
51© Springer International Publishing AG 2017 
Y. Wang, F. Crea (eds.), Tumor Dormancy and Recurrence, Cancer Drug 
Discovery and Development, DOI 10.1007/978-3-319-59242-8_4

Immuno-oncology of Dormant Tumours

Noushin Nabavi, Morgan E. Roberts, Francesco Crea,  
Colin C. Collins, Yuzhuo Wang, and Jennifer L. Bishop

Abstract Cancer is a complex, often aggressive disease. As such, cancer treatment 
requires a diverse approach that often includes surgery, chemotherapy, radiotherapy, 
targeted therapy, or immunotherapy. Despite the potency of these treatments, cancer 
cells adapt to escape killing and survive either in their original microenvironmental 
niche, or as disseminated cancer cells in distant organs. Depending on tumour type 
and treatment modality, tumours display a variety of growth patterns, from rapid 
proliferation and invasion to a more controlled dormant phenotype. This dormant 
phenotype is characterized clinically as the asymptomatic period post therapy before 
relapse, and biologically by an enrichment in cancer cells that are not dividing but 
survive in a quiescent state, arrested in G0-G1 phase of cell cycle. Dormancy is a 
tumour intrinsic characteristic that corresponds to the equilibrium phase of the 
immune-editing hypothesis, in which tumour cells neither proliferate nor are elimi-
nated by the immune response. In this chapter we provide an overview of anti- tumour 
immunity and ways in which the immune response may shape tumour dormancy.
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 Anti-cancer Immunity: An Overview

The immune system is an intricate and organized system of cells and organs that 
functions to protect the body from pathogens. Healthy immunity is achieved when 
cells of both the innate and adaptive arms of the immune system are able to prevent 
disease while avoiding destruction of host tissue, or auto-immunity. This “toler-
ance” of self is essential in a properly functioning immune system, yet it also poses 
a significant challenge to mounting an immune response against cancer, which 
arises from self-tissues.

Despite sharing many characteristics of normal tissue, tumour cells do express 
and produce antigens that are recognized as foreign by the immune response. In the 
1950s, Burnet and Thomas were the first to propose that the immune system is able 
to detect and prevent the growth of tumours; this was the cancer  immunosurveillance 
hypothesis [1]. It took almost 50 years and the development of highly sophisticated 
transgenic mouse models, where select components of the immune response could 
be manipulated, to prove that both innate and adaptive immunity are essential to 
prevent a variety of tumour types. In the early 2000s, the cancer immunosurveil-
lance hypothesis was refined and concept of cancer immunoediting emerged. This 
process includes three distinct phases; i) elimination, in which cancer cells are rec-
ognized and destroyed by immune cells, ii) equilibrium, in which cancer cells sur-
vive and may be recognized by the immune response but are not eliminated by them, 
and iii) escape, in which the immune response is no longer able to prevent cancer 
cell proliferation or metastasis [2], (also depicted in Fig.  1). In the equilibrium 
phase, a tumour microenvironment (TME) consisting of tumour cells, immune and 
non-immune stromal cells, and their secreted products, is established that plays a 
large role in dictating whether tumours will eventually escape the immune response.

Many components of the immune system contribute to an effective anti-cancer 
immune response, however CD8+ cytotoxic T cells have emerged as a major driver 
of tumour rejection, through the direct killing of tumour cells. Induction of an effec-
tive CD8+ T cell response is a multistep process that requires coordinated interac-
tions between numerous cell types [3, 4]. This process begins with the expression of 
tumour antigens that can be taken up by antigen presenting cells (APC) such as 
dendritic cells (DCs) and presented in the context of major histocompatibility com-
plex (MHC). These APCs then migrate to draining lymph nodes and present the 
antigen to a T cell that expresses a T cell receptor (TCR) specific for that antigen- 
MHC complex. Effective T cell priming and activation depends on the presentation 
of antigen with concomitant co-stimulatory and cytokine signals, and leads to the 
proliferation and clonal expansion of tumour-antigen specific effector T cells. 
Activated T cells then travel via the bloodstream and infiltrate vascularized tumours 
where they recognize and kill tumour cells.

Each of these steps is carefully controlled by multiple mechanisms of immune- 
regulation [1, 2, 5–9], many of which may be co-opted by tumours enabling immune 
escape. Escape from equilibrium depends on both tumour intrinsic mechanisms of 
immune evasion and mechanisms of immunological tolerance [10, 11]. For exam-
ple, tumours secrete multiple factors that have pleiotropic suppressive effects on 
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Fig. 1 (a) Tumour burden and volume decreases following adjuvant or neoadjuvant therapy prior 
to tumour recurrence, a period signified as tumour dormancy. (b) Cancer stem cell like interactions 
with immune system. The three stages of cancer immunoediting involved in growth of clinical 
tumours describe the intricate relationship between a tumour mass and its infiltrating immune 
cells. The three phases of editing consist of eradication, equilibrium, and escape. Eradication: 
Highly immunogenic tumour cells are eradicated by an armamentaria of immune cells. Equilibrium: 
Moderately immunogenic tumour cells are partially eradicated by immune cells and some remain 
dormant. Evasion: Poorly immunogenic tumour cells evade immunosurveillance and invade their 
microenvironment

immune cells in the TME. While cytokines and growth factors like IL-1β, GM-CSF, 
and VEGF have been implicated in driving the expansion of myeloid derived sup-
pressor cells (MDSCs) within the TME that promote tumour growth [12], others 
like TGF-β [13] and IDO [14] secreted by DCs play important roles in the  conversion 
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of effector CD4+ T cells towards a T regulatory (Treg) cell phenotype. The accumu-
lation of MDSCs and Treg cells within the TME is a poor prognostic indicator 
across multiple cancer types [15–18].

Tumour intrinsic mechanisms of immune escape also include the expression of 
surface molecules that interact directly with infiltrating immune cells, thereby pre-
venting their activation or anti-tumour effector functions. The most well studied are 
Ig family molecules such as programmed death ligand-1 (PD-L1), which acts as an 
inhibitory signal when bound to its receptor, programmed cell death 1 (PD-1), 
expressed on activated T cells, natural killer (NK) cells, B cells and some myeloid 
subsets. Overall, immune escape occurs as a result of induction of potent immuno-
suppressive mechanisms, or through immune editing, in which the immune system 
kills immunogenic tumour clones effectively selecting for cancer cells that are non- 
immunogenic and fall “under the radar” of immune surveillance.

The clinical significance of the tumour immunosurveillance is highlighted by the 
increased incidence of cancer in patients undergoing immunosuppressive therapy 
[19, 20]. Furthermore, the effective use of immunotherapies targeting inhibitory 
receptors, so called checkpoint molecules, that limit T cell effector activity, have 
now re-established the capacity of the immune system to effectively eradicate 
tumours. The use of checkpoint inhibitors has led to dramatic and long-lasting clini-
cal responses in a subset of patients with a variety of cancers, including metastatic 
melanoma and bladder cancer [21]. Indeed, anti-cytotoxic T lymphocyte associated 
protein 4 (CTLA-4) monoclonal antibodies (mAb) (ipilimumab), and anti-PD-1 
mAb (pembrolizumab and nivolumab) have been approved by the FDA for use in 
metastatic melanoma, while the anti-PD-L1 mAb (atezolizumab) has been approved 
for use in metastatic bladder cancer, and numerous clinical trials are currently ongo-
ing [11, 21]. This, together with numerous studies identifying positive associations 
between tumour immune infiltrates with better prognosis, highlight the importance 
of the immune system in regulating cancer progression [22, 23].

 Dormant Tumour-Immune System Interactions

Tumour dormancy can exist as either a state in which rates of cell proliferation 
match those of cell death, or when tumour cells themselves are in a state of quies-
cence [10]. Dormant tumour cells are by default in a state of equilibrium with the 
immune response. In the context of the immune-editing hypothesis, tumour cells 
exiting dormancy will therefore be either eliminated by, or escape anti-tumour 
immunity. The length of the dormancy equilibrium period, signified with minimal 
residual diseased-state, depends on the patient and cancer type [24, 25]. Prostate 
[26], breast [27], melanoma [28], and non-hodgkin’s lymphoma [29] patients show 
relatively longer disease free periods post therapy prior to recurrence compared to 
higher mortality cancers of pancreas [30], brain [31], lung [32] and esophagus [33]. 
Importantly, although dormant tumours are in equilibrium with immune responses 
and tumour cells exiting dormancy must evade or trigger immune responses, the 
variability in dormancy periods across cancers cannot be explained by one 
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“immune- phenotype”. Indeed, how dormant tumour cells specifically interact with 
immune cells at this stage remains unclear.

The value of immunity directed against cancer stem cells (CSCs) however, is an 
area of rapidly expanding research that may provide insight as to how dormant cells, 
which share many features of CSCs in terms of their microenvironmental niche and 
survival mechanisms [34, 35], induce or prevent immune responses. CSCs across 
multiple tumour types alter cell surface molecules known to inhibit both innate and 
adaptive anti-tumour immunity, including the anti-phagocytosis receptor CD47 
[36], MHC I [37], MHC II [38], and PD-L1 [39–42]. In certain CSC types, tumour 
neoantigens are also expressed at lower levels compared to non-CSCs, and induce 
expansion of Treg cells [43]. CSCs in renal cell carcinoma have also been shown to 
prevent the differentiation of mature DCs [44].

Despite these immune evasion strategies, CSCs express multiple tumour associ-
ated antigens, which have been exploited as efficacious vaccine strategies in models 
of ovarian [45], metastatic melanoma [46, 47] and pancreatic [48] cancers. The lat-
ter study was recently expanded to a phase I clinical trial (NCI-2010-01868 and 
NCI-2013-02238) exploring safety and tolerability for a pancreatic cancer CSC 
vaccine [49]. These studies show selective depletion of CSCs in tumours after puls-
ing DCs with CSC-derived material, indicating that a specific T cell response can be 
generated against CSCs in vivo and is efficacious in reducing tumour burden. In 
addition to cytotoxic T cells, NK cells have also been shown to have preferential 
killing ability towards CSCs, which upregulate the NK cell recognition ligands 
MICA/B as well as the death receptors FAS and DR5 [50].

 Immunotherapy for Dormant Tumours

While it remains unclear whether dormant tumour cells may share similar immune- 
modulatory properties as CSCs, if they do, these reports suggest that common 
immunotherapeutic strategies may target dormant tumour cells [51–53]. Certainly, 
reports of high expression of PD-L1 on CSCs [54] suggests that these cells could be 
targets of monoclonal antibody immunotherapies directed against the PD-1/PD-L1 
checkpoint pathway, such as nivolumab, pembrolizumab and atezolizumab [55–57]. 
Across many solid tumour types, defining checkpoint molecule expression and 
immune cells in the tumour and circulation predict response to immunotherapy and/
or correlate with prognosis. Multiple studies have shown greater objective responses 
to immunotherapies where targets, such as PD-L1, are present on tumour [58–62] 
cells. However, this is not an absolute requirement for response, and mounting evi-
dence indicates the importance of tumour infiltrating lymphocytes (TIL) and circu-
lating immune cell correlates in disease progression. For example, expression of 
PD-L1/PD-1 by circulating innate immune and T cells is a prognostic indicator for 
glioblastoma, pancreatic, hepatocellular and lung cancer [5, 6, 8, 9] as well as 
responses to checkpoint blockade with Ipilimumab [7]. Furthermore, in a study that 
looked at seven different tumour types, PD-L1+ TILs were strongly associated with 
response to anti-PD-L1 therapy [63]. Importantly however, these studies have all 
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been conducted using sections from primary, or relapsed metastatic tumours, which 
cannot be defined as dormant tumours. It thus remains highly unclear whether in a 
dormant setting, the presence of checkpoint molecules on tumour or immune cells 
are similarly prognostic.

By definition, dormant tumour cells are in equilibrium with the immune response; 
therefore a rationally designed immunotherapeutic strategy against dormant tumours 
must either initiate their exit from dormancy or specifically target the unique ele-
ments of dormant tumours. Classical interventions like chemotherapy or radiation 
may provide the initial trigger causing tumour cells to exit the dormant phase, after 
which an immune response can be mounted. For example, dendritic cells increase 
tumour antigen presentation at low chemotherapeutic doses [64] and the abscopal 
effect that is observed after radiotherapy to localized tumours has been attributed to 
immune-mediated clearance of distant metastases [65, 66]. Chemotherapy can also 
have direct effects on immune cells; immunogenic drugs, such as oxaliplatin com-
bined with cyclophosphamide, increase sensitivity of tumours to checkpoint block-
ade therapy [67]. Similarly, epigenetic targeting therapies are associated with 
upregulation of immune checkpoints. In leukemia [68, 69] and NSCLC [70], treat-
ment with the DNA hypomethylating agent Azacitidine increases PD-1 or PD-L1 
promoter demethylation and their expression. Importantly, the exit from dormancy 
initiated by chemo or radiotherapy is most likely associated with the release of neo- 
antigens and other damage-associated molecules from the tumour that trigger 
immune responses [71]. The importance of increasing immunogenicity of tumours 
is underscored by the widespread efforts to design anti-cancer vaccines [72–74]. 
These may be especially relevant in the context of more dormant tumours such as 
Prostate, for which the first and only cancer vaccine has been approved [75, 76].

Thus, combining immunotherapies with therapies such as chemotherapies, radi-
ation or epigenetic therapies, that alter the neo-antigen repertoire or checkpoint 
expression pattern of dormant tumour cells, is a potentially promising treatment 
strategy.

Ultimately, anticancer immunity is a prerequisite for the successful outcome of 
conventional cancer therapies [65, 66, 77–79]. While the immune response against 
tumour associated antigens can be elicited by either the innate or adaptive immune 
systems [78, 80], the goal of active immunotherapy is to achieve anti-tumour immu-
nity. Therefore, apart from designing comprehensive studies related to phenotyping 
and genotyping of dormant tumours, it is important to consider therapies or combi-
natorial therapies that are designed for the specific dormant cancer phenotype.
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