
Portable Dynamic Malware Analysis
with an Improved Scalability

and Automatisation

Abdurrahman Pektaş and Tankut Acarman(B)

Computer Engineering Department, Galatasaray University,
Ortaköy, 34349 İstanbul, Turkey

apektas@yandex.com, tacarman@gsu.edu.tr

http://gsu.edu.tr

Abstract. A malware is deployed ubiquitously to steal safety or
liability-critical information and damage the compromised systems. In
this paper, we present a portable, scalable and transparent system for
dynamic analysis of malware targeting Windows OS. The portability fea-
ture is enabled by introducing a driver capable of collecting the behav-
ioural activities of analysed samples in low kernel level and detection of a
new malware in the latest version of Windows OS is guaranteed without
waiting for its signature update. A large volume and variety of malicious
behaviour is monitored and analysed by the presented virtual, scalable
and automated system deployment. End-to-end design is presented and
functional tests of portability feature are conducted by compiling the
developed kernel driver component in the analysis machine. Evaluation
is performed by using recently captured malware samples that are auto-
matically analysed and detected on a Windows 8 Ultimate 64-bit and
Windows 10 OS.

Keywords: Malware · Dynamic analysis · Portability · Detection

1 Introduction

A malicious software, or malware for short, is a software used or created by an
attacker to perform his bad intentions on a computer system without authori-
sation and knowledge of its user. Stealing safety or liability-critical information
and damaging the compromised system is mainly targeted. The recent develop-
ments in the field of computation systems and the proliferation of systems such
as smart phones, tablet, Internet of Things (IoT), cloud computing have led to an
increased interest in malware development. According to [1], more than 430 mil-
lion new malware samples were released in 2015 with an increase of 36% from the
previous year, and a new zero-day vulnerability was discovered at each week on
average with an doubled release frequency in comparison with the previous year.
Security tools compare suspicious files with their malware definition database,

c© Springer International Publishing AG 2018
M. Kurzynski et al. (eds.), Proceedings of the 10th International Conference
on Computer Recognition Systems CORES 2017, Advances in Intelligent
Systems and Computing 578, DOI 10.1007/978-3-319-59162-9 22



212 A. Pektaş and T. Acarman

which are constructed based on known security issues by analysts. Based on
definition database, these tools check whether a given file is malware or not.
For example, anti-viruses running on end-user computers are mainly signature-
based solutions. From an abstract point of view, they read the suspicious file in a
binary format and look for a match with their signature database. According to
[2], anti-virus solutions are fast and effective for known malware but their accu-
racy of analysis and adequacy are easily degraded by slightly changed malware.
Although signature-based solutions are subject to delay on identifying new and
obfuscated version of malware and updating their databases, they are convenient
over previously registered attacks. Subject to an increasing number of sophisti-
cated, advanced, and targeted attacks (a.k.a., advanced persistent threat, APT),
security researchers and practitioners have explored more robust and timely solu-
tions to new and unknown threats. Generally, the security community prefers
sandboxing where malware activities are monitored during their execution in an
isolated and controlled environment. These systems track and inform about file,
registry, network, and process activities. To successfully detect malware and take
appropriate counter measures, dynamic analysis can be considered as an inte-
grated scenario and solution of an environment provided to malware for being
deployed and performing its tasks. CWSandbox leverages API hooking tech-
nique in user mode to track malware’s activities [3]. Once the sample is loaded
into memory, API hooking is performed by in-line code overwriting. The sample
is executed in a suspend mode and then all loaded DLL’s API functions are
overwritten. Hence, CWSandbox collects all called functions and their related
parameters. Then, it generates a high-level report about activities and malware
analyst can quickly follow them. Since it collects data in user mode, low level
operations and undocumented function calls can not be captured. Cuckoo is an
open source analysis system and relies on virtualization technology to run a given
file [4]. It can analyze both executable and non-executable files. These activities
including pre-defined Win API functions and their parameters are monitored
and captured by its user-space API hooking technique. Owing to the fact that
it runs at user level, malware can easily notice presence of the analysis attempt
causing to change its behaviour. Capture-BAT is another dynamic analysis tool
developed by New Zealand chapter of honeynet.org [5]. Capture-BAT monitors
process, registry, and file activities at kernel level, and it captures network traf-
fic using winpcap library. Furthermore, it offers selection of events through its
filtering interface that can be used by the analyst to prevent noisy events to
be captured. Since Capture-BAT is not an automated malware analysis system,
serious concerns exist on whether it can efficiently handle the high penetration of
new and existing malware. To the best of our knowledge, dynamic analysis sys-
tems still use old versions of Windows OS, for instance Cuckoo merely employs
Windows XP and 7, as an underlying analysis environment. However, computer
owners generally prefer to upgrade their OS to the newest version. Therefore,
existing systems may fail at analysing malware targeting new versions of Win-
dows OS. Reliability and availability of malware analysis scheme may be a major
concern subject to the release of new Windows OS version. Consequently, the

https://www.honeynet.org/


Portable Dynamic Malware Analysis 213

next generation of dynamic malware analysis solutions should be adaptable to
the future versions of OS. This chapter is an extended version of [6]. In this
chapter, kernel callback mechanism is integrated which allows detailed view of
run-time events based on defined conditions on a system basis and new mal-
ware samples with their targeted features are elaborated and evaluation study
is enriched. This chapter is organized as follows: The implementation details of
VirMon components and their functionalities are elaborated in Sect. 2. In Sect. 3,
two real-world malware samples captured in the wild are used to illustrate the
effectiveness and analysis results about monitoring the malware activities. Some
conclusions are given in Sect. 4.

2 Design of VirMon: System Components
and Functionalities

Analysis machine components include mini-filter driver and driver manager.
They are responsible for reporting host-based process, registry, and file system
activities performed by the analysed file, see Fig. 1. Activities of the process (or
processes) initiated by that executable and (if any) child process (i.e., additional

Fig. 1. Overview of the analysis machine components (e.g., filter drivers)



214 A. Pektaş and T. Acarman

process created by some of these processes) are monitored by means of the ker-
nel callback functions being embedded in kernel driver. API hooking is one of
the preferred methods for dynamic malware analysis. We use kernel callback
mechanism, which provides detailed view of run-time events based on defined
conditions on a system basis [7]. To be able to use callbacks, a kernel driver
needs to be built. Basically, this driver, also known as mini-filter driver, inter-
cepts all IRP requests made by an application and decides whether allowing or
refusing these operations according to the given rule set. The portability is fol-
lowed by the claim of Microsoft, which states that kernel-callback mechanism is
reliable and compatible with all versions of Windows including their 64 bit ver-
sions. Malware creates new process or changes an existing one in order to run its
actions without being detected. To obtain the information about run-time events
provided by the callback mechanism, related functions need to be called with
their relevant parameters. For process monitoring, the “PsSetCreateProcessNo-
tifyRoutine” function allows the mini-filter driver to monitor changes applied to
the running processes. Many malware uses Windows registry to gain persistent
access to the system. Attackers can use these registry keys to gain authority over
the OS and persistent access to it. When an event is occurred on the registry,
“CmRegisterCallback” function can provide related information to the mini-
filter driver. To track registry events, one needs to identify which actions to
be monitored in the driver via some self-explanatory constant values (e.g., Reg-
NtPostCreateKey, RegNtPreDeleteKey, RegNtEnumerateKey). In VirMon, reg-
istry operations about OpenKey, CreateKey, DeleteKey, SetValueKey, DeleteVal-
ueKey, QueryValueKey and EnumerateKey are monitored. Malware copies itself
or its variants to various locations in the file system and then adds a registry key
to start automatically while booting. “FltRegisterFilter” function along with its
callback actions can be used to monitor file system activities on the system. Like
registry monitoring, the actions to be tracked have to be addressed in the driver
accompanied by some constant values (e.g., IRP MJ WRITE, IRP MJ READ,
IRP MJ QUERY INFORMATION). In VirMon, to avoid redundant and dis-
tracting file operations, we consider only read, write, and delete events performed
by the tracked processes. Network components are responsible for reporting net-
work activities of the analysed file. Malware needs to connect very often to
the C&C servers to send confidential information collected from compromised
machines or to receive C&C servers’ commands. This bi-directional commu-
nication makes analysis of the network activities of malware as an inevitable
requirement to be fulfilled by malware researchers. In VirMon, we use different
network solutions, such as VLAN, VPN, IPDS, and firewall to monitor network
activities of suspicious files. Intrusion Prevention and Detection System (IPDS)
is a network security solution monitoring network traffic and system activities
[8]. In VirMon, an IPDS is introduced to prevent possible networks attacks
caused by suspicious files in the system. This secure scheme fulfils the analysis
requirement of the malware analyzer by giving an opportunity to acquire all
network events including the requested web pages, downloaded files by malware.
Suricata, an open source IPDS solution, can prevent malicious attacks such as
distributed denial of service (DDoS), port scanning and shell codes [9]. It can



Portable Dynamic Malware Analysis 215

also extract files and HTTP requests from live network traffic. In order to cir-
cumvent network attacks caused by malware sample under dynamic analysis, we
use Suricata as one of the IPDS component. Bro [10] is different from the typical
IPDS since it can not block the attacks and does not rely on network signatures
but it enables monitoring all network traffic. It supports well-known network
protocols, extracts related information from network packets and exposes net-
work activities at high-level [11]. In the hierarchy of VirMon, Bro runs on IPDS
server and reads network interface. To extract files from live network traffic,
a custom script compatible with HTTP, FTP, IRC, SMTP protocol is created.
The developed script logs hostname, URL, filename, file type, and transport layer
information (e.g., IPs and ports) to a file which is parsed periodically for storing
these information in database. Meanwhile, if the files extracted by Bro Engine
have not already been dissected beforehand, they are queued into application
server’s priority queue. The open source Oracle Virtual-Box [12] is chosen as the
virtualization infrastructure to host and to deploy malware analysis machines.
Virtual-Box supports both 32 and 64 bit CPU. Virtual-Box also provides acces-
sibility features such as remote machine management, display of multiple remote
machines via web interface, and offers command-line interface (VBoxManage)
for automated tasks. The application server is responsible for the management
of the malware analysis processes. It assigns an analysis machine to the submit-
ted file. It collects the file activities from analysis system components. Then, it
formats the collected data and stores them in a database. After the analysis oper-
ations are completed, the application server commands the analysis machines to
be restored to a clean state.

3 Evaluation

The procedure followed by VirMon to analyze a submitted file, and the inter-
action between the application server and the analysis machine is plotted in
Fig. 2:

Fig. 2. Information flow and interactions between application server and analysis
machine



216 A. Pektaş and T. Acarman

– Analysis application sends a request to the application server to start a new
analysis process.

– The application server chooses a file in its priority queue and sends it to a
analysis machine.

– The analysis application injects codes into explorer.exe process. This process
executes submitted file in the suspended mode and then explorer.exe writes
PID of this recently created process to a shared memory. Subsequently, the
analysis application reads PID info from the shared memory, sends a message
involving this information to the driver and a request about recording the
events initiated by this process.

– The analysis application waits until the analysed process exits or a timeout of
3 min occurs. Then, it sends a message to the driver to stop recording events.

– The driver stops recording and writes collected events to a log file.
– The analysis application sends the log file to the application server for parsing.
– The application server parses the log file and stores it in the database. Finally,

it reverts the analysis machine to the clean state.

We analyze a trojan, named as Hesperbot [13] detected on August, 2014. This
trojan is focused on stealing banking account information to be used towards
unauthorized money transfers. The attackers social engineer victims to execute
attached files by sending e-mail which looks like it is originated from one of the
service providers in Turkey. The analysis of hesperbot is executed automatically
on a Windows 8 Ultimate 64-bit OS. Since the number of events including system
dll file and registry accesses gathered from VirMon for this malware is too high
(10000+), only important events occurred on the system are displayed in Table 1.
The intention of the malware sample can be easily derived from this table. When
the sample is executed, the process created by explorer.exe creates a new process
entitled “fatura 874217.exe” having the same name in its directory. In Turkish,
“fatura” means “the bill”. This technique, named as process hollowing, [14,15],
has been recently used by malware to hide itself. Then, the process created by
explorer.exe terminates itself. The fatura 874217.exe process created by hollow-
ing technique, creates %APPDATA%\Sun and %APPDATA%\yseszpkf direc-
tories and drop randomly named binary files under them. To be hidden, the
fatura 874217.exe process creates new explorer.exe, which in turn is used to
carry out remaining activities, download configuration files from C&C server,
drop new executable and writes it to the auto-start line in the registry, respec-
tively. This analysis shows that the VirMon dynamic malware analysis system
successfully collects the run-time behaviours of the file sample.

3.1 VirMon Compatibility on Windows 10

In order to show that VirMon (e.g., its mini-filter driver) is adaptable to the
newest version of Windows OS, we conducted functional testing of developed
mini-filter driver on Windows 10. This test is based on the analysis results of
the recent malware sample, known as cyrptolocker, a variant of ransomware, that
encrypts sensitive documents on the infected machine and forces to pay a ransom



Portable Dynamic Malware Analysis 217

T
a
b
le

1
.
Im

p
o
rt

a
n
t

ru
n
-t

im
e

a
ct

iv
it

ie
s

o
f
a

tr
o
ja

n

T
im

e
E
v
en

t
P
ro
ce
ss

D
et
a
il

2
6
/
0
8
/
2
0
1
4
2
:4
8
:4
4
.4
2
3
C
re
a
te

P
ro
ce
ss

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
fa
tu

ra
8
7
4
2
1
7
.e
x
e
(a
n
a
ly
se
d
sa
m
p
le
)

M
D
5
:1
8
6
C
0
9
7
B
9
D
8
5
B
3
5
0
1
E
F
C
C
4
D
8
D
3
7
4
A
F
E
1

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
5
.7
9
0
C
re
a
te

P
ro
ce
ss

%
D
es
k
to
p
%
\fa

tu
ra

8
7
4
2
1
7
.e
x
e
(a
n
a
ly
ze
d
sa
m
p
le
)

fa
tu

ra
8
7
4
2
1
7
.e
x
e
(a
n
a
ly
ze
d
sa
m
p
le
)

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
5
.9
2
0
T
er
m
in
a
te

P
ro
ce
ss

fa
tu

ra
8
7
4
2
1
7
.e
x
e
(a
n
a
ly
ze
d
sa
m
p
le
)

-

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
6
.2
6
4
C
re
a
te

F
o
ld
er

fa
tu

ra
8
7
4
2
1
7
.e
x
e

%
A
P
P
D
A
T
A
%
\y

se
sz
p
k
f

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
6
.2
6
9
C
re
a
te

F
o
ld
er

fa
tu

ra
8
7
4
2
1
7
.e
x
e

%
A
P
P
D
A
T
A
%
\S

u
n

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
6
.4
6
8
C
re
a
te

F
il
e

fa
tu

ra
8
7
4
2
1
7
.e
x
e

%
A
P
P
D
A
T
A
%
\y

se
sz
p
k
f\y

q
o
le
ty
z.
d
a
t

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
6
.6
8
7
C
re
a
te

F
il
e

fa
tu

ra
8
7
4
2
1
7
.e
x
e

%
A
P
P
D
A
T
A
%
\S

u
n
\y

q
o
le
ty
z.
b
k
p

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
7
.2
9
9
C
re
a
te

P
ro
ce
ss

%
D
es
k
to
p
%
\fa

tu
ra

8
7
4
2
1
7
.e
x
e
(a
n
a
ly
ze
d
sa
m
p
le
)

C
:\W

IN
D
O
W

S
\s
y
st
em

3
2
\a

tt
ri
b
.e
x
e

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
7
.3
0
1
T
er
m
in
a
te

P
ro
ce
ss

%
D
es
k
to
p
%
\fa

tu
ra

8
7
4
2
1
7
.e
x
e
(a
n
a
ly
ze
d
sa
m
p
le
)

-

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
7
.5
4
2
C
re
a
te

P
ro
ce
ss

C
:\W

IN
D
O
W

S
\s
y
st
em

3
2
\a

tt
ri
b
.e
x
e

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
7
.8
8
2
T
er
m
in
a
te

P
ro
ce
ss

C
:\W

IN
D
O
W

S
\s
y
st
em

3
2
\a

tt
ri
b
.e
x
e

-

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
8
.0
6
3
D
N
S
Q
u
er
y

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
fo
ll
o
w
tw

ee
te
rt
a
g
.c
o
m

2
6
/
0
8
/
2
0
1
4
2
:4
8
:5
9
.2
7
2
S
en

d
D
a
ta

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
h
tt
p
s:
/
/
fo
ll
o
w
tw

ee
te
rt
a
g
.c
o
m

(p
o
ss
ib
ly

d
o
w
n
lo
a
d
co

n
fi
g
fi
le
s)

2
6
/
0
8
/
2
0
1
4
2
:4
9
:0
1
.1
2
0
C
re
a
te

F
il
e

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
“
y
q
o
m
sw

o
c.
b
k
p
,
a
ju
k
iv
eq

.b
k
p
,
y
q
o
le
ty
z.
b
k
p
u
n
d
er

%
A
P
P
D
A
T
A
%
\S

u
n
”

2
6
/
0
8
/
2
0
1
4
2
:4
9
:0
1
.7
1
5
C
re
a
te

F
il
e

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
“
a
ju
k
iv
eq

.d
a
t,

cf
o
v
p
d
iq
.d
a
t,

o
q
u
th

m
jk
.d
a
t,

y
q
o
le
ty
z.
d
a
t,

y
q
o
m
sw

o
c.
d
a
t
u
n
d
er

%
A
P
P
D
A
T
A
%
\y

se
sz
p
k
f”

2
6
/
0
8
/
2
0
1
4
2
:4
9
:0
2
.0
1
2
C
re
a
te

F
il
e

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
C
:\w

in
d
o
w
s\
es
em

\o
h
o
tu

zu
f.
ex

e
(M

D
5
:

D
0
8
2
B
6
A
D
2
F
2
4
0
4
0
E
6
D
6
5
1
D
2
7
1
8
2
3
D
5
1
C
)

2
6
/
0
8
/
2
0
1
4
2
:4
9
:0
2
.1
1
4
C
re
a
te

R
eg

K
ey

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
H
K
L
M
\S

O
F
T
W
A
R
E
\M

ic
ro
so
ft
\W

in
d
o
w
s\

C
u
rr
en

tV
er
si
o
n
\R

u
n
\q

zo
fp
b
u
k
=
C
:\w

in
d
o
w
s\

es
em

\o
h
o
tu

zu
f.
ex

e

2
6
/
0
8
/
2
0
1
4
2
:4
9
:0
2
.3
4
5
S
en

d
D
a
ta

C
:\W

in
d
o
w
s\
ex

p
lo
re
r.
ex

e
h
tt
p
s:
/
/
w
eb

is
le
m
x
.c
o
m

(f
o
r
fu
rt
h
er

co
m
m
a
n
d
s)

https://followtweetertag.com
https://followtweetertag.com
https://webislemx.com


218 A. Pektaş and T. Acarman
T
a
b
le

2
.
R

u
n
-t

im
e

a
ct

iv
it

ie
s

o
f
th

e
cy

rp
to

lo
ck

er
o
n

W
in

d
ow

s
1
0

T
im

e
E
v
e
n
t

P
ro

c
e
ss

D
e
ta

il

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
3
.4
7
8

C
re

a
te

P
ro

c
e
ss

C
:\
W

in
d
o
w
s\

e
x
p
lo
re

r.
e
x
e

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e
(M

D
5
:

7
6
3
8
7
0
7
5
C
9
0
5
3
3
A
A
D
1
4
E
8
2
A
5
D
9
4
E
8
4
8
6
)

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
3
.6
7
8

C
re

a
te

P
ro

c
e
ss

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
3
.7
5
5

T
e
rm

in
a
te

P
ro

c
e
ss

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

-

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
3
.9
6
4

C
re

a
te

F
o
ld

e
r

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

%
A
P
P
D
A
T
A
%
\y

ti
v
y
te

q
y
fy

p
e
q
u
s

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
3
.9
7
3

C
re

a
te

F
il
e

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

%
A
P
P
D
A
T
A
%
\y

ti
v
y
te

q
y
fy

p
e
q
u
s\

0
1
0
0
0
0
0
0

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
4
.0
5
5

C
re

a
te

P
ro

c
e
ss

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
4
.8
8
8

T
e
rm

in
a
te

P
ro

c
e
ss

%
D
E
S
K
T
O
P
%
\f

a
tu

ra
8
9
2
7
3
8
1
0
5
.e
x
e

-

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
4
.9
0
6

C
re

a
te

F
il
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

%
W

IN
D
O
W

S
%

\w
h
d
h
u
fe
l.
e
x
e
(M

D
5
:

7
6
3
8
7
0
7
5
C
9
0
5
3
3
A
A
D
1
4
E
8
2
A
5
D
9
4
E
8
4
8
6
)

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
4
.9
2
5

C
re

a
te

R
e
g

K
e
y

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

H
K
L
M

\S
O
F
T
W

A
R
E
\M

ic
ro

so
ft
\W

in
d
o
w
s\

C
u
rr
e
n
tV

e
rs
io
n
\R

u
n
\

e
b
o
ti
g
o
b
=
%

W
IN

D
O
W

S
%

\w
h
d
h
u
fe
l.
e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
5
.1
6
2

C
re

a
te

F
il
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

%
A
P
P
D
A
T
A
%
\M

ic
ro

so
ft
\A

d
d
re

ss
B
o
o
k

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
5
.1
6
2

C
re

a
te

P
ro

c
e
ss

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

%
S
Y
S
T
E
M

%
\v

ss
a
d
m
in

.e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
5
.1
9
8

C
re

a
te

F
il
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

%
A
P
P
D
A
T
A
%
\M

ic
ro

so
ft
\A

d
d
re

ss
B
o
o
k
\u

se
r.
w
a
b

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
5
.5
0
8

T
e
rm

in
a
te

P
ro

c
e
ss

%
S
Y
S
T
E
M

%
\v

ss
a
d
m
in

.e
x
e

-

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
9
.0
6
6

C
re

a
te

F
il
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

“
0
2
0
0
0
0
0
0
,
0
3
0
0
0
0
0
0
,
0
4
0
0
0
0
0
0
,
0
5
0
0
0
0
0
0

u
n
d
e
r

%
A
P
P
D
A
T
A
%
\y

ti
v
y
te

q
y
fy

p
e
q
u
s\

”

2
9
/
1
1
/
2
0
1
4

1
6
:1
5
:5
9
.4
6
6

D
N
S

Q
u
e
ry

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

IT
-N

E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

4
:1
5
:5
9
.7
8
6

Q
u
e
ry

D
ir
e
c
to

ry
%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

C
:\
*

2
9
/
1
1
/
2
0
1
4

4
:1
5
:5
9
.9
0
0

C
re

a
te

F
il
e

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

S
ta

rt
to

e
n
c
ry

p
t
a
ll

fi
le
s
lo
c
a
te

d
u
n
d
e
r
C
:\
*

2
9
/
1
1
/
2
0
1
4

1
6
:1
6
:0
0
.0
6
8

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

1
6
:1
6
:0
1
.9
5
1

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

1
6
:1
6
:0
2
.8
5
9

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

1
6
:1
7
:2
3
.5
6
4

C
re

a
te

P
ro

c
e
ss

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

C
:\
P
ro

g
ra

m
F
il
e
s\

In
te

rn
e
t
E
x
p
lo
re

r\
ie
x
p
lo
re

.e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
7
:2
4
.8
6
3

C
re

a
te

P
ro

c
e
ss

C
:\
P
ro

g
ra

m
F
il
e
s\

In
te

rn
e
t
E
x
p
lo
re

r\
ie
x
p
lo
re

.e
x
e

C
:\
P
ro

g
ra

m
F
il
e
s\

In
te

rn
e
t
E
x
p
lo
re

r\
ie
x
p
lo
re

.e
x
e

2
9
/
1
1
/
2
0
1
4

1
6
:1
7
:2
6
.9
3
3

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

1
6
:1
7
:2
7
.1
8
6

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

2
9
/
1
1
/
2
0
1
4

1
6
:1
7
:2
7
.1
8
6

S
e
n
d

D
a
ta

%
W

IN
D
O
W

S
%

\e
x
p
lo
re

r.
e
x
e

h
tt
p
s:
/
/
IT

-
N
E
W

S
B
L
O
G
.R

U

https://IT-NEWSBLOG.RU
https://IT-NEWSBLOG.RU
https://IT-NEWSBLOG.RU
https://IT-NEWSBLOG.RU
https://IT-NEWSBLOG.RU
https://IT-NEWSBLOG.RU


Portable Dynamic Malware Analysis 219

to make them usable again. Since other system components of VirMon work
independently, it has been sufficient to install the developed mini-filter driver
into the analysis machine to integrate new OS. Accordingly, we successfully
installed VirMon’s mini-filter driver on Windows 10 without any need to modify
or build driver’s code. Table 2 shows the summarised run-time activities of the
cyrptolocker still observed by VirMon during its analysis. Cyrptolocker malware
sample (see [16]) was active in the wild and a signature has not yet been created
at the time of writing this paper. This malware’s activities show that it uses the
process hollowing technique as in the previously analyzed sample (i.e., hesperbot
sample). Then, it probably searches specific file types under C:\drive to encrypt
and makes them unusable unless one does not have the description key. It sends
some information to its C&C server and asks ransom from its victim user.

4 Conclusions

In this paper, the virtualization-based dynamic malware analysis system and
its components is presented. A mini-filter driver is built to monitor run-time
activities of the file to be analyzed. Since kernel-callback scheme is reliable and
compatible with all versions of Windows OS, analysis machine can support all
Windows OS versions. In addition to its portability feature, the design supports
virtualization and scalability, for instance the average rate of analysis can be
adjusted by the virtualization approach. Two recent malware samples captured
in the wild are analyzed to illustrate the portability feature and analysis suc-
cess of the presented dynamic analysis system. The activities of the analyzed
samples are extracted accurately and details of each activity are given with the
timestamp, event and process description, which enhances readability of the
analysis.

Acknowledgements. The authors gratefully acknowledge the support of Galatasaray
University, scientific research support program under grant #16.401.004.

References

1. Internet Security Threat Report (2016). Symantec: https://www.symantec.com/
content/dam/symantec/docs/reports/istr-21-2016-en.pdf. Accessed 15 June 2016

2. Sukwong, O., Kim, H., Hoe, J.: Commercial antivirus software effectiveness: an
empirical study. Computer 44, 63–70 (2011)

3. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Secur. Priv. 5, 32–39 (2007)

4. Cuckoo Foundation, Cuckoo Sandbox. http://www.cuckoosandbox.org/. Accessed
1 June 2016

5. Seiferta, C., Steensona, R., Welcha, I., Komisarczuka, P., Endicott-Popovskyb, B.:
A behavioral analysis tool for applications and documents. Digit. Invest. Int. J.
Digit. Forensics Incident Response 4, 23–30 (2007)

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://www.cuckoosandbox.org/


220 A. Pektaş and T. Acarman

6. Tirli, H., Pektaş, A., Falcone, Y., Erdogan, N.: Virmon: a virtualization-based
automated dynamic malware analysis system. In: The Proceedings of the 6th Inter-
national Information Security & Cryptology Conference, Istanbul, Turkey, pp. 1–6
(2013)

7. Microsoft Corporation, Writing Preoperation and Postoperation Callback Rou-
tines. https://msdn.microsoft.com/windows/hardware/drivers/ifs/writing-preope
ration-and-postoperation-callback-routines. Accessed 1 Mar 2013

8. Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion detection: a survey. Massive
Comput. 5, 19–78 (2005)

9. Open Information Security Foundation, Suricata IDS. http://suricata-ids.org/.
Accessed 1 Jan 2012

10. Bro Project, The Bro Network Security Monitor. http://www.bro.org/. Accessed
15 Feb 2014

11. Chen, B., Lee, J., Wu, A.S.: Active event correlation in Bro IDS to detect
multi-stage attacks. In: The Fourth IEEE International Workshop on Information
Assurance (2006)

12. Oracle, Oracle VM Virtual Box. https://www.virtualbox.org
13. Hesperbot malware sample: Google Corp., Antivirus scan results for 186c097b

9d85b3501efcc4d8d374afe1. https://www.virustotal.com/en/file/a34f954ffb49f5c0
b8f42376e062971284c9bec864e1d90a7e8d2910ae7c2077/analysis/

14. White, A.: Identifying the unknown in user space memory. Institute for Future
Environments Science and Engineering, Faculty Queensland University of Tech-
nology, pp. 138–140 (2013)

15. Ligh, M.H., Adair, S., Hartstein, B., Richard, M.: Malware Analyst’s Cookbook
and DVD: Tools and Techniques for Fighting Malicious Code. Wiley Publishing
Inc, Indianapolis (2011)

16. Cyrptolocker malware sample: Google Corp., Antivirus scan results for 76387075c
90533aad14e82a5d94e8486. https://www.virustotal.com/en/file/09fe21dd9561603
217cc8b419f01c7996b1440aa3e64967f136e38e7f306d625/analysis/

https://msdn.microsoft.com/windows/hardware/drivers/ifs/writing-preoperation-and-postoperation-callback-routines
https://msdn.microsoft.com/windows/hardware/drivers/ifs/writing-preoperation-and-postoperation-callback-routines
http://suricata-ids.org/
http://www.bro.org/
https://www.virtualbox.org
https://www.virustotal.com/en/file/a34f954ffb49f5c0b8f42376e062971284c9bec864e1d90a7e8d2910ae7c2077/analysis/
https://www.virustotal.com/en/file/a34f954ffb49f5c0b8f42376e062971284c9bec864e1d90a7e8d2910ae7c2077/analysis/
https://www.virustotal.com/en/file/09fe21dd9561603217cc8b419f01c7996b1440aa3e64967f136e38e7f306d625/analysis/
https://www.virustotal.com/en/file/09fe21dd9561603217cc8b419f01c7996b1440aa3e64967f136e38e7f306d625/analysis/

	Portable Dynamic Malware Analysis with an Improved Scalability and Automatisation
	1 Introduction
	2 Design of VirMon: System Components and Functionalities
	3 Evaluation
	3.1 VirMon Compatibility on Windows 10

	4 Conclusions
	References


