(Nagano 2007) relying on Megiddo’s parametric search framework. This requires
Õ(n8) submodular function minimizations, where Õ(n8) corresponds to the
current best running time known for fully combinatorial submodular function
minimization (Iwata and Orlin 2009). On the other hand, our main result in
Theorem 1 shows that the discrete Newton’s algorithm takes O(n2) iterations,
i.e. O(n2) submodular function minimizations, and we can use any submodular
function minimization algorithm. Each submodular function minimization can
be computed, for example, in Õ(n4+γn3) time using a result of (Lee et al. 2015),
where γ is the time for an evaluation of the submodular function.

Radzik (Radzik 1998) provides an analysis of the discrete Newton’s algorithm
for the related problem of max δ : minS∈S b(S) − δa(S) ≥ 0 where both a and b
are modular functions and S is an arbitrary collection of sets. He shows that the
number of iterations of the discrete Newton’s algorithm is at most O(n2 log2(n)).
Our analysis does not handle an arbitrary collection of sets, but generalizes his
setting as it applies to the more general case of submodular functions f . Note that
considering submodular functions (as opposed to modular functions) makes the
problem considerably harder since the number of input parameters for modular
functions is only 2n, whereas in the case of submodular functions the input is
exponential (we assume oracle access for function evaluation).

Apart from the main result of bounding the number of iterations of the
discrete Newton’s algorithm for solving max δ : minS f(S)−δa(S) ≥ 0 in Sect. 3,
we prove results on ring families (set families closed under taking intersections
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Fig. 1. Illustration of Newton’s iterations and notation in Lemma 1.

and unions) and geometrically increasing sequences of sets, which may be of
independent interest. As part of the proof of Theorem 1, we first show a tight
(quadratic) bound on the length of a sequence T1, · · · , Tk of sets such that no set
in the sequence belongs to the smallest ring family generated by the previous sets
(Sect. 2). Further, one of the key ideas in the proof of Theorem 1 is to consider
a sequence of sets (each set corresponds to an iteration in the discrete Newton’s
algorithm) such that the value of a submodular function on these sets increases
geometrically. We show a quadratic bound on the length of such sequences for
any submodular function and construct two (related) examples to show that this
bound is tight, in Sect. 4. Interestingly, one of these examples is a construction
of intervals and the other example is a weighted directed graph where the cut
function already gives such a sequence of sets.

2 Ring Families

A ring family R ⊂ 2V is a family of sets closed under taking unions and inter-
sections. From Birkhoff’s representation theorem, we can associate to a ring
family a directed graph D = (V,E) in the following way. Let A =

⋂
R∈R R and

B =
⋃

R∈R R. Let E = {(i, j) | R ∈ R, i ∈ R ⇒ j ∈ R}. Then for any R ∈ R, we
have that (i) A ⊆ R, (ii) R ⊆ B and (iii) δ+(R) = {(i, j) ∈ E | i ∈ R, j /∈ R} = ∅.
But, conversely, any set R satisfying (i), (ii) and (iii) must be in R. Indeed, for
any i 
= j with (i, j) /∈ E, there must be a set Uij ∈ R with i ∈ Uij and j /∈ Uij .
To show that a set R satisfying (i), (ii) and (iii) is in R, it suffices to observe
that
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R =
⋃

i∈R

⋂

j /∈R

Uij , (2)

and therefore R belongs to the ring family.
Given a collection of sets T ⊆ 2V , we define R(T ) to be the smallest ring

family containing T . The directed graph representation of this ring family can
be obtained by defining A, B and E directly from T rather than from the
larger R(T ), i.e. A =

⋂
R∈T R =

⋂
R∈R(T ) R, B =

⋃
R∈T R =

⋃
R∈R(T ) R, and

E = {(i, j) | R ∈ T , i ∈ R ⇒ j ∈ R}. Further, in the expression (2) of any set
R ∈ R(T ), we can use sets Uij ∈ T .

Given a sequence of subsets T1, · · · , Tk of V , define Li := R({T1, · · · , Ti})
for 1 ≤ i ≤ k. Assume that for each i > 1, we have that Ti /∈ Li−1. We should
emphasize that this condition depends on the ordering of the sets, and not just
on this collection of sets. For instance, {1}, {1, 2}, {2} is a valid ordering whereas
{1}, {2}, {1, 2} is not. We have thus a chain of ring families: L1 ⊂ L2 ⊂ · · · ⊂ Lk

where all the containments are proper. The question is how large can k be, and
the next theorem shows that it can be at most quadratic in n.

Theorem 2. Consider a chain of ring families, L0 = ∅ 
= L1 � L2 � · · · � Lk

within 2V with n = |V |. Then

k ≤
(

n + 1
2

)

+ 1.

Before proving this theorem, we show that the bound on the number of sets
is tight.

Example 1. Let V = {1, · · · , n}. For each 1 ≤ i ≤ j ≤ n, consider intervals
[i, j] = {k ∈ V | i ≤ k ≤ j}. Add also the empty set ∅ as the trivial interval
[0, 0] (as 0 /∈ V ). We have just defined k =

(
n+1
2

)
+ 1 sets. Define a complete

order on these intervals in the following way: (i, j) ≺ (s, t) if j < t or (j = t
and i < s). We claim that if we consider these intervals in the order given by ≺,
we satisfy the main assumption of the theorem that [s, t] /∈ R(Tst) where Tst =
{[i, j] | (i, j) ≺ (s, t)}. Indeed, for s = 1 and any t, we have that [1, t] /∈ R(T1t)
since

⋃
I∈T1t

I = [1, t − 1] 
⊃ [1, t]. On the other hand, for s > 1 and any t, we
have that [s, t] /∈ R(Tst) since for all I ∈ Tst we have (t ∈ I ⇒ s − 1 ∈ I) while
this is not the case for [s, t].

Proof. For each 1 ≤ i ≤ k, let Ti ∈ Li \ Li−1. We can assume that Li =
R({T1, · · · Ti}) (otherwise a longer chain of ring families can be constructed).
If none of the Ti’s is the empty set, we can increase the length of the chain
by considering (the ring families generated by) the sequence ∅, T1, T2, · · · , Tk.
Similarly if V is not among the Ti’s, we can add V either in first or second
position in the sequence. So we can assume that the sequence has T1 = ∅ and
T2 = V , i.e. L1 = {∅} and L2 = {∅, V }.

When considering L2, its digraph representation has A = ∅, B = V and the
directed graph D = (V,E) is the bidirected complete graph on V . To show a
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weaker bound of k ≤ 2 + n(n − 1) is easy: every Ti we consider in the sequence
will remove at least one arc of this digraph and no arc will get added.

To show the stronger bound in the statement of the theorem, consider the
digraph D′ obtained from D by contracting every strongly connected component
of D and discarding all but one copy of (possibly) multiple arcs between two
vertices of D′. We keep track of two parameters of D′: s is its number of vertices
and a is its the number of arcs. Initially, when considering L2, we have s = 1
strongly connected component and D′ has no arc: a = 0. Every Ti we consider
will either keep the same strongly connected components in D (i.e. same vertices
in D′) and remove (at least) one arc from D′, or will break up at least one
strongly connected component in D (i.e. increases vertices in D′). In the latter
case, we can assume that only one strongly connected component is broken up
into two strongly connected components and the number of arcs added is at most
s since this newly formed connected component may have a single arc to every
other strongly connected component. Thus, in the worst case, we move either
from a digraph D′ with parameters (s, a) to one with (s, a − 1) or from (s, a)
to (s + 1, a + s). By induction, we claim that if the original one has parameters
(s, a) then the number of steps before reaching the digraph on V with no arcs
with parameters (n, 0) is at most

a +
(

n + 1
2

)

−
(

s + 1
2

)

.

Indeed, this trivially holds by induction for any step (s, a) → (s, a − 1) and it
also holds for any step (s, a) → (s + 1, a + s) since:

(a + s) +
(

n + 1
2

)

−
(

s + 2
2

)

+ 1 = a +
(

n + 1
2

)

−
(

s + 1
2

)

.

As the digraph corresponding to L2 has parameters (1, 0), we obtain that k ≤
2 +

(
n+1
2

)
− 1 =

(
n+1
2

)
+ 1. �

3 Analysis of the Discrete Newton’s Algorithm

To prove Theorem 1, we start by recalling Radzik’s analysis of Newton’s
algorithm for the case of modular functions (Radzik 1998). First of all, the
discrete Newton’s algorithm, as stated in Algorithm 1 for solving max δ :
minS⊆V f(S) − δa(S) ≥ 0 terminates. Recall that hi = minS⊆V f(S) − δia(S),
Si ∈ arg minS f(S) − δia(S), gi = a(Si) and δi+1 = f(Si)

a(Si)
. Let fi = f(Si) and

gi = a(Si). Figure 1 illustrates the discrete Newton’s algorithm and the notation.

Lemma 1. Newton’s algorithm as described in Algorithm 1 terminates in a
finite number of steps t and generate sequences:

(i) h1 < h2 < · · · < ht−1 < ht = 0,
(ii) δ1 > δ2 > · · · > δt−1 > δt = δ∗ ≥ 0,
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(iii) g1 > g2 > · · · > gt−1 > gt ≥ 0.

Furthermore, if gt > 0 then δ∗ = 0.

The first proof of the above lemma is often attributed to (McCormick and
Ervolina 1994) and is omitted for conciseness. As in Radzik’s analysis, we use
the following lemma, illustrated in Fig. 2, and we reproduce here its proof.

Fig. 2. Illustration for showing that hi+1 + hi
gi+1
gi

≤ hi, as in Lemma 2.

Lemma 2. For any i < t, we have hi+1
hi

+ gi+1
gi

≤ 1.

Proof. By definition of Si, we have that

hi = f(Si) − δia(Si) = fi − δigi ≤ f(Si+1) − δia(Si+1) = fi+1 − δigi+1

= hi+1 +
fi

gi
gi+1 − fi − hi

gi
gi+1 = hi+1 + hi

gi+1

gi
.

Since hi < 0, dividing by hi gives the statement. �

Thus, in every iteration, either gi or hi decreases by a constant factor smaller
than 1. We can thus partition the iterations into two types, for example as

Jg =
{

i | gi+1

gi
≤ 2

3

}

and Jh = {i /∈ Jg}. Observe that i ∈ Jh implies hi+1
hi

< 1
3 . We first bound |Jg|

as was done in (Radzik 1998).

Lemma 3. |Jg| = O(n log n).

Proof sketch. Let Jg = {i1, i2, · · · , ik} and let Tj = Sij
. From the monotonicity

of g, these sets Tj are such that a(Tj+1) ≤ 2
3a(Tj). These can be viewed as

linear inequalities with small coefficients involving the ai’s, and by normalizing
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and taking an extreme point of this polytope, Goemans (see (Radzik 1998)) has
shown that the number k of such sets is O(n log n).

Although we do not need this for the analysis, the bound of O(n log n) on
the number of geometrically decreasing sets defined on n numbers is tight, as
was shown by Mikael Goldmann in 1993 by an intricate construction based on a
Fourier-analytic approach of H̊astad (H̊astad 1994). As this was never published,
we include (a variant of) this construction here. The reader is welcome to skip
directly to Sect. 3.1 without break in continuity.

Theorem 3. Let n be a power of 2. Then there exists a ∈ R
n and a sequence

of sets {Si}i∈[k] with a(S1) > 0 and a(Si) ≥ 2a(Si−1) for i > 1 where k =
1
2n log2 n − O(n log log n).

Proof. Let m be such that n = 2m. Consider all 2m subsets of [m] and order them
as α1, α2, · · · , αn such that |αi| ≤ |αj | for i < j. Thus, α1 = ∅ and αn = [m].
We say αi ≺ αj if i < j. Consider the n × n Hadamard matrix Q in which the
ith row and column are indexed by subset αi of [m] and

qij = (−1)|αi∩αj |.

Q is invertible and Q−1 = 1
nQ. Set b1 = 0 and bi = 2mi for i > 1. Now, let

a ∈ R
n be the solution to Qa = b. We claim that there is a sequence of sets

of length 1
2nm + O(n log log n) = 1

2n log n + O(n log log n) whose a(·) values
increase geometrically by a factor of 2.

First, observe that q1j = 1 for all j and thus a([n]) = 0. This means that if
we have a r ∈ {−1, 1}n such that 〈r, a〉 = p then a(S) = p

2 where S = {i|ri =
1} ⊆ [n]. Thus we focus on constructing a sequence of vectors r ∈ {−1, 1}n

whose inner product with a increases geometrically. We already have n − 1 such
vectors, namely the rows qi ∈ {−1, 1}n of Q for i > 1: 〈qi, a〉 = 2mi.

Now, for each i > 1, we show how to construct ±1 vectors v such that
2m(i−1) < 〈v, a〉 < 2mi and whose a values increase geometrically. We will be
able to construct one such set for almost all values between 1 and |αi|. Fix i > 1
and let k = |αi|. For any � with 1 ≤ � ≤ k − 2, consider a set αh�

⊂ αi of
cardinality �. Define the vector

w(�) =
∑

u:αh�
⊆αu⊆αi

qu.

Its jth component is:

w
(�)
j

=
∑

u:αh�
⊆αu⊆αi

quj =
∑

u:αh�
⊆αu⊆αi

(−1)
|αu∩αj |

= (−1)
|αh�

∩αj | ∑

u:αh�
⊆αu⊆αi

(−1)
|(αu\αh�

)∩αj |

=

⎧
⎨

⎩
0 if (αi \ αh�

) ∩ αj = ∅

2k−�(−1)
|αh�

∩αj |
otherwise

Now consider v(�) = 21−(k−�)w(�) − qh. We claim this is a ±1 vector. Its jth
component is equal to −qhj ∈ {−1, 1} if (αi \ αh�

) ∩ αj = ∅ and, otherwise, is
equal to

2(−1)|αh�
∩αj | − (−1)|αh�

∩αj | = (−1)|αh�
∩αj | ∈ {−1, 1}.
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Now for this vector v(�) (corresponding to a given pair αh�
⊂ αi), we have:

〈v(�), a〉 = 21−(k−�)〈w(�), a〉 − 〈qh�
, a〉 = 21−(k−�)

⎛

⎝
∑

u:αh�
⊆αu⊆αi

bu

⎞

⎠ − bh�
. (3)

Now the bj ’s increase geometrically with j. In the summation (with 2k−� terms),
the dominant one will be bi = 2mi, and as a first approximation, we have that
〈v(�), a〉 is roughly 2mi+1−k+�, and therefore they appear to be between bi−1 and
bi, and increase appropriately by a factor 2. Unfortunately, lower terms matter
and, therefore, we need to select carefully the indices h�’s.

A simple construction of these sets {αh�
} is as follows. Let f = �log2 k�. For

any f ≤ � ≤ k−f , let αh�
be such that (i) αh�

∩[f ] has as characteristic vector the
f -bit representation of k−f −� and (ii) the elements in αh�

∩([k]\ [f ]) are chosen
arbitrarily so that |αh�

| = �. Observe that (i) is possible for all f ≤ � ≤ k − f
since k − f − � ≤ k − 2f ≤ 2f − 1 and therefore k − f − � can be represented by
f bits. And (ii) is feasible as well by our choice of �. We have just constructed
k − 2f + 1 ≥ k − 2 log2(k) − 1 sets.

One can show (proof omitted for space considerations) that, for such a choice
of {αh�

}, we have for f ≤ � < k − f : 〈v(�+1), a〉 ≥ 2〈v(�), a〉.
The number of vectors/sets we have constructed this way is therefore at least:

m∑

k=0

(m
k

)
(k − 2 log2(k) − 1) ≥ m+ 1

2
2m − 2 log2(m)2m − 2m =

1

2
n log2(n) − O(n log log(n)),

and this completes the proof. �

3.1 Weaker Upper Bound

Before deriving the bound of O(n2) on |Jg|+ |Jh| for Theorem 1, we show how to
derive a weaker bound of O(n3 log n). For showing the O(n3 log n) bound, first
consider a block of consecutive iterations [u, v] := {u, u + 1, · · · , v} within Jh.

Theorem 4. Let [u, v] ⊆ Jh. Then |[u, v]| ≤ n2 + n + 1.

The strategy of the proof is to show (i) that, for the submodular function
kv(S) = f(S)−δva(S), the values of kv(Si) for i ∈ [u, v−1] form a geometrically
decreasing series (Lemma 4), (ii) that each Si cannot be in the ring family
generated by Si+1, . . . , Sv−1 (Lemma 5 and Theorem 5), and (iii) then conclude
using our Theorem 2 on the length of a chain of ring families.

Lemma 4. Let [u, v] ⊆ Jh. Then for kv(S) = f(S) − δva(S), we have (i)
kv(Sv) = minS kv(S) = hv, (ii) kv(Sv−1) = 0, (iii) kv(Sv−2) > 2|hv| and (iv)
kv(Si−1) > 2kv(Si) for i ∈ [u + 1, v − 1].

Proof. Since gi+1
gi

> 2
3 for all i ∈ [u, v], Lemma 2 implies that hi+1

hi
≤ 1

3 , and
thus

|hi+1|
gi+1

≤ 1
2

|hi|
gi

.
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Since δi+1 − δi = fi

gi
− fi−hi

gi
= hi

gi
. We deduce that

δi+1 − δi+2 = −hi+1

gi+1
≤ 1

2
(δi − δi+1), (4)

for all i ∈ [u, v]. Now, observe that for any i ∈ [u, v − 2], we have

δi+1 − δv =
v−1∑

k=i+1

δk − δk+1 ≤ 1
2

v−1∑

k=i+1

(δk−1 − δk) =
1
2

(δi − δv−1) <
1
2

(δi − δv) .

Thus

δi+1 − δv <
1
2

(δi − δv) , (5)

and we can even extend the range of validity to i ∈ [u, v] since for i = v − 1 or
i = v, this follows from Lemma 1.

Consider the submodular function kv(S) = f(S) − δva(S). We have denoted
its minimum value by hv < 0 and Sv is one of its minimizers. For each i ∈ [u, v−1]
we have

kv(Si) = fi − δvgi = gi(δi+1 − δv),

and therefore kv(Sv−1) = 0 while kv(Si) > 0 for i ∈ [u, v − 2]. Furthermore, (5)
implies that

kv(Si) = gi(δi+1 − δv) <
1
2

gi

gi−1
gi−1(δi − δv) <

1
2
gi−1(δi − δv) =

1
2
kv(Si−1),

and this is valid for i ∈ [u, v − 1]. Thus the kv(Si)’s decrease geometrically with
increasing i. In addition, we have kv(Sv−2) = gv−2(δv−1 − δv) while (by (4) and
Lemma 1)

−kv(Sv) = |hv| = −hv = gv(δv − δv+1) <
1
2
gv−2(δv−1 − δv) =

1
2
kv(Sv−2).

Summarizing, we have kv(Sv) = minS kv(S) = hv, kv(Sv−1) = 0, kv(Sv−2) >
2|hv| and kv(Si−1) > 2kv(Si) for i ∈ [u, v − 1]. �

We now show that for any submodular function and any ring family on the
same ground set, the values attained by the submodular function cannot increase
much when the ring family is increased to the smallest ring family including
a single additional set. This lemma follows from the submodularity of f and
Birkhoff’s representation theorem for subsets contained in a ring family.

Lemma 5. Let f : 2V → R be a submodular function with fmin =
minS⊆V f(S) ≤ 0. Let L be any ring family over V and T /∈ L. Define
L′ := R(L ∪ {T}), m = maxS∈L f(S) and m′ = maxS∈L′ f(S). Then

m′ ≤ 2(m − fmin) + f(T ).
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Proof. Consider S ∈ L′. Using (2), we can express S as S =
⋃

i∈S Si where Si

can be either (i) T , or (ii) R for some R ∈ L, or (iii) R ∩ T for some R ∈ L.
Taking the union of the sets R of type (ii), resp. (iii), into P , resp. Q, we can
express S as S = P ∪T or as S = P ∪(Q∩T ) where P,Q ∈ L (since the existence
of any case (i) annihilates the need for case (iii)).

Now using submodularity, we obtain that

f(P ∪ T ) ≤ f(P ) + f(T ) − f(P ∩ T ) ≤ m + f(T ) − fmin,

in the first case and

f(P ∪ (Q ∩ T )) ≤ f(P ) + f(Q ∩ T ) − f(P ∩ Q ∩ T )
≤ f(P ) + f(Q) + f(T ) − f(Q ∪ T ) − f(P ∩ Q ∩ T )
≤ 2m + f(T ) − 2fmin.

In either case, we get the desired bound on f(S) for any S ∈ R′. �

We will now use the bound in Lemma 5 to show that if a sequence of sets
increases in their submodular function value by a factor of 4, then any set in the
sequence is not contained in the ring family generated by the previous sets.

Theorem 5. Let f : 2V → R be a submodular function with fmin =
minS⊆V f(S) ≤ 0. Consider a sequence of distinct sets T1, T2, · · · , Tq such that
f(T1) = fmin, f(T2) > −2fmin, and f(Ti) ≥ 4f(Ti−1) for 3 ≤ i ≤ q. Then
Ti /∈ R({T1, · · · , Ti−1}) for all 1 < i ≤ q.

Proof. This is certainly true for i = 2. For any i ≥ 1, define Li = R({T1, · · · , Ti})
and mi = maxS∈Li

f(S). We know that m1 = fmin ≤ 0 and m2 = f(T2) since
T1 ∩ T2 and T1 ∪ T2 cannot have larger f values than T2 by submodularity of f
and minimality of T1.

We claim by induction that mk ≤ 2f(Tk) + 2fmin for any k ≥ 2. This is true
for k = 2 since m2 = f(T2) ≤ 2f(T2) + 2fmin. Assume the induction claim to
be true for k − 1.

We get that mk−1 ≤ 2f(Tk−1) + 2fmin < 4f(Tk−1). Since f(Tk) > mk−1,
Tk /∈ Lk−1 = R(T1, · · · , Tk−1). Using Lemma 5, we get that

mk ≤ 2(mk−1 − fmin) + f(Tk)
≤ 2(2f(Tk−1) + 2fmin − fmin) + f(Tk)
≤ 2f(Tk) + 2fmin.

Thus proving the induction step for k, and hence the statement of the
theorem. �

We are now ready to prove Theorem 4.

Proof. (of Theorem 4) Apply Theorem 5 to the submodular function kv given
in Lemma 4. Let T1 = Sv and skip every other set to define Ti = Sv−2(i−1) for
v − 2(i − 1) ≥ u i.e. i ≤ q := 1 + (v − u)/2. Then the conditions of Theorem 5
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are satisfied (thanks to Lemma 4), and we obtain a sequence of sets T1, · · · , Tq

such that Ti /∈ R(T1, · · · , Ti−1). Therefore, Theorem 2 on the length of a chain
of ring families implies that q ≤

(
n+1
2

)
+ 1, or v − u ≤ (n + 1)n. This means

|[u, v]| ≤ n2 + n + 1. �
Since Lemma 3 shows that |Jg| = O(n log n) and we know from Theorem 4

that the intervals between two indices of Jg have length O(n2), this implies that
|Jg| + |Jh| = O(n log n) · O(n2) = O(n3 log n).

3.2 Main Result of Theorem 1

The analysis of Theorem 4 can be improved by showing that we can extract a
chain of ring families not just from one interval of Jh but from all of Jh. Instead
of discarding every other set in Jh, we also need to discard the first O(log n)
sets in every interval of Jh. This helps prove the main result of the paper that
bounds the number of iterations in the discrete Newton’s algorithm by at most
n2 + O(n log2 n).

Theorem 6. We have |Jh| = n2 + O(n log2 n).

Before proving this, we need a variant of Lemma 5. The proof of the lemma
again follows from the submodularity of f and Birkhoff’s representation theorem
for subsets contained in a ring family.

Lemma 6. Let T ⊆ 2V and assume that f(S) ≤ M for all S ∈ T . Then for all
S ∈ R(T )

f(S) ≤ n2

4
(M − fmin).

Proof. Consider any S ∈ R(T ). We know that S =
⋃

i∈S

⋂
j /∈S Uij , for some

Uij ∈ T . Define Si =
⋂

j /∈S Uij ; thus S =
⋃

i∈S Si.
We first claim that, for any k sets T1, T2, · · · , Tk ∈ T , we have that

f(
k⋂

i=1

Ti) ≤ kM − (k − 1)fmin.

This is proved by induction on k, the base case of k = 1 being true by our
assumption on f . Indeed, applying submodularity to P =

⋂k−1
i=1 Ti and Tk (and

the inductive hypothesis), we get

f(
k⋂

i=1

Ti) = f(P ∩ Tk) ≤ f(P ) + f(Tk) − f(P ∪ Tk) ≤ (k − 1)M − (k − 2)fmin

+ M − fmin = kM − (k − 1)fmin.

Using this claim, we get that for any i ∈ S, we have

f(Si) = f(
⋂

j /∈S

Uij) ≤ |V \ S|M − (|V \ S| − 1)fmin ≤ |V \ S|(M − fmin).
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By a similar argument on the union of the Si’s, we derive that

f(S) ≤ |S| (|V \ S|M − (|V \ S| − 1)fmin)) − (|S| − 1)fmin

≤ |S||V \ S|M − (|S||V \ S| − 1)fmin

≤ n2

4
(M − fmin).

�

We are now ready to prove Theorem 6.

Proof. (of Theorem 6) Let Jh =
⋃�

i=1[ui, vi] where ui−1 > vi + 1 for 1 < i ≤ �.
Notice that these intervals are ordered in a reverse order (compared to the
natural ordering). We construct a sequence of sets T1, · · · such that each set
in the sequence is not in the ring closure of the previous ones. The first sets are
just every other set Si from [u1, v1] obtained as before by using Theorem 5 and
Lemma 4 with the submodular function kv1 . Let T1 denote this sequence of sets.

Suppose now we have already considered the intervals [uj , vj ] for j < i and
have extracted a (long) sequence of sets Ti−1 such that each set in the sequence
is not in the ring closure of the previous ones. Consider now the submodu-
lar function f := kvi

, and let fmin ≤ 0 be its minimum value. Notice that
from the order of iterations in the discrete Newton’s algorithm we have that
f(T ) < 0 for T ∈ Ti−1. Therefore by Lemma 6 with M = 0 we have that
f(S) ≤ −n2

4 fmin for all S ∈ R(Ti−1). Using Lemma 4 with f = kvi
, we have

that only sets Sk with k > vi − log(n2/4) could possibly be in R(Ti−1), and
therefore we can safely add to Ti−1 every other set in [ui, vi−O(log n)] while main-
taining the property that every set is not in the ring closure of the previous ones.
Over all i, we have thus constructed a chain of ring families of length 1

2 |Jh| −
O(log n)� = 1

2 |Jh| − O(log n)|Jg|. The theorem now follows from Lemma 3 and
Theorem 2. �

Finally, combining Theorem 6 and Lemma 3 proves Theorem 1.

Proof. (of Theorem 1) In every iteration of discrete Newton’s algorithm, either
gi or hi decreases by a constant factor smaller than 1. Thus, the iterations can
be partitioned into two types Jg =

{
i | gi+1

gi
≤ 2

3

}
and Jh = {i /∈ Jg}. Lemma 3

shows that |Jg| = O(n log n) and Theorem 6 shows that |Jh| = n2 +O(n log2 n).
Thus, the total number of iterations is n2 + O(n log2 n). �

4 Geometrically Increasing Sequences

In the proof for Theorem 1, we considered a sequence of sets S1, · · · , Sk such
that f(Si) ≥ 4f(Si−1) for all i ≤ k for a submodular function f . In the special
case when f is modular, we know that the maximum length of such a sequence
is at most O(n log n) (Lemma 3). When f is submodular, we show that the
maximum length is at most

(
n+1
2

)
+ 1 by applying Theorems 2 to 5. In this
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section, we show that the bound for the submodular case is tight by constructing
two related examples: one that uses interval sets of the ground set {1, · · · , n},
and the other that assigns weights to arcs in a directed graph such that the cut
function already gives such a sequence of quadratic (in the number of vertices)
number of sets.

4.1 Interval Submodular Functions

In this section, we show that the bound for the submodular case is tight by
constructing a sequence of

(
n+1
2

)
+ 1 sets ∅, S1, · · · , S(n+1

2 ) for a nonnegative

submodular function f , such that f(Si) = 4f(Si−1) for all i ≤
(
n+1
2

)
.

For each 1 ≤ i ≤ j ≤ n, consider intervals [i, j] = {k | i ≤ k ≤ j} and let the
set of all intervals be I =

⋃
i,j{[i, j]}. Let [i, j] = ∅ whenever i > j. Consider a

set function f : I → R+ such that f(∅) = 0. We say f is submodular on intervals
if for any S, T ∈ I such that S ∪ T ∈ I and S ∩ T ∈ I, we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Lemma 7. Let τ and κ be monotonically increasing, nonnegative functions on
the set [n], then f defined by f([i, j]) = τ(i)κ(j) is submodular on intervals.

Proof. Consider two intervals S and T . The statement follows trivially if S ⊆ T ,
so consider this is not the case. Let S = [si, sj ] and T = [ti, tj ] and assume
w.l.o.g that sj ≥ tj .

i. Case S ∩ T 
= ∅. This implies ti < si and si ≤ tj ≤ sj . In this case, f(S) +
f(T )−f(S∩T )−f(S∪T ) = τ(si)κ(sj)+τ(ti)κ(tj)−τ(si)κ(tj)−τ(ti)κ(sj) =
(τ(si) − τ(ti))(κ(sj) − κ(tj)) ≥ 0.

ii. Case S ∩ T = ∅, S ∪ T = [ti, sj ]. In this case, f(S) + f(T ) − f(S ∪ T ) =
τ(si)κ(sj) + τ(ti)κ(tj) − τ(ti)κ(sj) ≥ κ(sj)(τ(si) − τ(ti)) ≥ 0. �

We show that one can extend any function that is submodular on intervals to a
submodular function (defined over the ground set). This construction is general,
and might be of independent interest. For any set S ⊆ V , define I(S) to be the
set of maximum intervals contained in S. For example, for S = {1, 2, 3, 6, 9, 10},
I(S) = {[1, 3], [6, 6], [9, 10]}.

Lemma 8. Consider a set function f defined over intervals such that (i) f(∅) =
0, (ii) f([i, j]) ≥ 0 for interval [i, j], (iii) for any S, T ∈ I such that S∩T, S∪T ∈
I, f(S)+f(T ) ≥ f(S∪T )+f(S∩T ). Then, g(S) =

∑
I∈I(S) f(I) is submodular

over the ground set {1, . . . , n}.

Proof. We will show that g is submodular by proving that for any T ⊆ S and
any k /∈ S, g(S∪{k})−g(S) ≤ g(T ∪{k})−g(T ). Let the marginal gain obtained
by adding k to S be gk(S) = g(S ∪ {k}) − g(S).
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Note that I(S ∪ k) \ I(S) can either contain (i) [s, k], for some s ≤ k, or
(ii) [k, u], for some u > k, or (iii) [s, u] for s ≤ k ≤ u. In case (i), gk(S) =
f([s, k]) − f([s, k − 1]); in case (ii), gk(S) = f([k, u]) − f([k + 1, u]); and in case
(iii), gk(S) = f([s, u]) − f([s, k − 1]) − f([k + 1, u]). Thus, when comparing the
values of gk(S) and gk(T ), we are only concerned with intervals that are modified
due to the addition of k.

Let S ∪{k} contain the interval [s, k−1]∪{k}∪ [k+1, u] and T ∪{k} contain
the interval [t, k−1]∪{k}∪[k+1, v] where s ≤ t, v ≤ u (as T ⊆ S) and s ≤ k ≤ u
(s = k implies [s, k − 1] = ∅ and u = k implies that [k + 1, u] = ∅) and t ≤ k ≤ v
(t = k implies [t, k − 1] = ∅ and v = k implies that [k + 1, v] = ∅).

g(S ∪ {k}) − g(S) − g(T ∪ {k}) + g(T )

= f([s, u]) − f([s, k − 1]) − f([k + 1, u]) − (f([t, v]) − f([t, k − 1]) − f([k + 1, v]))

= f([s, u]) − f([s, k − 1]) − f([k + 1, u]) − f([t, v]) + f([t, k − 1]) + f([k + 1, v])

≤ f([s, u]) − f([s, k − 1]) − f([k + 1, v]) − f([t, u]) + f([t, k − 1]) + f([k + 1, v]) (6)

= f([s, u]) − f([s, k − 1]) − f([t, u]) + f([t, k − 1]) ≤ 0. (7)

where (6) follows from submodularity of f on intervals [k + 1, u] and [t, v], i.e.,
f([k+1, u])+f([t, v]) ≥ f([t, u])+f([k+1, v]), and (7) follows from submodularity
of f on intervals [s, k − 1] and [t, u]. �

Construction. Consider the function f([i, j]) = 4
j(j−1)

2 4i for [i, j] ∈ I, obtained
by setting τ(i) = 4i and κ(j) = 4

j(j−1)
2 . This is submodular on intervals from

Lemma 7. This function defined on intervals can be extended to a submodular
function g by Lemma 8. Consider the total order ≺ defined on intervals [i, j]
specified in Example 1 (Sect. 2). By our choice of τ and κ we have that S ≺ T
implies 4g(S) ≤ g(T ). The submodular function g thus contains a sequence of
length

(
n+1
2

)
+ 1 of sets that increase geometrically in their function values.

4.2 Cut Functions

The example from the previous section and Birkhoff’s representation theorem
motivates a construction of a complete directed graph G = (V,A) (|V | = n)
and a weight vector w ∈ R

|A|
+ such that there exists a sequence of m =

(
n
2

)
sets

∅, S1, · · · , Sm ⊆ V that has w(δ+(Sk)) ≥ 4w(δ+(Sk−1)) for all k ≥ 2.

Construction. The sets Si are all intervals of [n − 1], and are ordered by the
complete order ≺ as defined previously. One can verify that the kth set Sk in
the sequence is Sk = [i, j] where k = i + j(j − 1)/2.

Note that, if i > 1, for each interval [i, j], arc ei,j := (j, i− 1) ∈ δ+([i, j]) and
(j, i−1) /∈ δ+([s, t]) for any (s, t) ≺ (i, j). For any interval [1, j], arc e1,j := (j, j+
1) ∈ δ+([1, j]) and (j, j + 1) /∈ δ+([s, t]) for any (s, t) ≺ (1, j). Define arc weights
w by w(ei,j) = 5i+j(j−1)/2. Thus, the arcs ei,j corresponding to the intervals [i, j]
increase in weight by a factor of 5. We claim that w(δ+(Sk)) ≥ 4w(δ+(Sk−1)).
This is true because 4

∑
es,t:(s,t)≺(i,j) w(es,t) ≤ w(ei,j).
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5 Open Question

In this paper, we showed an O(n2) bound on the number of iterations of the
discrete Newton’s algorithm for the problem of finding max δ : minS f(S) −
δa(S) ≥ 0 for an arbitrary direction a ∈ R

n. Even though we showed that
certain parts of our analysis were tight, we do not know whether this bound is
tight. More fundamentally, we know little about the number of breakpoints of
the piecewise linear function g(δ) = minS f(S)−δa(S) in the case of an arbitrary
direction a. Our results do not imply anything on this number of breakpoints,
and this number could still be quadratic, exponential or even linear. In the
simpler, nonnegative setting a ∈ R

n
+, it is not just that the discrete Newton’s

algorithm takes at most n iterations, but it is also the case that the number
of breakpoints of the lower envelope is at most n (by the property of strong
quotients). On the other hand, there exist instances of parametric minimum
s − t cut problems where the minimum cut value has an exponential number
of breakpoints (Mulmuley 1999). However, this corresponds to the more general
problem minS f(S) − δa(S) where f(·) is submodular but the function a(·) is
not modular (and not even supermodular or submodular as the slopes of the
parametric capacities can be positive or negative).
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Abstract. We derive the first performance guarantees for a combina-
torial online algorithm that schedules stochastic, nonpreemptive jobs on
unrelated machines to minimize the expectation of the total weighted
completion time. Prior work on unrelated machine scheduling with sto-
chastic jobs was restricted to the offline case, and required sophisticated
linear or convex programming relaxations for the assignment of jobs to
machines. Our algorithm is purely combinatorial, and therefore it also
works for the online setting. As to the techniques applied, this paper
shows how the dual fitting technique can be put to work for stochastic
and nonpreemptive scheduling problems.

1 Introduction

The scheduling of jobs on multiple, parallel machines is a fundamental problem
both in combinatorial optimization and systems theory. There is a vast amount of
different model variants as well as applications, which is testified by the existence
of the handbook [19]. A well studied class of problems is scheduling a set of n
nonpreemptive jobs that arrive over time on m unrelated machines with the
objective of minimizing the total weighted completion time. Here, unrelated
machines refers to the fact that the matrix that describes the processing times
of all jobs on all machines can have any rank larger than 1. The offline version
of that problem is denoted R|rj |

∑
wjCj in the three-field notation of Graham

et al. [8], and it has always been a cornerstone problem for the development of
new techniques in the design of (approximation) algorithms, e.g. [4,12,18,30].

We here address the online version of that problem with stochastic jobs.
Online means that jobs arrive over time, and the set of jobs is unknown a priori.
With respect to online models in scheduling, we refer to [14,27] for pointers to
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relevant work. In many systems, the scheduler may not know the exact processing
times of jobs upon arrival. Different approaches have been introduced to cope
with this uncertainty. If jobs can be preempted, then non-clairvoyant schedulers
have been studied that do not know the processing time of the jobs until the
job is completed [5,9,13,16,26]. Unfortunately, if preemption is not allowed then
any algorithm has poor performance in the non-clairvoyant model, as the lower
bound for approximability is Ω(n).

That suggests that the non-clairvoyant model is perhaps too pessimistic.
Even though exact processing times may be unknown, it is not unrealistic to
assume that at least an estimate of the true processing times is available. For
such systems, a model that is used is stochastic scheduling. In the stochastic
scheduling model the job’s processing times are given by random variables. A
non-anticipatory scheduler only knows this random variable Pj that encodes the
possible realizations of job j’s processing time. If the scheduler starts a job on
a machine, then that job must be run to completion non-preemptively, and it is
only when the job completes that the scheduler learns the actual processing time.
Both the scheduler and the optimal solution are non-anticipatory, which roughly
means that the future is uncertain for both, the scheduler and the adversary.
Stochastic scheduling has been well-studied, including fundamental work such
as [23,24] and approximation algorithms, e.g. [21,25,29,31,32].

This paper considers online scheduling of non-preemptive, stochastic jobs
in an unrelated machine environment to minimize the total weighted comple-
tion time. We address the same problem as Megow et al. [21], however for the
most general, unrelated machines model. In the stochastic unrelated machine
setting, that means that the scheduler is given a probability distribution of a
job’s processing time which is machine-dependent, and there need not be any
correlation between the jobs’ processing time distributions on different machines.

Restricting attention to non-preemptive policies, when all machines are
identical, perhaps the most natural algorithm is Weighted Shortest Expected
Processing Time (WSEPT) first, which always assigns a job with the maximum
ratio of weight over expected size when a machine is free. With unit weights,
this boils down to greedily scheduling jobs according to smallest expected size,
or SEPT. When there is a single machine, WSEPT is optimal [28]. Further, in
the case where job sizes are deterministic and arrive at the same time, SEPT
is optimal [11]. In the identical machines setting, SEPT is optimal if job sizes
are exponentially distributed [6,35], or more generally, are stochastically com-
parable in pairs [34]. Some extensions of these optimality results to the problem
with weights exist as well [17]. However for more general distributions, simple
solutions fail [33], and our knowledge of optimal scheduling policies is limited.

For this reason, approximation algorithms have been studied. With the
notable exception of [15], all approximation algorithms have performance guar-
antees that depend on an upper bound Δ on the squared coefficient of variation
of the underlying random variables. Möhring, Schulz and Uetz [25] established
the first approximation algorithms for the problem via a linear programming
relaxation for stochastic scheduling. Their work gave a (3 + Δ)-approximation
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when jobs are released over time (yet offline), and they additionally showed that
WSEPT is a (3+Δ)

2 -approximation when jobs arrive together1. These results have
been built on and generalized in several settings [21,22,29,31–33], notably in [21]
for the online setting. The currently best known result when jobs are released
over time (yet offline) is a (2 + Δ)-approximation by Schulz [29]. In the online
setting Schulz gives a (2.309+1.309Δ)-competitive algorithm [29]. These results
build on an idea from [7] to use a preemptive, fast single machine relaxation,
next to the relaxation of [25]. The work of Im, Moseley and Pruhs [15] gave the
first results independent of Δ showing that there exist poly-logarithmic approx-
imation algorithms under some assumptions. All these papers address problems
with identical machines.

For some 15 years after the results of [25] for the identical machines case, no
non-trivial results were known for the unrelated machines case despite being a
major target in the area. Recently Skutella et al. [31] gave a 3+Δ

2 -approximation
algorithm when jobs arrive at the same time, and a (2 + Δ)-approximation
when jobs are released over time (yet offline). Central to unlocking an efficient
approximation algorithm for the unrelated machines case was the introduction
of a time-indexed linear program that lower bounds the objective value of the
optimal non-anticipatory scheduling policy. It is this LP that allows the authors
to overcome the complexities of the unrelated machines setting.

The present paper targets the more realistic online setting for the scheduling
of stochastic jobs on unrelated machines. A priori, it is not clear that there should
exist an algorithm with small competitive ratio at all. Prior work for the offline
problem requires sophisticated linear [31] or convex [3] programming relaxations.
Good candidates for online algorithms are simple and combinatorial, but even
discovering an offline approximation algorithm that is simple and combinatorial
remains a target.

Results. This paper shows that there exists an online, O(Δ)-competitive, combi-
natorial algorithm for stochastic scheduling on unrelated machines. We thereby
(1) develop the first combinatorial algorithm for stochastic scheduling on unre-
lated machines, (2) give the first simple and combinatorial online algorithm
for unrelated machines that is competitive (even for the deterministic setting),
and (3) introduce new techniques for bounding the performance of stochastic
scheduling algorithms.

We address (1) and (2) by giving a simple greedy online algorithm for sto-
chastic scheduling on unrelated machines. The algorithm rests on the straight-
forward idea to assign jobs to those machines where the expected increase of the
objective is minimal, an idea that was used also before, e.g. in [2,20,21]. In the
online-list model, where jobs arrive online (at time 0) and must be assigned to a
machine immediately upon arrival, we establish a competitive ratio of (8 + 4Δ).
In the online-time model, where jobs arrive over time, we derive a (144 + 72Δ)-
competitive algorithm. The Ω(Δ) lower bound for fixed assignment policies in
[31] yields that both these results are asymptotically tight in Δ.

1 The ratio is slightly better, but for simplicity we ignore the additive Θ(1/m) term.
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As to (3), we develop how to use dual fitting techniques for stochastic and
non-preemptive algorithm analysis. The technique has been used in [1] for deter-
ministic and preemptive problems. This paper establishes that dual fitting is a
useful technique for bounding the performance of algorithms in stochastic set-
tings. This is the first use of dual fitting for stochastic scheduling.

Due to space limitations, most proofs have been removed from this paper.
The proofs can be found in the full version [10].

2 Notation and Preliminaries

We are given a set of unrelated parallel machines M of cardinality m. We consider
two online models. In the first model, known as online-list, we are presented a
sequence of jobs j ∈ J , which are presented to us one after the other, and
whenever a job is presented we have to assign it to one of the machines. In this
model, the machine assignment is decided when a job arrives, but the time when
the job is processed can be deferred. It is unknown how many jobs will arrive,
but once all jobs in J have arrived, the jobs assigned to any one of the machines
must be scheduled on that machine. In the other model, known as online-time,
time progresses and jobs appear over time at their individual release times rj . At
the moment of arrival a job must be assigned to a machine, but can possibly wait
on that machine until it is finally processed. Each job j needs to be executed on
any one of the machines i ∈ M , and each machine can process at most one job
at a time.

The jobs are nonpreemptive. That means that a job, once started, must not be
interrupted until its completion. Moreover, the jobs are stochastic, meaning that
each job j’s processing time is only revealed in the form of a random variable Pij

for every machine i ∈ M . If job j is assigned to machine i, its processing time
will be random according to Pij . It is allowed that certain jobs j ∈ J cannot be
processed on certain machines i ∈ M , in which case E[Pij ] = ∞.

In the stochastic scheduling model, the actual realization of the processing
time of a job j becomes only known at the moment that the job completes.
We are looking for a non-anticipatory scheduling policy Π which minimizes the
expected total weighted completion time E

[∑
j wjCj

]
, where Cj denotes the

completion time of job j.
We will assume for simplicity that the random variables Pij are discrete and

integer valued. This assumption comes at the cost of a multiplicative factor (1+ε)
in the final approximation ratio, for any ε > 0 [31]. We will subsequently make
use of the following facts about first and second moments of discrete random
variables; they also appear in [31].

Lemma 1. Let X be an integer-valued, nonnegative random variable. Then,

∑

r∈Z≥0

P[X > r] = E[X] and
∑

r∈Z≥0

(r + 1
2 )P[X > r] =

1
2
E[X2].
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Definition 1. Let X be a nonnegative random variable. The squared coefficient
of variation is defined as the scaled variance of X, that is,

CV[X]2 := Var[X]/E[X]2,

where Var[X] = E[X2] − E[X]2.

2.1 Stochastic Online Scheduling and Policies

The setting that we consider in this paper is that of stochastic online scheduling
as defined also in [21]. That means that (the existence of) a jobs j is unknown
before it arrives, and upon arrival, only the random variables Pij for the possible
processing times on machine i = 1, . . . ,m are known. At any given time t, a non-
anticipatory online scheduling policy is allowed to use only that information
that is available at time t. In particular, it may anticipate the (so far) realized
processing times of jobs up to time t. For example, a job that has possible sizes
1, 3 or 4 with probabilities 1/3 each, and has been running for 2 time units, will
have processing times 3 or 4, each with probability 1/2. That adaptivity over
time may be relevant in order to minimize the expectation of the total weighted
completion times is well known even in the offline setting, e.g. [33]. We refer to
[21] for a more thorough discussion of the stochastic online model.

For simplicity of notation, we denote by OPT the expected total weighted
completion time of an optimal, non-anticipatory online scheduling policy for the
problem. That is, OPT is our benchmark, and we seek to find a non-anticipatory
online scheduling policy (an algorithm) with expected performance ALG close to
OPT. Note that, for convenience we use the same notation for both algorithm
and its expected performance.

We remark that OPT is not restricted to assigning jobs to machine at the
time of their arrival. The only restrictions on OPT is that it must schedule jobs
nonpreemptively, and that it is non-anticipatory. In fact, our approximation
guarantees hold against an even stronger adversary OPT which knows all jobs
and their release times rj and processing time distributions, but not the actual
realizations of Pij .

Finally, we may assume w.l.o.g. that no pair of job and machine exists with
E[Pij ] = 0, as then we can always schedule such job j at machine i (whenever
released) at minimum possible cost. That said, we may further assume that
E[Pij ] ≥ 1 for all machines i and jobs j, by scaling.

3 Linear Programming Relaxations

As previously discussed also in [31, Sect. 8], we are going to use variables yijs

that denote the probability that job j is being processed on machine i within
time interval [s, s + 1], under some given and fixed scheduling policy. It is well
known that yijs can be linearly expressed in terms of the variables xijt, which
denote the probability that job j is started at time t on machine i, as follows
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yijs =
s∑

t=0

xijt P[Pij > s − t] . (1)

The fact that any machine can process at most one job at a time can be written as
∑

j∈J

yijs ≤ 1 for all i ∈ M, s ∈ Z≥0. (2)

Moreover, making use of (1) and the first part of Lemma 1, the fact that each
job needs to be completely processed translates into the constraints

∑

i∈M

∑

s∈Z≥0

yijs

E[Pij ]
= 1 for all j ∈ J. (3)

Finally, with the help of (1) and the second part of Lemma1, the expected
completion time of a job j can be expressed in yijs variables as

CS
j :=

∑

i∈M

∑

s∈Z≥0

(
yijs

E[Pij ]
(
s + 1

2

)
+

1 − CV[Pij ]2

2
yijs

)

for all j ∈ J, (4)

where we labeled the expected completion time variables with a superscript S
for “stochastic”, for reasons that will become clear shortly.

For the analysis to follow, we also need to express the fact that the expected
completion time of a job cannot be smaller than its expected processing time

CS
j ≥

∑

i∈M

∑

s∈Z≥0

yijs for all j ∈ J. (5)

That said, we can write down the following LP relaxation for the unrelated
machine scheduling problem, which extends the one given in [31] by the addi-
tional constraints (5).

min zS =
∑

j∈J

wj CS
j

s.t. (2), (3), (4), (5)
yijs ≥ 0 for all j ∈ J, i ∈ M, s ∈ Z≥0.

(S)

Subsequently, we want to work with the dual of this relaxation. However the
term −CV[Pij ]2 in the primal objective would appear in the dual constrains. As
we do not know how to deal with this negative term in the analysis that is to
follow, we are going to factor it out.

To that end, we first define a simpler, i.e., deterministic version for the
expected completion times (4), labeled with “P” to distinguish it from the pre-
vious formulation, by letting

CP
j =

∑

i∈M

∑

s∈Z≥0

(
yijs

E[Pij ]
(
s + 1

2

)
+

yijs

2
for all j ∈ J.

)

(6)
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Now consider the following linear programming problem

min zP =
∑

j∈J

wj CP
j

s.t. (2), (3), (6)
yijs ≥ 0 for all j ∈ J, i ∈ M, s ∈ Z≥0.

(P)

This corresponds to a time-indexed linear programming relaxation for a purely
deterministic, unrelated machine scheduling problem where the random process-
ing times are fixed at their expected values E[Pij ].

We are now going to establish a relation between these two relaxations. To
do that, let us define an upper bound on the squared coefficient of variation by

Δ := max
i,j

CV[Pij ]2.

Next, for any given solution y of (S) or (P), we define

H(y) :=
∑

j∈J

wj

∑

i∈M

∑

s∈Z≥0

yijs.

Now let yS denote an optimal solution to (S) and recall that OPT is the expected
total weighted completion time of an optimal non-anticipatory algorithm. By
constraints (5),

H(yS) =
∑

j∈J

wj

∑

i∈M

∑

s∈Z≥0

yS
ijs ≤

∑

j∈J

wjC
S
j = zS(yS) ≤ OPT.

The next lemma is crucial for our analysis and establishes the relation between
the two relaxations.

Lemma 2. The optimal solution values zP and zS of the linear programming
relaxations (P) and (S) fulfill

zP ≤ (
1 +

Δ

2
)
zS .

Recalling that (S) is a relaxation for the stochastic scheduling problem, we con-
clude the following.

Corollary 1. The optimal solution value zP of the linear programming relax-
ation (P) is bounded by the expected performance of an optimal scheduling
policy by

zP ≤ (
1 +

Δ

2
)
OPT.

Just like [1], we now consider the dual of (P), which will have unconstrained
variables αj for all j ∈ J and nonnegative variables βis for all i ∈ M and s ∈ Z≥0.
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The dual is

max zD =
∑

j∈J

αj −
∑

i∈M

∑

s∈Z≥0

βis

s.t.
αj

E[Pij ]
− βis ≤ wj

(
s + 1

2

E[Pij ]
+

1
2

)

for all i ∈ M, j ∈ J, s ∈ Z≥0,

βis ≥ 0 for all i ∈ M, s ∈ Z≥0 .

(D)

We are going to define a feasible solution for the dual (D) by means of a simple
online algorithm for the original scheduling problem. The same type of greedy
algorithm has been used before, both in deterministic and stochastic scheduling
on parallel machines, e. g. in [2,20,21].

4 Greedy Algorithm and Analysis

In this section the online-list model is considered. Let us assume w.l.o.g. that the
jobs are presented in the order 1, 2 . . . , |J |. On any machine i, denote by H(j, i)
the set of all jobs that have higher priority according to their order in non-
increasing order of ratios wj/E[Pij ], breaking ties by index. That is, H(j, i) :=
{k ∈ J | wk/E[Pik] > wj/E[Pij ]}∪{k ∈ J | k ≤ j, wk/E[Pik] = wj/E[Pij ]}. Also,
let L(j, i) := J \H(j, i). Further, denote by k → i the fact that a job k has been
assigned to a machine i.

Greedy Algorithm. Whenever a new job j ∈ J is presented to the algorithm,
we compute for each of the machines i ∈ M the instantaneous expected increase if
the jobs already present on each machine were to be scheduled in non-increasing
order of the ratios weight over expected processing time,

EI(j → i) := wj

(

E[Pij ] +
∑

k→i,k<j,k∈H(j,i)

E[Pik]
)

+ E[pij ]
∑

k→i,k<j,k∈L(j,i)

wk.

We assign the job to one of the machines where this quantity is minimal, that is, a
job is assigned to machine i(j) := argmini∈M{EIj → i}; ties broken arbitrarily.
Once all jobs have arrived and are assigned, they will be sequenced in non-
increasing order of ratios weight over expected processing time, which is optimal
conditioned on the given assignment [28].

Now we define the dual solution (α, β) in a similar same way as it has been
done in [1]. We let

αj := EI(j → i(j)) for all j ∈ J.

That is, αj is defined as the instantaneous expected increase on the machine to
which it is assigned by the greedy algorithm. Moreover, let

βis :=
∑

j∈Ai(s)

wj ,
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where Ai(s) is defined as the total set of jobs assigned to machine i by the greedy
algorithm, but restricted to those that have not yet been completed by time s if
the jobs’ processing times were their expected values E[Pij ]. In other words, βis

is exactly the expected total weight of yet unfinished jobs on machine i at time
s, given the assignment (and sequencing) of the greedy algorithm.

Fact 1. The solution (α/2, β/2) is feasible for (D).

Moreover, we have the following observations which follow more or less
directly from the definition of the dual variables (α, β). Let us denote by ALG
the total expected value achieved by the greedy algorithm.

Lemma 3. The total expected value of the greedy algorithm is

ALG =
∑

j∈J

αj =
∑

i∈M

∑

s∈Z≥0

βis.

5 Speed Augmentation and Analysis

The previous analysis of the dual feasible solution (α/2, β/2) yields a dual objec-
tive value 0 by Lemma 3, which is of little help. However following [1], we can
define another dual solution which has an interpretation in the model where all
machines run at faster speed f ≥ 1, meaning that all (expected) processing times
get scaled down by a factor f−1. This will yield something useful.

So let us define ALGf as the expected solution value obtained by the same
greedy algorithm, only when all the machine run at speed f . Note that ALG =
fALGf , by definition. We denote by (αf , βf ) the exact same dual solution that
was defined before, only for the new instance with faster machines. We now claim
the following.

Lemma 4. The solution ( 12αf , 1
2f βf ) is a feasible solution for the dual (D) in

the original (unscaled) problem instance.

Now we conclude with the first main theorem of the paper.

Theorem 1. The greedy algorithm is a (8 + 4Δ)-competitive algorithm for
online scheduling of stochastic jobs to minimize the expectation of the total
weighted completion times E[

∑
j wjCj ].

Proof. We know from Corollary 1 that zD( 12αf , 1
2f βf ) ≤ zD = zP ≤ (

1 +
Δ
2

)
OPT .
Next, recall that ALGf =

∑
j∈J αf

j =
∑

i∈M

∑
s∈Z≥0

βf
is by Lemma 3, and

ALG = fALGf . The theorem now follows from evaluating the objective value of
the specifically chosen dual solution (12αf , 1

2f βf ) for (D), as

zD(
1
2
αf ,

1
2f

βf ) =
1
2

∑

j∈J

αf
j − 1

2f

∑

i∈M

∑

s∈Z≥0

βf
is =

f − 1
2f

ALGf =
f − 1
2f2

ALG.

Putting together this equality with the previous inequality yields a performance
bound of 2f2

f−1 (1 + Δ
2 ), which is minimal for f = 2. �	
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6 The Online Time Model

We now consider the online time model where jobs arrive over time. A job j
arrives at time rj . We can assume w.l.o.g. that rj ≤ rk for j < k. In the
algorithm, which is the analogue of the one used in [21] for the parallel machine
setting, each job will be irrevocably assigned to a machine upon arrival.

Modified Greedy Algorithm. 1. Assignment of jobs to machines: At time
rj , we compute for each of the machines EI(j → i) exactly in the same way as
it has been done for the case without release times, and assign job j to one of
the machines that minimizes EIj → i. 2. Scheduling: For the case with release
dates, it is well known that (long) jobs must be delayed in order to achieve
competitive algorithms [20,21]. We do the same here, but we insert a little more
forced idleness than these papers. For any job j assigned to machine i at time
rj , we modify its release date to r′

j = max{2rj ,E[Pij ]}. Now if a machine i falls
idle at a time t, among all unfinished jobs assigned to i and with r′

j ≤ t, we
schedule the job with the highest ratio wj/E[Pij ], by first forcing the machine
to remain idle for another E[Pij ] units of time, and then beginning the actual
processing of job j.

The main result of this section is:

Theorem 2. For the stochastic online scheduling problem on unrelated parallel
machines with release dates, if maxi,j CV[Pij ]2 ≤ Δ, then the Modified Greedy
Algorithm is (144 + 72Δ)-competitive.

Proof Sketch. The complete proof is a bit intricate and presented in the full
version [10]. Here we sketch the main steps in the analysis. Defining the
expected cost of the modified greedy algorithm as ALGS and of the optimal
non-anticipative policy as OPT, our goal is to prove ALGS ≤ (144 + 72Δ)OPT.
Step 1: As in the online-list model, the core of the argument proceeds via an
instance with augmented machine speeds. Given instance {rj , {Pij}i∈M}j∈J , we
define a family of instances parameterized by speed-up f with release times
rf
j = rj and processing times P f

ij = Pij/f . Denote by ALGf
S the expected cost of

a variant of the modified greedy algorithm where the scheduling rule is changed
to use the modified release times as Rf

j = max{rj ,E[P f
ij ]}. Then a time scaling

argument shows the following for f = 2

ALGS = 2 · ALG2
S .

In fact, the equality is even in distribution and not just for expectations.
Step 2: For the stochastic instance {rf

j , {P f
ij}}, we define the deterministic

instance where processing time of job j on machine i is non-stochastic and equals
E[P f

ij ]. Further, we begin processing the jobs as soon as they are scheduled, with-
out the idleness. Let ALGf

D denote the cost of our algorithm on this instance.
We show,

ALGf
S ≤ 6 · ALGf

D.

Step 3: As in Sect. 3, we define the LP relaxation of the online stochastic machine
scheduling problem (with optimal solution zSo). The only difference is that yijs
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are forced to be 0 for s ≤ rj . Analogously, zPo denotes the optimal solution value
of the corresponding deterministic version as in Sect. 3, giving us:

zPo ≤
(

1 +
Δ

2

)

zSo ≤
(

1 +
Δ

2

)

OPT.

Finally, we use a dual fitting argument to prove, for any f > 1:

ALGf
D ≤ 6f

f − 1
zPo .

Now substituting f = 2, ALGS = 2ALG2
S ≤ 2 · 6 · ALG2

D ≤ 2 · 6 · 12 · zPo ≤
144

(
1 + Δ

2

)
OPT.

7 Conclusions

The main result of this paper is to show that simple, combinatorial online algo-
rithms can be worst-case analyzed even for the most general of all machine
scheduling models and uncertain job sizes. Further, note that the performance
bounds are O(Δ), asymptotically the same as the identical machines setting.
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Abstract. For two matroids M1 and M2 defined on the same ground
set E, the online matroid intersection problem is to design an algorithm
that constructs a large common independent set in an online fashion.
The algorithm is presented with the ground set elements one-by-one in
a uniformly random order. At each step, the algorithm must irrevocably
decide whether to pick the element, while always maintaining a common
independent set. While the natural greedy algorithm—pick an element
whenever possible—is half competitive, nothing better was previously
known; even for the special case of online bipartite matching in the edge
arrival model. We present the first randomized online algorithm that has
a 1

2
+ δ competitive ratio in expectation, where δ > 0 is a constant. The

expectation is over the random order and the coin tosses of the algorithm.
As a corollary, we also obtain the first linear time algorithm that beats
half competitiveness for offline matroid intersection.

Keywords: Online algorithms · Matroid intersection · Randomized
algorithms · Competitive analysis · Linear-time algorithms

1 Introduction

The online matroid intersection problem in the random arrival model (OMI)
consists of two matroids M1 = (E, I1) and M2 = (E, I2), where the elements
in E are presented one-by-one to an online algorithm whose goal is to construct
a large common independent set. As an element arrives, the algorithm must
immediately and irrevocably decide whether to pick it, while ensuring that the
picked elements always form a common independent set. We assume that the
algorithm knows the size of E and has access to independence oracles for the
already arrived elements. The greedy algorithm, which picks an element when-
ever possible, is half-competitive. The following is the main result of this paper.

Theorem 1. The online matroid intersection problem in the random arrival
model has a ( 12 +δ)-competitive randomized algorithm, where δ > 0 is a constant.
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Our OMI algorithm makes only a linear number of calls to the independence
oracles of both the matroids. Given recent interest in finding fast approximation
algorithms for fundamental polynomial-time problems, this result is of inde-
pendent interest even in the offline setting. Previously known algorithms that
perform better than the greedy algorithm construct an “auxiliary graph”, which
already takes quadratic time [2,7].

Corollary 1. The matroid intersection problem has a linear time (12+δ) approx-
imation algorithm, where δ > 0 is a constant.

A special case of OMI where both the matroids are partition matroids already
captures the online bipartite matching problem in the random edge arrival
(OBME) model. Here, edges of a fixed (but adversarially chosen) bipartite graph
G arrive in a uniformly random order and the algorithm must irrevocably decide
whether to pick them into a matching. Despite tremendous progress made in the
online vertex arrival model [5,9,12,16,20], nothing non-trivial was known in the
edge arrival model where the edges arrive one-by-one. We present the first algo-
rithm that performs better than greedy in the random arrival model. Besides
being a natural theoretical question, it captures various online content systems
such as online libraries where the participants are known to the matching agen-
cies but the requests arrive in an online fashion.

Corollary 2. The online bipartite matching problem in the random edge arrival
model has a ( 12 +δ)-competitive randomized algorithm, where δ > 0 is a constant.

Finally, the simplicity of our OMI algorithm allows us to extend our results
to the much more general problems of online matching in general graphs and to
online k-matroid intersection; the latter problem being NP-Hard (proofs in full
version).

Theorem 2. The online matching problem for general graphs in the random
edge arrival model has a (12 +δ′)-competitive randomized algorithm, where δ′ > 0
is a constant.

Theorem 3. The online k-matroid intersection problem in the random arrival
model has a

(
1
k + δ′′

k4

)
-competitive randomized algorithm, where δ′′ > 0 is a

constant.

1.1 Comparison to Previous Work

Our main OMI result is interesting in two different aspects: It gives the first lin-
ear time algorithm that beats greedy for the classical offline matroid intersection
problem; also, it is the first non-trivial algorithm for the general problem of online
matroid intersection, where previously nothing better than half was known even
for online bipartite matching. Since offline matroid intersection problem is a fun-
damental problem in the field of combinatorial optimization [19, Chap. 41] and
online matching occupies a central position in the field of online algorithms [15],
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there is a long list of work in both these areas. We state the most relevant works
here and refer readers to further related work in the full version.

Offline matroid intersection was brought to prominence in the groundbreak-
ing work of Edmonds [3]. To illustrate the difficulty in moving from bipartite
matching to matroid intersection, we note that while the first linear time algo-
rithms that beat half for bipartite matching were designed more than 20 years
ago [1,6], the fastest known matroid intersection algorithms till today that beat
half make Ω(rm) calls to the independence oracles, where r is the rank of the
optimal solution [2,7]. The quadratic term appears because matroid intersection
algorithms rely on constructing auxiliary graphs that needs Ω(rm) calls [11,
Chap. 13]. Until our work, achieving a competitive ratio better than half with
linear number of independence oracle calls was not known. The key ingredient
that allows us to circumvent these difficulties is the Sampling Lemma for matroid
intersection. We do not construct an auxiliary graph and instead show that any
maximal common independent is either already a (12 + δ) approximation, or we
can improve it to a (12 + δ) approximation in a single pass over all the elements.

Online bipartite matching has been studied extensively in the vertex arrival
model (see a nice survey by Mehta [15]). Since adversarial arrival order often
becomes too pessimistic, the random arrival model (similar to the secretary prob-
lem) for online matching was first studied by Goel and Mehta [5]. Since then, this
modeling assumption has become standard [8,12–14]. The only progress when
edges arrive one-by-one has been in showing lower bounds: no algorithm can
achieve a competitive ratio better than 0.57 (see [4]), even when the algorithm
is allowed to drop edges.

While nothing was previously known for online matching in the random edge
arrival model, similar problems have been studied in the streaming model, most
notably by Konrad et al. [10]. They gave the first algorithm that beats half
for bipartite matching in the random arrival streaming model. In this work we
generalize their Hastiness Lemma to matroids. However, prior works on online
matching are not useful as they are tailored to graphs—for instance their reliance
on notion of “vertices” cannot be easily extended to the framework of matroids.

The simplicity of our OMI algorithm and flexibility of our analysis allows
us to tackle problems of much greater generality, such as general graphs and
k-matroid intersection, when previously even special cases like bipartite match-
ing had been considered difficult in the online regime [17]. While our results
are a qualitative advance, the quantitative improvement is small (δ > 10−4). It
remains an interesting challenge to improve the approximation factor δ. Perhaps
a more interesting challenge is to relax the random order requirement.

1.2 Our Techniques

In this section, we present an overview of our techniques to prove Theorem 1.
Our analysis relies on two observations about the greedy algorithm that are
encompassed in the Sampling Lemma and the Hastiness Lemma; former being
the major contribution of this paper and the latter being useful to extend our
linear time offline matroid intersection result to the online setting. Informally,
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the Sampling Lemma states that the greedy algorithm cannot perform poorly
on a randomly generated OMI instance, and the Hastiness Lemma states that if
the greedy algorithm performs poorly, then it picks most of its elements quickly.

Let OPT denote a fixed maximum independent set in the intersection of
matroids M1 and M2. WLOG, we assume that the greedy algorithm is bad—
returns a common independent set T of size ≈ 1

2 |OPT|. For offline matroid
intersection, by running the greedy algorithm once, one can assume that T is
known. For online matroid intersection, we use the Hastiness Lemma to construct
T . It states that even if we run the greedy algorithm for a small fraction f (say
< 1%) of elements, it already picks a set T of elements of size ≈ 1

2 |OPT|.
This lemma was first observed by Konrad et al. [10] for bipartite matching
and is generalized to matroid intersection in this work. By running the greedy
algorithm for this small fraction f , the lemma lets us assume that we start with
an approximately maximal common independent set T with most of the elements
(1 − f > 99%) still to arrive.

The above discussion reduces the problem to improving a common indepen-
dent set T of size ≈ 1

2 |OPT| to a common independent set of size ≥ ( 12+δ)|OPT|
in a single pass over all the elements. (This is true for both linear-time offline
and OMI problems.) Since T is approximately maximal, we know that picking
most elements in T eliminates the possibility of picking two OPT elements (one
for each matroid). Hence, to beat half-competitiveness, we drop a uniformly ran-
dom p fraction of these “bad” elements in T to obtain a set S, and try to pick
(1 + γ) OPT elements (for constant γ > 0) per dropped element. Our main
challenge is to construct an online algorithm that can get on average γ gain
per dropped element of T in a single pass. The Sampling Lemma for matroid
intersection, which is our main technical contribution, comes to rescue.

Sampling Lemma (Informal): Suppose T is a common independent set in
matroids M1 and M2,and define Ẽ = span1(T ). Let S denote a random set
containing each element of T independently with probability (1 − p). Then,

ES [|Greedy(M1/S,M2/T, Ẽ)|] ≥
(

1
1 + p

)
· ES [|OPT(M1/S,M2/T, Ẽ)|].

Intuitively, it says that if we restrict our attention to elements in span1(T ) then
dropping random elements from T allows us to pick more than 1/(1 + p) ≥ 1/2
fraction of the optimal intersection. The advantage over half yields the γ gain
per dropped element. Applying the lemma requires care as we apply it twice,
once for (M1/S,M2/T ) and once for (M1/T,M2/S), while ensuring that the
resulting solutions have few “conflicts” with each other. We overcome this by only
considering elements that are in the span of T for exactly one of the matroids.

The proof of the Sampling Lemma involves giving an alternate view of the
greedy algorithm for the random OMI instance. Using a carefully constructed
invariant and the method of deferred decisions, we show that the expected greedy
solution is not too small.
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2 Warmup: Online Bipartite Matching

In this section, we consider a special case of online matroid intersection, namely
online bipartite matching in the random edge arrival model. Although, this is
a special case of the general Theorem 1, we present it because nothing non-
trivial was known before and several of our ideas greatly simplify in this case (in
particular the Sampling Lemma), allowing us to lay the framework of our ideas.

2.1 Definitions and Notation

An instance of the online bipartite matching problem (G,E, π,m) consists of a
bipartite graph G = (U ∪ V,E) with m = |E|, and where the edges in E arrive
according to the order defined by π. We assume that the algorithm knows m but
does not know E or π. For 1 ≤ i ≤ j ≤ m, let Eπ[i, j] denote the set of edges
that arrive in between positions i through j according to π1. When permutation
π is implicit, we abbreviate this to E[i, j].

Greedy denotes the algorithm that picks an edge into the matching when-
ever possible. Let OPT denote a fixed maximum offline matching of graph G.
For f ∈ [0, 1], let Tπ

f denote the matching produced by Greedy after seeing
the first f -fraction of the edges according to order π. For a uniformly random
chosen order π,

G(f) :=
Eπ[|Tπ

f |]
|OPT| .

Hence, G(1) |OPT| is the expected output size of Greedy and G(12 ) |OPT| is
the expected output size of Greedy after seeing half of the edges. We observe
that Greedy has a competitive ratio of at-least half and in the full version we
show that this ratio is tight for worst case input graphs.2

2.2 Beating Half

Lemma 1 shows that we can restrict our attention to the case when the expected
Greedy size is small (proof in the full version). Theorem 4 gives an algorithm
that beats half for this restricted case.

Lemma 1. Suppose there exists an Algorithm A that achieves a competitive
ratio of 1

2 + γ when G(1) ≤ ( 12 + ε) for some ε, γ > 0. Then there exists an
algorithm with competitive ratio at least 1

2 + δ, where δ = εγ
1
2+ε+γ

.

Theorem 4. If G(1) ≤ (12 + ε) for some constant ε > 0 then the Marking-
Greedy algorithm outputs a matching of size at least (12 + γ) |OPT| in expec-
tation, where γ > 0 is a constant.

1 We emphasize that our definition also works when i and j are non-integral.
2 We also show that for regular graphs Greedy is at least

(
1 − 1

e

)
competitive, and

that no online algorithm for OBME can be better than 69
84

≈ 0.821 competitive.
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Before describing Marking-Greedy, we need the following property about
the performance of Greedy in the random arrival model — if Greedy is bad
then it makes most of its decisions quickly and incorrectly. We will be interested
in the regime where 0 < ε � f � 1/2.

Lemma 2 (Hastiness property: Lemma 2 in [10]). For any graph G if
G(1) ≤ (12 + ε) for some 0 < ε < 1

2 , then for any 0 < f < 1/2

G(f) ≥ 1
2

−
(

1
f

− 2
)

ε.

Marking-Greedy for Bipartite Matching

Marking-Greedy consists of two phases (see the pseudocode). In Phase (a),
it runs Greedy for the first f -fraction of the edges, but picks each edge selected
by Greedy into the final matching only with probability (1 − p), where p > 0
is a constant. With the remaining probability p, it marks the edge e and its
vertices, and behaves as if it had been picked. In Phase (b), which is for the
remaining 1 − f fraction of edges, the algorithm runs Greedy to pick edges
on two restricted disjoint subgraphs G1 and G2, where it only considers edges
incident to exactly one marked vertex in Phase (a).

Phase (a) is equivalent to running Greedy to select elements, but then
randomly dropping p fraction of the selected edges. The idea of marking some
vertices (by marking an incident edge) is to “protect” them for augmentation
in Phase (b). To distinguish if an edge is marked or picked, the algorithm uses
auxiliary random bits Ψ that are unknown to the adversary. We assume that
Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ E.

Algorithm 1. Marking-Greedy(G,E, π,m, Ψ)
Phase (a)

1: Initialize S, T, N1, N2 to ∅
2: for each element e ∈ Eπ[1, fm] do � Greedy while picking and marking
3: if T ∪ e is a matching in G then
4: T ← T ∪ e � Elements selected by Greedy
5: if Ψ(e) = 1 then � Auxiliary random bits Ψ
6: S ← S ∪ e � Elements picked into final solution

Phase (b)
7: Initialize set Tf to T . Let sets X1, X2 be vertices of U, V matched in Tf respectively.
8: Let G1 be the subgraph of G induced on X1 and V \X2.
9: Let G2 be the subgraph of G induced on U\X1 and X2.

10: for each edge e ∈ (Eπ[fm, m]) do � Greedy on two disjoint subgraphs
11: for i ∈ {1, 2} do
12: if e ∈ Gi and S ∪ Ni ∪ e is a matching then � Greedy step
13: Ni ← Ni ∪ e � New edges picked

14: return S ∪ N1 ∪ N2
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Comparison to Konrad et al. [10] For the special case of bipartite matching, we
can consider Marking-Greedy to be a variant of the streaming algorithm of
[10]. For graphs where Greedy is bad, both algorithms use the first phase to
pick an approximately maximal matching T using the Hastiness Lemma. Konrad
et al. [10] divides the remaining stream into two portions and uses each portion
to find greedy matchings, say F1 and F2. Since decisions in the streaming setting
are revocable, at the end of the stream they use edges in F1∪F2 to find sufficient
number of three-augmenting paths w.r.t. T . Their algorithm is not online because
it keeps all the matchings till the end. One can view the current algorithm as
turning their algorithm into an online one by flipping a coin for each edge in T .
In the second phase, it runs Greedy on two random disjoint subgraphs and use
the Sampling Lemma to argue that in expectation the algorithm picks sufficient
number of augmenting paths.

While our online matching algorithm is simple and succinct, the main diffi-
culty lies in extending it to OMI as the notions of marking and protecting vertices
do not exist. This is also the reason why obtaining a linear time algorithm for
offline matroid intersection problem, where Hastiness Lemma is not needed, had
been open. Defining and proving the correct form of Sampling Lemma forms the
core of our OMI analysis in Sect. 3.

Proof that Marking-Greedy Works for Bipartite Matching

Let Gi denote graphs G1 or G2 for i ∈ {1, 2}. For a fixed order π of the edges,
graphs Gi in Marking-Greedy are independent of the randomness Ψ . Since
the algorithm uses Ψ to pick a random subset of the Greedy solution, this can
be viewed as independently sampling each vertex matched by Greedy in Gi.
Lemma 3 shows that this suffices to pick in expectation more than the number
of marked edges. In essence, we use the randomness Ψ to limit the power of an
adversary deciding the order of the edges in Phase (b). While the proof follows
from the more general Lemma 8, we include a simple self-contained proof for
this case in the full version.

Lemma 3 (Sampling Lemma). Consider a bipartite graph H = (X ∪ Y, Ẽ)
containing a matching Ĩ. Let Ψ(x) ∼ Bern(1 − p) i.i.d. for all x ∈ X, and
define X ′ = {x | x ∈ X and Ψ(x) = 0}. I.e., the vertices of X ′ are obtained by
independently sampling each vertex in X with probability p. Let H ′ denote the
subgraph induced on X ′ and Y . Then for any arrival order of the edges in H ′,

EΨ [Greedy(H ′, Ẽ)] ≥ 1
1 + p

(
p|Ĩ|

)
.

We next prove the main lemma needed to prove Theorem 4. Setting f = 0.07,
p = 0.36, and ε = 0.001 in Lemma 4, the theorem follows by taking γ > 0.05.

Lemma 4. For any 0 < f < 1/2 and bipartite graph G, Marking-Greedy
outputs a matching of expected size at least

[
(1 − p)

(
1
2

−
(

1
f

− 2
)

ε

)
+

p

1 + p

(
1 − 2ε

f
− f

)]
|OPT|.
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Proof. We remind the reader that for any f ∈ [0, 1] and any permutation π of
the edges, Tπ

f denotes the matching that Greedy produces on Eπ[1, fm]. For
i ∈ {1, 2}, let Hi denote the subgraph of Gi containing all its edges that appear
in Phase (b). Let Ii denote the set of edges of OPT that appear in graph Gi.
We use the following claim proved in the full version.

Claim 5.

Eπ [|I1| + |I2|] ≥
(

1 − 2ε

f

)
|OPT|.

For i ∈ {1, 2}, let Ĩi ⊆ Ii denote the set of edges of OPT that appear in
Phase (b) of Marking-Greedy, i.e., they appear in graph Hi. In expectation
over uniform permutation π, at most f |OPT| elements of OPT can appear in
Phase (a). Hence,

Eπ

[
|Ĩ1| + |Ĩ2|

]
≥ Eπ [|I1| + |I2|] − f |OPT| ≥

(
1 − 2ε

f
− f

)
|OPT|.

Marking a random subset of Tπ
f independently is equivalent to marking a random

subset of vertices independently. Thus, we can apply Lemma 3 to both H1 and
H2. The expected number of edges in N1 ∪ N2 is at least p

1+p (|Ĩ1| + |Ĩ2|), where
the expectation is over the auxilary bits Ψ that distinguishes the random set
of edges marked. Taking expectations over π and noting that Phase (a) picks
(1 − p)G(f) |OPT| edges, we have

EΨ,π[|S ∪ N1 ∪ N2|] = EΨ,π[|S|] + EΨ,π[|N1| + |N2|]
≥ G(f)(1 − p) |OPT| +

p

1 + p
Eπ

[
|Ĩ1| + |Ĩ2|

]

≥
[
(1 − p)

(
1
2

−
(

1
f

− 2
)

ε

)
+

p

1 + p

(
1 − 2ε

f
− f

)]
|OPT| (by Lemma 2) .

3 Online Matroid Intersection

3.1 Definitions and Notation

An instance of the online matroid intersection problem (M1,M2, E, π,m) con-
sists of matroids M1 and M2 defined on ground set E of size m, and where the
elements in E arrive according to the order defined by π. For any 1 ≤ i ≤ j ≤ m,
let Eπ[i, j] denote the ordered set of elements of E that arrive in positions i
through j according to π. For any matroid M on ground set E, we use T ∈ M
to denote T ⊆ E is an independent set in matroid M. We use the terminology
of matroid restriction and matroid contraction as defined in Oxley [18]. To avoid
clutter, for any e ∈ E we abbreviate A ∪ {e} to A ∪ e and A\{e} to A\e.

We note that Greedy is well defined even when matroids M1 and M2 are
defined on larger ground sets as long as they contain E. This notation will be
useful when we run Greedy on matroids after contracting different sets in the
two matroids. Since Greedy always produces a maximal independent set, its
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Algorithm 2. Greedy (M1,M2, E, π)
1: Initialize set T to ∅
2: for each element e ∈ Eπ[1, |E|] do
3: if T ∪ e ∈ M1 ∩ M2 then
4: T ← T ∪ e
5: return T

competitive ratio is at least half (see Theorem 13.8 in [11]). This is because an
“incorrect” element creates at most two circuits in OPT, one for each matroid.

Let OPT denote a fixed maximum offline independent set in the intersection
of both the matroids. For f ∈ [0, 1], let Tπ

f denote the independent set that
Greedy produces after seeing the first f fraction of the edges according to
order π. When clear from context, we will often abbreviate Tπ

f with Tf . Let

G(f) := Eπ[|Tf |]
|OPT| , where π is a uniformly random chosen order.

For i ∈ {1, 2}, let spani(T ) := {e | (e ∈ E) ∧ (rankMi
(T ∪ e) = rankMi

(T ))}
denote the span of set T ⊆ E in matroid Mi. Suppose we have T ∈ Mi and
e ∈ spani(T ), then we denote the unique circuit of T ∪ e in matroid Mi by
Ci(T ∪ e). If i = 1, we use ı̄ to denote 2, and vice versa.

3.2 Hastiness Property

Before describing our algorithm Marking-Greedy, we need an important
hastiness property of Greedy in the random arrival model. Intuitively, it states
that if Greedy’s performance is bad then it makes most of its decisions quickly
and incorrectly. This observation was first made by Konrad et al. [10] in the spe-
cial case of bipartite matching. We extend this property to matroids in Lemma 5
(proof in the full version). We are interested in the regime where 0 < ε � f � 1.

Lemma 5 (Hastiness Lemma). For any two matroids M1 and M2 on the
same ground set E, let Tπ

f denote the set selected by Greedy after running for
the first f fraction of elements E appearing in order π. Also, for i ∈ {1, 2},
let Φi(Tπ

f ) := spani(Tπ
f ) ∩ OPT. Now for any 0 < f, ε ≤ 1

2 , if Eπ[|Tπ
1 |] ≤

( 12 + ε) |OPT| then
Eπ

[|Φ1(Tπ
f ) ∩ Φ2(Tπ

f )|] ≤ 2ε |OPT| and

Eπ

[|Φ1(Tπ
f ) ∪ Φ2(Tπ

f )|] ≥
(

1 − 2ε

f
+ 2ε

)
|OPT|.

This implies G(f) := Eπ[|T π
f |]

|OPT| ≥
(

1
2 −

(
1
f − 2

)
ε
)
.

3.3 Beating Half for Online Matroid Intersection

Once again, we use Lemma 1 to restrict our attention to the case when the
expected size of Greedy is small. In Theorem 6, we give an algorithm that
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beats half for this restricted case, which when combined with Lemma 1 finishes
the proof of Theorem 1.

Theorem 6. For any two matroids M1 and M2 on the same ground set E,
there exist constants ε, γ > 0 and a randomized online algorithm Marking-
Greedy such that if G(1) ≤ (

1
2 + ε

)
then Marking-Greedy outputs an inde-

pendent set in the intersection of both the matroids of expected size at least(
1
2 + γ

) |OPT|.
Marking-Greedy for OMI:

Algorithm 3. Marking-Greedy (M1,M2, E, π,m, Ψ)
Phase (a)

1: Initialize S, T to ∅
2: for each element e ∈ Eπ[1, fm] do � Greedy while picking and marking
3: if T ∪ e ∈ M1 ∩ M2 then
4: T ← T ∪ e � Elements selected by Greedy
5: if ψ(e) = 1 then � Auxiliary random bits Ψ
6: S ← S ∪ e � Elements picked into the final solution

Phase (b)
7: Fix Tf to T and initialize sets N1, N2 to ∅
8: for each element e ∈ Eπ[fm, m] do � Greedy on two disjoint problems
9: for i ∈ {1, 2} do

10: if e ∈ spani(Tf ) and e /∈ spanı̄(Tf ) then � To ensure disjointness
11: if (S ∪ Ni ∪ e ∈ Mi) and (Tf ∪ Ni ∪ e ∈ Mı̄) then � Greedy step
12: Ni ← Ni ∪ e � Newly picked elements

13: return (S ∪ N1 ∪ N2)

Marking-Greedy consists of two phases. In Phase (a), it runs Greedy for
the first f fraction of the elements, but picks each element selected by Greedy
into the final solution only with probability (1 − p), where p > 0 is a constant.
With the remaining probability p, it marks the element e, and behaves as if it
had been selected. The idea of marking some elements in Phase (a) is that we
hope to “augment” them in Phase (b). To distinguish if an element is marked
or picked, the algorithm uses auxiliary random bits Ψ that are unknown to the
adversary. We assume that Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ E.

In Phase (b), one needs to ensure that the augmentations of the marked
elements do not conflict with each other. The crucial idea is to use the span of
the elements selected by Greedy in Phase (a) as a proxy to find two random
disjoint OMI subproblems. The following Fact 7 underlies this intuition. It states
that given any independent set S, we can substitute it by any other independent
set contained in the span of S. In Lemma 6 we use it to prove the correctness of
Marking-Greedy. Both Fact 7 and Lemma 6 are proved in the full version.

Fact 7. Consider any matroid M and independent sets A,B,C ∈ M such that
A ⊆ spanM(B) and B ∪ C ∈ M. Then, A ∪ C ∈ M.
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Lemma 6. Marking-Greedy outputs sets S,N1, and N2 such that

(S ∪ N1 ∪ N2) ∈ M1 ∩ M2.

Proof that Marking-Greedy Works for OMI

We know from Lemma 5 that G(f) is close to half for ε � f � 1. In the
following Lemma 7, we show that Marking-Greedy (which returns S∪N1∪N2

by Lemma 6) gets an improvement over Greedy. This completes the proof of
Theorem 6 to give γ ≥ 0.03 for ε = 0.001, f = 0.05, and p = 0.33. The rest of
the section is devoted to proving the following lemma.

Lemma 7. Marking-Greedy outputs sets S,N1, and N2 such that

Eπ,Ψ [|S ∪ N1 ∪ N2|] ≥ (1 − p) G(f) |OPT| +
2p

1 + p

(
1 − 2ε

f
− 2ε − f − G(f)

)
|OPT|.

Proof (Lemma 7). We treat the sets S ⊆ Tf , N1, and N2 as random sets depend-
ing on π and Ψ . Since Marking-Greedy ensures the sets are disjoint,

Eπ,Ψ [|S ∪ N1 ∪ N2|] = Eπ,Ψ [|S|] + Eπ,Ψ [|N1| + |N2|]
≥ (1 − p)G(f) |OPT| + Eπ,Ψ [|N1| + |N2|]. (1)

Next, we lower bound Eπ,Ψ [|N1| + |N2|] by observing that for i ∈ {1, 2}, Ni

is the result of running Greedy on the following restricted set of elements.

Definition 1 (Sets Ẽi). For i ∈ {1, 2}, we define Ẽi to be the set of elements
e that arrive in Phase (b) and satisfy e ∈ spani(Tf ) and e �∈ spanı̄(Tf ).

It’s easy to see that Ni is obtained by running Greedy on the matroid
Mi/S and Mı̄/Tf with respect to elements in Ẽi, i.e. Ni = Greedy(Mi/S,

Mı̄/Tf , Ẽi). To lower bound Eπ,Ψ [|N1| + |N2|], we use the following Sampling
Lemma (see full version) that forms the core of our technical analysis. Intuitively,
it says that if S is a random subset of Tf then for the obtained random OMI
instance, with optimal solution of expected size p |Ĩ|, Greedy performs better
than half-competitiveness even for adversarial arrival order of ground elements.

Lemma 8 (Sampling Lemma). Given matroids M1,M2 on ground set E,
a set T ∈ M1 ∩ M2, and Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ T , we define set
S := {e | e ∈ T and Ψ(e) = 1}. I.e., S is a set achieved by dropping each element
in T independently with probability p. For i ∈ {1, 2}, consider a set Ẽ ⊆ spani(T )
and a set Ĩ ⊆ Ẽ satisfying Ĩ ∈ Mi ∩ (Mı̄/T ). Then for any arrival order of the
elements of Ẽ, we have

EΨ [Greedy(Mi/S,Mı̄/T, Ẽ)] ≥ 1
1 + p

(
p |Ĩ|

)
.

To use the Sampling Lemma, in Claim 8 we argue that in expectation there
exist disjoint sets Ĩi ⊆ Ẽi of “large” size that satisfy the preconditions of the
Sampling Lemma (proof uses Hastiness Lemma and is deferred to full version).
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Claim 8. If G(1) ≤ (
1
2 + ε

)
then for i ∈ {1, 2} ∃ disjoint sets Ĩi ⊆ Ẽi s.t.

(i) Eπ

[|Ĩ1| + |Ĩ2|
] ≥ 2

(
1 − 2ε

f − f − G(f)
)

|OPT|.
(ii) Ĩi ∈ Mi ∩ (Mı̄/Tf ).

Finally, to finish the proof of Lemma 7, we use the sets Ĩi from the above
Claim 8 as Ĩ and sets Ẽi as Ẽ in the Sampling Lemma 8. From Eq. (1) and
Claim 8, we get

Eπ,Ψ [|S ∪ N1 ∪ N2|] ≥ (1 − p)G(f) |OPT| +
p

1 + p
Eπ

[|Ĩ1| + |Ĩ2|
]

≥ (1 − p)G(f) |OPT|+ 2p

1 + p

(
1 − 2ε

f
− f − G(f)

)
|OPT|.
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Abstract. The number balancing (NBP) problem is the following: given
real numbers a1, . . . , an ∈ [0, 1], find two disjoint subsets I1, I2 ⊆ [n] so
that the difference |∑i∈I1

ai − ∑i∈I2
ai| of their sums is minimized.

An application of the pigeonhole principle shows that there is always a
solution where the difference is at most O(

√
n

2n ). Finding the minimum,
however, is NP-hard. In polynomial time, the differencing algorithm by
Karmarkar and Karp from 1982 can produce a solution with difference at
most n−Θ(log n), but no further improvement has been made since then.

In this paper, we show a relationship between NBP and Minkowski’s
Theorem. First we show that an approximate oracle for Minkowski’s
Theorem gives an approximate NBP oracle. Perhaps more surpris-
ingly, we show that an approximate NBP oracle gives an approximate
Minkowski oracle. In particular, we prove that any polynomial time algo-
rithm that guarantees a solution of difference at most 2

√
n/2n would give

a polynomial approximation for Minkowski as well as a polynomial factor
approximation algorithm for the Shortest Vector Problem.

1 Introduction

One of six basic NP-complete problems of Garey and Johnson [GJ97] is the par-
tition problem that for a list of numbers a1, . . . , an asks whether there is a par-
tition of the indices so that the sums of the numbers in both partitions coincide.
Partition and related problems like knapsack, subset sum and bin packing are
some of the fundamental classical problems in theoretical computer science with
numerous practical applications; see for example the textbooks [MT90,KPP04]
and the article of Mertens [Mer06]. In this paper, we study a variant called the
number balancing problem (NBP), where the goal is to find two disjoint subsets
I1, I2 ⊆ {1, . . . , n} so that the difference |∑i∈I1

ai − ∑
i∈I2

ai| is minimized.
Equivalently, given a vector of numbers a = (a1, . . . , an) ∈ [0, 1]n, we want
to find a vector of signs x ∈ {−1, 0, 1}n\{0} so that |〈a,x〉| = |∑n

i=1 xiai| is
minimized. Woeginger and Yu [WY92] studied this problem under the name
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“equal-subset-sum” and showed that it is NP-hard to decide whether there are
two disjoint subsets that sum up to the exact same value. This version has also
been extensively studied in combinatorics [Lun88,Boh96,LY11].

On the positive side, it is not hard to prove that there is always a solution
with exponentially small error. Suppose that a1, . . . , an ∈ [0, 1]. Consider the list
of 2n many numbers

∑n
i=1 aixi for all x ∈ {0, 1}n. All these numbers fall into

the interval [0, n], hence by the pigeonhole principle, we can find two distinct
vectors x,x′ ∈ {0, 1}n with |∑n

i=1 aixi − ∑n
i=1 aix

′
i| ≤ n

2n−1 . Then x− x′ gives

the desired solution. Note that the bound can be slightly improved to O(
√

n
2n )

by using the fact that due to concentration of measure effects, for a constant
fraction of vectors x ∈ {0, 1}n, the sums

∑n
i=1 aixi fall into an interval of length√

n (instead of n).
However, since these arguments rely on the pigeonhole principle, they are

non-constructive. Restricting the non-constructive argument to polynomially
many “pigeons” provides a simple polynomial time algorithm to find at least
an x ∈ {−1, 0, 1}n\{0} with |〈a,x〉| ≤ 1

poly(n) for an arbitrarily small poly-
nomial. Interestingly, the only known polynomial time algorithm that gives a
better guarantee is Karmarkar and Karp’s differencing algorithm [KK82] which
provides the bound |〈a,x〉| ≤ n−c log(n) for some constant c > 0. Their algorithm
uses a recursive scheme; find Θ(n) pairs of numbers ai of distance at most Θ( 1

n )
and create an instance consisting of their differences, then recurse.

This leads to the natural question: Given a1, . . . , an ∈ [0, 1], what upper
bound on |∑n

i=1 aixi| can be guaranteed if x ∈ {−1, 0, 1}n\{0} is to be chosen in
polynomial time? While answering this question directly seems out of reach, we
note that NBP falls into the class PPP [Pap94], where good solutions are known
to exist due to the pigeonhole principle. It is reasonable therefore to study the
relationship between this problem and other problems in PPP.

Recall that given linearly independent vectors b1, . . . , bn ∈ R
n, a (full rank)

lattice is the set Λ := {∑n
i=1 λibi : λi ∈ Z ∀i = 1, . . . , n}. The set {b1, . . . , bn}

is called a basis for Λ and we define det(Λ) := |det(B)|. For any lattice Λ ⊆ R
n

with det(Λ) ≥ 1, Minkowski’s Theorem tells us that any symmetric convex body
K ⊆ R

n of volume at least 2n must intersect Λ\{0}, see for example [Mat02].
This theorem is proven by placing translates of 1

2K at any lattice point and then
inferring an overlap due to the pigeonhole principle. Again, one can consider the
algorithmic question: given a symmetric convex body K with volume at least
2n, for what factor ρ can one be guaranteed to find an x ∈ (ρK) ∩ Z

n\{0} in
polynomial time?

We would like to point out that this factor ρ is within a polynomial factor
of the approximability of the Shortest Vector Problem (SVP), the problem of
finding the shortest1 nonzero vector in a lattice. One direction follows from
the fact K can be sandwiched between two ellipsoids that differ by a factor of√

n [Joh48]. In the other direction, a reduction of Lenstra and Schnorr shows
that given a polynomial-time oracle to find a vector of length at most f(n) in

1 SVP can be defined for any norm, but anywhere the norm is not specified we consider
the Euclidean norm.
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a lattice with det(Λ) ≤ 1, there is a polynomial-time algorithm to find a vector
within f(n)2 of the shortest vector [Lov86]. This is a nontrivial reduction that
uses the assumed oracle both on the original lattice and on its dual. Note that
Minkowski’s theorem guarantees the existence of a lattice vector of length at
most O(

√
n).

The complexity of SVP is of great theoretical and practical interest. As a
rarity in theoretical computer science, SVP admits (NP ∩ coNP)-certificates for
a value that is at most a factor O(

√
n) away from the optimum [AR05], while

the best known hardness under reasonable complexity assumptions lies at a sub-
polynomial bound of nΘ(1/ log log n) [HR07]. The famous LLL-algorithm [LLL82]
can find a 2n/2-approximation in polynomial time (the generalized block reduc-
tion method of Schnorr [Sch87] brings the factor down to 2n log log(n)/ log(n)). On
the other hand, a polynomial factor approximation of SVP would be enough to
break lattice-based cryptosystems [Ajt96,MR09].

It is not hard to use an exact oracle for Minkowski’s Theorem to find a good
number balancing solution, since the body K := {x ∈ (−2, 2) : |∑n

i=1 xiai| ≤
Θ( n

2n )} has volume at least 2n. However, it is not clear how we could use an
approximate oracle. For example, it is known that the LLL-algorithm can be
used to find a nonzero integer vector x ∈ ρK for a factor of ρ = poly(n) · 2n/2.
While the error guarantee of |∑n

i=1 aixi| ≤ poly(n) · 2−n/2 outperforms the
Karmarkar-Karp algorithm, we only know that ‖x‖∞ < 2ρ, which means that
x will not be a valid solution if ρ > 1.2 This leads us to the next question: what
factor ρ is needed for Minkowski’s Theorem to improve over Karmarkar-Karp’s
bound?

We have seen that in a certain sense NBP can be reduced to an oracle for
Minkowski’s Theorem, and in fact we will show that there is also a direct reduc-
tion to SVP in the �∞ norm. This brings us to the question about the reverse:
given an oracle that solves NBP within an exponentially small error, can this give
a non-trivial oracle for the Shortest Vector Problem or Minkowski’s Theorem?

Contribution. In this work, we provide some answers to the questions
raised above, by relating the complexity of the number balancing problem to
Minkowski’s Theorem and the Shortest Vector Problem. First we give the pre-
cise definitions of the problems we will consider.

Definition 1. Suppose p ∈ [1,∞] with Bp(0, 1) the closed unit ball in the �p

norm. For δ ≥ Ω(
√

n)
2n and ρ ≥ 1, we define the following problems.

– δ-NBP: Given a ∈ [0, 1]n, find x ∈ {−1, 0, 1}n with |〈a,x〉| ≤ δ.
– ρ-Minkowski Problem: Given a lattice Λ and a symmetric convex body3

K ⊆ R
n with voln(K) ≥ 2n det(Λ), find a vector x ∈ (ρK) ∩ Λ\{0}.

– ρ-PromiseSVPp: Given a lattice Λ ⊂ R
n with vol(Bp(0, 1)) ≥ 2n det(Λ),

find a vector x ∈ Λ with ‖x‖p ≤ ρ.

2 If ρ ≤ 2 − ε, then one can still obtain an error of |∑n
i=1 aixi| ≤ 2−Θ(εn), but this

breaks down if ρ ≥ 2.
3 We assume K is given to us by a separation oracle.
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As already discussed, δ-NBP and the ρ-Minkowski Problem will always
have a solution by nonconstructive arguments. Moreover, we notice that ρ-
PromiseSVPp is just the ρ-Minkowski Problem on an �p ball, and so it is also
guaranteed to have a solution. Notice also that ρ-PromiseSVPp would also fol-
low immediately from a ρ-approximation to SVP in the �p norm, since a short
enough vector is guaranteed to exist. We would like to stress that polynomial-
time algorithms for any of the three problems are not known to be inconsistent
with P �= NP. The hardness results of SVP do not apply to ρ-PromiseSVPp since
we do not require it to give a shortest vector of the lattice.

We provide the following reduction:

Theorem 1. Suppose there is a polynomial-time algorithm for the ρ-Minkowski
problem for polytopes K with O(n) facets. Then there is a polynomial-time algo-
rithm for δ-NBP where δ := 2−nΘ(1/ρ)

.

In fact, to obtain an algorithm for δ-NBP, it suffices to have an approximate
Minkowski oracle for the linear transformation of a cube, which is equivalent to
an oracle for ρ-PromiseSVP∞.

Theorem 2. Suppose that there is a polynomial-time algorithm for ρ-
PromiseSVP∞. Then there is a polynomial-time algorithm for δ-NBP, where
δ := 2−nΘ(1/ρ)

.

In particular an oracle for ρ ≤ c′ log(n)/ log log(n) would imply an improvement
over Karmarkar-Karp’s algorithm, where c′ > 0 is a small enough constant.

Finally, we can also prove that an oracle with exponentially small error for
number balancing would provide an approximation for Minkowski’s problem.

Theorem 3. Suppose that there is a polynomial-time algorithm for δ-NBP with
δ ≤ 2

√
n/2n. Then there is a polynomial-time algorithm for the ρ-Minkowski

problem for ρ = O(n5). Here it suffices to have a separation oracle for the convex
body K ⊆ R

n.

In fact, we will show that we can get within a O(n4.5) factor of an ellipsoid of
the volume of a unit ball, and so using the reduction of Lovasz we can guarantee
a O(n9) approximation for SVP.

2 Reducing Number Balancing to Minkowski’s Theorem

In this section we will show how to solve NBP with an oracle for Minkowski’s
problem. The idea is to consider a hypercube intersected with the constraint
|〈a,x〉| ≤ δ, and to show that this set has large enough volume. If we have an
exact Minkowski oracle, this gives us x ∈ {−1, 0, 1}n\{0} as desired. Here we
state a more general version which uses only a ρ-approximate Minkowski oracle,
and then show how we can use this more general version to solve NBP with a
weaker bound. We present the proof in the full version of this paper.
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Theorem 4. Suppose we have a polynomial-time algorithm for the ρ-Minkowski
problem, and let k > 0 be any positive integer. Then, for any a ∈ [0, 1]n, there
is a polynomial-time algorithm to find x ∈ Z

n\{0} with ‖x‖∞ ≤ k and so that

|〈a,x〉| ≤ n
(

ρ
k+1

)n−1

.

Suppose, for instance, that ρ = (2 − ε) for some ε ∈ (0, 1]. Then we can pick
k = 1 and get |〈a,x〉| ≤ 2−Θ(εn) with ‖x‖∞ ≤ 1 and x ∈ Z

n\{0}. However, this
line of arguments breaks down for ρ ≥ 2 as these would in general not produce
feasible solutions for number balancing.

Instead of using an oracle for the ρ-Minkowski Problem one can directly use
an oracle for ρ-PromiseSVP∞. We need the following theorem, the proof of which
we present in the full version of this paper:

Theorem 5. Suppose that there is a polynomial-time algorithm for ρ-
PromiseSVP∞. Then for any a ∈ [0, 1]n there is a polynomial-time algorithm to
find x ∈ Z

n\{0} with ‖x‖∞ ≤ k and so that |〈a,x〉| ≤ 2nkρ( ρ
k )n.

However, we still face a problem in the case ρ ≥ 2. It turns out that we can
design a recursive self-reduction to allow us to use larger ρ. The main technical
argument is to transform an algorithm that finds x ∈ Z

n\{0} with ‖x‖∞ ≤ k
for k ≥ 2 into an algorithm that finds vectors x ∈ Z

n\{0} with ‖x‖∞ ≤ k
2 ,

with a bounded decay in the error |〈a,x〉|. Applying this recursively gives the
following lemma.

Lemma 1. Suppose that there is a polynomial-time algorithm that for any
a′ ∈ [0, 1]n finds a vector x′ ∈ {−k, . . . , k}n\{0} with |〈a′,x′〉| ≤ 2−n. If
k ≤ log n

6 log log n , then there is also a polynomial-time algorithm that for any

a ∈ [0, 1]n finds a vector x ∈ Z
n with |〈a,x〉| ≤ 2−n

1
3k and x ∈ {−1, 0, 1}n\{0}.

Before we go through the self reduction, we show how Lemma 1 gives
Theorems 1 and 2.

Proof (Theorems 1 and 2). If ρ ≥ log n
48 log log n , then 2−nΘ(1/ρ)

= 2− logO(1) n. By
choosing a proper constant on the exponent, this can be achieved with the
Karmarkar-Karp algorithm. So we only need to work with ρ < log n

48 log log n .
Now suppose we have a polynomial-time algorithm for the ρ-Minkowski Prob-

lem (resp. ρ-PromiseSVP∞). If we take k = 3ρ, Theorem 4 (resp. Theorem 5)
gives a polynomial-time algorithm to find x with ‖x‖∞ ≤ k and |〈a,x〉| ≤ 2−n.

Moreover, k = 3ρ ≤ log n
16 log log n , and hence the condition of Lemma 1 is satis-

fied. Then the bound given by Lemma 1 is 2−n
1
3k ≤ 2−nΘ(1/ρ)

. ��
We now prove Lemma 1. The way we do the self-reduction is the follow-

ing. We partition our set of n numbers into subsets of size
√

n. First, for each
subset �, we find a number b� �= 0 for which we can (approximately) express
b�, 2b�, . . . , kb� as linear combinations of elements of that subset using only coef-
ficients in {−�k

2 �, . . . �k
2 �}. We then run our assumed algorithm on b1, . . . , b√

n
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to obtain y ∈ {−k, . . . , k}n with 〈b,y〉 =
∑√

n
�=1 y�b� being small. Since each of

the summands can be expressed more efficiently in terms of our original set of
numbers, we obtain a good solution x with coefficients in {−�k

2 �, . . . �k
2 �}.

The following two lemmas go through this argument more precisely. Note that
the interesting parameter choice is r := �k/2�, so that the size of the coefficients
is halved.

Lemma 2. Let r, k ∈ N be parameters with 0 < r < k and let δ ≥ 0. Let
α1, . . . , αk ∈ R so that |∑k

i=1 i·αi| ≤ δ and abbreviate β := αr+. . .+αk. Then for
any j ∈ {0, . . . , k} one can find coefficients λi,j ∈ Z with |λi,j | ≤ max{r−1, k−r}
and |j · β − ∑k

i=1 λi,jαi| ≤ δ.

Proof. By symmetry it suffices to consider j ≥ 0. For j ∈ {0, . . . , r − 1}, we can
obviously write

j · β = j · αr + . . . + j · αk.

Now consider j ∈ {r, . . . , k}. The trick is to use that

j · β −
k∑

i=1

iαi =
k∑

i=r

j · αi −
k∑

i=1

iαi =
k∑

i=r

(j − i)αi +
r−1∑

i=1

(−i)αi.

If we inspect the size of the used coefficients, then for i ∈ {1, . . . , r − 1} we have
| − i| ≤ r − 1 and for i ∈ {r, . . . , k} we have |j − i| ≤ k − r. ��
Lemma 3. Let k, r ∈ N be parameters with 0 < r < k. Let f : N → R be a non-
negative function such that f(n) ≥ 4 log n. Suppose that there is a polynomial-
time algorithm that for any a′ ∈ [0, 1]n finds a vector x′ ∈ {−k, . . . , k}n\{0}
with |〈a′,x′〉| ≤ 2−f(n). Then there is also a polynomial-time algorithm that
for any a ∈ [0, 1]n finds a vector x ∈ Z

n\{0} with |〈a,x〉| ≤ 2−2f(�√
n�)/3 and

‖x‖∞ ≤ max{r − 1, k − r}.
Proof. Let a ∈ [0, 1]n be the given vector of numbers. To keep notation simpler,
we will assume n is a perfect square. If it is not, we can replace

√
n by �√n�.

Split [n] into blocks I1, . . . , I√
n each of size |I�| =

√
n. For each block I� we use

the oracle to find a vector x� ∈ {−k, . . . , k}n\{0} with supp(x�) ⊆ I� so that
|〈a,x�〉| ≤ 2−f(

√
n). If for any � one has ‖x�‖∞ ≤ r − 1, then we simply return

x := x� and are done. Otherwise, we write the vector as x� =
∑k

i=1 i · x�,i with
vectors x�,1, . . . ,x�,k ∈ {−1, 0, 1}n. Note that these vectors will have disjoint
support and supp(x�,1), . . . , supp(x�,k) ⊆ I�. Moreover we know that for every �
there is at least one index i ∈ {r, . . . , k} with x�,i �= 0.

Now define a vector b ∈ R
√

n with b� :=
∑k

i=r〈a,x�,i〉. Note that if for any
� we have |b�| ≤ 2−f(

√
n), then we can set x =

∑k
i=r x�,i and we are done.

Therefore we may assume that |b�| > 2−f(
√

n) for all �. Also note that since the
x�,i have disjoint support, we have ‖b‖∞ ≤ √

n. We run the oracle again to
find a vector y ∈ {−k, . . . , k}

√
n\{0} so that |〈b,y〉| ≤ √

n · 2−f(
√

n). For each
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block � ∈ [
√

n] we can use Lemma 2 to find integer coefficients λ�,i with |λ�,i| ≤
max{r − 1, k − r} so that

∣
∣
∣y� · b� −

k∑

i=1

λ�,i · 〈a,x�,i〉
∣
∣
∣ ≤ 2−f(

√
n).

We define

x :=

√
n∑

�=1

k∑

i=1

λ�,ix�,i.

Then ‖x‖∞ ≤ max{r − 1, k − r} since the x�,i’s have disjoint support and
‖x�,i‖∞ ≤ 1 for all �, i. Moreover, since there is some y� �= 0 and |b�| > 2−f(

√
n),

we have x �= 0.
Finally we inspect that

|〈a,x〉| ≤ |〈y, b〉| +

√
n∑

�=1

∣
∣
∣y�b� −

k∑

i=1

λ�,i〈a,x�,i〉
∣
∣
∣ ≤ 2

√
n · 2−f(

√
n) ≤ 2−2f(

√
n)/3.

The last line comes from the fact that when f(n) ≥ 4 log n, we have 2
√

n ≤
2

2
3 log n = 2

4
3 log

√
n ≤ 2

1
3 f(

√
n). ��

Now we can apply Lemma 3 recursively to prove Lemma 1.

Proof (Lemma 1). Suppose k ≤ log n
6 log log n and set r = �k/2�. Consider the func-

tion ft(n) = 2−tn2−t

for t = 0, . . . , �log k�, and notice that 2−t ≥ 1
2k ≥ 2 log log n

log n .
Therefore we have

ft(n) = 2−tn2−t ≥ 1
2k

n1/2k ≥ (2
log log n

log n
) · log2 n ≥ 4 log n.

Finally, notice that 2
3ft(�

√
n�) ≥ 1

2ft(
√

n) = ft+1(n). We are now able to
apply Lemma 3. In particular, suppose we have an oracle to find x with ‖x‖∞ ≤
2−tk and |〈a,x〉| ≤ 2−ft(n). Then Lemma 3 gives us an oracle to find x with
‖x‖∞ ≤ 2−(t+1)k and |〈a,x〉| ≤ 2−ft+1(n).4 Running this �log k� ≤ log 2k times
gives a bound of 2−flog 2k(n) = 2−n1/2k/2k ≤ 2−n1/3k

. Here we use the fact that

when k ≤ 1
6

log n
log log n , we have n

1
2k

2k ≥ n
1
3k . ��

3 Reducing Minkowski’s Theorem to Number Balancing

In this section we show that for small enough δ, an oracle for δ-NBP can be used
to design an algorithm for ρ-Minkowski’s Problem, where ρ is polynomial in n.
The first helpful insight is that any symmetric convex body can be approximated

4 Here we ignore the dependence of t on n - notice that t is nondecreasing in n, so
replacing t(n) by t(

√
n) only increases ft(n).
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within a factor of
√

n using an ellipsoid [Lov90,GLS12]. Recall that an ellipsoid
is a set of the form

E =
{
x ∈ R

n |
n∑

i=1

1
λ2

i

· 〈x,ai〉2 ≤ 1
}

(1)

with an orthonormal basis a1, . . . ,an ∈ R
n defining the axes and positive coef-

ficients λ1, . . . , λn > 0 that describe the lengths of the axes5. Overall, our reduc-
tion will operate in two steps:

(i) By combining John’s Theorem with lattice basis reduction, we can show that
it suffices to find integer points in an ellipsoid that is well-rounded, meaning
that the lengths of the axes are bounded.

(ii) We show that a number balancing oracle allows a self-reduction to a gener-
alized form where inner products with n vectors have to be minimized and
additionally the solution space is Z

n instead of {−1, 0, 1}n.

We begin by proving (ii) and postpone (i) until the end of this section.

3.1 A Self-reduction to a Generalized Form of Number Balancing

Recall that for δ > 0, we defined δ-NBP as follows: given a ∈ [0, 1], find a vector
x ∈ {−1, 0, 1}n\{0} with |〈a,x〉| ≤ δ. Notice that we may allow for vectors
a ∈ [−1, 1]n without changing the problem, as one can flip the signs of x as
needed to accommodate for the changes in sign of a. The main technical result
of this section is the following reduction:

Theorem 6. Suppose there is a polynomial-time algorithm for δ-NBP with δ =
g(n)
2n and g(n) ≤ 2n/2. Then there is a polynomial-time algorithm that on input
a1, . . . ,an ∈ [−1, 1]n and 0 < λ1 ≤ . . . ≤ λn ≤ 2n with

∏n
i=1 λi ≥ 1, finds a

vector x ∈ Z
n\{0} with

|〈x,ai〉| ≤ O(n4) · λi · g(4n2)1/n ∀i = 1, . . . , n.

In particular if g(n) ≤ 2
√

n, then the right hand side in Theorem 6 simplifies to
just O(n4) · λi. We will show this by introducing two extensions of the number
balancing oracle. The first extension gives a weaker bound in terms of the error
parameter, but allows for multiple vectors in [−1, 1]n. In the second extension,
we extend the range of coefficients from {−1, 0, 1} to {−Q, . . . , Q} which leads
to a much stronger error bound.

Lemma 4. Suppose there is a polynomial-time algorithm for δ-NBP. Then there
is a polynomial-time algorithm that given an input a1, . . . ,ak ∈ [−1, 1]n and
parameters δ1, . . . , δk ≤ 1

2 with
∏k

i=1 δi ≥ δ finds a vector x ∈ {−1, 0, 1}n\{0}
with |〈ai,x〉| ≤ 2n2δi for all i = 1, . . . , k.
5 Strictly speaking, the length of axis i is 2λi, but we will continue calling λi the “axis

length”.
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Proof. The idea is that we will discretize all of the vectors and then run our oracle
on their sum. The vector that we obtain will then have small inner product with
all of the ai. To define the discretization ãi, round elements of ai down to the
nearest multiple of 2nδi, and then multiply by

∏
j<i δj . Defining ãi this way,

notice that for all i we have |〈ãi,x〉| ≤ n
∏

j<i δj for any x satisfying ‖x‖∞ ≤ 1.
Now let c = ã1 + . . . + ãk. By our oracle, we can find x ∈ {−1, 0, 1}n\{0}

with |〈c,x〉| ≤ δ. Recall that δ ≤ ∏k
i=1 δi ≤ n

∏
j≤k δj . We have

|〈ã1,x〉| ≤ |〈ã2,x〉| + . . . + |〈ãk,x〉| + |〈c,x〉| ≤ nδ1 + n
∏

j≤2

δj + . . . + n
∏

j≤k

δj

≤ nδ1 ·
(

1 +
1
2

+ . . . +
1
2k

)

< 2nδ1.

Therefore |〈ã1,x〉| = 0. Similarly, for 1 < i ≤ k, if |〈ã1,x〉|, . . . , |〈ãi−1,x〉| = 0,
then we have

|〈ãi,x〉| ≤ |〈ãi+1,x〉| + . . . + |〈ãk,x〉| + |〈c,x〉| < 2n
∏

j≤i

δj ,

and hence |〈ãi,x〉| = 0 for all i. Notice that by definition of ãi we have
‖∏

j<i δjai − ãi‖∞ ≤ 2n
∏

j≤i δj . Therefore |〈∏j<i δjai,x〉| ≤ 2n2
∏

j≤i δj , and
so we can conclude that |〈ai,x〉| ≤ 2n2δi. ��

Now we come to a second reduction that takes the oracle constructed in
Lemma 4 as a starting point:

Lemma 5. Assume there exists a polynomial-time algorithm for δ-NBP where
δ = f(n). Let a1, . . . ,ak ∈ [−1, 1]n be given with parameters δ1, . . . , δk ≤ 1

2 and
a number Q that is a power of 2 and satisfies

∏k
i=1 δi ≥ f(n log Q). Then in

polynomial time we can find a vector x ∈ {−Q, . . . , Q}n\{0} with |〈ai,x〉| ≤
δiQ · 2(n log Q)2 for all i = 1, . . . , k.

Proof. For each i, we define bi ∈ [−1, 1]n log Q by bi(j, �) = ai(j)2−� for j =
1, . . . , n and � = 1, . . . , log Q. Since

∏k
i=1 δi ≥ f(n log Q), we can apply Lemma

4 to find y ∈ {−1, 0, 1}n log Q\{0} with |〈bi,y〉| ≤ δi · 2(n log Q)2.
Now define x ∈ {−Q, . . . , Q}n\{0} by xj := Q

∑log Q
�=1 2−�yj�. Then for i =

1, . . . , k we have

δi · (2n log Q)2 ≥ |〈bi,y〉| =
∣
∣
∣

n∑

j=1

log Q∑

�=1

yj�2−�

︸ ︷︷ ︸
=xj/Q

ai(j)
∣
∣
∣ =

1
Q

· |〈ai,x〉|

and rearranging gives the claim. ��
Finally we come to the proof of Theorem 6.
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Proof (Theorem 6). Suppose that the oracle has parameter f(n) = ρ(n)/2n.
Suppose that a1, . . . ,an ∈ [−1, 1]n and λ1, . . . , λn > 0 with

∏n
i=1 λi ≥ 1. We

choose Q := 24n, which is a power of 2. Define δi = λi · f(n log Q)1/n. Note that
δi ≤ 23n/2 · f(4n2)1/n ≤ 1

2 since f(n) ≤ 2−n/2. Then
∏n

i=1 δi ≥ f(n log Q), and
so by Lemma 5 we can find y ∈ {−Q, . . . , Q}n\{0} with

|〈ai,y〉| ≤ Qδi · 2(n log Q)2 ≤ Qλi · f(n log Q)1/n · 2(n log Q)2

= λi · ρ(4n2)1/n · 2 · (4n2)2. ��

3.2 A Reduction to Well-Rounded Ellipsoids

Using John’s Theorem [Joh48], the convex body K in Theorem 3 can be approx-
imated by an ellipsoid E as defined in Eq. (1). The natural approach will then
be to apply Theorem 6 to the axes of the ellipsoid. However, it will be crucial
that the lengths of the axes of the ellipsoid are bounded by 2O(n). We will now
argue how to make an arbitrary ellipsoid well rounded.

Let us denote λmax(E) := max{λi : i = 1, . . . , n} as the maximum length
of an axis. Recall that a matrix U ∈ R

n×n is unimodular if U ∈ Z
n×n and

|det(U)| = 1. In particular, the linear map T : Rn → R
n with T (x) = Ux is

a bijection on the integer lattice, meaning that T (Zn) = Z
n. It turns out that

one can use the lattice basis reduction method by Lenstra et al. [LLL82] to find
a unimodular linear transformation that “regularizes” any given ellipsoid. Note
that it suffices to work with the regularized ellipsoid T (E) since voln(T (E)) =
voln(E) and if we find a point x ∈ (ρT (E)) ∩Z

n, then by linearity T−1(x) ∈ ρE
and T−1(x) ∈ Z

n.
Given b1, . . . , bn ∈ R

n we define the Gram-Schmidt orthogonalization iter-
atively as b̂j = bj − ∑

i<j μij b̂i, where μij = 〈bj ,b̂i〉
‖b̂i‖2

2
. Notice that we can then

write bj = b̂j +
∑

i<j μij b̂i. In particular, suppose B is the matrix with columns
b1, . . . , bn and B̂ is the matrix with columns b̂1, . . . , b̂n. Then B = B̂V for an
upper triangular matrix V with ones along the diagonal and Vij = μij for i < j.

Definition 2. Let B ∈ R
n×n be a lattice basis and let μij be the coefficients

from Gram-Schmidt orthogonalization. The basis is called LLL reduced if

– (Coefficient-reduced): |μij | ≤ 1
2 for all 1 ≤ i < j ≤ n.

– (Lovász condition): ‖b̂i‖22 ≤ 2‖b̂i+1‖22 for i = 1, ..., n − 1.

LLL reduction has been widely used in diverse fields such as integer programming
and cryptography [NV10]. One property of the LLL reduced basis is that the
eigenvalues of the corresponding matrix B are bounded away from 0:

Lemma 6. Let B denote the matrix with columns b1, . . . , bn. If b1, . . . , bn is an
LLL-reduced basis with ‖bi‖2 ≥ 1 for all i, then ‖Bx‖2 ≥ 2−3n/2 · ‖x‖2 for all
x ∈ R

n.
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Proof. Let B̂ denote the Gram-Schmidt orthogonalization of B, with columns
b̂1, . . . , b̂n. Now, for any k, we can use the properties of LLL reduction to gain
the following bound (Proposition (1.7) in [LLL82]).

1 ≤ ‖bk‖22 = ‖b̂k‖2 +
∑

i<k

μ2
ik‖b̂i‖22 ≤

(
1 +

1
4

∑

i<k

2k−i
)

· ‖b̂k‖22 ≤ 2k · ‖b̂k‖22.

In particular, ‖b̂k‖2 ≥ 2−n for all k = 1, . . . , n. Now let V be the matrix so that
B = B̂V , and let x ∈ R

n with ‖x‖2 = 1. Let k denote the largest index with
|xk| ≥ 2−k. Then

|(V x)k| =
∣
∣
∣xk +

∑

j>k

μkjxj

∣
∣
∣ ≥ |xk| − 1

2

∑

j>k

|xj | ≥ 2−k − 1
2

∑

j>k

2−j ≥ 2−n.

Now, by the orthogonality of b̂1, . . . , b̂n, we have

‖Bx‖22 = ‖B̂V x‖22 =
n∑

i=1

(V x)2i ‖b̂i‖22 ≥ |(V x)k|2 · 2−n ≥ 2−3n.

Taking square roots gives the claim. ��
Lemma 7. Let E = {x ∈ R

n : ‖Ax‖22 ≤ 1} be an ellipsoid. Then in polynomial
time, we can find

(1) either a vector x ∈ E ∩ Z
n

(2) or a linear transformation T so that T (x) = Ux for a unimodular matrix U
and λmax(T (E)) ≤ 23n/2.

Proof. Use the algorithm of [LLL82] to find a unimodular matrix U such that
B = AU is LLL reduced. Let b1, . . . , bn denote the columns of B. Notice that
if ‖bi‖2 ≤ 1, then A−1bi ∈ E ∩ Z

n, and so we are done. So assume now that
‖bi‖2 ≥ 1 for all i.

Define T (x) = U−1x, and notice that T (E) = {x ∈ R
n : ‖Bx‖22 ≤ 1}. We

then have

λmax(T (E)) = max
x∈f(E)

‖x‖2 = max
‖Bx‖2≤1

‖x‖2 = max
x=0

‖x‖2
‖Bx‖2 ≤ 23n/2,

where the last inequality follows from Lemma 6. ��
Finally we can prove one of our main results, Theorem 3.

Proof (Theorem 3). Let K ⊆ R
n be a convex body with voln(K) ≥ 2n. We

compute an ellipsoid6 E = {x ∈ R
n | ∑n

i=1
1
λ2

i
〈x,ai〉2 ≤ 1} so that 1

5
√

n
E ⊆

K ⊆ 1
5

√
nE . Then

6 Note that there exists an ellipsoid that approximates K within a factor of
√

n and if
K is a polytope with m facets, then this ellipsoid can be found in time polynomial
in n and m. However, if one only has a separation oracle for K, then the best factor
achievable in polynomial time is n [GLS12].
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2n · 5n · n−n/2 ≤ voln(K) · 5n · n−n/2 ≤ voln(E) = vol(B(0, 1))
︸ ︷︷ ︸

≤5nn−n/2

·
n∏

i=1

λi.

and hence
∏n

i=1 λi ≥ 1. We apply Lemma 7 to either find an integer point
in E and we are done, or we find a unimodular transformation T so that the
ellipsoid Ẽ := T (E) has all axes of length at most 2O(n). Suppose the latter
case happens. We write Ẽ = {x ∈ R

n | ∑n
i=1

1
λ̃2

i

〈x, ãi〉2 ≤ 1} and observe that

still
∏n

i=1 λ̃i ≥ 1 as the volume of the ellipsoid has not changed. We make use
of the δ-approximation for the number balancing problem to apply Theorem 6
to the vectors ã1, . . . , ãn and parameters λ̃1, . . . , λ̃n and obtain a vector x ∈
Z

n\{0} with |〈ãi,x〉| ≤ λ̃i · O(n4). Then
∑n

i=1
1
λ̃2

i

〈ai,x〉2 ≤ O(n9) and hence

x ∈ O(n4.5) · Ẽ . Then T−1(x) ∈ (O(n5) · K) ∩ (Zn\{0}). ��
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Abstract. The perceptron algorithm for linear programming, arising
from machine learning, has been around since the 1950s. While not a
polynomial-time algorithm, it is useful in practice due to its simplicity
and robustness. In 2004, Dunagan and Vempala showed that a random-
ized rescaling turns the perceptron method into a polynomial time algo-
rithm, and later Peña and Soheili gave a deterministic rescaling. In this
paper, we give a deterministic rescaling for the perceptron algorithm that
improves upon the previous rescaling methods by making it possible to
rescale much earlier. This results in a faster running time for the rescaled
perceptron algorithm. We will also demonstrate that the same rescaling
methods yield a polynomial time algorithm based on the multiplicative
weights update method. This draws a connection to an area that has
received a lot of recent attention in theoretical computer science.

1 Introduction

One of the central algorithmic problems in theoretical computer science as well
as in more practical areas like operations research is finding the solution to a
linear program

max{cT x | Ax ≥ b} (1)

where A ∈ R
m×n, c ∈ R

n and b ∈ R
m. On the theoretical side, linear programming

relaxations are the backbone for many approximation algorithms [WS11,Vaz01].
On the practical side, many real-world problems can either be modeled as linear
programs or as integer linear programs; the latter ones are then solved using
Branch & Bound or Branch & Cut methods, both of which rely on repeatedly
computing solutions to linear programs [CCZ14].

The first algorithm for solving linear programs was the simplex method due
to Dantzig [Dan51]. While the method performs well in practice — and is still
the method of choice today — for almost any popular pivoting rule one can con-
struct instances where the algorithm takes exponential time [KM72]. In 1979,
Khachiyan [Hač79,Sch86] developed the first polynomial-time algorithm. How-
ever, despite the desirable theoretical properties, Khachiyan’s ellipsoid method
turned out to be too slow for practical applications.

T. Rothvoss—Supported by an Alfred P. Sloan Research Fellowship. Both authors
supported by NSF grant 1420180 with title “Limitations of convex relaxations in
combinatorial optimization”.

c© Springer International Publishing AG 2017
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In the 1980s, interior point methods were developed which were efficient in
theory and in practice. Karmarkar’s algorithm has a running time of O(n3.5L),
where L is the number of bits in the input [Kar84]. As recently as 2015, it
was shown that there is an interior-point method using only Õ(

√
rank(A) · L)1

many iterations; this upper bound essentially matches known lower bound bar-
riers [LS15].

A common way to find a polynomial-time linear programming algorithm is
with a greedy type procedure along with periodic rescaling. One famous example
of this is the perceptron algorithm [Agm54], which we will focus on in this paper.
Instead of solving (1) directly, this method finds a feasible point in the open
polyhedral cone

P = {x ∈ R
n | Ax > 0} (2)

where A ∈ R
m×n – using standard reductions one can interchange the repre-

sentations (1) and (2) with at most a linear overhead. The classical perceptron
algorithm starts at the origin and iteratively walks in the direction of any vio-
lated constraint. In the worst case this method is not polynomial time, but it is
still useful due to its simplicity and robustness [Agm54]. In 2004, Dunagan and
Vempala [DV06] showed that using a randomized rescaling procedure, the algo-
rithm can be modified to find a point in (2) in polynomial time. Explicitly, their
algorithm runs in time Õ(mn4 log 1

ρ ), where ρ > 0 is the radius of the largest ball
in the intersection of P with the unit ball B := B(0, 1). A deterministic rescaling
procedure was provided by Peña and Soheili in [PS16] using techniques devel-
oped by Betke and Chubanov [Chu15,Chu12,Bet04]. Their algorithm uses an
improved convergence of the perceptron algorithm based on Nesterov’s smooth-
ing technique [Nes05,PS12]. Overall, their algorithm takes time Õ(m2n2.5 log 1

ρ ).
Another classical LP algorithm that we will discuss in this paper is based

on a very general algorithmic framework called the multiplicative weights update
(MWU) method. In its general form one imagines having m experts who each
incur some cost in a sequence of iterations. In each iteration we have to select
a convex combination of experts so that the expected cost is minimized, where
we only have information on the past costs. The MWU method initially gives
all experts the same weight and in each iteration the weight of expert i is mul-
tiplied by exp(−ε · cost incurred by expert i) where ε is some parameter. Then
on average, the convex combination given by the weights will be nearly as good
as the cost incurred by the best expert. MWU is an online algorithm that does
not need to know the costs in advance, and it has numerous applications in
machine learning, economics and theoretical computer science. In fact, MWU
has been reinvented many times under different names in the literature. Recent
applications in theoretical computer science include finding fast approximations
to maximum flows [CKM+11], multicommodity flows [GK07,Mad10], solving
LPs [PST95], and solving semidefinite programs [AHK05]. We refer to the sur-
vey of Arora, Hazan and Kale [AHK12] for a detailed overview.

When we apply the MWU framework to linear programming, the experts
correspond to the linear constraints. Suppose we use this method to find a valid
1 The Õ-notation suppresses any polylog(m, n) terms.
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point in P = {x : Ax > 0} where ‖Ai‖2 = 1 for every row Ai. At iteration t,
the cost associated with expert i will be 〈Ai, p

(t)〉 for some vector p(t). Therefore
the weight of expert i at time T will be e−〈Ai,x〉 where x =

∑T
t=1 ε(t)p(t). The

analysis of MWU consists of bounding the sum of the weights, which in this case
is given by the potential function Φ(x) =

∑m
i=1 e−〈Ai,x〉. If we choose the update

vector p(t) to be a weighted sum of constraints at every iteration, notice that the
resulting walk in R

n corresponds to gradient descent on Φ – in this case MWU
terminates in Õ( 1

ρ2 ) iterations. However, ρ need not be polynomial in the input
size, and in fact this method is not polynomial time in the worst case.

1.1 Our Contribution

For reference, the general form for the rescaled LP algorithms we will present in
this paper is given in Algorithm 1. Throughout this paper we will assume that
P ∩ B contains a ball of radius ρ > 0.

Algorithm 1
FOR Õ(n log 1

ρ
) phases DO:

(1) Initial phase: Either find x ∈ P or provide a λ ∈ R
m
≥0, ‖λ‖1 = 1 with ‖λA‖2 ≤ Δ.

(2) Rescaling phase: Find an invertible linear transformation F so that vol(F (P )∩B)
is a constant fraction larger than vol(P ∩ B). Replace P by F (P ).

Our technical and conceptual contributions are as follows:

(1) Improved rescaling: We design a rescaling method that applies for a parame-
ter of Δ = Θ( 1

n ), which improves over the threshold Δ = Θ( 1
m

√
n
) required

by [PS16]. This results in a smaller number of iterations that are needed per
phase until one can rescale the system.

(2) Rescaling the MWU method: We show that in Õ(1/Δ2) iterations the MWU
method can be made to implement the initial phase of Algorithm 1. The idea
is that if gradient descent is making insufficient progress then the gradient
must have small norm, and from this we can extract an appropriate λ. In
particular, combining this with our rescaling method, we obtain a polynomial
time LP algorithm based on MWU.

(3) Faster gradient descent: The standard gradient descent approach terminates
in at most Õ(1/Δ2) iterations, which matches the first approach in [PS16].
The more recent work of Peña and Soheili [PS12] uses Nesterov smoothing
to bring the number of iterations down to Õ(1/Δ). We prove that essentially
the same speedup can be obtained without modifying the objective function
by projecting the gradient on a significant eigenspace of the Hessian.

(4) Computing an approximate John ellipsoid: For a general convex body K,
computing a John ellipsoid is equivalent to finding a linear transformation
so that F (K) is well rounded. For our unbounded region P , our rescaling
algorithm gives a linear transformation F so that F (P )∩B is well-rounded.
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2 Rescaling of the Perceptron Algorithm

In this section we fix an initial phase for Algorithm 1 – in particular, the paper
of Peña and Soheili gives a smooth variant of the perceptron algorithm that
implements the initial phase of Algorithm 1 in time Õ(mn

Δ ) [PS16].
We then focus on the rescaling phase of the algorithm. Our main result is

that we are able to rescale with Δ = O( 1
n ).

Lemma 1. Suppose λ ∈ R
m
≥0 with ‖λ‖1 = 1 and ‖λA‖2 ≤ O( 1

n ). Then in time
O(mn2) we can rescale P so that vol(P ∩ B) increases by a constant factor.

We introduce two new rescaling methods that achieve the guarantee of
Lemma 1. First we show that we can extract a thin direction by sampling rows
of A using a random hyperplane. The linear transformation that scales P in
that direction, corresponding to a rank-1 update, will increase vol(P ∩ B) by a
constant factor.

Next we give an alternate rescaling which is no longer a rank-1 update but
which has the potential to increase vol(P ∩ B) by up to an exponential factor
under certain conditions. In addition, if we take an alternate view where the
cone P is left invariant and instead update the underlying norm, we see that
this rescaling consists of adding a scalar multiple of a particular Hessian matrix
to the matrix defining the norm. We also believe that this view is the right one
to make potential use of the sparsity of the underlying matrix A, which would
be a necessity for any practically relevant LP optimization method.

Combining the guarantees for the initial phase and rescaling phase gives us
the following theorem:

Theorem 1. There is an algorithm based on the perceptron algorithm that finds
a point in P in time Õ(mn3 log( 1ρ )).

2.1 Rescaling using a Thin Direction

In this section we will show how we can rescale by finding a direction in which
the cone is thin. First we give the formal definition of width.

Definition 1. Define the width of the cone P in the direction c ∈ R
n \ {0} as

width(P, c) =
1

‖c‖2 max
x∈P∩B

|〈c, x〉|.

In [PS16], Peña and Soheili show that stretching P in a thin enough direction
increases the volume of P ∩ B by a constant factor.

Lemma 2 [PS16]. Suppose that there is a direction c ∈ R
n\{0} with width

(P, c) ≤ 1
3
√

n
. Define F : R

n → R
n as the linear map with F (c) = 2c and

F (x) = x for all x ⊥ c. Then

vol(F (P ) ∩ B) ≥ 3
2

· vol(P ∩ B).
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Explicitly, assuming ‖c‖2 = 1, Lemma 2 updates our constraint matrix to
A(I − 1

2ccT ). In particular, we apply a rank-1 update to the constraint matrix.
Given a solution x to these new constraints, a solution to the original problem
can be easily recovered as (I − 1

2ccT )x.
It remains to argue how one can extract a thin direction for P , given a convex

combination λ so that ‖λA‖2 is small. Here we will significantly improve over the
bounds of [PS16] which require ‖λA‖2 ≤ O( 1

m
√

n
). We begin by a new generic

argument to obtain a thin direction:

Lemma 3. For any non-empty subset J ⊆ [m] of constraints one has

width
(
P,

∑

i∈J

λiAi

)
≤ ‖∑m

i=1 λiAi‖2
‖∑

i∈J λiAi‖2 .

Proof. First, note that by the full-dimensionality of P , we always have
‖∑

i∈J λiAi‖2 > 0. By definition of width, we can write

width
(
P,

∑

i∈J

λiAi

)
=

1
‖∑

i∈J λiAi‖2 max
x∈P∩B

〈
∑

i∈J

λiAi, x〉.

Now, we know that 〈Ai, x〉 ≥ 0 for all x ∈ P and so

max
x∈P∩B

〈
∑

i∈J

λiAi, x〉 ≤ max
x∈B

〈
m∑

i=1

λiAi, x〉 = ‖λA‖2

and the claim is proven. �
So in order to find a direction of small width, it suffices to find a subset J ⊆

[m] with ‖∑
i∈J λiAi‖2 large. Implicitly, the choice that Peña and Soheili [PS16]

make is to select J = {i0} for i0 ∈ [m] maximizing λi0 . This approach gives a
bound of ‖∑

i∈J λiAi‖2 ≥ 1
m . We will now prove the asymptotically optimal

bound2 using a random hyperplane:

Lemma 4. Let λ ∈ R
m
≥0 be any convex combination and A ∈ R

m×n with
‖Ai‖2 = 1 for all i. Take a random Gaussian g and set J := {i ∈ [m] | 〈Ai, g〉 ≥
0}. Then with constant probability ‖∑

i∈J λiAi‖2 ≥ 1
4
√

πn
.

Proof. We set v := g
‖g‖2

. Since v is unit vector we can lower bound the length
of ‖∑

i∈J λiAi‖2 by measuring the projection on v and obtain ‖∑
i∈J λiAi‖2 ≥∑

j∈J λi 〈Ai, v〉 . By symmetry of the Gaussian it then suffices to argue that
∑m

i=1 λi| 〈Ai, v〉 | ≥ 1
2
√

πn
. First we will show that for an appropriate constant

α ∈ (0, 1),
2 It suffices here to consider the trivial example with λ1 = . . . = λn = 1

n
and Ai = ei

being the standard basis. Then ‖∑i∈J λiAi‖2 ≤ 1√
n

for any subset J . The optimality

of our rescaling can also be seen since the cone in the last iteration is Õ(n)-well
rounded, which is optimal up to Õ-terms.
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(1) Pr(‖g‖2 ≥ √
2n) ≤ 2

n

(2) Pr(
∑n

i=1 λi|〈Ai, g〉| <
√

1
2π ) ≤ α.

Then, with probability at least γ = 1−α
2 , we have

∑n
i=1 λi|〈Ai, v〉| ≥ 1

2
√

πn
.

For (1), notice that ‖g‖22 is just the chi-squared distribution with n degrees of
freedom, and so it has variance 2n and mean n. Therefore Chebyshev’s inequality
tells us that Pr

[‖g‖22 ≥ 2n
] ≤ 2

n . Now, for all i, 〈Ai, g〉 is a normal random
variable with mean 0 and variance 1, and so the expectation of its absolute

value is
√

2
π . Summing these up gives E [

∑m
i=1 |〈λiAi, g〉|] =

√
2
π . Moreover,

∑m
i=1 |〈λiAi, g〉| is Lipschitz in g with Lipschitz constant 1, and so3

Pr

(
m∑

i=1

|〈λiAi, g〉| <

√
2
π

− t

)

≤ e−t2/π2
.

Letting t =
√

1
2π gives (2). By a union bound, the probability either of these

events happens is at most α + 2
n , and so with probability at least 1−α

2 neither
occurs, which gives us the claim. �
While the proof is probabilistic, one can use the method of conditional expecta-
tion to derandomize the sampling [AS04]. More concretely, consider the function
F (g) :=

∑m
i=1 λi| 〈Ai, g〉 | − 1

10
√

n
‖g‖2. The proof of Lemma 4 implies that the

expectation of this function is at least Ω(1). Then we can find a desired vector
g = (g1, . . . , gn) by choosing the coordinates one after the other so that the
conditional expectation does not decrease. We are now ready to prove Lemma 1,
which we restate here with explicit constants.

Lemma 5. Suppose λ ∈ R
m
≥0 with ‖λ‖1 = 1 and ‖λA‖2 ≤ 1

12n
√

π
. Then in time

O(mn2) we can rescale P so that vol(P ∩ B) increases by a constant factor.

Proof. Computing a random Gaussian and checking if it satisfies the conditions
of Lemma 4 takes time O(mn). Since the conditions will be satisfied with con-
stant probability, the expected number of times we must do this is constant.
Once the conditions are satisfied, finding a thin direction and rescaling can be
done in time O(n3). Lemmas 2 and 3 guarantee we get a constant increase in
the volume. �

2.2 Deterministic Multi-rank Rescaling

We now introduce an alternate linear transformation we can use to rescale. This
is no longer a rank-1 update, but it is inherently deterministic along with other
3 Recall that a function F : Rn → R is Lipschitz with Lipschitz constant 1 if |F (x) −

F (y)| ≤ ‖x − y‖2 for all x, y ∈ R
n. A famous concentration inequality by Sudakov,

Tsirelson, Borell states that Pr[|F (g) − μ| ≥ t] ≤ e−t2/π2
, where g is a random

Gaussian and μ is the mean of F under g.
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nice properties. For one thing, although we only guarantee constant improvement
in the volume, under certain circumstances the rescaling can improve the volume
by an exponential factor. This transformation will also take a nice form when
we change the view to consider rescaling the unit ball rather than the feasible
region.

Lemma 6. Suppose λ ∈ R
m
≥0, ‖λ‖1 = 1 and ‖λA‖2 ≤ 1

10n . Let M denote the
matrix

∑m
i=1 λiAiA

T
i and suppose 0 ≤ α ≤ 1

δmax
, where δmax = ‖M‖op denotes

the maximal eigenvalue of M . Define F (x) = (I + αM)1/2x. Then vol(F (P ) ∩
B) ≥ eα/5vol(P ∩ B).

Proof. First notice that M is symmetric positive semi-definite with trace 1.
Therefore the eigenvalues of I + αM take the form 1 + αδi where 0 ≤ δi ≤ α
and

∑n
i=1 δi = 1. Note that since αδi ≤ 1, we can lower bound the eigenvalues

by 1 + αδi ≥ eαδi/2. Therefore

det(I + αM) ≥
n∏

i=1

eαδi/2 = exp
(α

2

n∑

i=1

δi

)
= eα/2.

In particular, det(F ) ≥ eα/4.
So far we have shown that vol(F (P∩B)) is significantly larger than vol(P∩B).

However, the desired bound is on vol(F (P ) ∩ B), and so we need to ensure that
we do not lose too much of the volume when we intersect with the unit ball. It
turns out the bound on ‖λA‖2 will allow us to do precisely this.

For any x ∈ P ∩ B, we get the bound

‖F (x)‖22 = xT x + α
m∑

i=1

λi〈Ai, x〉2 ≤ 1 + α
m∑

i=1

λi〈Ai, x〉 ≤ 1 + α‖λA‖2 ≤ 1 +
α

10n
.

The point is that every element of F (P ∩ B) has length at most 1 + α
20n , and

so intersecting with the unit ball will not lose more volume than shrinking by a
factor of 1 + α

20n . In particular, the volume decreases by at most (1 + α
20n )−n ≥

e−α/20, and so we have

vol(F (P ) ∩ B) ≥ e−α/20vol(F (P ∩ B))
≥ e−α/20 · eα/4vol(P ∩ B)
≥ eα/5 · vol(P ∩ B).

�
Note that one always has δmax ≤ 1 and hence in any case one can choose

α ≥ 1. Therefore if ‖λA‖2 ≤ 1
10n , we get constant improvement in vol(P ∩

B). In fact, if the eigenvalues of M happen to be small, we could get up to
exponential improvement. This computation can be carried out in time O(mn2)
and so Lemma 6 proves Lemma 1 and hence Theorem 1.
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2.3 An Alternate View of Rescaling

Instead of applying a linear transformation to the cone P , there is an equivalent
view where instead one applies a linear transformation to the unit ball. We will
now switch the view in the sense that we fix the cone P , but we update the norm
in each rescaling step so that the unit ball becomes more representative of P .

Recall that a symmetric positive definite matrix H ∈ R
n×n induces a norm

‖x‖H :=
√

xT Hx. Note that also H−1 is a symmetric positive definite matrix
and ‖ · ‖H−1 is the dual norm of ‖ · ‖H . In this view we assume the rows Ai of
A are normalized so that ‖Ai‖H−1 = 1.

Let BH := {x ∈ R
n | ‖x‖H ≤ 1} be the unit ball for the norm ‖ · ‖H . Note

that BH is always an ellipsoid. We will measure progress in terms of the fraction
of the ellipsoid BH that lies in the cone P , namely μ(H) := vol(BH∩P )

vol(BH) . The goal
of the rescaling step will then be to increase μ(H) by a constant factor. Note
that we initially have μ(H) = μ(I) ≥ ρn, and at any time 0 ≤ μ(H) ≤ 1, so we
can rescale at most O(n log 1

ρ ) times.
In this view, Lemma 6 takes the following form:

Lemma 7. Let H ∈ R
n×n be symmetric with H � 0. Suppose λ ∈ R

m
≥0 with

‖λ‖1 = 1 and ‖λA‖H−1 ≤ 1
10n and let M :=

∑m
i=1 λiAiA

T
i .Let 0 ≤ α ≤ 1

δmax
,

where δmax := ‖H−1M‖op. Then for H̃ := H +αM one has μ(H̃) ≥ eα/5 ·μ(H).

Algorithm 2 illustrates the multi-rank rescaling under the alternate view.
Notice that the algorithm updates the norm matrix by adding a scalar multiple of
the Hessian matrix of the MWU potential function discussed in Sect. 3. Moreover,
throughout the algorithm our matrix H will have the form I +

∑m
i=1 hiAiA

T
i for

some hi ≥ 0. Note that this allows fairly compact representation as we only need
O(m) space to encode the coefficients hi that define the norm matrix.

Algorithm 2
FOR Õ(n log 1

ρ
) phases DO:

(1) Initial phase: Either find x ∈ P or give λ ≥ 0, ‖λ‖1 = 1 with ‖λA‖H−1 ≤ O( 1
n
).

(2) Rescaling phase: Update H := H + αM , where M =
∑m

i=1 λiAiA
T
i .

3 Rescaling for the MWU Algorithm

In this section we show that the same rescaling methods can be used to make
the MWU method into a polynomial time LP algorithm. In particular, we show
that a MWU phase can implement the initial phase of Algorithm 1 or 2. For
ease of notation, we will assume H = I, but we can recover the general case by
replacing Ai by H−1/2Ai and replacing the update direction p by H1/2p.
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Recall that the MWU algorithm corresponds to gradient descent on a par-
ticular potential function. First we show how the standard gradient descent
approach implements the initial phase. We then introduce a modified gradient
descent, which speeds up the MWU phase to Õ(1/Δ) iterations. Combining this
with our rescaling results gives the following:

Theorem 2. There is an algorithm based on the MWU algorithm that finds a
point in P in time Õ(mnω+1 log( 1ρ )), where ω ≈ 2.373 is the exponent of matrix
multiplication.

3.1 Standard Gradient Descent

Consider the potential function Φ(x) =
∑m

i=1 e−〈Ai,x〉, where ‖Ai‖2 = 1 for all
rows Ai. Notice that Φ(0) = m and that if Φ(x) < 1 then 〈Ai, x〉 > 0 for all
i, and hence x ∈ P . In this section we analyze standard gradient descent on Φ,
starting at the origin. Notice that the gradient takes the form

∇Φ(x) = −
m∑

i=1

e−〈Ai,x〉Ai.

We begin by establishing some useful notation. Given x ∈ R
n, define λi =

1
Φ(x)e

−〈Ai,x〉, y = −∇Φ(x)
Φ(x) =

∑m
i=1 λiAi and M = ∇2Φ(x)

Φ(x) =
∑m

i=1 λiAiA
T
i . Even

though all three depend on x, we will not denote that here to keep the notation
clean. In particular, since ‖λ‖1 = 1, if at any iteration ‖y‖2 is small enough,
then we will be able to rescale. It remains to show, therefore, that if ‖y‖2 is
large enough, then we get sufficient decrease in the potential function.

Lemma 8. Suppose x ∈ R
n and abbreviate y = −∇Φ(x)

Φ(x) . Then

Φ(x +
1
2
y) ≤ Φ(x) · e−‖y‖2

2/4.

Proof. First note that since ‖λ‖1 = 1 and ‖Ai‖2 = 1, we know that |〈Ai, y〉| ≤ 1
for all i. In our analysis we will also use the fact that for any z ∈ R with |z| ≤ 1
one has ez ≤ 1 + z + z2. We obtain the following.

Φ(x +
1
2
y) =

m∑

i=1

e−〈Ai,x+
1
2y〉 =

m∑

i=1

e−〈Ai,x〉e− 1
2 〈Ai,y〉

≤ Φ(x) ·
m∑

i=1

λi(1 − 1
2
〈Ai, y〉 +

1
4
〈Ai, y〉2)

≤ Φ(x) · (1 − 1
4
‖y‖22). �

Thus as long as ‖y‖2 ≥ Ω( 1
n ), gradient descent will decrease the potential

function by a factor of e−Θ(1/n2) in each iteration, and so in at most O(n2 ln(m))
iterations we arrive at a point x with Φ(x) < 1.
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3.2 Modified Gradient Descent

With Δ = Θ( 1
n ), the standard gradient descent approach implements the initial

phase of Algorithm 1 in Õ(n2) iterations. It turns out we can get the same
guarantee in Õ(n) iterations by choosing a more sophisticated update direction.
While we do not know how to guarantee an update direction that decreases Φ(x)
by factor of more than e−Θ(‖y‖2), we are able to decrease the product of Φ(x)
and ‖∇Φ(x)‖2 a lot faster. First we give general bounds for the change in Φ and
‖∇Φ‖2 under an arbitrary update step.

Lemma 9. For any 0 < ε ≤ 1 and p ∈ R
n with ‖p‖2 ≤ 1, we have

1. Φ(x + εp) ≤ Φ(x) · (1 − ε〈y, p〉 + ε2pT Mp)
2. ‖∇Φ(x + εp)‖2 ≤ ‖∇Φ(x)‖2 ·

(
1 − ε 〈y,Mp〉

‖y‖2
2

+ ε2
(

〈p,Mp〉
‖y‖2

+ ‖Mp‖2
2

‖y‖2
2

))

To get a sense of what Lemma 9 is saying, consider the case when y is an
eigenvector of M with eigenvector α and ε < 1

2 . If we let p = y
‖y‖2

, we obtain

1. Φ(x + εp) ≤ Φ(x) · (1 − ε‖y‖2 + ε2α)
2. ‖∇Φ(x + εp)‖2 ≤ ‖∇Φ(x)‖2 ·

(
1 − ε

2
α

‖y‖2
+ ε2 α2

‖y‖2

)

In particular, if ε = min{ 1
2 , ‖y‖2

4α } the product decreases by a factor of
e−Ω(‖y‖2). While y may not be an eigenvector of M , it turns out that it suf-
fices to find a vector p so that both p and Mp are close in angle with y.

Lemma 10. Suppose p ∈ R
n with ‖p‖2 ≤ 1 and constant a > 0 is such that

either

1. 〈y, p〉 ≥ ‖y‖2
(log n)a and 〈y,Mp〉 ≥ ‖Mp‖H−1 ·‖y‖2

(log n)a or

2. 〈y, p〉 ≥ ‖y‖2
(log n)a and ‖Mp‖2 ≤ O

(
1

poly(n)

)
.

Then as long as ‖y‖2 ≥ β
n , choosing ε = min

{
‖y‖2

4(log n)2a‖Mp‖2
, 1
2(log n)a

}
gives

‖∇Φ(x + εp)‖2 · Φ(x + εp) ≤ ‖∇Φ(x)‖2 · Φ(x)e−Θ̃(1/n).

The idea for computing a direction p to satisfy Lemma 10 is to project y onto
an appropriate eigenspace of M . More formally, suppose M =

∑n
j=1 αjvjv

T
j is

the eigendecomposition of M . Notice that αj ∈ [0, 1] for all j.
Given K = polylog(n), define Sk = span{vj | 2−k ≤ αj ≤ 2−k+1} for

1 ≤ k < K and define SK = span{vj | αj ≤ 2−K+1}. If yk = projSk
y, there

must be some ‖yk‖2 ≥ 1
K . If k < K, we see that yk satisfies case 1, and if k = K

it satisfies case 2 of Lemma 10. To speed up the computation of this vector, we
do the following.

Lemma 11. Suppose y and M are as above, and define z = y
‖y‖2

. For k =

1, ...,K := polylog(n), define zk = (I − 1
2M)2

k

z. Then for some k ≤ K, p = zk

satisfies the conditions of Lemma 10.

Such an update direction can be computed in time Õ(mnω−1), and after
Õ(n) updates we obtain x with ‖λA‖2 ·Φ(x)2 ≤ O( 1

n ), which implies that either
Φ(x) < 1, in which case x ∈ P , or ‖λA‖2 ≤ O( 1

n ), in which case we can rescale.
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4 Computing an Approximate John Ellipsoid

It turns out that our algorithm implicitly computes an approximate John ellip-
soid for the considered cone P . Recall that a classical theorem of John [Joh48]
shows that for any closed, convex set Q ⊆ R

n, there is an ellipsoid E and a
center z so that z + E ⊆ Q ⊆ z + nE. The bound of n is tight in general —
for example for a simplex — but it can be improved to

√
n for symmetric sets.

This is equivalent to saying that for each convex body, there is a linear trans-
formation that makes it n-well rounded. Here, a body Q is α-well rounded if
z + r · B ⊆ Q ⊆ z + α · r · B for some center z ∈ R and radius r > 0 [Bal97].

Suppose first that we use the modified gradient descent version of MWU
phase for the initial phase of Algorithm 1, but we only terminate if Φ(x) < 1

e .
Note that the final phase will terminate in at most T = Õ(n) steps, and the
step size is always bounded by 1

2 . Therefore if the final MWU phase outputs
x we have ‖x‖2 ≤ T

2 and moreover 〈Ai, x〉 ≥ 1 for all i.In particular, we have
B( 1

T x, 1
T ) ⊆ P ∩ B ⊆ B( 1

T x, 2), which shows that P ∩ B is Õ(n)-well rounded.
Note that running the algorithm until Φ(x) < 1

eonly increases the worst case
running times by a constant factor. Alternatively one can run the algorithm with
standard gradient descent and a fixed step size of ε := Θ( 1

n ) and only terminate
when Φ(x) < 1

m . In the final phase we then obtain that ‖x‖2 ≤ O(n ln m), and
〈Ai, x〉 ≥ ln m for all i. Therefore the final set P ∩ B will be O(n)-well rounded,
thus removing the logarithmic terms suppressed by the Õ notation.

Independent publication. The multi-rank rescaling was also discovered in a par-
allel and independent work by Dadush, Vegh and Zambelli [DVZ16] (see their
Algorithm 5).
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[Hač79] Hačijan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad.
Nauk SSSR 244(5), 1093–1096 (1979)

[Joh48] John, F.: Extremum problems with inequalities as subsidiary conditions.
In: Friedrichs, K.O., Neugebauer, O.E., Stoker, J.J. (eds.) Studies and
Essays presented to R. Courant on his 60th Birthday, pp. 187–204. Inter-
science Publishers, New York (1948)

[Kar84] Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4(4), 373–395 (1984)

[KM72] Klee, V., Minty, G.: How good is the simplex algorithm? In: Inequalities, III
(Proceedings Third Symposium, UCLA, 1969; Dedicated to the Memory
of Theodore S. Motzkin), pp. 159–175. Academic Press, New York (1972)

[LS15] Lee, Y., Sinford, A.: A new polynomial-time algorithm for linear program-
ming (2015). https://arxiv.org/abs/1312.6677

[Mad10] Madry, A.: Faster approximation schemes for fractional multicommodity
flow problems via dynamic graph algorithms. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing, New York, NY, pp. 121–130
(2010)

[Nes05] Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization.
SIAM J. Optim. 16(1), 235–249 (2005)

[PS12] Peña, J., Soheili, N.: A smooth perceptron algorithm. SIAM J. Optim.
22(2), 728–737 (2012)

[PS16] Peña, J., Soheili, N.: A deterministic rescaled perceptron algorithm. Math.
Program. 155(1–2), 497–510 (2016)

[PST95] Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms
for fractional packing and covering problems. Math. Oper. Res. 20(2),
257–301 (1995)

[Sch86] Schrijver, A.: Theory of linear and integer programming. Wiley-
Interscience Series in Discrete Mathematics. John Wiley and Sons, Inc.,
New York (1986)

[Vaz01] Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)
[WS11] Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algo-

rithms. University Press, Cambridge (2011)

https://arxiv.org/abs/1312.6677


Min-Max Theorems for Packing and Covering
Odd (u, v)-trails

Sharat Ibrahimpur and Chaitanya Swamy(B)

Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{sharat.ibrahimpur,cswamy}@uwaterloo.ca

Abstract. We investigate the problem of packing and covering odd
(u, v)-trails in a graph. A (u, v)-trail is a (u, v)-walk that is allowed to
have repeated vertices but no repeated edges. We call a trail odd if the
number of edges in the trail is odd. Let ν(u, v) denote the maximum
number of edge-disjoint odd (u, v)-trails, and τ(u, v) denote the mini-
mum size of an edge-set that intersects every odd (u, v)-trail.

We prove that τ(u, v) ≤ 2ν(u, v) + 1. Our result is tight—there are
examples showing that τ(u, v) = 2ν(u, v)+1—and substantially improves
upon the bound of 8 obtained in [5] for τ(u, v)/ν(u, v). Our proof also
yields a polynomial-time algorithm for finding a cover and a collection
of trails satisfying the above bounds.

Our proof is simple and has two main ingredients. We show that
(loosely speaking) the problem can be reduced to the problem of pack-
ing and covering odd ({u, v}, {u, v})-trails losing a factor of 2 (either in
the number of trails found, or the size of the cover). Complementing this,
we show that the odd-({u, v}, {u, v})-trail packing and covering problems
can be tackled by exploiting a powerful min-max result of [2] for packing
vertex-disjoint nonzero A-paths in group-labeled graphs.

1 Introduction

Min-max theorems are a classical and central theme in combinatorics and combi-
natorial optimization, with many such results arising from the study of packing
and covering problems. For instance, Menger’s theorem [10] gives a tight min-max
relationship for packing and covering edge-disjoint (or internally vertex-disjoint)
(u, v)-paths: the maximum number of edge-disjoint (or internally vertex-disjoint)
(u, v)-paths (i.e., packing number) is equal to the minimum number of edges (or
vertices) needed to cover all u-v paths (i.e., covering number); the celebrated
max-flow min-cut theorem generalizes this result to arbitrary edge-capacitated
graphs. Another well-known example is the Lucchesi-Younger theorem [8], which
shows that the maximum number of edge-disjoint directed cuts equals the
minimum-size of an arc-set that intersects every directed cut.
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Motivated by Menger’s theorem, it is natural to ask whether similar (tight
or approximate) min-max theorems hold for other variants of path-packing and
path-covering problems. Questions of this flavor have attracted a great deal of
attention. Perhaps the most prominent results known of this type are Mader’s
min-max theorems for packing vertex-disjoint S-paths [9,12], which generalize
both the Tutte-Berge formula and Menger’s theorem, and a further far-reaching
generalization of this due to Chudnovsky et al. [2] regarding packing vertex-
disjoint non-zero A-paths in group-labeled graphs.

We consider a different variant of the (u, v)-path packing and covering prob-
lems, wherein we impose parity constraints on the paths. Such constraints natu-
rally arise in the study of multicommodity-flow problem, which can be phrased
in terms of packing odd circuits in a signed graph, and consequently, such
odd-circuit packing and covering problems have been widely investigated (see,
e.g., [13], Chap. 75). Focusing on (u, v)-paths, a natural variant that arises
involves packing and covering odd (u, v)-paths, where a (u, v)-path is odd if
it contains an odd number of edges. However, there are simple examples [5]
showing an unbounded gap between the packing and covering numbers in this
setting.

In light of this, following [5], we investigate the min-max relationship for
packing and covering odd (u, v)-trails. An odd (u, v) − trail is a (u, v)-walk with
no repeated edges and an odd number of edges. Churchley et al. [5] seem to have
been the first to consider this problem. They showed that the (worst-case) ratio
between the covering and packing numbers for odd (u, v)-trails is at most 8—
which is in stark contrast with the setting of odd (u, v) paths, where the ratio is
unbounded—and at least 2, so there is no tight min-max theorem like Menger’s
theorem. They also motivate the study of odd (u, v)-trails from the perspective
of studying totally-odd immersions. In particular, determining if a graph G has
k edge-disjoint odd (u, v)-trails is equivalent to deciding if the 2-vertex graph
with k parallel edges has a totally-odd immersion into G.

Our results. We prove a tight bound on the ratio of the covering and packing
numbers for odd (u, v)-trails, which also substantially improves the bound of 8
shown in [5] for this covering-vs-packing ratio.1 Let ν(u, v) and τ(u, v) denote
respectively the packing and covering numbers for odd (u, v)-trails. Our main
result (Theorem 3.1) establishes that τ(u, v) ≤ 2ν(u, v) + 1. Furthermore, we
obtain in polynomial time a certificate establishing that τ(u, v) ≤ 2ν(u, v) +
1. This is because we show that, for any integer k ≥ 0, we can compute in
polynomial time, a collection of k edge-disjoint odd (u, v)-trails, or an odd-
(u, v)-trail cover of size at most 2k −1. As mentioned earlier, there are examples
showing τ(u, v) = 2ν(u, v) + 1 (see Fig. 1), so our result settles the question of
obtaining worst-case bounds for the τ(u, v)/ν(u, v) ratio.

Notably, our proof is also simple, and noticeably simpler than (and different
from) the one in [5]. We remark that the proof in [5] constructs covers of a certain

1 This bound was later improved to 5 [3,4,7]. We build upon some of the ideas in [7].
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form; in the full version, we prove a lower bound showing that such covers cannot
yield a bound better than 3 on the covering-vs-packing ratio.

Our techniques. We focus on showing that for any k, we can obtain either k
edge-disjoint odd (u, v)-trails or a cover of size at most 2k −1. This follows from
two other auxiliary results which are potentially of independent interest.

Our key insight is that one can decouple the requirements of parity and u-v
connectivity when constructing odd (u, v)-trails. More precisely, we show that
if we have a collection of k edge-disjoint odd ({u, v}, {u, v})-trails, that is, odd
trails that start and end at a vertex of {u, v}, and the u-v edge connectivity,
denoted λ(u, v), is at least 2k, then we can obtain k edge-disjoint odd (u, v)-
trails (Theorem 3.3). Notice that if λ(u, v) < 2k, then a min u-v cut yields a
cover of the desired size. So the upshot of Theorem 3.3 is that it reduces our task
to the relaxed problem of finding k edge-disjoint odd ({u, v}, {u, v})-trails. The
proof of Theorem 3.3 relies on elementary arguments (see Sect. 4). We show that
given a fixed collection of 2k edge-disjoint (u, v)-paths, we can always modify
our collection of edge-disjoint trails so as to make progress by decreasing the
number of contacts that the paths make with the trails and/or by increasing
the number of odd (u, v) trails in the collection. Repeating this process a small
number of times thus yields the k edge-disjoint odd (u, v)-trails.

Complementing Theorem 3.3 we prove that we can either obtain k edge-
disjoint ({u, v}, {u, v})-trails, or find an odd-({u, v}, {u, v})-trail cover (which is
also an odd-(u, v)-trail cover) of size at most 2k − 2 (Theorem 3.2). This proof
relies on a powerful result of [2] about packing and covering nonzero A-paths
in group-labeled graphs (see Sect. 5, which defines these concepts precisely). The
idea here is that [2] show that one can obtain either k vertex-disjoint nonzero
A-paths or a set of at most 2k − 2 vertices intersecting all nonzero A-paths,
and this can be done in polytime [1,6]. This is the same type of result that we
seek, except that we care about edge-disjoint trails, as opposed to vertex-disjoint
paths. However, by moving to a suitable gadget graph where we replace each ver-
tex by a clique, we can encode trails as paths, and edge-disjointness is captured
by vertex-disjointness. Applying the result in [2] then yields Theorem 3.2.

Related work. Churchley et al. [5] initiated the study of min-max theorems
for packing and covering odd (u, v)-trails. They cite the question of totally-
odd immersions as motivation for their work. We say that a graph H has an
immersion [11] into another graph G, if one can map VH bijectively to some
U ⊆ V (G), and EH to edge-disjoint trails connecting the corresponding vertices
in U . (As noted by [5], trails are more natural objects than paths in the context
of reversing an edge-splitting-off operation, as this, in general, creates trails.) An
immersion is strong if the trails do not internally meet U , and weak otherwise.
An immersion is called totally odd if all trails are of odd length.

In an interesting contrast to the unbounded gap between the covering and
packing numbers for odd (u, v)-paths, [14] showed that the covering number is
at most twice the fractional packing number (which is the optimal value of the
natural odd-(u, v)-path-packing LP).
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The notions of odd paths and trails can be generalized and abstracted in
two ways. The first involves signed graphs [15], and there are various results on
packing odd circuits in signed graphs, which are closely related to multicom-
modity flows (see [13], Chap. 75). The second involves group-labeled graphs, for
which [1,2] present strong min-max theorems for packing and covering vertex-
disjoint nonzero A-paths.

2 Preliminaries and Notation

Let G = (V,E) be an undirected graph. For X ⊆ V , we use E(X) to denote the
set of edges having both endpoints in X and δ(X) to denote set of edges with
exactly one endpoint in X. For disjoint X,Y ⊆ V , we use E(X,Y ) to denote
the set of edges with one end in X and one end in Y .

A (p, q)-walk is a sequence (x0, e1, x1, e2, x2, . . . , er, xr), where x0, . . . , xr ∈ V
with x0 = p, xr = q, and ei is an edge with ends xi−1, xi for all i = 1, . . . , r. The
vertices x1, . . . , xr−1 are called the internal vertices of this walk. We say that
such a (p, q)-walk is a:

– (p, q)-path, if either r > 0 and all the xis are distinct (so p �= q), or r = 0,
which we call a trivial path;

– (p, q)-trail if all the eis are distinct (we could have p = q).

Thus, a (p, q)-trail is a (p, q)-walk that is allowed to have repeated vertices but no
repeated edges. Given vertex-sets A,B ⊆ V , we say that a trail is an (A,B)-trail
to denote that it is a (p, q)-trail for some p ∈ A, q ∈ B. A (p, q)-trail is called
odd (respectively, even) if it has an odd (respectively, even) number of edges.

Definition 2.1. Let G = (V,E) be a graph, and u, v ∈ V (we could have u = v).

(a) The packing number for odd (u, v)-trails, denoted ν(u, v;G), is the maximum
number of edge-disjoint odd (u, v)-trails in G.

(b) We call a subset of edges C an odd (u, v)-trail cover of G if it intersects
every odd (u, v)-trail in G. The covering number for odd (u, v)-trails, denoted
τ(u, v;G), is the minimum size of an odd (u, v)-trail cover of G.

We drop the argument G when it is clear from the context.

For any two distinct vertices x, y of G, we denote the size of a minimum
(x, y)-cut in G by λ(x, y;G), and drop G when it is clear from the context. By
the max-flow min-cut (or Menger’s) theorem, λ(x, y;G) is also the maximum
number of edge-disjoint (x, y)-paths in G.

3 Main Results and Proof Overview

Our main result is the following tight approximate min-max theorem relating
the packing and covering numbers for odd (u, v) trails.
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Fig. 1. Graph with ν(u, v) = k, τ(u, v) = 2k + 1.

Theorem 3.1. Let G = (V,E) be an undirected graph, and u, v ∈ V . For any
nonnegative integer k, we can obtain in polynomial time, either:

1. k edge-disjoint odd (u, v)-trails in G, or
2. an odd (u, v)-trail cover of G of size at most 2k − 1.

Hence, we have τ(u, v;G) ≤ 2 · ν(u, v;G) + 1.

Theorem 3.1 is tight (this was communicated to us by [3]), as can be seen
from Fig. 1. The theorem follows readily from the following two results.

Theorem 3.2. Let G = (V,E) be an undirected graph and s ∈ V . For any
nonnegative integer k, we can obtain in polynomial time:

1. k edge-disjoint odd (s, s)-trails in G, or
2. an odd (s, s)-trail cover of G of size at most 2k − 2.

Theorem 3.3. Let G = (V,E) be an undirected graph, and u, v ∈ V with u �= v.
Let ̂T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. If λ(u, v) ≥
2 · |̂T |, then we can obtain in polytime |̂T | edge-disjoint odd (u, v)-trails in G.

Proof of Theorem 3.1. If u = v, then Theorem 3.2 yields the desired statement.
So suppose u �= v. We may assume that λ(u, v) ≥ 2k, since otherwise a minimum
(u, v)-cut in G is an odd (u, v)-trail cover of the required size. Let Euv be the uv

edge(s) in G (which could be ∅). Let ̂G be obtained from G−Euv by identifying
u and v into a new vertex s. (Note that ̂G has no loops.) Any odd (u, v)-trail in
G − Euv maps to an odd (s, s)-trail in ̂G. We apply Theorem 3.2 to ̂G, s, k′ =
k − |Euv|. If this returns an odd-(s, s)-trail cover C of size at most 2k′ − 2, then
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C ∪ Euv is an odd-(u, v)-trail cover for G of size at most 2k − 2. If we obtain a
collection of k′ edge-disjoint odd (s, s)-trails in ̂G, then these together with Euv

yield k edge-disjoint odd ({u, v}, {u, v})-trails in G. Theorem 3.3 then yields the
required k edge-disjoint odd (u, v)-trails. Polytime computability follows from
the polytime computability in Theorems 3.2 and 3.3. 	


Theorem 3.3 is our chief technical insight, which facilitates the decoupling of
the parity and u-v connectivity requirements of odd (u, v)-trails, thereby driving
the entire proof. (It can be seen as a refinement of Theorem 5.1 in [7].) While
Theorem 3.2 returns ({u, v}, {u, v})-trails with the right parity, Theorem 3.3
supplies the missing ingredient needed to convert these into (u, v)-trails (of the
same parity). We give an overview of the proofs of Theorems 3.2 and 3.3 below
before delving into the details in the subsequent sections. We remark that both
Theorems 3.2 and 3.3 are tight as well; we show this in the full version.

The proof of Theorem 3.3 relies on elementary arguments and proceeds as
follows (see Sect. 4). Let P be a collection of 2 · |̂T | edge-disjoint (u, v)-paths. We
provide a simple, efficient procedure to iteratively modify ̂T (whilst maintaining
|̂T | edge-disjoint odd ({u, v}, {u, v})-trails) and eventually obtain |̂T | odd (u, v)-
trails. Let P0 ⊆ P be the collection of paths of P that are edge-disjoint from
trails in ̂T . First, we identify the trivial case where |P0| is sufficiently large. If
so, these paths and ̂T directly yield odd (u, v)-trails as follows: odd-length paths
in P0 are already odd (u, v)-trails, and even-length paths in P0 can be combined
with odd (u, u)- and odd (v, v)- trails to obtain odd (u, v)-trails.

The paths in P \ P0, all share at least one edge with some trail in ̂T . Each
path is a sequence of edges from u to v. If the first edge that a path P ∈ P
shares with a trail in ̂T lies on a (v, v)-trail T , then it is easy to use parts of P

and T to obtain an odd (u, v)-trail that is edge-disjoint from all other trails in ̂T ,
and thereby make progress by increasing the number of odd (u, v)-trails in the
collection. A similar conclusion holds if the last edge that a path shares with a
trail in ̂T lies on a (u, u)-trail. If neither of the above cases apply, then the paths
in P \P0 are in a sense highly tangled (which we formalize later) with trails in ̂T .
We then infer that P \P0 and ̂T must satisfy some simple structural properties,
and leverage this to carefully modify the collection ̂T (while preserving edge-
disjointness) so that the new set of trails are “less tangled” with P than ̂T , and
thereby make progress. Continuing this procedure a polynomial number of times
yields the desired collection of |̂T | edge-disjoint odd (u, v)-trails.

The proof of Theorem 3.2 relies on the key observation that we can cast our
problem as the problem of packing and covering nonzero A-paths in a group-
labeled graph (H,Γ ) [2] for a suitable choice of A,H, and Γ (see Sect. 5). In
the latter problem, (1) H denotes an oriented graph whose arcs are labeled with
elements of a group Γ , and (2) a non-zero A-path is a path in the undirected
version of H whose ends lie in A, whose Γ -length, which is the sum of ±γes
(suitably defined) for arcs in P , is non-zero. Chudnovsky et al. [2] show that
either there are k vertex-disjoint non-zero A-paths, or there is a vertex-set of
size at most 2k − 2 intersecting every non-zero A-path (Theorem 1.1 in [2]).
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We show that applying their result to a suitable “gadget graph” H (essentially
the line graph of G), yields Theorem 3.2 (see Sect. 5). Polytime computability
follows because a subsequent paper [1] gave a polytime algorithm for finding a
maximum-size collection of vertex-disjoint non-zero A-paths, and it is implicit in
their proof that this also yields a suitable vertex-covering of non-zero A-paths [6].

We remark that while the use of the packing-covering result in [2] yields quite
a compact proof of Theorem 3.2, it also makes the resulting proof somewhat
opaque since we apply the result in [2] to the gadget graph. However, it is
possible to translate the min-max theorem for packing vertex-disjoint nonzero
A-paths proved in [2] to our setting and obtain the following more-accessible
min-max theorem for packing edge-disjoint odd (s, s)-trails (stated in terms of
G and not the gadget graph). In the full version, we prove that

ν(s, s;G) = min
(

|E(S) \ F | +
∑

H∈comp(G−S)

⌊

|E(S,H)|
2

⌋)

where the minimum is taken over all bipartite subgraphs (S, F ) of G such that
s ∈ S. (Notice that Theorem 3.2 follows easily from this min-max formula.)

4 Proof of Theorem 3.3: Converting Edge-Disjoint Odd
({u, v}, {u, v})-trails to Edge-Disjoint Odd (u, v)-trails

Recall that ̂T is a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. We
denote the subset of odd (u, u)-trails, odd (v, v)-trails, and odd (u, v)-trails in
̂T by ̂Tuu, ̂Tvv, and ̂Tuv, respectively. Let kuu(̂T ) = |̂Tuu|, kvv(̂T ) = |̂Tvv|, and
kuv(̂T ) = |̂Tuv|. To keep notation simple, we will drop the argument ̂T when its
clear from the context. Since we are given that λ(u, v) ≥ 2 · |̂T |, we can obtain
a collection P of 2 · |̂T | edge-disjoint (u, v)-paths in G. In the sequel, while we
will modify our collection of odd ({u, v}, {u, v})-trails, P stays fixed.

We now introduce the key notion of a contact between a trail T and a (u, v)-
path P . Suppose that P = (x0, e1, x1, . . . , er, xr) for some r ≥ 1.

Definition 4.1. A contact between P and T is a maximal subpath S of P
containing at least one edge such that S is also a subtrail of T i.e., for
0 ≤ i < j ≤ r, we say that (xi, ei+1, xi+1, . . . , ej , xj) is a contact between P and
T if (xi, ei+1, xi+1, . . . , ej , xj) is a subtrail of T , but neither (xi−1, ei, xi, . . . ej , xj)
(if i > 0) nor (xi, ei+1, xi+1, . . . , xj , ej+1, xj+1) (if j < r) is a subtrail of T .

Define C(P, T ) =
∣

∣

∣

{

(i, j) : 0 ≤ i < j ≤ r, (xi, ei+1, xi+1, . . . , ej , xj)

is a contact between P and T
}

∣

∣

∣

By definition, contacts between P and T are edge disjoint. For an edge-
disjoint collection T of trails, we use C(P, T ) to denote

∑

T∈T C(P, T ). So if
C(P, T ) = 0, then P is edge-disjoint from every trail in T . Otherwise, we use
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the term first contact of P to refer to the contact arising from the first edge
that P shares with some trail in T (note that P is a (u, v)-walk so is a sequence
from u to v). Similarly, the last contact of P is the contact arising from the last
edge that P shares with some trail in T . If C(P, T ) = 1, then the first and last
contacts of P are the same. We further overload notation and use C(P, T ) to
denote

∑

P∈P C(P, T ) =
∑

P∈P,T∈T C(P, T ). We use C(P, T ) as a measure of
how “tangled” T is with P. The following lemma classifies five different cases
that arise for any pair of edge-disjoint collections of odd ({u, v}, {u, v})-trails
and (u, v)-paths.

Lemma 4.2. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails in
G. If |P| ≥ 2 · |T |, then one of the following conditions holds.

(a) There are at least kuu(T ) + kvv(T ) paths in P that make no contact with
any trail in T .

(b) There exists a path P ∈ P that makes its first contact with a trail T ∈ Tvv.
(c) There exists a path P ∈ P that makes its last contact with a trail T ∈ Tuu.
(d) There exist three distinct paths P1, P2, P3 ∈ P which make their first contact

with a trail T ∈ Tuu ∪ Tuv.
(e) There exist three distinct paths P1, P2, P3 ∈ P which make their last contact

with a trail T ∈ Tuv ∪ Tvv.

Proof. To keep notation simple, we drop the argument T in the proof. Suppose
that conclusion (a) does not hold. Then there are at at least 2 · |T |−(kuu+kvv −
1) = 2kuv + kuu + kvv + 1 paths in P that make at least one contact with some
trail in T . Let P ′ ⊆ P be this collection of paths. If either conclusions (b) or (c)
hold (for some P ∈ P ′), then we are done, so assume that this is not the case.
Then, every path P ∈ P ′ makes its first contact with a trail in Tuu ∪ Tuv and
its last contact with a trail in Tuv ∪ Tvv. Note that the number of first and last
contacts are both at least 2kuv + kuu + kvv + 1 > 2 · min(kuv + kuu, kuv + kvv).
So if kuu ≤ kvv, then by the Pigeonhole principle, there are at least 3 paths
that make their first contact with some T ∈ Tuu ∪Tuv, i.e., conclusion (d) holds.
Similarly, if kvv ≤ kuu, then conclusion (e) holds. 	


We now leverage the above classification and show that in each of the above
five cases, we can make progress by “untangling” the trails (i.e., decreasing
C(P, T )) and/or increasing the number of odd (u, v)-trails in our collection.

Lemma 4.3. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails.
If |P| ≥ 2 · |T |, we can obtain another collection T ′ of edge-disjoint odd
({u, v}, {u, v})-trails such that at least one of the following holds.

(i) kuv(T ′) = |T |.
(ii) C(P, T ′) ≤ C(P, T ) and kuv(T ′) = kuv(T ) + 1.
(iii) C(P, T ′) ≤ C(P, T ) − 1 and kuv(T ′) ≥ kuv(T ) − 1.

Proof. If kuv(T ) = |T |, then (i) holds trivially by taking T ′ = T . So we may
assume that T contains some odd (u, u)- or odd (v, v)-trail. Observe that T and
P satisfy the conditions of Lemma 4.2, so at least one of the five conclusions of
Lemma 4.2 applies. We handle each case separately.
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(a) At least kuu(T ) + kvv(T ) paths in P have zero contacts with T . Let P0 =
{P ∈ P : C(P, T ) = 0}. Consider some P ∈ P0. If P is odd, we can replace
an odd (u, u)- or odd (v, v)- trail in T with P . If P is even, then P can be
combined with an odd (u, u)- or odd (v, v)- trail to obtain an odd (u, v)-trail.
Since |P0| ≥ kuu(T ) + kvv(T ), we create kuu(T ) + kuv(T ) odd (u, v)-trails
this way, and this new collection T ′ satisfies (i).

(b) Some P ∈ P makes its first contact with an odd (v, v)-trail T ∈ T . Let
the first vertex in the first contact between P and T be x. Observe that x
partitions the trail T into two subtrails S1 and S2. Since T is an odd trail,
exactly one of S1 and S2 is odd. We can now obtain an odd (u, v)-trail T ′

by traversing P from u to x, and then traversing S1 or S2, whichever yields
odd parity (see Fig. 2). Since P already made a contact with T , we have
C(P, T ′) ≤ C(P, T ), and C(Q,T ′) ≤ C(Q,T ) for any other path Q ∈ P. Thus,
taking T ′ = (T ∪ {T ′}) \ {T}, we have C(P, T ′) ≤ C(P, T ), and (ii) holds.

(c) Some P ∈ P makes its last contact with an odd (u, u)-trail T ∈ T . This is
completely symmetric to (b), so a similar strategy works and we satisfy (ii).

(d) Paths P1, P2, P3 ∈ P that make their first contact with an odd (u, {u, v})-
trail T ∈ T . Note that all contacts between paths in P and trails in T are
edge disjoint, since the paths in P are edge disjoint and the trails in T are
edge disjoint. For i = 1, 2, 3, let the first vertex in the first contact of Pi

(with T ) be xi. Let Qi denote the subpath of Pi between u and xi. Note
that T is a sequence of edges from u to some vertex in {u, v}. Without loss
of generality, assume that in T , the first contact of P1 appears before the
first contact of P2, which appears before the first contact of P3. The vertices
x1, x2, x3 partition the trail T into four subtrails S0, S1, S2, S3 (see Fig. 3).
For a trail X, we denote the reverse sequence of X by X. Now consider the
following trails (where + denotes concatenation):

T1 = S0 + Q1, T2 = Q1 + S1 + Q2, T3 = Q2 + S2 + Q3, T4 = Q3 + S3.

Observe that the disjoint union of edges in T1, T2, T3, and T4 has the same
parity as that of T , and hence at least one of the Tis is an odd trail; call this
trail T ′. Let T ′ = T ∪ {T ′} \ {T}. By construction, every Ti avoids at least
one of the (first) contacts made by P1, P2, or P3 (with T ). Also, for any other
path Q ∈ P\{P1, P2, P3}, we have C(Q,T ′) ≤ C(Q,T ). Therefore, C(P, T ′) ≤
C(P, T )−1. It could be that T was an odd (u, v)-trail, which is now replaced
by an odd (u, u)-trail, so kuv(T ′) ≥ kuv(T ) − 1. So we satisfy (iii).

(e) Paths P1, P2, P3 ∈ P make their last contact with an odd ({u, v}, v)-trail in
T . This is symmetric to (d); the same approach works, so (iii) holds. 	


Theorem 3.3 now follows by simply applying Lemma 4.3 starting with the
initial collection T 0 := ̂T until conclusion (i) of Lemma 4.3 applies. The T ′

returned by this final application of Lemma 4.3 then satisfies the theorem state-
ment.

We now argue that this process terminates in at most 2 · |E(G)| + |̂T | steps,
which will conclude the proof. Let k = |̂T |. Consider the following potential
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Fig. 2. Path P makes its first contact with an odd (v, v)-trail.
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Fig. 3. Paths P1, P2, P3 make their first contact with an odd (u, v)-trail.

function defined on a collection T of k edge-disjoint odd ({u, v}, {u, v})-trails:
φ(T ) := 2 ·C(P, T )−kuv(T ). Consider any iteration where we invoke Lemma 4.3
and move from a collection T to another collection T ′ with kuv(T ′) < k. Then,
either conclusion (ii) or (iii) of Lemma 4.3 applies, and it is easy to see that
Φ(T ′) ≤ φ(T ) − 1. Finally, we have −k ≤ Φ(T ) ≤ 2 · |E(G)| for all T since
0 ≤ C(P, T ) ≤ |E(G)| as the contacts between paths in P and trails in T are
edge-disjoint, so the process terminates in at most 2|E(G)| + k steps.

5 Proof of Theorem 3.2

Our proof relies on two reductions both involving non-zero A-paths in a group-
labeled graph, which we now formally define. A group-labeled graph is a pair
(H,Γ ), where Γ is a group, and H = (N,E′) is an oriented graph (i.e., for any
u, v ∈ N , if (u, v) ∈ E′ then (v, u) /∈ E′) whose arcs are labeled with elements of
Γ . All addition (and subtraction) operations below are always with respect to the
group Γ . A path P in H is a sequence (x0, e1, x1, . . . , er, xr), where the xis are
distinct, and each ei has ends xi, xi+1 but could be oriented either way (i.e., as
(xi, xi+1) or (xi+1, xi)). (So upon removing arc directions, P yields a path in the
undirected version of H.) We say that P traverses ei in the direction (xi, xi+1).
The Γ -length (or simply length) of P , denoted γ(P ), is the sum of ±γes for arcs
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in P , where we count +γe for e if P ’s traversal of e matches e’s orientation
and −γe otherwise. Given A ⊆ N , an A-path is a path (x0, e1, . . . , er, xr) where
r ≥ 1, and x0, xr ∈ A; finally, call an A-path P a nonzero A-path if γ(P ) �= 0
(where 0 denotes the identity element for Γ ).

Chudnovsky et al. [2] proved the following theorem as a consequence of a min-
max formula they obtain for the maximum number of nonzero vertex-disjoint A-
paths. Subsequently, [1] devised a polytime algorithm to compute the maximum
number of vertex-disjoint A-paths. Their algorithm also implicitly computes the
quantities needed in (the minimization portion of) their min-max formula to
show the optimality of the collection of A-paths they return [6]; this in turn
easily yields the vertex-set mentioned in Theorem 5.1.

Theorem 5.1 [1,2]. Let
(

H = (N,E′), Γ
)

be a group-labeled graph, and A ⊆ V .
Then, for any integer k, one can obtain in polynomial time, either:

1. k vertex-disjoint nonzero A-paths, or
2. a set of at most 2k − 2 vertices that intersects every nonzero A-path.

Recall that G is the undirected graph in the theorem statement, and s ∈ V .
For a suitable choice of a group-labeled graph (H,Γ ), and a vertex-set A, we
show that: (a) vertex-disjoint nonzero A-paths in (H,Γ ) yield edge-disjoint odd
(s, s)-trails; and (b) a vertex-set covering all nonzero A-paths in (H,Γ ) yields an
odd (s, s)-trail cover of G. Combining this with Theorem 5.1 finishes the proof.

Since we are dealing with parity, it is natural to choose Γ = Z2 (so the
orientation of edges in H will not matter). To translate vertex-disjointness (and
vertex-cover) to edge-disjointness (and edge-cover), we essentially work with the
line graph of G, but slightly modify it to incorporate edge labels. We replace each
vertex x ∈ V with a clique of size degG(x), with each clique-node corresponding
to a distinct edge of G incident to x; we use [x] to denote this clique, both its
set of nodes and edges; the meaning will be clear from the context. For every
edge e = xy ∈ E, we create an edge between the clique nodes of [x] and [y]
corresponding to e. We arbitrarily orient the edges to obtain H. We give each
clique edge a label of 0, and give every other edge a label of 1. Finally, we let
A = [s]. The proof of the following lemma is straightforward.

Lemma 5.2. The following properties hold.

(a) Every A-path P in H maps to an (s, s)-trail T = π(P ) in G such that
γ(P ) = 1 iff T is an odd trail.

(b) If two A-paths P,Q are vertex disjoint then the (s, s)-trails π(P ) and π(Q)
are edge disjoint.

(c) Every (s, s)-trail T in G with at least one edge maps to an A-path P = σ(T )
in G such that: T is an odd trail iff γ(P ) = 1, and P contains a vertex x iff
T contains the corresponding edge of G.

To complete the proof of Theorem 3.2, we apply Theorem 5.1 to the nonzero
A-paths instance constructed above. If we obtain k vertex-disjoint nonzero A-
paths in H, then parts (a) and (b) of Lemma 5.2 imply that we can map these
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to k edge-disjoint odd (s, s)-trails. Alternatively, if we obtain a set C of at most
2k −2 vertices of H that intersect every nonzero A-path, then we obtain a cover
F for odd (s, s)-trails in G by taking the set of edges in G corresponding to the
vertices in C. To see why F is a cover, suppose that the graph G−F has an odd
(s, s)-trail. This then maps to a nonzero A-path P in H such that P ∩ C = ∅ by
part (c) of Lemma 5.2, which yields a contradiction.

6 Extensions

Odd trails in signed graphs. A signed graph is a tuple
(

G = (V,E), Σ
)

, where G
is undirected and Σ ⊆ E. A set F of edges is now called odd if |F ∩Σ| is odd. Our
results extend to the more-general setting of packing and covering odd (u, v)-
trails in a signed graph. In particular, Theorems 3.1, 3.2 and 3.3 hold without
any changes. Theorem 3.2 follows simply because it utilizes Theorem 5.1, which
applies to the even more-general setting of group-labeled graphs. Theorem 3.3
holds because it uses basic parity arguments: if we simply replace parity with
parity with respect to Σ (i.e., instead of parity of F , we now consider parity of
|F ∩ Σ|), then everything goes through. Finally, as before, combining the above
two results yields (the extension of) Theorem 3.1.

Odd (C,D)-trails. This is the generalization of the odd (u, v)-trails setting, where
we have disjoint sets C,D ⊆ V . Our results yield a factor-2 gap between the the
minimum number of edges needed to cover all odd (C,D)-trails and the maxi-
mum number of edge-disjoint odd (C,D)-trails. First, we utilize Theorem 5.1 to
prove a generalization of Theorem 3.2 showing that for any integer k ≥ 0, we can
either obtain k edge-disjoint odd (C ∪D,C ∪D)-trails, or an odd-(C ∪D,C ∪D)-
trail cover of size at most 2k − 2. Next, we observe that Theorem 3.3 can still
be applied in this more-general setting to show that if we have a collection ̂T of
k edge-disjoint odd (C ∪D,C ∪D)-trails, and (at least) 2k edge-disjoint (C,D)-
paths, then we can obtain k edge-disjoint odd (C,D)-trails.
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Abstract. In this paper we consider one of the most basic scheduling
problems where jobs have their respective arrival times and deadlines.
The goal is to schedule as many jobs as possible non-preemptively by
their respective deadlines on m identical parallel machines. For the last
decade, the best approximation ratio known for the single machine case
(m = 1) has been 1 − 1/e − ε ≈ 0.632 due to [Chuzhoy-Ostrovsky-
Rabani, FOCS 2001 and MOR 2006]. We break this barrier and give an
improved 0.644-approximation. For the multiple machine case, we give an
algorithm whose approximation guarantee becomes arbitrarily close to 1
as the number of machines increases. This improves upon the previous
best 1−1/(1+1/m)m approximation due to [Bar-Noy et al., STOC 1999
and SICOMP 2009], which converges to 1−1/e as m goes to infinity. Our
result for the multiple-machine case extends to the weighted throughput
objective where jobs have different weights, and the goal is to schedule
jobs with the maximum total weight. Our results show that the 1 − 1/e
approximation factor widely observed in various coverage problems is not
tight for the non-preemptive maximum throughput scheduling problem.

1 Introduction

Scheduling jobs with arrival times and deadlines is a fundamental problem in
numerous areas of computer science and other fields. Due to this, there has been a
large amount of research focusing on the topic. However, relatively little is known
when jobs must be scheduled non-preemptively. Nonetheless, non-preemptive job
scheduling occurs frequently in practice for a variety of reasons including because
jobs cannot be stopped during execution due to practical constraints or because
overhead costs are prohibitively large.
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A central problem in the scheduling literature is determining how to schedule
jobs by their deadline. In many cases when jobs have deadlines, not all jobs
can be scheduled by their deadline. In these situations an alternative goal is to
complete as many jobs as possible by their deadline. In this paper, we consider
this problem a.k.a. throughput maximization. There are m identical machines
and n jobs. Each job j has size pj , arrival/release time rj , and deadline dj ; all
these quantities are assumed to be integers in [0, T ]. The goal is to schedule as
many jobs as possible by their deadlines non-preemptively on the m machines.
Non-preemptive scheduling means that once a job starts being processed at
time sj on a machine, then the job must be scheduled until time sj + pj on the
machine. A machine can process at most one job at a time. To highlight the
non-preemptive aspect of the problem, we will call this problem the Job Interval
Scheduling (JIS). Not surprisingly, JIS has various applications in practice. For
examples, see [6,8,10,13].

It was shown by Garey and Johnson that this problem is NP-Hard [9].
Bar-Noy et al. [4] showed that there is an algorithm achieving an approximation
ratio 1 − 1/(1 + 1

m )m. The approximation ratio gets better when m becomes
larger. In particular, the ratio is 1/2 if m = 1 and converges to 1 − 1/e as m
tends to infinity.

Later Chuzhoy et al. [7] gave a (1 − 1/e − ε)-approximation algorithm for a
discrete version of this problem. In this version, we are explicitly given a set of
intervals Ij in (0, T ] (which may have different lengths) for each job j. To sched-
ule the job, we need to select an interval from the set Ij . A schedule is valid if the
intervals selected for all the scheduled jobs are disjoint. In this problem, adding
more machines does not add more generality to this problem1. We will refer to the
problem we consider as the continuous variant to distinguish it from this work. It
seems that the discrete version generalizes the continuous version of the problem
we consider: for each job j with arrival time rj , deadline dj and processing time
pj , the set of intervals for j is all sub-intervals of (rj , dj ] of length pj with integer
end-points. However, there is a small caveat: the number of intervals can be expo-
nential in n. It was not known how to handle this tricky issue using the algorithm
of [7]. Thus, when T is not polynomially bounded by n, the

(
1 − 1/(1 + 1

m )m
)
-

approximation due to [4] remains the state-of-art for this problem; in particular,
a 1/2-approximation is the best known when m = 1 [1,4,16].

Our Results: In this paper, we improve upon the state-of-art approximations
for JIS for both the single-machine and multiple-machine cases. First, we show
that for constant m, there is a 0.6448 > (1 − 1/e)-approximation for JIS.

Theorem 1. For some α0 > 0.6448 > 1 − 1/e and any ε > 0, there exists an
(α0 − ε)-approximation algorithm for the (unweighted) Job Interval Scheduling
(JIS) problem with running time nO(m/ε5).

1 Suppose there are m machines. Then, in our new instance, the time horizon is (0, mT ],
which can be viewed as the concatenation of m horizons of length T . If a job can be
scheduled in (A, B] ⊆ (0, T ] in the original instance, it can be scheduled in (iT +
A, iT + B] for every i = 0, 1, · · · , m − 1 in the new instance.
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To complement the result, we give a second algorithm whose approximation
ratio approaches 1 as the number m of machines goes to infinity, improving
upon the previous 1 − 1/e limit. Thus, we can make our approximation ratio
better than 1− 1/e for any m: we run the first algorithm if m is at most a small
constant; we run the second algorithm if m is large. Indeed, our second algorithm
works for the more general weighted version of the problem, provided that T is
polynomially bounded by n. In this version, each job i has some positive weight
wi and the goal is to maximize the total weight of the jobs completed by their
deadline. We remark that for the unweighted version, we do not require T to be
polynomially bounded.

Theorem 2. For any ε > 0, there exists a
(
1 − O

(√
(log m)/m

)
− ε

)
-

approximation for unweighted JIS on m machines. If T = poly(n), there exists
a

(
1 − O

(√
(log m)/m

))
-approximation for weighted JIS on m machines.

Our Techniques: Our result in Theorem 2 will follow from a simple rounding
procedure based on the naive LP relaxation for the problem. We scale down a
naive LP solution by (1 − ε), apply a standard rounding technique to obtain a
tentative schedule. Then we convert the tentative schedule to one that is feasible
by removing jobs in a greedy manner. We show that the probability that a job
is removed from the tentative schedule is exponentially small in m. Another
technical contribution from this result is a method to solve the naive LP for
unweighted JIS when T is not bounded, that only sacrifices a (1 − ε)-factor in
the LP value. This was not known previously.

Our main technical contribution is in obtaining an α0 − ε ≈ 0.6448-
approximation stated in Theorem1. The algorithm is based on a slightly dif-
ferent variation of the configuration LP used in [7]. We highlight our algorithmic
ideas as follows assuming m = 1.

Chuzhoy et al. considered a configuration LP to obtain an approximation
ratio 1 − 1/e − ε ≈ 0.632 [7]; it is known that a naive LP has an integrality gap
of 2 when m = 1 [4,16]. The configuration LP considered in [7] is fairly natural
and builds on “blocks” of jobs: a block is a window (a time interval) together
with k jobs scheduled in it, for some fixed k. It is straightforward to construct
the set of blocks from an integral schedule: take the window in which the first k
jobs are scheduled, take the window in which the second k jobs are scheduled,
and so on. [7] used an involved preprocessing step to guess the windows where a
block of k jobs are scheduled in some optimum solution. Then for each window
corresponding to where a block of k jobs are scheduled in an optimum solution,
there are variables encoding which k jobs are scheduled inside it. In our configu-
ration LP, we do not guess where blocks are scheduled in an optimum solution.
Rather, we have variables for blocks of k jobs that are scheduled and, allowing
the blocks to be scheduled fractionally, we ensure that at most one fractional
block covers every time point. Thus, instead partitioning time based on guessing
where blocks are in an optimum solution, we partition the time horizon (0, T ]
using the fractional blocks obtained from the configuration LP. We remark that
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this novelty is not essential in obtaining the improved approximation ratio; the
improved approximation ratio could be obtained using the involved preprocess-
ing step and the configuration LP in [7]. However, our configuration LP yields
the following byproducts: (1) our configuration LP can handle the case when
T is super polynomial; (2) we can reduce the dependence of running time on ε
from double exponential to single exponential; (3) we can obtain the improved
(α0 − ε)-approximation for any constant m2.

Now we state some intuition on how the configuration LP can help give a
better approximation. Suppose we know the time steps when the optimal solution
schedules k additional jobs, t1, t2, t3, · · · . (Since we do not know, we need to lose
1 − ε factor in the approximation ratio and k needs to be a large constant.)
Then, we only need to consider windows W = {(t1, t2], (t2, t3], (t3, t4], · · · }; let’s
call this the optimal partition. The configuration LP gives a distribution over
sets of k jobs scheduled in each window. By randomly choosing one set of k
jobs for each window, we can easily show a (1 − 1/e)-approximation following a
standard analysis for the maximum coverage problem.

To improve the (1−1/e)-approximation, we use a second rounding procedure,
which works only for the continuous version of JIS. Suppose each (rj , dj ] is
exactly the union of some windows in W; in other words, rj = ti and dj = ti′

for some i < i′. The rounding procedure is based on individual jobs as opposed
to individual windows as in the first rounding procedure. We assign each job to
one of the windows according to how much the job is assigned to each individual
window in the LP solution. Here a crucial observation is that the job can be
scheduled anywhere in such windows – the only constraint we have to ensure
is that we do not assign too much volume of jobs to the same window. With
an additional preprocessing step of removing “big” jobs, we can show that such
a bad overflow event rarely occurs, and this leads to a (1 − ε)-approximation.
Since each (rj , dj ] may not be aligned with the partition W, we do not get this
(1 − ε)-approximation in general. Among all the windows in W that intersect
(rj , dj ], the first one and the last one are special, since we can not schedule j
anywhere inside these two windows. However, if the fraction of the job j assigned
to these two windows is large, then we observe that, in fact, the first rounding
algorithm can give better than a 1 − 1/e factor for the probability we schedule
job j. Thus, taking the best solution given by these two rounding procedures
will lead to an approximation ratio better than 1 − 1/e.

Removing Dependency on T: As mentioned above, in our problem, the contin-
uous version of JIS, the 1

2 -approximation was the best known polynomial time
algorithm for the single machine case [4]. Interestingly, we also use the configu-
ration LP to remove the dependency on T . This is somewhat counter-intuitive
since the configuration LP is more complicated than the standard LP which is a
special case of the configuration LP where each block has only one job. Thus it
will seem that using the configuration LP is in the opposite direction to reduce

2 As mentioned before, [7] focuses on the discrete version of JIS while our work does
on the continuous version. The approach in [7] does not seem to easily extend to
give a better than 1 − 1/e-approximation for multiple machines.
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the number of LP variables to obtain a true polynomial time algorithm. One of
our key observations is that if a set of k jobs are very flexible, that is, can be
scheduled seamlessly in “many” places, then such a block can be added later.
Then we show one job can be kicked out to schedule k additional jobs. A similar

configuration LP is used in the
(

1 − O(
√

log m
m )

)
-approximation to reduce the

dependence on T , although only the naive LP is needed when T = poly(n).

Related Work: A simple greedy algorithm that schedules a job with the earliest
deadline is known to be a 1

2 -approximation for the single machine case [1,16].
There are 1

2 -approximations known for the weighted throughput objective in the
multiple machines setting [4,5]. [2] considered JIS when the algorithm is given
resource augmentation and gave an O(1)-speed 1-approximation. If preemption
is allowed, it is known that if m = 1 then there exists a polynomial time optimal
algorithm [3]. When m ≥ 2 then the problem becomes NP-Hard [11]. To see
why the problem is hard, note that if all jobs have the same release time and
deadline then finding the minimum number of machines to schedule the jobs on
is effectively the bin packing problem. The problem has also been considered in
the online setting [12,14].

Organization: Due to the space constraints, in this paper we only prove our
theorems under certain simplifying assumptions. Specifically, we show Theorem1
when the number of machines, m is a constant and T = poly(n); recall that (0, T ]
is the time horizon we are considering. We continue to show Theorem2 in Sect. 3
under the assumption that T is polynomially bounded. The proof for the general
cases will be included in the full version of this paper.

2 Proof of Theorem1 when m = O(1) and T = poly(n)

Our algorithm is based on a configuration LP relaxation for the problem. We
will then use this relaxation to partition the time horizon into disjoint windows.
We remark that this step can replace the involved preprocessing step of [7].
With the definition of windows in place, we can run the rounding procedure of
[7]; this will give us (1 − 1/e − ε)-approximation for the unweighted case. To
obtain the improved (α0 − ε) approximation ratio, we run a different rounding
procedure and choose the better solution from the two procedures. This will give
us Theorem 1 when T = poly(n).

2.1 Linear Programming

We define a block as a triple B = (LB , RB ,JB) where LB and RB are two integer
time points such that 0 ≤ LB < RB ≤ T , and JB is a subset of jobs that can be
scheduled in the interval (LB , RB ] non-preemptively on m machines. We assume
that B is associated with a specific schedule where jobs in JB are scheduled in
(LB , RB ] on m machines. The size of block B is defined as the number of jobs
in JB , which is denoted as wB . We say that B has block window (LB , RB ].
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Let k = �3/ε� and Δ = 2mk5; recall that ε is a parameter that stands for
the proximity to the desired approximation factor. The integer programming for
JIS is defined as follows. We only consider the blocks B with either wB = Δ, or
RB = T and wB < Δ in the IP; for simplicity we omit this constraint.

max
∑

B

wB · xB (LPconf)

∑

B:LB<t≤RB

xB ≤ 1 ∀t ∈ [T ] (1)

∑

B:j∈JB

xB ≤ 1 ∀j ∈ J (2)

xB ∈ {0, 1} ∀B

In the above IP, Constraint (1) ensures that block windows are disjoint, and
Constraint (2) requires each job to be scheduled at most once. Note that the
number of constraints in (1) is polynomially bounded when T = poly(n) – as
mentioned earlier, we discuss how to handle non-polynomially bounded T in the
full version of the paper.

It is easy to see that any solution to the IP gives a valid schedule. On the
other hand, not every schedule can be converted to a feasible IP solution when
m > 1. Thus the IP may not give the optimum throughput. However we show
that the loss is small. To see this, fix an optimal schedule. Given the optimum
schedule, we sort all the jobs according to their completion time. Let L = 0
initially. In each iteration, we take the first Δ jobs J ′ from the sequence and let
R be the completion time of the Δ-th job; if there are less than Δ jobs in the
sequence, we let J ′ be all the jobs in the sequence and let R = T . We create a
block B = (L,R,J ′) and set xB = 1. Then, we remove all jobs whose starting
time is before R from the sequence. Then let L = R and start a new iteration.
The process ends when the sequence becomes empty. It is easy to see that the
blocks we created have disjoint windows. Moreover, if |J ′| = Δ, we remove at
most Δ + m − 1 jobs from the sequence: other than the Δ jobs in J ′, we may
remove at most m − 1 extra jobs who are scheduled intersecting the interval
(R − 1, R]. If |J ′| < Δ in the last iteration, we only remove |J ′| jobs from
the sequence. Thus, the value of the IP is at least Δ

Δ+m−1 times the optimum
throughput.3

The LP is obtained by relaxing the constraints xB ∈ {0, 1} to xB ≥ 0. Note
that the running time of solving the LP is nO(Δ) = nO(m/ε5). Let {x∗

B} denote
the optimal solution to the above LP. Let OPTLP =

∑
B wBx∗

B denote the
optimal LP objective.

3 It is worth noting that this is where we crucially use the assumption that jobs have
uniform weights.
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2.2 Preprocessing

In the preprocessing step, we break the time horizon (0, T ] into a set W of disjoint
intervals, which we call base windows to distinguish them from job windows and
block windows. We also construct a new solution {x′

B}. The main goal is two-
fold: (i) to preserve most of the LP objective and (ii) to make each block window
completely contained in a base window; this makes the rounding procedures more
applicable.

We now formally show how to break (0, T ] into base windows and obtain {x′
B}

from {x∗
B}. Note that the blocks in the support of {x∗

B} can overlap with one
another. To create {x′

B}, we iteratively cut at the time point when an additional
1/k fraction of blocks end in {x∗

B}. Formally, we associate each integer time-
point t ∈ (0, T ] with a weight et =

∑
B:RB=t x∗

B , which is the sum of x∗
B over

all blocks B ending at time t. Let L = 0 and W = ∅ initially. Each iteration
works as follows. Let R be the first time point such that

∑R
t=L+1 et ≥ 1/k, or

let R = T if no such time point exists – note that the sum is counted from time
L+1. Create a base window (L,R] and add it to W. Let L = R and start a new
iteration. The procedure terminates when L = T .

Once we defined the base windows W, for every B with x∗
B > 0, we cut

B into multiple blocks at the boundaries of the base windows. Formally, for
every base window (L,R] that intersect (LB , RB ], we create a block B′ =
(max {L,LB} ,min {R,RB} ,J ′) where J ′ is the set of jobs in JB whose schedul-
ing intervals are contained in (L,R]. For all these created blocks B′, we let
x′

B′ = x∗
B. Notice that the jobs across the boundaries of base windows are

deleted in this process. After that, we delete big jobs from each created block
B′: a job j in JB′ is said to be big compared to B′ if pj ≥ (RB′ − LB′)/k3.4

We have constructed a set W of disjoint base windows and derived a new
fractional solution {x′

B} from {x∗
B} that satisfies the following properties. All

the blocks B in the description are restricted to the ones with x′
B > 0.

Properties of {x′
B}:

1. For every block B, the block window (LB , RB ] is fully contained in some base
window in W.

2. No job j in JB is big compared to B. That is, for all k ∈ JB it is the case
that pj < (RB′ − LB′)/k3.

3. If OPTLP ≥ Δ, then
∑

B′ wBx′
B ≥ (1 − ε/3)OPTLP.

4. For all windows (L,R] ∈ W,
∑

B:(LB ,RB ]⊆(L,R] x
′
B ≤ 1 + 1/k.

5. For all jobs j,
∑

B:j∈JB
x′

B ≤ 1.

Properties (1), (2) and (5) are very easy to check. To see Property (4) holds,
consider a base window (L,R] ∈ W. We know that at most 1 fractional block
intersects R due to the Constraints (1). Due to the way we defined base windows,
at most 1/k fractional block can end during (L,R − 1].

4 This is another place where we rely on the assumption that jobs have uniform
weights.
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Property (3) is the most non-trivial one. Observe that there are at most m
fractional jobs across the boundary of two adjacent base windows. Each time
(except for the last one) we build a base window, we collected at least 1/k frac-
tional blocks, and thus Δ/k fractional jobs. So the total number of boundaries is
at most OPTLP/(Δ/k) = kOPTLP/Δ. Thus the total jobs we discarded due to
“boundary crossing” is at most kmOPTLP/Δ. Also at most mk3 fractional big
jobs are discarded from each base window. Thus at most mk3×(kOPTLP/Δ+1)
fractional big jobs are removed. If opt ≥ Δ and k ≥ 3, the total number of frac-
tional big jobs removed is at most 2mk4OPTLP/Δ = OPTLP/k ≤ εOPTLP/3.
Hence Property (3) follows. If the condition OPTLP ≥ Δ is not satisfied, we can
simply guess the optimal solution using enumeration.

2.3 The First Rounding Procedure

In this subsection, we show how to round {x′
B} to obtain an improved approxima-

tion. As mentioned before, we have two rounding procedures. The first rounding
is an independent rounding that samples a block from the set of blocks contained
in each base window W. Formally, for each base window (L,R] ∈ W, we sample
a block B with (LB , RB ] ⊆ (L,R] with probability x′

B

1+1/k . This is well defined
due to Property (4) – it says that there are only (1 + 1/k) fractional blocks to
be considered for each base window. If a job is scheduled more than once, we
keep only one scheduling of the job. This completes the description of the first
rounding.

A standard analysis for independent rounding can only show that each job
can be scheduled with probability at least (1− 1/e)/(1+1/k) times the fraction
by which the job is scheduled. To derive an improved approximation better
than 1 − 1/e, we need to do a more careful analysis. Let’s focus on each job j.
Consider the set of base windows that intersect (rj , dj ]. We call the first and the
last of these base windows the boundary base windows. All these base windows
except the boundary ones are completely contained in (rj , dj ]. Job j may appear
in multiple base windows, more precisely in blocks contained in multiple base
windows. Let aj be the fraction by which job j is scheduled in boundary base
windows, scaled down by 1 + 1/k. There may be only one boundary window for
j, but it only helps the approximation ratio, hence for simplicity, let’s proceed
with our analysis assuming that there are two boundary base windows for every
job. Now we turn our attention to non-boundary windows. Observe that in every
non-boundary base window in which j is scheduled, we can schedule j anywhere
inside it. Let bj be the fraction by which job j is scheduled in non-boundary
base windows, scaled down by 1 + 1/k.

We show that the first rounding schedules j with probability at least:

1 − (1 − aj/2)2e−bj (3)

Let’s take a close look at why this is the case. Let a, a′ be the fractions by
which job j is scheduled on the two boundary base windows, scaled down by
1 + 1/k. Likewise, let b(u) be the fraction by which job j is scheduled on a
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non-boundary base window u, scaled down by 1 + 1/k. Note that
∑

u b(u) = bj .
Then, j is scheduled with probability at least 1 − (1 − a)(1 − a′)

∏
u(1 − b(u)) ≥

1 − (1 − a)(1 − a′)
∏

u e−b(u) = 1 − (1 − a)(1 − a′)e−bj ≥ 1 − (1 − aj/2)2e−bj

where we use the well-known inequality ex ≥ 1 + x.

2.4 The Second Rounding Procedure

The second rounding makes use of the flexibility of non-boundary base windows.
This rounding procedure completely ignores the boundary base windows, and
assigns jobs individually. Consider each job j together with its non-boundary
base windows. The fractional solution x′

B tells us how much job j can be sched-
uled in each of its base windows, and we randomly assign the job to one of them
exactly as the fractional solution suggests. Then what is the probability that job
j cannot be scheduled since a lot of jobs are assigned to the same base window?
We can show such a probability is tiny by scaling down the assignment probabil-
ity slightly and using the fact that all jobs are small compared to base windows.
We show that each job j is successfully scheduled with probability at least

(1 − ε/3)bj (4)

Formally, the second rounding algorithm is as follows. Let fj,W be the
amount by which job j is assigned to a base window W , i.e. fj,W :=∑

B:(LB ,RB ]⊆W,j∈JB
x′

B. Then bj is
∑

W fj,W /(1 + 1/k), where W is over all
non-boundary base windows of j. Consider each job j. We assign job j to one of
its non-boundary base windows W with probability fj,W /(1 + 1/k). Let J (W )
be the set of jobs selected to be scheduled in the base window W . We sched-
ule these jobs greedily on m machines within W . Since each job j in J (W )
can be scheduled anywhere within the window, and all jobs in J (W ) are small
compared to W , the greedy packing is pretty good.

Lemma 1. Consider a base window W = (L,R]. If the total size of jobs in
J (W ) is no greater than (1 − 1/k3)m(R − L), then all jobs in J (W ) can be
scheduled on m machines within the window W .

Proof. The proof immediately follows from the fact that all jobs in J (W ) have
sizes no greater than (R − L)/k3 (Property (2)), and all jobs in J (W ) can be
scheduled everywhere inside W . ��

If the total size of jobs in J (W ) is greater than (1−k3)m, we simply discard
all jobs in J (W ). Our goal is to show that this bad event happens with low
probability. The following observation is immediate.

Lemma 2. The total size of jobs in J (W ) is at most m(R − L)/(1 + 1/k) in
expectation.

Proof. Notice that
∑

B:t∈(LB ,RB ] x
′
B ≤ 1 for every t ∈ (L,R]. Thus,∑

B:(LB ,RB ]⊆(L,R](RB − LB)x′
B =

∑
t∈(L,R]

∑
B:t∈(LB ,RB ] x

′
B ≤ (R − L). Since
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we can schedule at most m(RB − LB)x′
B volume of jobs in B, the total volume

of jobs scheduled in B is at most m(R − L); here the volume of a job j refers to
pj times the fraction by which the job is scheduled. The claim follows since we
scaled down the assignment probability down by a factor of 1 + 1/k. ��

This claim, together with the fact that all jobs are small compared to the base
window, will allow us to show that the bad event happens with a low probability.
To show this, fix a base window W = (L,R). The upper bound in the following
lemma easily follows from a well known concentration inequality.

Lemma 3. For any window W = (L,R), the total size of jobs in J (W ) is at
most (1 − 1/2k)(R − L) with probability at least 1 − ε/3.

Proof. Let Xj be pj if job j is in J (W ), and otherwise 0. Note that Xj ≤ (R −
L)/k3. Let Z =

∑
j Xj . By Lemma 2, we know that μ := E[Z] ≤ m(R−L)/(1+

1/k) ≤ (1 − 0.9/k)m(R − L) when k is large enough. By adding enough dummy
random variables, we may assume μ = (1 − 0.9/k)m(R − L); this only increases
Pr[Z ≥ (1 − 1/2k)m(R − L)]. Using the following concentration inequality (see
Theorem 2.3 in [15]).

Theorem 3. Let Z be the sum of n independent random variables where each
random variable takes value in [0,K]. Let μ = E[Z]. Then for any λ ∈ [0, 1], we
have

Pr
[
Z ≥ (1 + λ)μ

]
≤ e−λ2μ/3K .

we have

Pr[Z ≥ (1 − 1/2k)m(R − L)]

≤ exp
(

− (0.4/k)2/(1 − 0.9/k)2 × (1 − 0.9/k)m(R − L)
3(R − L)/k3

)

= exp
(

− 0.16km

3(1 − 0.9/k)

)
≤ exp(−k/20),

which is at most ε/3 when ε is small enough. ��
If the total size of jobs assigned to the base window (L,R] is at most (1 −

1/2k)m(R − L) ≤ (1 − 1/k3)m(R − L), then all these jobs can be scheduled in
(L,R] on m machines. Further, this happens with probability at least (1 − ε/3)
due to Lemma 3. Since a job is assigned to one of a non-boundary window with
probability bj , the probability that job j is scheduled due to the second rounding
is at least (1 − ε/3)bj . This shows the probability claimed in (4).

2.5 Combining the Two Rounding Procedures

Finally, we take the better between the two rounding solutions. That is, we take
the maximum of the two lower bounds, (3) and (4). The following lemma lower
bounds (3) by a linear combination of aj and bj , which follows by approximating
ex by a piecewise linear function and performing some case analysis. The proof
is deferred to the full version of this paper.
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Lemma 4. For all aj, bj such that 0 ≤ aj + bj ≤ 1,
(
1 − (1 − aj/2)2e−bj

) ≥
λ1aj + λ2bj where λ1 = 0.69 and λ2 = 0.62.

Then the expected number of jobs we schedule is at least

(1 − ε/3)max
{∑

j

(
1 − (1 − aj/2)

2e−bj
)

,
∑
j

bj

}

≥ (1 − ε/3)max
{

λ1

∑
j

aj + λ2

∑
j

bj ,
∑
j

bj

}
≥ (1 − ε/3)

λ1

λ1 − λ2 + 1
(
∑
j

aj +
∑
j

bj).

Let α0 = λ1
λ1−λ2+1 ≥ 0.6448. Notice that

∑
j aj +

∑
j bj is the total number

of jobs scheduled by the solution {x′
B}, scaled down by 1+1/k, which is at least

(1 − 1/k)(1 − ε/3)OPTLP, due to the Property (3). Noticing that OPTLP is
at least Δ

Δ+m−1 ≥ (1 − ε/3) times the optimum throughput, our approximation
ratio is at least (1 − ε/3)(1 − 1/k)(1 − ε/3)(1 − ε/3)α0 ≥ (1 − 4ε/3)α0 ≥ α0 − ε.
This proves Theorem 1.

3 1 − O
(√

(1/m) lnm
)
-Approximation for JIS

In this section our goal is to prove Theorem 2 assuming that T = poly(n).
We start by describing our algorithm which works by rounding the naive

LP relaxation for the problem. The relaxation is the following. Let xj,t denote
whether job j is started at time t. This variable is defined if rj ≤ t ≤ dj − pj .

max
∑

j

∑

t

wjxj,t (LPnaive)

∑

j

min{dj−pj ,t−1}∑

t′=max{rj ,t−pj}
xj,t′ ≤ m ∀t ∈ [T ];

∑

t

xj,t ≤ 1 ∀j ∈ J

where xj,t ≥ 0 for all j ∈ J , t ∈ [rj , dj − pj ]. The first constraint ensures that at
most m jobs are scheduled at any point in time. The second constraints ensure
that each job is scheduled at most once.

Our algorithm works as follows. After solving the LP, we round the solution.
For each job, we do randomized rounding. Each job j selects a starting time t to
be scheduled with probability (1− ε)xj,t, and j is not scheduled with probability
1 − (1 − ε)

∑
t xj,t where ε < 1 is a parameter depending on m which will be

fixed later. This is the tentative schedule, which could be infeasible. Then we
order the jobs by their starting times in the tentative schedule. Consider a job
j, whose starting time is t in the tentative schedule. Then we schedule job j at
time t whenever we can. It is easy to see that we can schedule j if and only if
the time slot (t, t + 1] is covered by less than m already-assigned jobs.

To bound the quality of the solution, our goal is to bound the probability
that a job is scheduled. The proof idea is quite simple. We consider any fixed
job j. We condition on the event that we chose to tentatively schedule j at
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time t; this happens with probability (1− ε)xj,t. We then bound the probability
that j is removed from the tentative schedule. Here we can apply concentration
inequalities since each job is rounded independently of other jobs.

Lemma 5. Each job j is scheduled with probability at least (1 − ε)(
1 − exp

(
−m ε2

3(1−ε)

)) ∑
t xj,t.

We set ε =
√

2 lnm
m . Then exp

(
− ε2m

3(1−ε)

)
≤ m−2/3 and (1 − ε)

(
1 − exp

(
− ε2m

3(1−ε)

))
≥ 1 −

√
2 lnm

m − m−2/3 = 1 − O

(√
log m

m

)
. This implies

the second half of Theorem 2.
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Abstract. Scheduling jobs on unrelated machines and minimizing the
makespan is a classical problem in combinatorial optimization. A job
j has a processing time pij for every machine i. The best polynomial
algorithm known for this problem goes back to Lenstra et al. and has
an approximation ratio of 2. In this paper we study the Restricted
Assignment problem, which is the special case where pij ∈ {pj , ∞}.
We present an algorithm for this problem with an approximation ratio
of 11/6 + ε and quasi-polynomial running time nO(1/ε log(n)) for every
ε > 0. This closes the gap to the best estimation algorithm known for
the problem with regard to quasi-polynomial running time.

Keywords: Approximation · Scheduling · Unrelated machines · Local
search

1 Introduction

In the problem we consider, which is known as Scheduling on Unrelated
Machines, a schedule σ : J → M of the jobs J to the machines M has to be
computed. On machine i the job j has a processing time of pij . We want to min-
imize the makespan, i.e., maxi∈M

∑
j∈σ−1(i) pij . The classical 2-approximation

by Lenstra et al. [8] is still the algorithm of choice for this problem.
Recently a special case, namely the Restricted Assignment problem, has

drawn much attention in the scientific community. Here each job j has a process-
ing time pj , which is independent from the machines, and a set of machines Γ (j).
A job j can only be assigned to Γ (j). This is equivalent to the former problem
when pij ∈ {pj ,∞}. For both the general and the restricted variant there cannot
be a polynomial algorithm with an approximation ratio better than 3/2, unless
P = NP [8]. If the exponential time hypothesis (ETH) holds, such an algorithm
does not even exist with sub-exponential (in particular, quasi-polynomial) run-
ning time [5].

In a recent breakthrough, Svensson has proved that the configuration-LP,
a natural linear programming relaxation, has an integrality gap of at most
33/17 [10]. We have later improved this bound to 11/6 [7]. By approximating
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the configuration-LP this yields an (11/6 + ε)-estimation algorithm. However,
no polynomial algorithm is known that can produce a solution of this value.

For instances with only two processing times additional progress has been
made. Chakrabarty et al. gave a polynomial (2 − δ)-approximation for a very
small δ [4]. Later Annamalai surpassed this with a (17/9 + ε)-approximation for
every ε > 0 [1]. For this special case it was also shown that the integrality gap
is at most 5/3 [6].

In [6,7,10] the critical idea is to design a local search algorithm, which is
then shown to produce good solutions. However, the algorithm has a potentially
high running time; so it was only used to prove the existence of such a solution.
A similar algorithm was used in the Restricted Max-Min Fair Allocation
problem. Here a quasi-polynomial variant by Polácek et al. [9] and a polynomial
variant by Annamalai et al. [2] were later discovered.

In this paper, we present a variant of the local search algorithm, that admits
a quasi-polynomial running time. The algorithm is purely combinatorial and uses
the configuration-LP only in the analysis.

Theorem 1. For every ε > 0 there is an (11/6+ε)-approximation algorithm for
the Restricted Assignment problem with running time exp(O(1/ε · log2(n))),
where n = |J | + |M|.

The main idea is the concept of layers. The central data structure in the local
search algorithm is a tree of so-called blockers and we partition this tree into
layers, that are closely related to the distance of a blocker from the root. Roughly
speaking, we prevent the tree from growing arbitrarily high. A similar approach
was taken in [9].

1.1 The Configuration-LP

A well known relaxation for the problem of Scheduling on Unrelated
Machines is the configuration-LP (see Fig. 1). The set of configurations with
respect to a makespan T are defined as Ci(T ) = {C ⊆ J :

∑
j∈C pij ≤ T}. We

refer to the minimal T for which this LP is feasible as the optimum or OPT∗.
In the Restricted Assignment problem a job j can only be used in configu-
rations of machines in Γ (j) given T is finite. We can find a solution for the LP
with a value of at most (1 + ε)OPT∗ in polynomial time for every ε > 0 [3].

1.2 Preliminaries

In this section we simplify the problem we need to solve. The approximation
ratio we will aim for is 1 + R, where R = 5/6 + 2ε. We assume that ε < 1/12 for
our algorithm, since otherwise the 2-approximation in [8] can be used.

We will use a binary search to obtain a guess T for the value of OPT∗. In each
iteration, our algorithm either returns a schedule with makespan at most (1+R)T
or proves that T is smaller than OPT∗. After polynomially many iterations, we
will have a solution with makespan at most (1 + R)OPT∗. To shorten notation,
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∑
C∈Ci(T )

xi,C ≤ 1 ∀i ∈ M

∑
i∈M

∑
C∈Ci(T ):j∈C

xi,C ≥ 1 ∀j ∈ J

xi,C ≥ 0

min
∑
i∈M

yi −
∑
j∈J

zj

s.t.

yi ≥
∑
j∈C

zj ∀i ∈ M, C ∈ Ci(T )

yi, zj ≥ 0

Fig. 1. Primal (left) and dual (right) of the configuration-LP w.r.t. makespan T

we scale each size by 1/T within an iteration, that is to say our algorithm
has to find a schedule of makespan 1 + R or show that OPT∗ > 1. Unless
otherwise stated we will assume that T = 1 when speaking about configurations
or feasibility of the configuration-LP.

Definition 1 (Small, big, medium, huge jobs). A job j is small if pj ≤ 1/2
and big otherwise; A big job is medium if pj ≤ 5/6 and huge if pj > 5/6.

The sets of small (big, medium, huge) jobs are denoted by JS (respectively,
JB , JM , JH). Note that at most one big job can be in a configuration (w.r.t.
makespan 1).

Definition 2 (Valid partial schedule). We call σ : J → M ∪ {⊥} a valid
partial schedule if (1) for each job j we have σ(j) ∈ Γ (j) ∪ {⊥}, (2) for each
machine i ∈ M we have p(σ−1(i)) ≤ 1 + R, and (3) each machine is assigned at
most one huge job.

σ(j) = ⊥ means that job j has not been assigned. In each iteration of the binary
search, we will first find a valid partial schedule for all medium and small jobs and
then extend the schedule one huge job at a time. We can find a schedule for all
small and medium jobs with makespan at most 11/6 by applying the algorithm
by Lenstra, Shmoys, and Tardos [8]. This algorithm outputs a solution with
makespan at most OPT∗ + pmax, where pmax is the biggest processing time (in
our case at most 5/6). The problem that remains to be solved is given in below.

Input: An instance of Restricted Assignment, a valid partial schedule σ,
a huge job jnew with σ(jnew) = ⊥.

Output: Either: (1) A valid partial schedule σ′ with σ′(jnew) 	= ⊥ and σ(j) 	=
⊥ ⇒ σ′(j) 	= ⊥ for all j ∈ J , or (2) ‘error’ (indicating that OPT∗ > 1).

Without loss of generality let us assume that the jobs are identified by natural
numbers, that is J = {1, 2, . . . , |J |}, and p1 ≤ p2 ≤ . . . ≤ p|J |. This gives us a
total order on the jobs that will simplify the algorithm.
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2 Algorithm

Throughout the paper, we make use of modified processing times P j and pj ,
which we obtain by rounding the sizes of huge jobs up or down, that is

P j =

{
1 if pj > 5/6,

pj if pj ≤ 5/6;
and pj =

{
5/6 if pj > 5/6,

pj if pj ≤ 5/6.

Definition 3 (Moves, valid moves). A pair (j, i) of a job j and a machine i
is a move, if i ∈ Γ (j)\{σ(j)}. A move (j, i) is valid, if (1) P (σ−1(i))+pj ≤ 1+R
and (2) j is not huge or no huge job is already on i.

We note that by performing a valid move (j, i) the properties of a valid partial
schedule are not compromised.

Definition 4 (Blockers). A blocker is a tuple (j, i, Θ), where (j, i) is a move
and Θ is the type of the blocker. There are 6 types with the following abbrevia-
tions: (SA) small-to-any blockers, (HA) huge-to-any blockers, (MA) medium-to-
any blockers, (BH) huge-/medium-to-huge blockers, (HM) huge-to-medium block-
ers, and (HL) huge-to-least blockers.

The algorithm maintains a set of blockers called the blocker tree T . We will
discuss the tree analogy later. The blockers wrap moves that the algorithm
would like to execute. By abuse of notation, we write that a move (j, i) is in
T , if there is a blocker (j, i, Θ) in T for some Θ. The type Θ determines how the
algorithm treats the machine i as we will elaborate below.

The first part of a type’s name refers to the size of the blocker’s job, e.g.,
small-to-any blockers are only used with small jobs, huge-to-any blockers only
with huge jobs, etc. The latter part of the type’s name describes the undesirable
jobs on the machine: The algorithm will try to remove jobs from this machine
if they are undesirable; at the same time it does not attempt to add such jobs
to the machine. On machines of small-/medium-/huge-to-any blockers all jobs
are undesirable; on machines of huge-/medium-to-huge blockers huge jobs are
undesirable; on machines of huge-to-medium blockers medium jobs are undesir-
able and finally on machines of huge-to-least blockers only those medium jobs
of index smaller or equal to the smallest medium job on i are undesirable.

The same machine can appear more than once in the blocker tree. In that
case, the undesirable jobs are the union of the undesirable jobs from all types.
Also, the same job can appear multiple times in different blockers.

The blockers corresponding to specific types are written as TSA, THA, etc.
From the blocker tree, we derive the machine set M(T ) which consists of all
machines corresponding to moves in T . This notation is also used with subsets
of T , e.g., M(THA).

Definition 5 (Blocked small jobs, active jobs). A small job j is blocked,
if it is undesirable on all other machines it allowed on, that is Γ (j)\{σ(j)} ⊆
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M(TSA ∪TMA ∪THA). We denote the set of blocked small jobs by S(T ). The set
of active jobs A includes jnew, S(T ) as well as all those jobs, that are undesirable
on the machine, they are currently assigned to.

We define for all machines i the job sets Si(T ) = S(T ) ∩ σ−1(i), Ai(T ) =
A(T )∩σ−1(i), Mi = σ−1(i)∩JM and Hi = σ−1(i)∩JH . Moreover, set Mmin

i =
{min Mi} if Mi 	= ∅ and Mmin

i = ∅ otherwise.

2.1 Tree and Layers

The blockers in T and an additional root can be imagined as a tree. The parent
of each blocker B = (j, i, Θ) is only determined by j. If j = jnew it is the root
node; otherwise it is a blocker B′ ∈ T for machine σ(j) with a type for which j
is regarded undesirable. If this applies to several blockers, we use the one that
was added to the blocker tree first. We say that B′ activates j.

Let us now introduce the notion of a layer. Each blocker is assigned to exactly
one layer. The layer roughly correlates with the distance of the blocker to the
root node. In this sense, the children of a blocker are usually in the next layer.
There are some exceptions, however, in which a child is in the same layer as its
parent. We now define the layer of the children of a blocker B in layer k.

1. If B is a huge-/medium-to-huge blocker, all its children are in layer k as well;
2. if B is a huge-to-any blocker, children regarding small jobs are in layer k as

well;
3. in every other case, the children are in layer k + 1.

We note that by this definition for an active job j all blockers (j, i, Θ) ∈ T must
be in the same layer; in other words, it is unambiguous in which layer blockers
for it would be placed in. We say j is k-headed, if blockers for j would be placed
in layer k. The blockers in layer k are denoted by T (k). The set of blockers in
layer k and below is referred to by T (≤k). We use this notation in combination
with qualifiers for the type of blocker, e.g., T (k)

HA.
We establish an order between the types of blockers within a layer and refer to

this order as the sublayer number. The huge-/medium-to-huge blockers form the
first sublayer of each layer, huge-to-any and medium-to-any blockers the second,
small-to-any blockers the third, huge-to-least the fourth and huge-to-medium
blockers the fifth sublayer (see also Table 1 and Fig. 2). By saying a sublayer is
after (before) another sublayer we mean that either its layer is higher (lower) or
both layers are the same and its sublayer number is higher (lower).
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layer klayer k − 1 layer k + 1

BH HA/MA SA HL HM

Fig. 2. Example layer

Algorithm 1: Quasi-polynomial local search

1 i n i t i a l i z e empty b locke r t r e e T ;
2 loop
3 i f a move in T i s v a l i d then
4 choose a b locke r (j, i, Θ) in the lowest sublayer ,
5 where (j, i) i s v a l i d ;
6 let B be the b locke r that ac t i va t ed j ;
7 // Update the schedu l e
8 σ(j) ← i ;
9 remove a l l sub l aye r s a f t e r B from T ;

10 i f j = jnew then
11 return σ ;
12 end
13 i f not conditions∗(B) then
14 remove the sub layer o f B from T ;
15 end
16 else
17 let � be the minimum laye r to which we can
18 add a po t e n t i a l move ;
19 i f � > K or no such � e x i s t s then
20 return ’ e r ro r ’ ;
21 end
22 add po t e n t i a l move (j, i) o f h i ghe s t p r i o r i t y to l ay e r � ;
23 remove a l l sub l aye r s a f t e r (j, i) from T ;
24 end
25 end

In the final algorithm whenever we remove one blocker, we also remove all
blockers in its sublayer and all later sublayers (in particular, all descendants).
Also, when we add a blocker to a sublayer, we remove all later sublayers. Among
other properties, this guarantees that the connectivity of the tree is never com-
promised. It also means that, if j is undesirable regarding several blockers for
σ(j), then the parent is in the lowest sublayer among these blockers, since a
blocker in a lower sublayer cannot have been added after one in a higher sub-
layer.

The running time will be exponential in the number of layers; hence this
should be fairly small. We introduce an upper bound K = 2/εln(|M|) + 1� =
O(1/ε · log(|M|)) and will not add any blockers to a layer higher than K.
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2.2 Detailed Description of the Algorithm

The algorithm (see Algorithm 1) contains a loop that terminates once jnew is
assigned. In each iteration the algorithm performs a valid move in the blocker
tree if possible and otherwise adds a new blocker.

Adding blockers. We only add a move to T , if it meets certain requirements.
A move that does is called a potential move. For each type of blocker we also
define a type of potential move: Potential small-to-any moves, potential huge-
to-any moves, etc. When a potential move is added to the blocker tree, its type
will then be used for the blocker. Let k be a layer and let j ∈ A(T ) be k-headed.
For a move (j, i) to be a potential move of a certain type, it has to meet the
following requirements.

1. (j, i) is not already in T ;
2. the size of j corresponds to the type, for instance, if j is big, (j, i) cannot be

a small-to-any move;
3. j is not undesirable on i w.r.t. T (≤k), i.e., (a) i /∈ M(T (≤k)

SA ∪ T (≤k)
MA ∪ T (≤k)

HA )
and (b) if j is huge, then i /∈ M(T (≤k)

BH ); (c) if j is medium, then i /∈ M(T (≤k)
HM )

and either i /∈ M(T (≤k)
HL ) or min Mi < j.

4. The load of the target machine has to meet certain conditions (see Table 1).

Comparing the conditions in the table we notice that for moves of small and
medium jobs there is always exactly one type that applies. For huge jobs

Table 1. Types of blockers/potential moves

Type Conditions S P Undesirable

Huge-/Medium-to-
huge (BH)

p(σ−1(i)\Hi) + pj ≤ 1 + R 1 5 Huge jobs

Small-to-any (SA) None 3 4 All jobs

Medium-to-any
(MA)

∗ p(σ−1(i)\Hi) + pj > 1 + R 2 3 All jobs

Huge-to-any (HA) ∗ p(σ−1(i)\Hi) + pj > 1 + R 2 3 All jobs

p(Si(T (≤k)) ∪ Mi) + pj ≤ 1 + R

Huge-to-least (HL) ∗ p(Si(T (≤k)) ∪ Mmin
i ) + pj > 1 + R 4 2 Medium jobs jM

with
jM ≤ minMi

p(Si(T (≤k))) + pj ≤ 1 + R

Huge-to-medium
(HM)

∗ p(Si(T (≤k)) ∪ Mi) + pj > 1 + R 5 1 Medium jobs

∗ p(Si(T (≤k)) ∪ Mmin
i ) + pj ≤ 1 + R

The conditions are meant in respect to a move (j, i) where j is k-headed. Column S
stands for the sublayer and P for the priority of a blocker type. Conditions marked
with a star (∗) are additionally checked whenever a job activated by this blocker is
moved.
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there is exactly one type if p(Si(T (≤k))) + pj ≤ 1 + R and no type applies,
if p(Si(T (≤k))) + pj > 1 + R. The table also lists a priority for each type of
move. It is worth mentioning that the priority does not directly correlate with
the sublayer. The algorithm will choose the move that can be added to the low-
est layer and among those has the highest priority. After adding a blocker, all
higher sublayers are deleted.

Performing valid moves. The algorithm performs a valid move in T if there is
one. It chooses a blocker (j, i, Θ) in T , where the blocker’s sublayer is minimal
and (j, i) is valid. Besides assigning j to i, T has to be updated as well.

Let B be the blocker that activated j. When certain conditions for B are no
longer met, we will delete B and its sublayer. The conditions that need to be
checked depend on the type of B and are marked in Table 1 with a star (∗). In
any case, the algorithm will discards all blockers in higher sublayers than B is.

3 Analysis

The analysis of the algorithm has two critical parts. First, we show that it does
not get stuck, i.e., there is always a blocker that can be added to the blocker tree
or a move that can be executed. Then we show that the number of iterations is
bounded by exp(O(1/ε log2(n))).

Theorem 2. If the algorithm returns ‘error’, then OPT∗ > 1.

The proof consists in the construction of a solution (z∗, y∗) for the dual of the
configuration-LP. The value z∗

j is composed of pj and a scaling coefficient (a
power of δ := 1 − ε). The idea of the scaling coefficient is that values for jobs
activated in higher layers are supposed to get smaller and smaller. We set z∗

j = 0
if j /∈ A(T ) and z∗

j = δk · pj , if j ∈ A(T ) and k is the smallest layer such that j

is k-headed or j ∈ S(T (≤k)). For all i ∈ M let

wi =

⎧
⎪⎨

⎪⎩

z∗(Ai(T )) + δk 1
6 if i ∈ M(T (k)

HA),
z∗(Ai(T )) − δk 1

6 if i ∈ M(T (k)
SA ),

z∗(Ai(T )) otherwise.

Finally set y∗
i = δK + wi. Note that w is well-defined, since a machine i can

be in at most one of the sets M(T (1)
HA),M(T (1)

SA ),M(T (2)
HA),M(T (2)

SA ), . . . On a
small-/huge-to-any blocker all jobs are undesirable, that is to say as long as one
of such blockers remains in the blocker tree, the algorithm will not add another
blocker with the same machine. Also note that z∗(Ai(T )) and z∗(σ−1(i)) are
interchangeable.

Lemma 1. If there is no valid move in T and no potential move of a k-headed
job for a k ≤ K, the value of the solution is negative, i.e.,

∑
j∈J z∗

j >
∑

i∈M y∗
i .
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Proof. Using the Taylor series and ε < 1/12 it is easy to check ln(1− ε) ≥ −ε/2.
This gives

K ≥ 2
ε
(ln(|M|) + 1) ≥ ln(2|M|)

ε/2
≥ − ln(2|M|)

ln(1 − ε)
= logδ

(
1

2|M|

)

.

Claim 1 (Proof is omitted to conserve space). For all k ≤ K we have
|M(T (k)

HA)| ≤ |M(T (k)
SA )|.

Using this claim we find that
∑

j∈J
z∗
j ≥ z∗

jnew
+

∑

i∈M
z∗(σ−1(i))

≥ δ1
5
6

+
∑

i∈M
y∗

i − δK |M| +
K∑

k=1

[δk 1
6
|M(T (k)

SA )| − δk 1
6
|M(T (k)

HA)|]

≥ δ1
5
6

+
∑

i∈M
y∗

i − 1
2

+ 0 >
∑

i∈M
y∗

i .
��

Lemma 2. If there is no valid move in T and no potential move of a k-headed
job for a k ≤ K, the solution is feasible, i.e., z∗(C) ≤ y∗

i for all i ∈ M, C ∈ Ci.

Proof. We will make the following assumptions, that can be shown with an
exhaustive case analysis.

Claim 2 (Proof is omitted to conserve space). Let k ≤ K, i /∈ M(T (≤k)
SA ∪

T (≤k)
MA ∪ T (≤k)

HA ), C ∈ Ci, j ∈ C k-headed and big with σ(j) 	= i. Then z∗
j ≤

z∗(Ai(T (≤k))\C).

Claim 3 (Proof is omitted to conserve space). Let k ≤ K and i ∈ M(T (k)
SA ∪

T (k)
MA ∪ T (k)

HA). Then

wi ≥ z∗(Ai(T )) + δk · (1 − δp(Ai(T ))).

Let C0 ∈ Ci and C ⊆ C0 denote the set of jobs j with z∗
j ≥ δKpj . In particular,

C does not contain jobs that have potential moves. It is sufficient to show that
z∗(C) ≤ wi, as this would imply

z∗(C0) = z∗(C) + z∗(C0\C) ≤ wi + δKp(C0) ≤ y∗
i .

Loosely speaking, the purpose of δK in the definition of y∗ is to compensate for
ignoring all (K + 1)-headed jobs.

First, consider the case where i /∈ M(TSA ∪ TMA ∪ THA). There cannot be a
small and activated job jS ∈ C with σ(jS) 	= i, because then (jS , i) would be a
potential move; hence C ∩ JS ∩ A(T ) ⊆ C ∩ Ai(T ). If there is a big job jB ∈ C
with σ(jB) 	= i, then

z∗(C) = z∗
jB + z∗(C ∩ JS) ≤ z∗(Ai(T )\C) + z∗(C ∩ Ai(T )) = z∗(Ai(T )) = wi.
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If there is no such job, then C ∩ A(T ) ⊆ Ai(T ) and in particular z∗(C) ≤ wi.
In the remainder of this proof we assume that i ∈ M(T (�+1)

SA ∪T (�+1)
MA ∪T (�+1)

HA ).
Note that for any k 	= � + 1 we have i /∈ M(T (k)

SA ∪ T (k)
MA ∪ T (k)

HA). Also, since all
jobs on i are active we have that z∗

j ≥ δ�+2pj for all j ∈ σ−1(i). Because there
is no potential move (jS , i) for a small job jS with z∗

jS
≥ δ�pjS , we have for all

small jobs jS ∈ C\Ai(T ): z∗
jS

≤ δ�+1pjS .

Case 1. For every big job j ∈ C with σ(j) 	= i we have z∗
j ≤ δ�+1pj .

This implies

z∗(C\Ai(T )) ≤ δ�+1p(C\Ai(T )) = δ�+1(p(C) − p(Ai(T ) ∩ C))

≤ δ�+1(1 − δp(Ai(T ) ∩ C)).

Therefore

z∗(C) = z∗(Ai(T ) ∩ C) + z∗(C\Ai(T ))

≤ z∗(Ai(T ) ∩ C) + δ�+1(1 − δp(Ai(T ) ∩ C))

≤ z∗(Ai(T )) + δ�+1(1 − δp(Ai(T ))) ≤ wi.

Case 2. There is a big job j ∈ C with σ(j) 	= i and z∗
j ≥ δ�pj .

Let k ≤ � with z∗
j = δkpj , that is to say j is k-headed. Then

z∗
j − δ�+1pj = (1 − δ�+1−k)z∗

j ≤ (1 − δ�+1−k)z∗(Ai(T (≤k))\C)

≤ z∗(Ai(T (≤k))\C) − δ�+2p(Ai(T (≤k))\C)

≤ z∗(Ai(T )\C) − δ�+2p(Ai(T )\C).

In the second inequality we use that for every j′ ∈ Ai(T (≤k)) we have z∗
j′ ≥

δk+1 · pj′ . This implies that

z∗(C) = z∗
j + z∗(C\{j})

= z∗
j + z∗(Ai(T ) ∩ C) + z∗(C\({j} ∪ Ai(T )))

≤ z∗
j + z∗(Ai(T ) ∩ C) + δ�+1(p(C) − pj − p(Ai(T ) ∩ C))

≤ z∗
j + z∗(Ai(T ) ∩ C) + δ�+1(1 − pj − δp(Ai(T ) ∩ C))

≤ z∗(Ai(T )) + δ�+1(1 − δp(Ai(T ))) ≤ wi.

��
We can now complete the proof of Theorem 2.

Proof (Theorem 2). Suppose toward contradiction there is no potential move of
a k-headed job, where k ≤ K, and no move in the blocker tree is valid. It is
obvious that since Lemmas 1 and 2 hold for (y∗, z∗), they also hold for a scaled
solution (α · y∗, α · z∗) with α > 0. We can use this to obtain a solution with
an arbitrarily low objective value; thereby proving that the dual is unbounded
regarding makespan 1 and therefore OPT∗ > 1. ��
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Theorem 3. The algorithm terminates in time exp(O(1/ε · log2(n))).

Proof. Let � ≤ K be the index of the last non-empty layer in T . We will define
the so-called signature vector as s(T , σ) = (s1, s2, . . . , s�), where sk is given by

sk =

⎛

⎜
⎝

∑

(j,i,Θ)∈T (k)
BH

[|J | − |Hi|],
∑

(j,i,Θ)∈T (k)
MA∪T (k)

HA

[|J | − |σ−1(i)|],

∑

(j,i,Θ)∈T (k)
SA

[|J | − |σ−1(i)|],
∑

(j,i,Θ)∈T (k)
HL

[min Mi],
∑

(j,i,Θ)∈T (k)
HM

[|J | − |Mi|]

⎞

⎟
⎠ .

Each component in sk represents a sublayer within layer k and it is the sum
over certain values associated with its blockers. Note that these values are all
strictly positive, since jnew is not assigned and therefore |σ−1(i)| < |J |.

Claim 4 (Proof is omitted to conserve space). The signature vector increases
lexicographically after polynomially many iterations of the loop.

This means that the number of possible vectors is an upper bound on the running
time (except for a polynomial factor). Each sublayer has at most |J | · |M| many
blockers (since there are at most this many moves) and the value for every blocker
in each of the five cases is easily bounded by O(|J |). This implies there are at
most (O(n3))5 = nO(1) values for each sk. Using K = O(1/ε log(n)) we bound
the number of different signature vectors by nO(K) = exp(O(1/ε log2(n))). ��

4 Conclusion

We have greatly improved the running time of the local search algorithm for the
Restricted Assignment problem. At the same time we were able to maintain
almost the same approximation ratio. We think there are two important direc-
tions for future research. The first is to improve the approximation ratio further.
For this purpose, it makes sense to first find improvements for the much simpler
variant of the algorithm given in [7].

The perhaps most important open question, however, is whether the run-
ning time can be brought down to a polynomial one. Recent developments in
the Restricted Max-Min Fair Allocation problem indicate that a layer
structure similar to the one in this paper may also help in that regard [2]. In
the mentioned paper moves are only performed in large groups. This concept is
referred to as laziness. The asymptotic behavior of the partition function (the
number of integer partitions of a natural number) is then used in the analysis
for a better bound on the number of possible signature vectors. This approach
appears to have a great potential for the Restricted Assignment problem as
well. In [1] it was already adapted to the special case of two processing times.
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Abstract. We study a general stochastic ranking problem where an
algorithm needs to adaptively select a sequence of elements so as to
“cover” a random scenario (drawn from a known distribution) at min-
imum expected cost. The coverage of each scenario is captured by an
individual submodular function, where the scenario is said to be covered
when its function value goes above some threshold. We obtain a logarith-
mic factor approximation algorithm for this adaptive ranking problem,
which is the best possible (unless P = NP ). This problem unifies and
generalizes many previously studied problems with applications in search
ranking and active learning. The approximation ratio of our algorithm
either matches or improves the best result known in each of these special
cases. Moreover, our algorithm is simple to state and implement. We also
present preliminary experimental results on a real data set.

1 Introduction

Many stochastic optimization problems can be viewed as sequential decision
processes of the following form. There is an a priori distribution D over a set of
scenarios, and the goal is to cover the realized scenario i∗ ← D. In each step,
an algorithm chooses an element with some given cost which partially covers i∗

and also provides some feedback depending on i∗. This feedback is then used to
refine the distribution of i∗ which is used to select elements in the subsequent
steps. So any solution in this setting is an adaptive sequence of elements. The
objective is to minimize the expected cost to cover scenario i∗.

Furthermore, many different criteria to cover a scenario can be modeled as
covering a suitable submodular function. Submodular functions are widely used
to model utilities in game theory, influence maximization in social networks,
diversity in search ranking etc.

In this paper, we study an abstract stochastic optimization problem in the
setting described above which unifies and generalizes many previously-studied
problems such as optimal decision trees [8,10,11,18,20,24], equivalence class
determination [6,15], decision region determination [23] and submodular rank-
ing [2,21]. We obtain an algorithm with the best-possible approximation guaran-
tee in all these special cases. We also obtain the first approximation algorithms

c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 317–329, 2017.
DOI: 10.1007/978-3-319-59250-3 26
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for some other problems such as stochastic knapsack cover and matroid basis
with correlated elements. Moreover, our algorithm is very simple to state and
implement. We also present experimental results for two of these special cases
(on a real data set), and our algorithm performs quite well.

For some stochastic optimization problems, one can come up with approxi-
mately optimal solutions using static (non-adaptive) solutions that are insensi-
tive to the feedback obtained, eg. [5,12]. However, this is not the case for the
adaptive submodular ranking problem. Even for the special cases above, there
are instances where the optimal adaptive value is much less than the optimal
non-adaptive value. Thus, it is important to come up with an adaptive algorithm.

Problem Statement. We start with some basics. A set function f : 2U → R+

on ground set U is said to be submodular if f(A)+f(B) ≥ f(A∩B)+f(A∪B)
for all A,B ⊆ U . The function f is said to be monotone if f(A) ≤ f(B) for all
A ⊆ B ⊆ U . We assume that set functions are given in the standard value oracle
model, i.e. we can evaluate f(S) for any S ⊆ U in polynomial time.

In the adaptive submodular ranking problem (ASR) we have a ground set
U of n elements with positive costs {ce}e∈U , that we can assume are inte-
ger without loss of generality. We also have m scenarios with a probability
distribution D given by probabilities {pi}m

i=1 totaling to one. Each scenario
i ∈ [m] := {1, · · · ,m} is specified by:

(i) a monotone submodular function fi : 2U → [0, 1] where fi(∅) = 0 and
fi(U) = 1 (any monotone submodular function can be expressed in this
form by scaling), and

(ii) a feedback function ri : U → G where G is a set of possible feedback values.

We note that fi and ri need not be related in any way: this flexibility allows
us to capture many different applications. Scenario i ∈ [m] is said to be covered
by any subset S ⊆ U of elements such that fi(S) = 1. The goal in ASR is to
find a sequence of elements in U that minimizes the expected cost to cover a
random scenario i∗ drawn from D. The identity of i∗ is initially unknown to the
algorithm. When the algorithm selects an element e ∈ U , it receives feedback
value g = ri∗(e) ∈ G which can be used to update the probability distribution
of i∗ (by eliminating all scenarios i with ri(e) �= g), which in turn can be used
to select subsequent elements. The sequence of selected elements is Z adaptive
because it depends on the feedback received.

A solution to ASR is represented by a decision tree T , where each node is
labeled by an element e ∈ U and the branches out of such a node are labeled by
the feedback received after selecting e. Each node in T also corresponds to a state
(E,H), where E is the set of elements shown until this node, and H ⊆ [m] is the
subset of scenarios compatible with all the feedback obtained until this node.
Every scenario i ∈ [m] traces a root-leaf path in the decision tree T which takes
the ri(e)-branch out of any node labeled by e ∈ U ; let Ti denote the sequence of
elements on this path. In a feasible decision tree T , each scenario i ∈ [m] must be
covered, i.e. fi(Ti) = 1. The cost incurred under scenario i in decision tree T is
the total cost of the shortest prefix T̄i of Ti such that fi(T̄i) = 1. The objective
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in ASR is to minimize the expected cost
∑m

i=1 pi ·
(∑

e∈T̄i
ce

)
. We emphasize

that multiple scenarios may trace the same path in T : in particular, it is not
necessary to identify the realized scenario i∗ in order to cover it.

An important parameter in the analysis of our algorithm is the following:

ε := min
e∈U :fi(S∪e)>fi(S)

i∈[m], S⊆U

fi(S ∪ e) − fi(S). (1)

It measures the minimum positive incremental value of any element. Such a
parameter appears in all results on the submodular cover problem, eg. [2,27].

Results. Our main result is an O(log 1
ε + log m)-approximation algorithm for

adaptive submodular ranking where ε > 0 is as defined in (1) and m is the
number of scenarios. Assuming P �= NP , this result is the best possible (up to
a constant factor) as the set cover problem [13] is a special case of ASR even
when m = 1. Our algorithm is a simple adaptive greedy-style algorithm. At
each step, we assign a score to each remaining element and select the element
with maximum score. Such a simple algorithm was previously unknown even in
the special case of optimal decision tree (under arbitrary costs/probabilities),
despite a large number of papers [1,8,10,11,14,17,18,20,24] on this topic.

The following are direct applications of our framework.

• Optimal decision tree: This involves uniquely identifying the scenario i∗

at minimum expected cost. We obtain an O(log m)-approximation which
matches the previous best approximation ratio [18] with a faster and much
simpler algorithm. We can also handle a natural extension where the goal is
to obtain a small subset of scenarios (of specified size) that contains i∗.

• Adaptive multiple intent re-ranking: This is an adaptive version of a problem
studied in [3,4,26] with applications to search ranking. We obtain the first
approximation algorithm for the adaptive problem.

• Stochastic correlated knapsack cover: This is a stochastic version of the cov-
ering knapsack problem, where elements have random (correlated) sizes and
deterministic cost. We obtain the first approximation algorithm here.

More applications and details can be seen in the full version [25].

Techniques. Our algorithm involves repeatedly selecting an element that max-
imizes a combination of (i) the expected increase in function value relative to
the target of one, and (ii) a measure of gain in identifying the realized scenario.
See (2) for the formal selection criterion. Our analysis provides new ways of
reasoning about adaptive decision trees. At a high level, our approach is similar
to minimum-latency problems [7,9]: we upper bound the probability that the
algorithm incurs a certain power-of-two cost 2k in terms of the probability that
the optimal solution incurs cost 2k/α, which is then used to establish an O(α)
approximation ratio. Our main technical contribution is in relating these com-
pletion probabilities in the algorithm and the optimal solution (see Lemma2). In
particular, a key step in our proof is a coupling of “bad” states in the algorithm
(where the gain in terms of our selection criterion is small) with “bad” states in
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the optimum (where the cost incurred is high). This is reflected in the classifica-
tion of the algorithm’s states as good/ok/bad (Definition 1) and the proof that
the expected gain of the algorithm is large (Lemma 4).

Related Works. The basic submodular cover problem (select a min-cost subset
of elements that covers a given submodular function) was first considered by [27]
who proved that the natural greedy algorithm is a (1 + ln 1

ε )-approximation
algorithm. This result is tight because set cover is a special case. The submodular
cover problem corresponds to the special case of ASR with m = 1.

The deterministic submodular ranking problem was introduced by [2] who
obtained an O(log 1

ε )-approximation algorithm when all costs are unit. This is a
special case of ASR when there is no feedback (i.e. G = ∅); note that the optimal
ASR solution in this case is just a fixed sequence of elements. The result in [2]
was based on an interesting “reweighted” greedy algorithm: the second term in
our selection criterion (2) is similar to this. A different proof of the submodular
ranking result (using a min-latency type analysis) was obtained in [21] which
also implied an O(log 1

ε )-approximation algorithm with costs. We also use a
min-latency type analysis for ASR.

The first O(log m)-approximation algorithm for optimal decision tree was
obtained in [18], which is known to be tight [8]. This result was extended to the
equivalence class determination problem in [10], Previous results, eg. [1,8,11,17,
24], based on a simple greedy “splitting” algorithm, had a logarithmic depen-
dence on either costs or probabilities which can be exponential in m. The algo-
rithms in [10,18] were more complex than what we obtain here as a special case of
ASR. In particular these algorithms proceeded in O(log m) phases, each of which
required solving an auxiliary subproblem that reduced the number of possible
scenarios by a constant factor. Using such a “phase based” algorithm and analy-
sis for the general ASR problem only leads to an O(log m · log 1

ε )-approximation
ratio because the subproblem to be solved in each phase is submodular ranking
which only has an O(log 1

ε )-approximation ratio. Our work is based on a much
simpler greedy-style approach.

A different stochastic version of submodular ranking was considered in [21]
where (i) the feedback was independent across elements and (ii) all the sub-
modular functions needed to be covered. In contrast, ASR involves a correlated
scenario-based distribution and only the submodular function of the “realized”
scenario i∗ needs to be covered. Due to these differences, both the algorithm and
analysis for ASR are different from [21]: our selection criterion (2) involves an
additional “information gain” term, and our analysis requires a lot more work in
order to handle correlations. We note that unlike ASR, the stochastic submodu-
lar ranking problem in [21] does not capture the optimal decision tree problem
and its variants [10,23].

For some previously-studied special cases [6,15,23] of ASR, one could obtain
approximation algorithms via the framework of “adaptive submodularity” [14].
However, this approach does not apply to the general ASR problem and the
approximation ratio obtained is at least Ω(log 1/pmin) where pmin = minm

i=1 pi

can be exponentially small in m.
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Recently, [16] considered the scenario submodular cover problem, defined in
terms of adaptive submodularity. This involves a single integer-valued submod-
ular function for all scenarios which is defined on an expanded groundset U × G
(i.e. pairs of “element, feedback” values). This problem is a special case of ASR:
our algorithm matches (in fact, improves slightly) the approximation ratio in
[16] with a much simpler algorithm and analysis. We note that ASR is strictly
more general than this problem: submodular ranking [2] is a special case of ASR
but not of scenario submodular cover.

2 The Algorithm

The state of our algorithm (i.e. any node in its decision tree) is represented by
(i) the set E ⊆ U of previously displayed elements, and (ii) the set H ⊆ [m]
of scenarios that are compatible with feedback (on E) received so far and are
still uncovered. At any state (E,H), our algorithm does the following. For each
element e ∈ U \E, let Be(H) denote the set with maximum cardinality amongst
{i ∈ H : ri(e) = t} for t ∈ G, and we define Le(H) = H \Be(H). Then we select
element e ∈ U \ E that maximizes:

1
ce

·

⎛

⎝
∑

j∈Le(H)

pj +
∑

i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)

⎞

⎠ . (2)

Note that H only contains uncovered scenarios. So for all i ∈ H, fi(E) < 1
and the denominator in the sum above is always positive. Next we analyze the
performance of this algorithm. For any subset T ⊆ [m] of scenarios, we use
Pr(T ) =

∑
i∈T pi.

Let OPT denote an optimal solution to the ASR instance and ALG be the
solution found by the above algorithm. Set L := 15(1 + ln 1/ε + log2 m) and its
choice will be clear later. We refer to the total cost incurred at any point in a
solution as the time. For any k = 0, 1, · · · , we define the following quantities:

– Ak is the set of uncovered scenarios of ALG at time L · 2k, and ak = Pr(Ak).
– xk is the probability of uncovered scenarios of OPT at time 2k−1.

Lemma 1. The expected cost of ALG and OPT can be bounded as follows.

CALG ≤ L
∑

k≥0

2kak + L and COPT ≥ 1
2

∑

k≥1

2k−1xk (3)

Proof. Can be found in the full version [25]. �

Thus, if we upper bound each ak by some multiple of xk, it will be easy to
obtain the approximation factor. However, this is not the case, instead we prove:

Lemma 2. For all k ≥ 1 we have ak ≤ 0.2ak−1 + 3xk.

This lemma implies our main result:
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Theorem 1. Our algorithm is an O(log 1/ε + log m)-approximation algorithm.

Proof. Can be found in the full version [25]. �

We now prove Lemma 2 for a fixed k ≥ 1. Consider any time t between
L · 2k−1 and L · 2k. Note that ALG’s decision tree induces a partition of all the
uncovered scenarios at time t, where each part H consists of all scenarios that
are at a particular node (E,H) at time t. Let R(t) denote the set of parts in
this partition. Note that all scenarios in Ak appear in R(t) as these scenarios are
uncovered even at time L · 2k ≥ t. Similarly, all scenarios in R(t) are in Ak−1.
See Fig. 2.

For any part H ∈ R(t), let (E,H) denote the node in ALG’s decision tree
corresponding to H. We note that E consists of all elements that have been
completely displayed by time t. The element that is selected at this node is
not included in E. Let TH(k) denote the subtree of OPT that corresponds to
paths traced by scenarios in H up to time 2k−1; see Fig. 1. Note that each node
(labeled by any element e ∈ U) in TH(k) has at most |G| outgoing branches and
one of them is labeled by the feedback corresponding to Be(H) = H \Le(H). We
define Stemk(H) to be the path in TH(k) that at each node (labeled e) follows
the branch corresponding to H \ Le(H). Below we also use Stemk(H) to denote
the set of elements that are completely displayed on this path. We have the
following observation:

Observation 1. Consider any node (E,H). For each e ∈ E, (i) the feedback
values {ri(e) : i ∈ H} are all identical, and (ii) Le(H) = ∅. (See full version [25]
for more details).

Definition 1. Each node (E,H) in ALG is exactly of one of the following types:

– “bad” if the probability of uncovered scenarios in H at the end of Stemk(H)
is at least Pr(H)

3 .
– “okay” if it is not bad and Pr(∪e∈Stemk(H) Le(H)) is at least Pr(H)

3 .
– “good” if it is neither bad nor okay and the probability of scenarios in H that

get covered by Stemk(H) is at least Pr(H)
3 .

See Fig. 2. This is well defined, because by definition of Stemk(H) each sce-
nario in H is (i) uncovered at the end of Stemk(H), or (ii) in Le(H) for some
e ∈ Stemk(H), or (iii) covered by some prefix of Stemk(H), i.e. the function
value reaches 1 on Stemk(H). So the total probability of the scenarios in one of
these 3 categories must be at least Pr(H)

3 . Therefore each node (E,H) is at least
of one of these three types.

Lemma 3. For any t ∈ (L2k−1, L2k], we have
∑

H∈R(t)
H:bad

Pr(H) ≤ 3xk.

Proof. Can be found in [25]. �
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time : 2k−1

Stemk(H)

TH(k)

Fig. 1. Stemk(H) in OPT for
|G| = 2

time : L2k−1
time : L2ktime : t

good

H1

H4

bad

okay

H2

H3

H5

H6

H7

R(t) = {H1, H2, H3, H4, H5, H6, H7}
R(t) is a partition of uncovered scenarios at time t

Uncovered
Scenarios Ak−1

Uncovered
Scenarios Ak

Fig. 2. Bad, good and okay nodes in ALG

The following quantity turns out to be useful in our proof of Lemma2.

Z :=
L2k
∑

t>L2k−1

∑

H∈R(t)

max
e∈U\E

1
ce

·
(

Pr(Le(H)) +
∑

i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)

)

(4)

Above, for any H ∈ R(t) the set E of elements comes from the node (E,H) in
ALG corresponding to H. Note that Z corresponds to the total “gain” according
to our algorithm’s selection criterion (2) accrued from time L2k−1 to L2k. Now,
we obtain a lower and upper bound for Z and combine them to prove Lemma 2.
The lower bound views Z as sum of terms over t, and uses the fact that the gain
is “high” for good/ok nodes as well as the bound on probability of bad nodes
(Lemma 3). The upper bound views Z as a sum of terms over scenarios and uses
the fact that if the total gain for a scenario is “high” then it must be covered.

Lemma 4. We have Z ≥ L · (ak − 3xk)/3.

Proof Sketch. We will show that the term in (4) corresponding to each t is at
least ak−3xk

3·2k−1 . We know that for each t, we can partition R(t) into three groups
Rok, Rgood, Rbad. In the proof we decompose the inner sum of (4) to two terms
for okay nodes and good nodes. Then we use Lemma 3 and this fact that all
scenarios in Ak appear in R(t) to obtain the result. The complete proof can be
found in the full version [25]. �

Lemma 5. We have Z ≤ ak−1 · (1 + ln 1/ε + log m).

Proof. For any scenario i ∈ Ak−1 (i.e. uncovered in ALG by time L2k−1) let πi

be the path traced by i in ALG’s decision tree, starting from time 2k−1L and
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ending at 2kL or when i gets covered. For each element e that appears in πi,
let 1 ≤ te,i ≤ ce denote the units of time when e is shown during the interval
(L2k−1 , L2k]. Note that there can be at most two elements e in πi with ti,e < ce:
one that is being shown at time L2k−1 and another at L2k.

Recall that every scenario in R(t) appears in Ak−1 for any L2k−1 < t ≤ L2k.
So only scenarios in Ak−1 can contribute to Z and we rewrite (4) as follows:

Z =
∑

i∈Ak−1

pi ·
∑

e∈πi

te,i · 1
ce

(
fi(e ∪ E) − fi(E)

1 − fi(E)
+ 1[i ∈ Le(H)]

)

≤
∑

i∈Ak−1

pi ·
(

∑

e∈πi

fi(e ∪ E) − fi(E)
1 − fi(E)

+
∑

e∈πi

1[i ∈ Le(H)]

)

(5)

Fix any scenario i ∈ Ak−1. For the first term, we use Claim 2.1 in [2] which
relies on the definition of ε in (1). This implies

∑
e∈πi

fi(e∪E)−fi(E)
1−fi(E) ≤ 1 + ln 1

ε .
To bound the second term, note that if scenario i ∈ Le(H) when ALG selects
element e then number of possible scenarios decreases by at least a factor of two
in path πi. So such an event can happen at most log2 m times along the path πi.
Thus we can write

∑

e∈πi

1[i ∈ Le(H)] ≤ log m. The lemma follows from (5). �

We now complete the proof of Lemma 2. By Lemmas 4 and 5 we have:

L · (ak − 3xk)/3 ≤ Z ≤ ak−1 · (1 + ln 1/ε + log m) = ak−1 · L

15

Rearranging, we obtain ak ≤ 0.2 · ak−1 + 3xk as needed. �

3 Applications

In this section we discuss various applications of ASR. For problems that have
been previously studied, our result matches the best-known approximation ratio
with a simpler (and faster) algorithm. For the other problems, we provide the
first approximation ratio. The results are summarized in Table 1. We explain
some of these problems here and the rest can be found in [25].

Optimal Decision Tree. This problem captures many applications in active
learning, medical diagnosis, databases etc., and has been studied extensively.
There are m possible hypotheses (which will correspond to scenarios in ASR)
with a distribution D given by probabilities {pi}m

i=1, from which an unknown
hypothesis i∗ is drawn. There are also a number of binary tests (elements in
ASR); each test e costs ce and returns a positive result if i∗ lies in some subset
Te of hypotheses and a negative result if i∗ ∈ [m]\Te. We assume that i∗ can be
uniquely identified by performing all tests. The goal is to identify the hypothesis
i∗ at the minimum expected cost. This can be cast as a special case of ASR
as follows. For each test (element) e and hypothesis (scenario) i ∈ [m] define
Te(i) = [m] \ Te if i ∈ Te and Te(i) = Te if i �∈ Te. For each scenario i ∈ [m],
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Table 1. Applications of adaptive submodular ranking.

Problem Previous best result Our result

Deterministic submodular ranking O(log 1
ε ) O(log 1

ε )

Adaptive multiple intent re-ranking - O(log max
i∈[m]

Ki + log m)

Optimal decision tree O(log m) O(log m)

Generalized optimal decision tree - O(log m)

Equivalence class determination O(log m) O(log m)

Decision region determination O(min{r, d} · log m) in exp

time in r

O(r log m) in poly time,

O(d log m) in exp time in d

Stochastic Knapsack cover - O(log m + log W )

MSF in random graph - O(log m + log q)

Scenario submodular cover O(log m + log Q) O(log m + log 1
ε )

define submodular function fi(S) = | ∪e∈S Te(i)| · 1
m−1 . Note that ε = 1

m ; so
by Theorem 1 we obtain an O(log m)-approximation algorithm which is best-
possible [8]. We can also handle a natural extension where the goal is to obtain
a subset of scenarios containing i∗ with a specified size (not necessarily one).

Adaptive Multiple Intent Re-ranking. This is an adaptive version of the
multiple intent re-ranking problem, introduced in [3] with applications to search
ranking. There are n results (will correspond to elements in ASR) to a particular
search query, and m different users (scenarios in ASR). Each user i is charac-
terized by a subset Si of the results that s/he is interested in and a threshold
Ki ≤ |Si|: user i gets “covered” after seeing at least Ki results from the subset
Si. The goal is to find an ordering of the results that minimizes the expected
number of results to cover a random user i∗, drawn from a known distribution
D. This can be modeled as ASR as follows. For each user i ∈ [m], define sub-
modular function fi(S) = min(|S∩Si|,Ki)/Ki. Note that ε = 1/maxi∈[m] Ki, so
Theorem 1 implies an O(log maxi∈[m] Ki + log m)-approximation algorithm. This
almost matches the O(log maxi∈[m] Ki) bound from [3] for the deterministic spe-
cial case. We note however that there are better O(1)-approximation algorithms
for the deterministic problem [4,22,26] based on a different LP-based approach:
extending this to the adaptive case is still an interesting open question.

Minimum Spanning Forest in Random Graph. We are given a graph
G(V,E) with |V | = q and |E| = n. Every edge e ∈ E fails with some probability
and its status (active or failed) can be checked at cost ce. (Any edge that does
not fail is called active.) Edge failures are correlated, and we assume a scenario-
based joint probability distribution. There are m scenarios, and each scenario
i ∈ [m] is specified by a probability pi and subset Ei ⊆ E of edges that are
active in that scenario; we have

∑m
i=1 pi = 1. So the set of active edges E∗ =

Ei with probability pi for i ∈ [m]. The “active subgraph” (V,E∗) need not
be connected. The goal is to find a spanning forest in the active subgraph at
minimum expected cost. We can model this as ASR by viewing the edges E as
elements and defining for each scenario i ∈ [m], the submodular function fi(S) =
ranki(S∩Ei)
ranki(Ei)

where ranki is the rank function of the graphic matroid on (V,Ei).
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The fis are monotone submodular functions due to the submodularity of matroid
rank functions. Moreover, ε ≥ 1

q and so Theorem 1 implies an O(log m + log q)-
approximation algorithm. This result also holds for a general matroid: where a
random (correlated) subset of elements is active and the goal is to find a basis
on the active elements at minimum expected cost.

4 Experiments

In this section, we present experimental results for two special cases of ASR: (gen-
eralized) optimal decision tree (ODT) and adaptive multiple intent re-ranking
(MIR). Further tests and explanations can be found in the full version [25]. We
use a real-world dataset (called ML-100) from the MovieLens [19] repository:
this involves the ratings of 943 users (scenarios) for 1682 movies (elements). We
binarized this dataset by setting all ratings < 3 to 0 and ratings ≥ 3 to 1. User i
is interested in movie e if the corresponding entry is 1. With this dataset, we use
the power-law (Pr[X = x;α] = αxα−1) with α = 1, 2, 3; note that when α = 1,
we get a uniform distribution. To get a better understanding of the performance
results, we generate multiple permutations of scenario distributions for the same
value of α. For the ODT problem, we also use a synthetic dataset — SYN-K
— that is parameterized by k; this is based on a hard instance for the greedy
algorithm [24]. Given k, we generate m = 2k + 3 sets, n = k + 2 elements, with
4k + 4 non-zeros as follows: (a) elements i ∈ [1, k] are contained in scenarios
2i − 1 and 2i, (b) element k + 1 is contained in all odd numbered scenarios, and
(c) element k+2 is contained in all even numbered scenarios and scenario 2k+3.
The probabilities for the scenarios are as follows: Pr[2i − 1] = Pr[2i] = 2−i−2

for i ∈ [1, k], Pr[2k + 1] = Pr[2k + 2] = 2−k−2 − ε, where 0 < ε < 2−k−2, and
Pr[2k + 3] = 2−1 + 2ε.

There is not much hope for computing optimal values on these instances.
Due to the adaptive nature of these problems, we do not know reasonable math-
ematical programming formulations even for small size instances. Therefore, we
compare the performance of our algorithm against other natural heuristics.

Optimal Decision Tree. Given a distribution D on users, the goal is to identify
a random user i∗ (drawn from D) by asking questions of the form “is user i∗

interested in movie e?”. We compare (a) ODT-adsub, the algorithm presented

Table 2. Expected cost of running ODT-adsub, ODT-greedy, and ODT-ml.

Dataset ODT-adsub ODT-greedy ODT-ml

SYN-50 2.75 27.50 21.00

SYN-100 2.75 52.50 21.64

SYN-150 2.75 77.50 56.43

SYN-200 2.75 102.5 53.01

SYN-250 2.75 127.5 69.52
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Table 3. Expected cost of ODT-adsub, ODT-greedy and ODT-ml.

α ODT-adsub ODT-greedy ODT-ml

α = 2
9.841 9.778 18.283
9.827 9.759 18.359
9.834 9.775 18.144

α = 3
9.651 9.473 18.455
9.642 9.484 18.486
9.672 9.497 18.725

T ODT-adsub ODT-greedy ODT-ml

1 9.967 9.967 18.219

[1, 5) 8.936 8.870 17.121

[5, 10) 7.524 7.516 15.466

in this paper, (b) ODT-greedy, the classic greedy algorithm [1,8,11,17,24], and
(c) ODT-ml, a “machine learning” algorithm that tries to exploit similarities
between users/movies by clustering (see the full version [25] for details). Table 3
(left) shows the performance of the three algorithms when D comes from a power
law distribution with α = 2, 3. For each α, we tried three different distributions
D obtained by permuting users before assigning probabilities. We also tested our
algorithm for the “generalized” ODT problem, where users are associated with
bounds {ti}m

i=1 and the goal is to find a subset I containing the random user
i∗ with |I| ≤ ti∗ . Table 3 (right) shows the performance of the three algorithms
(for uniform D) where tis are drawn randomly from the specified intervals.

Note that although ODT-greedy performs the best, ODT-adsub is very com-
petitive. Combined with the fact that ODT-greedy performs poorly on worst-case
instances (Table 2), ODT-adsub is a good alternative in practice.

Adaptive Multiple Intent Re-ranking. Given distribution D on users and
thresholds {Ki}m

i=1, the goal is to present at least Ki∗ movies that a random user
i∗ is interested in. We compare (a) MIR-adsub, our algorithm, (b) MIR-static,
the algorithm from [3] which uses the same sequence for all users, (c) MIR-
adstatic, which improves on MIR-static by using feedback to eliminate movies
that only belong to incompatible users, and (d) MIR-ml, a “machine learning”
algorithm based on clustering.

Table 4 (left) shows the performance when D is uniform; each row corre-
sponds to an instance where the thresholds Ki are chosen randomly from the
specified interval. Table 4 (right) shows the performance when the thresholds
are Ki = |Si| (their maximum value) and D is a power law distribution with

Table 4. Expected cost of MIR-adsub, MIR-static, MIR-adstatic and MIR-ml.

Ki adsub static adstatic ml

|Si| 92.50 932.42 93.70 101.78

[|Si|/2, |Si|) 70.38 386.86 71.58 79.70

[|Si|/4, |Si|) 60.98 304.92 62.19 69.67

[1, |Si|/2) 26.21 84.29 27.31 35.62

[1, |Si|/4) 14.48 38.60 15.54 22.93

α adsub static adstatic ml

α = 2
92.50 932.42 93.70 101.78
26.21 84.29 27.31 35.62
14.48 38.60 15.45 22.93

α = 3
86.20 905.14 87.78 96.18
92.72 934.54 94.42 101.52
91.23 927.03 92.98 100.67
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α = 2, 3. Again, we tried three different distributions D (for each α) by permut-
ing users: the cost instability across permutations indicates an inherent skew
in the dataset. We note that MIR-adsub consistently outperforms the other
three algorithms. The poor performance of MIR-static (the only “non adaptive”
algorithm) demonstrates the importance of adaptive algorithms.
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Abstract. We investigate three competing notions that generalize
the notion of a facet of finite-dimensional polyhedra to the infinite-
dimensional Gomory–Johnson model. These notions were known to coin-
cide for continuous piecewise linear functions with rational breakpoints.
We show that two of the notions, extreme functions and facets, coin-
cide for the case of continuous piecewise linear functions, removing the
hypothesis regarding rational breakpoints. We then separate the three
notions using discontinuous examples.

1 Introduction

1.1 Facets in the Finite-Dimensional Case

Let G be a finite index set. The space R
(G) of real-valued functions y : G → R

is isomorphic to and routinely identified with the Euclidean space R
|G|. Let R

G

denote its dual space. It is the space of functions α : G → R, which we consider
as linear functionals on R

(G) via the pairing 〈α, y〉 =
∑

r∈G α(r)y(r). Again it is
routinely identified with the Euclidean space R

|G|, and the dual pairing 〈α, y〉 is
the Euclidean inner product. A (closed, convex) rational polyhedron of R

(G) is
the set of y : G → R satisfying 〈αi, y〉 ≥ αi,0, where αi ∈ Z

G are integer linear
functionals and αi,0 ∈ Z, for i ranging over another finite index set I.

Consider an integer linear optimization problem in R
(G), i.e., the problem

of minimizing a linear functional η ∈ R
G over a feasible set F ⊆ { y : G →

Z+ } ⊂ R
(G)
+ , or, equivalently, over the convex hull R = conv F ⊂ R

(G)
+ . A valid

inequality for R is an inequality of the form 〈π, y〉 ≥ π0, where π ∈ R
G, which

holds for all y ∈ R (equivalently, for all y ∈ F ). If R is closed, it is exactly the set
of all y that satisfy all valid inequalities. In the following we will restrict ourselves
to the case that R ⊆ R

(G)
+ is a polyhedron of blocking type, in which case we

only need to consider normalized valid inequalities with π ≥ 0 and π0 = 1.
Let P (π) denote the set of functions y ∈ F for which the inequality 〈π, y〉 ≥ 1

is tight, i.e., 〈π, y〉 = 1. If P (π) 	= ∅, then 〈π, y〉 ≥ 1 is a tight valid inequality.
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Then R is exactly the set of all y ≥ 0 that satisfy all tight valid inequalities. A
valid inequality 〈π, y〉 ≥ 1 is called minimal if there is no other valid inequality
π′ 	= π such that π′ ≤ π pointwise. One can show that a minimal valid inequality
is tight. A valid inequality 〈π, y〉 ≥ 1 is called facet-defining if

for every valid inequality 〈π′, y〉 ≥ 1 such that P (π) ⊆ P (π′),
we have P (π) = P (π′),

(wF)

or, in other words, if the face induced by 〈π, y〉 ≥ 1 is maximal. Because R is of
blocking type, its recession cone is R

(G)
+ and therefore R has full affine dimension.

Thus, we get the following characterization of facet-defining inequalities:

for every valid inequality 〈π′, y〉 ≥ 1 such that P (π) ⊆ P (π′),
we have π = π′.

(F)

The theory of polyhedra gives another characterization of facets:

If 〈π1, y〉 ≥ 1 and 〈π2, y〉 ≥ 1 are valid inequalities, and π = 1
2 (π1 + π2)

then π = π1 = π2.
(E)

1.2 Facets in the Infinite-Dimensional Gomory–Johnson Model

It is perhaps not surprising that the three conditions (wF), (F), and (E) are
no longer equivalent when R is a general convex set that is not polyhedral,
and in particular when we change from the finite-dimensional to the infinite-
dimensional setting. In the present paper, however, we consider a particular case
of an infinite-dimensional model, in which this question has eluded researchers
for a long time. Let G = Q or G = R and let R

(G) now denote the space of finite-
support functions y : G → R. The so-called infinite group problem was introduced
by Gomory and Johnson in their seminal papers [9,10]. Let F = Ff (G, Z) ⊆ R

(G)
+

be the set of all finite-support functions y : G → Z+ satisfying the equation
∑

r∈G

r y(r) ≡ f (mod 1) (1)

where f is a given element of G \ Z. We study its convex hull R = Rf (G, Z) ⊆
R

(G)
+ , whose elements are understood as finite-support functions y : G → R+.

Valid inequalities for R are of the form 〈π, y〉 ≥ π0, where π comes from
the dual space R

G, which is the space of all real-valued functions (without the
finite-support condition). When G = Q, then R is again of “blocking type” (see,
for example, [7, Sect. 5]), and so we again may assume π ≥ 0 and π0 = 1.

If G = R (the setting of the present paper), typical pathologies from
the analysis of functions of a real variable come into play. For example,
by [4, Proposition 2.4] there is an infinite-dimensional space of valid equations
〈π∗, y〉 = 0, where π∗ are constructed using a Hamel basis of R over Q. Each of
these functions π∗ has a graph whose topological closure is R

2. In order to tame
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these pathologies, it is common to make further assumptions. Gomory–Johnson
[9,10] only considered continuous functions π. However, this rules out many
interesting functions such as the Gomory fractional cut. Instead it has become
common in the literature to build the assumption π ≥ 0 into the definition; then
we can again normalize π0 = 1. We call such functions π valid functions.

(Minimal) valid functions π that satisfy the conditions (wF), (F), and (E),
are called weak facets, facets, and extreme functions, respectively. The relation
of these notions, in particular of facets and extreme functions, has remained
unclear in the literature. For example, Basu et al. [1] wrote:

The statement that extreme functions are facets appears to be quite non-
trivial to prove, and to the best of our knowledge there is no proof in the
literature. We therefore cautiously treat extreme functions and facets as
distinct concepts, and leave their equivalence as an open question.

The survey [4, Sect. 2.2, Fig. 2] summarizes what was known about the rela-
tion of the three notions: Facets form a subset of the intersection of extreme
functions and weak facets. In the case of continuous piecewise linear functions
with rational breakpoints, [4, Proposition 2.8] and [5, Theorem 8.6] proved that
(E) ⇔ (F). We note that in this case, (wF) ⇒ (F) can be shown by restriction
with oversampling to finite group problems. Thus (E), (F), (wF) are equivalent
when π is a continuous piecewise linear function with rational breakpoints.

1.3 Contribution of this Paper

A well known sufficient condition for facetness of a minimal valid function π is the
Gomory–Johnson Facet Theorem. In its strong form, due to Basu–Hildebrand–
Köppe–Molinaro [6], it reads:

Theorem 1.1 (Facet Theorem, strong form, [6, Lemma 34]; see also [4,
Theorem 2.12]). Suppose for every minimal valid function π′, E(π) ⊆ E(π′)
implies π′ = π. Then π is a facet.

(Here E(π) is the additivity domain of π, defined in Sect. 2.) We show (Theorem
4.3 below) that, in fact, this holds as an “if and only if” statement.

As we mentioned above, for the case of continuous piecewise linear functions
with rational breakpoints, Basu et al. [4, Proposition 2.8] showed that the notions
of extreme functions and facets coincide. This was a consequence of Basu et al.’s
finite oversampling theorem [2]. We sharpen this result by removing the
hypothesis regarding rational breakpoints.

Theorem 1.2. In the case of continuous piecewise linear functions (not neces-
sarily with rational breakpoints), {extreme functions} = {facets}.

Then we investigate the notions of facets and weak facets in the case of dis-
continuous functions. This appears to be a first in the published literature. All
papers that consider discontinuous functions only used the notion of extreme
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functions. We give three discontinuous functions that furnish the sepa-
ration of the three notions (Theorem 6.1): A function ψ that is extreme, but
is neither a weak facet nor a facet; a function π that is not an extreme function
(nor a facet), but is a weak facet; and a function πlifted that is extreme and a
weak facet but is not a facet.

It remains an open question whether this separation can also be done using
continuous (non–piecewise linear) functions.

2 Minimal Valid Functions and Their Perturbations

Following [4], given a locally finite one-dimensional polyhedral complex P, we
call a function π : R → R piecewise linear over P, if it is affine linear over the
relative interior of each face of the complex. Under this definition, piecewise
linear functions can be discontinuous. We say the function π is continuous piece-
wise linear over P if it is affine over each of the cells of P (thus automatically
imposing continuity).

For a function π : R → R, define the subadditivity slack of π as Δπ(x, y) :=
π(x) + π(y) − π(x + y); then π is subadditive if and only if Δπ(x, y) ≥ 0 for all
x, y ∈ R. Denote the additivity domain of π by

E(π) = { (x, y) | Δπ(x, y) = 0 }.

By a theorem of Gomory and Johnson [9] (see [4, Theorem 2.6]), the minimal
valid functions are exactly the subadditive functions π : R → R+ that are peri-
odic modulo 1 and satisfy the symmetry condition π(x) + π(f − x) = 1 for all
x ∈ R. As a consequence, minimal valid functions are bounded between 0 and 1.

To combinatorialize the additivity domains of piecewise linear subadditive
functions, we work with the two-dimensional polyhedral complex ΔP, whose
faces are F (I, J,K) = { (x, y) ∈ R×R | x ∈ I, y ∈ J, x+y ∈ K } for I, J,K ∈ P.
Define the projections p1, p2, p3 : R × R → R as p1(x, y) = x, p2(x, y) = y,
p3(x, y) = x + y.

In the continuous case, since the function π is piecewise linear over P, we
have that Δπ is affine linear over each face F ∈ ΔP . Let π be a minimal valid
function for Rf (R, Z) that is piecewise linear over P. Following [4], we define the
space of perturbation functions with prescribed additivities E = E(π)

Π̄E(R, Z) =

⎧
⎪⎪⎨

⎪⎪⎩

π̄ : R → R

∣
∣
∣
∣
∣

π̄(0) = 0
π̄(f) = 0

π̄(x) + π̄(y) = π̄(x + y) for all (x, y) ∈ E
π̄(x + t) = π̄(x) for all x ∈ R, t ∈ Z

⎫
⎪⎪⎬

⎪⎪⎭

. (2)

When π is discontinuous, one also needs to consider the limit points where the
subadditivity slacks are approaching zero. Let F be a face of ΔP. For (x, y) ∈ F ,
we denote

ΔπF (x, y) := lim
(u,v)→(x,y)

(u,v)∈rel int(F )

Δπ(u, v).
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Define

EF (π) = { (x, y) ∈ F | ΔπF (x, y) exists, and ΔπF (x, y) = 0 }.

Notice that in the above definition of EF (π), we include the condition that the
limit denoted by ΔπF (x, y) exists, so that this definition can as well be applied
to functions π (and π̄) that are not piecewise linear over P.

We denote by E•(π,P) the family of sets EF (π), indexed by F ∈ ΔP.
Define the space of perturbation functions with prescribed additivities and limit-
additivities E• = E•(π,P)

Π̄E•(R, Z) =

⎧
⎪⎪⎨

⎪⎪⎩
π̄ : R → R

∣
∣
∣
∣
∣

π̄(0) = 0
π̄(f) = 0

Δπ̄F (x, y) = 0 for (x, y) ∈ EF , F ∈ ΔP
π̄(x + t) = π̄(x) for x ∈ R, t ∈ Z

⎫
⎪⎪⎬

⎪⎪⎭
.(3)

Remark 2.1. Let π̄ ∈ Π̄E(R, Z). The third condition of (2) is equivalent to
E(π) ⊆ E(π̄). Let π̄ ∈ Π̄E•(R, Z). The third condition of (3) is equivalent to
EF (π) ⊆ EF (π̄) for all faces F ∈ ΔP, which is stronger than E(π) ⊆ E(π̄) in (2).
Thus, in general, Π̄E•(R, Z) ⊆ Π̄E(R, Z). If π is continuous, then E(π) ⊆ E(π̄)
implies that EF (π) ⊆ EF (π̄) for all faces F ∈ ΔP, hence Π̄E•(R, Z) = Π̄E(R, Z).

3 Effective Perturbation Functions

Following [13], we define the space of effective perturbation functions

Π̃π(R, Z) =
{

π̃ : R → R | ∃ ε > 0 s.t. π± = π ± επ̃ are minimal valid
}

. (4)

Because of [4, Lemma 2.11(i)], a function π is extreme if and only if Π̃π(R, Z) =
{0}. Note that every function π̃ ∈ Π̃π(R, Z) is bounded.

It is clear that if π̃ ∈ Π̃π(R, Z), then π̃ ∈ Π̄E•(R, Z), where E• = E•(π,P);
see [2, Lemma 2.7] or [13, Lemma 2.1].

The other direction does not hold in general, but requires additional hypothe-
ses. Let π̄ ∈ Π̄E•(R, Z). In [3, Theorem 3.13] (see also [4, Theorem 3.13]), it
is proved that if π and π̄ are continuous and π̄ is piecewise linear, we have
π̄ ∈ Π̃π(R, Z). (Similar arguments also appeared in the earlier literature, for
example in the proof of [2, Theorem 3.2].)

We will need a more general version of this result. Consider the following
definition. Given a locally finite one-dimensional polyhedral complex P, we call
a function π̄ : R → R piecewise Lipschitz continuous over P, if it is Lipschitz
continuous over the relative interior of each face of the complex. Under this
definition, piecewise Lipschitz continuous functions can be discontinuous.

Theorem 3.1. Let π be a minimal valid function that is piecewise linear over
a polyhedral complex P. Let π̄ ∈ Π̄E•(R, Z) be a perturbation function, where
E• = E•(π,P). Suppose that π̄ is piecewise Lipschitz continuous over P. Then
π̄ is an effective perturbation function, π̄ ∈ Π̃π(R, Z).

We omit the proof in this extended abstract.
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4 Extreme Functions and Facets

In this section, we discuss the relations between the notions of extreme functions
and facets. We first review the definition of a facet, following [4, Sect. 2.2.3]; cf.
ibid. for a discussion of this notion in the earlier literature, in particular [8,11].

Let P (π) denote the set of functions y : R → Z+ with finite support satisfying
∑

r∈R

ry(r) ∈ f + Z and
∑

r∈R

π(r)y(r) = 1.

A valid function π is called a facet if for every valid function π′ such that
P (π) ⊆ P (π′) we have that π′ = π. Equivalently, a valid function π is a facet if
this condition holds for all such minimal valid functions π′ [6].

Remark 4.1. In the discontinuous case, the additivity in the limit plays a role in
extreme functions, which are characterized by the non-existence of an effective
perturbation function π̃ 	≡ 0. However facets (and weak facets, see the next
section) are defined through P (π), which does not capture the limiting additive
behavior of π. The additivity domain E(π), which appears in the Facet Theorem
as discussed below, also does not account for additivity in the limit.

A well known sufficient condition for facetness of a minimal valid function π
is the Gomory–Johnson Facet Theorem. We have stated its strong form, due to
Basu–Hildebrand–Köppe–Molinaro [6], in the introduction as Theorem 1.1. In
order to prove our “if and only if” version, we need the following lemma.

Lemma 4.2. Let π and π′ be minimal valid functions. Then E(π) ⊆ E(π′) if
and only if P (π) ⊆ P (π′).

Proof. The “if” direction is proven in [6, Theorem 20]; see also [4, Theorem 2.12].
We now show the “only if” direction, using the subadditivity of π. Assume that
E(π) ⊆ E(π′). Let y ∈ P (π). Let {r1, r2, . . . , rn} denote the finite support of y.
By definition, the function y satisfies that y(ri) ∈ Z+,

∑n
i=1 riy(ri) ≡ f (mod 1),

and
∑n

i=1 π(ri)y(ri) = 1. Since π is a minimal valid function, we have that
1 =

∑n
i=1 π(ri)y(ri) ≥ π

(∑n
i=1 riy(ri)

)
= π(f) = 1. Thus, each subadditivity

inequality here is tight for π, and is also tight for π′ since E(π) ⊆ E(π′). We
obtain

∑n
i=1 π′(ri)y(ri) = π′(∑n

i=1 riy(ri)
)

= π′(f) = 1, which implies that
y ∈ P (π′). Therefore, P (π) ⊆ P (π′). ��
Theorem 4.3 (Facet Theorem, “if and only if” version). A minimal
valid function π is a facet if and only if for every minimal valid function π′,
E(π) ⊆ E(π′) implies π′ = π.

Proof. It follows from the Facet Theorem in the strong form (Theorem 1.1) and
Lemma 4.2. ��

Now we come to the proof of a main theorem stated in the introduction.
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Proof (of Theorem 1.2). Let π be a continuous piecewise linear minimal valid
function. As mentioned in [4, Sect. 2.2.4], [6, Lemma 1.3] showed that if π is a
facet, then π is extreme.

We now prove the other direction by contradiction. Suppose that π is
extreme, but is not a facet. Then by Theorem 4.3, there exists a minimal valid
function π′ 	= π such that E(π) ⊆ E(π′). Since π is continuous piecewise lin-
ear and π(0) = π(1) = 0, there exists δ > 0 such that Δπ(x, y) = 0 and
Δπ(−x,−y) = 0 for 0 ≤ x, y ≤ δ. The condition E(π) ⊆ E(π′) implies that
Δπ′(x, y) = 0 and Δπ′(−x,−y) = 0 for 0 ≤ x, y ≤ δ as well. As the function π′

is bounded, it follows from the Interval Lemma (see [4, Lemma 4.1], for exam-
ple) that π′ is affine linear on [0, δ] and on [−δ, 0]. We also know that π′(0) = 0
as π′ is minimal valid. Using the subadditivity, we obtain that π′ is Lipschitz
continuous. Let π̄ = π′ − π. Then π̄ 	≡ 0, π̄ ∈ Π̄E(R, Z) where E = E(π), and π̄
is Lipschitz continuous. Since π is continuous, we have Π̄E(R, Z) = Π̄E•(R, Z).
By Theorem 3.1, there exists ε > 0 such that π± = π ± επ̄ are distinct minimal
valid functions. This contradicts the assumption that π is an extreme function.

Therefore, {extreme functions} = {facets}. ��

5 Weak Facets

We first review the definition of a weak facet, following [4, Sect. 2.2.3]; cf. ibid.
for a discussion of this notion in the earlier literature, in particular [8,11]. A
valid function π is called a weak facet if for every valid function π′ such that
P (π) ⊆ P (π′) we have P (π) = P (π′).

As we mentioned above, to prove that π is an extreme function or is a facet,
it suffices to consider π′ that is minimal valid. The following lemma shows it is
also the case in the definition of weak facets.

Lemma 5.1

(1) Let π be a valid function. If π is a weak facet, then π is minimal valid.
(2) Let π be a minimal valid function. Suppose that for every minimal valid

function π′, we have that P (π) ⊆ P (π′) implies P (π) = P (π′). Then π is a
weak facet.

(3) A minimal valid function π is a weak facet if and only if for every minimal
valid function π′, we have that E(π) ⊆ E(π′) implies E(π) = E(π′).

Proof. (1) Suppose that π is not minimal valid. Then, by [6, Theorem 1], π is
dominated by another minimal valid function π′, with π(x0) > π′(x0) at some
x0. Let y ∈ P (π). We have

1 =
∑

π(ri)y(ri) ≥
∑

π′(ri)y(ri) ≥ π′(∑ riy(ri)
)

= π′(f) = 1.

Hence equality holds throughout, implying that y ∈ P (π′). Therefore, P (π) ⊆
P (π′). Now consider y with y(x0) = y(f − x0) = 1 and y(x) = 0 otherwise.
It is easy to see that y ∈ P (π′), but y 	∈ P (π) since π(x0) + π(f − x0) >
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π′(x0) + π′(f − x0) = 1. Therefore, P (π) � P (π′), a contradiction to the weak
facet assumption on π.

(2) Consider any valid function π∗ (not necessarily minimal) such that
P (π) ⊆ P (π∗). Let π′ be a minimal function that dominates π∗: π′ ≤ π∗.
From the proof of (1) we know that P (π∗) ⊆ P (π′). Thus, P (π) ⊆ P (π′). By
hypothesis, we have that P (π) = P (π∗) = P (π′). Therefore, π is a weak facet.

(3) Direct consequence of (2) and Lemma 4.2. ��
Theorem 5.2. Let F be a family of functions such that existence of an effective
perturbation implies existence of a piecewise linear effective perturbation. Let π be
a continuous piecewise linear function (not necessarily with rational breakpoints)
such that π ∈ F . The following are equivalent. (E) π is extreme, (F) π is a facet,
(wF) π is a weak facet.

Remark 5.3. As shown in [2] (for a stronger statement, see [5, Theorem 8.6]),
the family of continuous piecewise linear functions with rational breakpoints is
such a family F where existence of an effective perturbation implies existence
of a piecewise linear effective perturbation. A forthcoming paper will investigate
larger such families F .

Proof (of Theorem 5.2). By Theorem 1.2 and the fact that {facets} ⊆ {extreme
functions} ∩ {weak facets}, it suffices to show that {weak facets} ⊆ {extreme
functions}.

Assume that π is a weak facet, thus π is minimal valid by Lemma 5.1. We
show that π is extreme. For the sake of contradiction, suppose that π is not
extreme. By the assumption π ∈ F , there exists a piecewise linear perturbation
function π̄ 	≡ 0 such that π ± π̄ are minimal valid functions. Furthermore, by [4,
Lemma 2.11], we know that π̄ is continuous, and E(π) ⊆ E(π̄). By taking the
union of the breakpoints, we can define a common refinement, which will still be
denoted by P, of the complexes for π and for π̄. In other words, we may assume
that π and π̄ are both continuous piecewise linear over P. Since Δπ̄ 	≡ 0, we may
assume without loss of generality that Δπ̄(x, y) > 0 for some (x, y) ∈ vert(ΔP).
Define

ε = min
{

Δπ(x, y)
Δπ̄(x, y)

∣
∣
∣ (x, y) ∈ vert(ΔP), Δπ̄(x, y) > 0

}

.

Notice that ε > 0, since Δπ ≥ 0 and E(π) ⊆ E(π̄). Let π′ = π − επ̄. Then π′ is
a bounded continuous function piecewise linear over P, such that π′ 	= π.

The function π′ is subadditive, since Δπ′(x, y) ≥ 0 for each (x, y) ∈ vert(ΔP).
As in the proof of Theorem 3.1, it can be shown that π′ is non-negative, π′(0) = 0,
π′(f) = 1, and that π′ satisfies the symmetry condition. Therefore, π′ is a
minimal valid function. Let (u, v) be a vertex of ΔP satisfying Δπ̄(u, v) > 0
and Δπ(u, v) = εΔπ̄(u, v). We know that Δπ′(u, v) = Δπ(u, v) − εΔπ̄(u, v) = 0,
hence (u, v) ∈ E(π′). However, (u, v) 	∈ E(π), since Δπ̄(u, v) > 0 implies that
Δπ(u, v) 	= 0. Therefore, E(π) � E(π′). By Lemma 5.1(3), we have that π is not
a weak facet, a contradiction. ��
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6 Separation of the Notions in the Discontinuous Case

The definition of facets fails to account for additivities-in-the-limit, which
are a crucial feature of the extremality test for discontinuous func-
tions. This allows us to separate the two notions. Below we do this by
observing that a discontinuous piecewise linear extreme function from the
literature, hildebrand discont 3 slope 1() (https://github.com/mkoeppe/
infinite-group-relaxation-code/search?q=%22def+hildebrand discont 3 slope
1(%22), constructed by Hildebrand (2013, unpublished; reported in [4]), works
as a separating example.

The other separations appear to require more complicated constructions.
Recently, the authors constructed a two-sided discontinuous piecewise linear
minimal valid function, kzh minimal has only crazy perturbation 1, which
is not extreme, but which is not a convex combination of other piecewise linear
minimal valid functions; see [13] for the definition. This function has two spe-
cial “uncovered” pieces on the intervals (l, u) and (f − u, f − l), where f = 4

5 ,
l = 219

800 , u = 269
800 , on which every nonzero perturbation is microperiodic (invariant

under the action of the dense additive group T = 〈t1, t2〉Z, where t1 = 77
7752

√
2,

t2 = 77
2584 ). Below we prove that it furnishes another separation.

For the remaining separation, we construct an extreme function πlifted as
follows. Define πlifted by perturbing the function π = kzh minimal has only
crazy perturbation 1() on infinitely many cosets of the group T on the two
uncovered intervals as follows.

πlifted(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(x) if x 	∈ (l, u) ∪ (f − u, f − l), or
if x ∈ (l, u) such that x + T ∈ C, or
if x ∈ (f − u, f − l) such that f − x + T ∈ C;

π(x) + s if x ∈ (l, u) such that x + T ∈ C+, or
if x ∈ (f − u, f − l) such that f − x + T ∈ C+;

π(x) − s otherwise,

(5)

where x39 = 4899
5000 , s = π(x−

39) + π(1 + l − x39) − π(l) = 19
23998 ,

C =
{

x ∈ R/T
∣
∣ x = l+u

2 + T or l+u−t1
2 + T or l+u−t2

2 + T
}
,

C+ =
{

x ∈ R/T
∣
∣ arbitrary choice of one element of {x, φ(x)}, x 	∈ C

}

with φ : R/T � x �→ l + u − x.

Theorem 6.1

(1) The function ψ = hildebrand discont 3 slope 1() is extreme, but is nei-
ther a weak facet nor a facet.

(2) The function π = kzh minimal has only crazy perturbation 1() is not
an extreme function (nor a facet), but is a weak facet.

(3) The function πlifted is extreme; it is a weak facet but is not a facet.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22)
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22)
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_discont_3_slope_1(%22)
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Fig. 1. Two diagrams of functions h (blue graphs on the top and the left) and polyhe-
dral complexes ΔP (gray solid lines) with additive domains E(h) (shaded in green),
as plotted by the command plot_2d_diagram_additive_domain_sans_limits(h).
(Left) h = hildebrand discont 3 slope 1() = π. (Right) h = π′ from the proof of
Theorem 6.1(2). (Color figure online)

Proof. (1) The function ψ = hildebrand discont 3 slope 1() is extreme
(Hildebrand, 2013, unpublished, reported in [4]). This can be verified using the
extremality test implemented in [12]. Consider the minimal valid function π′

defined by

π′(x) =

{
2x if x ∈ [0, 1

2 ];
π(x) if x ∈ ( 12 , 1).

Observe that E(ψ) is a strict subset of E(π′). See Fig. 1 for an illustration. Thus,
by Lemma 5.1(3), the function ψ is not a weak facet (nor a facet).

(2) By [13, Theorem 4.1], the function π = kzh minimal has only crazy
perturbation 1() is minimal valid, but is not extreme. Let π′ be a minimal valid
function such that E(π) ⊆ E(π′). We want to show that E(π) = E(π′). Consider
π̄ = π′ −π, which is a bounded Z-periodic function satisfying that E(π) ⊆ E(π̄).
We apply the proof of [13, Theorem 4.1, Part (ii)] to the perturbation π̄, and
obtain that

(i) π̄(x) = 0 for x 	∈ (l, u) ∪ (f − u, f − l);
(ii) π̄ is constant on each coset in R/T on the pieces (l, u) and (f − u, f − l).

Furthermore, it follows from the additivity relations of π and E(π) ⊆ E(π̄) that

(iii) π̄(x)+ π̄(y) = 0 for x, y ∈ (l, u) such that x+y ∈ {l+u, l+u− t1, l+u− t2};
(iv) π̄(x) + π̄(y) = 0 for x ∈ (l, u), y ∈ (f − u, f − l) such that x + y = f .

We now show that π̄ also satisfies the following condition:

(v) |π̄(x)| ≤ s for all x ∈ (l, u) ∪ (f − u, f − l), where s is the constant from the
definition of πlifted.

Indeed, by (iii) and (iv), it suffices to show that for any x ∈ (l, u), we have
π̄(x) ≥ −s. Suppose, for the sake of contradiction, that there is x̄ ∈ (l, u) such
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that π̄(x̄) < −s. Since the group T is dense in R, we can find x ∈ (l, u) such that
x ∈ x̄+T and x is arbitrarily close to 1+l−x39. Let δ = x−(1+l−x39). We may
assume that δ ∈ (0, −s−π̄(x̄)

c2−c3
), where c2 and c3 denote the slope of π on the pieces

(l, u) and (0, x1), respectively. See [13, Table 1] for the concrete values of the
parameters. Let y = 1+ l−x. Then y = x39 −δ. It follows from (i) that π̄(y) = 0
and π̄(x + y) = π̄(l) = 0. Now consider Δπ′(x, y) = π′(x) + π′(y) − π′(x + y),
where

π′(x) = π̄(x) + π(x) = π̄(x) + π(1 + l − x39) + δc2;
π′(y) = π(y) = π(x−

39) − δc3;
π′(x + y) = π(x + y) = π(l).

Since x − x̄ ∈ T , the condition (ii) implies that π̄(x) = π̄(x̄). We have

Δπ′(x, y) = π̄(x̄) + [π(1 + l − x39) + π(x−
39) − π(l)] + δ(c2 − c3)

= π̄(x̄) + s + δ(c2 − c3) < 0,

a contradiction to the subadditivity of π′. Therefore, π̄ satisfies condition (v).
Let F be a face of ΔP. Denote by nF ∈ {0, 1, 2} the number of projections

pi(rel int(F )) for i = 1, 2, 3 that intersect with (l, u) ∪ (f − u, f − l). It follows
from the conditions (i) and (v) that

|Δπ̄(x, y)| ≤ nF · s for any (x, y) ∈ rel int(F ).

It can be verified computationally that, if F ∈ ΔP has nF 	= 0, then either

(a) ΔπF (u, v) = 0 for all (u, v) ∈ vert(F ), or
(b) ΔπF (u, v) ≥ nF · s for all (u, v) ∈ vert(F ), and the inequality is strict for at

least one vertex.

Let (x, y) ∈ [0, 1)2 such that (x, y) 	∈ E(π). Then Δπ(x, y) > 0 since π is
subadditive. Consider the (unique) face F ∈ ΔP such that (x, y) ∈ rel int(F ).
We will show that Δπ′(x, y) > 0. If nF = 0, then Δπ̄(x, y) = 0, and hence
Δπ′(x, y) = Δπ(x, y) > 0. Now assume that nF 	= 0. Since ΔπF is affine linear
on F , Δπ(x, y) is a convex combination of {ΔπF (u, v) | (u, v) ∈ vert(F ) }. We
have Δπ(x, y) > 0 by assumption. Thus the above case (b) applies, which implies
that Δπ(x, y) > nF · s. Hence Δπ′(x, y) = Δπ(x, y) + Δπ̄(x, y) > 0 holds when
nF 	= 0 as well. Therefore, (x, y) 	∈ E(π′). We obtain that E(π′) ⊆ E(π). This,
together with the assumption E(π) ⊆ E(π′), implies that E(π) = E(π′).

We conclude, by Lemma 5.1(3), that π is a weak facet.
Remark: Conversely, if a Z-periodic function π̄ satisfies the conditions (i) to

(v), then π± = π ± π̄ are minimal valid functions, and E(π) = E(π+) = E(π−).
(3) Let π̄ = πlifted − π. Observe that π̄ satisfies the conditions (i) to (v) in

(2). Thus, the function πlifted is minimal valid and E(πlifted) = E(π). Let π′ be
a minimal valid function such that E(πlifted) ⊆ E(π′). Then, as shown in (2),
we have E(πlifted) = E(π′). It follows from Lemma 5.1(3) that πlifted is a weak
facet. However, the function πlifted is not a facet, since E(πlifted) = E(π) but
πlifted 	= π. Next, we show that πlifted is an extreme function.
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Suppose that πlifted can be written as πlifted = 1
2 (π1 + π2), where π1, π2 are

minimal valid functions. Then E(πlifted) ⊆ E(π1) and E(πlifted) ⊆ E(π2). Let
π̄1 = π1 − π and π̄2 = π2 − π. We have that E(π) ⊆ E(π̄1) and E(π) ⊆ E(π̄2).
Hence, as shown in (2), π̄1 and π̄2 satisfy the conditions (i) to (v). We will show
that π̄1 = π̄2.

For x 	∈ (l, u) ∪ (f − u, f − l), we have π̄i(x) = 0 (i = 1, 2) by condition (i).
It remains to prove that π̄1(x) = π̄2(x) for x ∈ (l, u) ∪ (f − u, f − l). By the
symmetry condition (iv), it suffices to consider x ∈ (l, u). We distinguish three
cases. If x+T ∈ C, then condition (iii) implies π̄i(x) = 0 (i = 1, 2). If x+T ∈ C+,
then π̄(x) = sbydefinition.Notice that π̄1+π̄2 = π1+π2−2π = 2πlifted−2π = 2π̄,
and that π̄i(x) ≤ s (i = 1, 2) by condition (v). We have π̄i(x) = s (i = 1, 2) in
this case. If x + T 	∈ C and x + T 	∈ C+, then π̄(x) = −s, and hence π̄i(x) = −s
(i = 1, 2). Therefore, π̄1 = π̄2 and π1 = π2, which proves that the function πlifted

is extreme. ��
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Abstract. Motivated by the applications in routing in data centers,
we study the problem of expressing an n × n doubly stochastic matrix
as a linear combination using the smallest number of (sub)permutation
matrices. The Birkhoff-von Neumann decomposition theorem proves that
there exists such a decomposition, but does not give a representation with
the smallest number of permutation matrices. In particular, we consider
the case when the optimal decomposition uses a constant number of
matrices. We show that the problem is not fixed parameter tractable,
and design a logarithmic approximation to the problem.

1 Introduction

A non-negative n × n matrix A is called a doubly stochastic matrix if the sum
of entries in every row and every column is equal to 1. A matrix P is called
a permutation matrix if every row and every column has exactly one non-zero
entry with value 1. A beautiful result of Birkhoff-von Neumann (BvN Theorem)
states that any doubly stochastic matrix can be presented as a linear combina-
tion of permutation matrices [13]. Formally, there exist non-negative constants
λ1, λ2, . . . , λk for some k > 0 such that

A = λ1P1 + λ2P2 + . . . λkPk, and ∀i, λi > 0 (1)

In graph theoretic language, the BvN theorem states that given a non-negative
edge weighted bipartite graph, where for every vertex the total weight of edges
incident on it is equal to 1 (fractional perfect matching), then it can be repre-
sented a convex combination of integral matchings. A proof of the BvN theorem
follows from the fact that vertices of the doubly stochastic matrix polytope,
called Birkhoff polytope, correspond to permutation matrices [13]. Note that a
BvN decomposition of a doubly stochastic matrix may not be unique - both in
terms of permutation matrices used and also in the number of matrices used
to produce such a decomposition. In this paper, motivated by its applications
to routing in data centers, we are interested in BvN representations of doubly
stochastic matrices with small number of matrices. However, in our setting, the
matrices in the representation can be sub-permutation matrices instead of per-
mutation matrices. A matrix is a sub-permutation matrix if every row and every

c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 343–354, 2017.
DOI: 10.1007/978-3-319-59250-3 28
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column has at most one non-zero entry with value 1. In graph theoretic language,
we seek to represent a fractional perfect matching of a bipartite graph as a linear
combination of integral matchings (not necessarily integral perfect matchings).
That is,

A = λ1M1 + λ2M2 + . . . λkMk, and ∀i, λi > 0 (2)

where each Mi is a sub-permutation matrix. We call such a representation match-
ing decomposition of doubly stochastic matrix A. In this paper we study the
problem of finding a minimum matching decomposition of a doubly stochastic
matrix. From Carathodory’s Theorem [15] we know that there is a representation
with at most n2 + 1 matrices, which can be tightened to n2 − 2n + 2 matrices
by applying the Marcus-Ree Theorem [14]. Yet, for a given doubly stochastic
matrix A, the number of matrices needed in a matching decomposition of A
can be much smaller than these bounds. Consider for example doubly stochas-
tic matrices that lie on a line connecting two vertices of the Birkhoff polytope;
such matrices can be represented as convex combination of only two permu-
tation matrices. We say that a matching decomposition of a doubly stochastic
matrix is minimum if there is no other matching decomposition with a smaller
number of sub-permutation matrices. Our goal is to find a minimum matching
decomposition of a doubly stochastic matrix.

Dufossé and Uçar [7] show that the problem of finding a minimum matching
decomposition is NP-hard, building on the work of Brualdi and Gibson [3,4].
Hence, we focus our attention on the case when the optimal representation uses
a constant number of sub-permutation matrices. We ask, is minimum matching
decomposition fixed parameter tractable in k?, where k is number of matrices
used in the optimal solution. In other words, is there an algorithm that finds a
matching decomposition with the minimum number of sub-permutation matrices
that runs in time that is polynomial in n but can depend arbitrarily in k.

Our main motivation to study the fixed parameter tractability of the prob-
lem comes from the application of the BvN theorem in traffic routing in recon-
figurable data centers and more broadly in software defined networks. One of
the emerging technologies to connect servers within a data center is to use
light (laser). An advantage of such an approach is that as traffic between
servers changes over time topology can be reconfigured. In such contexts, the
Birkhoff-von Neumann decomposition theorem has been extensively used to
route traffic among servers [2,4–6,9,10,18,20].

In routing applications, a doubly stochastic matrix represents traffic that
needs to be routed among a set of n servers. (Although traffic matrices need not
be doubly stochastic, in the applications of interest it is reduced to a doubly sto-
chastic matrix by appropriate scaling. See [18] more details.) A routing decision
at any time step is a matching between senders and receivers, a BvN decompo-
sition of the traffic matrix gives a schedule to route traffic. Switching between
matchings, however, involves reconfiguring hardware (moving laser pointers and
receivers) that comes at a cost. Consequently, finding a decomposition with few
permutation matrices improves performance [2,12,18]. Moreover, the empirical
evidence shows that the number of servers that are active is small compared
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to the total number of servers in a data center, and hence it is observed that
BvN decomposition has a small support [12]. There is a growing body of work in
understanding BvN decompositions in the context of reconfigurable data center
architectures and we refer the reader to [2,10,18] and references there in for
more details. Apart from its applications in data centers, the BvN theorem has
also been used in routing in wireless networks; we refer the readers to [4,5] more
details.

In this paper we show that the minimum matching decomposition problem
is not fixed parameter tractable.

Theorem 1. There exists a universal constant k ≥ 4 for which it is NP-hard
to find a minimum matching decomposition of a doubly stochastic matrix that
admits a decomposition into k matchings.

Since the optimal value k is a constant, our result implies that the problem is
APX-hard and does not admit a PTAS. In addition to fixed parameter tractable
algorithms, it also rules out an algorithm that runs in time nf(k) for any function
f . Interestingly, the problem is polynomial time solvable for k = 2, 3, and we
believe that it becomes NP-hard for k = 4. On the positive side, we show that
there exists a logarithmic approximation to the problem.

Theorem 2. There is an algorithm that is O(log k) approximation to minimum
matching decomposition problem, which runs in time polynomial in n and doubly
exponential in k.

In particular, our algorithm finds a representation of A using at most
O(log k) · k sub-permutation matrices if there is an optimal solution with at
most k sub-permutation matrices.

There is an algorithmic proof of the BvN decomposition theorem [7], and it
is natural to ask what is approximation factor of that algorithm. We show an
exponential lower bound on the approximation factor of the BvN decomposition
algorithm. We also show that our lower bound example extends to all known
variants of BvN decomposition algorithms. Another related question, in a spirit
similar to the approximate Carathéodory’s Theorem, is if there is a small repre-
sentation of ε-close matrix of A. For any n × n doubly stochastic matrix A, call
a n × n matrix A′ ε-close if ∀aij ∈ A, a′

ij ∈ A′, |aij − a′
ij | ≤ ε. We show that for

this problem there exists a tight representation using at most 1/ε matrices. This
is an improvement over the result of Barman [1] who showed a representation
using at most O(log(n)/ε2) matrices.

Discussion. Our results leave open several important questions. The most inter-
esting question is if there is a constant factor fixed parameter tractable approxi-
mation algorithm to the problem. Another interesting direction is to understand
the approximability of the problem for the general case when k is not a constant.

2 Approximation Algorithm

In this section we prove Theorem 2. We design an algorithm that runs in time
f(n)g(k), where f(n) is polynomial in n and g(k) is doubly exponential.
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Overview of the Algorithm. Our algorithm consists of three main steps. In the
first step, our algorithm finds a set of values λ1, λ2, . . . λk such that every entry
in A can be represented as sum of some subset of the values. We find such a set of
λ values by a combination of a brute force search and solving a sequence of linear
equations, and hence this step of our algorithm runs in time that is exponential
in k. Given λ values, we reduce our problem to a combinatorial problem called
generalized bipartite edge coloring (GBEC), which is a generalization of the
bipartite edge coloring problem. Here, for each edge we are given a list Se where
each element s ∈ Se is a subset of {λ1, λ2, . . . λk} (we allow the same number to
appear multiple times). Our goal is to assign each edge e an element se ∈ Se such
that the maximum degree in the induced bipartite graph corresponding to each
λi is as small as possible. An edge e is in the induced bipartite graph for λi if λi ∈
se and e is assigned se. Note that if there is a matching decomposition of A using
k matchings and our “guess” of λ values was correct, then the induced bipartite
graph corresponding to each λi would be a matching. Finally, we give a LP
rounding based algorithm to get a logarithmic approximation to the generalized
bipartite edge coloring problem.

2.1 Computing λ Values

Let w1, w2, . . . w� be the set of distinct elements of matrix A. We say that a
set of k real numbers S = {λ1, λ2, . . . λk} is feasible if every entry wi can be
represented as a sum of subset of values from S. That is, for all wi, ∃s ⊆ S, such
that wi =

∑
λi∈s λi. Our first observation is that one can find a feasible set for

distinct elements of A in time that is polynomial in n and exponential in k.

Lemma 1. A feasible set representing all distinct entries in A can be found in
time O(2k2k

).

Proof (sketch). First we observe that there cannot be more than 2k distinct
entries in A. This is true since every distinct entry in A needs to be represented
as some subset of [k], and there are at most 2k such subsets. Now we set up a
sequence of linear equations to find a feasible set.

The variables of our linear equations are x1, x2, x3.... . . . xk, which are
intended to represent a feasible set of λ1, λ2, . . . λk. For every distinct entry aij ,
we “guess” a subset s ⊂ [k] such that

∑
i∈s xi = aij and add it as a constraint in

our linear equations. Therefore, our systems of linear equations has k variables
and a constraint for every distinct entry in A. We write a sequence of such linear
equations for every possible guess of aij values. If A admits a matching decom-
position using at most k distinct matrices, then at least one of 2k2k

system of
linear equations should have a feasible solution, which will find a feasible subset
of λ values. 	


We remark that although the above algorithm finds a feasible set of λ values,
it is only a necessary condition for a matrix to have matching decomposition
using at most k entries. For the sake of getting a good approximation algorithm
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this also turns out to be sufficient: In particular, if for a feasible set of λ values
S the LP in Sect. 2.2 has a valid solution, then we show a representation using
the values in S.

Given the λ1, λ2, . . . λk values, our next step is to find a set of sub-
permutation matrices such that A can be represented as a linear combination of
sub-permutation matrices. Our idea to get a good approximation algorithm is
to first find an intermediate representation of A by a set of k incidence matrices
corresponding to a set of bipartite graphs such that maximum degree of any
vertex is minimized.

Formally, we first represent

A = λ1B1 + λ2B2 + . . . λkBk, (3)

where Bi is 0−1 matrix; that is, all non-zero entries in Bi have value 1. Fur-
ther, each Bi corresponds to a bipartite graph. We call this bipartite graph-
decomposition of matrix A. Our first intermediate goal is to represent A using
bipartite graphs B1, B2, . . . Bk such that the degree of every vertex in Bi for all
i ∈ [k] is as small as possible. Let Δ = maxi{maxv∈Bi

δi(v)}, where δi(v) is the
degree of vertex v in Bi.

Lemma 2. If A admits a bipartite graph-decomposition (3) with maximum
degree Δ, then there is a matching decomposition of A with at most kΔ sub-
permutation matrices.

Proof. To prove the lemma we make use of the Vizing’s theorem [19], which
states that any bipartite graph with maximum degree Δ can be decomposed into
Δ matchings. Therefore, by decomposing every Bi into at most Δ matchings (and
replicating the λi coefficient) we get a matching decomposition with at most kΔ
matchings. 	

The rest of the section is devoted to finding a bipartite decomposition of A
such that maximum degree is minimized. We formulate this problem as a linear
program.

2.2 LP Formulation

For each entry aij ∈ A, let Sij denote the set of all subsets of [k] such that aij

is equal to sum of the corresponding λ’s. That is,

∀s ∈ Sij , s ⊆ [k], aij =
∑

t∈s

λt.

Let G(A) = (V,E) denote the bipartite graph represented by A, where the
weight of an edge e := (i, j) is equal to aij . For every subset s ∈ Sij and for
every entry aij , we create a variable xes where e := (i, j). The LP relaxation we
write has the following three simple constraints:



348 J. Kulkarni et al.

∑

s∈Se

xes = 1, ∀e ∈ E (4)

∑

e:e→v

∑

s:i∈s,s∈Se

xes ≤ 1, v ∈ V, i ∈ [k] (5)

xes ≥ 0 (6)

The first set of constraints (4) ensure that every edge e is assigned some valid
set s ∈ Se. The second set of constraints (5) are matching constraints: Since A
admits a matching decomposition, for every coefficient λi, there is a bipartite
graph Bi such that the maximum degree is at most 1.

If the LP has no feasible solution, it implies that our guess of λ values was
not valid. So, we iterate over all possible guesses of λ values (as outlined in
Lemma (1)) till the LP (4–6) returns a feasible solution.

2.3 Rounding

Let x be a feasible solution to the above LP (4–6). Let x∗
es be the value of variable

xes in the solution x. We do a randomized rounding of x. That is, we assign edge
e to subset s ∈ Se with probability x∗

es. The first set constraints of from LP (4)
imply that every edge e gets a s ∈ Se. Let Bi represent the bipartite graph
corresponding to the set of edges e such that e → s and i ∈ s. We use e → s
to denote that the edge e was assigned to subset s in our randomized rounding.
Thus, we get an intermediate representation of A using bipartite graphs, and it
remains to bound Δ of this representation.

Let δi(v) be the degree of vertex v in the bipartite graph i after the random-
ized rounding. (That is, bipartite graph corresponding to coefficient λi). Note
that δi(v) is a random variable and from the second set of LP constraints we
have E[δi(v)] ≤ 1. We now show that probability that δi(v) ≥ O(log k) is at most
O(1/k2). Towards that we need the following version of Chernoff bound.

Theorem 3 (Chernoff Bounds [17]). Let X1,X2, · · · Xn be n independent ran-
dom variables with Xi = 1 with probability pi and Xi = 0 with probability 1− pi.
Let X =

∑
i Xi. Then for any ε > 1,

P(X ≥ (1 + ε)E(X)) ≤ exp(−ε/3 · E(X)).

A simple application of the above theorem gives the following result.

Lemma 3. P(δi(v) ≥ c log(k)) ≤ 1
k3 , for c ≥ 10.

Proof. First we note that δi(v) is the sum of independent random variables Xe.
Formally,

δi(v) =
∑

e:e→v

∑

s:i∈s

1(e → s)

The indicator function 1(e → s) denotes that edge e is assigned set s in our
random coloring. From the constraints of LP

E[δi(v)] =
∑

e:e→v

∑

s:i∈s

P(e → s) =
∑

e:e→v

∑

s:i∈s

x∗
es ≤ 1
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Now we apply the Chernoff bound by taking ε = 9 log(k) for the random
variable δi(v) to complete the proof. 	

However, the fact that P(δi(v) ≥ c log(k)) ≤ 1

k3 for fixed v and i does not
guarantee that P(maxi,v{δi(v)} ≤ c log(k)) is non-zero. This is because there
are nk events corresponding to every pair of (v, i) and probability of failure of
each event is only polynomial in 1/k. Since n can be much larger than k, union
bound does not give a non-zero probability for P(maxi,v{δi(v)} ≤ c log(k)). To
overcome this, we apply Lovaśz Local Lemma (LLL).

Theorem 4 (Lovaśz Local Lemma [8]). Let T1, T2 . . . Tm be events such that: (1)
P[Ti] ≤ p, (2) each Ti depends on at most d other events, and (3) 4 ·p ·d ≤ 1. Then
there is a nonzero probability that none of the events occurs; P(

⋂m
i=1 Ti) > 0.

We now apply LLL to show that when we do randomized rounding of LP
solution, with non-zero probability no vertex gets a degree more than O(log k)
in any bipartite graph Bi.

Lemma 4. With non-zero probability, no vertex v ∈ Bi, i ∈ [k], gets a degree
more than c log k for some constant c ≥ 10.

Proof. We prove the lemma by applying LLL. We define a set of bad events Ti,v

corresponding to every vertex v in the bipartite graph Bi. An event Ti,v is bad
if δi(v) is greater than 10 log k. From Lemma (3), we have P(Ti,v) ≤ 1

k3 .
Next, we bound dependency degree of an event Ti,v. Towards this, we define

a bipartite graph with a vertex for every bad event Ti,v in the left-hand side. The
right-hand side of this bipartite graph consists of random variables Xe, where
Xe represents the random variable for an edge e in G(A). Now, observe that
each bad event Ti,v depends on at most k random variables Xe. This follows
from the observation that at most k edges can be incident at a vertex v in G(A)
since A admits a BvN decomposition of size k. Further, each random variable
Xe can affect at most 2k bad events corresponding to (i, v), where i ∈ [k] and
e → v. This means that each Ai,v depends on at most 2k2 other events.

With these two facts, it is easy to verify the LLL condition that 4 · p · d ≤ 1
since p ≤ 1/k3 and d ≤ 2k2. Thus, with non-zero probability none of the bad
events occur. By applying Moser-Tardos [16] framework, we can find such an
outcome in polynomial time. 	


Putting all the pieces together we have the following theorem.
Theorem 5. The randomized rounding of LP (4–6) is an O(log(k)) approxi-
mation to the problem of finding minimum matching decomposition of a doubly
stochastic matrix.

Proof. From Lemma 4, we conclude that there is a decomposition of A into
bipartite graphs such that maximum degree (Δ) is at most O(log(k)). Then
it follows from Lemma 2 that there is a matching decomposition with at most
O(k log k) matrices. This completes the proof. 	

Now we show that our rounding of LP is almost optimal by showing an instance
where LP has Ω(log k/ log log k) integrality gap.
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2.4 LP Gap

Our LP in Sect. 2.2 fractionally assigns a subset se of [k] to each edge e, where
se must belong to the given collection Se of subsets. For each integral solution
{se}e∈E with se ∈ Se, recall that δi(v) = |{e ∈ E : e → v and i ∈ se}|. Each edge
e satisfies

∑
i∈s λi =

∑
i∈s′ λi for every s, s′ ∈ Se, so Se cannot be an arbitrary

collection of subsets. We show that if we ignore restrictions given by {λi}i∈[k]

and allow Se to be an arbitrary collection of subsets, our LP in Sect. 2.2 has a
gap of Ω( log k

log log k ).

Lemma 5. There is a bipartite graph G = (V,E), k ∈ N, and {Se ⊆ 2[k]}e∈E

such that the LP (4–6) is feasible, but for any integral solution {se}e∈E with
se ∈ Se, there exist at least k/2 numbers p1, . . . , pk/2 ∈ [k] such that for each pi,
maxv δpi

(v) ≥ Ω( log k
log log k ).

Proof. We first present an instance that is feasible for the LP and each integral
solution has one p ∈ [k] with maxv δp(v) ≥ Ω( log k

log log k ). Then we show how to
extend this construction to achieve p1, . . . , pk/2. Our instance is parameterized
by integers k and d, where d divides k. It has d+1 vertices {u, v1, . . . , vd} and d
edges {(u, vi)}1≤i≤d. Let ei := (u, vi). For each i, ei is associated with d subsets
si,1, . . . , si,d in the following way: for each element p ∈ [k], pick a random number
j ∈ [d] and put p into si,j . So for each i, si,1, . . . , si,d are disjoint and their union
is [k]. Fractionally, if each ei picks every si,j with 1

d , at vertex u, every p ∈ [k] is
picked exactly once.

We want to claim that if each ei integrally picks one si,ji
, one p ∈ [k] is picked

many times. Fix one integral solution (j1, . . . , jd), which represents that ei picks
si,ji

. For each p ∈ [k], the number of occurrences of p in s1,j1 , . . . , sd,jd
is a

random variable drawn from B(d, 1
d ), the binomial distribution with d trials and

probability 1/d. Note that each p ∈ [k] is independent. Let m be an integer fixed
later, and let Pm := Pr[X ≥ m] where X is drawn from B(d, 1

d ). The probability
that every p ∈ [k] occurs strictly less than m times is (1 − Pm)k ≤ e−Pmk.

We can lower bound Pm by

Pm ≥ Pr[X = m] =
(

d

m

)

(
1
d
)m(1 − 1

d
)d−m ≥ (d − m)m

mm
· 1
dm

· 1
e

≥ 1
(2m)m

,

for d ≥ 4m. There are dd tuples (j1, . . . , jd), so as long as

(1 − Pm)k · dd < 1 ⇐ e−Pmk · ed log d < 1 ⇐ 1
(2m)m

>
d log d

k
,

there is an instance where for each integral solution {se}e∈E there exists p ∈ [k]
with maxv δp(v) ≥ m. It works when d =

√
k and m = Ω( log k

log log k ).
To extend the above strategy to find p1, . . . , pk/2 simultaneously for each

integral solution, create � disjoint copies of the above instance independently.
As the above argument, it will be feasible for the LP if each edge picks each of
d subsets with 1

d . Fix an integral solution (there are now (dd)� = dd� choices).
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For each p ∈ [k], the probability that the number occurrences of p is less than
m in each copy is (1 − Pm)�. The probability that there are k/2 numbers that
occur less than m times in each copy is at most

(
k

k/2

) · (1−Pm)
�k
2 ≤ ek · e−Pm

�k
2 .

Union bounding over all dd� choices, as long as (take � � k)

ed� log d · ek · e−Pm
�k
2 < 1

⇐ Pm
�k

2
> d� log d + k

⇐ Pmk > 4d log d

⇐ 1
(2m)m

>
d log d

4k
,

there is an instance where for every integral solution, there are at least k/2
numbers p1, . . . , pk/2 that occur more than m times in a single copy. Since all
edges in one copy is incident on a single vertex, for each pi, maxv δ(v)pi

≥ m. It
works again with d =

√
k and m = Ω( log k

log log k ). 	


Remark: There is a natural configuration LP for the problem which overcomes
our intergrality gap example. It would be interesting to see if it can be rounded
to get a constant approximation to the problem.

3 Hardness Results

In this section we show that it is NP-hard to find a minimum matching decompo-
sition of a doubly stochastic matrix even when k = O(1). To obtain the hardness
for minimum matching decomposition, we show NP-hardness generalized bipar-
tite edge coloring (GBEC) introduced in Sect. 2. Recall that this problem was
formally defined as follows.

– Input: A bipartite graph G = (V,E), an integer k ∈ N. For each edge e ∈ E,
a collection of subsets Se ⊆ 2[k].

– Output: For each edge e, se ∈ Se.
– Goal: Minimize maxi∈[k],v∈V δi(v), where δi(v) := |{e ∈ E : e → v and i ∈

se}|.
Our algorithm in Sect. 2 gives an O(log k)-approximation algorithm. We com-
plement our algorithmic result by showing that GBEC is NP-hard even when
k = 28 in Sect. 3.1.

Theorem 6. Given an instance of GBEC with k = 28, it is NP-hard to distin-
guish whether the optimal value is 1 or higher.

We also show that there is an efficient reduction from GBEC to minimum
matching decomposition that keeps k to be constant. The proof is deferred to
the full version of the paper. These two results show NP-hardness of minimum
matching decomposition when k is a universal constant, proving Theorem1.
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Lemma 6. For some function k′ : N → N, there is a polynomial time reduction
φ from GBEC to minimum matching decomposition such that the instance I
of GBEC with k has the optimal value at most 1 if and only if the instance
φ(I) of minimum matching decomposition admits a decomposition into at most
k′ = k′(k) matchings.

3.1 Hardness of GBEC

This section proves Theorem 6, showing NP-hardness of GBEC even when k
is a constant. We reduce from Edge Coloring in 3-regular (general) graphs
to GBEC. Vizing’s theorem shows that every 3-regular graph can be 4-edge-
colorable, but Holyer [11] shows that it is NP-hard to decide whether it is 3-
edge-colorable or 4-edge-colorable.

Given a cubic graph G = (V,E) for Edge Coloring, let c1 : V �→ [4]
be a 4-vertex coloring, and c2 : E �→ [4] be a 4-edge coloring (both are easily
computable). The instance of GBEC is defined as follows.

– G′ = (V ′, E′) where V ′ = V ∪ E and E′ = {(v, e) : v ∈ V, e ∈ E, v ∈ e}. It is
clearly bipartite.

– Each edge e = (u, v) ∈ E is divided into two edges (u, e), (v, e) in G′. Arbi-
trarily call one of them head and the other tail.

– k = 28.
– Define {Ti,d}i,d for each i ∈ [3] and d ∈ {head, tail} such that

• Ti,d ⊆ [4] and |Ti,d| = 2 for each i, d.
• Ti,head ∪ Ti,tail = [4] for each i.
• Ti,d ∩ Tj,d′ �= ∅ for every i �= j and d, d′.
• Simply, T1,head = {1, 2}, T1,tail = {3, 4}, T2,head = {1, 3}, T2,tail =

{2, 4}, T3,head = {1, 4}, T3,tail = {2, 3} works.
– Fix an edge e′ = (e, u) ∈ E′ where e = (u, v) ∈ E and d ∈ {head, tail} be the

type of e′. Se′ has the following three subsets. When T ⊆ [4] and j ∈ N, let
(T + j) denote {t + j : t ∈ T}.

• Let se′,i := {i + 3(c1u − 1)} ∪ (Ti,d + (4c2e + 8)).
• Se′ := {se′,i : i ∈ [3]}.

Intuition. For any of subset se′,i = {i + 3(c1u − 1)} ∪ (Ti,d + (4c2e + 8)), note
that {i + 3(c1u − 1)} ⊆ {1, . . . , 12} and (Ti,d + (4c2e + 8)) ⊆ {13, . . . , 28}. Out of
28 colors for GBEC, {13, . . . , 28} ensures that for each e ∈ E, its head and tail
get the same color in [3] for Edge Coloring. The subset {1, . . . , 12} checks
that for each vertex v ∈ V , all incident edges have different colors. We use many
(k = 28) colors to perform these checks because we want these checks only
between desired edges (decided by c1 and c2).

Lemma 7. If G is 3-edge colorable, the optimum of GBEC for G′ is 1.
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Proof. Let c∗ : E �→ [3] be an edge 3-coloring of G. For edge e = (u, v) ∈ E
with head (e, u) and tail (e, v), let

s(e,u) ← s(e,u),c∗
e

= {c∗
e + 3(c1u − 1)} ∪ (Tc∗

e ,head + (4c2e + 8)),

s(e,v) ← s(e,u),c∗
v

= {c∗
e + 3(c1v − 1)} ∪ (Tc∗

e ,tail + (4c2e + 8)).

Let e′
1, e

′
2 ∈ E′ be adjacent edges. There are two cases.

– e′
1 = (e, u) and e′

2 = (e, v) for some edge e = (u, v) ∈ E: One of them is head,
and the other is tail. In {13, . . . , 28}, they are disjoint since Tc∗

e ,head and Tc∗
e ,tail

are disjoint. In {1, . . . , 12}, they are disjoint c1u �= c1v.
– e′

1 = (e, u) and e′
2 = (f, u) for e �= f ∈ E: In {13, . . . , 28}, they are disjoint

since c2e �= c2f . In {1, . . . , 12}, they are disjoint c∗
e �= c∗

f .

Therefore, the optimum of GBEC for G′ is 1. 	

Lemma 8. If the optimum of GBEC for G′ is 1, G is 3-edge colorable.

Proof. Let c : E′ → [3] be a solution of GBEC where each e′ ∈ E′ chooses
se′,c(e′) and the optimum is 1. The fact that the optimum is 1 means that for
every adjacent e′, f ′ ∈ E′, se′,c(e′) and sf ′,c(f ′) are disjoint.

For each edge e = (u, v) ∈ E, let e′
1 = (e, u) be its head and e′

2 = (e, v) be its
tail. We must have c(e′

1) = c(e′
2) to have the optimum at most 1 since otherwise

(Tc(e′
1),head

+(4c2e +8)) ⊆ se′
1,c(e′

1)
, (Tc(e′

2),tail
+(4c2e +8)) ⊆ se′

2,c(e′
2)

, and Tc(e′
1),head

and Tc(e′
2),tail

intersect if c(e′
1) �= c(e′

2).
For any e = (u, v) ∈ E and f = (u,w) ∈ E that meet at vertex u, let

e′ = (u, e) ∈ E′ and f ′ = (u, f) ∈ E′. We must have c(e′) �= c(f ′) to have the
optimum at most 1 since otherwise c(e′) + 3(c1u − 1) is contained in both se′,c(e′)
and sf ′,c(f ′).

Therefore, c gives the same color to head and tail of the same edge of E, and
adjacent edges must have different colors. Therefore, it gives a proper 3-edge
coloring of G. 	
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Abstract. Consider a two-stage matching problem, where edges of an
input graph are revealed in two stages (batches) and in each stage we
have to immediately and irrevocably extend our matching using the edges
from that stage. The natural greedy algorithm is half competitive. Even
though there is a huge literature on online matching in adversarial vertex
arrival model, no positive results were previously known in adversarial
edge arrival model.

For two-stage bipartite matching problem, we show that the opti-
mal competitive ratio is exactly 2/3 in both the fractional and the
randomized-integral models. Furthermore, our algorithm for fractional
bipartite matching is instance optimal—achieves the best competitive
ratio for any given first stage graph. We also study natural extensions of
this problem to general graphs and to s stages, and present randomized-
integral algorithms with competitive ratio 1

2
+ 2−O(s).

Our algorithms use a novel LP and combine graph decomposition
techniques with online primal-dual analysis.

Keywords: Online algorithms · Matching · Primal-dual analysis ·
Edmonds-Gallai decomposition · Competitive ratio · Semi-streaming

1 Introduction

The field of online algorithms has had tremendous success in modeling opti-
mization problems under uncertain input (see books [3,9,20]). The framework
involves an underlying optimization problem (e.g., max matching), where the
input arrives in stages (e.g., edges or vertices of a graph) and we have to make
immediate and irrevocable decisions at the end of each stage (e.g., whether to
match the vertex or edge). The goal is to design online algorithms with high
competitive ratio—for the worst possible input instance the expected ratio of
the online algorithm to the best algorithm in hindsight.

Most prior works on competitive analysis have only considered “single” ele-
ment arrival in each stage. Since the amount of information revealed in each stage
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is small, the interesting regime is when the number of stages are large (linear
in input size). Although powerful, this model often becomes too pessimistic and
algorithms with good competitive ratios cannot be obtained. Here we consider
the alternate online batch arrival model, where a “large” portion of the input
(batch) arrives in each stage and the algorithm makes an irrevocable decision at
the end of each stage. For a single stage this model captures the offline optimiza-
tion problem and for a linear number of stages it captures the standard online
model. Can we obtain competitive ratios better than the standard online model
for a “small” number of stages, say even two stages?

The motivation to study online batch arrival model is based on the fact
that in many scenarios that involve decision making under uncertainty, it is
conceivable that instead of making an irrevocable decision for each arrival, the
decision-maker prefers to gather some information for a certain amount of time
and make a collective decision based on it. Indeed, multistage and especially
two-stage robust/stochastic optimization problems have been actively studied
in both computer science and operations research (see recent paper of Golovin
et al. [12] and references therein, or a survey of Swamy and Shmoys [22]).

In this paper we study the online matching problem in the batch arrival
model, where edges of a graph arrive in s stages/batches. For the basic online
model where edges arrive one-by-one, its competitive ratio is not well understood.
In particular, it is still open that the competitive ratio is strictly bigger than 1/2
or not, which is achieved by a simple greedy algorithm. We prove that in our
online batch arrival model, the competitive ratio is strictly bigger than 1/2 for
any fixed number of stages. In particular, when s = 2, the tight competitive ratio
is exactly 2/3. For s = 2, we also present a new LP relaxation that guarantees
instance optimality, which means that our algorithm’s decision in the first stage
is optimal over the arbitrary choice of the second batch.

Our algorithms use classical tools from matching theory, such as Edmonds-
Gallai decomposition and TDIness of the matching polytope, combined with
carefully chosen parameters to prove large competitive ratios (some inequalities
are computer-assisted). These positive results imply that our online batch arrival
model allows interesting algorithmic ideas to work, and may not be as pessimistic
as the original online model.

1.1 Our Model and Results

Online matching in the vertex-arrival model started with the seminal work of
Karp et al. [15]. In this setting, vertices on one side of a bipartite graph are
revealed one-by-one along with their edges to the other side, and the prob-
lem is to immediately and irrevocably match this vertex. Since this prob-
lem occupies a central position in online algorithms and has many applica-
tions in online advertisement, many of its variants have been studied in great
depth (see survey [20]). This includes problems like AdWords [4,5,21], vertex-
weighted [1,6], edge-weighted [13,17], stochastic matching [8,19], random vertex
arrival [11,14,18], and vertex arrival on both sides [2,24].
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Even though there is a long list of work in the vertex arrival model, no non-
trivial algorithms are known in the equally natural edge-arrival model. Here edges
of a (bipartite) graph are revealed one-by-one and the online problem is to imme-
diately and irrevocably decide whether to pick the revealed edge into a matching.
The best known algorithm is greedy, which picks an edge whenever possible and
is half-competitive. Even when edges incident to a vertex are revealed together,
it already captures online bipartite matching with vertex arrival on both sides,
where nothing more than half is known [7,24].

The two-stage (fractional) bipartite matching problem is formally defined as
follows. Edges of a bipartite graph G = ((U1, U2), E) are revealed in two stages:
Stage 1 reveals a subgraph G(1) = ((U1, U2), E(1)) of G and we need to immedi-
ately and irrevocably decide which of its edges to pick into a (fractional) match-
ing X(1), without any knowledge of the remaining edges. Unmatched Stage 1
edges then disappear. Stage 2 reveals the remaining edges E(2) = E\E(1) of G
as a subgraph G(2) = ((U1, U2), E(2)), and we (fractionally) pick a subset X(2)

of them while ensuring that X(1) ∪ X(2) forms a (fractional) matching. This
paper gives randomized algorithms that maximize the competitive ratio for this
problem, i.e. ratio of the expected size of (fractional) matching obtained by the
algorithm to the size of the maximum matching in G. In the integral version,
the algorithm is allowed to use internal randomness, since otherwise the opti-
mal competitive ratio is half. Note that the optimal competitive ratio for the
fractional version is at least that of the integral version.

Our first main result is for the two-stage fractional bipartite matching prob-
lem. We say an algorithm is instance optimal if given the first stage graph G(1),
it outputs a fractional matching X(1) that achieves the optimal competitive ratio
over the adversarial choice of G(2).

Theorem 1. There exists an instance optimal algorithm for the two-stage frac-
tional bipartite matching problem.

Although the above algorithm is instance optimal, it does not prove that for
any G(1) the competitive ratio is more than half. Also, it does not work if one
can only select an integral matching in G(1). We show that a 2/3-competitive
algorithm is always possible and that this ratio cannot be improved. Indeed, our
result is on a generalization to multiple stages. In the s-stage general matching
problem, edges of a graph G are revealed in s stages. At the end of each stage,
we immediately and irrevocably decide which of that stage’s edges to pick into a
matching, while the other edges disappear. We show that one can still beat half
for a small number of stages.

Theorem 2. There exists a (12 + 1
2s+1−2 )-competitive algorithm for the s-stage

integral bipartite matching problem. The competitive ratio 2
3 for s = 2 is

information-theoretically tight.

We also prove similar results for general graphs.
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Theorem 3. There exists a ( 12 + 1
2O(s) )-competitive algorithm for the s-stage

integral general matching problem. For the two-stage fractional general matching
problem, there exists a 0.6-competitive algorithm.

Our proofs for bipartite matching results extend to corresponding multistage
bipartite vertex cover results1. We describe the problem and prove these corol-
laries in the full version.

1.2 Our Techniques

Consider a simple example where Stage 1 reveals a single edge (u, v). Should
our algorithm pick this edge irrevocably? Suppose it does not, then no edge
might appear in Stage 2, which makes the competitive ratio 0. On the other
hand, if it picks (u, v) then Stage 2 might reveal two edges (u′, u) and (v, v′),
where u′ �= v′. Now the maximum matching has size two, but the algorithm
only picks a single edge, which is half-competitive. This example already shows
that no deterministic algorithm can be more than half competitive and that no
randomized algorithm can be more than 2/3 competitive—picking (u, v) with
probability 2/3 is optimal.

A natural extension of the above algorithm is to pick a (carefully chosen)
maximum matching with probability 2/3. It turns out that picking a maximum
matching with probability δ for any δ ∈ (0, 1) fails to achieve a 2/3-competitive
ratio, regardless of how the maximum matching is chosen. This establishes the
fact that different parts of the graph must use “different local distributions” to
sample a matching. On the other hand, another important consideration is to
avoid matching one vertex too much, since otherwise the adversary can ensure
that the optimal edge indeed appears in Stage 2. Intuitively, the vertices should
somehow be “uniformly matched”. Our algorithms balance the above two seem-
ingly contradictory objects by exploiting graph decomposition techniques and
carefully chosen probability distributions.

We construct an online primal-dual algorithm, which finds online both a
random matching X(1) and a dual solution Y (1) (vertex-cover) such that for any
G(2) we can pick X(2) ⊆ E(2) and a dual solution Y (2) (where X(1) ∪ X(2) is a
matching) that satisfy the following two properties:

(i) �1 norm of Y := Y (1) + Y (2) is the same as the cardinality of set X :=
X(1) ∪ X(2).

(ii) In expectation the dual solution Y := Y (1) + Y (2) approximately satisfies
every dual constraint, i.e., covers every edge of G by at least 2/3.

Relaxed complementary slackness conditions now imply that the algorithm is
2/3 competitive [23].

We view our technical contribution in two categories. The instance optimal
algorithm for two-stage fractional bipartite matching uses a novel LP that com-
putes both a matching and a vertex-cover (dual) simultaneously in the primal
1 For general graphs, approximating vertex cover more than half is UGC hard even

when the entire graph is given [16].
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linear program. The LP allows both the algorithm and the adversary to interpret
their optimal strategies. On the other hand, to prove concrete competitive ratios
for various models, our technical contribution lies in the design of algorithms
themselves, which are based on graph decomposition techniques and carefully
chosen probability distributions to ensure Properties (i) and (ii). We believe
these ideas to be useful for future research on online matching. In the following,
we give brief overview of our results in more details.

Fractional Bipartite Matching: Instance Optimality using a New LP.
We write a linear program on G(1) to solve two-stage fractional bipartite match-
ing problem. Our contribution in proving Theorem 1 is a new technique that
strengthens the linear program for an online problem by moving the dual con-
straints (approximate edge-coverage) to the primal linear program. We believe
that this technique might be of independent interest and will have other appli-
cations. Since our solutions are fractional, we use lower case letters x and y
instead of X and Y . We maximize the competitive ratio α such that there exists
a fractional matching x(1) in E(1) and a fractional vertex cover dual y(1) that
satisfies: (a) �1 norms of x(1) and y(1) are equal and (b) every edge in E(1) is
α-approximately covered by y(1). It turns out that these constraints are neces-
sary but not sufficient by themselves. This means that for the optimal ratio α∗

of the linear program, one can provide a Stage 2 graph G(2) where the algorithm
cannot be more than α∗ competitive; however, there might be graphs where α∗

is not achievable by the algorithm. To further strengthen this linear program
and prove our theorem, we add new constraints that force the dual y to cover
“highly-matched” vertices in Stage 1.

Integral Bipartite Matching: Using Bipartite Matching Skeleton
of [10]. For two-stage integral bipartite matching problem, the natural app-
roach of rounding the instance optimal fractional matching solution fails. This
has been also observed in previous online matching results [24]. Indeed, there
is an example where going from fractional to integral setting strictly decreases
the competitive ratio. Our first observation is that in the special case where
E(1) contains a perfect matching, the algorithm that selects a perfect matching
in E(1) w.p. 2/3, and no edge otherwise, is 2/3 competitive. To prove this we
construct Y (1) by giving every matched vertex a value of 1/2 (in expectation
1/3). With simple case analysis, we show that for any G(2) we can always find
X(2) and Y (2) that satisfy Properties (i) and (ii).

To obtain a 2/3-competitive algorithm for any bipartite graph, we use a
decomposition into bipartite matching skeleton due to Goel et al. [10]. It par-
titions the vertices of G(1) into disjoint expanding pairs (Sj , Tj) that satisfy
αj · |N(S)∩Tj | ≥ |S| for any S ⊆ Sj ; here j is an integer, 0 < αj ≤ 1, and N(S)
denotes the set of neighbors of S in G(1) (see Sect. 2). For each expanding pair
(Sj , Tj), our online primal-dual algorithm finds a probability δj with which it
picks a random maximum matching in (Sj , Tj), with some correlation between
different pairs, and no edge in (Sj , Tj) otherwise. Moreover, we find εj that tells
us how to distribute the mass of any picked edge between its vertices in the dual
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solution y(1). Some careful case analysis allows us to show that for any E(2) one
can obtain both X(2) and y(2) that satisfy Properties (i) and (ii).

Integral General Matching: Using a New General Matching Skeleton.
To beat half for two-stage general graph matching, we rely on Edmonds-Gallai
decomposition. It gives us a characterization of any maximum matching in G(1)

by partitioning the vertices of G(1) into three sets C,A, and D (see Sect. 2.2),
where vertices in A form a “bridge” between vertices in D and C and the sub-
graph G(1)(C) of G(1) induced on C contains a perfect matching. For G(1)(C), as
above, our algorithm again picks a perfect matching in C w.p. 2/3, and no edge
otherwise, while distributing the duals equally to all the vertices in C. Most of
our effort goes in designing an algorithm for the induced subgraph G(1)(A ∪ D).

The crucial difference between bipartite and general matching is that D is
no longer independent and any maximum matching contains edges inside D. We
choose D′ ⊆ D and apply our bipartite matching algorithm to the bipartite graph
induced by A∪D′ (ignoring edges inside A). Finally, we match edges inside D and
construct duals to satisfy Properties (i) and (ii). Special care is taken for vertices
in D′ since they may be matched by both procedures. Analysis involves more
technical work since the number of dual variables for general graph matching is
exponential.

2 Preliminaries and Notation

In the s-stage matching problem, for each Stage i (1 ≤ i ≤ s), the graph G(i) =
(V,E(i)) is given. Let (G(1) ∪ · · · ∪ G(i)) denote the graph (V,E(1) ∪ · · · ∪ E(i)).

For the integral matching problem, in stage i, the algorithm is supposed to
return X(i) ⊆ E(i) such that X(1) ∪ · · · ∪ X(i) is a matching in G(1) ∪ · · · ∪ G(i).
The algorithm is allowed to use internal randomness. For the fractional matching
problem, in stage i, the algorithm is supposed to return x(i) ∈ [0, 1]E

(i)
such that

x(1) + · · · + x(i) is in the matching polytope of G(1) ∪ · · · ∪ G(i). By definition,
the competitive ratio for the integral matching problem is at most that of the
fractional matching problem.

2.1 Notation

Let G = (V,E) be an arbitrary graph. For S ⊆ V , let G(S) be the subgraph
induced by S and let N(S) := {v ∈ V \S : (u, v) ∈ E for some u ∈ S}. Let
G\S := G(V \S). Let E(S) be the set of edges of G(S). Let o(G) be the number
of odd components in G. Call an odd component S ⊆ V factor-critical if for any
s ∈ S, the induced subgraph G(S\{s}) has a perfect matching.

2.2 Graph Decompositions

For bipartite graphs, Goel et al. [10] showed the following bipartite matching
skeleton. Since no such result was known for general graphs, in the full ver-
sion we show a general matching skeleton using the classical Edmonds-Gallai
decomposition.
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Fig. 1. Bipartite matching skeleton [10]. Solid edges can exist but not dashed edges.

Lemma 1 (Bipartite matching skeleton [10]). Let G = ((U1, U2), E) be a
bipartite with no isolated vertex. There exists a partition of the vertices (see
Fig. 1) into pairs of subsets {(Sj , Tj)}j, where j is an integer in the interval
[a, b] for integers a ≤ 0 ≤ b, such that

1. Sj ⊆ U1 and Tj ⊆ U2 for j ≥ 0, and vice versa for j < 0.
2. |Tj | = 1

αj
|Sj | and for any P ⊆ Sj, one has |N(P ) ∩ Tj | ≥ 1

αj
|P |.

3. αa < αa+1 · · · < α0 = 1 > · · · > αb−1 > αb.
4. There exists a fractional matching between Sj and Tj such that vertices in Sj

are perfectly matched and vertices in Tj are exactly αj matched. Call (Sj , Tj)
an αj-expanding pair.

5. There is no edge of G between vertices in Sj and Tk for j, k where αj > αk.
6. There is no edge of G between vertices in Tj and Tk for any j, k.

3 Instance Optimal Two-stage Fractional Bipartite
Matching

In this section, we present a polynomial time instance optimal algorithm for
the two-stage fractional bipartite matching, proving Theorem 1. Recall that an
algorithm is instance optimal if for every G(1), it is guaranteed to achieve the
optimal competitive ratio given G(1).

Theorem 4. For any bipartite G(1), the following LP computes the optimal
competitive ratio given G(1).

max α

s.t. fu =
∑

v∈N1(u)
x
(1)
u,v ∀u ∈ V

fu ≤ 1, ∀u ∈ V
∑

(u,v)∈E(1) x
(1)
u,v≥ ∑

u y
(1)
u ,

y(1)
u + y(1)

v ≥ α, ∀(u, v) ∈ E(1) (1)

y(1)
u ≥ fu − (1 − α), ∀u ∈ V (2)

x(1)
u,v, y(1)

u ≥ 0, ∀u, v ∈ V
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In absence of Constraint (2), observe that above LP outputs α = 1 with optimal
maximum matching and optimal vertex cover as solutions. We prove sufficiency
and necessity directions for Theorem 4 in Lemmas 2 and 3, respectively.

Lemma 2. LP ensures that we can find a fractional matching x and fractional
vertex cover certificate y, both of the same value, such that every edge appearing
in first or second stage can be covered by at least α.

Proof. Consider any 2nd stage extension LP for a given first stage solution x(1).
Also, consider its dual.

max
∑

(u,v)∈E(2)

x
(2)
u,v

s.t.
∑

v∈N2(u) x
(2)
u,v ≤ 1 − fu, ∀u ∈ V

x
(2)
u,v ≥ 0, ∀u, v ∈ V

min
∑

u

y′
u(1 − fu)

s.t. y′
u + y′

v ≥ 1, ∀(u, v) ∈ E(2) (3)

y′
u ≥ 0, ∀u ∈ V

For any vertex u, define second stage vertex cover y
(2)
u to be y′

u(1−fu). Hence
the fractional vertex cover y is defined as yu := y

(1)
u + y

(2)
u = y

(1)
u + y′

u(1− fu). It
can be easily verified that ‖y‖1 is the same as the obtained fraction matching.
Equation (1) tells that any first stage edge is α covered by y. We next show that
any second stage edge (u, v) is also α covered by y. This is because yu + yv

= y(1)
u + y(1)

v + y′
u(1 − fu) + y′

v(1 − fv)

≥ y(1)
u + y(1)

v + (y′
u + y′

v)(1 − max{fu, fv})
≥ −(1 − α) + 1 = α (using Eqs. (2) and (3)).

Lemma 3. LP is tight, i.e. we can produce a Stage 2 graph s.t. no algorithm
can be better than α competitive.

Proof. We prove by contradiction and consider any decision x∗ at the end of
the first stage (this also fixes f∗

u) by an optimal algorithm with competitive
ratio β > α. We note that the optimal value of the following LP is greater than∑

x∗
u,v as otherwise we get a feasible solution to LP with value β, and this is a

contradiction that α is the optimal value of LP.

min
∑

u

y′
u

s.t. y′
u + y′

v ≥ α, ∀(u, v) ∈ E(1)

y′
u ≥ f∗

u − (1 − α), ∀u ∈ V1

y′
u ≥ 0, ∀u ∈ V



Maximum Matching in the Online Batch-Arrival Model 363

Also, consider its dual linear program.

max
∑

(u,v)∈E(1)

α Zu,v +
∑

u

(f∗
u − (1 − α))Yu (4)

s.t.
∑

v∈N1(u)
Zu,v + Yu ≤ 1, ∀u ∈ V1

Zu,v, Yu ≥ 0, ∀u, v ∈ V1

Proposition 1. The above dual linear program has an optimal integral solution.

We prove the proposition in the full version. Given the solution to the above
dual LP, the second stage graph consists

∑
Yu disjoint edges, each adjacent to

exactly one vertex with Yu = 1. Note that due to Eq. 4, edges with Zu,v = 1 can
never be adjacent to a vertex with Yu = 1. Hence the optimum matching for
this two stage graph is at least

∑
u Yu +

∑
(u,v)∈E(1) Zu,v. On the other hand,

the two stage algorithm’s value is
∑

u x∗
u,v +

∑
u Yu (1 − f∗

u). Combining,

αOPT − ALG ≥ α (
∑

u Yu +
∑

(u,v)∈E(1) Zu,v) −
(∑

u,v x∗
u,v +

∑
u Yu (1 − f∗

u)
)

=
(∑

(u,v)∈E(1) α Zu,v +
∑

u(f∗
u − (1 − α))Yu

)
− ∑

u,v x∗
u,v > 0.

4 Two-stage Integral Bipartite Matching

Even though the previous section gave us an instance optimal two-stage frac-
tional bipartite matching solution, it does not prove that for any G(1) the com-
petitive ratio is more than half. Also, it does not work if one can only select an
integral matching in G(1). In this section, we show that the optimal competitive
ratio for two-stage integral bipartite matching is exactly 2/3, proving Theorem2
for s = 2. We already know from Sect. 1 that no algorithm can be better than
2/3-competitive for two-stage integral bipartite matching problem. To prove the
other direction, the idea is to find matching X(1) in a way that we have a cor-
responding fractional dual solution Y (1) such that for any Stage 2 graph G(2),
we can find a matching X(2) and a dual Y (2) where in expectation Y (1) + Y (2)

covers every edge in G by 2/3.

4.1 Warmup: G(1) Contains a Perfect Matching

For intuition, we first analyze a simple case where G(1) contains a perfect match-
ing. Consider the algorithm that picks the perfect matching into X(1) w.p. 2/3,
and no edge otherwise. In Stage 2, the algorithm picks the maximum possible
matching X(2) ∈ E(2) such that X(1) ∪ X(2) is a matching. This is equivalent to
finding a maximum matching in G(2) after ignoring the vertices matched in X(1).

To prove that the above algorithm is 2/3 competitive, for any vertex u we
set Y

(1)
u = 1/2 whenever it’s matched. For Stage 2, since bipartite maximum

matching is equivalent to bipartite vertex cover, it also gives us integral vertex
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dual Y (2) such that |Y (2)| = |X(2)| and every edge in G(2), with none of its
vertices matched in X(1), is covered by Y (2). To prove that the algorithm is 2/3
competitive, we show that for any edge (u, v) ∈ E(1) ∪ E(2),

E[Yu] + E[Yv] = E[Y (1)
u ] + E[Y (1)

v ] + E[Y (2)
u ] + E[Y (2)

v ] ≥ 2/3.

For (u, v) ∈ E(1), the above equation is simply true because E[Y (1)
u ] +

E[Y (1)
v ] = Pr[Perfect matching picked] · (12 + 1

2 ) = 2
3 ( 12 + 1

2 ) = 2
3 .

Now, consider an edge (u, v) ∈ E(2). Consider first the case where both u
and v have an edge incident to them in Stage 1. Then, similar to above, we have
E[Y (1)

u ] + E[Y (1)
v ] = 2

3 ( 12 + 1
2 ) = 2

3 . So WLOG assume v has no edge incident to
it in E(1). Now,

E[Yu] + E[Yv ] =Pr[u is matched in X(1)] · E[Y (1)
u + Y

(1)
v | u is matched in X(1)]+

Pr[u is not matched in X(1)] · E[Y (2)
u + Y

(2)
v | u is not matched in X(1)]

= Pr[u is matched in X(1)] · 1
2
+ Pr[u is not matched in X(1)] · 1

≥ 2

3
(because Pr[u is matched in X(1)] ≤ 2/3).

4.2 Any Bipartite Graph G(1)

Algorithm and Construction of Duals. The algorithm starts by con-
structing a matching skeleton for G(1) as described in Sect. 2.2. For j ∈
{a, . . . ,−1, 0, 1, . . . , b}, let (Sj , Tj) denote the obtained expanding pair with
expansion αj between 0 and 1. We define

δj :=
3 − αj

3
and εj :=

2 − αj

3 − αj
.

The algorithm chooses a uniformly random r between [0, 1] and picks a random
maximum matching between all (Sj , Tj) with r < δj . Note that picking a match-
ing in (Sj , Tj) implies every vertex in Sj is matched w.p. 1 and each vertex in
Tj is matched w.p. probability αj (not independently). The dual variables Y (1)

are given values in a natural way: for any edge (u, v) in (Sj , Tj) picked into
matching X(1), we assign Y

(1)
u = εj and Y

(1)
v = 1 − εj . This clearly satisfies

‖Y (1)‖1 = |X(1)|.
In Stage 2, the algorithm picks the maximum possible matching X(2) ∈ E(2)

such that X(1) ∪ X(2) is a matching. This is equivalent to finding a maximum
matching in G(2) after ignoring the vertices matched in X(1). Since bipartite
maximum matching is equivalent to bipartite vertex cover, this step also gives
us integral vertex dual Y (2) with |Y (2)| = |X(2)| and every edge in G(2), with
none of its vertices matched in X(1), is covered by Y (2). In fact, the next section
shows that for any edge (u, v) ∈ E(1) ∪ E(2), we have

E[Yu] + E[Yv] = E[Y (1)
u ] + E[Y (1)

v ] + E[Y (2)
u ] + E[Y (2)

v ] ≥ 2/3.
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Algorithm 1. Two-stage Integeral Bipartite Matching Algorithm
Stage 1

1: Use Lemma 1 to construct a matching skeleton of G(1) with expanding pairs (Sj , Tj)
and expansion αj .

2: Define δj :=
3−αj

3
and generate a uniformly random real r ∈ [0, 1].

3: for each j do
4: if r < δj then
5: Using Property 4 in Lemma 1, pick a random maximum matching between

(Sj , Tj) that matches all vertices of Sj w.p. 1 & each vertex of Tj w.p. exactly αj .
6: end if
7: end for
8: Stage 2 Pick the optimal matching extension in G(2).

Analysis of the Online Primal-Dual Algorithm. We show E[Y ] covers
every edge in E(1) ∪ E(2) by 2/3. First, consider any Stage 1 edge (u, v). The
only possible cases due to Lemma 1 are: (a) u ∈ Sj and v ∈ Tk for αj ≤ αk, and
(b) u ∈ Sj and v ∈ Sk.

(a) u ∈ Sj and v ∈ Tk for αj ≤ αk: Using linearity of expectation and noting
that v is matched w.p. δkαk,

E[Y (1)
u ] + E[Y (1)

v ] = δjεj + δkαk(1 − εk) ≥ δjεj + δjαj(1 − εj) = 2/3,

where the inequality is because δα(1 − ε) = α
3 decreases with decrease in α.

(b) u ∈ Sj and v ∈ Sk: Using linearity of expectation,

E[Y (1)
u ] + E[Y (1)

v ] = δjεj + δkεk ≥ 2 δ0ε0 = 2/3, as δε is minimum for α = 1.

Next, consider any Stage 2 edge (u, v). Since Lemma 1 does not apply to
Stage 2 edges, we need to consider all the following cases: (a) u ∈ Sj and v ∈ Tk,
(b) u ∈ Sj and v ∈ Sk, (c) u ∈ Tj and v ∈ Tk, and (d) u ∈ Sj and v new, (e) u
new and v ∈ Tk. We only discuss Case (c), and defer others to the full version.

Case (c) (u ∈ Tj and v ∈ Tk): WLOG assume αj ≥ αk. In Stage 1 vertex u
is matched w.p. δjαj and vertex v w.p. δkαk. Using linearity of expectation,

E[Y (1)
u ] + E[Y (1)

v ] = δjαj(1 − εj) + δkαk(1 − εk) = αj/3 + αk/3. (5)

Also, Stage 2 dual gets value 1 if r > δk, or v is not matched for r ∈ [δj , δk],
or both u, v not matched for r < δj .

E[Y (2)
u ] + E[Y (2)

v ] = (1 − δk) + (δk − δj)(1 − αk) + δj(1 − αj)(1 − αk). (6)

Summing (5) and (6), and substituting for δj and δk gives,

E[Yu] + E[Yv] = E[Y (1)
u + Y (2)

u ] + E[Y (1)
v + Y (2)

v ]

=
1
3

(
2 + (1 − αj − αk)2 + αjαk(1 − αj)

) ≥ 2/3.
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Abstract. Motivated by many practical applications, in this paper we
study budget feasible mechanisms where the goal is to procure inde-
pendent sets from matroids. More specifically, we are given a matroid
M = (E, I) where each ground (indivisible) element is a selfish agent.
The cost of each element (i.e., for selling the item or performing a service)
is only known to the element itself. There is a buyer with a budget having
additive valuations over the set of elements E. The goal is to design an
incentive compatible (truthful) budget feasible mechanism which pro-
cures an independent set of the matroid under the given budget that
yields the largest value possible to the buyer. Our result is a determin-
istic, polynomial-time, individually rational, truthful and budget feasi-
ble mechanism with 4-approximation to the optimal independent set.
Then, we extend our mechanism to the setting of matroid intersections
in which the goal is to procure common independent sets from multiple
matroids. We show that, given a polynomial time deterministic blackbox
that returns α-approximation solutions to the matroid intersection prob-
lem, there exists a deterministic, polynomial time, individually rational,
truthful and budget feasible mechanism with (3α + 1)-approximation to
the optimal common independent set.

1 Introduction

Procurement auctions (a.k.a. reverse auctions), often carried out by governments
or private companies, deal with the scenarios where a buyer would like to pur-
chase objects from a set of sellers. These objects are not limited to physical items.
For instance they can be services provided by sellers. In this work we consider the
problem where a buyer with a budget is interested in a set of indivisible objects
for which he has additive valuations. We assume that each object is a selfish
agent. More specifically, we assume agents have quasi-linear utilities and they
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are rational (i.e., they aim to maximize the differences between the payments
they receive and their true costs). We also restrict ourself to the case where the
buyer is constrained to purchase a subset of objects that forms an independent
set with respect to an underlying matroid structure. A wide variety of research
studies have shown that matroids are linked to many interesting applications, for
example, auctions [2,9,13], spectrum market [17], scheduling matroids [8] and
house market [14].

One challenge in such procurement auctions involves providing incentives to
sellers for declaring their true costs when those costs are their private infor-
mation. A classical mechanism, namely Vickrey-Clark-Groves (VCG) mecha-
nism [7,11,18], provides an intuitive solution to this problem. The VCG mech-
anism returns a procurement that maximizes the valuation of the buyer and
the payments for sellers are their externalities to the procurement. The VCG
mechanism is a truthful mechanism, i.e., no seller will improve its utility by
manipulating its cost regardless the costs declared by others. However, the VCG
mechanism also has its drawbacks. One of the drawbacks, which makes VCG
mechanism impractical, is that the payments to sellers could be very high. To
overcome this problem two different approaches have been proposed and inves-
tigated. The first one is studying the frugality of mechanisms [12], which studies
the minimum payment the buyer needs to pay for a set of objects when sellers
are rational utility maximizers. The other approach is developing budget feasi-
ble mechanisms [16], where the goal is to maximize the buyer’s value for the
procurement under a given budget when sellers are rational utility maximizers.
Singer [16] showed that budget feasible mechanisms could approximate opti-
mal procurements that “magically” know the costs of sellers, when buyers have
nondecreasing submodular valuations.

Our Results. The goal of this study is to design budget feasible mechanisms for
procuring objects that form an independent set in a given matroid structure. To
the best of our knowledge it is the first time that matroid constraints are consid-
ered in the budget feasible mechanisms setting examined here. Previous work was
mainly devoted to different types of valuations for the buyer (see the Related
Work subsection). Our results are positive. In Sect. 3 we give a deterministic,
polynomial time, individually rational, truthful and budget feasible mechanism
with 4-approximation to the optimal independent set (i.e., the independent set
with maximum value for the buyer under the given budget) within the budget
of the buyer when the buyer has additive valuations. To generalize this result
we also provide a similar mechanism to procure the intersection of independent
sets in multiple matroids. In particular, given a deterministic polynomial time α-
approximation algorithm for the matroid intersection problems as a blackbox, in
Sect. 4 we present a deterministic, polynomial time, individually rational, truth-
ful and budget feasible mechanism with (3α + 1)-approximation to the optimal
independent set within the budget of the buyer when the buyer has additive
valuations. It is also good to know the limitations (e.g. lower bounds) of such
budget feasible mechanisms. In particular the lower bound to any deterministic
mechanism of 1 +

√
2 for additive valuations with one buyer presented in [6] (it
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is worth noticing that such lower bound do not rely on any computational or
complexity assumption), suggests that our mechanisms are not far away from
the optimal ones.

Due to space limitations, some of the proofs are available in the full version.

Related Work. The study of budget feasible mechanisms was initiated in [16].
It essentially focuses on the procurement auctions when sellers have private costs
for their objects and a buyer aims to maximize his valuation function on subsets
of objects, conditioned on that the sum of the payments given to sellers cannot
exceed a given budget of the buyer. In particular Singer [16] considered budget
feasible mechanisms when the valuation function of the buyer is nondecreasing
submodular. For general nondecreasing submodular functions, Singer [16] gave
a lower bound of 2 for deterministic budget feasible mechanisms and a random-
ized budget feasible mechanism with 112-approximation. When the valuation
function of the buyer is additive, a special class of nondecreasing submodular
functions, Singer [16] gave a polynomial deterministic budget feasible mecha-
nism with 6-approximation and a lower bound of 2 for any deterministic budget
feasible mechanism. All results were improved in [6], for example, a determin-
istic budget feasible mechanism with 2 +

√
2-approximation and an improved

lower bound of 1+
√

2 for any deterministic budget feasible mechanism for addi-
tive valuations were given. Furthermore, Bei et al. [3] gave a 768-approximation
mechanism for XOS valuations and extended their study to Bayesian settings.
Chan and Chen [5] studied budget feasible mechanisms in the settings in which
each seller processes multiple copies of the objects. They gave logarithmic mech-
anisms for concave additive valuations and sub-additive valuations.

Budget feasible mechanisms are attractive to many communities due to their
various applications. In crowdsourcing the goal is to assign skilled workers to
tasks when workers have private costs. By injecting some characteristics in
crowdsourcing, budget feasible mechanisms have been further developed and
improved. For example, Goel et al. [10] developed budget feasible mechanisms
that achieve 2e−1

e−1 -approximation to the optimal social welfare by exploiting the
assumption that one worker has limited contribution to the social welfare. Fur-
thermore Anari et al. [1] gave a budget feasible mechanism that achieves a com-
petitive ratio of 1 − 1/e ≈ 0.63 by using the assumption that the cost of any
worker is relatively small compared to the budget of the buyer. Another work
close to ours is [4], which studies the “dual” problem of maximizing the revenue
by selling the maximum independent set of a matroid. They proposed a truthful
ascending auction in which a seller is constrained to sell objects that forms a
basis in a matroid.

2 Preliminaries

Matroids. A matroid M is a pair of (E, I) where E is a ground set of finite
elements and I ⊆ 2E consists of subsets of the ground set satisfying the following
properties:
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– Hereditary property: If I ∈ I, then J ∈ I for every J ⊂ I.
– Exchange property: For any pair of sets I, J ∈ I, if |I| < |J |, then there exists

an element e ∈ J such that I ∪ {e} ∈ I.

The sets in I are called independent sets. Given a matroid M = (E, I)
and T ⊆ E is a subset of E, the restriction of M to T , denoted by M|T ,
is the matroid in which the ground set is T and the independent sets are the
independent sets of M that are contained in T . That is, M|T = (T, I(M|T ))
where I(M|T ) = {I ⊆ T : I ∈ I}. Similarly, the deletion of M, denoted by
M\T , is the matroid in which the ground set is E − T and the independent sets
are the independent sets of M that do not contain any element in T . That is,
M\T = (E − T, I(M\T )) where I(M\T ) = {I ⊆ E − T : I ∈ I}.

Matroid Budget Feasible Mechanisms. In an instance of the matroid budget fea-
sible mechanism design problem, we are given a matroid M = (E, I) consisting
of n ground elements, each of whom is associated with a weight we ∈ R+. Each
element e ∈ E is also associated with a private cost ce ∈ R+, which is only
known to the element itself. Our goal is to design a truthful mechanism that
gives incentives to elements for declaring their private costs truthfully and then
selects an independent set conditioned on that the total payment given to the
elements does not exceed a given budget b. Given an independent set I ∈ I, the
value of the independent set is defined by w(I) =

∑
e∈I w(e). We compare the

value of the independent set selected by the mechanism against the value of the
maximum-value independent set in which the total true cost of elements does
not exceed the budget.

We use w = 〈w1, . . . , wn〉 to denote the weight of the ground elements
and use d = 〈d1, . . . , dn〉 to denote the costs declared by the ground ele-
ments. Let τ be the maximum-weight element (breaking ties arbitrarily), that
is, wτ = maxe∈E we. We assume that de ∈ R+ and de ≤ b for any e ∈ E since
elements with costs greater than b cannot be selected by any mechanism due
to the budget constraint. This also implies that no element could improve its
utility by declaring di > b. Given a subset of element T , we use w−T and d−T to
denote the weight and cost vector excluding elements in T . Similarly, we use wT

and dT to denote the weight and cost vector only including elements in T . For
each element e ∈ E, bb(e) = de

we
is called the buck-per-bang rate for element e.1

A deterministic mechanism M = (f, p) consists of an allocation function
f : M,w,d, b → I ∈ I and a payment function p : M,w,d, b → R

n
+. Given

the weights and declared costs of the ground elements, the allocation func-
tion returns an independent set in the matroid and the payment function indi-
cates the payments for all elements. Let fM (M,w,d, b) and pM (M,w,d, b)
be the independent set and payments returned by M , respectively. If ele-
ment e is in the independent set obtained by M , then fM

e (M,w,d, b) = 1.
Otherwise, fM

e (M,w,d, b) = 0. It is assumed that pM
e (M,w,d, b) = 0 if

1 we
ce

is usually known as the bang-per-buck rate. To simplify the presentation, we call
de
we

the buck-per-bang rate.
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fM
e (M,w,d, b) = 0. The utility of an element is the difference between the pay-

ment received from the mechanism and its true cost. More specifically, the utility
of element e is given by uM

e (M,w,d, b) = pM
e (M,w,d, b) − fM

e (M,w,d, b) · ce.

Individual Rationality: A mechanism M is individually rational if pM
e (M,w,

d, b)−fM
e (M,w,d, b) ·de ≥ 0 for any M, any w ∈ R

n
+, any d ∈ R

n
+, any b ∈ R+

and any element e ∈ E. That is, no element in the selected independent set is
paid less than the cost it declared.

Truthfulness: A mechanism M is truthful if it holds uM
e (M,w,d−e, ce, b) ≥

uM
e (M,w,d−e, de, b) for any M, any w ∈ R

n
+, any d−e ∈ R

n−1
+ , any de ∈ R+,

any ce ∈ R+, b ∈ R+ and any e ∈ E, where d−e = 〈d1, . . . , de−1, de+1, . . . , dn〉.
When the context is clear, we sometimes abuse some notations. For example,
here we write uM

e (M,w,d−e, ce, b) instead of uM
e (M,w, 〈d−e, ce〉, b). A truthful

mechanism prevents any element improving its utility by mis-declaring its cost
regardless the costs declared by other elements.

Budget Feasibility: A mechanism M is budget feasible if
∑

e∈E pM
e (M,w,d, b) ≤

b for any M,w ∈ R
n
+, any d ∈ R

n
+ and any b ∈ R+.

Competitiveness: A mechanism M is α-competitive if w(fM (M,w,d, b)) ≥
1
αw(OPT(M,w,d, b)) for any w ∈ R

n
+,d ∈ R

n
+ and b ∈ R+, where

OPT(M,w,d, b) is the maximum-value independent set in which the total cost
of the elements is at most b. We often call OPT(M,w,d, b) the optimal indepen-
dent set and simplify it as OPT(M, b) throughout the paper when the weights
and the costs of elements are clear. Similarly we use MAX(M,w), shorten by
MAX(M), to denote the maximum-value independent set in M without the
budget constraint.

Simplifying Notations: From now on to avoid heavy notations we sometimes
simplify the notations. For example we will write fM , fM

e , pM , pM
e when the

inputs of the mechanism are clear. And we will use OPT(M\T, b) instead of
OPT(M\T,w−T ,d−T , b) to denote the optimal independent set in matroid
M\T . Similarly we will use OPT(M|T, b) instead of OPT(M|T,wT ,dT , b) to
denote the optimal independent set in matroid M |T . Furthermore we use
MAX(M\T ) instead of MAX(M\T,w−T ) to denote the maximum-value inde-
pendent set in M\T without considering the costs of the elements and the
budget.

3 Mechanisms for Matroids

In this section we provide our main result. We give a deterministic, polynomial
time, individually rational, truthful and budget feasible mechanism that is 4-
approximating the optimal independent set. Before providing the mechanism we
discuss some intuition that guides us in the design of Mechanism 1. First imagine
that there exists an element with a very high weight, i.e., any independent set
without this element results in a poor value compared to the optimal indepen-
dent set. In this case that element may strategically declare a high cost in order
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to increase its utility as it knows that any competitive mechanism has to select
it. To avoid that this happens we remove element τ (i.e., the element with the
largest weight) from the matroid via matroid deletion operation, and compare it
with the independent set computed later by the mechanism. Second we observe
that most of the existing budget feasible mechanisms adopt proportional pay-
ment schemes, where elements (i.e., agents) are paid proportionally according
to their contribution in the solution. In other words in a proportional payment
scheme there is an uniform price such that the payments for elements in the
solution are the products of their contribution and this price. In addition greedy
algorithms are commonly used in matroid systems. Combining these two obser-
vations our plan is to start from a high price and compute the maximum-value
independent set in the matroid at each iteration. If there is enough budget to
pay this independent set at the current price then we proceed to the final step
of the mechanism. Otherwise we reduce the price and remove an element from
the matroid. The buck-per-bang rate of that element becomes an upper bound
of the payment on each contribution in the next iteration. The mechanism per-
forms the procedure described above until the payment of the maximum-value
independent set is within budget b. As we will show next, if the value of the opti-
mal independent set does not come from a single element, we are able to retain
most of the value of the optimal independent set after removing those elements.
Finally, we show that returning the better solution between the maximum-value
independent set found and element τ approximates the value of the optimal
independent set within a factor of 4.

Mechanism 1: A budget feasible mechanism for procuring independent
sets in matroids
Input: M = (E, I),w,d, b
Output: f ,p

1 Sort elements in E − τ in a non-increasing order of buck per bang, i.e.
bb(i) ≥ bb(j) if i < j, break ties arbitrarily;

2 Let bb(0) = +∞, i = 1 and T = ∅;
3 Set r = bb(i);
4 while w(MAX(M\(T ∪ τ))) · r > b do
5 T = T ∪ {i} and i = i + 1;
6 r = bb(i);

7 r = min{ b
w(MAX(M\(T∪τ)))

, bb(i − 1)};

8 if w(MAX(M\(T ∪ τ))) > wτ then
9 For each e ∈ E, if e ∈ MAX(M\(T ∪ τ)), fe = 1 and pe = r · we. Otherwise,

fe = 0 and pe = 0;

10 else
11 fτ = 1, pτ = b. For edge e ∈ E − τ, fe = 0, pe = 0;

12 return f ,p;

Theorem 3.1. Mechanism 1 is a deterministic, polynomial time, individually
rational, truthful and budget feasible mechanism that is 4-competitive against the
optimal independent set given a budget.
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3.1 Approximation

Recall that T is the set of elements removed from the matroid. MAX(M\(T ∪τ))
is the independent set found when Mechanism 1 stops, and it is also the maximal-
value independent set in matroid M\(T ∪ τ). The roadmap of the proof is to
first show that, the independent set MAX(M\(T ∪ τ)) well approximates the
optimal independent set in matroid M\τ . Next we show that returning the
maximum between τ and MAX(M\(T ∪τ)) gives 4-approximation to the optimal
independent set in matroid M.

Lemma 3.1. Given any M,w,d, b, when Mechanism 1 stops, it holds

w(OPT(M\τ, b)) ≤ 2w(MAX(M\(T ∪ τ))) + wτ

Proof. It is trivial to see that this lemma holds when τ is the only element in
matroid M. The rest of the proof uses a similar idea in [10] and is divided
into two cases depending on whether the full budget b is spent or not. Consider
E − {τ} is partitioned into two disjoint sets, E − {τ} − T and T . The value of
maximum-value independent set w(OPT(M\τ, b)) is bounded by

w(OPT(M|T, b)) + w(OPT(M\(T ∪ τ), b))

As the buck-per-bang is at least r for every element in T , the weight of the
optimal independent set given a budget b in M|T , i.e. w(OPT(M|T, b)), is at
most b/r. When the full budget is spent, the weight of independent set fM is b/r
in Mechanism 1. On the other hand, fM is the maximum-value independent set
in M\(T ∪ τ). It implies that w(MAX(M\(T ∪ τ))) ≥ w(OPT(M\(T ∪ τ), b)).
The above analysis concludes that

w(OPT(M\τ, b)) ≤ 2w(MAX(M\(T ∪ τ)))

Now we turn to the case that some budget is left in Mechanism 1. Note that it
happens because r = bb(i−1) (see Line 7) during the execution of Mechanism 1.
Since Mechanism 1 does not stop while considering r = bb(i − 1) at previous
iterations in the loop, it implies that the maximum-value independent set found
was not budget feasible at previous iteration. After removing element i − 1, the
maximum-value independent set becomes budget feasible. These together imply

w(MAX(M\(T ′ ∪ τ))) · bb(i − 1) > b > w(MAX(M\(T ∪ τ))) · bb(i − 1)

where T ′ = T −{i−1}. This further implies that budget left is at most bb(i − 1)·
wi−1. By the similar argument as in previous case, the optimal independent set
in M|T is at most b/r, while the value of the independent set MAX(M\(T ∪ τ))
is at least (b − bb(i − 1) · wi−1)/r, which is at least b/r − wi−1. Therefore, we
have

w(OPT(M\τ, b)) ≤ 2w(MAX(M\(T ∪ τ))) + wi−1

Substituting wi−1 with wτ completes the proof. �
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Next, we show that returning the maximum between τ and MAX(M\(T ∪τ))
is 4-competitive against the optimal independent set in M.

Lemma 3.2. Given any M,w,d, b, the independent set returned by Mecha-
nism 1, i.e., the maximum between τ and MAX(M\(T ∪ τ)), is 4-competitive
against the optimal independent set.

Proof. The optimal independent set in M is bounded by

w(OPT(M, b)) ≤ wτ + w(OPT(M\τ, b))

By Lemma 3.1, we have

w(OPT(M, b)) ≤ 2wτ + 2w(MAX(M\(T ∪ τ)))

Therefore, the maximum between τ and MAX(M\(T ∪ τ)) approximates the
optimal independent set within a factor of 4. �

3.2 Truthfulness

We show that Mechanism 1 is truthful by considering following different cases.

Lemma 3.3. The element with the maximum weight, i.e., element τ , could not
improve his utility by declaring cost dτ �= cτ .

Lemma 3.4. Assume an element k is in T when it declares its cost truthfully.
Then, element k could not improve his utility by declaring a cost dk �= ck.

Lemma 3.5. Assume an element k is in E − τ − T − MAX(M\(T ∪ τ)) when
it declares its cost truthfully. Then, element k could not improve his utility by
declaring a cost dk �= ck.

Lemma 3.6. Assume an element k is in MAX(M\(T ∪ τ)) when it declares its
cost truthfully. Then, element k could not improve his utility by declaring a cost
dk �= ck.

3.3 Individual Rationality

When Mechanism 1 returns τ , the utility of τ is non-negative as cτ ≤ b. The
utilities for other edges are zero. When Mechanism 1 returns MAX(M\(T ∪ τ)),
for any element e ∈ MAX(M\(T ∪ τ)), that is, fe = 1, its utility is r · we − ce

which is non-negative since r ≥ bb(e). For other edges, their utilities are zero.

3.4 Budget Feasibility

When Mechanism 1 returns τ , it only pays b to edge τ . Hence, it is budget
feasible. On the other hand, when Mechanism 1 returns MAX(M\(T ∪ τ)), r is
used as payment per contribution. As r = min{ b

w(MAX(M\(T∪τ))) , bb(i − 1)}, it
guarantees the budget feasibility.
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3.5 Remarks

In Mechanism 1, we iteratively compute the maximum-value independent set
(e.g. Line 4). In the case that the maximum-value independent set is not unique,
we assume there is a deterministic tie-breaking rule. Note that all the results still
hold under this assumption. For example, the truthfulness of the mechanism will
not be compromised since the the maximum-value independent set only consider
the weights of the elements that is the public knowledge.

4 Mechanisms for Matroid Intersections

In this section we extend our mechanism to matroid intersections. The matroid
intersection problem (i.e., finding the maximum-value common independent set)
is NP-hard in general when more than three matroids are involved. Some inter-
esting cases of matroid intersection problems can be solved efficiently (i.e., they
can be formulated as the intersection of two matroids), for example, matchings
in bipartite graphs, arborescences in directed graphs, spanning forests in undi-
rected graphs, etc. Nevertheless we point out that a very similar mechanism to
the one presented in last section achieves a 4 approximation for the case when,
instead of a matroid, we are given an undirected weighted (general) graph where
the selfish agents are the edges of the graph and the buyer wants to procure a
matching under the given budget that yields the largest value possible to him.

For general matroid intersections, our main result is the following. Given a
deterministic polynomial time blackbox APX that achieves an α-approximation
to k-matroid intersection problems, we provide a polynomial time, individually
rational, truthful and budget feasible deterministic mechanism that is (3α + 1)-
competitive against the maximum-value common independent set. The mecha-
nism is similar to Mechanism 1 by changing MAX to APX. It is well-known that
the VCG payment rule does not preserve the property of truthfulness in the
presence of approximated solutions (i.e., non-optimal outcome). However unlike
the VCG mechanism, we show that Mechanism 2 preserves its truthfulness when
APX is used. This result will make our contribution more practical.

4.1 Matroid Intersections

Given k-matroid M1, . . . ,Mk, let M = (E, I) be the “true matroid” where E is
the common ground elements and I =

⋂
j Ij is the “true independent sets”. Sim-

ilar as the notations we used before, let OPT(M\T , b) and OPT(M|T , b) denote
the optimal independent set satisfying the budget constraint in matroid M\T
and M|T , respectively. Let APX(M\T , b) be the maximum-value independent
set in matroid M\T returned by the α-approximation algorithm.

4.2 Obtaining O(α) Approximation

We show the following key lemma, which is similar to Lemma 3.1 and implies
the approximation of our mechanism for matroid intersections.
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Mechanism 2: A budget feasible mechanism for procuring independent
sets in matroid intersections
Input: M = (E, I),w,d, b
Output: f ,p

1 Sort elements in E − τ in a non-increasing order of buck per bang, i.e.
bb(i) ≥ bb(j) if i < j, break ties arbitrarily;

2 Let bb(0) = +∞, i = 1 and T = ∅;
3 Set r = bb(i);
4 while w(APX(M\T )) · r > b do
5 T = T ∪ {i} and i = i + 1;
6 r = bb(i);

7 r = min{ b
w(APX(M\T ))

, bb(i − 1)};

8 if w(APX(M\T )) > wτ then
9 For each e ∈ E, if e ∈ APX(M\T ), fe = 1 and pe = r · wk. Otherwise, fe = 0

and pe = 0;

10 else
11 fτ = 1, pτ = b. For edge e ∈ E − τ, fe = 0, pe = 0;

12 return f ,p;

Lemma 4.1. Given any M,w,d, b, when Mechanism 2 stops, it holds

w(OPT(M\τ, b)) ≤ 2 · α · w(APX(M\(T ∪ τ))) + α · wτ

Proof. The proof has the same spirit as the proof of Lemma 3.1. We consider two
cases depending on whether the full budget b is spent or not. Consider E − {τ}
is partitioned into two disjoint sets, E − {τ} − T and T . Similar to Lemma 3.1,
when the full budget is spent, we get

w(OPT(M\τ, b)) ≤ w(OPT(M|T, b)) + w(OPT(M\(T ∪ τ), b))

≤ b

r
+ α · w(APX(M\(T ∪ τ)))

≤ (α + 1) · w(APX(M\(T ∪ τ)))

When there is some budget left in Mechanism 2, the analysis involves one more
step compared to Lemma 3.1 although the idea is still to bound the budget left.
Since Mechanism 2 does not stop when r = bb(i − 1), it implies that the inde-
pendent set returned by APX was not budget feasible at previous iteration. It
further implies that the maximum-value independent set is not budget feasible
either if the payment per weight is r. After removing element i−1, the indepen-
dent set returned by APX becomes budget feasible when r = bb(ei−1). These
together imply

w(MAX(M\(T ′ ∪ τ))) · bb(i − 1) ≥ w(APX(M\(T ′ ∪ τ))) · bb(i − 1)
> b

> w(APX(M\(T ∪ τ))) · bb(i − 1)
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where T ′ = T − {i − 1}. As the sum of w(APX(M\(T ∪ τ))) and w(i − 1) is at
least 1

α fraction of w(MAX(M\(T ′ ∪ τ))), we get

(
w(APX(M\(T ∪ τ)) + wi−1

) · bb(i − 1) ≥ 1

α
· w(MAX(M\(T ′ ∪ τ))) · bb(i − 1) >

b

α

Hence, we get w(APX(M\(T ∪ τ)) + wi−1 > b
α·bb(i−1) . Finally,

OPT(M\τ, b) ≤ w(OPT(M|T, b)) + w(OPT(M\(T ∪ τ), b))

≤ b

bb(i − 1)
+ α · w(APX(M\(T ∪ τ)

≤ 2 · α · w(APX(M\(T ∪ τ) + α · wi−1

Substituting wi−1 with wτ completes the proof. �

4.3 Preserving the Truthfulness

In this section, we will show that replacing MAX by APX preserve the truthful-
ness of the mechanism for matroid intersections. The reason behind is that the
mechanism works in a greedy fashion and at each iteration the cost declared by
elements does not affect the independent set computed in the mechanism. The
property of the truthfulness replies on the greedy approach instead of the opti-
mality of the independent set. The proofs are similar to the proofs in Sect. 3.2.

5 Applications

Uniform Matroid. Additive valuation has been studied in the design of budget
feasible mechanisms, e.g. [6,16]. In such settings a buyer would like to maximize
his valuation by procuring items under the constraint that his payment is at
most his budget. Our result generalizes to the case where the buyer has not only
the budget constraint but also has a limit on the number of items he can buy.
For example hiring people in companies is not only constraint by budgets but
also limited by the office space.

Scheduling Matroid. Our mechanism could be used to purchase processing
time in the context of job scheduling. One special case is the following. Each
job is associated with a deadline and a profit, and requires a unit of processing
time. As jobs may conflict with each other, only one job can be scheduled at
the same time. The buyer would like to maximize his profit by completing jobs
under the constraint that he does not spend more than his budget in purchasing
processing time.

Spectrum Market. Tse and Hanly [17] showed that the set of achievable rates
in a Gaussian multiple-access, known as the Cover-Wyner capacity region, forms
a polymotroid. It is known there is a pseudopolynomial reduction from integral
polymatroids to matroids [15]. Therefore, our mechanism can be used to purchase
transmission rates by tele-communication companies.
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Abstract. A well-known theorem of Spencer shows that any set system
with n sets over n elements admits a coloring of discrepancy O(

√
n).

While the original proof was non-constructive, recent progress brought
polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss.
All those algorithms are randomized, even though Bansal’s algorithm
admitted a complicated derandomization.

We propose an elegant deterministic polynomial time algorithm that
is inspired by Lovett-Meka as well as the Multiplicative Weight Update
method. The algorithm iteratively updates a fractional coloring while con-
trolling the exponential weights that are assigned to the set constraints.

A conjecture by Meka suggests that Spencer’s bound can be gen-
eralized to symmetric matrices. We prove that n × n matrices that
are block diagonal with block size q admit a coloring of discrepancy
O(

√
n · √log(q)). Bansal, Dadush and Garg recently gave a random-

ized algorithm to find a vector x with entries in {−1, 1} with ‖Ax‖∞ ≤
O(

√
log n) in polynomial time, where A is any matrix whose columns

have length at most 1. We show that our method can be used to deter-
ministically obtain such a vector.

1 Introduction

The classical setting in (combinatorial) discrepancy theory is that a set sys-
tem S1, . . . , Sm ⊆ {1, . . . , n} over a ground set of n elements is given and the
goal is to find bi-coloring χ : {1, . . . , n} → {±1} so that the worst imbal-
ance maxi=1,...,m |χ(Si)| of a set is minimized. Here we abbreviate χ(Si) :=∑

j∈Si
χ(j). A seminal result of Spencer [Spe85] says that there is always a col-

oring χ where the imbalance is at most O(
√

n · log(2m/n)) for m ≥ n. The proof
of Spencer is based on the partial coloring method that was first used by Beck in
1981 [Bec81]. The argument applies the pigeonhole principle to obtain that many
of the 2n many colorings χ, χ′ must satisfy |χ(Si)−χ′(Si)| ≤ O(

√
n · log(2m/n))

for all sets Si. Then one can take the difference between such a pair of colorings
with |{j | χ(j) �= χ′(j)}| ≥ n

2 to obtain a partial coloring of low discrepancy.
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relaxations in combinatorial optimization”, an Alfred P. Sloan Research Fellowship
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This partial coloring can be used to color half of the elements. Then one iterates
the argument and again finds a partial coloring. As the remaining set system has
only half the elements, the bound in the second iteration becomes better by a
constant factor. This process is repeated until all elements are colored; the total
discrepancy is then given by a convergent series with value O(

√
n · log(2m/n)).

More general arguments based on convex geometry were given by Gluskin [Glu89]
and by Giannopoulos [Gia97], but their arguments still relied on a pigeonhole
principle with exponentially many pigeons and pigeonholes and did not lead to
polynomial time algorithms.

In fact, Alon and Spencer [AS08] even conjectured that finding a col-
oring satisfying Spencer’s theorem would by intractable. In a breakthrough,
Bansal [Ban10] showed that one could set up a semi-definite program (SDP)
to find at least a vector coloring, using Spencer’s Theorem to argue that the
SDP has to be feasible. He then argued that a random walk guided by updated
solutions to that SDP would find a coloring of discrepancy O(

√
n) in the balanced

case m = n. However, his approach needed a very careful choice of parameters.
A simpler and truly constructive approach that does not rely on Spencer’s

argument was provided by Lovett and Meka [LM12], who showed that for x(0) ∈
[−1, 1]n, any polytope of the form P = {x ∈ [−1, 1]n :

∣
∣〈vi, x − x(0)〉∣∣ ≤ λi ∀i ∈

[m]} contains a point that has at least half of the coordinates in {−1, 1}. Here
it is important that the polytope P is large enough; if the normal vectors vi

are scaled to unit length, then the argument requires that
∑m

i=1 e−λ2
i /16 ≤ n

16

holds. Their algorithm surprisingly simple: start a Brownian motion at x(0) and
stay inside any face that is hit at any time. They showed that this random walk
eventually reaches a point with the desired properties.

More recently, the third author provided another algorithm which simply
consists of taking a random Gaussian vector x and then computing the nearest
point to x in P . In contrast to both of the previous algorithms, this argument
extends to the case that P = Q ∩ [−1, 1]n where Q is any symmetric convex set
with a large enough Gaussian measure.

However, all three algorithms described above are randomized, although
Bansal and Spencer [BS13] could derandomize the original arguments by Bansal.
They showed that the random walk already works if the directions are chosen
from a 4-wise independent distribution, which then allows a polynomial time
derandomization.

In our algorithm, we think of the process more as a multiplicative weight
update procedure, where each constraint has a weight that increases if the current
point moves in the direction of its normal vector. The potential function we
consider is the sum of those weights. Then in each step we simply need to select
an update direction in which the potential function does not increase.

The multiplicative weight update method is a meta-algorithm that originated
in game theory but has found numerous recent applications in theoretical com-
puter science and machine learning. In the general setting one imagines having
a set of experts (in our case the set constraints) that are assigned an exponen-
tial weight that reflects the value of the gain/loss that expert’s decisions had in
previous rounds. Then in each iteration one selects an update, which can be a
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convex combination of experts, where the convex coefficient is proportional to
the current weight of the expert1. We refer to the very readable survey of Arora
et al. [AHK12] for a detailed discussion.

1.1 Related Work

If we have a set system S1, . . . , Sm where each element lies in at most t sets, then
the partial coloring technique described above can be used to find a coloring of
discrepancy O(

√
t · log n) [Sri97]. A linear programming approach of Beck and

Fiala [BF81] showed that the discrepancy is bounded by 2t − 1, independent
of the size of the set system. On the other hand, there is a non-constructive
approach of Banaszczyk [Ban98] that provides a bound of O(

√
t log n) using

convex geometry arguments. Only very recently, a corresponding algorithmic
bound was found by Bansal et al. [BDG16]. A conjecture of Beck and Fiala says
that the correct bound should be O(

√
t). This bound can be achieved for the

vector coloring version, see Nikolov [Nik13].
More generally, the theorem of Banaszczyk [Ban98] shows that for any convex

set K with Gaussian measure at least 1
2 and any set of vectors v1, . . . , vm of length

‖vi‖2 ≤ 1
5 , there exist signs εi ∈ {±1} so that

∑m
i=1 εivi ∈ K.

A set of k permutations on n symbols induces a set system with kn sets
given by the prefix intervals. One can use the partial coloring method to find
a O(

√
k log n) discrepancy coloring [SST], while a linear programming approach

gives a O(k log n) discrepancy [Boh90]. In fact, for any k one can always color
half of the elements with a discrepancy of O(

√
k) — this even holds for each

induced sub-system [SST]. Still, [NNN12] constructed 3 permutations requiring
a discrepancy of Θ(log n) to color all elements.

Also the recent proof of the Kadison-Singer conjecture by Marcus
et al. [MSS13] can be seen as a discrepancy result. They show that a set of vectors
v1, . . . , vm ∈ R

n with
∑m

i=1 viv
T
i = I can be partitioned into two halves S1, S2

so that
∑

i∈Sj
viv

T
i � ( 12 +O(

√
ε))I for j ∈ {1, 2} where ε = maxi=1,...,m{‖vi‖22}

and I is the n × n identity matrix. Their method is based on interlacing poly-
nomials; no polynomial time algorithm is known to find the desired partition.

For a symmetric matrix A ∈ R
m×m, let ‖A‖op denote the largest singular

value; in other words, the largest absolute value of any eigenvalue. The discrep-
ancy question can be generalized from sets to symmetric matrices A1, . . . , An ∈
R

m×m with ‖Ai‖op ≤ 1 by defining disc({A1, . . . , An}) := min{‖∑n
i=1 xiAi‖op :

x ∈ {−1, 1}n}. Note that picking 0/1 diagonal matrices Ai corresponding to the
incidence vector of element i would exactly encode the set coloring setting. Again
the interesting case is m = n; in contrast to the diagonal case it is only known
that the discrepancy is bounded by O(

√
n · log(n)), which is already attained

by a random coloring. Meka2 conjectured that the discrepancy of n matrices can
be bounded by O(

√
n).

1 We should mention for the sake of completeness that our update choice is not a
convex combination of the experts weighted by their exponential weights.

2 See the blog post https://windowsontheory.org/2014/02/07/discrepancy-and-be
ating-the-union-bound/.

https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound/
https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound/
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For a very readable introduction into discrepancy theory, we recommend
Chap. 4 in the book of Matoušek [Mat99] or the book of Chazelle [Cha01].

1.2 Our Contribution

Our main result is a deterministic version of the theorem of Lovett and Meka:

Theorem 1. Let v1, . . . , vm ∈ R
n unit vectors, x(0) ∈ [−1, 1]n be a starting

point and let λ1 ≥ . . . ≥ λm ≥ 0 be parameters so that
∑m

i=1 exp(−λ2
i /16) ≤ n

32 .
Then there is a deterministic algorithm that computes a vector x ∈ [−1, 1]n

with 〈vi, x − x(0)〉 ≤ 8λi for all i ∈ [m] and |{i : xi = ±1}| ≥ n
2 , in time

O(min{n4m,n3mλ2
1}).

By setting λi = O(1) this yields a deterministic version of Spencer’s theorem
in the balanced case m = n:

Corollary 1. Given n sets over n elements, there is a deterministic algorithm
that finds a O(

√
n)-discrepancy coloring in time O(n4).

Furthermore, Spencer’s hyperbolic cosine algorithm [Spe77] can also be inter-
preted as a multiplicative weight update argument. However, the techniques of
[Spe77] are only enough for a O(

√
n log(n)) discrepancy bound for the balanced

case. Our hope is that similar arguments can be applied to solve open prob-
lems such as whether there is an extension of Spencer’s result to balance matri-
ces [Zou12] and to better discrepancy minimization techniques in the Beck-Fiala
setting. To demonstrate the versatility of our arguments, we show an extension
to the matrix discrepancy case.

We say that a symmetric matrix A ∈ R
m×m is q-block diagonal if it can be

written as A = diag(B1, . . . , Bm/q), where each Bj is a symmetric q × q matrix.

Theorem 2. For given q-block diagonal matrices A1, . . . , An ∈ R
m×m with

‖Ai‖op ≤ 1 for i = 1, . . . , n one can compute a coloring x ∈ {−1, 1}n with

‖∑n
i=1 xiAi‖op ≤ O(

√
n log(2qm

n )) deterministically in time O(n5 + n4m3).

Finally, we can also give the first deterministic algorithm for the result of
Bansal et al. [BDG16].

Theorem 3. Let A ∈ R
m×n be a matrix with ‖Aj‖2 ≤ 1 for all columns j =

1, . . . , n. Then there is a deterministic algorithm to find a coloring x ∈ {−1, 1}n

with ‖Ax‖∞ ≤ O(
√

log n) in time O(n3 log(n) · (m + n)).

While [BDG16] need to solve a semidefinite program in each step of their
random walk, our algorithm does not require solving any SDPs. Note that we
do not optimize running times such as by using fast matrix multiplication.

In the Beck-Fiala setting, we are given a set system over n elements, where
each element is contained in at most t subsets. Theorem 3 then provides the first
polynomial-time deterministic algorithm that produces a coloring with discrep-
ancy O(

√
t log n); we simply choose the matrix A whose rows are the incidence

vectors of members of the set system, scaled by 1/
√

t.
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For space reasons, we defer the proof of Theorem 2 to the full version of the
paper.3

2 The Algorithm for Partial Coloring

We will now describe the algorithm proving Theorem 1. First note that for
any λi > 2

√
n we can remove the constraint 〈vi, x − x0〉 ≤ λi, as it does not

cut off any point in [−1, 1]n. Thus we assume without loss of generality that
2
√

n ≥ λ1 ≥ · · · ≥ λm ≥ 0. Let δ := 1
λ1

denote the step size of our algorithm. The
algorithm will run for O(n/δ2) iterations, each of computational cost O(n2m).
Note that δ = O(1/

√
n) so the algorithm terminates in O(n2) iterations. The

total runtime is hence O(n2m · n/δ2) = O(n3mλ2
1) ≤ O(n4m).

For a symmetric matrix M ∈ R
n×n we know that an eigendecomposition

M =
∑n

j=1 μjuju
T
j can be computed in time O(n3). Here μj := μj(M) is the

jth eigenvalue of M and uj := uj(M) is the corresponding eigenvector with
‖uj‖2 = 1. We make the convention that the eigenvalues are sorted as μ1 ≥
. . . ≥ μn. The algorithm is as follows:

(1) Set weights w
(0)
i = exp(−λ2

i ) for all i = 1, . . . ,m.
(2) FOR t = 0 TO ∞ DO

(3) Define the following subspaces
– U

(t)
1 := span{ej : −1 < x

(t)
j < 1}

– U
(t)
2 := {x ∈ R

n | 〈
x, x(t)

〉
= 0}

– U
(t)
3 := {x ∈ R

n | 〈vi, x〉 = 0 ∀i ∈ I(t)}. Here I(t) ⊆ [m] are the
|I(t)| = n

16 indices with maximum weight w
(t)
i .

– U
(t)
4 := {x ∈ R

n | 〈vi, x〉 = 0 ∀i with λi ≤ 1}
– U

(t)
5 := {x ∈ R

n | 〈
x,

∑m
i=1 λiw

(t)
i · exp

(
− 4δ2λ2

i

n

)
vi

〉
= 0}

– U
(t)
6 := span{uj(M (t)) : 1

16n ≤ j ≤ n}, for M (t) :=
∑m

i=1 w
(t)
i λ2

i viv
T
i .

– U (t) := U
(t)
1 ∩ . . . ∩ U

(t)
6

(4) Let z(t) be any unit vector in U (t)

(5) Choose a maximal α(t) ∈ (0, 1] so that x(t+1) := x(t) + δ · y(t) ∈ [−1, 1]n,
with y(t) = α(t)z(t).

(6) Update w
(t+1)
i := w

(t)
i · exp(λi · δ · 〈vi, y

(t)〉) · exp
(
− 4δ2λ2

i

n

)
.

(7) Let A(t) := {j ∈ [n] : −1 < x
(t)
j < 1}. If |A(t)| < n

2 , then set T := t and
stop.

The intuition is that we maintain weights w
(t)
i for each constraint i that increase

exponentially with the one-sided discrepancy 〈vi, x
(t) − x(0)〉. Those weights are

discounted in each iteration by a factor that is slightly less than 1 — with a
bigger discount for constraints with a larger parameter λi. The subspaces U

(t)
1

and U
(t)
2 ensure that the length of x(t) is monotonically increasing and fully

colored elements remain fully colored.
3 See https://arxiv.org/abs/1611.08752.

https://arxiv.org/abs/1611.08752
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2.1 Bounding the Number of Iterations

First, note that if the algorithm terminates, then at least half of the variables
in x(T ) will be either −1 or +1. In particular, once a variable is set to ±1, it is
removed from the set A(t) of active variables and the subsequent updates will
leave those coordinates invariant. To bound the number of iterations, we use the
fact that the algorithm always makes a step of length δ orthogonal to the current
position — except for the steps where it hits the boundary.

Lemma 1. The algorithm terminates after T = O( n
δ2 ) iterations.

Proof. First, we can analyze the length increase

‖x(t+1)‖22 = ‖x(t) + δ · y(t)‖22 = ‖x(t)‖22 + 2δ
〈
x(t), y(t)

〉

︸ ︷︷ ︸
=0

+δ2‖y(t)‖22,

using that y(t) ∈ U
(t)
2 . Whenever α(t) = 1, we have ‖x(t+1)‖22 ≥ ‖x(t)‖22 + δ2. It

happens that α(t) < 1 at most n times, simply because in each such iteration
|A(t)| must decrease by at least one. We know that x(T ) ∈ [−1, 1]n. Suppose for
the sake of contradiction that T > 2n

δ2 , then ‖x(T )‖22 ≥ (T − n) · δ2 > n, which
is impossible. We can hence conclude that the algorithm will terminate in step
(7) after at most 2n

δ2 iterations.

2.2 Properties of the Subspace U (t)

One obvious condition to make the algorithm work is to guarantee that the
subspace U (t) satisfies dim(U (t)) ≥ 1. In fact, its dimension will even be linear
in n.

Lemma 2. In any iteration t, one has dim(U (t)) ≥ n
8 .

Proof. By accounting for all linear constraints that define U (t), we get

dim(U (t)) ≥ |A(t)| − |I(t)| − |{i : λi ≤ 1}| − n

16
− 2 ≥ n

2
− n

16
− n

8
− n

16
− 2 ≥ n

8

assuming that n ≥ 16.

Another crucial property will be that every vector in U (t) has a bounded
quadratic error term:

Lemma 3. For each unit vector y ∈ U (t) one has yT M (t)y ≤ 16
n

∑m
i=1 w

(t)
i λ2

i .

Proof. We have Tr[viv
T
i ] = 1 since each vi is a unit vector, hence Tr[M (t)] =

∑m
i=1 w

(t)
i λ2

i Tr[viv
T
i ] =

∑m
i=1 w

(t)
i λ2

i . Because M (t) is positive semidefinite, we
know that μ1, . . . , μn ≥ 0, where μj := μj(M (t)) is the jth eigenvalue. Then by
Markov’s inequality at most a 1

16 fraction of eigenvalues can be larger than 16
n ·

Tr[M (t)]. The claim follows as U
(t)
6 is spanned by the 15

16n eigenvectors vj(M (t))
belonging to the smallest eigenvalues, which means μj ≤ 16

n Tr[M (t)] for j =
1
16n, . . . , n.
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2.3 The Potential Function

So far, we have defined the weights by iterative update steps, but it is not hard
to verify that in each iteration t one has the explicit expression

w
(t)
i = exp

(
λi

〈
vi, x

(t) − x(0)
〉 − λ2

i ·
(
1 + t · 4δ2

n

))
. (1)

Inspired by the multiplicative weight update method, we consider the poten-
tial function Φ(t) :=

∑m
i=1 w

(t)
i that is simply the sum of the individual

weights. At the beginning of the algorithm we have Φ(0) =
∑m

i=1 w
(0)
i =∑m

i=1 exp(−λ2
i /16) ≤ n

32 using the assumption in Theorem 1. Next, we want
to show that the potential function does not increase. Here the choice of the
subspaces U

(t)
5 and U

(t)
6 will be crucial to control the error.

Lemma 4. In each iteration t one has Φ(t+1) ≤ Φ(t).

Proof. Let us abbreviate ρi := exp
(
− 4δ2λ2

i

n

)
as the discount factor for the ith

constant. Note that in particular 0 < ρi ≤ 1 and ρi ≤ 1 − 2δ2λ2
i

n . The change in
one step can be analyzed as follows:

Φ(t+1) =
m∑

i=1

w
(t+1)
i =

m∑

i=1

w
(t)
i · exp

(
λiδ

〈
vi, y

(t)
〉) · ρi

(∗)
≤

m∑

i=1

w
(t)
i ·

(
1 + λiδ

〈
vi, y

(t)
〉

+ λ2
i δ

2
〈
vi, y

(t)
〉2

)
· ρi

=
m∑

i=1

w
(t)
i · ρi + δ

〈 m∑

i=1

λiw
(t)
i ρivi, y

(t)
〉

︸ ︷︷ ︸
=0 since y(t)∈U

(t)
5

+δ2
m∑

i=1

w
(t)
i λ2

i ρi︸︷︷︸
≤1

〈
vi, y

(t)
〉2

≤
m∑

i=1

w
(t)
i · ρi + δ2 · (y(t))T M (t)y(t)

(∗∗)
≤

m∑

i=1

w
(t)
i · ρi + δ2

16
n

m∑

i=1

w
(t)
i λ2

i

(∗∗∗)
≤

m∑

i=1

w
(t)
i = Φ(t).

In (∗), we use the inequality ex ≤ 1 + x + x2 for |x| ≤ 1 together with the fact
that λiδ|〈vi, y

(t)〉| ≤ λiδ ≤ 1. In (∗∗) we bound (y(t))T M (t)y(t) using Lemma 3.
In (∗ ∗ ∗) we finally use the fact that ρi + 16

n δ2 ≤ 1.

Typically in the multiplicative weight update method one can only use the
fact that maxi∈[m] w

(t)
i ≤ Φ(t) which would lead to the loss of an additional√

log n factor. The trick in our approach is that there is always a linear number
of weights of order maxi∈[m] w

(t)
i since the updates are always chosen orthogonal

to the n
16 constraints with highest weight.
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Lemma 5. At the end of the algorithm, max{w
(T )
i : i ∈ [m]} ≤ 2.

Proof. Suppose, for contradiction, that w
(T )
i > 2 for some i. Let t∗ be the last

iteration when i was not among the n
16 constraints with highest weight. After

iteration t∗ + 1, w
(t)
i only decreases in each iteration. Then

2 < w
(T )
i ≤ w

(t∗+1)
i = w

(t∗)
i · exp(λi · δ · 〈

vi, y
(t)

〉
)

︸ ︷︷ ︸
≤e

· ρi︸︷︷︸
≤1

≤ w
(t∗)
i · e,

hence w
(t∗)
i > 2

e . This implies that Φ(t∗) ≥ n
16 · 2

e > n
32 , contradicting Lemma 4.

Lemma 6. If w
(T )
i ≤ 2, then 〈vi, x

(T ) − x(0)〉 ≤ 11λi.

Proof. First note that the algorithm always walks orthogonal to all constraint
vectors vi if λi ≤ 1 and in this case 〈vi, x

(T )−x(0)〉 = 0. Now suppose that λi > 1.

We know that w
(T )
i

(1)
= exp

(
λi · 〈

vi, x
(T ) − x(0)

〉 − λ2
i ·

(
1 + 4 · T · δ2

n

))
≤ 2.

Taking logarithms on both sides and dividing by λi then gives

〈
vi, x

(T ) − x(0)
〉 ≤ log(2)

λi︸ ︷︷ ︸
≤2

+λi

(
1 + 4T

δ2

n︸︷︷︸
≤2

)
≤ 11λi.

This lemma concludes the proof of Theorem 1.

2.4 Application to Set Coloring

Now we come to the main application of the partial coloring argument from
Theorem 1, which is to color set systems:

Lemma 7. Given a set system S1, . . . , Sm ⊆ [n], we can find a coloring x ∈
{−1, 1}n with |∑j∈Si

xj | ≤ O(
√

n log 2m
n ) for every i deterministically in time

O
(
n3m log(2m

n )
)
.

Proof. For a fractional vector x, let us abbreviate disc(S, x) := |∑j∈S xj | as the
discrepancy with respect to set S. Set x(0) := 0. For s = 1, . . . , log2(n) many
phases we do the following. Let A(s) := {i ∈ [n] : −1 < x

(s−1)
i < 1} be the

not yet fully colored elements. Define a vector vi := 1√
|A(s)|1Si∩A(s) of length

‖vi‖2 ≤ 1 with parameters λi := C
√

log( 2m
|A(s)| ). Then apply Theorem 1 to find

x(s) ∈ [−1, 1]n with disc(Si, x
(s) − x(s−1)) ≤ O(

√
|A(s)| log( 2m

|A(s)| )) such that

x
(s)
i = x

(s−1)
i for i �∈ A(s). Since each time at least half of the elements get fully

colored we have |A(s)| ≤ 2−(s−1)n for all s. Then x := x(log2 n) ∈ {−1, 1}n and

disc(Si, x) ≤
∑

s≥1

O
(
√

2−(s−1)n log
( 2m

2−(s−1)n)

))
≤ O

(√
n log(2m

n )
)
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using that this convergent sequence is dominated by the first term.

In each application of Theorem 1 one has δ ≥ Ω(1/
√

log(2m
n )). Thus phase s

runs for O(2−(s−1)n/δ2) = O(2−(s−1)n log(2m
n )) iterations, each of which takes

O((2−(s−1)n)2m) time, for a total runtime of O((2−(s−1)n)3m log(2m
n )) in phase

s. Summing the geometric series for s = 1, . . . , log2 n results in a total running
time of O(n3m log(2m

n )).

By setting m = n in Lemma 7, we obtain Corollary 1.

3 Matrix Balancing

In this section we prove Theorem 2. We begin with some preliminaries. For
matrices A,B ∈ R

n×n, let A • B :=
∑n

i=1

∑n
j=1 Aij · Bij be the Frobenius

inner product. Recall that any symmetric matrix A ∈ R
n×n can be written as

A =
∑n

j=1 μjuju
T
j , where μj is the eigenvalue corresponding to eigenvector uj .

The trace of A is Tr[A] =
∑n

i=1 Aii =
∑n

j=1 μj and for symmetric matrices A,B
one has Tr[AB] = A•B. If A has only nonnegative eigenvalues, we say that A is
positive semidefinite and write A � 0. Recall that A � 0 if and only if yT Ay ≥ 0
for all y ∈ R

n. For a symmetric matrix A, we denote μmax := max{μj : j =
1, . . . , n} as the largest Eigenvalue and ‖A‖op := max{|μj | : j = 1, . . . , n} as
the largest singular value. Note that if A � 0, then |A • B| ≤ Tr[A] · ‖B‖op. If
A,B � 0, then A • B ≥ 0. Finally, note that for any symmetric matrix A one
has A2 := AA � 0.

From the eigendecomposition A =
∑n

j=1 μjuju
T
j , one can easily show that

the maximum singular value also satisfies ‖A‖op = max{‖Ay‖2 : ‖y‖2 = 1} and
‖A‖op = max{|yT Ay| : ‖y‖2 = 1}. For any function f : R → R we define f(A) :=∑n

j=1 f(μj)uju
T
j to be the symmetric matrix that is obtained by applying f to

all Eigenvalues. In particular we will be interested in the matrix exponential
exp(A) :=

∑n
j=1 eμjuju

T
j . For any symmetric matrices A,B ∈ R

n, the Golden-
Thompson inequality says that Tr[exp(A + B)] ≤ Tr[exp(A) exp(B)]. (It is not
hard to see that for diagonal matrices one has equality.) We refer to the textbook
of Bhatia [Bha97] for more details.

Theorem 4. Let A1, . . . , An ∈ R
m×m be q-block diagonal matrices with

‖Ai‖op ≤ 1 for i = 1, . . . ,m and let x(0) ∈ [−1, 1]n be a starting point. Then
there is a deterministic algorithm that finds an x ∈ [−1, 1]n with

∥
∥
∥

n∑

i=1

(xi − x
(0)
i ) · Ai

∥
∥
∥
op

≤ O
(√

n log
(2qm

n

))

in time O(n5 + n4m3). Moreover, at least n
2 coordinates of x will be in {−1, 1}.

Our algorithm computes a sequence of iterates x(0), . . . , x(T ) such that x(T ) is
the desired vector x with half of the coordinates being integral. In our algorithm
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the step size is δ = 1√
n

and we use a parameter ε = 1√
n

to control the scaling of
the following potential function:

Φ(t) := Tr
[
exp

(
ε

n∑

i=1

(x(t)
i − x

(0)
i ) · Ai

)]
.

Suppose Bi,k ∈ R
q×q are symmetric matrices so that Ai = diag(Bi,1, . . . , Bi,m/q).

Then we can decompose the weight function as Φ(t) =
∑m/q

k=1 Φ
(t)
k with Φ

(t)
k :=

Tr
[
exp

(
ε
∑n

i=1(x
(t)
i −x

(0)
i )Bi,k

)]
. In other words, the potential function is sim-

ply the sum of the potential function applied to each individual block. The
algorithm is as follows:

(1) FOR t = 0 TO ∞ DO
(2) Define weight matrix W (t) := exp(ε

∑n
i=1(x

(t)
i − x

(0)
i )Ai)

(3) Define the following subspaces
– U

(t)
1 := span{ej : −1 < x

(t)
j < 1}

– U
(t)
2 := {x ∈ R

n | 〈
x, x(t)

〉
= 0}

– U
(t)
3 := {x ∈ R

n | ∑n
i=1 xiBi,k = 0 ∀k ∈ I(t)}. Here I(t) ⊆ [m] are the

|I(t)| = 1
16 · n

q2 indices k with maximum weight Φ
(t)
k .

– U
(t)
4 := {x ∈ R

n | ∑n
i=1 xi · (W (t) • Ai) = 0}

– U
(t)
5 is the subspace defined in Lemma 9, with k = 16.

– U (t) := U
(t)
1 ∩ . . . ∩ U

(t)
5

(4) Let z(t) be any unit vector in U (t).
(5) Choose a maximal α(t) ∈ (0, 1] so that x(t+1) := x(t) + δ · y(t) ∈ [−1, 1]n,

where y(t) = α(t)z(t).
(6) Let A(t) := {j ∈ [n] : −1 < x

(t)
j < 1}. If |A(t)| < n

2 , then set T := t and
stop.

The analysis of our algorithm follows a sequence of lemmas, the proofs of most
of which we defer to the full version of the paper. By exactly the same arguments
as in Lemma 1 we know that the algorithm terminates after T ≤ 2n

δ2 iterations.
Each iteration can be done in time O(n2m3 + n3) (c.f. Lemma 9).

Lemma 8. In each iteration t one has dim(U (t)) ≥ n
4 .

Proof. By accounting for all linear constraints that define U (t), we get

dim(U (t)) ≥ |A(t)|
︸ ︷︷ ︸
U

(t)
1

− |I(t)|
︸︷︷︸
U

(t)
3

− n

16︸︷︷︸
U

(t)
5

− 2︸︷︷︸
U

(t)
2 ,U

(t)
4

≥ n

2
− n

16q2
· q2 − n

16
− 2 ≥ n

4

assuming that n ≥ 16.

To analyze the behavior of the potential function, we first prove the existence
of a suitable subspace U

(t)
5 that will bound the quadratic error term.
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Lemma 9. Let W ∈ R
m×m be a symmetric positive semidefinite matrix, let

A1, . . . , An ∈ R
m×m be symmetric matrices with ‖Ai‖op ≤ 1 and let k > 0 be a

parameter. Then in time O(n2m3 + n3) one can compute a subspace U ⊆ R
n of

dimension dim(U) ≥ (1 − 1
k )n so that

W •
( n∑

i=1

yiAi

)2

≤ k · Tr [W ] ∀y ∈ U with ‖y‖2 = 1. (2)

Proof. See the full version.
Again, we bound the increase in the potential function. This gives us a bound

on the potential function at the end of the algorithm.

Lemma 10. In each iteration t, one has Φ(t+1) ≤ (1 + 16ε2δ2) · Φ(t).

Proof. See the full version.

Lemma 11. At the end of the algorithm, Φ(T ) ≤ m · exp(32ε2n).

Proof. Since Φ(0) = Tr[exp(0)] = Tr[I] = m, we get that Φ(T ) ≤ m · (1 +
16ε2δ2)T ≤ m · exp(32ε2n), using the fact that T ≤ 2n

δ2 .

Lemma 12. We have μmax(
∑n

i=1(x
(T )
i − x

(0)
i ) · Ai) = O(

√
n log(2qm

n )).

Proof. See the full version.

These lemmas put together give us Theorem 4: an algorithm that yields a
partial coloring with the claimed properties. We run the algorithm in phases
to obtain Theorem 2, by boosting the partial coloring to a full coloring using
a similar technique as in Lemma 7. The interested reader may refer to the full
version of the paper for details.
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Abstract. We consider the question of which nonconvex sets can be rep-
resented exactly as the feasible sets of mixed-integer convex optimization
problems. We state the first complete characterization for the case when
the number of possible integer assignments is finite. We develop a char-
acterization for the more general case of unbounded integer variables
together with a simple necessary condition for representability which we
use to prove the first known negative results. Finally, we study repre-
sentability of subsets of the natural numbers, developing insight towards
a more complete understanding of what modeling power can be gained
by using convex sets instead of polyhedral sets; the latter case has been
completely characterized in the context of mixed-integer linear optimiza-
tion.

1 Introduction

Early advances in solution techniques for mixed-integer linear programming
(MILP) motivated studies by Jeroslow and Lowe [6] and others (recently
reviewed in [9]) on understanding precisely which sets can be encoded as pro-
jections of points within a closed polyhedron satisfying integrality restrictions
on a subset of the variables. These sets can serve as feasible sets in mixed-
integer linear optimization problems and therefore potentially be optimized over
in practice by using branch-and-bound techniques (ignoring issues of computa-
tional complexity). Jeroslow and Lowe, for example, proved that the epigraph of
the piecewise linear function f(x) which equals 1 if x > 0 and 0 if x = 0, is not
representable over the domain x ≥ 0. Such a function would naturally be used
to model a fixed cost in production. It is now well known that an upper bound
on x is required in order to encode such fixed costs in an MILP formulation.

Motivated by recent developments in methods for solving mixed-integer con-
vex programming (MICP) problems [1,8], in this work we address the analogous
question of which nonconvex sets may be represented as projections of points
within a convex set satisfying integrality restrictions on a subset of the variables.
To our knowledge, we are the first authors to consider this general case. Related
but more specific analysis has been developed by Del Pia and Poskin [3] where
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they characterized the case where the convex set is an intersection of a polyhe-
dron with an ellipsoidal region and by Dey and Morán [4] where they studied
the structure of integer points within convex sets but without allowing a mix of
continuous and discrete variables.

After a brief study in Sect. 2.1 of restricted cases, e.g., when there is a finite
number of possible integer assignments, we focus primarily on the more challeng-
ing general case where we seek to understand the structure of countably infinite
unions of slices of convex sets induced by mixed-integer constraints. In Sect. 3
we develop a general, yet hard to verify, characterization of representable sets as
families of convex sets with specific properties, and in Sect. 4 we prove a much
simpler necessary condition for representability which enables us to state a num-
ber of nonrepresentability results. Using that condition, we prove, for example,
that the set of m × n matrices with rank at most 1 is not representable when
m,n ≥ 2. In Sect. 5 we conclude with an in-depth study of the representability
of subsets of the natural numbers. The special case of the natural numbers is a
sufficiently challenging first step towards a general understanding of the struc-
ture of representable sets. We prove, for example, that the set of prime numbers
is not representable, an interesting case that separates mixed-integer convex
representability from mixed-integer polynomial representability [5]. By adding
rationality restrictions to the convex set in the MICP formulation, we completely
characterize representability of subsets of natural numbers, discovering that one
can represent little beyond what can be represented by using rational polyhedra.

2 Preliminaries

We use the notation [[k]] to denote the set {1, 2, . . . , k}. Also by N we will refer
to the nonnegative integers {0, 1, 2, . . .}. We will often work with projections of
a set M ⊆ R

n+p+d for some n, p, d ∈ N. We identify the variables in R
n, Rp and

R
d of this set as x, y and z and we let

projx (M) =
{
x ∈ R

n : ∃ (y, z) ∈ R
p+d s.t. (x, y, z) ∈ M

}
.

We similarly define projy (M) and projz (M).

Definition 1. Let M ⊆ R
n+p+d be a closed, convex set and S ⊆ R

n. We say
M induces an MICP formulation of S if and only if

S = projx
(
M ∩ (

R
n+p × Z

d
))

. (1)

A set S ⊆ R
n is MICP representable if and only if there exists an MICP

formulation of S. If such formulation exists for a closed polyhedron M then we
say S is (additionally) MILP representable.

Definition 2. A set S is bounded MICP (MILP) representable if there exists
an MICP (MILP) formulation which satisfies

∣
∣projz

(
M ∩ (

R
n+p × Z

d
))∣∣ < ∞.

That is, there are only finitely many feasible assignments of the integer vari-
ables z.

Definition 3. For a set of integral vectors z1, z2, . . . , zk ∈ Z
d we define the

integral cone intcone(z1, z2, . . . , zk) := {∑k
i=1 λizi

∣
∣λi ∈ N, i ∈ [[k]]}.
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2.1 Bounded and Other Restricted MICP Representability Results

It is easy to see that bounded MICP formulations can represent at most a finite
union of projections of closed, convex sets. To date, however, there are no pre-
cise necessary conditions over these sets for the existence of a bounded MICP
formulation. For instance, Ceria and Soares [2] provide an MICP formulation for
the finite union of closed, convex sets under the condition that the sets have the
same recession cone (set of unbounded directions). In the following proposition
we close this gap and give a simple, explicit formulation for any finite union of
projections of closed, convex sets without assumptions on recession directions.

Proposition 1. S ⊆ R
n is bounded MICP representable if and only if there

exist nonempty, closed, convex sets T1, T2, . . . , Tk ⊂ R
n+p for some p, k ∈ N

such that S =
⋃k

i=1 projxTi. In particular a formulation for such S is given by

x =
∑k

i=1
xi, (xi, yi, zi) ∈ T̂i ∀i ∈ [[k]],

∑k

i=1
zi = 1, z ∈ {0, 1}k, (2a)

||xi||22 ≤ zit, ∀i ∈ [[k]], t ≥ 0 (2b)

where T̂i is the closed conic hull of Ti, i.e., the closure of {(x, y, z) : (x, y)/z ∈
Ti, z > 0}.

Known MICP representability results for unbounded integers are more lim-
ited. For the case in which M is a rational polyhedron Jerowslow and Lowe [6]
showed that a set S ⊆ R

n is (unbounded) rational MILP representable if and
only if there exist r1, r2, . . . , rt ⊆ Z

n and rational polytopes Si for i ∈ [[k]] such
that

S =
⋃k

i=1
Si + intcone(r1, r2, . . . , rt). (3)

Characterization (3) does not hold in general for non-polyhedral M . However,
using results from [4] it is possible to show that it holds for some pure integer
cases as well. For instance, Theorem 6 in [4] can be used to show that for any
α > 0, Sα :=

{
x ∈ Z

2 : x1x2 ≥ α
}

satisfies (3) with Si containing a single
integer vector for each i ∈ [[k]].

The only mixed-integer and non-polyhedral result we are aware of is a char-
acterization of the form (3) when M is the intersection of a rational polyhedron
with an ellipsoidal cylinder having a rational recession cone [3]. An identical
proof also holds when the recession cone of M is a rational subspace and M is
contained in a rational polyhedron with the same recession cone as M . We can
further extend this result to the following simple proposition whose proof is in
the extended version of this paper [7].

Proposition 2. If M induces an MICP-formulation of S and M = C+K where
C is a compact convex set and K is a rational polyhedral cone, then S satisfies
representation (3) with Si now being compact convex sets for each i ∈ [[k]].
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Unfortunately, MICP-representable sets in general may not have a represen-
tation of the form (3), even when Si is allowed to be any convex set. We illustrate
this with a simple variation on the pure-integer example above.

Example 1. Let S := {x ∈ N × R : x1x2 ≥ 1} be the set depicted in Fig. 1. For
each z ∈ N, z �= 0 let Az :=

{
x ∈ R

2 : x1 = z, x2 ≥ 1/z
}

so that S =
⋃∞

z=1 Az.
Suppose for contradiction that S satisfies (3) for convex sets Si. By convexity
of Si and finiteness of k there exists z0 ∈ Z such that

⋃k
i=1 Si ⊂ ⋃z0−1

z=1 Az.
Because minx∈Az0

x2 < minx∈Az
x2 for all z ∈ [[z0 − 1]] we have that there exists

j ∈ [[t]] such that the second component of rj is strictly negative. However, this
implies that there exists x ∈ S such that x2 < 0 which is a contradiction with
the definition of S.

3 A General Characterization of MICP Representability

The failure of characterizations of the form (3) to hold calls for a more general
characterization of MICP-representable sets as projections of families of sets
with particular structure. Example 1 hints at the union of a countable number of
convex sets indexed by a set of integers. The following definition shows the precise
conditions on this sets and indexes for the existence of a MICP formulation.

Definition 4. Let C ⊆ R
d be a convex set and (Az)z∈C be a family of convex

sets in R
n. We say that the family of sets is convex if for all z, z′ ∈ C and

λ ∈ [0, 1] it holds λAz + (1 − λ)Az′ ⊆ Aλz+(1−λ)z′ .
We further say that the family is closed if Az is closed for all z ∈ C and for

any convergent sequences {zm}m∈N
, {xm}m∈N

with zm ∈ C and xm ∈ Azm
we

have limm→∞ xm ∈ Alimm→∞ zm
.

Lemma 1. Let (Az)z∈C be a convex family and C ′ ⊆ C be a convex set. Then
(proj (Az))z∈C′ is a convex family, where proj is any projection onto a subset of
the variables.

The proof of the above lemma is simple and it is omitted.

Theorem 1. A set S ⊆ R
n is MICP representable if and only if there exists

d ∈ N, a convex set C ⊆ R
d and a closed convex family (Bz)z∈C in R

n+p such
that S =

⋃
z∈C∩Zd projx (Bz).

Proof. Suppose that S is MICP representable. Then there exists p, d ∈ N and a
closed and convex set M ⊆ R

n+p+d satisfying (1). Let C = projz (M) and for
any z ∈ C let Bz = {(x, y) ∈ R

n+p : (x, y, z) ∈ M}. The result follows by noting
that (Bz)z∈C is a closed convex family because M is closed and convex.

For the converse, let M := conv
(⋃

z∈C∩Zd Bz × {z}). Set M is closed and
convex by construction and hence the only thing that remains to prove is that
Bz = {(x, y) : (x, y, z) ∈ M} for all z ∈ C ∩ Z

d. The left to right contain-
ment is direct. For the reverse containment let M ′ := conv

(⋃
z∈C∩Zd Bz × {z})

so that M = M ′ and B′
z = {(x, y) : (x, y, z) ∈ M ′} for all z ∈ C. Because
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(Bz)z∈C is a convex family we have B′
z ⊆ Bz for all z ∈ C. Let z ∈ C ∩ Z

d and
{(xm, ym, zm)}m∈N

⊆ M ′ be a convergent sequence such that limm→∞ zm = z.
We have for all m, (xm, ym) ⊆ B′

zm
⊆ Bzm

so limm→∞(xm, ym) ∈ Bz because
(Bz)z∈C is a closed convex family.

Definition 5. For an MICP representable set S ⊆ R
n we let its MICP-

dimension be the smallest d′ ∈ N such that the representation from Theorem1
holds with dim (C) = d′.

Remark 1. If S =
⋃

z∈C∩Zd projx (Bz) for a convex set C ⊆ R
d and a closed

convex family (Bz)z∈C in R
n+p and C ′ = conv

(
C ∩ Z

d
)
, then (Bz)z∈C′ is a

closed convex family and S =
⋃

z∈C′∩Zd projx (Bz).

Remark 2. Using the convex family characterization it can be proven that sets
like the union of expanding circles with concave radii or the set described in
Example 1 are MICP representable; see Fig. 1.

4 A Necessary Condition for MICP Representability

In this section we prove an easy to state, and usually also to check, necessary
property for any MICP representable set. Intuitively, it is saying that despite
the fact that MICP representable sets could be nonconvex, they will never be
very nonconvex in an appropriately defined way.

Definition 6. We say that a set S ⊆ R
n is strongly nonconvex, if there exists

a subset R ⊆ S with |R| = ∞ such that for all pairs x, y ∈ R,

x + y

2
�∈ S, (4)

that is, an infinitely large subset of points in S such that the midpoint between
any pair is not in S.

Lemma 2 (The midpoint lemma). Let S ⊆ R
n. If S is strongly nonconvex,

then S is not MICP representable.

Proof. Suppose we have R as in the statement above and there exists an MICP
formulation of S, that is, a closed convex set M ⊂ R

n+p+d such that x ∈ S iff
∃z ∈ Z

d, y ∈ R
p such that (x, y, z) ∈ M . Then for each point x ∈ R we associate

at least one integer point zx ∈ Z
d and a yx ∈ R

p such that (x, yx, zx) ∈ M .
If there are multiple such pairs of points zx, yx then for the purposes of the
argument we may choose one arbitrarily.

We will derive a contradiction by proving that there exist two points x, x′ ∈ R
such that the associated integer points zx, zx′ satisfy

zx + zx′

2
∈ Z

d. (5)



Mixed-Integer Convex Representability 397

Indeed, this property combined with convexity of M , i.e.,(
x+x′
2 , yx+yx′

2 , zx+zx′
2

)
∈ M would imply that x+x′

2 ∈ S, which contradicts the
definition of R.

Recall a basic property of integers that if i, j ∈ Z and i ≡ j (mod 2), i.e., i and
j are both even or odd, then i+j

2 ∈ Z. We say that two integer vectors α, β ∈ Z
d

have the same parity if αi and βi are both even or odd for each component
i = 1, . . . , d. Trivially, if α and β have the same parity, then α+β

2 ∈ Z
d. Given

that we can categorize any integer vector according to the 2d possible choices for
whether its components are even or odd, and we notice that from any infinite
collection of integer vectors we must have at least one pair that has the same
parity. Therefore since |R| = ∞ we can find a pair x, x′ ∈ R such that their
associated integer points zx, zx′ have the same parity and thus satisfy (5). �

· ·
·· · ·

· · ·

· · ·

Fig. 1. From left to right, the annulus and the piece-wise linear function connecting
the integer points on the parabola are not mixed-integer convex representable. The
mixed-integer hyperbola and the collection of balls with increasing and concave radius
are mixed-integer convex representable.

Proposition 3. Fix n,m ∈ N with m,n ≥ 2. The set of matrices of dimension
m × n with rank at most 1, i.e., C1 := {X ∈ R

m×n : rank(X) ≤ 1} is strongly
nonconvex and therefore not MICP representable.

Proof. We can assume m = 2. We set for all k ∈ N the matrix Ak =[
1 k O1×n−2

k k2 O1×n−2

]
∈ C1. We then set R = {Ak|k ∈ N}. Clearly |R| = ∞. It is

easy to verify that rank(12 (Ak + Ak′)) = 2 for k �= k′. Therefore for any pair
of distinct points in R, their midpoint is not in C1. Therefore C1 is strongly
nonconvex and in particular not MICP representable.

One may use the midpoint lemma to verify that the epigraph of a twice differ-
entiable function is MICP representable if and only if the function is convex and
that the graph of a twice differentiable function is MICP representable if and
only if f is linear. In Fig. 1, we illustrate two more sets whose nonrepresentability
follows directly from the midpoint lemma: the annulus and the piecewise linear
function connecting the points {(x, y) ∈ Z

2 : y = x2}.
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5 MICP Representability of Subsets of Natural Numbers

Recall that we define N = {0, 1, 2, . . .} to be the set of natural numbers. In this
section we investigate the limitations of MICP for representing subsets of the
natural numbers. We remind the reader that in the MILP case, it is known that a
subset of the natural numbers is rational-MILP (the coefficients of the continuous
relaxation polyhedron are rational numbers) representable if and only if the set
is equal to the Minkowski summation of finitely many natural numbers plus the
set of nonnegative integer combinations of a finite set of integer generators [9].
We simplify this characterization since we are dealing with subsets of the natural
numbers.

We define an infinite arithmetic progression in the natural numbers to be a
sequence of natural numbers of the form am + b,m ∈ N for some fixed a, b ∈ N.

Lemma 3. Let S ⊆ N. S is rational-MILP representable if and only if S is the
union of finitely many infinite arithmetic progressions with the same nonnegative
step size.

The proof of Lemma 3 is in the extended version of this paper [7]. We now
compare MICP representability with rational-MILP representability on N. To be
able to deduce a characterization for MICP in the naturals similar to the one we
have for rational-MILP in N it is natural to put some “rationality” restrictions
on the MICP representations as well.

For instance we could require M to have a representation of the form
Ax − b ∈ K where A and b are an appropriately sized rational matrix and ratio-
nal vector, and K is a specially structured convex cone (e.g. the semidefinite
cone or a product of Lorentz cones defined as Ln := {(t, x) ∈ R

n : ||x||2 ≤ t})
or to have polynomial constraints with rational coefficients. Unfortunately these
restrictions can still result in representable sets that do not contain any infi-
nite arithmetic progression and hence are far from being rational-MILP repre-
sentable. We present such an example below.

Example 2. For x ∈ R let f(x) = x − �x�. For ε > 0 consider the set

Kε = {x ∈ R
2 : (x2 + ε, x1, x1) ∈ L3, (2x1 + 2ε, x2, x2) ∈ L3, x1, x2 ≥ 0} (6)

= {x ∈ R
2 :

√
2x1 − ε ≤ x2 ≤

√
2x1 +

√
2ε, x1, x2 ≥ 0} (7)

and Sε = {x1 ∈ R : ∃x1 s.t. (x1, x2) ∈ Kε ∩ Z
2} = {x ∈ N : f(

√
2x) /∈ (ε, 1 −√

2ε)}. Let ε0 < 1/(1 +
√

2) be rational (e.g. ε = 0.4). Suppose that for some
a, b ∈ N,a ≥ 1 it holds ak + b ∈ Sε0 for all k ∈ N. ∅ �= (ε0, 1 − √

2ε0) ⊆ (0, 1),
so by Kroneckers Approximation Theorem we have that there exist k0 ∈ N such
that f(

√
2(ak0 + b)) ∈ (ε0, 1 − √

2ε0) which is a contradiction. Therefore the
set Sε does not contain an arithmetic progression and in particular it is not
rational-MILP representable.

We follow now a different path to define what rational MICP-representability
is and we characterize it completely. Quite surprisingly it becomes almost equiv-
alent with rational-MILP representability.

We give the following definitions.



Mixed-Integer Convex Representability 399

Definition 7. We say that an unbounded convex set C ⊆ R
d is rationally

unbounded if the image C ′ of any rational linear mapping of C, is either
bounded or there exists r ∈ Z

d \ {0} such that x + λr ∈ C ′ from any x ∈ Z
d ∩ C ′

and λ ≥ 0.
Let A ⊆ Z

d be an infinite set of integer points. We say that A is rationally
unbounded if there exists a finite subset I ⊂ A such that the set conv(A \ I) is
rationally unbounded.

Finally, we say that a set S is rational-MICP representable if there exists
an MICP representation for S with convex family (Ax)x∈C with Ax �= ∅,∀x ∈
C such that the set of integer points C ∩ Z

d is either bounded or rationally
unbounded.

It is easy to see that the set Kε from Example 2 is not rationally unbounded.
To completely characterize the rational-MICP representable subsets of the

natural numbers we will use the following lemmata. We prove Lemma 4 in the
extended version of this paper [7] and Lemma 5 in Sect. 6.

Lemma 4. Any union of finitely many infinite arithmetic progressions is equal
to a union of finitely many arithmetic progressions with the same step length.

Lemma 5. Suppose S ⊆ N is rational MICP representable with MICP-
dimension d′. Then either S is a finite set or there exists k ∈ N such that
S = T0 ∪ S0 ∪ ⋃k

i=1 Si where T0 is a finite set of natural numbers, S0 is a finite
union of infinite arithmetic progressions and for each i ∈ [[k]], Si is rational-MICP
representable with MICP-dimension at most d′ − 1.

Theorem 2. Suppose that S ⊆ N. Then following are equivalent.

(a) S is rational-MICP representable
(b) There exists k ∈ N such that S = A0 ∪

(⋃k
i=1 Ai

)
, where A0 ⊆ N is a finite

set and for each i = 1, . . . , k, Ai ⊆ N is an infinite arithmetic progression.
(c) There exists a finite set A0 and a rational-MILP representable set T such

that S = A0 ∪ T .

Proof. We start by proving that (c) implies (a). We will use Lemma 3. Say
A0 = {a1, . . . , am} and T = {b1, . . . , bn} + intcone(z). Then x ∈ A0 ∪ T iff
∃x1, x2, β, q, α, ν, λ, η, t such that

x = x1 + x2, x1 =
∑n

i=1
βi + qz, x2 =

∑m

i=1
αi, βi = biνi ∀i ∈ [[n]],

αi = aiλi ∀i ∈ [[m]],
∑n

i=1
νi = η,

∑m

i=i
λi = 1 − η, q2 ≤ ηt,

t ≥ 0, λi ∈ {0, 1} ∀i ∈ [[m]], νi ∈ {0, 1} ∀i ∈ [[n]], η ∈ {0, 1}, q ∈ N

We claim that this is a rational-MICP representation. Consider the integer vari-
ables λi, νi, η, q. By excluding the finitely many integer extreme points with η = 0
we have that it is enough to consider only the integer points with η = 1 which
imply all λi = 0 and hence we have to consider only the integer variables νi, q
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that satisfy
∑n

i=1 νi = 1, νi ∈ {0, 1}, i = 1, 2, . . . , n and q ∈ N. The convex hull
of these integer points is R+ × {x ∈ R

n
+|∑n

i=1 xi = 1}. But this is rationally
unbounded, as it has exactly one rational recession direction e1 := (1, 0, 0, . . . , 0)
and any rational linear map t will either satisfy t(e1) �= 0, in which case t(e1)
is a rational recession direction for the image, or t(e1) = 0, in which case the
image is bounded.

Now (b) implies (c) because of Lemma 4 and noticing that finite union of infi-
nite arithmetic progressions with the same step length is immediately rational-
MILP representable because of Lemma 3.

Finally we prove that (a) implies (b). Suppose S is rational-MICP repre-
sentable. We will use Lemma 5. We first apply to S. If it is finite we are done.
If not we apply it to each of the Si, i = 1, 2, . . . ,m produced by Lemma 5.
Continuing like this with at most d iterations we prove our result.

Despite the similarity that the above result indicates, rational MICP-
representable subsets of the natural numbers and rational MILP-representable
subsets of the natural numbers are not identical as the example below illustrates.

Example 3. Consider the set S = {1}∪2N. Then the set is rational-MICP repre-
sentable from the above theorem. On the other hand, it cannot be written as the
Minkowski summation of a finite set plus a finitely generated integral monoid
and therefore it is not rational-MILP representable. To see the last, suppose it
could be written like this by contradiction. Then consider one of the generators
of the monoid z1. Assume z1 is odd. Then 2+z1 should belong to S but it is odd
and bigger than 1, a contradiction. Assume z1 is even. Then 1+z1 should belong
to S but it is odd and bigger than 1, a contradiction. The proof is complete.

We end the section with a global limitation of MICP representability in the
subsets of the integers which hold without any type of rationality restriction. Its
proof is based on the midpoint lemma.

Theorem 3. The set of prime numbers P is strongly nonconvex and therefore
not MICP representable.

Proof. We will inductively construct a subset of primes such that no midpoint
of any two elements in the set is prime.

Let {p1, . . . , pn} be a set of such primes. We will find a prime p such that
{p1, . . . , pn, p} has no prime midpoints. (We may start the induction with p1 = 3,
p2 = 5.)

Set M =
∏n

i=1 pi. Choose any prime p (not already in our set and not equal to
2) such that p ≡ 1 (mod M !). By Dirichlet’s theorem on arithmetic progressions
there exist an infinite number of primes of the form 1 + kM ! because 1 and M !
are coprime, so we can always find such p.

Suppose for some i we have q := p+pi

2 ∈ P. By construction, we have p+pi ≡
1+ pi (mod M !), so ∃ k such that p+ pi = k ·M !+ 1+ pi. Note that M is larger
than pi so M ! will contain (1+pi) as a factor; in other words, (1+pi) divides M !,
so it divides also k ·M !+1+pi = p+pi. In fact we can write p+pi = k′(1+pi) for
some k′ ∈ Z≥0. We claim that k′ = 1. Indeed q = p+pi

2 = k′ 1+pi

2 . Note 1 + pi is
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even, so 1+pi

2 is an integer bigger than 1 as pi > 1. But q is prime and therefore
since it is written as the product of k′ and 1+pi

2 > 1 it must be the case that
k′ = 1 as claimed. But k′ = 1 implies that p + pi = 1 + pi, i.e., p = 1 which is a
contradiction.

6 Proof of Lemma5

We first state Lemma 6 whose proof is given in [7].

Lemma 6. Let C ⊆ R
d be a convex set, h : C → R a nonpositive convex func-

tion and
{
xi

}k

i=1
⊂ C such that h(x1) = 0 and x1 ∈ relint

(
aff

({
xi

}k

i=1

)
∩ C

)
.

Then h(x) = 0 for all x ∈ aff
({

xi
}k

i=1

)
∩ C.

Proof (of Lemma 5). Let C ⊆ R
d be the convex set such that dim (C) = d′ and

{Bz}z∈C be the closed convex family such that S =
⋃

z∈C∩Zd projx (Bz). Since S

is rational-MICP representable, C ∩ Z
d is either finite or rationally unbounded.

In the first case S is finite so we can assume that C ∩Z
d is rationally unbounded.

Since n = 1 and convex subsets of the real line are intervals, we may define
f, g : C → R such that f(z) and g(z) represent the lower and upper endpoints
of the intervals projx (Bz) for all z ∈ C. Because {projx (Bz)}z∈C is a convex
family we have that h := f − g : C → R is a convex function and h(z) ≤ 0 for
all z ∈ C. Furthermore, since S ⊆ N we have h(z) = 0 for all z ∈ C ∩ Z

d.
Let I ⊆ C ∩ Z

d be the finite set such that C ′ = conv
((

C ∩ Z
d
) \ I

)
is

rationally unbounded. By letting T0 := {projx (Bz)}z∈I ⊂ N be the finite set
in the statement of Lemma 5 and noting that C ′ ⊆ C we may redefine C to
be equal to C ′. Let r ∈ Z

d be the direction from Definition 7 such that lz :=
{z + λr : λ ≥ 0} ⊆ C. Because |lz ∩ Z| = ∞ and h(z′) = 0 for all z′ ∈ lz ∩ Z

we have that h(z′) = 0 for all z′ ∈ lz by Lemma 6. Hence for all z′ ∈ lz we
have projx (Bz′) = {f(z′)} = {g(z′)}. Given that projx (Bz′) ∈ N for z′ ∈
lz and being a convex and a concave function is equivalent to being an affine
function, we further have that {projx (Bz)}z∈lz

being a convex family implies
that there exist αz ∈ Z

d and βz ∈ Z such that f(z′) = g(z′) = αz · z′ + βz

for all z′ ∈ lz. Then {projx (Bz′)}z′∈lz∩Zd = {azm + bz : m ∈ N}, where az =
(αz · r)/ gcd (r1, . . . , rd) and bz = βz. If αz · r > 0 this corresponds to an infinite
arithmetic progression and if αz · r = 0 it corresponds to a single point.

Let {Ti}2
d

i=1 be such that C ∩ Z
d =

⋃2d

i=1 Ti and zj ≡ z′
j mod 2 for all

j ∈ [[d]], i ∈ [[2d]] and z, z′ ∈ Ti. For fixed i ∈ [[2d]] we have z+z′
2 ∈ C ∩ Z

d

and l z+z′
2

⊂ C for any z, z′ ∈ Ti. Then P := conv
({

lz, l z+z′
2

, lz′
})

⊂ C and

h (z̃) = 0 for all z̃ ∈ P ∩ Z
d. Then, by Lemma 6 h (z̃) = 0 for all z̃ ∈ P . By the

same argument in the previous paragraph there exist αP ∈ Z
d and βP ∈ Z such

that f(z̃) = g(z̃) = αP · z̃+βP for all z̃ ∈ P . In particular, αP · z̃+βP = αz · z̃+βz

for all z̃ ∈ lz and αP · z̃ + βP = αz′ · z̃ + βz′ for all z̃ ∈ lz′ . Hence αz · r = αz′ · r
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and then si := az = az′ . Then {projx (Bz̃)}z̃∈lz∩Zd = {sim + bz : m ∈ N} for
all z ∈ Ti. Unfixing i we may define S0 from the statement of Lemma 5 to be

S0 :=
⋃

i∈[[2d]]:si>0

⋃

z∈Ti

{sim + bz : m ∈ N} ⊆
⋃

i∈[[2d]]:si>0

si−1⋃

b=0

{sim + b : m ∈ N} .

The last inclusion implies S0 is a finite union of infinite arithmetic progressions.
It then only remains to consider sets {projx (Bz̃)}z̃∈lz∩Zd for z ∈ Ti and i ∈ [[2d]]
such that si = 0 (si ≥ 0 because S ⊆ N). Say we have k such i’s (WLOG
i = 1, . . . , k) and we will show that for every such i, Si :=

⋃
z′∈Ti

projx
(
Bi

z′
)

is rational-MICP representable with MICP-dimension at most d′ − 1. Because
S = T0 ∪ S0 ∪ ⋃k

i=1 Si the proof will be complete.
For a fixed i ∈ [[2d]] such that si = 0, let ti ∈ Ti so that Ti =

(
ti + 2Zd

)∩C. Let
{vi}d

i=1 a rational orthogonal basis of Rd such that r = vd and {vi}d
i=d−d′+1 is

an orthonormal basis of the linear subspace L(C) parallel to aff(C) (i.e. L(C) :=
aff (C − z) for any z ∈ C). Let A ∈ R

d×d such that for i ≤ d − 1 the i-th row
of A is vT

i and the d-th row of A has all components equal to zero. Also, let
A1:d−1 be the restriction of A to the first d − 1 rows and let H ∈ R

(d−1)×(d−1)

and U ∈ R
d×d be a unimodular matrix such that

A1:d−1 = [H|0]U (8)

(e.g. Hermite normal form). Finally, let l±z := {z + λr : λ ∈ R} ∩ C and Ci =

U−1

[
H−1 0

0 1

]
A(C − ti)/2 = U−1

[
I 0
0 0

]
U(C − ti)/2.

We claim that
⋃

w∈Ti
l±w =

⋃
w∈Ci∩Zd l±2w+ti . Indeed, z′ ∈ Ti if and only if

there exists z′′ ∈ Z
d∩(

C − ti
)
/2 such that z′ = ti+2z′′. Then Az′′ ∈ A(C−ti)/2

and l±z′ = l±ti+2z′′ . But we know A =
[
H 0
0 0

]
U which gives after some algebra

Uz′′ ∈
[
I 0
0 0

]
U(C − ti)/2 +

[
0 0
0 1

]
R

d. However, because U is unimodular and

z′′ ∈ Z
d we have Uz′′ ∈ Z

d we can replace R
d by Z

d and there exist y ∈ Z and

z ∈ Ci ∩Z
d such that z′′ = z + U−1

[
0
y

]
. From (8), orthogonality of {vi}d

i=1 and

unimodularity of U we have U−1ed = αr for some α ∈ Z and hence z′′ = z+yαr.
Then l±z′ = l±ti+2z′′ = l±t+2z ⊆ ⋃

w∈Ci∩Zd l±2w+ti .
For the other direction, if z ∈ Ci ∩ Z

d then there exist z′′ ∈ (
C − ti

)
/2

such that Uz =
[
I 0
0 0

]
Uz′′ = Uz′′ − ed[Uz′′]d = U (z′′ − αr[Uz′′]d) for the α ∈

Z such that U−1ed = αr. Let z′′′ = z′′ − αr[Uz′′]d and μ = α[Uz′′]d. Then
z′′′ ∈ Z

d and z′′′ + μr ∈ (
C − ti

)
/2 and hence there exist k ≥ μ such that

z̄ = z′′′ + kr ∈ (
C − ti

)
/2 ∩ Z

d (because without loss of generality we may
replace C with conv

(
C ∩ Z

d
)

so that r is a recession direction of C). Finally,
z = z′′ − αr[Uz′′]d = z̄ − kr. Then z′ := ti + 2(z + kr) is such that z′ ∈ Ti and
l±ti+2z = l±z′ ⊆ ⋃

w∈Ti
l±w as claimed.
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Now let l± (z, λ) := z + λr and Λ := {λ ∈ R : l± (z, λ) ∈ C} so that
l±z = {z + λr : λ ∈ R} ∩ C =

⋃
λ∈Λ l± (z, λ) and Λ is a convex set in R. Fur-

thermore, for each z ∈ Ci let B̃i
z =

⋃
λ∈Λ

(
Bl±(ti+2z,λ) × {λ}). We can check

that
(
B̃i

z

)

z∈Ci

is a closed convex family. Both convexity of B̃i
z and the con-

vex family property hold because (Bz)z∈C is a convex family, l±z is convex
and l± (z, λ) is affine. To see that the family is closed, suppose we have a
sequence (xm, ym, λm, zm) converging to (x, y, λ, z) with (xm, ym, λm) ∈ B̃i

zm .
Then (xm, ym) ∈ Bl±(ti+2zm,λm) and hence by closedness of (Bz)z∈C and conti-
nuity of l± (z, λ) we have (x, y) ∈ Bl±(ti+2z,λ) and hence (x, y, λ) ∈ B̃i

z. Finally,
for each z ∈ Ci ∩ Z

d we have

projx
(
B̃i

z

)
=

⋃

λ∈Λ

projx
(
Bl±(ti+2z,λ)

)
=

⋃

z̃∈l±
ti+2z

projx (Bz̃) =
⋃

z̃∈l±
z′

projx (Bz̃)

for some z′ ∈ Ti where we set By = ∅ for all y �∈ C and we have
used

⋃
w∈Ci∩Zd l±2w+ti ⊂ ⋃

w∈Ti
l±w . However, because si = 0 we have that

projx (Bz̃) = {bz′} for all z̃ ∈ l±z′ ∩ C. Hence for all z ∈ Ci ∩ Z
d, projx

(
B̃i

z

)
=

{bz′} = projx (Bz′) for some z′ ∈ Ti. But for any z′ ∈ Ti since
⋃

w∈Ti
l±w ⊂

⋃
w∈Ci∩Zd l±2w+ti it holds also projx (Bz′) = projx

(
B̃i

z

)
for some z ∈ Ci ∩ Z

d.

Hence Si =
⋃

z′∈Ti
projx (Bz′) =

⋃
z∈Ci∩Zd projx

(
B̃i

z

)
. The result finally fol-

lows since B̃i
z is a closed convex family, by noting that dim (Ci) ≤ d′ − 1, Ci is

rationally unbounded by definition of C as a rational map of C and hence Si is
rational-MICP representable with MICP-dimension at most d′ − 1.
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High Degree Sum of Squares Proofs,
Bienstock-Zuckerberg Hierarchy and CG Cuts

Monaldo Mastrolilli(B)
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Abstract. Chvátal-Gomory (CG) cuts captures useful and efficient lin-
ear programs that the bounded degree Lasserre/Sum-of-Squares (sos)
hierarchy fails to capture. We present an augmented version of the sos
hierarchy for 0/1 integer problems that implies the Bienstock-Zuckerberg
hierarchy by using high degree polynomials (when expressed in the stan-
dard monomial basis). It follows that for a class of polytopes (e.g. set
covering and packing problems), the sos approach can optimize, up to
an arbitrarily small error, over the polytope resulting from any constant
rounds of CG cuts in polynomial time.

1 Introduction

The Lasserre/Sum-of-Squares (sos) hierarchy [13,15,18] is a systematic proce-
dure for constructing a sequence of increasingly tight semidefinite relaxations.
The sos hierarchy is parameterized by its level d, such that the formulation
gets tighter as d increases, and a solution of accuracy ε > 0 can be found in
time (mn log(1/ε))O(d) where n is the number of variables and m the number of
constraints in the original problem. It is known that the hierarchy converges to
the 0/1 polytope in n levels and captures the convex relaxations used in the best
available approximation algorithms for a wide variety of optimization problems
(see e.g. [2,5] and the references therein).

In a recent paper Kurpisz, Leppänen and the author [11] characterize the set
of 0/1 integer linear problems that still have an (arbitrarily large) integrality
gap at level n − 1. These problems are the “hardest” for the sos hierarchy in
this sense. In another paper, the same authors [12] consider a problem that is
solvable in O(n log n) time and prove that the integrality gap of the sos hierarchy
is unbounded at level Ω(

√
n) even after incorporating the objective function as

a constraint (a classical trick that sometimes helps to improve the quality of the
relaxation). All these “sos-hard” instances have a “covering nature”.

Chvátal-Gomory (CG) rounding is a popular cut generating procedure that
is often used in practice (see e.g. [6]). There are several prominent examples
of CG-cuts in polyhedral combinatorics, including the odd-cycle inequalities of
the stable set polytope, the blossom inequalities of the matching polytope, the

Supported by the Swiss National Science Foundation project 200020-169022 “Lift
and Project Methods for Machine Scheduling Through Theory and Experiments”.

c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 405–416, 2017.
DOI: 10.1007/978-3-319-59250-3 33
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simple Möbius ladder inequalities of the acyclic subdigraph polytope and the
simple comb inequalities of the symmetric traveling salesman polytope, to name
a few. Chvátal-Gomory cuts captures useful and efficient linear programs that the
bounded degree sos hierarchy fails to capture. Indeed, the “sos-hard” instances
studied in [11] are the “easiest” for CG cuts, in the sense that they are captured
within the first CG closure. It is worth noting that it is NP-hard [14] to optimize
a linear function over the first CG closure, an interesting contrast to lift-and-
project hierarchies (like Sherali-Adams, Lovász-Schrijver, and sos) where one
can optimize in polynomial time for any constant number of levels.

Interestingly, Bienstock and Zuckerberg [4] prove that, in the case of set
covering, one can separate over all CG-cuts to an arbitrary fixed precision in
polynomial time. The result in [4] is based on another result [3] by the same
authors, namely on a (positive semidefinite) lift-and-project operator (which we
denote (BZ) herein) that is quite different from the previously proposed oper-
ators. This lift-and-project operator generates different variables for different
relaxations. They showed that this flexibility can be very useful in attacking
relaxations of some set covering problems.

These three methods, (sos, CG, BZ), are to some extent incomparable,
roughly meaning that there are instances where one succeeds while the other
fails (see [1] for a comparison between sos and BZ, the already cited [11] for
“easy” cases for CG cuts that are “hard” for sos, and finally note that clique
constraints are “easy” for sos but “hard” for CG cuts [16], to name a few).

One can think of the standard Lasserre/sos hierarchy at level O(d) as opti-
mizing an objective function over linear functionals that sends n-variate poly-
nomials of degree at most d to real numbers. The restriction to polynomials of
degree d is the standard way (as suggested in [13,15] and used in most of the
applications) to bound the complexity, implying a semidefinite program of size
nO(d). However, this is not strictly necessary for getting a polynomial time algo-
rithm and it can be easily extended by considering more general subspaces having
a “small” (i.e. polynomially bounded) set of basis functions (see e.g. Chap. 3 in
[5] and [7,8]). This is a less explored direction and it will play a key role in this
paper. Indeed, the more general view of the sos approach has been used so far
to exploit very symmetric situations (see e.g. [7,8,17]). For symmetric cases the
use of different basis functions has been proved to be very useful.

To the best of author’s knowledge, in this paper we give the first example
where a different sos basis is proved to be useful in asymmetric situations. More
precisely, we claim that is possible to reframe the Bienstock-Zuckerberg hier-
archy [3] as an augmented version of the sos hierarchy that uses high degree
polynomials. Due to space limitations in Sect. 4 we consider the set cover prob-
lem, that is the main known application of the BZ approach; the general BZ
framework is strongly based on the set cover case. More details will appear in
the full version of the paper.

The resulting high degree sos approach retains in one single unifying sos
framework the best from the standard bounded degree sos hierarchy, incor-
porates the BZ approach and allows to get arbitrary good approximate fixed
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rank CG cuts for both, set covering and packing problems, in polynomial time
(BZ guarantees this only for set covering problems). Moreover, the proposed
framework is very simple and, assuming a basic knowledge in sos machin-
ery (see Sect. 2), it is fully defined by giving the supporting polynomials (see
Definition 2). This is in contrast to the Bienstock-Zuckerberg’s hierarchy that
requires an elaborate description [3,19].

2 sos-Proofs over the Boolean Hypercube

Certifying that a polynomial f(x) is non-negative over a semialgebraic set F is
an important problem in optimization, as certificates of non-negativity can often
be leveraged into optimization algorithms. In this paper we are interested in the
case F is the set of feasible solutions of a 0/1 integer linear program:

F := {x ∈ R
n : x2

k − xk = 0 ∀k ∈ [n], gi(x) ≥ 0 ∀i ∈ [m]} (1)

where x2
k − xk = 0 encodes xk ∈ {0, 1} and each constraint gi(x) ≥ 0 is linear.

It is known that the nonnegativity of a polynomial over F defined in (1) can
be certified by showing a degree-n sum of squares (sos) representation (see e.g.
[13,15]). Computing degree-n sos representation can be automatized by solving
a semidefinite program (SDP) which is an optimization problem over positive
semidefinite (PSD) matrices. However this may take in general exponential time.
The “standard” (namely the “most used”) way to bound the complexity is to
consider the polynomials qi ∈ Rn[x] used in the degree-n sos representation in
the standard monomial basis and to restrict their degree to a constant d. If one
restricts the degrees of the polynomials in the certificate to be at most some
integer d, it turns out that the positivity certificate is given by a semidefinite
program of size nO(d). Clearly this restriction imposes severe restrictions on
the kind of proofs that can be obtained. This type of algorithm was proposed
first by Shor [18] and the idea was taken further by Parrilo [15] and Lasserre
[13]. However, this fact can be easily extended to other subspaces than the
standard monomial basis of bounded degree, by considering subspaces having a
“small”, i.e. polynomially bounded set of basis functions (see e.g. [5]). This is a
less explored direction and it will play a key role in this paper. The following
introduces this point.

Definition 1. For any fixed subspace Q ⊆ R[x]/I(Zn
2 ), we say that a polynomial

f ∈ R[x] that is non-negative over the semialgebraic set (1) admits a Q-sos
representation (or it is Q-sos derivable and write F �Q f(x) ≥ 0) if

f(x) ≡ s0(x) +
∑

i∈[m]

si(x)gi(x) (mod I(Zn
2 )) (2)

where si ∈ {s ∈ R[x] : s =
∑r

i=1 qi(x)2, for some q1, . . . , qr ∈ Q}. For a set
S ⊆ Rn[x] let 〈S〉 = span(S) denote the vector space spanned by S. If 〈S〉 = Q
then S is called the Q-sos spanning set.
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The existence of a 〈S〉-sos representation can be decided by solving a semidef-
inite programming feasibility problem whose matrix dimension is bounded by
O(|S|). We refer to [5] for details.

The dual point of view. Consider the minimization of a given polynomial p(x)
over the semialgebraic set (1). Let G = {gi(x), i ∈ [m]}. For any S ⊆ Rn[x], a
relaxation is given by the following conic program:

max{γ : p − γ ∈ cone〈S〉(G)} (3)

where cone〈S〉(G) = {f(x) : f(x) = s0(x) +
∑

g∈G sg(x)g(x) where sg(x) =∑
i qi(x)2, qi ∈ 〈S〉} is the cone of nonnegative polynomials generated by 〈S〉.

By definition, the dual of cone〈S〉(G) are the linear functionals1 conedual
〈S〉 (G) =

{l : 〈l, h〉 ≥ 0,∀h ∈ cone〈S〉(G)} that take nonnegative values on it.
The dual program of (3) is a semidefinite program whose matrix dimension

is bounded by O(|S|). We will use sos〈S〉 to denote this relaxation. When 〈S〉 =
R[x]d/I(Zn

2 ), namely S is the standard monomial basis of degree ≤ d, then sos〈S〉
is the (standard) Lasserre/sos-hierarchy parameterized by the degree d.

By duality, note that any sos〈S〉 feasible solution satisfies all the linear
inequalities that are 〈S〉 -sos derivable. We will use this fact in the remainder of
the paper.

3 Preliminaries

In the following, whenever we use “≡” assume that the equivalence is modulo
the vanishing ideal (mod I(Zn

2 )) (unless differently defined).
For any set Z ⊆ [n] and given I ⊆ Z define the Kronecker delta func-

tion δZ
I (x) by: δZ

I (x) :=
∏

i∈I xi

∏
j∈Z\I(1 − xj). Note that

∑
I⊆Z δZ

I (x) = 1,
(δZ

I (x))2 ≡ δZ
I (x) and δZ

I (x)δZ
J (x) ≡ 0 for any I �= J with I, J ⊆ Z. There-

fore, it follows that (
∑

I δZ
I (x))2 ≡ ∑

I δZ
I (x). Finally observe that for any linear

function g(x) =
∑

i∈S gixi − g0 with S ⊆ [n] we have δZ
I (x)(

∑
i∈S gixi − g0) ≡

δZ
I (x)(

∑
i∈S∩I gi − g0 +

∑
S\Z gixi).

These basic facts will be used several times, in particular over the boolean
hypercube we can restrict with no loss to polynomials from R[x]/I(Zn

2 ), i.e.
n-degree multilinear polynomials (we use R[x] to denote the polynomial ring
over the reals in n variables R[x1, . . . , xn] and R[x]d to denote the subspace
of R[x] of polynomials of degree at most d ≤ n). So δZ

I (x) is the multilinear
representation of (δZ

I (x))2 over the boolean hypercube and we will use them
both interchangeably.

Consider any group G that is acting on monomials in R[x] via gxi = xg(i),
for all g ∈ G and i ∈ [n]. Let f ∈ R[n] be a real-valued G-invariant polynomial
that is nonnegative over the boolean hypercube. By a simple interpolating argu-
ment, we have f(x) ≡ (

∑
I∈N+ δ

[n]
I (x)

√
f(xI))2, and therefore f(x) is congruent

(mod I(Zn
2 )) to the square of a G-invariant polynomial.

1 In some research communities such linear functional is called pseudo-expectation.
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Lemma 1. Consider any group G that is acting on monomials in R[x] via
gxi = xg(i) for each g ∈ G and i ∈ [n]. Any real-valued G-invariant polyno-
mial f ∈ R[n] that is nonnegative over the boolean hypercube has a degree-n
square representation f(x) ≡ h(x)2 (mod I(Zn

2 )), for some G-invariant polyno-
mial h ∈ R[x].

Let X be a nonempty set. A permutation σ of X is a bijection σ : X → X.
The set of all permutations of X is called the symmetric group of X and it is
denoted by SX . In the following for any F ⊆ X we will consider the stabilizer of F
in SX , namely stabSX

(F ) is the subgroup of SX whose elements are permutations
of set X that fix the elements from F . Note that stabSX

(F ) is the symmetric
subgroup SX\F acting on X and leaving the points in F fixed. The set F is the
SX\F group’s set of fixed points when acting on X.

For the main application of this paper (Sect. 4) the spanning set is given
by products of SX\F -invariant polynomials (see Definition 2). Note that when
F = ∅ an SX\F -invariant polynomial is standardly called a symmetric poly-
nomial. Generalizing the latter terminology, we will also use (X\F )-symmetric
polynomial to denote a SX\F -invariant polynomial. Observe that any polyno-
mial is (X\F )-symmetric for some F ⊆ X.

From Lemma 1 any non-negative (X\F )-symmetric polynomial is congruent
(mod I(Zn

2 )) to the square of one (X\F )-symmetric polynomial. This simple fact
will play a central role in our derivations. In particular the following will be used
several times in the following.

Corollary 1. Consider any finite set of polynomials S ⊆ R[x]/I(Zn
2 ) and let

Q = span(S). For any F ⊆ X ⊆ [n], if the ring (R[x]/I(Zn
2 ))SX\F of all

(X\F )-symmetric polynomials is a subspace of Q then any nonnegative (X\F )-
symmetric polynomial has a Q-sos representation.

A simple counting argument shows the following rough bound on the size of the
spanning set of (X\F )-symmetric polynomials.

Lemma 2. For any X ⊆ [n], let QX,t denote the subspace of all (X\F )-
symmetric polynomials for all F ⊆ X, |F | ≤ t. There is a spanning set SX,t

such that QX,t ⊆ span(SX,t) and |SX,t| = nO(t).

4 Set Covering

Consider any m × n 0-1 matrix A, and let FA be the feasible region for the 0-1
set covering problem defined by A:

FA = {x ∈ {0, 1}n : Ax ≥ e} (4)

where e is the vector of 1s. We denote by Ai ⊆ {1, . . . , n} the set of indices of
nonzeros in the i-th row of A (namely the support of the i-th constraint). By
overloading notation, we also use Ai to denote the corresponding set of variables
{xj : j ∈ Ai}. We will assume that A is minimal, i.e. there is no i �= j such that
Ai ⊆ Aj .
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We will also use the following notation. For any T, F ⊆ [n] with T ∩ F = ∅,
let FA(T,F ) denote the subregion of FA where xi = 1, for i ∈ T , and xj = 0,
for j ∈ F . Let A(T,F ) be the matrix that is obtained from A by removing
all the rows where xi appears for i ∈ T (these constraints are satisfied when
xi = 1 for i ∈ T ) and setting to zero the j-th column for j ∈ F . We will
assume that A(T,F ) is minimal by removing the dominated rows. Therefore,
FA(T,F ) = {x ∈ {0, 1}n : A(T,F )x ≥ e, xi = 1 ∀i ∈ T, xj = 0 ∀j ∈ F} and
FA(T,F ) ⊆ FA.

4.1 The Spanning Polynomials for the Set Covering Problem

In this section we define the spanning polynomials for the set covering problem.
For the sake of simplicity, we will assume that the collection of valid inequalities,
i.e. {gi(x) ≥ 0, i ∈ [�]}, that are defined in the semialgebraic set (1) is given by
Ax ≥ e and the nonnegative constraints x ≥ 0. The latter is not strictly neces-
sary, since xi = x2

i and therefore xi ≥ 0, but this will simplify the exposition.
We start with a simple structural observation regarding the set covering problem
(see e.g. [19] for a proof).

Proposition 1. Consider a set covering problem defined by any m × n 0-1
matrix B such that no two constraints overlap in any of the variables, namely
for any i, j ∈ [m] with i �= j we have Bi ∩ Bj = ∅. When this holds then the
linear constraints are convex hull defining: conv(FB) = {x ∈ [0, 1]n : Bx ≥ e}.
Remark 1. From Proposition 1 it follows that any valid inequality a�x ≥ a0

for FB is valid also for the feasible region of the linear relaxation {x ∈ [0, 1]n :
Bx ≥ e}, i.e. a�x ≥ a0 can be derived as a nonnegative linear combination and
right-hand-side weakening from {x ≥ 0, Bx ≥ e}: a = λ�B+γ�I and a0 ≤ λ�e,
for some λ, γ ≥ 0 and where I denotes the n × n identity matrix.

By the previous observation the “interesting” variables are those that appear in
more than one constraint. This gives the intuition why the QA(t)-sos polyno-
mials that we are going to define are polynomials in these variables.

Definition 2. For any t ∈ [n] and C(t) = {C : C ⊆ [m] ∧ |C| ≤ t}, let VC =⋃
i,j∈C,i 	=j Ai ∩ Aj be the set of variables occurring in more than one row with

index from C ∈ C(t). The subspace of polynomials QA(t) is (inductively) defined
as the set of all polynomials p(x) ∈ R[x] for which there exists a C ∈ C(t) and
I ⊆ C with |I| ≤ t such that p(x) can be written as p(x) = q(x)r(x), where q(x)
is (VC\I)-symmetric and, depending on |I|, r(x) is either 1 (if |I| ∈ {0, t}) or
r(x) ∈ QA(I,Vc\I)(t − |I|) (else).

By Lemma 2 a QA(t)-sos representation can be decided by solving a semidefinite
programming feasibility problem of size nO(t2).

For any given inequality a�x − a0 ≥ 0 with indices ordered so that 0 < a1 ≤
a2 ≤ · · · ≤ ah and aj = 0 for j > h, its pitch is the minimum integer π = π(a, a0)
such that

∑π
i=1 ai − a0 ≥ 0. The definition of pitch was introduced in [3,19].

The main result of this section is the following.
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Theorem 1. Suppose a�x − a0 ≥ 0 is a valid inequality for FA of pitch π =
π(a, a0) with a ≥ 0. Then a�x − a0 admits a QA(π)-sos representation.

Corollary 2. For any k ≥ 1, any valid solution of the sosQA(k) relaxation
satisfies all the valid inequalities for FA of pitch ≤ k.

Remark 2. Note that for the set-covering problem with a full-circulant constraint
matrix (namely

∑
j 	=i xj ≥ 1 for each i = 1, . . . , n) the pitch 2 valid inequality∑n

j=1 xj ≥ 2 has rank at least n − 3 for a lifting operator stronger than the
Sherali-Adams [3] and requires at least Ω(log1−ε n) levels [10] for the standard
sos hierarchy (conjectured to be n/4 in [3]). Viceversa, the augmented sosQA(k)

relaxation returns a solution that satisfies all the pitch 2 valid inequalities in
polynomial time (QA(2), see Definition 2, is sufficient for this purpose).

Proof of Theorem 1. The proof will be by induction on the pitch value.
Consider any m × n 0-1 matrix A′, and let FA′ be the feasible region for the
0-1 set covering problem defined by A′: FA′ = {x ∈ {0, 1}n : A′x ≥ e}. Assume
that a′�x − a′

0 ≥ 0 with a′ ≥ 0 is a valid inequality for FA′ of pitch π′. If
π′ = 0 we must have a′

0 ≤ 0, so since a′ ≥ 0, a′�x − a′
0 has a trivial QA′(π′)-sos

representation as conical combination of xi, for i ∈ [n]. By induction hypothesis,
from now on we will assume that for any m × n 0-1 matrix A′ the claim holds
for any constraint a′�x − a′

0 ≥ 0 of pitch p, with 0 ≤ p ≤ π − 1, that is valid for
FA′ .

We start describing a key structural property of valid inequalities for set
covering that was proved in [3,19]. We observe that the statement of Lemma 3
below is slightly different from Proposition 4.22 in [19] (or Theorem 6.3 in [3]).
The difference is given by Property (8) (see Lemma 3). This property is not
explicitly given in [3,19], but it can be derived by their construction (further
details will appear in the longer version of this paper).

Lemma 3. [3,19] Suppose a�x−a0 ≥ 0 is a valid inequality for FA with a ≥ 0.
Let supp(a) denote the support of a. Then there is a subset C = C(a, a0) of the
rows of A with |C| ≤ π(a, a0), such that

Ai ⊆ supp(a) ∀i ∈ C (5)

Bi = Ai −
⋃

r∈C−{i}
Ar �= ∅ ∀i ∈ C (6)

(a�x − a0)(∅,V ) ≥ 0 is valid for FB = {x ∈ {0, 1}n :
∑

j∈Bi

xj ≥ 1, i ∈ C} (7)

FA(∅,V ) �= ∅ (8)

where V :=
⋃

i,j∈C
i	=j

Ai ∩ Aj is the set of variables occurring in more than one

row from C.
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Consider any valid inequality a�x − a0 ≥ 0 for FA of pitch π = π(a, a0)
with a ≥ 0. We show that a�x − a0 admits a QA(π)-sos representation. By
Lemma 3 there is a subset C = C(a, a0) of the rows of A that satisfies (5)–(8)
where V denotes the set of variables occurring in more than one row of C and
|C| ≤ π. The following polynomials have a QA(π)-sos representation: δV

J , for
J ⊆ V with |J | < π, and δV

≥π :=
∑

J⊆V,|J|≥π δV
J (it is zero if |V | < π). Note that∑

J⊆V,|J|<π δV
J + δV

≥π = 1. It follows that

a�x − a0 =

⎛
⎝ ∑

J⊆V,|J|<π

δV
J + δV

≥π

⎞
⎠

︸ ︷︷ ︸
=1

(a�x − a0)

= δV
∅ (a�x − a0)︸ ︷︷ ︸

first

+

⎛
⎝ ∑

J⊆V,0<|J|<π

δV
J

⎞
⎠ (a�x − a0)

︸ ︷︷ ︸
second

+ (δV
≥π)(a�x − a0)︸ ︷︷ ︸

third

(9)

Therefore, showing that a�x − a0 is QA(π)-sos derivable boils down to prove
that each of the summands in (9) is QA(π)-sos derivable.

Let’s start considering the first summand in (9), namely δV
∅ (a�x − a0). By

Lemma 3, first note that (a�x−a0)(∅,V ) ≥ 0 is valid for FB (see (7)). Moreover,
no two constraints in FB overlap in any of the variables and therefore, by Propo-
sition 1, the linear relaxation is convex hull defining: conv(FB) = {x ∈ [0, 1]n :∑

j∈Bi
xj ≥ 1, i ∈ C}. This means (see Remark 1) that (a�x − a0)(∅,V ) can be

implied by a conical combination of the linear constraints in conv(FB) = {x ∈
[0, 1]n :

∑
j∈Bi

xj ≥ 1, i ∈ C}. Note that these linear constraints are just a subset
of the linear constraints from {x ∈ [0, 1]n : Ax ≥ e} after setting to zero all the
variables from V . It follows that (a�x−a0)(∅,V ) =

(
λ�(Ax − e) + γ�x + μ

)
(∅,V )

for some λ, γ, μ ≥ 0. For any xi ∈ V we have δV
∅ xi ≡ 0 (recall that whenever we

use “≡” we assume that the equivalence is (mod I(Zn
2 ))) and

δV
∅ (a�x − a0) ≡ δV

∅
(
λ�(Ax − e) + γ�x + μ

)
(∅,V )

≡ δV
∅
(
λ�(Ax − e) + γ�x + μ

)

≡
∑
i∈C

(δV
∅

√
λi)

2

︸ ︷︷ ︸
si(x)

⎛
⎝∑

j∈Ai

xj − 1

⎞
⎠

︸ ︷︷ ︸
gi(x)

+
∑

j∈supp(a)

(δV
∅

√
γj)

2

︸ ︷︷ ︸
sj(x)

xj︸︷︷︸
gj(x)

+ (δV
∅

√
μ)2︸ ︷︷ ︸

s0(x)

Note that the latter has exactly the form in (2), where δV
∅ ∈ QA(π), and

therefore it shows that the first summand δV
∅ (a�x − a0) is QA(π)-sos derivable.

Consider a generic second type summand from (9), i.e. δV
J (a�x − a0) with

J ⊆ V, 0 < |J | < π. Note that a�x − a0 ≥ 0 is by assumption a valid inequality
for any feasible integral solution. By Property (8) we know that by setting to
zero all the variables from V we obtain a non-empty subset of feasible integral
solutions. It follows that by setting xj = 1, for j ∈ J , and xh = 0, for h ∈ V \J ,
we obtain a non-empty subset of feasible integral solutions, i.e. FA(J,V \J) �= ∅ and
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(a�x − a0)(J,V \J) ≥ 0 is a valid inequality for the solutions in FA(J,V \J) (since
a�x − a0 ≥ 0 is by assumption a valid inequality for any feasible integral
solution). Moreover the pitch p of (a�x − a0)(J,V \J) ≥ 0 is strictly smaller
than π, 0 ≤ p ≤ π − |J |. It follows, by induction hypothesis that (a�x −
a0)(J,V \J) has a QA(J,V \J)(p)-sos representation, namely (a�x − a0)(J,V \J) ≡
s′
0(x) +

∑
i s′

i(x)gi(x)(J,V \J) where s′
i ∈ {s′ ∈ R[x] : s′ =

∑
i qi(x)2, qi ∈

QA(J,V \J)(p)-sos} and each gi(x)(J,V \J) ≥ 0 is a valid linear constraint for
FA(J,V \J) , where gi(x)(J,V \J) is either (

∑
j∈Ah

xj −1)(J,V \J) ≥ 0 or (xj)(J,V \J) ≥
0 for some h ∈ [m], j ∈ [n]. Then δV

J (a�x − a0) ≡ δV
J (a�x − a0)(J,V \J) ≡

δV
J

(
s′
0(x) +

∑
i s′

i(x)gi(x)(J,V \J)

) ≡ s′
0(x)δV

J +
∑

i s′
i(x)δV

J gi(x). Recall that
0 ≤ p ≤ π − |J | and s′

i(x) =
∑

j qj(x)2 for qj ∈ QA(J,V \J)(p)-sos therefore
δV
J qj(x)2 ≡ (δV

J qj(x))2 and δV
J qj(x) ∈ QA(π)-sos (by Definition 2). It follows

that the second summand is QA(π)-sos derivable.
Finally, consider the third summand from (9), i.e. δV

≥π(a�x − a0). Recall
that we are assuming that 0 < a1 ≤ a2 ≤ · · · ≤ ah and aj = 0 for j > h for
some h ∈ [n], so the supp(a) = {1, . . . , h}. Moreover the pitch π ≤ h is the
minimum such that

∑π
i=1 ai − a0 ≥ 0. Note that V ⊆ supp(a) and therefore

if δV
≥π is a non-null polynomial then |V | ≥ π (we assume this in the following

otherwise we are done for this case). Let a′
i := ai for i = 1, . . . , π, a′

i := aπ for i =
π+1, . . . , ah and a′

i := 0 for i ∈ supp(a)\V . Note that for any I ⊆ [π] and J1, J2 ⊆
V \[π] with |J1| = |J2| ≥ π − |I| we have for � = 1, 2 δV

I∪J�

(∑
i∈V a′

ixi − a0

) ≡

δV
I∪J�

(∑
i∈I∪J�

a′
i − a0

)
= δV

I∪J�

≥0︷ ︸︸ ︷(∑
i∈I

a′
i + |J�|aπ − a0

)
. Note that for any k =

π−|I|, . . . , |V | the polynomial
∑

J⊆V \[π]
|J|=k

δV
I∪J is (V \[π])-symmetric and therefore

it belongs to QA(π). It follows that

δ
V
≥π

⎛
⎝

h∑
i=1

aixi − a0

⎞
⎠ = δ

V
≥π

⎛
⎝∑

i∈V

aixi − a0

⎞
⎠ + δ

V
≥π

⎛
⎝ ∑

i∈supp(a)\V

aixi

⎞
⎠

= δ
V
≥π

⎛
⎝∑

i∈V

a
′
ixi − a0

⎞
⎠ + δ

V
≥π

⎛
⎝ ∑

i∈supp(a)

(ai − a
′
i)xi

⎞
⎠

=

=δV
≥π

︷ ︸︸ ︷
∑

I⊆V ∩[π]

|V |∑

k=π−|I|

∑

J⊆V \[π]
|J|=k

δ
V
I∪J

⎛
⎝∑

i∈V

a
′
ixi − a0

⎞
⎠ +

∑

i∈supp(a)

((ai − a
′
i)δ

V
≥π)xi

≡
∑

I⊆V ∩[π]

|V |∑

k=π−|I|

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

J⊆V \[π]
|J|=k

δ
V
I∪J

≥0
︷ ︸︸ ︷⎛
⎝∑

i∈I

a
′
i + kaπ − a0

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

+
∑

i∈supp(a)

(

≥0
︷ ︸︸ ︷
(ai − a

′
i) δ

V
≥π)xi

≡
∑

I⊆V ∩[π]

|V |∑

k=π−|I|

⎛
⎜⎜⎜⎜⎝

(V \[π])-symmetric
︷ ︸︸ ︷∑

J⊆V \[π]
|J|=k

δ
V
I∪J

√∑
i∈I

a′
i + kaπ − a0

⎞
⎟⎟⎟⎟⎠

2

︸ ︷︷ ︸
s0(x)

+
∑

i∈supp(a)

⎛
⎜⎜⎜⎝
√

ai − a′
i

V -symm.
︷ ︸︸ ︷
δ

V
≥π

⎞
⎟⎟⎟⎠

2

︸ ︷︷ ︸
si(x)

xi︸︷︷︸
gi(x)
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The latter has exactly the form in (2), and each polynomial under the square
is from QA(π), and therefore the third summand δV

≥π(a�x − a0) is QA(π)-sos
derivable and the claim follows. ��

5 Covering/Packing sos PTAS for Fixed Rank CG
Closure

For an arbitrary fixed precision ε > 0 and fixed positive integer q, choose π such
that

(
π+1

π

)q ≤ 1 + ε. Bienstock and Zuckerberg (see Lemma 2.1 in [4]) prove
that any solution that satisfies the set of valid inequalities of pitch π can be
rounded to approximate all the CG-cuts constraint of rank q to precision ε > 0.
It follows that the sos approach with high degree polynomials described in this
paper computes fixed rank CG (1+ ε)-approximate solutions for any fixed ε > 0
in polynomial time as well (PTAS).

Interestingly, in the following we observe that for the packing problem the
standard sos hierarchy with bounded degree polynomials is sufficient to obtain
fixed rank CG (1 − ε)-approximate solutions. It follows that the sos approach
can be used for approximating CG cuts of any fixed rank and to any arbitrary
precision for both, packing and set covering problems (BZ guarantees this only
for set covering problems).

Approximate fixed-rank CG closure for packing problems. Consider any m × n
nonnegative matrix A, and let P be the feasible region for the 0–1 set packing
problem defined by A: P = {x ∈ {0, 1}n : Ax ≤ b} where b ∈ R

m
+ . For an integer

t ≥ 0, denote by P (t) the t-th CG closure and let cg(t)(c) := max{c�x : x ∈ P (t)}.
Without loss of generality, we will assume that c ∈ R

n
+ (otherwise it is always

optimal to set xi = 0 whenever ci ≤ 0).
We can extend the definition of pitch also for packing inequalities as follows.

For any given packing inequality a0−a�x ≥ 0 with a0, a ≥ 0 and indices ordered
so that 0 < a1 ≤ a2 ≤ · · · ≤ ah and aj = 0 for j > h, its pitch is the maximum
integer π = π(a, a0) such that a0 − ∑π

i=1 ai ≥ 0. For example, classical clique
inequality

∑
i∈clique xi ≤ 1 have pitch equal to one.

The following result for packing problems can be seen as the dual of Theo-
rem 1 for set cover. It can be easily obtained by using the so called “Decomposi-
tion Theorem” due to Karlin, Mathieu, and Nguyen [9]. For completeness, here
we sketch a direct simple proof that follows the approach used throughout this
paper.

Lemma 4. Suppose a0−a�x ≥ 0 is a valid inequality for P of pitch π = π(a, a0)
with a0, a ≥ 0. Then a0 − a�x admits a Rπ+1[x]-sos representation.2

Proof (sketch). Let S = supp(a) and xI =
∏

i∈I xi. Note that for any I ⊆ S we
have xI(a0 − a�x) ≡ xI(a0 − ∑

i∈I ai − ∑
i	∈I aixi) (mod I(Zn

2 )). Let F := {I ⊆
S : (a0−∑

i∈I ai) < 0} and T := {J ⊆ S : J �∈ F} (and therefore if we set to one

2 This is the standard bounded degree sos proof system.
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all the variables xi with i ∈ I for any I ∈ F then the assumed valid inequality
a0 − a�x ≥ 0 is violated). Let V := {x ∈ R

n : xI = 0 ∀I ∈ F, x2
k − xk =

0 ∀k ∈ [n]} and note that any feasible integral solution belongs to V . Any δS
J is

actually equivalent (mod I(V )) to a polynomial δ̄S
J of degree at most π (obtained

from δS
J by zeroing all the monomials xI with I ∈ F and therefore at least all

the monomials of degree larger than π). Note that
∑

I⊆[n] δ̄
S
I =

∑
I⊆T δ̄S

I = 1,
(δ̄S

I )2 ≡ δ̄S
I (mod I(V )) and δ̄S

I (a0−a�x) ≡ δ̄S
I (a0−∑

i∈I ai) (mod I(V )). Then

a0 − a�x =
(
a0 − a�x

)
=1︷ ︸︸ ︷⎛

⎝∑
I⊆T

δ̄S
I

⎞
⎠ ≡

∑
I∈T

≥0︷ ︸︸ ︷(
a0 −

∑
i∈I

ai

)
(δ̄S

I )2

︸ ︷︷ ︸
s0(x)

(mod I(V ))

From the above equivalence we see that a0 − a�x can be written (mod I(V )) as
a conical combination of squares of polynomials of degree at most π.

By definition of the equivalences (mod I(V )) and (mod I(Zn
2 )), we can now

easily transform the equivalence (mod I(V )) into the equivalence (mod I(Zn
2 ))

as given by (2) by adding some polynomials from I(V )\I(Zn
2 ). It is easy to argue

that these polynomials have degree O(π). (More details will appear in the longer
version of this paper.) ��
Let Pr(d) denote the set of feasible solutions for Rd+1[x]-sos projected to the
original variables. The following simple result shows that fixed rank CG clo-
sures of packing problems can be approximated to any arbitrarily precision in
polynomial time by using the sos hierarchy.

Theorem 2. For each integer t ≥ 0 and ε > 0 there are integers d = d(t, ε)
such that max{c�x : x ∈ Pr(d)} ≤ (1 + ε)cg(t), for any c ∈ R

n
+.

Proof. For any fixed ε > 0 and integer t ≥ 0 choose d > 0 integral large enough
that ((d+1)/d)t ≤ 1+ε. Consider the solution x(�) obtained by multiplying any
given solution x ∈ Pr(d) by a factor equal to ( d

d+1 )�. It follows that max{c�x :
x ∈ Pr(d)} is not larger than a factor of (d+1

d )� of the value of x(�). Now the
claim follows by showing that x(t) is feasible for the rank-t CG closure.

The proof is by induction on t. As a base of induction note that when t = 0
then clearly x(0) satisfies all the original constraints. Assume now, by induction
hypothesis, that the claim is true for any rank equal to (t − 1) with t ≥ 1
and we need to show that it is valid also for rank-t. If the pitch of a generic
rank-t valid inequality for P (t) is at most d then by Lemma 4 it follows that
any feasible solution x ∈ Pr(d) (and therefore x(�)) satisfies this inequality.
Otherwise, consider a generic rank-t valid inequality �a0� − a�x ≥ 0 of pitch
larger than d, where a0 − a�x ≥ 0 is any valid inequality from the closure
P (t−1). By induction hypothesis note that a0 − a�x(t−1) ≥ 0. Since the pitch is
higher than d then a0 > d (vector a can be assumed, w.l.o.g., to be nonnegative
and integral) and therefore a0

�a0� ≤ d+1
d and by multiplying the solution x(t−1) ∈

P (t−1) by d/(d + 1) we obtain a feasible solution for the rank-t CG closure. ��
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Open Problems. It would be nice to understand if it is possible (i) to general-
ize Theorem 1 to work with general covering problems, (ii) to get a PTAS to
approximate all the CG-cuts constraints for more general problems.
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Abstract. We extend the Barvinok–Woods algorithm for enumeration
of integer points in projections of polytopes to unbounded polyhedra.
To achieve this, we employ a new structural result on projections of
semilinear subsets of the integer lattice.

1 Introduction

1.1 The Results

Integer linear programming in fixed dimension is a classical subject [Len83]. The
pioneering result by Lenstra [Len83] shows that the feasibility of integer linear
programming in a fixed dimension n can be decided in polynomial time:

(◦) ∃x ∈ Z
n : Ax ≤ b.

This result was extended by Kannan [Kan90], who showed that parametric inte-
ger linear programming in fixed dimensions can be decided in polynomial time:

(◦◦) ∀y ∈ P ∩ Z
n ∃x ∈ Z

m : Ax + By ≤ b.

Both results rely on difficult results in geometry of numbers and can be viewed
geometrically: (◦) asks whether a polyhedron Q = {Ax ≤ b} ⊆ R

n has an integer
point. Similarly, (◦◦) asks whether every integer point in the polyhedron P is the
projection of an integer point in the polyhedron Q = {Ax + By ≤ b} ⊆ R

m+n.
Barvinok [Bar93] famously showed that the number of integer points in poly-

topes in a fixed dimension n can be computed in polynomial time. He used a
technology of short generating functions (GF) to enumerate the integer points
in general (possibly unbounded) rational polyhedra in R

d in the following form:

(�) f(t) =
N∑

i=1

ci tai

(1 − tbi1) · · · (1 − tbiki )
,

where ci ∈ Q, ai, bij ∈ Z
n and ta = ta1

1 · · · tan
n if a = (a1, . . . , an) ∈ Z

n.
Under the substitution t ← 1 in (�), one can count the number of integer
points in a (bounded) polytope Q, and thus solves (◦) quantitatively for the
bounded case. In general, one can also succinctly represent integer points in the
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 417–429, 2017.
DOI: 10.1007/978-3-319-59250-3 34
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intersections, unions and complements of general (possibly unbounded) rational
polyhedra [Bar08,BP99] in R

n using short GFs.
Barvinok’s algorithm was extended to projections of polytopes by Barvinok

and Woods [BW03], see Theorem 2. The result has a major technical drawback:
while it does generalize Kannan’s result for bounded P and Q as in (◦◦), it
does not apply for unbounded polyhedra. The main result of this paper is an
extension of Barvinok’s algorithm to the unbounded case (Theorem 3).

Example 1. Consider Q = {(x, y, z) ∈ R
3
+ : x = 2y +5z}. Then Q∩Z

3 projected
on Z has a short GF 1

(1−t2)(1−t5) − t10

(1−t2)(1−t5) = 1 + t2 + t4 + t5 + t7+ etc.

Our main tool is a structural result describing projections of semilinear sets,
which are defined as disjoint union of intersections of polyhedra and lattice
cosets. More precisely, we prove that such projections are also semilinear and
give bound on the (combinatorial) complexity of the projection (Theorem 1).
In combination with the Barvinok–Woods theorem we obtain the extension to
unbounded polyhedra.

1.2 Connections and Applications

After Lenstra’s algorithm, many other methods for fast integer programming in
fixed dimensions have been bound (see [Eis03,FT87]). Kannan’s algorithm was
strengthened in [ES08]. Barvinok’s algorithm has been simplified and improved
in [DK97,KV08]. Both Barvinok’s and Barvinok–Woods’ algorithms have been
implemented and used for practical computation [D+04,Köp07,V+07].

Let us emphasize that in the context of parametric integer programming,
there are two main reasons to study unbounded polyhedra:

(1) Working with short GFs of integer points in unbounded polyhedra allows to
compute to various integral sums and valuations over convex polyhedra. We
refer to [B+12,Bar08,BV07] for many examples and further references.

(2) For a fixed unbounded polyhedron Q and a varying polytope P in (◦◦), one can
count the number of points in the projection of Q within P . This is done by
intersectingQwith a box of growing size and then projecting it. TheBarvinok–
Woods algorithm is called multiple times for different boxes. Our approach
allows one to call the Barvinok–Woods algorithm only once to project Q
(unbounded), and then call a more economical Barvinok’s algorithm to com-
pute the intersection with P . We refer to [ADL16] for an explicit example
related to the famous Frobenius Problem requiring such an application.

In conclusion, let us mention that semilinear sets are well studied subjects
in both computer science and logic. The study of semilinear sets has numerous
applications in computer science, such as analysis of number decision diagrams
(see [Ler05]), and context-free languages (see [Par66]). The fact that semilinear
sets are closed under taking projections is not new (see [GS64]). Woods [W15]
also characterized semilinear sets as exactly those sets with rational generating
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functions, which also implies closedness under projections. In our paper, we prove
the structural result on projections of semilinear sets by a direct argument, with-
out using tools from logic. By doing so, we obtain effective polynomial bounds
for the number of polyhedral pieces and the facet complexity of each piece in the
projection. We refer to [Gin66] for background on semilinear sets, and to [CH16]
for most recent developments.

2 Notations

We use N = {0, 1, 2, . . .}, Z+ = {1, 2, . . .} and R+ = {x ∈ R : x ≥ 0}.
All constant vectors are denoted a, c, n, v, b, d, etc.
For a number N , we also denote by N the vector with all entries equal to N .
Matrices are denoted A,B,C, etc.
Variables are denoted x, y, z, etc.; vectors of variables are denoted x,y, z, etc.
If xj ≤ yj for every index j in vectors x and y, we write x ≤ y.
GF is an abbreviation for “generating function”.
Multi-variable generating functions are denoted by f(t), g(t), h(t), etc.
Polyhedron is an intersection of finitely many closed half-spaces in R

n.
Polytope is a bounded polyhedron.
Polyhedra/polytopes are denoted by P,Q,R, etc.
The affine dimension of P is denoted by dim(P ).
Integer lattices are denoted by L, T ,U ,W, etc.
Let rank(L) denotes the rank of L.
Patterns are denoted by L,T ,S,U ,W , etc.
The function φ(·) denotes the binary length of a number, vector, matrix.
For a polyhedron Q described by a linear system Ax ≤ b, we denote by φ(Q)
the total length φ(A) + φ(b).
For a lattice L generated by a matrix A, φ(L) denotes φ(A).

3 Structure of a Projection

3.1 Semilinear Sets and Their Projections

In this section, we assume all dimensions m,n, etc., are fixed. We emphasize
that all lattices mentioned are of full rank. All inputs are in binary.

Definition 1. Given a set X ⊆ R
n+1, the projection of X, denoted by proj(X),

is defined as

proj(X) := {(x2, . . . , xn) : (x1, x2, . . . , xn+1) ∈ X} ⊆ R
n.

For any y ∈ proj(Q), denote by proj−1(y) ⊆ X the preimage of y in X.
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Definition 2. Let L ⊆ Z
n be a full-rank lattice. A pattern L with period L is

a union of finitely many (integer) cosets of L. For any other lattice L′, if L can
be expressed as a finite union of cosets of L′, then we also call L′ a period of L.

Given a rational polyhedron Q and a pattern L, the set Q ∩ L is called a
patterned polyhedron. When the pattern L is not emphasized, we simply call Q
a patterned polyhedron with period L.

Definition 3. A semilinear set X is a set of the form

X =
k⊔

i=1

Qi ∩ Li , (1)

where each Qi ∩Li is a patterned polyhedron with period Li, and the polyhedra
Qi are a pairwise disjoint.1 The period length ψ(X) of X is defined as

ψ(X) =
k∑

i=1

φ(Qi) + φ(Li).

Note that ψ(X) does not depend on the number of cosets in each Li. Define

η(X) :=
k∑

i=1

η(Qi),

where each η(Qi) is the number of facets of the polyhedron Qi.

Our main structural result is the following theorem.

Theorem 1. Let m ∈ N be fixed. Let X ⊆ Z
m be a semilinear set of the form

(1). Let T : R
m → R

n be a linear map satisfying T (Zm) ⊆ Z
n. Then T (X) is

also a semilinear set, and there exists a decomposition

T (X) =
r⊔

j=1

Rj ∩ Tj , (2)

where each Rj ∩ Tj is a patterned polyhedron in R
n with period Tj ⊆ Z

n. The
polyhedra Rj and lattices Tj can be found in time poly(ψ(X)). Moreover,

r = η(X)O(m!) and η(Rj) = η(X)O(m!), 1 ≤ j ≤ r.

Remark 1. The above result describes all pieces Rj and periods Tj in polynomial
time. However, it does not explicitly describe the patterns Tj . The latter is
actually an NP-hard problem (see [W04, Proposition 5.3.2]).

1 In Theoretical CS literature, semilinear sets are often explicitly presented by genera-
tors, which makes some operations like projections easy to compute, while structural
properties harder to establish (see e.g. [CH16] and the references therein).
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For the proof of Theorem 1, we need a technical lemma:

Lemma 1. Let n ∈ N be fixed. Consider a patterned polyhedron (Q∩L) ⊆ R
n+1

with period L. There exists a decomposition

proj(Q ∩ L) =
r⊔

j=0

Rj ∩ Tj , (3)

where each Rj ∩ Tj is a patterned polyhedron in R
n with period Tj ⊆ Z

n. The
polyhedra Rj and lattices Tj can be found in time poly(φ(Q)+φ(L)). Moreover,

r = O
(
η(Q)2

)
and η(Rj) = O

(
η(Q)2

)
, for all 0 ≤ j ≤ r .

We postpone the proof of the lemma until Subsect. 3.3.

3.2 Proof of Theorem 1

Definition 4. A copolyhedron P ⊆ R
n is a polyhedron with possibly some open

facets. If P is a rational copolyhedron, we denote by �P  the (closed) polyhedron
obtained from P by sharpening each open facet (ax < b) of P to (ax ≤ b − 1),
after scaling a and b to integers. Clearly, we have P ∩ Z

n = �P  ∩ Z
n.

Recall that X has the form (1) with each Qi ∩Li having period Li. Define:

Q̂i :=
{
(x,y) : y = T (x) and x ∈ Qi

}
⊆ R

m+n. (4)

Consider a pattern Ui = Li ⊕ Z
n ⊆ Z

m+n with period Ui = Li ⊕ Z
n. Then

Q̂i ∩ Ui is a patterned polyhedron in R
m+n. By (4), we have:

T (Qi ∩ Li) = S(Q̂i ∩ Ui) and T (X) =
r⋃

i=1

S(Q̂i ∩ Ui),

where S is a vertical projection mapping (x,y) ∈ R
m+n to y ∈ R

n. We can write
S = S1 ◦ · · · ◦Sm, where each Si : R

i+n → R
i+n−1 is a projection along the xi+n

coordinate. We repeatedly apply Lemma 1 on Sm, . . . , S1.
Start by applying Lemma 1 on Sm, we have:

Sm(Q̂i ∩ Ui) =
ri⊔

j=1

(
Rij ∩ Tij

)
, (5)

where each Rij ∩Tij is a patterned polyhedron in Z
m+n−1 with period Tij . Note

that two pieces Rij and Ri′j′ can be overlapping if i �= i′. However, we can refine
all Rij into polynomially many disjoint copolyhedra Pd, so that

k⋃

i=1

ri⋃

j=1

Rij =
e⊔

d=1

Pd. (6)
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For each Pd we can also find a pattern Wd with period Wd ∈ Z
m+n−1. The

(full-rank) period Wd can be taken as the intersection of polynomially many
(full-rank) periods Tij for which Pd ⊆ Rij . We round each Pd to �Pd (see
Definition 4). From (5) and (6) we have:

k⋃

i=1

Sm(Q̂i ∩ Ui) =
e⊔

d=1

(
�Pd + Wd

)
.

A similar argument applies to S1 ◦ · · · ◦ S1. In the end, we have (2).
Using Lemma 1, we can bound the number of polyhedra ri in (5), and also

the number of facets η(Rij) for each Rij . This gives us a bound on e, the number
of refined pieces in (6). By a careful analysis, after all m projections, the total
number r of pieces in the final decomposition (2) is at most ρ(X)O(m!). Each
piece Rj also has at most ρ(X)O(m!) facets. ��

3.3 Proof of Lemma 1

The proof is by induction on n. The case n = 0 is trivial. Assume n ≥ 1.
Let L ⊆ Z

n+1 be a full-rank pattern with period L as in the lemma. Then, the
projection of L onto Z

n is another pattern L′ with full-rank period L′ = proj(L).
Since L is of full rank, we can define

� = min{t ∈ Z+ : (t, 0, . . . , 0) ∈ L}. (7)

Let R = proj(Q). Assume Q is described by the system Ax ≤ b. Recall the
Fourier–Motzkin elimination method (see [Sch86, Sect. 12.2]), which gives the
facets of R from those of Q. First, rewrite and group the inequalities in Ax ≤ b
into

A1y + b1 ≤ x1, x1 ≤ A2y + b2 and A3y ≤ b3, (8)

where y = (x2, . . . , xn+1) ∈ R
n. Then R is described by a system Cy ≤ d, which

consists of (A3y ≤ b3) and (a1y + b1 ≤ a2y + b2) for every possible pair of
rows a1y + b1 and a2y + b2 from the first two systems in (8). Moreover, we can
decompose

R =
r⊔

j=1

Pj , (9)

where each Pj is a copolyhedron, so that over each Pj , the largest row in A1y+b1
is aj1y + bj1 and the smallest row in A2y + b2 is aj2y + bj2. Thus, for every
y ∈ Pj , we have proj−1(y) = [αj(y), βj(y)], where αj(y) = aj1y + bj1 and
βj(y) = aj2y + bj2 are affine rational functions. Let m = η(Q). Note that the
system Cy ≤ d contains at most O(m2) inequalities, i.e., η(R) = O(m2). Also,
we have r = O(m2) and η(Pj) = O(m) for 1 ≤ j ≤ r.
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For each y ∈ R, the preimage proj−1(y) ⊆ Q is a segment in the direc-
tion x1. Denote by |proj−1(y)| the length of this segment. Now we refine the
decomposition in (9) to

R = R0 � R1 � · · · � Rr , where (10)

(a) Each Rj is a copolyhedron in R
n, with η(Rj) = O(m2) and r = O(m2).

(b) For every y ∈ R0, we have the length |proj−1(y)| ≥ �.
(c) For every y ∈ Rj (1 ≤ j ≤ r), we have the length |proj−1(y)| < �. Fur-

thermore, we have proj−1(y) = [αj(y), βj(y)], where αj and βj are affine
rational functions in y.

This refinement can be obtained as follows. First, define

R0 = proj[Q ∩ (Q + �v1)] ⊆ R,

where v1 = (1, 0, . . . , 0). The facets of R0 can be found from those of Q∩(Q+�v1)
again by Fourier–Motzkin elimination, and also η(R0) = O(m2). Observe that
|proj−1(y)| ≥ � if and only if y ∈ R0. Define Rj := Pj\R0 for 1 ≤ j ≤ r. Recall
that for every y ∈ Pj , we have proj−1(y) = [αj(y), βj(y)]. Therefore,

Rj = Pj\R0 = {y ∈ Pj : |proj−1(y)| < �} = {y ∈ Pj : αj(y) + � > βj(y)} .

It is clear that each Rj is a copolyhedron satisfying condition (c). Moreover, for
each 1 ≤ j ≤ r, we have η(Rj) ≤ η(Pj)+1 = O(m). By (9), we can decompose:

R = R0 � (R\R0) = R0

r⊔

j=1

(Pj\R0) =
r⊔

j=0

Rj .

This decomposition satisfies all conditions (a)–(c) and proves (10). Note also
that by converting each Rj to �Rj, we do not lose any integer points in R. Let
us show that the part of proj(Q ∩ L) within R0 has a simple pattern:

Lemma 2. proj(Q ∩ L) ∩ R0 = R0 ∩ L′.

Proof. Recall that proj(L) = L′, which implies LHS ⊆ RHS. On the other hand,
for every y ∈ L′, there exists x ∈ L such that y = proj(x). If y ∈ R0∩L′, we also
have |proj−1(y)| ≥ � by condition b), with � defined in (7). The point x and the
segment proj−1(y) lie on the same vertical line. Therefore, since |proj−1(y)| ≥ �,
we can find another x′ such that x′ ∈ proj−1(y) ⊆ Q and also x′ − x ∈ L. Since
L has period L, we have x′ ∈ L. This implies x′ ∈ Q ∩L, and y ∈ proj(Q ∩L).
Therefore we have RHS ⊆ LHS, and the lemma holds.

It remains to show that proj(Q∩L) ∩ Rj also has a pattern for every j > 0.
By condition (c), every such Rj has a “thin” preimage. Let Qj = proj−1(Rj) ⊆
Q. If dim(Rj) < n, we have dim(Qj) < n + 1. In this case we can apply the
inductive hypothesis. Otherwise, assume dim(Rj) = n. For convenience, we refer
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to Rj and Qj as just R and Q. We can write R = R′ + D, where R′ ⊆ R is a
polytope and D is the recession cone of R.

Consider y ∈ R, v ∈ D and λ > 0. Since y + λv ∈ R, from (c) we have
proj−1(y + λv) = [α(y + λv), β(y + λv)]. Denote by α̃ and β̃ the linear parts of
the affine maps α and β. By property of affine maps, we have:

proj−1(y + λv) = [α(y + λv), β(y + λv)] = [α(y) + λα̃(v), β(y) + λ˜β(v)]. (11)

Therefore,

|proj−1(y + λv)| = β(y) − α(y) + λ
[
β̃ − α̃

]
(v).

Since (y + λv) ∈ R, by c) we have:

0 ≤ |proj−1(y + λv)| = β(y) − α(y) + λ
[
β̃ − α̃

]
(v) < �.

Because λ > 0 is arbitrary, we must have
[
β̃ − α̃

]
(v) = 0. This holds for all

v ∈ D. We conclude that
[
β̃ − α̃

]
vanishes on the whole subspace H := span(D),

i.e., for any v ∈ H we have α̃(v) = β̃(v). Thus, we can rewrite (11) as

proj−1(y + λv) = [α(y), β(y)] + λα̃(v) = proj−1(y) + λα̃(v). (12)

Define C := α̃(D) and G := α̃(H). Note that span(C) = G, because
span(D) = H. Recall that R = R′ +D with R′ a polytope. In (12), we let y vary
over R′, λ vary over R+ and v vary over D. The LHS becomes Q = proj−1(R).
The RHS becomes proj−1(R′) + C. Therefore, we have Q = proj−1(R′) + C.
Since proj−1(R′) is a polytope, we conclude that C is the recession cone for Q.

Because proj−1(y) = [α(y), β(y)] for every y ∈ R, the last n coordinates
in α(y) and β(y) are equal to y. This also holds for α̃(y) and β̃(y), i.e.,
proj(α̃(y)) = proj(α̃(y)) = y. This implies proj(G) = H, because G = α̃(H). In
other words, α̃ is the inverse map for proj on G (see Fig. 1).

Recall that Q∩L is a patterned polyhedron with period L, and proj(Q) = R.
Define S := L ∩ G and T := proj(S) ⊂ proj(G) = H. Since L is full-rank, we
have rank(S) = dim(G). Since α̃ and proj are inverse maps, we have S = α̃(T ).

R

D, H

Q
C, G

proj α̃

Fig. 1. R and Q = proj−1(R), with R′ and proj−1(R′) shown in blue. The cones C
and D span G and H, respectively. (Color figure online)
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We claim that proj(Q∩L) ⊂ R is a patterned polyhedron with period T . Indeed,
consider any two points y1,y2 ∈ R with y2−y1 ∈ T . Assume that y1 ∈ proj(Q∩
L), i.e., there exists x1 ∈ Q∩L with proj(x1) = y1. We show that y2 ∈ proj(Q∩
L). First, we have proj−1(y1) = [α(y1), β(y1)] and proj−1(y2) = [α(y2), β(y2)].
Let v = y2 − y1 ∈ T ⊂ H. By (12), we have:

[α(y2), β(y2)] = proj−1(y2) = proj−1(y1 + v) = [α(y1), β(y1)] + α̃(v). (13)

Thus, we have α(y1) − β(y1) = α(y2) − β(y2). In other words, the points
α(y1), β(y1), α(y2) and β(y2) form a parallelogram. By proj(x1) = y1, we have:

x1 ∈ proj−1(y1) = [α(y1), β(y1)] ⊆ Q.

So x1 lies on the edge [α(y1), β(y1)] of the parallelogram. Therefore, we can find
another point x2 lying on the other edge [α(y2), β(y2)] = proj−1(y2) with

x2 − x1 = α(y2) − α(y1) = α̃(y2 − y1) = α̃(v) ∈ α̃(T ) = S.

This x2 satisfies proj(x2) = y2. Recall that x1 ∈ L, with L having period
L. Since x2 − x1 ∈ S ⊂ L, we have x2 ∈ L. This implies x2 ∈ Q ∩ L and
y2 ∈ proj(Q ∩ L).

So we have established that proj(Q∩L) ⊂ R is a patterned polyhedron with
period T . Note that

rank(T ) = rank(S) = dim(G) = dim(H) = dim(D).

If dim(D) = n then T is full-rank. If dim(D) < n, recall that R = R′ + D where
R′ is a polytope, and span(D) = H. Let H⊥ be the complement subspace to
H in R

n, and R⊥ be the projection of R′ onto H⊥. Since R⊥ is bounded, we
can take a large enough lattice T ⊥ ⊂ H⊥ such that there are no two points
z1 �= z2 ∈ R⊥ with z1 − z2 ∈ T ⊥. Now the lattice T ⊥ ⊕ T is full-rank, which
can be taken as a period for proj(Q ∩ L).

To summarize, for every piece Rj and Qj = proj−1(Rj), 1 ≤ j ≤ r, the
projection proj(Qj ∩ L) ⊂ Rj has period Tj . Thus proj(Qj ∩ L) is a patterned
polyhedron. This completes the proof. ��

4 Finding Short GF for Unbounded Projection

4.1 Barvinok–Woods Algorithm

In this section, we are again assuming that dimensions m and n are fixed. We
recall the Barvinok–Woods algorithm, which finds in polynomial time a short
GF for the projection of integer points in a polytope:

Theorem 2 ([BW03]). Let m,n ∈ N be fixed. Given a rational (bounded) poly-
tope Q = {x ∈ R

m : Ax ≤ b}, and a linear transformation T : R
m → R

n
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represented as a matrix T ∈ Z
n×m, there is a polynomial time algorithm to

compute a short GF for T (Q ∩ Z
m) as:

g(t) =
∑

y ∈ T (Q∩Zm)

ty =
M∑

i=1

ci tai

(1 − tbi1) . . . (1 − tbis)
, (14)

where ci = pi/qi ∈ Q, ai, bij ∈ Z
n, bij �= 0 for all i, j, and s is a constant

depending only on m. Moreover, g has length φ(g) = poly(φ(Q) + φ(T )), where

φ(g) =
∑

i

�log2 |pi qi| + 1� +
∑

i,j

�log2 aij + 1� +
∑

i,j,k

�log2 bij k + 1� . (15)

Using Theorem 1, we extend Theorem 2 as follows:

Theorem 3. Let m,n ∈ N be fixed. Given a possibly unbounded polyhedron
Q ⊆ R

m, and a linear transformation T : R
m → R

n which satisfies T (Q) ⊆ R
n
+,

there is a time algorithm to compute a short GF for T (Q ∩ Z
m) as in (14).

Remark 2. The extra condition T (Q) ⊆ R
n
+ is to make that the power series∑

ty of T (Q ∩ Z
m) converges on a non-empty open domain to the computed

short GF. More generally, when T (Q) has pointed recession cone, we can apply
an appropriate unimodular transformation to make sure T (Q) ⊆ R

n
+. For the

most general case when T (Q) could contain some infinite lines, we can resort to
the theory of valuation (see [Bar08,BP99]) to make sense of the infinite GF.

We need a standard result on polyhedron triangulation to prove the theorem:

Proposition 1 (see e.g. [Mei93]). Fix n ∈ N. Let R = {x ∈ R
n : Cx ≤ d} be

a possibly unbounded polyhedron. There is a decomposition

R =
t⊔

k=1

Rk ⊕ Dk, (16)

where each Rk is a copolytope, and each Dk is a simple cone. Each part Rk ⊕Dk

is a direct sum, with Rk and Dk affinely independent. All Rk and Dk can be
found in time poly(φ(R)).

4.2 Proof of Theorem 3

WLOG, we can assume dim(Q) = m and dim(T (Q)) = n. Clearly, the set
X = Q ∩ Z

m is a semilinear, and we want to find a short GF for T (X).
First, we argue that for any bounded polytope P ⊂ R

n, a short GF for
T (X) ∩ P can be found in time poly(φ(Q) + φ(P )). Assume P is given by a
system Cy ≤ d. For any v ∈ P , we have v ∈ T (X) if and only if the following
system has a solution x ∈ Z

m:

{
Ax ≤ b

T (x) = v
. (17)
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By bound on integer programming solutions (see [Sch86, Corollary 17.1b]), it is
equivalent to find such an x with length bounded polynomially in the length of
the system (17). The parameter v lies in P , which is bounded. Therefore, we can
find N ∈ N of length φ(N) = poly(φ(P )+φ(Q)), such that (17) is equivalent to:

{
Ax ≤ b

C T (x) ≤ d
−N ≤ x ≤ N

.

Applying Theorem 2 to Q̂, we get a short GF g(t) for T (Q̂ ∩ Z
m) = T (X) ∩ P .

Now we are back to finding a short GF for the entire projection T (X). Apply-
ing Theorem 1 to X, we have a decomposition:

T (X) =
r⊔

j=1

Rj ∩ Tj . (18)

We proceed to find a short GF gj for each patterned polyhedron Rj ∩Tj with
period Tj . For convenience, we refer to Rj , Tj , Tj , gj simply as R, T , T and g.
By Proposition 1, we can decompose

R =
tj⊔

i=1

Ri ⊕ Di and R ∩ T =
tj⊔

i=1

(Ri ⊕ Di) ∩ T . (19)

Recall from Theorem 1 that T has full rank. Let di = dim(Di) and v1i , . . . , v
di
i

be the generating rays of the (simple) cone Di. For each vti, we can find nt ∈ Z+

such that wt
i = ntv

t
i ∈ T . Let Pi and Ti be the parallelepiped and lattice spanned

by w1
i , . . . , w

di
i , respectively. We have Di = Pi + Ti and therefore

Ri ⊕ Di = Ri ⊕ (Pi + Ti) = (Ri ⊕ Pi) + Ti. (20)

Each Ri ⊕ Pi is a copolytope. Note that Theorem 2 is stated for (closed) poly-
topes. We round each Ri ⊕ Pi to �Ri ⊕ Pi, where �. was described in Defi-
nition 4 (Sect. 3.2). By the earlier argument, we can find a short GF hi(t) for
T (X) ∩ (Ri ⊕ Pi) = (Ri ⊕ Pi) ∩ T . Since Ti ⊆ T , the pattern T also has period
Ti. By (20), we can get the short GF fi(t) for (Ri ⊕ Di) ∩ T as

fi(t) =
∑

y∈(Ri⊕Di)∩T

ty =
∑

y∈(Ri⊕Pi)∩T

ty.
∑

y∈Ti

ty = hi(t)
di∏

t=1

1
1 − twt

i

. (21)

By (19), we obtain

g(t) =
∑

y∈R∩T

ty =
∑

1 ≤ i ≤ tj

fi(t). (22)

In summary, we obtained a short GF gj(t) for each piece Rj ∩Tj (1 ≤ j ≤ r).
Summing over all j in (18), we get a short GF for T (X), as desired. ��
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Abstract. We propose a new framework of optimal t-matchings exclud-
ing prescribed t-factors in bipartite graphs. It is a generalization of the
nonbipartite matching problem and includes a number of generalizations
such as the triangle-free 2-matching, square-free 2-matching, and even
factor problems. We demonstrate a unified understanding of those gener-
alizations by designing a combinatorial algorithm for our problem under
a reasonable assumption, which is broad enough to include the specific
problems listed above. We first present a min-max theorem and a com-
binatorial algorithm for the unweighted version. We further provide a
linear programming formulation with dual integrality and a primal-dual
algorithm for the weighted version. A key ingredient of our algorithm is a
technique of shrinking forbidden structures, which commonly extends the
techniques of shrinking odd cycles, triangles, and squares in Edmonds’
blossom algorithm, in the triangle-free 2-matching algorithm, and in the
square-free 2-matching algorithm, respectively.

1 Introduction

Since matching theory [16] was established, a number of generalizations of
the matching problem have been proposed up to the present date. Examples
include path-matchings [4], even factors [5,19], triangle-free 2-matchings [3,18],
simple square-free 2-matchings [10,19], simple Kt,t-free t-matchings [8], simple
Kt+1-free t-matchings [1], 2-matchings covering prescribed edge cuts [2,12], and
U-feasible 2-matchings [22]. For most of those generalizations, important results
in matching theory, such as a min-max theorem, polynomial algorithms, and
a linear programming formulation with dual integrality, are extended. However,
while some similar structures are found, in most cases they are studied separately
and little connection among them is discovered.

In the present paper, we propose a new framework of optimal t-matchings
excluding prescribed t-factors, to demonstrate a unified understanding of those
generalizations. Our framework includes all of the generalizations listed above,
and the traveling salesman problem (TSP) as well. This implies some intractabil-
ity of the framework, but we propose a tractable class which includes many of
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 430–441, 2017.
DOI: 10.1007/978-3-319-59250-3 35
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the efficiently solvable classes of the above problems. Our main contribution is
a min-max theorem and a combinatorial polynomial algorithm which commonly
extend those for the matching and triangle-free 2-matching problems in nonbi-
partite graphs and the simple square-free 2-matching and Kt,t-free t-matching
problems in bipartite graphs.

A key ingredient of our algorithm is a technique of shrinking excluded
t-factors. This technique commonly extends the techniques of shrinking odd
cycles, triangles, and squares in a matching algorithm [7], in a triangle-free 2-
matching algorithm [3], and in square-free 2-matching algorithms in bipartite
graphs [10,19], respectively. We demonstrate that our framework is tractable in
the class where this shrinking technique works.

1.1 Previous Work

The problems most relevant to our work are the even factor, triangle-free
2-matching, and simple square-free 2-matching problems.

The even factor problem [5] is a generalization of the nonbipartite match-
ing problem, which admits a further generalization: the basic/independent even
factor problem [5,11] is its generalization including matroid intersection. Let
D = (V,A) be a digraph. A subset of arcs F ⊆ A is a path-cycle factor if it
is a vertex-disjoint collection of directed cycles (dicycles) and directed paths
(dipaths). Equivalently, an arc subset F is a path-cycle factor if, in the sub-
graph (V, F ), the indegree and outdegree of every vertex are at most one. An
even factor is a path-cycle factor excluding dicycles of odd length (odd dicycles).

While the maximum even factor problem is NP-hard, in odd-cycle symmetric
digraphs it enjoys min-max theorems, an Edmonds-Gallai decomposition, and
polynomial-time algorithms. A digraph is called odd-cycle symmetric if every odd
dicycle has its reverse dicycle. Moreover, a maximum-weight even factor can be
found in polynomial time in odd-cycle symmetric weighted digraphs, which are
odd-cycle symmetric digraphs with arc-weight such that the total weight of the
arcs in an odd dicycle is equal to that of its reverse dicycle. The maximum-
weight matching problem is straightforwardly reduced to the maximum-weight
even factor problem in odd-cycle symmetric weighted digraphs. The assumption
of odd-cycle symmetry of (weighted) digraphs is justified by its relation to dis-
crete convexity. For more detail and references of the aforementioned results, the
readers are referred to a survey paper [20].

The triangle-free 2-matching and simple square-free 2-matching problems
are examples of the restricted 2-matching problem, a main objective of which
is to provide a tight relaxation of the TSP. Let G = (V,E) be an undirected
graph which may have parallel edges but may not have loops. For a positive
integer t, an edge set F ⊆ E is called a t-matching (resp., t-factor) if every
vertex in V has at most (resp., exactly) t incident edges in F . A 2-matching is
called triangle-free if it excludes cycles of length three. Note that a triangle-free
2-matching may contain parallel edges. For the maximum-weight triangle-free
2-matching problem in which all parallel copies of each edge have the same
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weight, a combinatorial algorithm together with a totally dual integral formula-
tion is presented in [3,18].

An edge set is called simple if it excludes parallel edges. If we restrict
2-matchings to be simple, the triangle-free 2-matching problem becomes much
more complicated [9]. More generally, for a positive integer k, a simple
2-matching is called C≤k-free if it excludes cycles of length at most k. Finding
a maximum simple C≤k-free 2-matching is NP-hard for k ≥ 5, and is open for
k = 4. In contrast, the simple C≤4-free 2-matching problem becomes tractable
in bipartite graphs. We often refer to a simple C≤4-free 2-matching in a bipar-
tite graph as a square-free 2-matching. Throughout this paper, a square-free
2-matching always means a simple C≤4-free 2-matching in a bipartite graph,
unless otherwise stated. For the square-free 2-matching problem in bipartite
graphs, min-max theorems, combinatorial algorithms, and decomposition theo-
rems are established. For the weighted case, while finding a maximum-weight
square-free 2-matching in a bipartite graph is NP-hard, it is solvable in polyno-
mial time if the weight is vertex-induced on each C4 (see Sect. 2 for definition).
This assumption on the weight is again justified by its relation to discrete con-
vexity. See [21,22] for more detail on the aforementioned results.

It should be noted that Pap [19] presented combinatorial algorithms for the
even factor and square-free 2-matching problems in the same paper. Indeed,
these algorithms are based on similar techniques of shrinking odd cycles and
C4’s, and may imply some similarity of these two problems. However, to the
best of our knowledge, a comprehensive theory including both of these problems
has not been proposed.

1.2 Our Contribution

In the present paper, we discuss U-feasible t-matchings: for an undirected
graph G = (V,E) and U ⊆ 2V , a t-matching F is U-feasible if it excludes
a t-factor in U for each U ∈ U (see Definition 1 for a formal description).
The optimal U-feasible t-matching problem generalizes not only the U-feasible
2-matching problem [22], but also all of the aforementioned generalizations of the
matching problem. Thus, it could be recognized that U-feasibility is a common
generalization of the blossom constraint for the nonbipartite matching problem
and the subtour elimination constraint for the TSP.

In this paper, we present a min-max theorem and an efficient combinatorial
algorithm for the maximum U-feasible t-matching problem in bipartite graphs
under a plausible assumption on (G,U , t). These results commonly extend those
for nonbipartite matchings, even factors, triangle-free 2-matchings, and square-
free 2-matchings. We remark here that the U-feasible t-matching problem in
bipartite graphs is a generalization of the nonbipartite matching problem. Our
algorithm runs in O(t(|V |3α + |V |2β)) time, where α and β are the time for
checking feasibility of an edge set and expanding the shrunk structures, respec-
tively. The complexities α and β are typically small, i.e., constant or O(|V |), in
the above specific cases.
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We further solve the maximum-weight U-feasible t-matching problem in
bipartite graphs, under the same assumption on (G,U , t) and a certain assump-
tion on the edge weights. We establish a linear programming description with
dual integrality and a primal-dual algorithm with running time O(t(|V |3(|E| +
α) + |V |2β)).

Imposing some assumption on (G,U , t) would be reasonable in order to have
U-feasible t-matchings tractable. (Recall that it can describe Hamilton cycles.)
Indeed, we assume for the excluded t-factors that the expanding technique is
always valid (see Definition 3). This assumption is broad enough to include
the instances reduced from nonbipartite matchings, even factors in odd-cycle
symmetric digraphs, triangle-free 2-matchings in nonbipartite graphs, square-
free 2-matchings, and simple Kt,t-free t-matchings in bipartite graphs.

In the weighted case, the assumption on the edge weights is that the weights
are vertex-induced for each U ∈ U (see Definition 2). We note that this assump-
tion exactly corresponds to the previous assumptions for the maximum-weight
even factor, square-free 2-matching, and simple Kt,t-free t-matching problems.
Those previous assumptions are plausible from the viewpoint of discrete convex-
ity [14,15]. This would be an example of a unified understanding of the previous
results on even factors and square-free 2-matchings.

2 Our Framework

Let G = (V,E) be an undirected graph which may have parallel edges. An edge e
connecting u, v ∈ V is denoted by {u, v}. If G is a digraph, then an arc from u to
v is denoted by (u, v). For X ⊆ V , let G[X] = (X,E[X]) denote the subgraph of
G induced by X, that is, E[X] = {{u, v} | u, v ∈ X, {u, v} ∈ E}. Similarly, for
F ⊆ E, define F [X] = {{u, v} | u, v ∈ X, {u, v} ∈ F}. If X,Y ⊆ V are disjoint,
then F [X,Y ] denotes the set of edges in F connecting X and Y .

For v ∈ V , let δ(v) ⊆ E denote the set of edges incident to v. For F ⊆ E and
v ∈ V , let degF (v) = |F ∩ δ(v)|. Recall that F is a t-matching if degF (v) ≤ t for
each v ∈ V , and a t-factor if degF (v) = t for every v ∈ V .

Definition 1. For a graph G = (V,E) and U ⊆ 2V , a t-matching F ⊆ E is
called U-feasible if |F [U ]| ≤ �(t|U | − 1)/2� for each U ∈ U .

Equivalently, a t-matching F in G is not U-feasible if F [U ] is a t-factor in
G[U ] for some U ∈ U . This concept is a generalization of that for U-feasible
2-matchings introduced in [22].

In what follows, we consider the maximum U-feasible t-matching problem,
in which the goal is to find a U-feasible t-matching F maximizing |F |. We fur-
ther deal with the maximum-weight U-feasible t-matching problem, in which the
objective is to find a U-feasible t-matching F maximizing w(F ) =

∑
e∈F w(e)

for a given edge-weight vector w ∈ R+
E . For a vector x ∈ RE and F ⊆ E,

in general we denote x(F ) =
∑

e∈F x(e). In discussing the weighted version, we
assume that w is vertex-induced on each U ∈ U .
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Definition 2. For a graph G = (V,E), a vertex subset U ⊆ V , and an edge-
weight w ∈ RE, w is called vertex-induced on U if there exists a function πU :
U → R on U such that w({u, v}) = πU (u) + πU (v) for each {u, v} ∈ E[U ].

The reductions of the aforementioned generalizations of the matching prob-
lem to the U-feasible t-matching problem appear in the full version of the paper.

3 Maximum U-Feasible t-Matching

In this section, we exhibit a min-max theorem and a combinatorial algorithm
for the maximum U-feasible t-matching problem in bipartite graphs. Our algo-
rithm commonly extends those for nonbipartite matchings [7], even factors [19],
triangle-free 2-matchings [3], and square-free 2-matchings [10,19].

As a preliminary, we present a weak duality relation. Let G = (V,E)
be an undirected graph and U ⊆ 2V . At this point, G do not need to be
bipartite. For X ⊆ V , define UX ⊆ U and CX ⊆ X by UX = {U ∈ U |
U forms a component in G[X]}, and CX = X \ ⋃

U∈UX
U . Then the following

inequality holds for an arbitrary U-feasible t-matching F and X ⊆ V .

Lemma 1. For an arbitrary U-feasible t-matching F ⊆ E and X ⊆ V , it holds
that

|F | ≤ t|X| + |E[CV \X ]| +
∑

U∈UV \X

⌊
t|U | − 1

2

⌋

. (1)

Proof. The lemma follows from

2|F [X]| + |F [X,V \ X]| ≤ t|X|, (2)

|F [V \ X]| ≤ |E[CV \X ]| +
∑

U∈UV \X

⌊
t|U | − 1

2

⌋

. (3)

3.1 Algorithm

From now on, we assume bipartiteness of the graph. Let G = (V,E) be an
undirected bipartite graph. Denote the two color classes of V by V + and V −.
For X ⊆ V , denote X+ = X ∩ V + and X− = X ∩ V −. The endvertices of an
edge e ∈ E in V + and V − are denoted by ∂+e and ∂−e, respectively.

We begin with the description of shrinking a forbidden structure U ∈ U . For
concise notation, we denote the input graph by Ĝ = (V̂ , Ê) and the graph in
hand, i.e., the graph resulted from possibly repeated shrinkings, by G = (V,E).
Consequently, we have that U ∈ 2V̂ . Denote the solution in hand by F ⊆ E.
Intuitively, shrinking of U consists of identifying all vertices in U+ and in U−

to obtain new vertices uU
+ and vU

−, respectively, and deleting all the edges in
E[U ]. A formal description is as follows.
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Procedure Shrink(U). Let uU
+ and vU

− be new vertices, and reset the end-
vertices of an edge e ∈ Ê \ Ê[U ] with ∂+e = u and ∂−e = v as ∂+e := uU

+ if
u ∈ U+ and ∂−e := vU

− if v ∈ U−. Update G by V + := (V + \ U+) ∪ {uU
+},

V − := (V − \ U−) ∪ {vU−}, and E := E \ Ê[U ]. Finally, F := F ∩ E and
return (G,F ).

We refer to a vertex v ∈ V as a natural vertex if v is a vertex in the
original graph Ĝ, and as a pseudovertex if it is a newly added vertex in
shrinking some U ∈ U . We denote the set of the natural vertices by Vn, and
that of the pseudovertices by Vp. For X ⊆ V̂ , define Xn = X ∩ Vn and
Xp =

⋃{uU
+, vU

− | U ⊆ X, uU
+, vU

− ∈ Vp}. For X ⊆ V , define X̂ ⊆ V̂

by X̂ = Xn ∪ ⋃{U+ | uU
+ ∈ X ∩ Vp} ∪ ⋃{U− | vU

− ∈ X ∩ Vp}.
Procedure Expand(G,F ) is to execute the reverse operation of Shrink(U)

for all shrunk U ∈ U . A key point is that �(t|U | − 1)/2� edges are added to F
from Ê[U ] for each U ∈ U .

Procedure Expand(G,F ). Let G := Ĝ. For each inclusionwise maximal U ∈ U
which is shrunk, add FU ⊆ Ê[U ] of �(t|U | − 1)/2� edges to F , so that F is a
U-feasible t-matching in Ĝ. Now return (G,F ).

In Procedure Expand(G,F ), the existence of FU is not trivial. In order to
attain that F̂ = F ∪ ⋃{FU | U ∈ U is a maximal shrunk set} is a t-matching in
Ĝ, F ⊆ E and FU ⊆ Ê[U ] should satisfy

degF (u) ≤
{

t (u ∈ Vn),
1 (u ∈ Vp)

(4)

degFU
(u)

{
= t − 1 (u ∈ U is incident to an edge in F [U, V \ U ]),
≤ t (u ∈ U is not incident to an edge in F [U, V \ U ]).

(5)

To achieve this, we maintain that F satisfies the degree constraint (4). Moreover,
we assume that there exists FU satisfying |FU | = �(t|U | − 1)/2� and (5) for an
arbitrary F with (4) and every maximal shrunk set U ∈ U . This assumption is
formally defined in the following way.

Definition 3. Let Ĝ = (V̂ , Ê) be a bipartite graph, U ⊆ 2V̂ , and t be a positive
integer. For arbitrary U1, . . . , Ul ∈ U that are pairwise disjoint, let G = (V,E)
denote the graph obtained from Ĝ by executing Shrink(U1), . . . , Shrink(Ul),
and let F ⊆ E be an arbitrary edge set satisfying (4). We say that (Ĝ,U , t)
admits expansion if there exists FUi

⊆ Ê[Ui] satisfying |FUi
| = �(t|Ui| − 1)/2�

and (5) for each i = 1, . . . , l.

In what follows we assume that (Ĝ,U , t) admits expansion. This is exactly
the class of (G,U , t) to which our algorithm is applicable.

Furthermore, we should take U-feasibility of F̂ into account. We refer to F
in G as feasible if F̂ is U-feasible. If there are several possibilities of FU , we say
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that F is U-feasible if there is at least one U-feasible F̂ . In other words, if F
satisfying (4) is not feasible, then there exists U ∈ U such that

degF (v) =

{
t (v ∈ Un),
1 (v ∈ Up),

(6)

and F̂ shall have a t-factor in Ĝ[U ].
We are now ready for the entire description of our algorithm. The algorithm

begins with G = Ĝ and an arbitrary U-feasible t-matching F ⊆ Ê, typically
F = ∅. We first construct an auxiliary digraph.

Procedure AuxiliaryDigraph(G,F ). Construct a digraph (V,A) defined by
A= {(u, v)|u ∈ V +, v ∈V −, {u, v}∈ E\F} ∪ {(v, u)|u ∈V +, v ∈V −, {u, v}∈ F}.
Define the sets of source vertices S ⊆ V + and sink vertices T ⊆ V − by S =
{u ∈ Vn

+ | degF (u) ≤ t − 1} ∪ {uU
+ ∈ Vp

+ | degF (uU
+) = 0} and

T = {v ∈ Vn
− | degF (v) ≤ t − 1} ∪ {vU− ∈ Vp

− | degF (vU−) = 0}. Now
return D = (V,A;S, T ).

Suppose that there exists a directed path P = (e1, f1, . . . , el, fl, el+1) in D
from S to T . Note that ei ∈ E \ F (i = 1, . . . , l + 1) and fi ∈ F (i = 1, . . . , l).
Denote the symmetric difference (F \P )∪ (P \F ) of F and P by F�P . If F�P
is feasible, we execute Augment(G,F, P ) below, and then Expand(G,F ).

Procedure Augment(G,F, P ). Let F := F�P and return F .

If F�P is not feasible, we apply Shrink(U) after determining a set U ∈ U
to be shrunk by the following procedure.

Procedure ViolatingSet(G,F, P ). For j = 1, . . . , l, define Fj = (F \
{f1, . . . fj}) ∪ {e1, . . . , ej}. Also define F0 = F and Fl+1 = F�P . Let j∗ be
the minimum index j such that Fj is not feasible, let U ∈ U be an arbitrary set
satisfying (6) for F = Fj∗ . Now let F := Fj∗−1, and return (F,U).

Finally, if D does not have a directed path from S to T , we determine X ⊆ V̂
minimizing the right-hand side of (1) as follows.

Procedure Minimizer(G,F ). Let R ⊆ V be the set of vertices reachable from
S, and X := (V + \ R+) ∪ R−. If a natural vertex v ∈ V − \ X has t edges in F
connecting R+ and v, then X := X ∪ {v}. If a pseudovertex v−

U ∈ V − \ X has
one edge in F connecting R+ and v−

U , then X := X ∪ {v−
U}. Return X := X̂.

We then apply Expand(G,F ) and the algorithm terminates by returning
F ⊆ Ê and X ⊆ V̂ .
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3.2 Min-Max Theorem: Strong Duality

In this section, we strengthen Lemma 1 to be a min-max relation and prove the
validity of our algorithm in Sect. 3.1. That is, we show that the output (F,X) of
the algorithm satisfies (1) with equality. This constructively proves the following
min-max relation for the class of (G,U , t) admitting expansion.

Theorem 1. Let G = (V,E) be a bipartite graph, U ⊆ 2V , and t be a posi-
tive integer such that (G,U , t) admits expansion. Then, the maximum size of a
U-feasible t-matching is equal to the minimum of

min
X⊆V

⎧
⎨

⎩
t|X| + |E[CV \X ]| +

∑

U∈UV \X

⌊
t|U | − 1

2

⌋
⎫
⎬

⎭
.

Proof. It suffices to prove equality in (2) and (3) for the algorithm output (F̂ , X̂).
First, since X is defined based on reachability in the auxiliary digraph D,

F [X] = ∅ holds when no directed path from S to T is found. Moreover, it is not
difficult to see that v+

U ∈ R holds for every pseudovertex v+
U . Hence it follows

that F̂ [X̂] = ∅.
Second, for every v ∈ X̂, degF̂ (v) = t holds, and thus (2) holds by equality.
Finally, edges in Ĝ[V̂ \ X̂] are in F before the last Expand(G,F ) or obtained

by expanding pseudovertices uU
+ and vU

−, which are isolated vertices in G[V \X].
This means that U forms a component in Ĝ[V̂ \ X̂], and thus the equality in (3)
follows.

4 Weighted U-Feasible t-Matching

In this section, we extend the min-max theorem and the algorithm presented in
Sect. 3 to the maximum-weight U-feasible t-matching problem. Recall that G is
a bipartite graph in which every edge may have parallel copies with the same
weight, and (G,U , t) admits expansion. We assume that w is vertex-induced on
each U ∈ U , which commonly extends the assumptions for the maximum-weight
square-free and even factor problems.

4.1 Linear Program

Described below is a linear programming relaxation of the maximum-weight
U-feasible t-matching problem, where the variable is x ∈ RE :

(P) maximize
∑

e∈E

w(e)x(e)

subject to x(δ(v)) ≤ t (v ∈ V ),
x(E[U ]) ≤

⌊
t|U |−1

2

⌋
(U ∈ U),

0 ≤ x(e) ≤ 1 (e ∈ E).
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We shall remark that the second constraint, describing U-feasibility, is a common
extension of the blossom constraint for the nonbipartite matching problem (put
t = 1), and the subtour elimination constraints for the TSP (put t = 2).

Its dual program, where the variables are p ∈ RV , q ∈ RE , and r ∈ RU , is
given as follows:

(D) minimize t
∑

v∈V
p(v) +

∑

e∈E
q(e) +

∑

U∈U

⌊
t|U|−1

2

⌋
r(U)

subject to p(u) + p(v) + q(e) +
∑

U∈U : e∈E[U ]

r(U) ≥ w(e) (e = {u, v} ∈ E),

p(v) ≥ 0 (v ∈ V ),
q(e) ≥ 0 (e ∈ E),
r(U) ≥ 0 (U ∈ U).

Define w′ ∈ RE by w′(e) = p(u) + p(v) + q(e) +
∑

U∈U : e∈E[U ] r(U) − w(e) for
e = {u, v} ∈ E. The complementary slackness conditions for (P) and (D) are as
follows.

x(e) > 0 =⇒ w′(e) = 0 (e ∈ E), (7)
p(v) > 0 =⇒ x(δ(v)) = t (v ∈ V ), (8)
q(e) > 0 =⇒ x(e) = 1 (e ∈ E), (9)

r(U) > 0 =⇒ x(E[U ]) =
⌊

t|U | − 1
2

⌋

(U ∈ U). (10)

4.2 Primal-Dual Algorithm

In this section, we exhibit a combinatorial primal-dual algorithm for the
maximum-weight U-feasible t-matching problem in bipartite graphs, where
(G,U , t) admits expansion and w is vertex-induced for each U ∈ U .

We maintain primal and dual feasible solutions satisfying (7), (9), (10), and
(8) for every v ∈ V −. The algorithm terminates when (8) is attained for every
v ∈ V +. Again denote the input graph by Ĝ = (V̂ , Ê), and the graph in hand,
i.e., the graph resulted from possibly repeated shrinkings, by G = (V,E). The
variables in the algorithm are F ⊆ E, p ∈ RV̂ , q ∈ RÊ , and r ∈ RU . Note that
p and q are always defined on the original vertex and edge sets, respectively.

In the beginning, we set

F = ∅, p(v) =

{
max{w(e) | e ∈ δ(v)} (v ∈ V +),
0 (v ∈ V −),

q(e) = 0 (e ∈ E), r(U) = 0 (U ∈ U).
(11)

The auxiliary digraph D is constructed as follows. Major differences from
Sect. 3.1 are that we only use an edge e with w′(e) = 0, and a vertex in V + can
become a sink vertex.
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Procedure AuxiliaryDigraph(G,F, p, q, r). Define a digraph (V,A) by A =
{(∂+e, ∂−e) | e ∈ E \ F, w′(e) = 0} ∪ {(∂−e, ∂+e) | e ∈ F}. The sets of source
vertices S ⊆ V + and sink vertices T ⊆ V + ∪ V − are defined by

S = {u ∈ Vn
+ | degF (v) ≤ t − 1, p(u) > 0}

∪ {uU
+ ∈ Vp

+ | degF (uU
+) = 0, p(u) > 0 for some u ∈ U}

T = {v ∈ Vn
− | degF (v) ≤ t − 1} ∪ {vU− ∈ Vp

− | degF (vU−) = 0}
∪ {u ∈ Vn

+ | degF (u) = t, p(u) = 0}
∪ {uU

+ ∈ Vp
+ | degF (u+

U ) = 1, p(u) = 0 for some u ∈ U}.

Return D = (V,A;S, T ),

Suppose that D has a directed path P from S to T , and let F ′ := F�P .
If F ′ is feasible, we execute Augment(G,F, P ), which is the same as in

Sect. 3.1. Note that, if P ends in a vertex in T ∩ V +, then |F | does not increase.
However, in this case the number of vertices satisfying (8) increases by one, and
we get closer to the termination condition ((8) for every vertex).

If F ′ is not feasible, apply ViolatingSet(G,F, P ) as in Sect. 3.1. For the
output U of ViolatingSet(G,F, P ), execute Modify(G,F,U) below if p(u) =
0 for some u ∈ U+. Otherwise apply Shrink(U).

Procedure Modify(G,F,U). Let u∗ ∈ U+ satisfy p(u∗) = 0. Then find K ⊆
E[U ] such that

degK(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t (u ∈ Un
+ \ {u∗}),

t − 1 (u = u∗),
0 (u = uU ′+ ∈ Up

+, u∗ ∈ U ′),
degF [U ](u) (u ∈ Un

− ∪ Up
−).

Now return F := (F \ F [U ]) ∪ K.

If D does not have a directed path from S to T , then update the dual
variables p, q, and r by procedure DualUpdate(G,F, p, q, r) described below.

Procedure DualUpdate(G,F, p, q, r). Let R ⊆ V be the set of vertices reachable
from S in the auxiliary digraph D. Then,

p(v) :=

⎧
⎪⎨

⎪⎩

p(v) − ε (v ∈ R̂+),
p(v) + ε (v ∈ R̂−),
p(v) (v ∈ V̂ \ R̂),

q(e) :=

{
q(e) + ε (∂+e ∈ R̂+, ∂−e ∈ V̂ − \ R̂−),
q(e) (v ∈ V̂ − \ R̂−),

r(U) :=

⎧
⎪⎨

⎪⎩

r(U) + ε (uU
+ ∈ R+, vU

− ∈ V − \ R−),
r(U) − ε (uU

+ ∈ V + \ R+, vU
− ∈ R+),

r(U) (otherwise),



440 K. Takazawa

where

ε = min{ε1, ε2, ε3}, ε1 = min{w′({u, v}) | u ∈ R̂+, v ∈ V̂ − \ R̂−},

ε2 = min{p(u) | u ∈ R̂+}, ε3 = min{r(U) | uU
+ ∈ V̂ + \ R̂+, vU

− ∈ R̂−}.

Then return (p, q, r).

Finally, we expand every U satisfying r(U) = 0 after Augment(G,F, P ),
Modify(G,F,U), and DualUpdate(G,F, p, q, r). We note that, if any U ′

� U
satisfies rU ′ > 0, which implies that U ′ had been shrunk before U was shrunk,
then U ′ is maintained to be shrunk.

Procedure Expand(G,F, r). For each shrunk U ∈ U with r(U) = 0, execute the
following procedures. Update G by replacing uU

+ and vU
− by the graph induced

by Un ∪ Up just before Shrink(U) is applied. Determine FU ⊆ E[Un ∪ Up] of
(t|Un| + |Up|)/2 − 1 edges so that F ′ = F ∪ FU can be extended to a U-feasible
t-matching in Ĝ. Then return F := F ′.

The algorithm constructively proves the following theorem for the integrality
of (P) and (D). This is a common extension of dual integrality theorems for
nonbipartite matchings [6], even factors [13], triangle-free 2-matchings [3], and
square-free 2-matchings [17].

Theorem 2. If (G,U , t) admits expansion and w is vertex-induced on each U ∈
U , then the linear program (P) has an integer optimal solution. Moreover, the
dual program (D) also has an integer optimal solution such that {U ∈ U |
r(U) > 0} is a laminar family.

5 Conclusion

We have presented a new framework of the optimal U-feasible t-matching prob-
lem. Then we have established a min-max theorem and a combinatorial algorithm
under the reasonable assumption that G is bipartite, (G,U , t) admits expansion,
and w is vertex-induced on each U ∈ U . Our problem under these assump-
tions can describe a number of generalizations of the matching problem, such
as the matching and triangle-free 2-matching problem in nonbipartite graphs,
and the square-free 2-matching problem in bipartite graphs. We have also seen
that U-feasibility is a common generalization of the blossom constraints for the
nonbipartite matching problem and the subtour elimination constraints for the
TSP. We anticipate that this unified perspective provides a new approach to the
TSP utilizing matching theory.
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Abstract. We devise the first polynomial time algorithm computing a
pure Nash equilibrium for atomic splittable congestion games with sin-
gleton strategies and player-specific affine cost functions. Our algorithm
is purely combinatorial and computes the exact equilibrium assuming
rational input. The idea is to compute a pure Nash equilibrium for an
associated integrally-splittable singleton congestion game in which the
players can only split their demands in integral multiples of a common
packet size. While integral games have been considered in the litera-
ture before, no polynomial time algorithm computing an equilibrium was
known. Also for this class, we devise the first polynomial time algorithm
and use it as a building block for our main algorithm.

1 Introduction

One of the core topics in algorithmic game theory is the complexity of computing
equilibria. As pointed out by several researchers (e.g., [6,9]), the computational
tractability of a solution concept contributes to its credibility as a plausible
prediction of the outcome of competitive environments in practice. The most
accepted solution concept in non-cooperative game theory is the Nash equilib-
rium – a strategy profile, from which no player wants to unilaterally deviate.
While a Nash equilibrium generally exists only in mixed strategies, the prac-
tically important class of congestion games admits pure Nash equilibria, see
Rosenthal [28]. In the classical model of Rosenthal, a pure strategy of a player
consists of a subset of resources, and the congestion cost of a resource depends
only on the number of players choosing the same resource. Over the last decade,
the algorithmic game theory community has intensively studied the complexity
of computing equilibria for congestion games. As the first seminal work in this
area, Fabrikant et al. [11] showed that the problem of computing a pure Nash
equilibrium is PLS-complete for network congestion games. Ackermann et al. [1]
strengthened this result to hold even for network congestion games with linear
cost functions. On the other hand, there are polynomial algorithms for symmetric
network congestion games [11], for matroid congestion games with player-specific
cost functions [1,2], for polymatroid congestion games with player-specific cost
c© Springer International Publishing AG 2017
F. Eisenbrand and J. Koenemann (Eds.): IPCO 2017, LNCS 10328, pp. 442–454, 2017.
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functions and polynomially bounded demands [15,16] and for so-called total uni-
modular congestion games [26]. For further results regarding the computation of
approximate equilibria in congestion games see [4,5,7,29].

For atomic splittable congestion games, the problem of computing an equi-
librium is much less explored in the literature. In such a game, there is a finite
set of resources and a finite set of players. In addition, each player is associated
with a positive demand and a collection of allowable subsets of resources. A
strategy for a player is a (possibly fractional) distribution of the player-specific
demand over the allowable subsets. This quite basic model has several appli-
cations, e.g., packet-routing in communication networks (see [20,21,25]), traffic
networks [18] and logistics networks [8]. We are only aware of two works that
derive a polynomial time algorithm for equilibrium computation: (1) For affine
player-independent cost functions, there exists a convex potential whose global
minima are pure Nash equilibria, see Cominetti et al. [8]. Thus, for any ε > 0
one can compute an ε-approximate equilibrium in polynomial time by convex
programming methods. (2) Huang [19] also considered affine player-independent
cost functions, and he devised a combinatorial algorithm computing an exact
equilibrium for routing games on symmetric s-t graphs that are so-called well-
designed. This condition is met for instance by series-parallel graphs. His proof
technique also uses the convex potential.

Our Results. We study atomic splittable singleton congestion games with
player-specific affine cost functions and develop the first polynomial time algo-
rithm computing a pure Nash equilibrium. From now on we use equilibrium as
shortcut for pure Nash equilibrium. Our algorithm is purely combinatorial and
computes an exact equilibrium. The main ideas and constructions are as follows.
By analyzing the first order necessary optimality conditions of an equilibrium,
it can be shown that any equilibrium is rational as it is a solution to a system
of linear equations with rational coefficients (assuming rational input). Using
that equilibria are unique for singleton games (see [3,27]), we further derive that
the constraint matrix of the equation system is non-singular, allowing for an
explicit representation of the equilibrium by Cramer’s rule (using determinants
of the constraint- and their sub-matrices). This way, we obtain an explicit lower
bound on the minimum demand value for any used resource in the equilibrium.
We further show that the unique equilibrium is also the unique equilibrium for
an associated integrally-splittable game in which the players may only distrib-
ute the demands in integer multiples of a common packet size of some value
k∗ ∈ Q>0 over the resources. While we are not able to compute k∗ exactly, we
can efficiently compute some sufficiently small k0 ≤ k∗ with the property that an
equilibrium for the k0-integrally-splittable game allows us to determine the set
of resources on which a player will put a positive amount of load in the atomic
splittable equilibrium. Once these support sets are known, an atomic splittable
equilibrium can be computed in polynomial time by solving a system of linear
equations. This way, we can reduce the problem of computing the exact equi-
librium for an atomic splittable game to computing an equilibrium for an asso-
ciated k0-integrally-splittable game. Integrally-splittable congestion games have
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been studied before by Tran-Tanh et al. [30] for the case of player-independent
convex cost functions and later by Harks et al. [15,16] for polymatroid strat-
egy spaces and player-specific convex cost functions. In particular, Harks et al.
devised an algorithm with running time n2m(δ/k0)3, where n is the number of
players, m the number of resources, and δ is an upper bound on the demand
of the players (cf. Corollary 5.2 [16]). As δ is encoded in binary, however, the
algorithm is only pseudo-polynomial even for player-specific affine cost functions.

We devise a polynomial time algorithm for integrally-splittable singleton con-
gestion games with player-specific affine cost functions. Our algorithm works as
follows. For a game with initial packet size k0, we start by finding an equilibrium
for packet size k = k0 ·2q for some q of order O(log(δ/k0)), satisfying only a part
of the player-specific demands. Then we repeat the following two actions:

1. We half the packet size from k to k/2 and construct a k/2-equilibrium
using the k-equilibrium. Here, a k-equilibrium denotes an equilibrium for
an integrally-splittable game with common packet size k. We show that this
can be done in polynomial time by repeatedly performing the following oper-
ations given a k-equilibrium: (a) Among players who can improve, we find
the player that benefits most by moving one packet of size k/2; (b) If nec-
essary, we perform a sequence of backward-shuffles of packets to correct the
load decrease caused by the first packet movement (this is called a backward
path); (c) If necessary, we perform a sequence of forward-shuffles of packets to
correct the load increase caused by the first packet movement (this is called
a forward path). (a)–(c) is iterated until a k/2-equilibrium for the currently
scheduled demand is reached. For strategy profile x we define Δ(x) to be a
vector that contains the cost for moving one packet to the currently cheap-
est resource, for each combination of a player and resource. We show that
after each iteration Δ(x) lexicographically increases, which implies that we
converge to a k/2-equilibrium.

2. For each player i we repeat the following step: if the current packet size k is
smaller than the currently unscheduled demand of player i, we add one more
packet for this particular player to the game and recompute the equilibrium.
This part of the algorithm has also been used in the algorithm in [15,30].

After q iterations, we have scheduled all demands and obtain an equilibrium for
the desired packet size k0. Polynomial running time of the algorithm is shown by
several structural results on the sensitivity of equilibria with respect to packet
sizes 2k and k. Specifically, we derive bounds on the difference of the result-
ing global load vectors as well as the individual load vectors of players. We use
these insights to show that Δ(x) reaches a lexicographical maximum in a poly-
nomial number of steps. Overall, compared to the existing algorithms of [15,30],
our algorithm has two main innovations: packet sizes are decreased exponen-
tially (yielding polynomial running time in δ) and k-equilibrium computation
for an intermediate packet size k is achieved via a careful construction of a
sequence of single packet movements (backward- and forward paths) from a given
2k-equilibrium (ensuring its polynomial length).
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Related Work. Atomic splittable network congestion games with player-
independent cost functions have been studied (seemingly independent) by Orda
et al. [25] and Haurie and Marcotte [18] and Marcotte [23]. Both lines of research
mentioned that Rosens’ existence result for concave games on compact strategy
spaces implies the existence of pure Nash equilibria. Marcotte [23] proposed four
numerical algorithms computing a pure Nash equilibrium and he shows local con-
vergence results. Meunier and Pradeau [24] developed a pivoting-algorithm (sim-
ilar to Lemke’s algorithm) for nonatomic network congestion games with affine
player-specific cost functions. Gairing et al. [12] considered nonatomic routing
games on parallel links with affine player-specific cost functions. They developed
a convex potential function that can be minimized within arbitrary precision
in polynomial time. Deligkas et al. [10] considered general concave games with
compact action spaces and investigated algorithms computing an approximate
equilibrium. They discretize the compact strategy space and use the Lipschitz
constants of utility functions to show that only a finite number of representative
strategy profiles need to be considered for obtaining an approximate equilibrium
(see also Lipton et al. [22] for a similar approach). The running time of the algo-
rithm, however, depends on an upper bound of the norm of strategy vectors,
thus, implying only a pseudo-polynomial algorithm for our setting.

2 Preliminaries

Atomic Splittable Singleton Games. An atomic splittable singleton con-
gestion game is given by the tuple: G := (N,E, (di)i∈N , (Ei)i∈N , (ci,e)i∈N,e∈Ei

) ,
where E = {e1, . . . , em} is a finite set of resources and N = {1, . . . , n} is a
finite set of players. Each player i ∈ N is associated with a demand di ∈ Q≥0

and a set of allowable resources Ei ⊆ E. A strategy for player i ∈ N is a
(possibly fractional) distribution of the demand di over the singletons in Ei.
Thus, one can represent the strategy space of every player i ∈ N by the poly-
tope: Si(di) := {xi ∈ R

|Ei|
≥0 | ∑

e∈Ei
xi,e = di}. The combined strategy space

is denoted by S :=
∏

i∈N Si(di) and we denote by x = (xi)i∈N the overall
strategy profile. We define xi,e := (xi)e as the load of player i on e ∈ Ei and
xi,e = 0 when e ∈ E \ Ei. The total load on e is given as xe :=

∑
i∈N xi,e.

Resources have player-specific affine cost functions ci,e(xe) = ai,exe + bi,e with
ai,e ∈ Q>0 and bi,e ∈ Q≥0 for all i ∈ N and e ∈ Ei. The total cost of player i in
strategy distribution x is defined as: πi(x) =

∑
e∈E ci,e(xe)xi,e. For i ∈ N , we

write S−i(d−i) =
∏

j �=i Sj(dj) and x = (xi, x−i) meaning that xi ∈ Si(di) and
x−i ∈ S−i(d−i). A strategy profile x is an equilibrium if πi(x) ≤ πi(yi, x−i) for
all i ∈ N and yi ∈ Si(di). A pair

(
x, (yi, x−i)

) ∈ S × S is called an improving
move of player i, if πi(xi, x−i) > πi(yi, x−i). The marginal cost for player i on
resource e is defined as: μi,e(x) = ci,e(xe) + xi,ec

′
i,e(xe) = ai,e(xe + xi,e) + bi,e.

Lemma 1 (cf. Harks [14]). Strategy profile x is an equilibrium if and only if
the following holds: when xi,e > 0, then μi,e(x) ≤ μi,e′(x) for all e′ ∈ Ei.
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Using that the strategy space is compact and cost functions are convex, Kaku-
tanis’ fixed point theorem implies the existence of an equilibrium. Uniqueness is
proven by Richmann and Shimkin [27] and Bhaskar et al. [3].

Game G is called symmetric whenever Ei = E for all i ∈ N . We can project
any asymmetric game G on a symmetric game G′ by setting bi,e sufficiently high
whenever e /∈ Ei. Therefore, in the rest of this paper only symmetric games are
considered. Details can be found in the full version of this paper [17].

Integral Singleton Games. A k-integral game is given by the tuple Gk :=
(N,E, (di)i∈N , (ci,e)i∈N,e∈E) with k ∈ Q>0. Here, players cannot split their load
fractionally, but only in multiples of k. Assume di is a multiple of k, then the
strategy space for player i is the following set: Si(di, k) := {xi ∈ Q

E
≥0 | xi,e =

kq, q ∈ N≥0,
∑

e∈E xi,e = di}. In this game, k is also called the packet size. When
E,N and (ci,e)i∈N,e∈E are clear from the context, we write Gk((di)i∈N ) instead.

For player-specific affine cost functions the (discrete) marginal increase and
decrease are defined as follows: μ+k

i,e (x) = (xi,e + k)ci,e(xe + k) − xi,eci,e(xe) =
kai,e(xe +xi,e +k) and μ−k

i,e (x) = xi,eci,e(xe)− (xi,e −k)ci,e(xe −k) = kai,e(xe +
xi,e − k) if xi,e > 0 and −∞ otherwise.

Lemma 2 (cf. Groenevelt [13]). Strategy profile x is an equilibrium in a
k-integral congestion game if and only if: when xi,e > 0, then μ−k

i,e (x) ≤ μ+k
i,e′(x)

for all e′ ∈ E.

Define μ+k
i,min(x) := mine∈Ei

{μ+k
i,e (x)} and μ−k

i,max(x) := maxe∈Ei
{μ−k

i,e (x)}.
Then strategy profile x is an equilibrium in a k-integral congestion game if and
only if μ−k

i,max(x) ≤ μ+k
i,min(x) for all i ∈ N .

3 Reduction to Integrally-Splittable Games

We show that the problem of finding an atomic splittable equilibrium reduces
to the problem of finding a k0-splittable equilibrium for some k0 ∈ Q>0.

Theorem 1. Let x be the unique equilibrium of an atomic splittable singleton
game G. Then, there exist k∗ ∈ Q>0 such that x is also the unique equilibrium
for the k∗-integral splittable game Gk∗ .

Proof. We define the support set Ii for each player as Ii := {e ∈ E | xi,e > 0}.
Lemma 1 implies that if x is an equilibrium, and xi,e > 0, xi,e′ > 0, then μi,e(x) =
μi,e′(x). Define p :=

∑
i∈N |Ii| ≤ nm. Then, if the correct support set Ii of

each player is known, the equilibrium can be computed by solving the following
set of p linear equations on p variables: (a) Every player i ∈ N should satisfy
its demand-constraint:

∑
e∈Ii

xi,e = di. (b) For every player i ∈ N , there are
|Ii| − 1 equations of type μi,e(x) = μi,e′(x) for e, e′ ∈ Ii, which we write as
ai,e(xe + xi,e) − ai,e′(xe′ + xi,e′) = bi,e − bi,e′ . Note that xe is not an extra
variable, but an abbreviation for

∑
i∈N xi,e. From now on we refer to this set

of equalities as the system Ax = b. Note that as the equilibrium exists and is
unique, A is non-singular. Using Cramer’s Rule, the unique solution is given by:
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xi,e = |det(Ai,e)|/|det(A)|, where Ai,e is the matrix formed by replacing the
column that corresponds to value xi,e in A by b.

We define I := {{ai,e, bi,e | i ∈ N, e ∈ Ei} ∪ {di | i ∈ N} ∪ {1}}, amax :=
max(I) and agcd := max{a ∈ Q>0 | ∀b ∈ I, ∃� ∈ N such that b = a · �)}. Then,
as all values in A and b depend on adding and subtracting values in I, |det(Ai,e)|
is an integer multiple of (agcd)p and, hence, an integer multiple of (agcd)nm. Thus,
all player-specific loads are an integer multiple of (agcd)nm/|det(A)| and, if we
define k∗ = (agcd)nm/|det(A)|, x is an equilibrium for the k∗-integral splittable
game. The proof that k∗-splittable equilibria are unique can be found in [17]. 	


Note that we do not know matrix A beforehand, but we do know that
|Ai,j | ≤ 2amax. Using Hadamard’s inequality we find that |det(A)| ≤
(2amax)nm(nm)nm/2. Hence, k∗ ≥ (anm

gcd)/((2amax)nm(nm)nm/2). For the atomic
splittable equilibrium x and any k-integral-splittable equilibrium xk, we first
prove that |xe − (xk)e| < mk and |xi,e − (xk)i,e| < m2k (Lemma 3.2 and 3.2 in
the full version of this paper [17]). Then, given the equilibrium for some suf-
ficiently small k0, we are able compute the correct supports set of each player
in the atomic splittable equilibrium, and compute the exact atomic splittable
equilibrium.

Theorem 2. Given an atomic splittable congestion game G and an equilibrium
xk0 for k0-splittable game Gk0 , where: k0 = (anm

gcd)/(2m2�(2amax)nm(nm)nm/2),
we can compute in O((nm)3) the exact atomic splittable equilibrium x for G.

Proof. First note that all demands di are integer multiples of k0, as di is an
integer multiple of agcd, and both 2m2 and �(2amax)nm(nm)nm/2 are inte-
ger. Theorem 1 implies that there exists a k∗ such that the atomic splittable
equilibrium is also an equilibrium for the k∗-integral splittable game, and that
k0 ≤ k∗/(2m2). We check for each i ∈ N and e ∈ E if (xk0)i,e ≥ m2k0. If this is
the case, we prove that xi,e > 0. On the contrary, if we assume that xi,e = 0, then
(xk0)i,e − xi,e ≥ m2k0, which contradicts the fact that |xi,e − (xk)i,e| < m2k.
Thus, xi,e > 0. On the other hand, if (xk0)i,e < m2k0, we can use a similar
argument to conclude that xi,e = 0. Hence, given an equilibrium (xk0) for
k0-splittable game Gk0 , we can compute the correct support sets Ii for all i ∈ N ,
where Ii := {e ∈ E | (xk0)i,e ≥ m2k0}. Given the correct support sets, we can
easily compute the correct, exact equilibrium by solving the system Ax = b of
at most nm linear equations in running time O((nm)3). 	


It is left to compute an equilibrium xk0 for integral game Gk0 with packet size
k0 = anm

gcd/(2m2�(2amax)nm(nm)nm/2). Such integral games have been studied
in the literature before, see Harks et al. [15,16]. In particular, [16, Algorithm
1] has running time O(nm(δ/k0)3). Here δ is an upper bound on the player
specific demands. In general, δ is not bounded in k0, thus, the running time is
not polynomially bounded in the size of the input.
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4 A Polynomial Algorithm for Integral Games

We develop a polynomial time algorithm that computes an equilibrium for any
k-integral splittable singleton game with player-specific affine cost functions.
We use elements of [15, Algorithm 1] to construct a new algorithm with running
time O(n2m14 log(δ/k)). We first introduce some new notation. For two strategy
profiles x and y we denote their Hamming distance by H(x, y) :=

∑
e∈E |xe −

ye| and for two vectors xi, yi ∈ R
|E| we denote their Hamming distance by

H(xi, yi) :=
∑

e∈E |xi,e −yi,e|. For two resources e−, e+ ∈ E with yi,e− = xi,e− −
k, yi,e+ = xi,e++k and yi,e = xi,e for all e ∈ E\{e−, e+}, we denote (xi)e−→e+ :=
yi. If x is a strategy profile for some game Gk and yi = (xi)e−→e+ , we denote
xi:e−→e+ := (yi, x−i). We define a restricted best response:

Definition 1. Let x be a strategy profile for game Gk((di)i∈N ). Assume there
exists e−, e+ ∈ E such that μ−k

i,max(x) > μ+k
i,min(x), e− ∈ arg max{μ−k

i,e (x)} and
e+ ∈ arg min{μ+k

i,e (x)}. Then, we term strategy yi = (xi)e−→e+ a restricted best
response to x for player i.

Note that when yi is a restricted best response to xi, H(xi, yi) = 2k. We
first describe two subroutines, termed Add and Restore. The first subroutine,
Add, is described in [17, Algorithm 1] and consists of lines 4–10 of [15, Algorithm
1]. Given an equilibrium xk for game Gk((di)i∈N ), it computes an equilibrium
for the game, where the demand for player j is increased by k. This new packet
is placed on a resource e′ ∈ mine∈E{μ+k

j,e (xk)}. In effect, the load on resource
e′ increases and only those players with xi,e′ > 0 can potentially decrease their
cost by a deviation. In this case, Harks et al. proved in [15, Theorem 3.2] that
a best response can be obtained by a restricted best response moving a packet
away from e′, decreasing the marginal cost for all other players on this resource
to their original level. Thus, only one packet is moved throughout, preserving
the invariant that only players using a resource to which the packet is moved
may have an incentive to profitably deviate.

The second subroutine, Restore, takes as input an equilibrium x2k for
packet size 2k and game Gk((di)i∈N ), and constructs an equilibrium for packet
size k. This algorithm makes use of two sub-algorithms: [17, Algorithms 2 and
5], which determine a backward path- and a forward path of restricted best
responses respectively. In a backward path we are given a resource e−

1 and a
strategy profile xb

1. In iteration q, we decide if there exists a player that has
a restricted best response from some e−

q+1 to e−
q where we obtain xb

q+1 from
xb

q. If no player has a restricted best response to resource e−
q , we check if

(xb
q)e−

q
> (x2k)e−

q
− 2mk. If so, we end our backward path. Else, we look for

a player that has an improving move in which she shifts one packet from some
e−
q+1 to e−

q , and then continue the backward path. Note that in each step we
preserve the invariant that H(xb

1, x
b
q) ∈ {0, 2k}. A forward path is very similar

to a backward path, but we change the perspective. Thus, given a resource e+q
and a strategy profile xf

q , we check in iteration q if there exists a player that has
a restricted best response from e+q to some e+q+1. Both algorithms (back- and
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forward path) can be seen as a special instantiation of a general restricted best
response dynamic (cf. [15,30]).

We are now ready to define subroutine Restore. Initialize x by equilibrium
x2k. While x is not an equilibrium for Gk, we iterate the following. Among players
who can improve, we find the player j that benefits most from a restricted best
response. We carry out a restricted best response for player j and move a packet
from some resource e−

1 to some e+1 . Then we compute a backward path, starting
in resource e−

1 . If the resulting strategy profile has Hamming distance zero with
x, we stop this iteration and overwrite x by the resulting strategy profile. Else, we
compute a forward path, starting in e+1 and overwrite x by the resulting strategy
profile. The pseudo-code of subroutine Restore can be found in Algorithm 1.

Input: equilibrium x2k for G2k((d
′
i)i∈N )

1 x ← x2k;
2 while x not an equilibrium for Gk((d

′
i)i∈N ) do

3 j ← arg maxi∈N{µ+k
i,min(x) − µ−k

i,max(x)};

4 Choose e−
1 ∈ arg max{µ−k

j,e (x)} and e+1 ∈ arg min{µ+k
j,e (x)};

5 xb
1 ← x

j:e−
1 →e+1

;

6 (xb
qb , e

−
qb) ← BP(xk, x

b
1, e

−
1 ,Gk);

7 if e+1 �= e−
qb then

8 xf
1 ← xb

qb ;

9 (xf
qf , e

+
qf ) ← FP(xk, x

f
1 , e

+
1 ,Gk);

10 x′ ← xf
qf ;

11 else

12 x′ ← xb
qb ;

13 end
14 x ← x′;
15 end
16 return x;

Algorithm 1. Subroutine Restore(x, k, (d′
i)i∈N ,G)

Using the subroutines Add and Restore we develop PacketHalver,
which computes an equilibrium xk0 for the k0-splittable game Gk0((di)i∈N )).
In this algorithm we start with an equilibrium xk for Gk((d′

i)i∈N )), where d′
i = 0

for all i ∈ N , k = 2q1k0 and q1 = arg minq∈N{2qk0 > maxi∈N di}. Note that this
game has a trivial equilibrium, where (xk)i,e = 0 for all i ∈ N and e ∈ E. We
repeat the following two steps: (a) Given an equilibrium xk for Gk((d′

i)i∈N ), we
construct an equilibrium for Gk/2((d′

i)i∈N ) using subroutine Restore and set k
to k/2. (b) For each player i ∈ N we check if di − d′

i ≥ k. If so, we increase d′
i

by k and recompute equilibrium xk using subroutine Add. After q1 iterations
PacketHalver returns an equilibrium xk0 for Gk0((di)i∈N )). The pseudo-code
of PacketHalver can be found in Algorithm 2.
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Input: Integral splittable congestion game Gk0((di)i∈N ).
1 q1 ← arg minq∈N{2qk0 > maxi∈N di}; k ← 2q1k0; d

′
i ← 0; xk ← (0)e∈E,i∈N ;

2 for 1, . . . , q1 − 1 do
3 k ← k/2;
4 xk ← Restore(x2k,Gk((d

′
i)i∈N )));

5 for i ∈ N do
6 if di − d′

i > k then
7 xk ← Add(xk, i,Gk((d

′
i)i∈N )));

8 d′
i ← d′

i + k;

9 end

10 end

11 end
12 return xk;

Algorithm 2. Algorithm PacketHalver(Gk0((di)i∈N ))

5 Correctness

We prove that PacketHalver returns an equilibrium for game Gk0((di)i∈N ).
In order to do so, we first need to verify that the two subroutines Add and
Restore are correct. Subroutine Add is proven to be correct by Harks, Peis, and
Klimm [15], thus, it is left to verify correctness of Restore and PacketHalver.
To verify the correctness of subroutine Restore(x2k,Gk((di)i∈N ))), we need
to prove that Restore terminates. We define: Δ(x) := (μ+k

i,min(x) −
μ−k

i,e (x))i∈N ;e∈E . Let Δmin(x) be the minimum value in Δ(x). Note that when
all elements in Δ(x) are non-negative, or, equivalently, when Δmin(x) is non-
negative, x is an equilibrium. Our goal is to show that after each iteration in
the while-loop (lines 2–15 of Restore) Δ(x) increases according to a certain
lexicographical order defined as follows. Given two vectors u, v ∈ R

n, we say
that v is sorted lexicographically larger than u, if there is an index k ∈ {1, . . . , n}
such that uφ(i) = vψ(i) for all i < k and uφ(k) < vψ(k), where φ and ψ are per-
mutations that sort u and v non-decreasingly. We write u <lex v. If uφ(i) = vψ(i)

for all i ∈ {1, . . . , n}, we write u =lex v.
Proving that Δ(x) sorted lexicographically increases implies that Restore

does not cycle, and thus, as the strategy space is finite, terminates. In gen-
eral, under the hypothesis that Δ(x) lexicographically increases, we obtain
the following strategy profiles within a while-loop (lines 2–15 of Restore):
x → xb

1 → xb
2 → · · · → xb

qb
= xf

1 → xf
2 → · · · → xf

qf
= x′. We introduce

two types of vectors that help us prove that Δ(x) <lex Δ(x′). Assume that in
iteration q of the backward path a player moves a packet from e−

q+1 to e−
q . We

define:
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Bq,−k
i,e (x) =

⎧
⎪⎨

⎪⎩

μ−k
i,e (x) + k2ai,e if e−

q �= e+1 and e = e−
q ,

μ−k
i,e (x) − k2ai,e if e−

q �= e+1 and e = e+1 ,

μ−k
i,e (x) otherwise.

Bq,+k
i,min(x) =

⎧
⎪⎨

⎪⎩

μ+k
i,min(x) + k2ai,e if e−

q �= e+1 and e−
q = arg minμ+k

i,e (x),
μ+k

i,min(x) − k2ai,e if e−
q �= e+1 and e+1 = arg min μ+k

i,e (x),
μ+k

i,min(x) otherwise.

As k is fixed within Restore, we write Bq,−
i,e (x) and Bq,+

i,min(x) instead. We define:
Bq(x) = (Bq,+

i,min(x) − Bq,−
i,e (x))i∈N ;e∈E . Similarly, assume that in iteration q of

the forward path a packet is moved from e+q to e+q+1. We define:

F q,−
i,e (x) =

{
μ−k

i,e (x) − k2ai,e if e = e+q ,

μ−k
i,e (x) otherwise.

F q,+
i,min(x) =

{
μ+k

i,min(x) − k2ai,ef
q

if e+q = arg minμ+k
i,e (x),

μ+k
i,min(x) otherwise.

We define: F q(x) = (F q,+
i,min(x) − F q,−

i,e (x))i∈N ;e∈E .
In order to show Δ(x) <lex Δ(x′), we first prove that Δ(x) <lex B1(xb

1) <lex

· · · <lex Bqb(xb
qb

) and F 1(xf
1 ) <lex · · · <lex F qf (xf

qf
). Hence, the backward

path and the forward path end after a finite number of steps. Then we con-
nect Δ(x), Bq(x) and F q(x) by proving that if Δ(x) <lex Bqb(xb

qb
), then

Δ(x) <lex F 1(xb
qb

), and if Δ(x) <lex F qf (xf
qf

), then Δ(x) <lex Δ(xf
qf

). The for-
mal statements and their proofs can be found the full version of this paper [17].

Lemma 3. Let x and x′ be defined as in the while-loop (lines 2–15) of Restore.
Then Δ(x) <lex Δ(x′), and Δmin(x) occurs less in Δ(x′) than in Δ(x).

The proof of Lemma 3 can be found in the full version of this paper [17]. As
Δ(x) lexicographically increases after each loop, Restore terminates. It is left
to prove that PacketHalver returns an equilibrium for game Gk0((di)i∈N .

Theorem 3. Given a k0-integral splittable singleton game with affine player-
specific cost functions Gk0 , PacketHalver returns an equilibrium for Gk0 .

Proof. Strategy profile x′ is initialized as the all-zero strategy profile, hence, an
equilibrium for the game G2q1k0(0). Assume that in iteration q we enter the for-
loop in PacketHalver with an equilibrium x for game G2q1−q+1k0

with demands
d′

i = di−(di mod 2q1−q+1k0). Algorithm Restore computes an equilibrium for
packet size 2q1−qk0 and demands d′

i = di − (di mod 2q1−qk0). In lines 5–10 of
PacketHalver we check for each player i ∈ N if her unscheduled load satisfies
di−d′

i ≥ 2q1−qk0. If so, we schedule one extra packet for player i using subroutine
Add. Thus, after the q’th iteration in the for-loop, we obtain an equilibrium for
packet size 2q1−qk0 and demands d′

i = di − (di mod 2q1−qk0). Hence, after the
q1’th iteration we obtain an equilibrium for packet size 20k = k and demands
d′

i = di − (di mod k) = di, which is an equilibrium for game Gk0((di)i∈N ). 	
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6 Running Time

We prove that the running time of PacketHalver is polynomially bounded in
n, m, log k and log δ, where δ is the upper bound on player specific demands di.
For this, we first need to analyze the running time of the two subroutines Add
and Restore. In [16] Harks et al. proved that it takes time nm(δ/k)2 to execute
Add. If their algorithm is applied to games with singleton strategy spaces and
player-specific affine cost functions, the running time reduces to O(nm4). Proofs
for this statement can be found in the full version of this paper [17].

We analyze the running time of Restore. The crucial idea is that for each
strategy profile y (for a game with packet size k) obtained during the execution
of Restore, we have both |(ye − (x2k)e| ≤ 2mk and |yi,e − (x2k)i,e| < 2m2k
for all i ∈ N and e ∈ E. This enable us to prove that a backward and forward
path of restricted best responses are found within in polynomial time, and that
at most O(nm6) iterations are needed for Restore to terminate. This results
in the following lemma:

Lemma 4. Restore has running time O(n2m14).

All lemma’s and proofs needed to prove this statement can be found in the
full version of this paper [17]. Finally, we prove the following theorem.

Theorem 4. PacketHalver runs in time O(n2m14 log(δ/k0)).

Proof. Note that we picked q1 ∈ N to be the smallest number such that 2q1k0
exceeds di for all player-specific demands di. This implies that q1 is bounded in
O(log(δ/k0)), where δ is an upper bound on the player-specific demands. Thus,
we execute lines 3–10 O(log(δ/k0)) times. In line 4 we call Restore, which runs
in O(n2m14). In line 5–9 we execute Add (which runs in O(nm6)) at most n
times. Thus, the computation time of lines 5–10 is O(n2m6). This implies that
it takes time O(n2m14) to go through a complete iteration in the for loop. Thus,
PacketHalver runs in time O(n2m14 log(δ/k0)). 	


In the full version of this paper [17] we show that log(1/k0) is polynomially
bounded in the input. Thus, we can compute an atomic splittable equilibrium by
first computing the k0 splittable equilibrium using the algorithm above. Then,
we compute the exact equilibrium in time O((nm)3). Thus, we can compute an
atomic splittable equilibrium in running time: O

(
(nm)3 + n2m14 log

(
δ
k0

))
.
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