
Frame-to-Frame Visual Odometry:
The Importance of Local Transformations

Aleksander Kostusiak(B)

Institute of Control and Information Engineering,
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Abstract. Trajectory estimation is of pivotal importance for mobile
robots. Visual Odometry (VO) allows localizing a robot from passive
vision data in frame-to-frame fashion. The VO problem can be solved
in different ways, hence an evaluation of these algorithms in the context
of real benchmark data is interesting. We focus on feature-based n-point
methods based on RGB images. These methods used in monocular vision
allow for camera rotation estimation, but only a few of them provide
translation estimates up to the unknown scale. In the context of the use
of commodity RGB-D cameras, we also compare these methods with the
Kabsch algorithm, which uses full depth information.

Keywords: Sparse visual odometry · Trajectory estimation ·
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1 Introduction

The trajectory estimation problem is in the spotlight for many years, yielding
many different solutions. The best approaches belong to the dense solution group
and use all the information seen by the camera. Because this is computationally
expensive and requires GPU acceleration, it is almost impossible to use such an
approach in mobile robotics in a larger scale. For these reasons, we are concerned
with the existing feature-based (sparse) approaches. While working with a single
passive (RGB) camera it is impossible to obtain full depth information about
the scene and in turn to accurately determine the scale of translation between
two frames. However, it is still possible to compute rotational components of the
trajectory and to use them for constraining the orientation of the robot/camera.
This is of high importance, as small errors here can result in large translational
errors. It was shown in [2] that a SLAM system can benefit from being augmented
with the visual estimation of the frame-to-frame orientation change. In the last
few years, the focus in visual trajectory estimation was put on Visual SLAM and
Visual Odometry. The former type of approach builds a map, and then estimates
the robot position with respect to it. The first working real-time Visual SLAM
was demonstrated by Davison and Murray [11]. The latter type of approach
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tries to achieve the same goal without building a map, however with a larger
number of frame-to-frame measurements. A comprehensive overview of the VO
methods is presented in [12,13], and in [14], where VO and SLAM algorithms
are nicely and briefly described. The rest of this paper is structured as follows:
Sect. 2 presents the used libraries and related work, Sect. 3 briefly describes the
n-point relative pose computation algorithms, Sect. 4 details the methodology
used to obtain both the quantitative and qualitative results, Sect. 5 describes
and comments the obtained results, and Sect. 6 concludes the paper.

2 State of the Art

Currently, there are several libraries that help in obtaining rotation from RGB
images, like OpenCV [8], OpenMVG and OpenGV. All of the mentioned libraries
but OpenCV contain the 5-point Nister [3,4], Stewenius [5], and 7-point and 8-
point methods, which are in OpenCV, for finding the essential matrices from
2D-2D correspondences. OpenCV has two last methods to return fundamental
matrix only. OpenMVG contains a 5-point method that uses Nister and Stewe-
nius constraint expansions that find the essential matrix. The richest library of
that kind of algorithms is OpenGV allowing for [9]: calculation pose of the cam-
era from 2D-3D correspondences between points in the world frame and bearing
vectors in the camera frame (this states as central absolute pose problem), and
in multiple camera frames (non-central absolute pose case), finding the pose of
one camera with respect to another camera given a number of 2D-2D corre-
spondences between the bearing vectors in the camera frames (central relative
pose), and in multiple camera frames (non-central relative pose problems). Some
algorithms may return only rotation, only translation, several different probable
rotations, rotation and translation, several probable rotations and translations,
essential matrix, several probable essential matrices, or several probable com-
plex essential matrices. In the past Murphy et. al. presented [14] an evaluation
of three VO techniques: patch-based, Structure from Motion, and the VO app-
roach of [15], but in a monocular version. Recently, there is a work in semi-dense
approaches [1] that labels itself as VO method claiming frame-to-frame trajec-
tory estimation based on semi-dense inverse depth map based. Nonetheless, to
create those semi-dense depth maps their approach uses the history of RGB
frames to find a possibly oldest frame, in which the pixel from the current frame
was seen. That leads to building a form of map, and to the indirect use of it.
Consequently, this type of solution does not fit well to the VO definition, being
partially a SLAM system, yet without trajectory optimization. Worth mention-
ing are the experiments trying to combine both worlds of visual SLAM and VO.
Earlier, Schmidt et al. [2] proposed to augment SLAM method by replacing orien-
tation change every few steps of EKF prediction function with the one provided
by separately running VO system. A comparison of SLAM and VO approaches
for RGB-D data was presented in [6]. As for now, there is very little work done
concerning evaluation of methods that estimate the frame-to-frame orientation
change. Recently, Hartman et. al. [7] used 5-point Stewenius algorithm with a
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modified RANSAC approach. Ground truth data was collected with the use of
IMU and GPS devices while the one used in experiments presented here were
collected by a high-resolution multi-camera system [21], or the Vicon motion
capture system [19].

3 Used Algorithms

In this section, we briefly describe used algorithms for solving geometric vision
problem. We used SURF, ORB and AKAZE feature detector-descriptor pairs
for preliminary image processing. 8-point [16,17] algorithm is here the oldest
algorithm for computing essential or fundamental matrix, depending if the cali-
bration has been performed, based on 8 or more matched points. The essential
matrix can be defined as:

u’Fu = 0 (a) or u’Eu = 0 (b) (1)

where u’ and u are matched homogeneous image points, because of that the
last element equals to 1, and E and F stand for the Essential and Fundamental
matrix (without calibration data). The entry points are normalized to ensure
that all entries of respective matrices will be treated approximately equally.
After representing matrix Eq. 1 as a vector, set of linear equations is obtained:

Af = 0 (a) or Ae = 0 (b) (2)

where A is the equation matrix, e and f are 9-vector containing the entries
of the matrix E or F. The equation is solved under the singularity constraint
‖f‖or ‖e‖= 1, where ‖e‖and ‖f‖are the norms, by checking if it is of rank 2 and
if it is singular and by enforcing if it is not the case. Finally, the result matrix is
replaced by closes singular matrix under Frobenius norm. Nister’s [3,4] algorithm
computes Essential matrix given 5 correspondences, which gives a rise to essential
matrix constraint of the following form:

EETE − 1
2
trace(EET )E = 0 (3)

After representing matrix Eq. 3 as vector, set of the linear equation a 5×9 matrix
is obtained. Next, four vectors X̃, Ỹ, Z̃, W̃ that spans the right nullspace of that
matrix are calculated.

E = xX + yY + zZ + wW (4)

They correspond directly to four matrices constraining the form of essential
matrix 4 which is in turn inserted into nine cubic constraints 3. Calculations
are performed by using Gröwner basis. Scalars x, y, z, w are defined up to a
common scale factor and it is assumed that w = 1. As the output algorithm
can return up to 10 essential matrices, but some of them are internally rejected.
Kneip [18] proposed a direct method for finding exact rotation between two
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images independently of the translation. This results from the fact that rotational
optical flow is fundamentally different from translational one. The constraints
on the rotation are then as follows:

|(f1 × Rf ′
1)(f2 × Rf ′

2)(f3 × Rf ′
3)| = 0 (5)

Because rotation encodes 3◦ of freedom at least 3 epipolar plane normal copla-
narity constraints are required to fully constrain rotation. Two additional fea-
tures allow for building the necessary system of equation:

|(f1 × Rf ′
1)(f2 × Rf ′

2)(f3 × Rf ′
3)| = 0

|(f1 × Rf ′
1)(f2 × Rf ′

2)(f4 × Rf ′
4)| = 0

|(f1 × Rf ′
1)(f2 × Rf ′

2)(f5 × Rf ′
5)| = 0 (6)

To solve this Eq. 6 Gröne basis is used. As the output algorithm can return up
to 20 different rotation matrices, resulting from 10 essential matrices, but some
of them are internally rejected. Eigensolver method tries to find the eigenvalue
that minimizes the fallowing function 7:

R = argminRλM,min (7)

where R is the rotation transforming the i-th bearin vector fi to the cor-
responding one seen from the second frame f ′

i . M has rank at most 2 and
is a real symmetric and positive- defined matrix of fallowing form: M =∑n

i=1(fi×Rf ′
i)(fi×Rf ′

i)
T . At best a non-linear optimization over three parame-

ters is needed because rotation has 3◦ of freedom. To solve the problem Kneip
et.al. [18] are enforcing the first-order partial derivates of λM,min to be zero
and then are using Levenberg-Marquardt scheme. Also, this algorithm com-
putes translation direction (but does not explicitly return it) as automatically
given by the eigenvector that corresponds to the smallest eigenvalue. We have
implemented the Kabsch algorithm [22,23] with the help of information found
in [24]. As this algorithm computes transformation of two aligned points sets,
the camera movement is the opposite.

4 Experimental Methodology

The whole program is constructed similarly to the work presented in [10]: firstly
detector/descriptor algorithm is used to extract silent features. Then RANSAC
technique, with varying ejection threshold (and for Eigensolver method also
varying confidence) is performed twice to obtain best results. At this stage,
two different error measures are used: reprojection error and a simple Euclid-
ean distance between bearing vectors. The second method omits the translation,
assuming it is sufficiently small. Finally, a trajectory is computed with all the
matches remaining. Kneip algorithm is an exception- it only accepts from 5
to 8 bearing vectors pairs. It is also the only algorithm that does not com-
pute translation, thereby to be able to compute reprojection error we employ
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a two-point algorithm, that is also contained in the OpenGV library. Because
some algorithms, namely Kneip, Nister and Eightpoint return several results, the
best one is chosen based on appropriate error measure. In a case of an empty
result set, resulted from in-algorithm suppression, 8 points are randomly cho-
sen from the inliers set to compute rotation and translation as long as it does
not exceed maximal RANSAC iterations. If the number of remaining inliers
is insufficient for trajectory estimation the whole pipeline breaks as unable to
correctly recover trajectory. For experiments we used 2 different trajectories:
putkk Dataset 1 Kin 1 data set described in [20], is further referred as dataset1,
and fr3 long office household which will be referred as dataset2 from the TUM
RGB-D Benchmark [19]. Dataset1 was collected by the Kinect sensor mounted
on the moving in the laboratory wheeled robot. Ground truth was obtained from
multicamera vision system PUT Ground Truth (PUT GT) [21]. The acquisition
time of robot and GT cameras have been synchronized so no interpolation was
performed. Dataset2 was collected by the hand-held Kinect camera. Ground
truth was also acquired by a multicamera system but a time of acquisition was
not enforced what resulted in the need for data interpolation. Timestamps are
not perfectly aligned in the ground truth and data collected by the camera. To
measure the quality of retrieved trajectory we use well known Absolute Trajec-
tory Error (ATE) and Relative RPE metrics as described in [19]. The first error
is the Euclidean distance between corresponding points of the ground truth tra-
jectory and estimated one. RPE is a relative translational or rotational error
of successive frames. As for evaluation Root Mean Squared Error (RMSE) of
mentioned metrics are used.

5 Results

In this section, in order to fit the data into the tables, we abbreviated some
names. The translation recovery approaches that are based on the use of Cen-
troid are abbreviated to C. and the Scale-based methods (depth is used only in
the first two frames to determine the scale) are denoted as S. Consequently, the
Reprojection error is denoted as R. and the Euclidean error as E. In the first
experiment, it occurred that the scene was too demanding, or the found points
were insufficient for Eigensolver and Nister algorithms to retrieve full trajectory
in 3 out of 4 cases. It is possible, that those algorithms could restore trajectory
if a different set of points was provided but regardless of this fact it shows that
those algorithms are not as robust as rest of the investigated methods. With
respect to rotational RPE RMSE errors, it is questionable if Kneip algorithm
managed to retrieve the trajectory. The best of n-point relative pose algorithms
was the 8-point, achieving best results with a constant scale, mainly if it was
ignoring the translational part in RANSAC scheme. While this depends on the
initialization stage and the detected points, the differences are not large. Still, it
is outperformed by Kabsch algorithm, which is using full depth information, what
is demonstrated in Fig. 1. This method combined with SURF detector/descriptor
works twice better in ATE error terms than with other detector/descriptor pair.
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Table 1. Comparison of absolute trajectory errors (ATE RMSE) and relative pose
errors (RPE RMSE) for the putkk Dataset 1 Kin 1

Algorithm AKAZE ORB SURF

ATE RPE RPE ATE RPE RPE ATE RPE RPE

[m] [m] [deg] [m] [m] [deg] [m] [m] [deg]

C.E.Eigensolver 7.267 0.021 0.372 7.292 0.021 0.372 7.261 0.021 0.372

C.E.Kneip 3.866 3.863 114.451 — — — 3.583 3.885 114.153

C.E.nister — — — — — — — — —

C.E.eight-point 4.044 0.047 4.683 4.067 0.042 0.928 4.064 0.042 0.926

C.R.Eigensolver — — — — — — — — —

C.R.Kneip 4.316 3.835 115.062 3.833 3.772 114.803 3.725 3.869 116.144

C.R.nister 4.090 0.283 9.031 3.759 0.230 6.189 4.123 0.355 10.094

C.R.eight-point 3.843 0.063 4.691 4.033 0.042 0.973 3.968 0.042 0.966

S.E.Eigensolver 2.043 0.014 0.372 2.044 0.014 0.372 2.032 0.014 0.372

S.E.Kneip 11.806 0.932 115.418 1.858 0.212 115.817 3.699 0.434 115.101

S.E.nister — — — 2.044 0.014 3.900 1.974 0.014 4.375

S.E.eight-point 1.745 0.018 0.922 1.735 0.0176 0.9236 1.715 0.018 4.685

S.R.Eigensolver — — — — — — — — —

S.R.Kneip 2.651 0.424 113.133 4.553 0.5737 113.945 2.869 0.277 114.681

S.R.nister 2.143 0.021 11.260 4.463 0.063 9.325 1.932 0.017 8.919

S.R.eight-point 1.861 0.025 0.956 1.768 0.023 0.963 1.699 0.021 0.955

Kabsch 0.724 0.019 0.413 0.714 0.020 0.430 0.470 0.020 0.417

The full comparison is further given in Table 1. In the second experiment, all
but Nister coupled with AKAZE detector/descriptor were able to reconstruct
trajectory. The best results were achieved by the Kabsch algorithm with the use
of depth data. The best algorithm for finding a rotation from solely RGB data
is 8-point algorithm if ATE error is considered but if the RPE metrics is eval-
uated, the Eigensolver seems to be a bit better. It seems as 8-point algorithm
works slightly better with proposed in-RANSAC Euclidean error measurement
than with reprojection error. This is not the case for Eigensolver algorithm,
as it benefits if combined with SURF algorithm, and suffers if combined with
AKAZE in the context of constant scale. Also, Eigensolver sometimes returns
no solution and thus is not as reliable as the 8-point algorithm. Kneip algo-
rithm has the biggest RPE error from all of the investigated algorithms. This is
probably due to its inability to perform computations on more than 8 points.
It can be assumed that it “reconstructed” trajectory, as Fig. 1 shows, when was
working without depth data, having only a scale and reprojection error but this
is not the case if it is used with depth information in centroid fashion or Euclid-
ean error. Still, RPE errors are high. The reason for this are residual outliers,
gaining a lot of importance in the final computation of the estimate. Other algo-
rithms perform some form of least-squares optimization, and thus the residual
outliers are strongly suppressed. The results for all investigated algorithms for
fr3 long office household sequence are collected in Table 2 and enhanced with
Fig. 2.
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Fig. 1. Trajectories estimated for the putkk Dataset 1 Kin 1 (a) ORB ATE C.E.
Eigensolver, (b) SURF ATE S.E. Nister, (c) SURF ATE Kabsch, (d) ORB RPE C.E.
Eigensolver, (e) SURF RPE S.E. Nister, (f) SURF RPE Kabsch

Table 2. Comparison of absolute trajectory errors (ATE RMSE) and relative pose
errors (RPE RMSE) for the fr3 long office household sequence

Algorithm AKAZE ORB SURF

ATE RPE RPE ATE RPE RPE] ATE RPE RPE

[m] [m] [deg] [m] [m] [deg] [m] [m] [deg]

C.E.Eigensolver 1.683 0.376 19.313 1.822 0.320 11.743 1.790 0.302 11.743

C.E.Kneip 2.571 2.628 131.423 3.211 2.925 131.514 3.334 2.918 130.940

C.E.nister — — — 2.066 1.224 43.236 1.636 1.128 35.555

C.E.eight-point 2.745 0.808 22.853 1.957 0.503 29.023 1.615 0.489 22.757

C.R.Eigensolver 1.467 0.371 18.975 2.290 1.275 48.219 3.211 0.924 46.888

C.R.Kneip 2.933 2.653 132.805 3.996 3.016 131.065 3.579 2.949 131.599

C.R.nister 2.028 1.131 45.637 2.459 1.842 73.429 2.316 1.138 42.402

C.R.eight-point 2.865 0.815 22.956 2.177 0.515 37.691 2.152 0.490 29.017

S.E.Eigensolver 1.972 0.260 105.122 1.984 0.269 11.743 1.913 0.286 11.743

S.E.Kneip 1.957 0.367 131.377 1.737 0.465 132.218 1.920 0.508 131.092

S.E.nister — — — 1.857 0.349 42.416 1.600 0.400 33.549

S.E.eight-point 1.181 0.368 22.819 1.467 0.352 22.895 1.202 0.358 22.777

S.R.Eigensolver 1.803 0.244 21.157 1.998 0.253 49.985 1.935 0.269 49.098

S.R.Kneip 7.865 3.266 131.034 2.076 0.623 131.848 2.105 1.173 132.467

S.R.nister 1.916 0.345 46.895 2.140 0.543 71.752 1.869 0.513 39.916

S.R.eight-point 1.246 0.354 22.887 1.786 0.394 29.294 1.925 0.391 29.788

Kabsch 0.560 0.042 1.267 0.576 0.046 1.372 0.619 0.044 1.434
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Fig. 2. Trajectories estimated for the fr3 long office household, (a) AKAZE ATE S.E.
8-point, (b) AKAZE ATE S.R. Kneip, (c) AKAZE ATE C.R. Kneip, (d) AKAZE RPE
S.E. 8-point, (e) AKAZE RPE S.R. Kneip, (f) AKAZE RPE C.R. Kneip, (g) SURF
ATE S.E. Eigensolver, (h) ORB ATE S.E. Nister, (i) AKAZE ATE Kabsch, (j) SURF
RPE S.E. Eigensolver, (k) ORB RPE S.E. Nister, (l) AKAZE RPE Kabsch, (m) SURF
RPE C.E. 8-point, (n) ORB RPE S.R. Kneip, (o) SURF RPE Kabsch

6 Conclusions

Taking into account the presented experimental results we can conclude, that
the best algorithm for solving the frame-to-frame motion estimation problem is
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the Kabsch algorithm, which however requires depth data, e.g. from an RGB-
D sensor. In passive monocular systems, the 8-point algorithm won the com-
petition, as the Eigensolver, although quite accurate, not always was able to
deliver a solution. Whenever no depth data is available, the 8-point algorithm
can restore a reasonable trajectory in comparison with other methods. The
remaining algorithms usually performed by far worse than the two previously
mentioned methods. The superiority of the 8-point algorithm may result from a
better least-square optimization. Also, when working with real, imperfect data,
the assumptions underlying the 8-point algorithm are more realistic than the
stricter assumptions of the 5-point algorithm. It seems that the choice of the
detector/descriptor has little influence compared to the error metrics used in
RANSAC. There is no significant difference in performance resulting from using
different detector/descriptor algorithms. The Kabsch algorithm in one scene
works better with SURF, but in another scene, AKAZE and ORB perform
slightly better. This shows that for different scenes, a different approach to select
the salient point features is needed and that there is no perfect feature detector
yet. It seems that the 8-point algorithm works better with AKAZE or SURF
features than with ORB. The ORB is known from its fast computation and thus
is considered for the computational efficiency, but its performance in our exper-
iments was rather disappointing. Taking into account that AKAZE is an open-
source software, we also advise considering this detector/descriptor pair instead
of SURF. In our future work, we plan to consider also some detector/descriptor
combinations, such as ORB-AKAZE, which seem to be interesting.
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