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Abstract. Feature-based learning plays a crucial role at building and
sustaining the security. Determination of a software based on its
extracted features whether a benign or malign process, and particularly
classification into a correct malware family improves the security of the
operating system and protects critical user’s information. In this paper,
we present a novel hybrid feature-based classification system for Android
malware samples. Static features such as permissions requested by mobile
applications, hidden payload, and dynamic features such as API calls,
installed services, network connections are extracted for classification.
We apply machine learning and evaluate the level in classification accu-
racy of different classifiers by extracting Android malware features using
a fairly large set of 3339 samples belonging to 20 malware families. The
evaluation study has been scalable with 5 guest machines and took 8 days
of processing. The testing accuracy is reached at 92%.
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1 Introduction

Mobile is rising with all aspects including high-end phones and tablets with pow-
erful processors and Internet high-bandwidth connectivity. From the perspective
of end users, mobile applications and services request different authorisations for
access to a set of resources like database, preference, files in Android operating
system (OS). In consequence, a malware may be deployed to perform malicious
activities while using the privileges granted by Android OS. Android market
share was 83,3% and 1.4 billion Android smartphones were sold in 2015, [16].
The growing market in smartphones and diversity in mobile applications has lead
to smartphones becoming attractive target for online criminals. Again in 2015,
3.3 million applications were identified as malware targeting to steal valuable
personal information. Malware writers can simply release variant of a malware
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by using obfuscation techniques. But since malware features are unique and vari-
ant of a malware belongs to a specific class, learning based malware classification
subject to a large volume of samples is crucial for enhancing the OS security and
protecting safety-critical user’s information. A large variety of information-rich
features is used for accurate classification of a malware sample and depending on
the variety and volume of a sample set, different feature extraction and learning,
decision algorithms are studied. A survey on Android security is presented in
[7]. Although signature based security solutions, or namely static analysis based
methods, are vulnerable to obfuscation, behavior based and dynamic analysis
solutions are more reliable and accurate at detection and classification of a mal-
ware variant. In [6], N-gram searching over the static code of malware samples
is used to create a classifier and a learning database is developed to determine
whether an application is a malware or benign. In [12] system functions such as
API calls and permissions are discovered by static analysis from applications’
profile and then, classification of a sample into a malware or goodware is evalu-
ated with a set of 1200 malware and 1200 benign samples. Permissions and events
requested by Android applications are monitored, clustering and classification
by K-means algorithm and a decision tree learning algorithm is studied with a
set 500 sample Android applications in [4]. One-Class Support Vector Machine
is trained by using the extracted permissions and a control flow graph of the
input applications in [13]. The One-Class Support Vector Machine was adequate
to reach at the level 80% in accuracy due to a larger set of 2081 benign sample
in comparison to 91 malicious Android applications used for training. A set of
1000 malware samples belonging to 49 families and 1000 benign applications
is statically analysed in [10]. Then, the Bayesian-based classifier is developed
by using the features extracted from this set of known malware and benign
Android applications. In [15], text mining and information retrieval is applied
to a dataset of Android OS malware families for discovering similarity between
those samples and an automated system is deployed to classify malware samples.
In [17], a platform deployment and testing is presented. The API calls and event
flows of users are collected and 15 types of features are extracted. Support Vector
Machine (SVM), Decision Tree (DTree) and Random Forest algorithm is applied
for classification of 666 Android applications. In our study, we apply machine
learning and evaluate the level in classification accuracy of different classifiers
by using the extracted Android malware features from 20 malware families with
a fairly large set of 3339 samples. The analysis platform is scalable with 5 guest
machines and analysis study took 8 days of processing. The testing accuracy is
reached at 92%. The paper is organized as follows: In Sect. 2, we propose a novel
hybrid feature-based classification system for Android malware. In Sect. 3, we
define the dataset, malware families and features. Then, we apply and evaluate
online machine learning algorithm to classify malware samples subject to given
performance metrics. Finally, some conclusions are given.
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2 Methodology

In this section, we propose a novel hybrid feature-based, i.e., static and dynamic
features, classification system for Android malware. The proposed system consid-
ers static features, including permissions, contains embedded APK and hidden
payload, etc. and dynamic features, including APIT calls, installed services, net-
work connections to model android applications. The proposed methodology, as
shown in Fig. 1, consists of five major steps. The first step is dynamic analysis
of Android malware samples by Cuckoo Framework. In this step, cuckoo run
samples on a virtualized environment and report their activities and some static
features of the samples for example, requested permission list extracted from
AndroidManifest.xml file in APK file. The second step consists of extracting
appropriate features from analysis reports. In this step, we also choose some
text-based features to characterize application such as methods (API calls),
permissions and HTTP connections. The entire feature set is given in Table 1.
Since these features need to be pre-processed before the stage of machine learn-
ing, the bag of words approach is used along with normalizing features by
the means of Tf-idf transformer. After this pre-processing stage, textual fea-
tures are represented with sparse matrix. In the next step, feature selection
is applied on sparse matrix. We use a meta-transformer (specifically Select-
FromModel in scikit-learn) along with Extra Trees Classifier [8] to select the
best subset of features from the malware dataset. As a result of this process,
each application is represented as feature matrix and a class label indicating
Android application family. The fourth part includes the building classifica-
tion model based on feature set. As Android applications are vectorised into
a sparse matrix, one can simply feed this matrix into any machine learning algo-
rithm to derive classification model. However, in our experiments, we examine
three classification methods, which are more suitable to high dimensional fea-
ture space, including Logistic Regression, Naive Bayes and meta-classifier Ran-
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Fig. 1. Overview of the proposed methodology
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Table 1. Features and their types for malware with MD5 value equals f6b60dfdab6558
€2610e92972573d0c8

Feature category Type Value

installed service count Integer |5

fingerprint String | getSimCountrylso, getDeviceld,
getSimOperatorName, getLinelNumber

methods String | isVisibleToUser, getFrameTime,
performAction, ...

permissions String | Internet, Access_Network_State,
Read_Phone_State, Get_Account

HTTP connections String | http://d.applovin.com
http://houseads.eu

send_sms Boolean | False

receive_sms Boolean | False

read_sms Boolean | False

call_phone Boolean | False

app_execute_shell_commands Boolean | True

app-queried_account_info Boolean | True

app-queried_installed _apps Boolean | False

app_queried_phone_number Boolean | True

app-queried_private_info Boolean | False

app-recording_audio Boolean | False

app-registered_receiver _runtime | Boolean | True

app-uses_location Boolean | False
embedded_apk Boolean | False
is_dynamic_code Boolean | True
hidden_payload Boolean | False
is_native_code Boolean | False
is_reflection_code Boolean | True

dom Forest Classification. In Sect. 3, we briefly describe these algorithms and
elaborate the performance metrics, then plot confusion matrix for better illus-
tration of levels in class-wise classification accuracy.

3 Experiments

In this section, we elaborate the prediction accuracy of algorithms subject to
the feature set. Our aim is to demonstrate that combining static and dynamic
features of Android application can improve classification accuracy. For this
purpose, we evaluate our approach on real world malware samples. Classification
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experiments are carried out on a 2.5GHz Intel 4-Core i-7 processor with 8GB
physical memory, using scikit learn [1,11] and MS Windows 10.

3.1 Dataset

The benchmark malware dataset is obtained from “VirusShare Malware Sharing
Platform” [2]. This platform provides up-to-date malware samples from vari-
ous types including windows executable (exe, dll), javascript, Android samples
(APK), Java, PDF. The Ubuntu 16.04 desktop operating system installed on a
hardware Intel(R) Core(TM) i5-2410M@2.30 GHz processor and 2 GB of mem-
ory is used to conduct the experimental study. The analysis was scalable with
5 guest machines and took 8 days of processing 3339 samples. To label malware
samples, Virustotal as an online web-based multi anti-virus scanner is used [3].
The malware classes and class-specific measures are written in Table 2.

Table 2. Malware families and their class-specific measures

Class Code | Count | Precision | Recall | F1-score
android.adware.adwo 0 97 0.75 0.82 |0.78
android.adware.appquanta 1 70 1.00 0.67 10.80
android.adware.dowgin 2 867 0.86 0.99 10.92
android.adware.gingermaster | 3 89 0.83 0.62 |0.71
android.adware.kuguo 4 63 1.00 0.25 10.40
android.adware.plankton 5 42 1.00 1.00 |1.00
android.adware.utchi 6 45 1.00 1.00 |1.00
android.adware.wapsx 7 127 0.75 0.82 0.78
android.adware.youmi 8 125 0.86 0.75 10.80
android.exploit.gingerbreak |9 37 0.50 1.00 ]0.67
android.exploit.psn 10 41 0.00 0.00 /0.00
android.riskware.agent 11 93 0.50 0.10 |0.17
android.riskware.smspay 12 311 0.82 0.88 10.85
android.riskware.smsreg 13 133 0.73 047 10.57
android.trojan.agent 14 84 0.70 0.78 10.74
android.trojan.clicker 15 50 1.00 1.00 |1.00
android.trojan.fakeinst 16 207 0.96 1.00 |0.98
android.trojan.smskey 17 75 0.67 0.33 10.44
android.trojan.smssend 18 81 0.88 0.70 ]0.78
trojan.java.smssend 19 702 0.81 1.00 ]0.90
Average 0.82 0.84 10.81




196 A. Pektag and T. Acarman

3.2 Evaluation Metrics

The proposed classification method is evaluated by using the following met-
rics: precision, recall (a.k.a. sensitivity), F1-score, classification accuracy
(the overall correctness of the model). In binary classification (positive and nega-
tive classes), true positives (¢p) refer to the correctly predicted positive samples,
while true negatives (tn) are the number of the correctly predicted negative
samples. False positives (fp) refer to the incorrectly classified positive samples.
Similarly, false negatives (fn) are the number of incorrectly classified negative
samples. On one hand, the terms positive and negative denote the classifier’s
success, on the other hand true and false determines whether or not the pre-
diction is matched with the actual (i.e., ground truth) label. The precision is
the proportion of the sum of true positives versus the sum of positive instances.
For instance, it is the probability for a positive sample to be classified correctly.
The recall is the proportion of instances that are predicted positive and are also
actually positive (i.e., tp) of all the instances that are positive. The Fl-score,
also known as F-measure or F-score, is the weighted harmonic mean of the pre-
cision and recall. F1-score reaches at its best value 1 and the worst score at 0.
In binary classification problem, the precision and recall contribute equally to
F1-score. However, in the multi-class problems, overall F1-score is calculated by
taking the weighted mean of the F1-score of each class. The F-score is a popular
measure used in the natural language processing tasks. The metrics are given as
follows:

. ip
precision = (1)
tp + fp
ip
recall = 2
tp + fn 2)

precision X recall
F1 — score =2 x

precison + recall

correctly classified instances

accuracy = _
total number of instances

3.3 Classification Methods

We evaluate different classifiers, including logistic regression, naive bayes, random
forest. The objective is to assess whether combining static and dynamic feature
can provide sufficient information in describing Android application. Addition-
ally, we also aim to determine the best classification method in terms of clas-
sification accuracy. In machine learning, multinomial Logistic Regression algo-
rithm ([14,18]) is a classification technique that learns and fits the data based on
logit function (or logistic curve). In order words, multinomial logistic regression
is aimed to predict the outcomes of a multi-class problem according to given a set
of feature including real-valued, binary-valued or categorical-valued. It is capable
of dealing with a large number of features. The Multinomial Naive Bayes (MNB)
classifier ([9]) is a variation of the probabilistic classification algorithm based on
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the Bayes’ Rule. The algorithm assumes that the attributes, namely features, are
independent from each other given the class. MNB classifier is highly scalable
method for high dimensional dataset and also it takes linear time to make a pre-
diction. As a result, it is a suitable method for text classification problem such
as spam detection, information retrieval and text categorisation. Random Forest
([5]) is an ensemble method designed to increase the accuracy of the decision tree
by using collection of decision tree. Each tree is trained on randomly selected fea-
tures, and each tree votes for the most popular class. Then, the output of the clas-
sifier is determined by integrating the votes of trees. Consequently, the Random
Forest algorithm can handle high dimensional feature space while being compu-
tationally less expensive when compared to other ensemble methods. Moreover,
employing a set of trees leads a significant increase in classification accuracy.

3.4 Results

We used 10-fold cross-validation approach to measure accuracy. However, as our
dataset is imbalanced in terms of the number of samples in each class, we adopted
Stratified K-Folds method through the evaluation process. Stratified K-Folds val-
idator splits the data into train and test sets by preserving the percentage of the
samples for each class. Table 3 shows general classification accuracy and average
recall, precision and F'l-score for the tested machine learning algorithm. Accord-
ing to our evaluation, meta-classifier Random Forest outperforms the other two
classifiers and achieves the highest accuracy with 84%. We also consider a base
class that is constituted by trojan, riskware and adware targeting Android OS.
This base class is primarily the largest set of variants that need to be identified
at day-0. The classification accuracy of Random Forest applied to the base class
is reached at 92%. The accuracy of the classifier at recognising instances of dif-
ferent classes is illustrated with the confusion matrix as plotted in Fig.2. The
confusion matrix compares the number of correct and incorrect predictions of
the classifier with respect to the ground truth (actual classes). From confusion
matrix, it can be seen that the model is successful in determining the major-
ity of the malware families. However, one can remark that, android.exploit.psn
(numbered as 10 for the sake of appearance) family was always wrongly classi-
fied as trojan.java.smssend (numbered as 19). Another remark is that due to the
usage of imbalanced dataset, the classifier tends to classified malware samples

Table 3. Classification accuracies of the tested machine learning algorithms subject
to all classes and base class

Algorithm Accuracy Precision | Recall F1-score
All classes | Base classes | All | Base | All | Base | All | Base
Random forest 0.84 0.92 0.8210.92 /0.84/0.92 |0.81]0.92
Logistic regression | 0.81 0.91 0.81/0.91 |0.81/0.91 |0.78]0.91
Naive Bayes 0.64 0.83 0.53/0.83 | 0.64|0.82 |0.53|0.82
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Fig. 2. Normalized confusion matrix for all classes
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Fig. 3. Normalized confusion matrix for base classes

into android.adware.dowgin and trojan.java.smssend families, which are the first
two classes that contain the most members in our dataset. Figure3 shows the
class-wise classification accuracy for the base classes, and the model is capable
of predicting each base class with high accuracy.
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4 Conclusions

In this paper, we propose a novel classification method for Android malware
samples according to their static and dynamic features (i.e., hybrid features). The
proposed framework executes the given samples in a virtualized environment and
extracts its activities such as API calls, network connections, and so on. Then,
that information is further combined with static features particularly with a
permission list provided by the application. By applying learning algorithms
to the benchmark datasets, the Random Forest algorithm achieved the highest
accuracy at 84% while classifying applications into their respective families. Our
experiments on real-world Android malware samples verify the contributions
of the proposed method at identifying the Android families on a basis of their
extracted hybrid features.
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