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BiP	 Binding immunoglobulin protein
BSI	 β-secretase inhibitor
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c-Myc	 Cytoplasmic Myc protein
CNS	 Central nervous system
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DJ-1	 PARK7
ECM	 Extracellular matrix

E. Eren • E.P. Erkan • S. Genc 
Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health 
Campus, Inciralti, 35340 Izmir, Turkey 

Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus,  
Inciralti, 35340 Izmir, Turkey 

K.K. Genc (*) 
Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health 
Campus, Inciralti, 35340 Izmir, Turkey
e-mail: kkursadgenc@hotmail.com

mailto:kkursadgenc@hotmail.com


24

ER	 Endoplasmic reticulum
ES	 Embryonic stem cells
FAD	 Familial form of Alzheimer’s disease
FDA	 Food and Drug Administration
GABA	 Gamma-aminobutyric acid
G-CSF	 Granulocyte colony-stimulating factor
GSK-3	 Activated glycogen synthase kinase 3
GSK-3	 Glycogen synthase kinase 3
GWAS	 Genome-wide associated studies
hES	 Human embryonic stem cells
hiPSCs	 Human-induced pluripotent stem cells
HLA	 Human leukocyte antigen
HUVEC	 Human umbilical vein endothelial cells
IFN-γ	 Interferon gamma
IKBKAP	� Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase 

complex-associated protein
iNSC	 Induced neural stem cells
iPSC	 Induced pluripotent stem cells
Klf4	 Kruppel-like factor 4
LRRK2	 Leucine-rich repeat kinase 2
LV	 Lentivirus
MAO	 Monoamine oxidase
MEFs	 Mouse embryonic fibroblasts
MMP	 Mitochondrial membrane permeabilization
MPTP	 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mtDNA	 Mitochondrial DNA
NaB	 Sodium butyrate
NAB2	 N-aryl benzimidazole
NHP	 Nonhuman primate
NMDA	 N-methyl-d-aspartate
NOS	 Nitric acid synthase
NPC	 Neural progenitor cells
Nrf2	 Nuclear factor (erythroid-derived 2)-like 2
NTFs	 Neurofibrillary tangles
Oct3/4	 Octamer 3/4
PCR	 Polymerase chain reaction
PD	 Parkinson’s disease
PDAPP	 Promoter-driven amyloid precursor protein
PDGF	 Platelet-derived growth factor
PINK1	 PTEN-induced putative kinase 1
PLG	 Polylactide-co-glycolide
PSEN1	 Presenilin 1
PSEN2	 Presenilin 2
ROS	 Reactive oxygen species
SAD	 Sporadic form of Alzheimer’s disease
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SNCA	 Synuclein, Alpha
Sox2	 SRY-box containing gene 2
TALEN	 Transcription activator-like effector nucleases
VEGF	 Vascular endothelial growth factor
VPA	 Valproic acid
VPS35	 Vacuolar protein sorting-associated protein 35
VSV-G	 Vesicular stomatitis virus G
ZFN	 Zinc finger nucleases

2.1  �Overview of Age-Related Chronic Neurodegenerative 
Diseases

2.1.1  �Alzheimer’s Disease

Alzheimer’s disease (AD) was identified more than 100 years ago, and it is consid-
ered as the most common type of dementia (Alzheimer’s Association 2015). AD is 
known as a progressive disease that affects primarily memory and cognitive and 
functional abilities (Nussbaum and Ellis 2003). Approximately 8 million new cases 
are recorded each year, and it is estimated that this number will reach 115 million 
by the end of 2050 (Jindal et  al. 2014). Additionally, family members and other 
unpaid caregivers provided 17.9 billion hours of care in the USA (Alzheimer’s 
Association 2015). However, the prevalence of AD around the world is changing 
depending on diagnostic criteria and other factors such as ethnicity, age, etc. 
(Hendrie et al. 2001; Hy and Keller 2000). Yet, definite diagnosis can only be done 
post-mortem; there are several studies, which are being studied to identify novel 
biomarkers for earlier diagnosis.

The pathological hallmarks of AD are loss of neurons in the hippocampus and 
extracellular senile plaques consisting of β-amyloid peptides and neurofibrillary 
tangles (NFTs), which are composed of hyperphosphorylated form of microtubule 
protein tau (De-Paula et al. 2012).

β-Amyloid is produced by cleavage of amyloid precursor protein (APP) with α-, 
β-, and γ-secretases. Normally, the cleavage of APP with first α-secretase and then 
γ-secretase occurs in the non-amyloidogenic pathway. However, involvement of 
β-secretase results in the formation of longer C-terminal fragment (C99), which 
contains amyloidogenic amino acid sequence. Further cleavage with γ-secretase 
yields β-amyloid peptides. β-Amyloid (1–42) is the most toxic form of amyloid oligo-
mers, and it can aggressively accumulate in the extracellular niche, leading to neu-
ronal cell death.

Another hallmark of AD is hyperphosphorylation of tau protein. Tau is a 
microtubule-associated protein, which binds to α- and β-tubulins for their stabiliza-
tion. Additionally, its phosphorylation state is important in stabilization. Yet, its 
abnormal phosphorylation leads inability to bind tubulins that result in destabiliza-
tion of microtubules and finally cell death.

2  Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related…
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AD have two types: sporadic form (SAD) and familial form (FAD). Mutations in 
three different genes result in familial AD. These genes are APP, which encodes 
amyloid precursor protein, and presenilin 1 and 2 (PSEN1 and PSEN2), which 
encode parts of gamma-secretase family proteins. Individuals with mutations in one 
of those genes are likely to develop AD.  However, familial AD constitutes only 
1–2% of all AD cases.

SAD constitutes the vast majority of the disease. Since it is considered late onset, 
it develops in individuals >65 years old. Younger individuals can also develop AD 
before the age of 65, but this is rare. There are certain risk genes that may cause to 
develop AD. Apolipoprotein E (APOE) gene is the most validated risk gene, which 
has three different alleles. If an individual has at least one copy of apoε4 allele, the 
risk for developing AD is 3- to12-folds higher (Alzheimer’s Association 2015).

2.1.2  �Parkinson’s Disease

Parkinson’s disease (PD) is an idiopathic and chronic neurodegenerative disease 
that primarily affects motor functions. It is the second most common neurodegen-
erative disease, which was named in 1800s in the honor of James Parkinson. PD is 
not common in younger adults aged below 40 (Beitz 2014). The prevalence of the 
disease varies with increasing age. Additionally, several factors affect the preva-
lence of PD; these includes geographical location, sex, and age (Pringsheim et al. 
2014). Moreover, several studies have shown that exposure to exogenous toxins, 
genetic background, inflammation, and their combinations can increase the chance 
of developing PD (Bartels and Leenders 2009).

PD is characterized by the loss of dopaminergic neurons in the substantia nigra 
and the formation of Lewy bodies. Together with the formation of cellular inclu-
sions, these findings represent the hallmarks of pathophysiology of PD (Davie 
2008). Lewy bodies contain neurofilamentous proteins along with the proteins that 
are responsible for proteolysis including ubiquitin, a heat shock protein. Mutations 
in α-synuclein are responsible for familial PD. However, mutations in parkin gene 
can cause parkinsonism, without the formation of Lewy bodies. Furthermore, LRRK 
2 gene is known to cause sporadic, idiopathic, or familial PD (Davie 2008). Genome-
wide association studies (GWAS) have revealed that mutations in different genes 
may cause PD development. Those include SNCA, VPS35, PINK1, and DJ-1 in 
addition to genes that are mentioned above. Mutations in SNCA, LRRK2, and VPS35 
genes are known as an autosomal dominant cause of PD. Furthermore, mutations in 
parkin, DJ-1, and PINK1 genes are an autosomal recessive form of PD and 
accounted for early-onset parkinsonism (Bonifati 2014).

Clinical diagnosis is based on some physical changes and requires accurate anam-
nesis. Those characteristics include rest tremor, rigidity, bradykinesia, and postural 
instability. Additionally, some other clinical signs are worth to give attention such as 
problems in handwriting and reduced facial expression (Hughes et al. 1992). Since, 
it’s shown that Lewy bodies first accumulate in the olfactory bulb, reduced sense of 
smell cannot be ruled out for more accurate diagnosis (Hawkes 1995).

E. Eren et al.



27

2.2  �Induced Pluripotent Stem Cells Technology

Embryonic stem (ES) cells are capable of differentiating into cells of all three germ 
layers. They are able to proliferate indefinitely, while preserving their pluripotency. 
Furthermore, they hold great promise to treat neurodegenerative diseases, such as 
AD and PD. However, ethical concerns have emerged about the use of ES cells, 
since they are found in the inner mast of the blastocysts in addition to tissue rejec-
tion problems (Vazin and Freed 2010).

To overcome those issues regarding ES cells, new ways have to be found to pro-
duce stem cells while maintaining their pluripotency and self-renewal capabilities. In 
2006, Yamanaka and his coworkers found a new way to obtain from somatic cells, and 
his work was granted the Nobel Prize in Physiology or Medicine 2012. They found 
that using four transcription factors known as “Yamanaka factors” can reprogram 
mouse embryonic and adult fibroblasts into pluripotent stem cells. These factors are 
octamer 3/4 (Oct3/4), SRY-box containing gene 2 (Sox2), cytoplasmic Myc protein 
(c-Myc), and Kruppel-like factor 4 (Klf4) (Takahashi and Yamanaka 2006).

In 2007, Yamanaka and his coworkers move a step to further their work and use 
adult human fibroblasts to produce induced pluripotent stem cells (iPSCs) by using 
the same defined transcription factors (Takahashi et al. 2007). Since then, a great 
number of studies have been done to develop iPSCs technology. Furthermore, 
human somatic cells were reprogrammed with Oct4, Sox2, Nanog, and LIN28 (Yu 
et al. 2007). For this purpose, different reprogramming factors, small compounds, 
mRNAs, and proteins are being used to enhance efficiency for the generation of 
iPSCs. Moreover, different delivery methods and sources are being examined.

Apart from fibroblasts, various cell types are being used to generate iPSCs, since 
reprogramming the efficiency and quality of iPSCs differs among different cells. To 
date, different cells have been used as source for iPSCs, such as primary hepato-
cytes, exfoliated renal epithelial cells, umbilical cord and peripheral blood cells, 
keratinocytes (Raab et al. 2014), pancreatic β cells (Stadtfeld et al. 2008), melano-
cytes (Utikal et al. 2009), neural cells (Kim et al. 2008), and adipose tissue cells 
(Sugii et al. 2010). Furthermore, human umbilical vein endothelial cells (HUVEC) 
are reprogrammed into iPSCs and differentiated to astrocytes and neurons (Haile 
et al. 2015). The choice of cell origin for reprogramming depends on several factors 
including reprogramming efficiency, availability, invasiveness, and methods to be 
used (Durnaoglu et  al. 2011). Fibroblasts are still the first choice for iPSCs 
reprogramming studies. There are some disadvantages to start with fibroblasts. 
First, fibroblasts are obtained from the skin by punch biopsy. This procedure is very 
painful and has some risks such as bleeding and infection. Other disadvantages are 
longtime period and efficiency. The whole reprogramming takes a long time 
(5 weeks), and the efficiency is quite low compared with keratinocytes. Peripheral 
blood is another source for iPSCs generation. The donor should be prepared with 
G-CSF injection and then CD34+ cells isolated via 4 h of apheresis. The convenient 
alternative source is keratinocyte. It is possible to obtain keratinocytes easily from 
scalp hair. In addition, these cells can be reprogrammed faster, and the method has 
higher efficiency.
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2.2.1  �Reprogramming Methods

There are several methods to deliver reprogramming factors into the cells. These 
methods can be classified according to the vector type: viral vector based, naked 
DNA based, and non-DNA based (de Lazaro et al. 2014).

2.2.1.1  �Viral Vector-Based Methods

Retroviruses are the most used and known method for reprogramming. This method 
contains higher risk of immunogenicity, and the integration of reprogramming fac-
tors into genome can be a problem for further applications of iPSCs. Moreover, 
lentiviruses (LV) are used for low-efficiency problems of retroviruses, since they 
can only transduce dividing cells, and they also have enhanced tropism owing to 
vesicular stomatitis virus G (VSV-G) pseudotyping. Integration can still be an issue 
for LV transduction (Hu 2014). However, the use of excisable transgenes with LV 
vectors may overcome this problem (Sommer et al. 2010). Another method involves 
adenoviruses, which make transgene-free iPSCs possible; yet it has a low expres-
sion of reprogramming factors and higher integration frequency than naked plasmid 
DNA. Sendai virus (SeV)-based vectors are DNA-free vectors, and a single vector 
can contain all four reprogramming factors. So, efficiency is much higher compared 
to using four different vectors. In addition, genomic integration does not occur, and 
removal of virus particles is much easier. Thus, safety and immunogenicity can be 
established. Furthermore, alphaviruses are used to deliver RNA replicons. However, 
integration can occur due to cDNA conversion in the target cells.

2.2.1.2  �Naked DNA-Based Methods

Other method involves the use of naked DNA. For this purpose PiggyBac transpo-
sons, plasmids, and episomal plasmids are used. Using plasmids for the delivery of 
reprogramming factors requires repeated transfection steps, and also current trans-
fection methods are inadequate for reprogramming. Nucleofection can be used, but 
this method requires a relatively high number of cells, as it results in significant cell 
death. Nevertheless, some random integration can occur. Using episomal plasmids 
can be delivered by using Epstein-Barr virus, which can replicate in human cells. 
With this method, the quality of iPSCs is high and has lower immunogenicity. 
However, efficiency is very low, and additional reprogramming factors are required. 
Furthermore, polycistronic sequences can also be used. By this way, integration into 
genome can be reduced, and every infected cell receives all four factors, but packing 
into viral particles is hard due to a larger size of plasmid. In addition to polycistronic 
sequences, Lox sequences can be added using 2A sequences. Using Cre recombi-
nase, excision of integrated sequences can be easy. The PiggyBac transposon sys-
tem is a more advanced version of plasmid system, since it provides excision 
without any genomic alteration and lower immunogenicity. Yet, an extra excision 
step is required, and imperfect excision may occur (Hu 2014).
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2.2.1.3  �Non-DNA-Based Methods

Non-DNA-based methods include the use of synthetic mRNAs, miRNA mimics, 
and small compounds. mRNA transfection can induce innate immune response 
through toll-like receptors, which leads to severe cytotoxicity. However, synthetic 
mRNAs can bypass innate responses and allow the generation of transgene-free 
iPSCs. This method has higher efficiency and low toxicity. Additionally, functional-
ity of mRNAs is higher due to translation in the cytoplasm and proper posttransla-
tional modifications. The main disadvantage of this system is that expression time 
is low (about 2–3 days), and repeated transfection is needed.

miRNAs are a class of short, noncoding RNAs, which regulate their target 
mRNAs by binding to the 3′ untranslated regions (UTRs), 5′ UTRs, or open reading 
frames (ORFs). miRNAs have key regulatory functions, starting from the embry-
onic development and extending to cellular differentiation and growth. Thus, it is 
not surprising that miRNAs are associated with pluripotency of stem cells. Earlier 
studies have demonstrated the requirement for ES cell-specific miRNA signatures 
for self-renewal and differentiation of ES cells (Kanellopoulou et al. 2005; Jia et al. 
2013). Afterwards, several studies have shown that miRNAs can be used as repro-
gramming factors. Advantages of this system include the ease of their synthesis, 
non-integrating nature of miRNAs, and controllable administration. Furthermore, 
miRNA expression in the cytoplasm is relatively longer, and less transfection is 
needed (Hu 2014).

iPSCs generation can also be done using proteins of four reprogramming factors. 
Thus, there is no need for any exogenous genetic material that can cause integration 
into genome. However, this technique requires permeabilization of cell membranes 
prior to the delivery of proteins. So, there are a few techniques to achieve this prob-
lem. One of them is the usage of cell-penetrating peptides, which contain high 
amount of basic amino acids. These peptides can be linked with C-terminus of four 
reprogramming factors. These fusion proteins can be produced in E. coli or HEK293 
cell line. Furthermore, nuclear localization signal peptide can be fused to repro-
gramming factors, and this provides minimalization of lysosomal degradation of 
proteins (Li et al. 2014).

Small compounds are also used to generate iPSCs. These molecules enhance the 
efficiency of iPSCs generation. For this purpose, histone deacetylation, demethyl-
ation, and methyltransferase inhibitors are used. Furthermore, signaling pathway 
inhibitors (e.g., glycogen synthase kinase 3, GSK-3) and epigenetic modulators can 
also be used. The purpose is to increase efficiency and generate iPSCs without using 
genetic materials. One of these compounds is the valproic acid (VPA), which inhib-
its histone deacetylation. It enhances iPSC generation and can be used as replace-
ment for c-Myc. Furthermore, this chemical can improve efficiency as far as 
1000-fold. Another chemical used for this purpose is sodium butyrate (NaB). It can 
be used throughout the whole process, and reprogramming efficiency is increased 
(Revilla et  al. 2015). Moreover, lithium also has increased the efficiency of 
reprogramming of both mouse endothelial fibroblasts (MEFs) and HUVECs (Wang 
et al. 2011; Wu et al. 2013; Masuda et al. 2013). In addition, vitamin C can reduce 
senescence state partially. Sodium chloride can reduce nearly all demethylation 
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levels via hyperosmosis. Ascorbic acid and GSK3-β inhibitor can facilitate 
reprogramming as well (Revilla et al. 2015). Besides, Hou et al. showed that VPA, 
CHIR99021, 616,452, tranylcypromine, forskolin, 3-deazaneplanocin A, 2-methyl-
5-hydroxytryptamine hydrochloride, and D4476 are used to generate iPSCs from 
mouse somatic cells (Hou et al. 2013).

2.3  �Applications of iPSCs

Animal models are used to understand the mechanisms of neurodegenerative dis-
eases and to screen potential drugs and seeking therapeutic strategies. However, gen-
erating models that accurately mimic the disease as in human physiology is a 
problem, since there are differences in species, cell-line specificity, and lack of brain 
complexity (Wan et al. 2014). Furthermore, there are no models for rare diseases, and 
using animal models to observe disease progression remains difficult and raises 
some ethical issues regarding using too much animals. Moreover, screening for new 
drugs and performing toxicity tests for available drugs are time-consuming. An addi-
tional challenge is to obtain cells (e.g., neurons) from living individuals. In this con-
text, Daley’s group developed disease-specific iPSC models for the first time. They 
use fibroblasts and bone marrow mesenchymal cells to generate disease-specific 
iPSCs including PD, Huntington’s disease, and Down syndrome (Park et al. 2008).

Using iPSCs technology to establish disease models has its own advantages. This 
technology allows us to model diseases more accurately. Therefore, it can provide 
insight into the mechanistic basis of the diseases and leads to discovery of new 
effective treatment strategies. Furthermore, high-throughput chemical screening 
with iPSCs allows predicting more accurate drug-induced toxicity. Additionally, 
cell replacement therapies with patient-specific iPSCs are the ultimate goal, and it 
can develop our current personalized medicine strategies for various diseases.

2.3.1  �Disease Modeling

There are inherent differences between the nervous systems of rodents and humans, 
and difference in life spans of those species may also cause inability to serve as 
appropriate AD and PD models. Modeling sporadic and familial AD with iPSCs 
provides understanding the mechanisms of AD pathology and establishing new 
drug testing platforms. Recent studies revealed that human-generated iPSCs could 
be used for disease modeling. Initial studies were focused on familial AD muta-
tions, since these are more homogenized and well characterized (Doege and 
Abeliovich 2014).

First AD-specific iPSCs were produced from the skin fibroblast of familial AD 
patients with PSEN1 and PSEN2 mutations (Yagi et al. 2011). Then iPSC-derived 
neurons from different familial AD mutations (APP, PSEN1, and PSEN2) have been 
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generated to study the pathogenesis of the disease (Table  2.1). Woodruff and 
colleagues used transcription activator-like effector nucleases (TALENs) to intro-
duce ΔE9 PSEN1 mutations, whether the mutation reduced γ-secretase activity in 
iPSC-derived neural cells (Woodruff et al. 2013).

Additionally, tau phosphorylation was also increased in iPSC-derived neurons 
from patients with familial AD (Israel et al. 2012). In another study, iPSCs, which 
are reprogrammed from fibroblasts of one daughter and father, carrying APP London 
mutation (V717I), differentiated into forebrain neurons, and they showed AD-like 
phenotypes and increased levels of Aβ(42) and Aβ(38) and t-tau and p-tau. Interestingly, 
they found an alteration in γ-secretase cleavage site (Muratore et  al. 2014). 
Heterogenic phenotypes were seen in iPSC-derived neurons. For example, increased 
phosphorylated tau levels were not seen in the neurons carrying PSEN1 or PSEN2 
mutation (Yagi et al. 2011).

In addition to AD phenotypes, differential gene expression changes were seen in 
iPSC-derived neurons from patients with familial AD. iPSC-derived neuron with 
different PSEN1 mutations have shown that ten different genes have been upregu-
lated, and four genes have been downregulated along with increased generation of 
Aβ(42)/Aβ(40) (Yagi et al. 2011; Sproul et al. 2014; Liu et al. 2014). Furthermore, in 
one study, iPSC-derived cortical neurons have increased the endoplasmic reticulum 
and oxidative stress, and also accumulated Aβ oligomers are prone to proteolysis 
(Kondo et al. 2013).

Apart from these models, iPSC-derived neurons can be obtained from sporadic 
AD patients who carry the risk gene allele Apoε4 and others (Table 2.1). iPSC-
derived cholinergic neurons carrying Apoε4 allele showed elevated Aβ(42)/Aβ(40) 
ratio, increased calcium levels within the cytoplasm upon glutamate exposure, and 
sensitivity for neurotoxic stimuli (Duan et al. 2014). iPSC-derived neurons gener-
ated from sporadic form of AD showed increased levels of Aβ(1–40) and phosphor-
tau(Thr231) levels along with activated GSK-3β. Yet, one of them has increased Aβ 
levels in neurons and increased ER and oxidative stress also (Israel et  al. 2012; 
Kondo et al. 2013).

PD is the other common neurodegenerative disease. There are many studies 
which are used in iPSC-derived dopaminergic neurons to model PD.  Despite of 
familial PD cases compromising 5–10% of total PD cases (Nishimura and Takahashi 
2013), most of the iPSCs are derived from fibroblasts of patients who have familial, 
while a few studies use iPSCs from sporadic PD patients. Patient-derived iPSC, 
which have different mutations in LRRK2, PINK1, SCNA, and PARK2, can 
differentiate into dopaminergic neurons as control iPSCs. These iPSC-derived 
dopaminergic neurons show various phenotypes including increased oxidative 
stress, increased α-synuclein expression and elevated mitochondrial gene expres-
sions, etc. (Table 2.2). These findings are consistent with non-iPSCs models and 
brain autopsies (Lee et al. 2012b). Moreover, other studies have revealed novel phe-
notypes, which are worth to investigate. For instance, increased monoamine oxidase 
(MAO) activity was observed in PARK2 mutant iPSC-derived dopaminergic 
neurons, and cells showed increased dopamine release and decreased uptake  
(Jiang et al. 2012). Furthermore, Ryan et al. reported that A53T α-synuclein mutant 
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iPSC-derived cells nitrosative/oxidative stress resulted in S-nitrosylation of myocyte 
enhancer factor 2C (MEF2C) (Ryan et al. 2013). Neural progenitor cells (NPC) dif-
ferentiated from both healthy and PARK2 mutation-carrying individuals without any 
PD manifestations showed that manganese (Mn) treatment did not result in any differ-
ence between groups. Yet, Mn treatments caused increased reactive oxygen species 
(ROS) levels in mutated iPSC-derived NPCs (Aboud et al. 2012). Ren et al. have shown 
that iPSC-derived neurons carrying parkin mutation have decreased microtubule stabil-
ity and shorter neurite length. Further, overexpression of parkin gene restores microtu-
bule stability and complexity of neural processes (Ren et al. 2015).

Not all studies are related with familial PD mutations. iPSC-derived dopaminer-
gic neurons generated from sporadic PD patient cells have revealed that their phe-
notype is similar to those found in familial PD. However, dopaminergic neurons 
generated from sporadic PD-derived iPSCs need to be cultured for a long time in 
cell culture to be able to show PD-related phenotype (Sanchez-Danes et al. 2012b).

Taken together, these findings are accelerating the research on neurodegenerative 
disease and lead to new translational approaches such as high-throughput drug 
screening. In spite of new developments, there are still major concerns to overcome 
before using iPSC technology.

2.3.2  �Drug Screening and Testing

The current drug discovery methods are time-consuming and expensive, as well as 
failure rate is higher due to serious side effects such as cardiotoxicity and hepa
totoxicity. Approximately 90% of the drugs are not able to reach the market. 
Additionally, 30% of the drugs are given up due to side effects and lack of efficiency 
in clinical trials (Singh et  al. 2015). Furthermore, safety data come from animal 
models, and interpreting the results is not efficient due to species-specific differ-
ences. Using human cell-based toxicity test can overcome these problems, since 
organ-specific cells can be used for high-throughput toxicity screening, while ethi-
cal concerns and time-consuming procedures of animal usage are emerging (Heilker 
et al. 2014).

Current treatments for AD include cholinesterase inhibitors, which are used to 
treat mild to moderate AD, and N-methyl-d-aspartate (NMDA) receptor antagonists 
which are used to treat moderate to severe AD. However, these treatment strategies 
rely on only improving symptoms. To date, there are no drugs that can reverse neu-
ronal loss and stop the cognitive decline in AD.  Several experimental therapy 
options exist; these include immunotherapies, which target to enhance Aβ clearance 
such as bapineuzumab, solanezumab, and intravenous immunoglobulins. Moreover, 
gamma-secretase inhibitors and modulators have been also tested in clinical trials. 
However, these studies have failed to pass phase II and III trials. Herbal supplements 
such as docosahexaenoic acid (DHA) have the potential as drugs in the treatment of 
AD, and they need to be investigated further to provide as symptomatic treatment 
option. Conclusively, there are also significant amount of potential drug failures in 
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late-stage clinical trials, yet these failures may alter the future of novel therapy 
options (Berk and Sabbagh 2013).

Despite the advancements in PD treatment, there is no drug that can cure PD 
completely. The major challenge for this problem is that molecular mechanism of 
PD pathology remains unknown and primary cause of dopaminergic neuron loss is 
also not known. Several drugs have been found to be effective in animal models; 
however, they failed in clinical trials due to the aforementioned problems related to 
animal models. Also, doses of drugs used in clinical trials may not be effective. 
Furthermore, there is no drug used for neuroprotection. Coenzyme Q, green tea, 
creatine, and minocycline have no effect on disease progression. Currently used 
drugs focus on the improvement of symptoms as in AD treatment. Levodopa (best 
known antiparkinsonian drug), dopamine agonists, glutamate antagonists, MAO B 
inhibitors, and catechol-O-methyltransferase (COMT) inhibitors are used to 
improve symptoms such as dyskinesia (Stocchi 2014).

Currently, experimental drugs are being evaluated using iPSC-derived neurons 
and dopaminergic neurons in both AD and PD models (Table 2.3). Kondo and col-
leagues used β-secretase inhibitor (BSI), DHA, NSC23766 (Rac1 inhibitor), and 
dibenzoylmethane (DBM14–26) to examine the effects on familial and sporadic AD 
iPSC-derived neurons. The authors found no change in the levels of Aβ oligomers; 
on the other hand, they found that DHA reduced ROS generation as well as cleaved 
caspase-4 and peroxiredoxin-4 in neurons. Furthermore, high dose of DBM14–26, 
NSC23766, or DHA treatment elevated binding immunoglobulin protein (BiP) lev-
els. In familial AD mutant iPSC-derived neurons, long-term DHA treatment 
increased cell viability. However, the same treatment did not alter cell survival of 
sporadic AD iPSC-derived neurons (Kondo et al. 2013). Furthermore, Israel et al. 
used β and γ-secretase inhibitors to examine the relationship among amyloid-β, 
p-tau, and GSK-3β. Both inhibitors reduced Aβ(1–40). However, only β-secretase 
inhibitors (βSi-II and OM99–2) significantly reduced aGSK-3β and p-tau/total tau 
(Israel et  al. 2012). Moreover, compound E, a γ-secretase inhibitor, was used to 
examine its effects on a different mutation carrying iPSC-derived neurons in AD 
model. Compound E reduced both Aβ(42) and Aβ(40) levels in both PSEN1 and PSEN2 
mutations carrying iPSC-derived neurons, and they further used compound W 
(selective Aβ lowering agent) and found reduced Aβ(42)/Aβ(40) ratio in iPSC-derived 
neurons (Yagi et al. 2011). Another study has shown that compound E treatment 
reduces p-tau levels in AD-iPSC-derived neurons (Hossini et al. 2015).

Experimental drugs are also being evaluated in iPSC-based PD models. Cooper 
et  al. have used coenzyme Q10, rapamycin, and LRRK2 inhibitor (GW 5074) in 
iPSC-derived neurons and found that coenzyme Q10 reduced cell vulnerability to 
valinomycin and concanamycin. However, rapamycin did not change cell death 
induced by concanamycin. Furthermore, GW 5074 reduced cell death by valinomy-
cin but not concanamycin (Cooper et  al. 2012). Moreover, N-arylbenzimidazole 
(NAB2) reversed the PD phenotype such as mitochondrial dysfunction in A53T 
mutation carrying iPSC-derived neurons (Chung et al. 2013). In another study, they 
used L-NAME, a nitric oxide synthase (NOS) inhibitor, to prevent S-nitrosylation 
for the enhancement of MEF2C-PGC1α pathway. They found that L-NAME pre-
treatment partially recovered pesticide-induced cell death (Ryan et al. 2013).
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Currently, animal models are used for drug screening and toxicity tests. Yet these 
systems are merely imperfect replicas of human system. Molecules which are found 
to be toxic in one animal species may not be toxic for another species. Furthermore, 
newly discovered drugs should be tested on human cells or the human itself; since 
it is not exactly possible, we need a system to mimic the conditions in human physi-
ology. iPSC-derived cells are ideal sources for drug screening and toxicity testing, 
and they represent diseases more accurately in vitro and facilitate drug discovery 
efforts. Developing more robust and reliable differentiation techniques will improve 
the application of iPSCs to drug development for different diseases. Also, it is pos-
sible to assess how an individual may respond to certain drugs. Furthermore, signifi-
cant risks and costs of early-stage clinical trials can be avoided. Thus, development 
of new drugs and patient-specific treatments can increase easily (Qi et  al. 2014;  
Ko and Gelb 2014).

Lee et al. used patient-specific iPSC-derived neural crest precursor cells for drug 
screening. They performed high-throughput assay which consists of 6912 com-
pounds. They found eight candidate compounds to rescue IKBKAP expression, and 
one of them was SKF-86466 which induces IKBKAP expression (Lee et al. 2012a). 
Furthermore, a low-throughput assay composed of 44 compounds was performed 
by using iPSC-derived dopaminergic neurons in MPP+ and rotenone toxicity. They 
found that 16 of 44 compounds showed a neuroprotective effect (Peng et al. 2013). 
Moreover, 3.313 drugs were screened using iPSC-derived hepatocytes, yielding 263 
hit compounds, 42 of which are approved by the Food and Drug Administration 
(FDA). Further screening of these 42 compounds showed that 5 compounds were 
found to be consistent by showing a similar effect on four different patient-specific 
iPSC-derived hepatocytes (Choi et al. 2013).

Therefore, it is possible to say that iPSC-based drug screening provides a safer, 
cost-effective, and faster way to develop new drugs and testing existing drugs for 
toxicity and side effects. Additionally, comparing healthy and diseased iPSC-
derived mature cells provides valuable information about disease mechanisms, and 
novel molecular therapeutic targets can be found in a dish (Giri and Bader 2015).

2.3.3  �Cell Replacement Therapy

The first transplantation of iPSC-derived cells was used for the treatment of human-
ized sickle cell anemia mouse model (Hanna et al. 2007). iPSC-derived cell replace-
ment is a new alternative for the treatment of neurodegenerative diseases. Several 
groups transplanted iPSC-derived cells into the brain in preclinical animal models 
of neurodegenerative diseases including AD and PD. Transplanted cells can survive 
in the different brain regions and provide functional recovery (Table 2.4). Human 
clinical studies using iPSCs in neurodegenerative disease have not started yet.

The important advantages of autologous iPSCs for transplantation therapy are 
absence of immune rejection risk and ethical problems. On the other hand, a previ-
ous study has shown that autologous undifferentiated iPSCs elicit a very strong 
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immune response with high lymphocytic infiltration and elevated interferon-gamma 
(IFN-γ), granzyme B, and perforin intragraft (de Almeida et al. 2014). Generation 
of autologous iPSCs is a time-consuming process and delays iPSC-based cell thera-
pies. Therefore, allogenic iPSC-derived cells provide a useful strategy for transplan-
tation therapy in acute brain disorders such as stroke. It requires well-characterized 
human leukocyte antigen (HLA)-typed iPSC lines and their biobanking. Even so, 
small difference in culture conditions alters gene expressions (Newman and Cooper 
2010). The differentiation stage of iPSCs is an important point for the successful 
outcome in transplantation therapy. Differentiated neurons are less immunogenic 
and tumorigenic and do not require differentiation factors. Due to the ability of 
NSCs to differentiate into a variety of cell types, including neurons, astrocytes, and 
oligodendrocytes, they become a favorable cell type in cell replacement therapy. 
However, undifferentiated iPSCs could cause teratoma formation in the transplanted 
brain region (Kawai et al. 2010).

The most critical factor affecting the success of stem cell therapy is the route of 
administration. Intravenous and intraperitoneal routes are the easiest ways; how-
ever, the number of cells that reach the brain is limited (Li et al. 2015). Additionally, 
blood-brain barrier (BBB) also limits iPSCs to cross to the brain. More specific 
methods should be found for delivering iPSCs into the brain. Direct intrastriatal and 
intranigral routes have been successfully used for the transplantation of iPSC-
derived dopaminergic neurons in animal model of PD (Nishimura and Takahashi 
2013). Intracerebral injection could be a more specific way, but it is invasive and 
carries tissue injury risk throughout the route of administration (Martinez-Morales 
et  al. 2013). Intracerebroventricular route may help widespread distribution of 
iPSCs into the CNS, but it is also an invasive route for stem cell delivery (Li et al. 
2015). Intranasal route is an easy and noninvasive delivery method for stem cell 
therapy. In addition, it is suitable for repeated administration (Li et al. 2015). This 
route was used for delivering other types of stem cells, but not for iPSCs delivery, 
even in animal experiments.

Genome editing methods allow the correction of mutations in iPSCs from indi-
viduals carrying mutations. Zinc finger nucleases (ZFNs) are the first used genome 
editing method for mutation correction. It has some disadvantages such as off-target 
effects and cell toxicity (Velasco et al. 2014). Similar to ZFNs, TALENs also gener-
ate double-strand breaks at target site in the genome (Gupta and Musunuru 2014). 
The advantages of TALENs include easier design, low levels of off-target effects, and 
toxicity; however, the size of TALENs limits their use in stem cell therapy. The third 
genome editing tool is clustered regularly interspaced short palindromic repeat/
CAS9 RNA-guided nucleases (CRISPR/CAS9), which has gained attention due to 
easier design, high success rate, low cost, and side effects (Velasco et al. 2014).

Before proceeding to clinical trials, the benefits and safety of iPSCs-derived cell 
transplantation should be evaluated in in vivo animal studies. Toxin-based animal mod-
els of PD, especially the 6-OHDA model, were used for iPSCs transplantation studies 
(Table 2.4). Intrastriatal delivery method was preferred due to regional localization of 
degenerative neurons. Most studies have confirmed long-term survival of transplanted 
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dopaminergic neurons, which provide behavioral recovery (Hargus et  al. 2010; 
Swistowski et al. 2010; Rhee et al. 2011; Chang et al. 2012; Wu et al. 2015). Although 
there was a high concentration of iPSC-derived dopaminergic neuron transplantation, 
functional recovery was not observed in short-term periods (Cai et  al. 2010). 
Additionally, transplantation of terminally differentiated cells results in ineffective 
engraftment (Rhee et al. 2011). The available iPSCs transplantation methods still need 
to be improved before clinical trial. For instance, selection of subtypes of neurons using 
cell sorting may increase transplantation success (Doi et al. 2014). The first in vivo 
iPSC-derived neuronal precursor cell transplantation study for AD was carried out in 
platelet-derived growth factor (PDGF) promoter-driven amyloid precursor protein 
(PDAPP) transgenic mice (Fujiwara et  al. 2013). iPSC-derived cholinergic neurons 
were transplanted into bilateral hippocampus of the 10-week-old PDAPP mice. 
Transplanted neurons survive and show cholinergic and GABAergic phenotypes in the 
recipient mouse brain 45 days after transplantation. Additionally, transplantation of the 
neurons restored spatial memory dysfunction of PDAPP mice.

Nonhuman primates (NHPs) have anatomical and functional similarities com-
pared to humans. In addition, gene expression profile in the brain is also similar 
between NHPs and humans (Verdier et  al. 2015). These similarities make NHPs 
useful animal models to study neurodegenerative diseases. NHP models enable the 
monitoring of long-term outcome of the transplanted cells (Qiu et  al. 2013). 
Moreover, these models provide considerable information about aging process in 
the brain due to display characteristics similar to human aging. AD-related patho-
logical findings, including Aβ accumulation, tau phosphorylation, and atrophy, also 
naturally occur in NHPs (Verdier et al. 2015). They are also valuable animals for 
Parkinson’s disease studies. While 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) does not show toxicity in rats, it leads to loss of dopaminergic neurons of 
the substantia nigra with PD symptoms in NHPs (Capitanio and Emborg 2008). In 
addition to toxin models, mutant A53T α-synuclein over-expressing monkey and 
transgenic A53T monkey have been generated as NHPs animal models of PD 
(Eslamboli et al. 2007; Niu et al. 2015). NHPs have been used for iPSCs transplan-
tation studies for PD. Dopaminergic neurons derived from human iPSCs were trans-
planted to the putamen of MPTP-lesioned cynomolgus monkeys, and transplanted 
cells survived in the monkey brain for 6 months (Kikuchi et al. 2011). Autologous 
fibroblast of Macaca mulatta monkeys was used for the generation of iPSCs in 
NHPs model of PD, and iPSC-derived neural progenitors survived 6 months and 
differentiated into neurons and glial cells (Emborg et al. 2013).

The first human clinical study using iPSC derivatives was started for the treat-
ment of patients suffering from age-related macular degeneration (Okano and 
Yamanaka 2014). The results of this study have not been reported yet. There are also 
several planned clinical trials of iPSCs-based therapies (Okano and Yamanaka 
2014). But, there is no record on web pages of clinical trials for iPSCs-derived cell 
replacement therapy (clinicaltrials.gov, Accessed 04 May 2015). Clinical studies 
should be started with safety and side effects analysis.

E. Eren et al.
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2.4  �Future Directions: Challenges and Advancements

2.4.1  �Limitations in iPSC Generation and Potential Solutions

2.4.1.1  �Integration into Genome

One of the major limitations of iPSC technology is low efficiency. The efficiency is 
as low as 0.001% with current methods. Besides, the current methods are slow and 
require the overexpression of multiple transcription factors at the same time. 
Retroviral systems are still the most used methods for generating iPSCs. This sys-
tem uses transduction of reprogramming factors into host genome, which may result 
in random integration into genome, karyotype abnormalities, and copy number 
variations. Further, this problem can also affect differentiation efficiency. Further
more, major goals in iPSC generation are avoiding genomic integration with devel-
oping more efficient non-integrative method. Moreover, the elimination of residual 
transgene expression and reactivation of reprogramming factors should be achieved 
(Hu 2014). Another problem is that individual iPSC clones have differences among 
them even if they are generated from the same individual. This might affect differ-
entiation efficiency. Gender and usage of integration factors may cause this prob-
lem. If iPSCs are reprogrammed from cells of a female person, cells have X 
chromosome inactivation which can lead to altered expression of cognition and 
brain development-related genes. If integrating method was used, there might be 
incomplete transgene silencing (Zhao et al. 2014). For avoiding this problem, proper 
PCR screening, excisable vector, or non-integrative methods can be used that are 
mentioned in the reprogramming of iPSCs. However, these non-integrating meth-
ods are not perfect and have disadvantages such as lower efficiency. There are vari-
ous ways to excise those integration transgenes, but these methods have their own 
disadvantages such as micro-deletions in genomic DNA. Lastly, high-quality iPSCs 
must be met along with high efficient reprogramming.

2.4.1.2  �Epigenetic Memory

Epigenetic memory could be a problem in differentiation and reprogramming.  
A study showed that iPSCs showed significant reprogramming variability inde-
pendent of reprogramming technique including epigenetic memory of somatic 
cells and abnormal DNA methylation after reprogramming (Lister et al. 2011). 
However, reprogramming cells can erase epigenetic signature but imperfectly. 
This can affect reprogramming and differentiation capacity. Furthermore, disease-
related epigenetic signature can be required for showing disease phenotype, so 
removal of epigenetic signature may result in the loss of disease phenotype (Doege 
and Abeliovich 2014).
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2.4.1.3  �Differentiation and Purity

The use of iPSCs in disease modeling has various limitations and problems. 
Currently, there are no standardized and optimized differentiation protocols for a 
given cell type. In additionally, the available protocols are time-consuming and 
inefficient. For instance, iPSC differentiation into dopaminergic neurons takes 
about 21–70  days, and the efficiency differs with respect to techniques used 
(Badger et al. 2014).

After differentiation, cell population must be validated. For this purpose, immu-
nochemistry and PCR methods are used for cell-specific markers. In addition to 
those, in-depth analysis of neuron functionality can be performed via calcium imag-
ing, dopamine release, and electrophysiological properties such as patch clamp 
method (Badger et al. 2014). Further, differentiation yields heterogeneous popula-
tion because of maturation at different time points. Hu et al. has shown that regard-
less of cell origin which iPSCs are derived from, differentiation is highly variable 
and not efficient. They investigated PAX6+ levels and found that PAX6+ expression 
is variable among different clones and clones that were generated from iPSCs repro-
grammed in the same fibroblasts (Hu et al. 2010). Selecting clones with the same 
differentiation capacity may eliminate this variation. Furthermore, disease pheno-
type can be mixed with abnormal phenotypes (Zhao et al. 2014). Moreover, current 
methods are unable to generate specific cell type in reliable and high amounts. 
Differentiation results in mixed cell types. For example, differentiation neurons 
from iPSCs results in cell population composed of neurons and glial cells (Kondo 
et al. 2013). However, if the cell type of interest is unknown for a given disease, 
analyzing multiple cell types at once will be an opportunity, since state-of-the-art 
methods can be used for single cell analysis.

In addition to those problems, most of the studies focused on cell-autonomous 
models. While this approach is acceptable in first steps, the developing brain is not 
working in that way. Notably, cell-cell interactions are required for proper model-
ing, but it is hard to study in differentiation, synapse formation, etc. Studying 
diseases at the network level may be required for adequately modeling diseases.  
For this purpose, complex cellular interactions are needed rather than single-cell 
analysis (REF).

Furthermore, aging is another problem which researchers are faced, since devel-
oping AD and PD takes decades in humans. However, current iPSC-dependent 
models in culture take a couple of months. Fibroblasts taken from elder individuals 
have shown aging markers, whereas iPSCs reprogrammed from these fibroblasts 
did not show any of those markers (Miller et  al. 2013). Furthermore, progerin, 
which is associated with premature aging syndrome “progeria,” overexpression in 
iPSCs provided aging-associated marker expression (Miller et  al. 2013), and 
progerin expression may promote degenerative phenotypes in iPSC-derived mod-
els. Moreover, it is proposed that environmental factors (toxins, nutrion stress, etc.) 
may promote aging in culture (Doege and Abeliovich 2014).

E. Eren et al.
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2.4.1.4  �Control Groups for Research

Selection of control groups in iPSC-derived disease models is another problem. 
Proper control groups are required for revealing disease mechanism and/or drug 
screening. They can be generated from the same age, gender, and ethnic group of 
healthy controls. However, they have different genetic background along with 
different risk factor exposure (Santostefano et al. 2015). Ideally, isogenic control 
groups should be used. To be able to obtain such cells, mutations in iPSCs should 
be corrected via proper gene editing tools which are ZNFs, TALENs, and Crispr/
Cas9 system (Xu and Zhong 2013).

2.4.2  �Safety Concerns for Clinical Grade iPSCs

2.4.2.1  �Tumorigenicity, Immunogenicity, and Genomic Instability

Tumorigenicity is one of the major concerns in the usage of iPSCs, since oncogenes 
are used for reprogramming somatic cells into iPSC.  Furthermore, the potential 
presence of undifferentiated iPSCs can also cause tumor formation after transplan-
tation. It is shown that reprogramming without oncogenes (c-Myc and Klf4) can 
reduce tumor formation in mice. Alternative methods can be used to achieve this 
problem such as non-viral methods mentioned earlier (Sect. 2.2.1).

Genomic aberrations can still occur in iPSCs regardless how they were generated. 
In most cases, reprogramming does not result in alterations in the karyotype, but in 
some instances, it is possible to see abnormalities in karyotype. Furthermore, when 
genomic stability is looked closer, it can be seen that subkaryotypic changes can 
happen during reprogramming or in prolonged subculture periods. Copy number 
variation (CNV) can be detected in iPSC lines. After CNV analysis, early passages 
of iPSCs can have deletions in tumor suppressor genes, and early passages tend to 
have more deletions than late passages. On the other hand, amplifications in onco-
genes tend to occur in late passages. Furthermore, mutations in exons (i.e., protein-
coding regions) can occur, and most of these mutations are acquired during 
reprogramming or in culture of iPSCs. Mutations are maintained during culture of 
iPSCs. All in all, genomic instability of iPSCs, whether gained during reprogram-
ming or in culture, can affect the quality of iPSCs in clinical use (Martins-Taylor 
and Xu 2012).

Another safety concern in iPSC-based therapy is the issue of immunogenicity. 
Generally, autologous cell therapy is generally considered as immune safe. However, 
Zhao and colleagues showed that iPSC cell therapy can induce immune response in 
syngeneic recipients. Furthermore, they showed that after iPSC implantation, immune 
rejection occurred via T-cell infiltration. Moreover, they identified two genes (Hormad1 
and Zg16), which were expressed in iPSC-teratoma, and these genes directly contribute 
immunogenicity of iPSC derivatives (Zhao et al. 2011). Immunogenicity is essential in 
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iPSC-based cell therapy. Using autologous iPSC-derived cell can bypass immune 
rejection. However, autologous iPSC confer some practical problems. The most impor-
tant one is that it is time-consuming. Further, clone selection, differentiation, and char-
acterization require more time. If donors have mutations in their genome, correction of 
mutated gene or genes is a must, and this requires additional time.

2.4.2.2  �Biobanking

iPSC banking is an essential matter in terms of both research and clinical applica-
tions. It should assure scientific reproducibility in iPSC researches. Furthermore, 
iPSC lines can have genomic and epigenetic variations, their quality must be 
checked carefully, and genotyping is necessary for providing required genotypic 
iPSC lines for scientific researches (Stacey et  al. 2013). Additionally, iPSC bio-
banks can meet cell demands in cell replacement therapies. Patient-specific iPSCs 
can be used in cell replacement therapies. However, their generation is time-
consuming and expensive. Additionally, such cells can have genetic defects which 
have to be corrected. Moreover, the quality of such cells can be an issue. iPSC 
biobanks can provide high quality and low chance of immune rejection iPSCs. 
Furthermore, iPSC supply of these banks cannot be depleted due to the nature of 
iPSCs. Biobanks, which are based on HLA matching, can be used to avoid immune 
rejection problems. HLA is a polymorphic gene inherited with monogenic domi-
nant Mendelian manner. Overall, more than 2558 possible HLA classes (HLA I and 
II) exist. However, according to one estimate, 150 lines are sufficient to match with 
90% of England population, and more diverse population may need more than 150 
lines. Therefore, it can be said that the creation of HLA-matched-based banks with 
sufficient HLA matching which represent different geographical population can 
ease iPSC-based therapies (Solomon et al. 2015).

2.4.2.3  �Clearance of Animal Products

Contamination with animal products is an important issue in terms of producing 
clinical-grade iPSCs and biobanking. The use of animal products in reprogramming 
and differentiating iPSCs contains the risk of unknown pathogens, exogenous anti-
gens, etc., because there would be unpredictable risks to humans. Animal product-
free culture medium is also important. Furthermore, animal-derived MEFs are used 
for feeder layer. Alternatives to mouse-derived feeder layer and human-derived 
feeder layer were developed. However, producing them is time- and effort consum-
ing. Matrigel can be used in human iPSCs generation, yet Matrigel is derived from 
Engelbreth-Holm-Swarm mouse. Other alternatives including recombinant pro-
teins, CellStart®, and synthetic polymers can be used instead of Matrigel (Seki and 
Fukuda 2015).

E. Eren et al.
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2.4.3  �Recent Biological and Biotechnological Advancements

2.4.3.1  �Alternative Strategies for Reprogramming

iPSC generation includes nuclear reprogramming. These iPSCs are in a transient 
pluripotent state which are susceptible to chromosomal aberrations. The genera-
tion of iPSC results in almost complete epigenetic memory erasure. Furthermore, 
methods for generation and differentiation of iPSCs are time-consuming and 
expensive. There are alternative ways to achieve those problems. Direct repro-
gramming is one of them. Epigenetic memory is not completely erased after 
reprogramming. Moreover, iPSC generation is performed in vitro, but direct repro-
gramming can be performed in both in vitro and in vivo (Amamoto and Arlotta 
2013), for instance, overexpression of Pax6 in astrocytes isolated from postnatal 
cerebral cortex of mice differentiated into neurons (Heins et al. 2002). However, 
some cell types are not always feasible when human physiology is considered. This 
problem leads the scientist into more lineage distant cell types such as skin 
fibroblasts. Vierbuchen et al. showed that mouse tail fibroblast could be directly 
differentiated into neurons with three distinct transcription factors, which are Brn2, 
Ascl1, and Myt1l (Vierbuchen et al. 2010). Thus, these methods can provide time-
efficient patient-specific cells for both research and clinical applications. Apart 
from these, in  vivo reprogramming is a developing area. The advantages of it 
include cells residing in their native tissue, having low tumorigenesis risk, and hav-
ing new cells autologous in origin. Furthermore, delivery of transcription factor 
into specific cell type requires virus mediated transfer. However, it can have 
unknown consequences (Heinrich et al. 2015).

2.4.3.2  �Three-Dimensional (3D) and Organoid Cultures

iPSCs are capable to receive early developmental signals. Thus, when specific sig-
nal is given to iPSCs, different cell type can be differentiated autonomously via 
interacting each other and the environment. Two-dimensional cultures are limited to 
deliver full potential of iPSCs. Using 3D culture with functional biomaterials create 
more relevant physiological environment (Shao et  al. 2015). Using human 
midbrain-derived neural progenitor cells, 3D cell culture has been established and 
called as 3D neurospheres containing functional dopaminergic neurons, oligoden-
drocytes, and astrocytes (Simao et al. 2015). Sophisticated 3D organoid cultures can 
also be used to mimic this differentiation process. Lancaster et  al. were able to 
generate 3D organoid culture with human iPSCs. This system includes cerebral 
cortex (Lancaster et al. 2013). Additionally, similar systems have been developed by 
various groups (Dye et al. 2015; Beauchamp et al. 2015).
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2.4.3.3  �Biotechnological Strategies

Biomaterials

The efficiency of iPSC expansion and differentiation process can be improved 
by  controlling the microenvironment. For this purpose, biomaterials, which are 
designed to interact with cells, can be used. Nano- or microparticles can control 
reprogramming factors as well as modulating epigenetic state of iPSCs. Biomaterials 
can be designed to deliver reprogramming factors more safely and efficiently. 
Furthermore, they can increase the efficiency of iPSC derivation by controlling the 
duration of exposure to extracellular matrix (Tong et al. 2015). Moreover, artificial 
transcription factors can be generated such as NanoScript which was designed as a 
platform for mimicking transcription factor domains. It contained nuclear localiza-
tion signal, DNA binding domain, and activation domain (Patel et  al. 2014). 
Additionally, factors can be integrated into scaffolds, and their differential release 
can be adjusted. For instance, PLGA-based scaffold was used for differential release 
of both vascular endothelial growth factor (VEGF) and PDGF. VEGF was mixed 
with polymer for rapid release, and PDGF was pre-encapsulated with polylactide-
co-glycolide (PLG) for extended release (Richardson et al. 2001).

Bioprinting

Three-dimensional bioprinting is also biomaterial-based iPSC-derived organ sys-
tems. Functional tissues and organs can be produced by using biological elements 
such as cells via 3D bioprinting. These tissues/organs can further be transplanted. 
Spatial control of layers can be controlled, and desired biological properties can be 
obtained. Furthermore, with nanoscale resolution of bioprinting, it is possible to 
construct closely mimicking physiological properties of a desired tissue/organ. 
Moreover, this technique diminishes vascularization and innervation problems in 
3D culture systems (Tong et al. 2015). Kolesky et al. showed that they printed intri-
cate and heterogeneous tissue construct supplied with vasculature, extracellular 
matrix (ECM), and multiple cell types by their novel 3D printing method (Kolesky 
et al. 2014).

2.5  �Conclusion

iPSCs technology by Shinya Yamanaka and colleagues in 2006 was a groundbreak-
ing invention. Since then, numerous advancements have been made in the field of 
iPSC research. This development can provide the treatment of incurable diseases. 
Consequently, iPSCs can overcome immune rejection problems and problems faced 
with ES cells such as ethical issues. Although, there are some disadvantages of this 
technology, numerous studies are being conducted for achieving those obstacles. 

E. Eren et al.



57

Recent technical advances have provided to overcome safety issues in clinical use 
of iPSCs. However, these methods are still in their infancy. Further investigations 
will provide much safer and efficient ways to the use of iPSCs in clinical 
applications.
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