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Abstract. In this paper new algorithm called Bayes metaclassifier
(BMC) will be introduced as a method for improving weak classifiers
performance. In general, BMC constitutes the probabilistic generaliza-
tion of any base classifier and has the form of the Bayes scheme. To
validate BMC classification two experiments were designed. In the first
one three synthetic datasets were generated from normal distribution to
calculate and check empirically upper bound for improving base classifier
when BMC approach is applied. Furthermore, to validate usefulness of
this algorithm extensive simulations from 22 available benchmarks were
performed comparing BMC model against 8 base classifiers with different
design paradigms.
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1 Introduction

Pattern recognition task was successfully applied in many areas from medical,
financial and critical safety applications. Each problem requires its individual
approach and there is no easy solution which classifiers or algorithm should
be applied because each method has its prons and cons. Nowadays, due to the
huge development of the artificial intelligence, many classification methods are
at hand, there are statistical, distance based, neural methods to name only a few
[4,6,14]. Since classification problems are very complex and multidimensional,
simple base classifier usage is not sufficient so advanced method for building mul-
ticlassifier systems (MC) are developed, but still proper base classifier choice is
critical because we need accurate and diverse ones [19]. In the literature one can
find many method for constructing robust MC models, but the most commonly
used are bagging, boosting and random subspace [5,12,13]. In shortly, bagging
applies sampling with replacement to obtain independent training datasets for
each individual classifier. Boosting modifies the input data distribution processed
by each classifier in a sequence from the results of classifiers trained before,
paying more attention on difficult samples. All the aforementioned algorithms
focus on using weak classifiers for building powerful MC systems. In this paper
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we introduce an algorithm called Bayes metaclassifier (BMC) as a method for
improving weak classifier in terms of its classification performance. In general,
BMC constitutes the probabilistic generalization of any base classifier indepen-
dent of its design paradigm and has the form of the Bayes scheme. Since BMC
provides probabilistic interpretation for base classifier correct classification and
misclassification, this method can be used in sequential classification or as a
fusing mechanism in MC systems [10,11]. The main goal of this study is to
investigate how BMC can improve base classifier performance. For this purpose
two experiments were performed, the first one with synthetic data and the second
one on 22 real life benchmark datasets. The paper is divided into four sections
and organized as follows. In Sect. 2 pattern recognition task is introduced and
later the concept of probabilistic Bayes metaclassifier is described. The results
of computer experiments are described in Sect. 3 and Sect. 4 concludes the paper
together with proposition of future plans and improvements.

2 Problem Statement

2.1 Pattern Recognition Task

This paper deals with pattern recognition task in which we assume that the
pattern is in class j ∈ M, where M is an m-element set of possible states
numbered with the successive natural numbers (j ∈ M = {1, 2, . . . ,M}). Label
j is unknown and does not undergo our direct observation. What we can only
observe are the features by which an object manifests itself. We will denote a
d-dimensional measured feature vector by x ∈ X (thus X is the feature vector
space). In order to classify unknown patterns, as usual in practice, we assume
that we have to our disposal so called training set, which in the investigated
decision task consists of N training patterns:

S = {(x1, j1), . . . , (xN , jN )}, (1)

where xk, jk denote d-dimensional pattern and its true classification, respectively.
In general, the decision algorithm with learning should use every time as well
observed data i.e. the feature vector x as the knowledge included in the training
set S. In consequence, the general, classification algorithm with learning is of
the following form:

i = ψ(S, x), i ∈ M. (2)

ψ is a canonical model of a base classifier which means that for a given x ∈ X ,
it produces class label and a vector of class supports [8]. Single dj(x) indicates
the support of ψ to the hypothesis that the object x belongs to the class j.

d(x) = [d1(x), d2(x), . . . , dM (x)],
M∑

i=1

di(x) = 1. (3)
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2.2 BMC Algorithm Construction

In this section BMC algorithm construction over single classifier will be pre-
sented. Firstly, the probabilistic model of classification must be introduced in
which the feature vector x ∈ X and class label j ∈ M are observed values of the
pair of random variables X and J, respectively. The probability distribution of
(X,J) is determined by the a priori class probabilities pj = P (J = j) and class-
conditional density functions f(x|j) = fj(x). The Bayes metaclassifier (BMC)
ψBMC , which originally was introduced in [11], constitutes the probabilistic gen-
eralization of base classifier (2) which has the form of the Bayes scheme built
over the classifier ψ. This means, that ψBMC takes the decision according to the
maximum a posteriori probability rule [10]:

ψBMC(ψ(x) = k|i) ←→ p(i|ψ = k) = max
i∈M

p(i|ψ = k). (4)

A posteriori probabilities p(i|k) ≡ P (J = i|ψ(x) = k), i ∈ M are given by Bayes
rule:

P (J = i|ψ = k) =
pi p(k|i)∑
j pj p(k|j) , (5)

where probability p(k|i) ≡ P (ψ(x) = k|i) denotes class-dependent probability of
error (if k �= i) or correct (if k = i) classification of an object x by the base clas-
sifier ψ. Placing the base classifier ψ in a probabilistic frame defined by the BMC
(ψBMC), we get a common probabilistic interpretation of responses of base clas-
sifiers, regardless of their design paradigms. The key element in the BMC scheme
described by Eqs. (4) and (5), is the calculation of probabilities P (ψ(x) = k|i)
at point x, i.e. class-dependent probabilities of correct and misclassification for
base classifier ψ. Normally, for any base deterministic classifier these probabil-
ities are equal to 0 or 1. In this paper, the proposed method of evaluation of
these probabilities is based on the original concept of a hypothetical classifier
called a Randomized Reference Classifier (RRC) [16,17]. The RRC ψRRC

l (x) is
a stochastic classifier that classifies object x according to the maximum rule
for vector of class support [γ1(x), γ2(x), . . . , γM (x)] which are observed values
of random variables (rvs) [Δ1(x),Δ2(x), . . . ,ΔM (x)]. Probability distribution
of rvs is chosen in such a way that RRC acts, on average, as a modeled base
classifier only when the following constraints are fulfilled:

Δj(x) ∈ 〈0, 1〉,
M∑

j=1

Δj(x) = 1

E[Δj(x)] = dj(x), j ∈ M,

(6)

where E is the expected value operator. Since RRC performs classification in
a stochastic manner, so it is possible to calculate class-dependent probabilities
of correct classification Pc(j|x) and misclassification Pe(j|x) and furthermore
consider them equivalent to the modeled base classifier:

P (ψ(x) = k|i) ≈ P (ψRRC(x) = k|i). (7)
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It should be noted that (7) is a heuristic approach for estimating base classifier
probabilities of correct classification (misclassification). For BMC training phase
it is assumed that a validation set containing pairs of feature vectors and their
corresponding class labels is available [15]. This set can be obtained by random
ratio subsampling from training set or alternatively as a stack generalization [18]:

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M. (8)

V is used to calculate P (ψ(x) = k|i) ≈ P (ψRRC
l (x) = k|i) which denotes that an

objects x belongs to class i given that ψ(x) = k. These values are only known at
discrete points from V so to enable dynamic calculation of any new object x from
feature space we need a neighborhood function describing how probabilities at
validation points affects new x. In this study, Gaussian potential function was
used:

PRRC
c (j|x) =

∑
xk∈V,jk=j Pc(j|x) · exp(−α · ||x, xk||2)

∑
xk∈V,jk=j exp(−α · ||x, xk||2) ,

PRRC
e (j|x) =

∑
xk∈V,jk �=j Pe(j|x) · exp(−α · ||x, xk||2)

∑
xk∈V,jk �=j exp(−α · ||x, xk||2) ,

(9)

where α value in Eq. (9) is a scaling factor and should be adjusted independently
to classification problem. In this article, instead of manual selection, α is selected
during preparation step of BMC using training and validation set. In this case, for
each object from V we calculate Pe(j|x), Pc(j|x) and further we randomly select
40% of objects from training set with stratification and use this new set to check
for which α BMC obtains the highest classification rate. For all experiments, α
was chosen from set: α = {1, 2, 4, 6, 8}.

3 Experiments

The goal of this study was twofold. Firstly, we wanted to check how BMC works
with synthetically generated data coming from 1D normal distribution described
by (μ, σ). This is very simplified approach, but allows us to calculate an optimal
Bayes decision boundary and Bayes probability of misclassification. In a conse-
quence, we can determine empirical probability of error of BMC in relation to
this probability. In the second experiment BMC model was applied to 22 bench-
mark data sets taken from the UCI Machine Learning Repository [3], Ludmila
Kuncheva Repository [9] and Keel [1] for 8 classifiers with different decision
paradigm. A brief description of the data sets used is given in Table 1.

3.1 Experimental Setup

In the first experiment three synthetic datasets with two classes were generated
from normal distribution N(μ, σ) using different (μ, σ) (see Fig. 1). For generated
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set it was confirmed (for p 
 0.01) that each sample is not statistically signifi-
cantly different from normal distribution using Kolmogorow Smirnow, Lillieforsa
and W Shapiro-Wilka statistical tests. For simulations, 50k and 10k objects were
generated for each class for testing and validation sets, and a’priori class prob-
abilities were equal. Each simulation was repeated 10 times and results were
averaged. Since we deal with scalar values, we use linear classifier (ψl) which
decision boundary location is determined by point x = p so training procedure
is not needed. Furthermore, using μ1,2, σ1,2 for each model an optimal Bayes
decision boundary can be calculated and set as poptimal.

Fig. 1. Pdf functions for three synthetic datasets used in the first experiment. From
the left: (1) μ1 = 4, σ1 = 1.5, μ2 = 8, σ2 = 2.0, (2) μ1 = 4, σ1 = 2.3, μ2 = 9, σ2 = 2.0,
(3) μ1 = 4, σ1 = 2.3, μ2 = 11, σ2 = 1.8

For the second experiment the following base classifiers were used:

– qdc - quadratic classifier based on normal distributions with the same covari-
ance matrix for each class,

– nmc - nearest mean classifier,
– 6-nn - 6 nearest neighbors,
– parzen - Parzen classifier,
– dtc - Decision tree with information gain splitting criterion,
– bpxn-1 - Feed-forward back-propagation neural network with 1 hidden layer

and the number of learning epochs set to 120,
– bpxn-2 - Feed-forward back-propagation neural network with 2 hidden layer

and the number of learning epochs set to 120,
– svm - support vector machine with 3rd order polynomial kernel.

For each data set from the second experiment, feature vectors were normalized to
zero mean and unit standard deviation. Simulations were conducted according to
5 × 2 cross-validation method for extracting training and testing sets from each
data set [2]. For the comparison purposes the following approach was applied.
As a reference, each base classifier was trained using whole training set, while
for BMC preparation, from available training set 30% of objects were selected
randomly to form validation set while the rest objects were used for base classifier
fitting. All experiments were conducted in MATLAB using PRTools 5.0 packet.
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Table 1. Datasets used in experiments

# Database Source # Objects # Features # Classes a’priori probability

1 Weaning LKC 302 17 2 .5, .5

2 Parkinson UCI 195 22 2 .75, .25

3 Transfusion UCI 748 4 2 .76, .24

4 Wisconsin UCI 683 9 2 .65, .35

5 Dermatology UCI 358 34 6 .3, .2, .2, .1, .1, .1

6 Glass UCI 214 9 6 .3, .4, .1, .1, .0, .1

7 Haberman UCI 306 3 2 .7, .3

8 Mamographics Keel 830 5 2 .5, .5

9 Iris UCI 150 4 3 3 × 1
3

10 Laryngeal3 LKC 353 16 3 .2, .6, .2

11 Voice3 LKC 238 16 3 .2, .1, .7

12 Pima UCI 768 5 2 .3, .7

13 Thyroid UCI 215 5 3 .7, .2, .1

14 Vowel UCI 990 10 11 11 × 1
11

15 Segmentation UCI 2310 19 7 7 × 1
7

16 Yeast UCI 1484 8 10 .164, .289, .312, .030,
.034, .110, .024, .020,
.014, .003

17 Sonar UCI 208 60 2 .5, .5

18 OptDigits UCI 3823 64 10 10 × 1
10

19 Spam UCI 4601 57 2 .4, .6

20 Statlog UCI 270 13 2 .45, .55

21 Page blocks UCI 5473 10 5 .90, .06, .01, .01, .02

22 Phoneme Keel 5404 5 2 .3, .7

3.2 Experiment Results

Results for the first simulation scenario are presented in Table 2 where 7 clas-
sification error rates are shown for ψl with decision boundary set to: x =
poptimal − 3, x = poptimal − 2, x = poptimal − 1, x = poptimal, x = poptimal + 1, x =
poptimal + 2, x = poptimal + 3. After analyzing results in Table 2 it can be seen
that the upper bound for BMC improvement is Bayes error calculated for opti-
mal decision boundary. Higher correction can be obtained for classifier ψl when
decision boundary is farther from the optimal. One should keep in mind, that
this experiment is very simple, but it can prove that BMC works according to
Bayes scheme. Table 3 shows results for base classifiers versus BMC overlay for
benchmark datasest. Classification accuracies were averaged over 5 repetitions of
two–fold cross–validation. We have performed pairwise and multiple comparison
statistical tests. For the first one 5 × 2 CV F-test was applied to indicate which
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Table 2. Classification error rates for the first experiment with synthetic data. Num-
bers: 1, 2, 3 denote generated datasets. Notation used in the first column is as follows:
p - dividing (boundary) point, C - an analytic calculation of the Bayes probability of
error for decision boundary at point x = p, ψl - an average classification error rate for
linear classifier with decision boundary at point x = p, BMC - an average classification
error rate for ψl with applied BMC scheme.

p poptimal − 3 poptimal − 2 poptimal − 1 poptimal poptimal + 1 poptimal + 2 poptimal + 3

1

C 0.384 0.270 0.165 0.125 0.161 0.245 0.339

ψl 0.389 0.271 0.165 0.121 0.153 0.238 0.338

BMC 0.122 0.124 0.158 0.121 0.121 0.122 0.122

2

C 0.291 0.210 0.146 0.122 0.148 0.217 0.308

ψl 0.284 0.208 0.141 0.119 0.145 0.211 0.303

BMC 0.119 0.120 0.120 0.119 0.125 0.120 0.120

3

C 0.184 0.111 0.061 0.044 0.064 0.128 0.227

ψl 0.180 0.108 0.062 0.044 0.062 0.128 0.225

BMC 0.044 0.044 0.044 0.044 0.048 0.044 0.044

algorithm is better. In Table 3 +/ = /− means that the BMC system is sta-
tistically significantly better/no statistically significant difference/statistically
significantly worse, respectively. For assessing the ranks of proposed methods
over all examined benchmarks, we have used Friedman ranking test and after
that the Shaffer post-hoc test to check which of the tested methods are dis-
tinctive among nxn comparisons [7]. The level of p < 0.05 was considered as
statistically significant. From the Friedman ranking test, which checks the over-
all performance on all available datatsets BMC proposal was 5 out of 8 cases
statistically significantly better than a base classifier. Major improvement can
be observed for problems: 1, 5, 8, 9, 13, 14, 15, 17, 18. This indicates that BMC
works better with balanced datasets, while for imbalanced problems application
of a’priori probabilities in BMC decision scheme causes to prefer majority class.
For imbalanced problems such as: 12, 21, 22 BMC does not improve classifier
accuracy. This can be explained by the fact that random sampling from training
set is used to create validation set. In this case, V contains mainly examples from
the majority class. Another important conclusion coming from this experiment
is presented in Fig. 2 which shows a box plot for an exemplary laryngeal data-
base for selected base classifier versus BMC algorithm. It indicates that apart
from improving classification performance also BMC variance between subse-
quent cross-validation sets is decreased.
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Table 3. Classification accuracies (in percentage) for the second experiment using
different base classifiers. For each comparison, the first column presents results for base
classifier trained with the whole training set and the second one contains accuracies
for BMC algorithm. +/ = /− means that the BMC system is statistically significantly
better/no statistically significant difference/statistically significantly worse (p = 0.05).
F stands for Friedman ranking test checking overall performance on all databases.

qdc nmc 6-nn parzen dtc bpxnc-1 bpxnc-2 svm

1 89.6 90.2 = 77.9 90.5 + 68.7 73.3 + 76.4 76.7 + 75.4 75.9 = 55.2 74.3 = 53.3 74.5 = 82.6 83.0 =

2 72.1 86.8 + 74.6 86.0 + 84.1 85.1 = 88.2 88.5 + 81.2 84.3 = 74.5 83.3 = 72.5 86.2 = 85.8 86.6 =

3 75.3 76.6 = 75.8 76.6 = 77.3 76.6 = 76.6 76.6 = 75.2 76.6 = 69.3 76.5 = 76.1 76.6 = 76.0 76.4 +

4 96.0 96.5 = 95.7 96.2 = 96.3 96.2 = 96.5 96.9 + 93.8 95.1 = 80.9 95.7 = 88.7 95.2 = 95.3 96.1 =

5 18.9 94.1 + 95.3 95.1 = 94.6 95.5 + 94.3 94.7 + 93.8 95.3 = 17.2 93.9 + 18.9 94.7 + 93.5 93.9 +

6 7.5 57.0 + 52.0 55.6 = 63.4 62.6 = 59.9 60.6 = 63.5 64.3 = 13.6 50.7 + 22.9 53.7 + 60.2 60.6 =

7 74.8 73.5 = 74.8 73.5 = 72.9 73.5 = 73.4 73.5 = 72.0 73.3 = 73.0 74.0 + 71.0 73.5 = 74.1 73.5 =

8 80.9 81.7 + 81.8 82.2 + 79.7 80.4 = 80.5 80.9 + 82.8 83.2 + 68.1 80.6 = 68.8 80.8 = 82.0 81.3 =

9 94.1 94.5 + 95.6 96.0 + 95.5 95.9 + 96.3 96.7 + 93.5 93.9 + 39.3 90.8 + 31.7 93.1 + 95.6 96.0 +

10 62.3 65.4 = 71.2 68.6 = 71.9 72.6 = 72.4 71.7 = 66.3 69.5 = 43.9 67.6 = 51.7 66.6 = 72.3 72.1 =

11 62.9 71.9 = 74.7 70.9 = 77.7 72.9 = 71.2 69.5 − 70.4 73.2 = 55.5 70.3 = 67.6 70.7 = 75.8 72.2 =

12 73.8 74.8 = 74.4 72.9 = 72.2 73.6 = 73.1 73.1 = 71.0 71.4 = 61.3 67.2 = 64.5 66.8 = 75.3 69.3 −

13 96.6 97.0 + 91.2 91.6 + 89.9 90.3 + 93.0 93.4 + 90.6 91.2 = 65.6 77.7 = 43.6 77.5 + 92.0 88.7 =

14 63.6 72.0 + 53.4 69.1 + 65.4 68.6 + 88.7 88.7 = 61.4 68.5 + 7.4 61.7 + 9.7 62.1 + 56.9 77.6 +

15 62.4 82.2 = 81.3 84.7 = 80.4 84.0 = 82.1 82.8 = 81.1 83.6 = 43.7 77.6 + 45.0 77.8 + 88.5 90.2 =

16 21.6 43.1 + 50.6 53.5 = 54.9 52.3 − 55.1 54.8 = 56.2 55.8 = 26.0 37.7 = 33.6 37.5 = 36.6 42.4 =

17 68.4 84.6 + 71.2 85.5 = 69.5 84.2 + 82.9 83.8 = 68.4 71.5 + 74.3 78.5 + 77.3 81.0 + 85.1 83.9 =

18 62.5 96.8 + 91.7 96.5 + 97.3 97.9 + 98.1 98.5 + 85.2 94.6 + 25.0 97.4 + 28.1 97.5 + 98.5 98.9 +

19 80.4 86.9 + 83.9 85.1 = 87.1 87.5 = 85.0 85.0 = 89.8 89.8 = 71.1 70.4 = 75.3 75.2 = 66.2 70.4 =

20 80.6 82.7 = 86.4 85.0 = 85.7 84.8 = 85.1 84.8 = 82.9 83.3 = 85.2 85.3 = 85.3 85.6 = 81.9 84.4 =

21 83.4 91.4 = 74.5 90.5 + 94.9 90.9 − 94.1 91.5 − 96.6 93.2 = 89.8 89.9 = 89.8 89.9 = 94.6 93.5 =

22 75.9 70.7 − 73.5 70.7 − 84.4 84.4 = 85.5 85.5 = 83.5 83.5 = 74.6 71.1 = 77.0 71.5 − 78.6 70.7 −

F + 10 = 6 = 5 + 6 + 5 + 8 + 7 = 3

qdc BMC 6−nn BMC parzen BMC dtc BMC bpxnc−1 BMC bpxnc−2 BMC svm BMC
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Fig. 2. Box plot for laryngeal dataset for selected base classifier versus BMC algorithm.
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4 Conclusions

In this paper a detailed BMC algorithm construction was presented and vali-
dated. The first experiment confirmed that the upper bound of BMC improve-
ment over base classifier is the Bayes error. This is not very suprising since
BMC works according to Bayes scheme maximizing a’posteriori probabilities for
decision of a base classifier. From three synthetic dataset analysis it is straight-
forward that BMC performance directly depends on the classification quality of
a base classifier ψ. Further experiment on benchmark datasets shows that BMC
can significantly correct base classifier classification, especially for cases where
base classifier is not optimal. Overall performance according to Friedman rank-
ing test indicates that BMC proposal was statistically significantly better 5 out
of 8 different classifiers. Additionally, when analyzing results from each cross-
validation phase, it is clearly visible that BMC decreases classification variance
comparing to its base counterpart results. On the other hand, the main drawback
of BMC involves proper validation set generation. BMC works better with bal-
anced datasets, while for imbalanced problems usage of a’priori probabilities in
BMC design, causes that its decision boundary is moved towards majority class.
To sum up, since BMC provides probabilistic interpretation for a base classi-
fier response for correct and incorrect classification this method can be directly
used in a sequential classification problems, or in MC systems, especially during
classifier fusion. As a future work, we would like to apply BMC for ensemble
construction at both crisp and continuous level of classifier response.
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