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Abstract. White matter hyperintensities (WHM) are characteristics of
various brain diseases, so automated detection tools have a broad clinical
spectrum. Deep learning architectures have been recently very successful
for the segmentation of brain lesions, such as ictus or tumour lesions.
We propose a Convolutional Neural Network composed of four parallel
data paths whose input is a mixture of 2D/3D windows extracted from
multimodal magnetic resonance imaging of the brain. The architecture
is lighter than others proposed in the literature for lesion detection so its
training is faster. We carry out computational experiments on a dataset
of multimodal imaging from 18 subjects, achieving competitive results
with state of the art approaches.

1 Introduction

White matter hyperintensities (WMH) can be caused by a variety of factors
including ischemia, micro-hemorrhages, gliosis, damage to small blood vessel
walls. Many patients showing WMH are idiopathic, however WMH have a strong
relationship with age, arterial hypertension, demographic parameters such as
gender, and some disease, such as diabetes, and biomarkers such as choles-
terol [15]. It has been found associated with progressive cognitive impairment [5].
WMH are small size lesions compared with tumours and stroke lesions, lacking
their structure of necrotic and inflamed tissues. They are mostly periventricular
lesions, which primarily appear at the top of the horns of the lateral ventricles
progressing around the ventricles. They may also appear as subcortical lesions
[9,25]. Several magnetic resonance image (MRI) modalities may be used used for
WMH detection and segmentation. They appear as hypointense in T1-weighted
and as hyperintense in T2-weighted images [23]. The best modality is the
fluid attenuated inversion recovery (FLAIR) imaging, where the lesions appear
as hyperintense and with greater contrast, allowing to differentiate between
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periventricular and subcortical lesions. Recent studies [17,21] also consider dif-
fusion tensor imaging (DTI), specifically the scalar coefficients such as fractional
anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD), which give
the information about privileged directions of water diffusion, so they are sen-
sitive to microstructural changes in white matter. In the last years, the interest
in brain lesion image segmentation has increased, for example, public challenges
have been carried out BRATS http://braintumorsegmentation.org/ and ISLES
http://www.isles-challenge.org/ to advance the field. Most research on small
lesion detection has been carried out for multiple sclerosis (MS) patients. Early
approaches consisted in semiautomatic labellings in structural images [16] and
FLAIR [11]. Early multimodal approaches applied voxelwise fuzzy expert sys-
tems [1] and Markov random fields (MRF) [20]. Machine learning supervised
approaches have been also applied, such as Random Forest [8] and MRF regu-
larized versions [22]. Unsupervised approaches have made advantage of the brain
symmetry for big lesion detection [6]. Recently, Deep Learning approaches report
great success in the segmentation of brain tumours, specifically Convolutional
Neural Networks (CNN) [18,26] which is the approach that we are following in
our own proposal. Processing 3D medical images by the CNNs can be done in 3
ways: (a) Considering each 2D slice of the 3D volume in some direction (sagittal,
coronal or axial) as an independent input image that is feed to the CNN [18,26].
(b) Considering 3D windows of the volumetric image as input. (c) Considering
hybrid 2D/3D inputs, i.e. feeding 2D slices and 3D windows of the volumetric
image. This decision carries some implications in the CNN design, because a 3D
input forces that hidden layers resulting of the filters have 3D structure [3,24].
This additional structural complexity has been found cumbersome to deal with
large datasets, because the number of operations scalate cubically instead of
quadratically. So the intended advantage of preserving 3D spatial relation infor-
mation, is countered by convergence issues and computational time, so that the
3D windows are small, loosing information of long distance spatial relations.
Finally, the use of hybrid 2D and 3D input information [2,7] allows a good
balance between the preservation of 3D spatial relations and the long distance
relations that can be analysed in 2D data. In our architecture, we have used an
hybrid 2D/3D NN where we use a small 3D cube and three different 2D windows,
one for each of the 3 dimensional axis. The paper contents is as follows: first we
present the dataset used for the experiments. Secondly, we discuss our archi-
tecture and the others used for comparison. Then we present our experimental
results and, finally, some conclusions and future work.

2 Materials

The experimental evaluation of the proposed CNN architecture has been carried
out in a set of 18 subjects MRI images corresponding to a previous study [19]
where WHM was performed manually, thus providing the ground truth segmen-
tation for the present work as 3D lesion masks. Each subject image includes a
3D T1-weighted, FLAIR image, and diffusion weighted images from which DTI
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images, and subsequent FA coefficients, were computed using FSL software. T1-
weighted volumes have been registered to 1 mm MNI template. The FLAIR and
FA images have been corregistered to the MNI space by affine registration to
normalized T1-weighted images. The lesion masks are also corregistered to MNI
space. All the image intensities are normalized to the [0,1] interval.

3 Tested CNN Architectures

Throughout the last years, Convolutional Neural Networks (CNNs) [13] have
achieved excellent performance in many computer vision tasks. Several advances
have solved convergence issues, and the advent of easy to exploit powerful Graph-
ics Processing Units (GPUs) has speed up the training times by several orders
of magnitude [4]. A CNN is a shared-weight neural network: all the neurons in
a hidden layer share the same weights and bias. In fact, each layer implements
a linear convolution filter whose kernel is learnt by gradient descent. There-
fore, the output of the successive layers is a series of filtered/subsampled images
which are interpreted as progressively higher level abstract features. Most CNN
are applied to 2D signals, i.e. images, however in the medical image domain
they are increasingly applied to 3D signals, i.e. volumetric imaging informa-
tion. Specifically, two recent instances of CNNs have been successfully applied
to brain lesion segmentation [10,12] achieving remarkable success in the BraTs
competition. Another recent segmentation example using a 2D/3D input data
is [7], where authors trained two separate CNNs for each input dimensionality,
performing a combination of their outputs by averaging.

3.1 Our Proposal: MPCNN

Our proposal is a Mixed Parallel CNN (MPCNN), which takes four inputs: three
orthogonal big 2D windows on 3D image slices (one per spatial dimension) cen-
tered at the same voxel of the brain, and a 3D window, a cube whose sides are
smaller than that of the 2D windows. Therefore, 2D data carry farther away spa-
tial relations, while the 3D window carries 3D spatial relations. The MPCNN
architecture consists of four parallel CNN, three dedicated to process the 2D
window, and the fourth processing the 3D window. Furthermore, we use multi-
modal MRI data, specifically T1, FLAIR and FA volumes, so that each voxel
is in fact a three dimensional vector, much like an RGB image. In this sense,
independent CNN filters at each layer are learnt for each image modality. The
output is a couple of binary units that provide an estimation of the probabil-
ity that the central pixel of the 2D and 3D windows is a WMH lesion voxel.
Figure 1 shows a diagram of the MPCNN architecture. Each parallel subnetwork
is a CNN, composed of a sequence of convolutional layers and max-pooling lay-
ers which reduce the reduce the dimensionality of the feature space after each
convolution. In the version of the network tested in this paper the dimension
of each of the input 2D windows is 35× 35, whereas the dimension of the input
3D cube is 11× 11× 11. The activation function used to compute the output
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of each neuron of the CNN is the Rectified Linear Unit (ReLU) [13,14] due to
both its efficient computation and the fact that it solves the vanishing gradi-
ent problem. The architectures of the three 2D CNNs are identical, they are
composed of three convolutions with kernels of size 3× 3. The number of convo-
lutions increases along the layers, increasing the number of features accordingly.
Moreover, a dimensionality reduction max-pooling layer with pool size of 2× 2
is applied to the output of the second and third layers. The dimensions of the
output of each layer are shown in Fig. 1. Thus, each 2D subnetwork’s output
layer has 6× 6× 55 = 1980 neurons. The 3D CNN is composed only of two 3D
convolutions (with kernel size of 3× 3× 3), and one 3D max-pooling (with pool
size of 2× 2× 2) after the second convolution. Finally, all the subnetworks are
merged (this results in 1980× 3 + 1485 = 7425 nodes) and fully connected to
the next layer, composed of 128 neurons. Finally, these 128 outputs are used to
compute the final output of the network via the Softmax function. Hence, the
two outputs will always be bounded between 0 and 1, and they will sum 1. This
facilitates a probabilistic interpretation of the network output as a probability
of lesion at the central voxel.

Fig. 1. The structure of the proposed for WMH lesion detection

3.2 ICCNN

For comparison, we have implemented a version of the Input Cascade CNN
(ICCNN) architecture [10]. This network has two inputs: one for global context,
and a smaller one for specific context. A convolution to the global context input
is concatenated with the small input. Then, this data is divided into two parallel
networks, each one analysing local and global features, by applying smaller and
bigger kernels respectively. These networks are merged applying a final convo-
lution, which ends up in a softmax layer. In our implementation of the network
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we have reduced the dimension of the last layer to two neurons, which indicate
whether the input represents a damaged voxel or not, and we have changed the
training process, which has been done in one step with unbalanced data (10
negative cases per each positive damaged voxel). Moreover, we have changed the
activation function to the ReLU, removed dropouts and used binary crossen-
tropy loss function for training. The main difference relative to MPCNN is that
ICCNN only uses 2D slices as input.

3.3 DeepMedic

The other architecture tested for comparison is the DeepMedic [12], whose archi-
tecture has two main components; a 3D CNN and a fully connected 3D Con-
ditional Random Field (CRF), which performs a postprocessing of the CNN
output removing false positives. The CNN consists of four layers with 5× 5× 5
kernels for feature extraction, and the classification layer is implemented as a
convolutional layer with kernel of size 1× 1× 1, allowing efficient dense-inference.
The 3D CNN network has two pathways; one processes local information and
the other processes larger contextual information, hence carrying out multi-scale
processing of the data. Moreover, BN (Batch Normalization) is also applied to
all the hidden layers, so that all Feature Maps obtained after each layer are nor-
malized, preserving the signal, and avoiding sourious weight convergence. After
that, there are two hidden layers for combining the multi-scale parallel path-
ways. The full network is trained patch-by-patch and the size of the batches is
selected automatically according to the neighborhood of the voxel in the input.
The batches are built by extracting segments from the training images with
50% probability of being centered on a foreground or background voxel, which
corrects the class-imbalance. The DeepMedic network training implementation
downloaded from github was originally prepared for the ISLES and BraTS chal-
lenges, reporting state-of-the-art results on both performance on brain tumor
and stroke lesion. However, since in our problem we only have 2 outputs not 5 as
in the segmentation problems, in order to work with this network the last layer
output has been reduced from 5 to 2 outputs.

Table 1. Results of the networks using holdout: TPR (True Positive Rate) and FPR
(False Positive Rate)

#id MPCNN ICCNN DeepMedic

TPR FPR TPR FPR TPR FPR

#7 0.572 0.037 0.106 0.018 0.599 0.019

#15 0.503 0.024 0.259 0.063 0.650 0.013

#18 0.622 0.012 0.490 0.065 0.613 0.017

#21 0.245 0.011 0.280 0.034 0.463 0.012
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4 Results

The MPCNN and ICCNN architectures have been implemented in Python
using Keras with Tensorflow as backend. The DeepMedic implementation has
been downloaded from github (https://github.com/Kamnitsask/deepmedic).
The training and validation scripts have been executed in a desktop computer
with RAM of 16 GB, and GPU NVIDIA GTX 1070 which has been used to
speed up training. For validation, we apply holdout over the 18 available subject
datasets: 14 have been used for training, and 4 for testing. To carry out the train-
ing in a limited reasonable time, we have subsampled the brain images as shown
in Fig. 2 to obtain the training dataset. The brain image is decomposed in regu-
lar non-overlapping windows and a random voxel is picked from this window as

Fig. 2. Brain image subsampling to obtain the training dataset

Fig. 3. Data and results of subject #18. A - Sample sagittal slides of T1, FA and
FLAIR volumes. B - WMH ground truth lesion manually labeled overlaid on FLAIR
slices C,D,E - prediction (green) and ground truth lesion (red), C for MPCNN, D for
ICCNN, and E for DeepMedic

https://github.com/Kamnitsask/deepmedic


A 2D/3D Convolutional Neural Network for Brain White Matter Lesion 383

the center for the 2D/3D windows that conform the inputs. This process ensures
a rather regular sampling interval and that the whole brain volume is sampled.
Testing is carried out evaluating all the brain voxels in the test datasets. The
problem is naturally imbalanced, i.e. there are many more healthy than lesion
voxels, therefore we need to respect this imbalance in the training dataset. After
some experimentation with a small CNN carrying crossvalidation on a reduced
dataset, we set the imbalance ratio to 10 in the training dataset. In other words,
we ensure that there is a ratio 10:1 of healthy to lesion voxels. We report True
Positive Ratio (TPR) and False Positive Ratio (FPR) values, measuring how well
the lesion is detected and the false alarms raised. Accuracy results for each test
images are presented in Table 1. Overall, DeepMedic neural network has the best
and most stable results, while ICCNN performs poorly. Our proposed MPCNN
is faster to train than DeepMedic (a ratio 7:1) and has comparable results in two
subjects (#7, #18), and slightly worse in another (#15). If we consider the max-
imum TPR achieved (0.65), seems that the architectures need to be improved,
and that the success in tumour segmentation does not ensure success in WMH
lesion detection. Figure 3 presents visual results of the experiment. From left to
right, the first column shows images of the three modalities as an illustration
of the dataset. The second column shows the lesion detected manually in three
slices of brain #18 overlaid on the FLAIR image. Next columns illustrate the
detection by MPCNN, ICCNN, and DeepMedic. It can be appreciated that all of
them leave some lesion clusters undetected, and overestimate others. DeepMedic
seems to create spurious lesion detection clusters, while our proposal MPCNN
false alarms are more of the kind of cluster extensions, or conections between
clusters. So, some qualitative differences of the response of the architectures can
be appreciated which deserver further analysis and experimentation.

5 Conclusions and Future Work

We have proposed and tested a new 2D/3D CNN architecture for the detection
of WMH lesions, which are smaller than other brain lesions (tumours and stroke
lesions), lacking the necrotic and inflammation structures. We compare results
with two other architectures published in the literature achieving competitive
results. Qualitative assessment of the results, shows some advantage of our app-
roach, which is closer to the manual segmentation in the sense that follows more
closely the delineated voxel clusters, and creates less spurious detection clusters.
The combination of 2D and 3D input windows allows to process the long dis-
tance spatial relations, while reducing the computational burden. Ongoing work
improves the validation process computing a more complete cross-validation pro-
cedure, and more datasets will be included in the experiment. Our proposal
may be also subject to changes in kernel parameters and other features of the
CNN. Notice that no postprocessing to remove false alarms is done, contrary to
DeepMedic, so additional work in postprocessing MPCNN results may provide
enhanced results. In order to go ahead in this research area, we made the code
available in github so that everyone can contribute to it.
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