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Abstract. We propose a new convolutional neural network – the FTNet
and explain its theoretical background referring to the theory of a higher
degree F-transform. The FTNet is parametrized by kernel sizes, on/off
activation of weights learning, the choice of strides or pooling, etc. It
is trained on the database MNIST and tested on handwritten inputs.
The obtained results demonstrate that the FTNet has better recogni-
tion accuracy than the automatically trained LENET-5. We have also
analyzed the FTNet and LENET-5 rotation invariance.

1 Introduction

Deep learning (DL) [1] neural networks have proven themselves as efficient tools
for pattern recognition [2–4]. One of the main principles of the DL is based
on automatic extraction of “good” features [5] using a general-purpose learning
procedure [6,7]. This is opposite to hand designed feature extractors that require
a considerable amount of testing time and expert skills [8–10].

In this contribution, we argue with the absolutization of the above given
main principle and propose the theoretical background of FTNets – convolu-
tional neural networks (CNN) that use kernels related to a higher degree F-
transform [11]. The FTNet is parametrized by kernel sizes, on/off activation
of weights learning, the choice of strides or pooling, etc. It is trained on the
database MNIST and tested on handwritten inputs.

The obtained results demonstrate that the FTNet has better recognition
accuracy than the automatically trained LENET-5 [12]. The efficiency of the
proposed FTNet (measured in training time) is higher. Last, but not least, we
provide the theoretical justification of a suitability of the FTNet for the problem
of recognition.

To confirm our conclusion, we compare the FTNet networks with the
LENET-5 (both are trained on the dataset MNIST ) on various recognition tests.
The results are discussed in Sect. 4.2. We have chosen LENET-5, because it was
specially designed for dataset MNIST whose objects are hand drawn integers
from 0 to 9 together with their various transforms. LENET-5 has a reasonable
size, good performance accuracy and serves as a prototype for many other con-
volutional networks. Moreover, LENET-5 and its modifications are included into
many modern machine learning frameworks.
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The structure of the paper is as follows: in Sect. 2 we give a short characte-
riation of convolutional neural networks; Sect. 3 recalls the main facts about the
higher degree F-transform and specifically F 2-transform - the technique, which
will be used in the proposed FTNet networks; Sect. 4 contains description of
tests and discussion of their results.

2 Convolutional Neural Networks

Convolutional Neural Networks [13] are hierarchical models capable of learning.
The hierarchy consists of layers of units. The layers are connected together in
a cascade manner. They can be specified according to their types. One of the
types is a convolutional type. Units in convolutional layer are partially con-
nected to units of the previous layer, unlike units in fully connected layers.
Each units of a convolutional layer performs operation known as convolution1,
thus the layer name. The purpose of a convolutional layer is to extract fea-
tures. Multiple convolutional layers connected one after another extract features
of higher abstractions. Multiple connected convolutional layers are interlarded
with pooling (sub-sampling) layers which should ensure tolerance to translations
and distortions (Fig. 1).

Fig. 1. LENET-5 architecture reproduced from [12]

CNN architecture reproduced from paper [13] is considered as perhaps the
first that deserves the label deep [1]. The difference between deep and shallow
networks is not clearly distinguished (more on the topic can be found in the
article [1]). Learning deep convolutional neural network (DNN ) using a learn-
ing algorithm (the back-propagation with gradient descent [14]) proved to be
computationally heavy. The problem of intense computations was simplified by
the advent of programmable GPUs (frameworks cuDNN, Caffe, Theano, Torch,
Tensorflow, etc.).

CNN is one of the best tools in the task of classification especially image
classification. Dataset MNIST is an example of benchmark that confirms this
claim. The following web page2 contains error rates of different neural networks
1 Weighted average in case of convolutional layers. Weights are being learned.
2 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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sorted into groups by their types. The best neural network displayed on the
website has only 0.23% (23 miss-classifications in 10000) error rate. Another
example is competition ILSVRC (Large Scale Visual Recognition Challenge). In
some cases mean average precisions nearly doubled between 20143 and 20154.

3 The F-transform of a Higher Degree (Fm-transform)

In this section, we recall the main facts (see [11] for more details) about the
higher degree F-transform and specifically F 2-transform - the technique, which
will be used in the proposed below CNN with the FT kernels (FTNet).

3.1 Fuzzy partition

The F-transform is the result of a convolution of an object function (image,
signal, etc.) and a generating function of what is regarded as a fuzzy partition
of a universe.

Definition 1. Let n > 2, a = x0 = x1 < . . . < xn = xn+1 = b be fixed nodes
within [a, b] ⊆ R. Fuzzy sets A1, . . . , An : [a, b] → [0, 1], identified with their
membership functions defined on [a, b], establish a fuzzy partition of [a, b], if they
fulfill the following conditions for k = 1, . . . , n:

1. Ak(xk) = 1;
2. Ak(x) = 0 if x ∈ [a, b] \ (xk−1, xk+1);
3. Ak(x) is continuous on [xk−1, xk+1];
4. Ak(x) for k = 2, . . . , n strictly increases on [xk−1, xk] and for k = 1, . . . , n−1

strictly decreases on [xk, xk+1];
5. for all x ∈ [a, b] holds the Ruspini condition

n∑

k=1

Ak(x) = 1. (1)

The elements of fuzzy partition {A1, . . . , An} are called basic functions.
In particular, an h-uniform fuzzy partition of [a, b] can be obtained using the

so called generating function

A : [−1, 1] → [0, 1], (2)

which is defined as an even, continuous and positive function everywhere on
[−1, 1] except for on boundaries, where it vanishes. Basic functions A2, . . . , An−1

of an h-uniform fuzzy partition are rescaled and shifted copies of A in the sense
that for all k = 2, . . . , n − 1;

Ak(x) =

{
A(x−xk

h ), x ∈ [xk − h, xk + h],
0, otherwise.

3 http://image-net.org/challenges/LSVRC/2014/results.
4 http://image-net.org/challenges/LSVRC/2015/results.

http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2015/results
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Below, we will be working with one particular case of an h-uniform fuzzy
partition that is generated by the triangular shaped function Atr and its h-
rescaled version Atr

h , where

Atr(x) = 1 − |x|, x ∈ [−1, 1], and Atr
h (x) = 1 − |x|

h
, x ∈ [−h, h].

A fuzzy partition generated by the triangular shaped function Atr will be referred
to as triangular shaped.

3.2 Space L2(Ak)

Let us fix [a, b] and its h-uniform fuzzy partition A1, . . . , An, where n ≥ 2 and
h = b−a

n−1
5. Let k be a fixed integer from {1, . . . , n}, and let L2(Ak) be a set of

square-integrable functions f : [xk−1, xk+1] → R. Denote L2(A1, . . . , An) a set
of functions f : [a, b] → R such that for all k = 1, . . . , n, f |[xk−1,xk+1] ∈ L2(Ak).
In L2(Ak), we define an inner product of f and g

〈f, g〉k =
∫ xk+1

xk−1

f(x)g(x)dμk =
1
sk

∫ xk+1

xk−1

f(x)g(x)Ak(x)dx,

where
sk =

∫ xk+1

xk−1

Ak(x)dx.

The space (L2(Ak, 〈f, g〉k)) is a Hilbert space. We apply the Gram-Schmidt
process to the linearly independent system of polynomials {1, x, x2, . . . xm}
restricted to the interval [xk−1, xk+1] and convert it to an orthogonal
system in L2(Ak). The resulting orthogonal polynomials are denoted by
P 0
k , P 1

k , P 2
k , . . . , Pm

k .

Example 1. Below, we write the first three orthogonal polynomials P 0, P 1, P 2

in L2(A), where A is the generating function of a uniform fuzzy partition, and
〈·, ·〉0 is the inner product:

P 0(x) = 1,
P 1(x) = x,

P 2(x) = x2 − I2, where I2 = h2
∫ 1

−1
x2A(x)dx,

If generating function Atr is triangular shaped and h-rescaled, then the polyno-
mial P 2 can be simplified to the form

P 2(x) = x2 − h2

6
. (3)

We denote Lm
2 (Ak) a linear subspace of L2(Ak) with the basis

P 0
k , P 1

k , P 2
k . . . , Pm

k .
5 The text of this and the following subsection is a free version of a certain part of [11]

where the theory of a higher degree F-transform was introduced.
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3.3 Fm-transform

In this section, we define the Fm-transform, m ≥ 0, of a function f with polyno-
mial components of degree m. Let us fix [a, b] and its fuzzy partition A1, . . . , An,
n ≥ 2.

Definition 2 [11]. Let f : [a, b] → R be a function from L2(A1, . . . , An), and let
m ≥ 0 be a fixed integer. Let Fm

k be the k-th orthogonal projection of f |[xk−1,xk+1]

on Lm
2 (Ak), k = 1, . . . , n. We say that the n-tuple (Fm

1 , . . . , Fm
n ) is an Fm-

transform of f with respect to A1, . . . , An, or formally,

Fm[f ] = (Fm
1 , . . . , Fm

n ).

Fm
k is called the kth Fm-transform component of f .

Explicitly, each kth component is represented by the mth degree polynomial

Fm
k = ck,0P

0
k + ck,1P

1
k + · · · + ck,mPm

k , (4)

where

ck,i =
〈f, P i

k〉k
〈P i

k, P
i
k〉k

=

∫ b

a
f(x)P i

k(x)Ak(x)dx
∫ b

a
P i
k(x)P i

k(x)Ak(x)dx
, i = 0, . . . ,m.

Definition 3. Let Fm[f ] = (Fm
1 , . . . , Fm

n ) be the direct Fm-transform of f with
respect to A1, . . . , An. Then the function

f̂m
n (x) =

n∑

k=1

Fm
k Ak(x), x ∈ [a, b], (5)

is called the inverse Fm-transform of f .

The following theorem proved in [11] estimates the quality of approximation
by the inverse Fm-transform in a normed space L1.

Theorem 1. Let A1, . . . , An be an h-uniform fuzzy partition of [a, b]. Moreover,
let functions f and Ak, k = 1, . . . , n be four times continuously differentiable on
[a, b], and let f̂m

n be the inverse Fm-transform of f , where m ≥ 1. Then

‖f(x) − f̂m
n (x)‖L1 ≤ O(h2),

where L1 is the Lebesgue space on [a + h, b − h].

3.4 F 2-transform in the Convolutional Form

Let us fix [a, b] and its h-uniform fuzzy partition A1, . . . , An, n ≥ 2, gener-
ated from A : [−1, 1] → [0, 1] and its h-rescaled version Ah, so that Ak(x) =
A(x−xk

h ) = Ah(x−xk), x ∈ [xk −h, xk +h], and xk = a+kh. The F 2-transform
of a function f from L2(A1, . . . , An) has the following representation

F 2[f ] = (c1,0P 0
1 + c1,1P

1
1 + c1,2P

2
1 , . . . , cn,0P

0
n + cn,1P

1
n + cn,2P

2
n), (6)
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where for all k = 1, . . . , n,

P 0
k (x) = 1, P 1

k (x) = x − xk, P 2
k (x) = (x − xk)2 − I2, (7)

where I2 = h2
∫ 1

−1
x2A(x)dx, and coefficients are as follows:

ck,0 =

∫ ∞
−∞ f(x)Ah(x − xk)dx
∫ ∞

−∞ Ah(x − xk)dx
, (8)

ck,1 =

∫ ∞
−∞ f(x)(x − xk)Ah(x − xk)dx
∫ ∞

−∞ (x − xk)2Ah(x − xk)dx
, (9)

ck,2 =

∫ ∞
−∞ f(x)((x − xk)2 − I2)Ah(x − xk)dx
∫ ∞

−∞ ((x − xk)2 − I2)2Ah(x − xk)dx
. (10)

In [11,15], it has been proved that

ck,0 ≈ f(xk), ck,1 ≈ f ′(xk), ck,2 ≈ f ′′(xk), (11)

where ≈ is meant up to O(h2).
Without going into technical details, we rewrite (8)–(10) into the following

discrete representations

ck,0 =
l∑

j=1

f(j)g0(ks − j), ck,1 =
l∑

j=1

f(j)g1(ks − j), ck,2 =
l∑

j=1

f(j)g2(ks − j),

(12)

where k = 1, . . . , n, n = � l
s�, s is the so called “stride” and g0, g1, g2 are

normalized functions that correspond to generating functions Ah, (xAh) and
((x2 − I2)Ah). It is easy to see that if s = 1, then coefficients ck,0, ck,1, ck,2 are
results of the corresponding discrete convolutions f � g0, f � g1, f � g2. Thus, we
can rewrite the representation of F 2 in (6) in the following vector form:

F 2[f ] = ((f �s g0)TP0 + (f �s g1)TP1 + (f �s g2)TP2), (13)

where P0, P1, P2 are vectors of polynomials with components given in (7), and
�s means that the convolution is performed with the stride s, s ≥ 1.

Example 2. We choose the triangular shaped generating function Atr : [−1, 1] →
[0, 1] and consider it on the discrete domain D = {−1,−2/3,−1/3, 0, 1/3, 2/3, 1}.
Below, we show four matrices G0, G1,1, G1,2 G2 of 5 × 5 kernels6 that are used
for functions of two variables and correspond to the three above considered
convolutions with g0, g1, g2.

G0 =

⎛

⎜⎜⎜⎜⎝

0.000 0.000 0.000 0.000 0.000
0.000 0.062 0.125 0.062 0.000
0.000 0.125 0.250 0.125 0.000
0.000 0.062 0.125 0.062 0.000
0.000 0.000 0.000 0.000 0.000

⎞

⎟⎟⎟⎟⎠

6 The size is determined by only five non-zero values of Atr on D.
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G1,1 =

⎛

⎜⎜⎜⎜⎝

−0.074 −0.074 0. 0.074 0.074
−0.148 −0.148 0. 0.148 0.148
−0.222 −0.222 0. 0.222 0.222
−0.148 −0.148 0. 0.148 0.148
−0.074 −0.074 0. 0.074 0.074

⎞

⎟⎟⎟⎟⎠

G1,2 =

⎛

⎜⎜⎜⎜⎝

−0.074 −0.148 −0.222 −0.148 −0.074
−0.074 −0.148 −0.222 −0.148 −0.074
0.000 0.000 0.000 0.000 0.000
0.074 0.148 0.222 0.148 0.074
0.074 0.148 0.222 0.148 0.074

⎞

⎟⎟⎟⎟⎠

G2 =

⎛

⎜⎜⎜⎜⎝

0.062 0.049 −0.037 0.049 0.062
0.049 −0.049 −0.148 −0.049 0.049
0.037 −0.148 −0.333 −0.148 0.037
0.049 −0.049 −0.148 −0.049 0.049
0.062 0.049 −0.037 0.049 0.062

⎞

⎟⎟⎟⎟⎠

Let us remark that in the context of convolutional neural networks, matrices G0,
G1,1, G1,2 G2 determine convolution filters. In the context of the F-transform,
they depend on the chosen partition of underlying universe and do not depend
on the functions they are applied to.

3.5 F 2-transform in the FTNet Architecture

We propose to modify the LENET-5 [12] and replace convolution-type units in
the first and third convolution layers C1 and C3 by the similar units which realize
the computation of the F 2-transform coefficients according to (12) and adapted
to functions of two variables. We use the meaning (11) of the F 2 coefficients
and specify features in the feature maps of the convolution layer C1 as partial
derivatives (positive and negative) of an input function (of two variables) with
respect to each single variable up to the second degree. In more details, the six
matrices G0, −G0 G1,1, G1,2, G2, −G2 are convolved with the input 2D image in
order to produce the mentioned partial derivatives at uniformly distributed nodes
over the image domain. Thus, we have six feature maps in C1. Each feature map
of C1 is connected (via subsampling layer S2) with each feature map of C3 -
thus, we have thirty six feature maps in C3. The meaning of feature in C3

corresponds to all possible mixed partial derivatives up to the third degree.
The features extracted in C1 and C3 are used to classify objects in MNIST.

Our justification is based on the Theorem1 which says that the inverse Fm

(particularly, F 2) transform approximates any function with sufficient quality.
The number 2 of convolutional layers was set up empirically, and this turned out
to be sufficient for the recognition purpose from MNIST. Thus, in comparison
with the LENET-5 we use less number of convolutional layers. Other layers in
the FTNet are of the fully-connected types and serve the same purposes as in
the LENET-5.

Let us discuss the learning of convolution filters represented by matrices
G0, −G0 G1,1, G1,2, G2, −G2. These filters can be excluded from the learning
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procedure on the basis of the mentioned above Theorem regarding the universal
approximation. However, if they are learned (and this is confirmed by our tests),
then the quality of approximation is adapted to a narrower class of objects (they
constitute a certain dataset) and it is better than in the general case (valid for
a generic class of objects).

4 Experiments and Results

We have used the FTNet (based of the LENET-5 [12]) architecture as the base-
line for our experiments. The details of the FTNet architecture are described in
Table 1 and Sect. 4.1 where the following notation is used: convolution layers C1

and C3, subsampling layers S2 and S4 and fully connected layers FC5 and FC6.
We have examined the impact of the following hyper-parameters: convolution
kernel size D, presence and type of the subsampling S, layer weights trainability
T , and a form of the layer weights initialization I on the network performance.
We have used all possible combinations of the hyper-parameters of C1, S2, C3

and S4 in the grid search with the purpose to select the optimal setting with
respect to the quality of recognition (loss function).

Table 1. FT-Net architecture.

Hyper-paramater C1 S2 C3 S4 FC5 FC6

Kernel size 5 × 5 - 5 × 5 - - -

# feature maps 6 - 36 - - -

Stride 1 × 1 pooling 1 × 1 pooling - -

Pooling size - 2 × 2 - 2 × 2 -

# FC units - - - - 500 10

4.1 FTNet Architecture

In this section, we describe details of one particular FTNet architecture where
the hyper-parameters are: D = 5 × 5, S = max pooling. Below, we characterize
other details: layers, connection types, input, intermediate and output objects.

The first layer of the FTNet is convolutional C1, it has 6 feature maps with
the size of 28×28. To ensure the same size of the feature maps and image, padding
is used. Each C1 unit has 25 connections to input image. Unit connections are
spatially close, forming 5×5 neighborhood called unit’s receptive field ; the latter
overlaps with others unit’s receptive fields. The C1 has 25 · 6 + 6 (trainable)
parameters and 784 · 25 · 6 + 6 connections.

The C1 feature maps are connected to the max pooling layer S2. The S2 units
have 2×2 non-overlapping receptive fields from which they select the maximum.
S2 effectively decreases the feature maps size to 14 × 14. The S2 has 784 · 6
connections.
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The convolutional layer C3 is connected to S2 outputs. Each 14×14 output is
convolved with all C3 kernels (they are the same as in C1) creating 62 new feature
maps with the size of 14 × 14. The C3 has 25 · 62 + 62 (trainable) parameters
and 784/4 · 25 · 62 + 62 connections.

The C3 feature maps are connected to the max pooling layer S4 that further
reduces their size to 7 × 7.

The S4 feature maps are inputs to the fully connected layer FC5. The FC5

has 500 units, each connected to all outputs from S4, therefore the FC5 has
7 · 7 · 62 · 500 (trainable) parameters/connections.

The FC5 output vector is the input to the last fully connected layer FC6

that has 10 units. The FC6 has 500 ·10 (trainable) parameters/connections. The
FC6 output vector goes through the softmax layer. Softmax layer normalizes an
input vector to that whose sum of components is equal to 1.

The C1, C3 and FC5 uses Rectified Linear activation function (RELU) [2].

4.2 Tests

The proposed network was tested on grayscale images from the database MNIST.
The MNIST consists of 70000 28×28 images7. They were normalized to the size
of 20×20 so that the centering and the color ratio of the original 28×28 images
were preserved.

Two sets of kernels were selected for testing. They determine feature maps
in layers C1 and C3. The first set (referred to as “FT2”) is composed by the
F 2-transform kernels represented above by the six matrices G0, −G0 G1,1, G1,2,
G2, −G2. The second set (referred to as “Conventional”) is composed by the
widely used kernels with the same meaning as the F 2-transform ones: they spec-
ify partial derivatives (positive and negative) of an image function with respect
to each single variable up to the second degree. These kernels are: Gauss, Sobel,
Laplace and their derivatives such as -Gauss (multipled by -1), 90Sobel (rotated
by 90◦) and -Laplace.

Our first test was focused on the choice of an optimal combination with
respect to the chosen loss function – the cross entropy. With this purpose, we
have applied a grid search over all combinations of the hyper-parameters (D,S, T
and I).

The results were clustered into 3 groups based on the following values of the
loss function: {≈1.5,≈6,≈25}. We have observed that the clustering (and by this,
the quality of recognition) essentially depends on the presence of subsampling.
In more details:

Fig. 2. Numbers used for testing rotation invariance.

7 60000 training and 10000 testing.



Convolutional Neural Networks with the F-transform Kernels 405

Table 2. Selected optimal networks, their parameters and performance.
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– in the group with the loss value ≈1.5, the subsampling (in the form of the
max pooling or stride) accompanies both convolutional layers;

– in the group with the loss value ≈6, the subsampling was applied in combi-
nation with exactly one convolutional layer;

– in the group with the loss value ≈25, the subsampling was not applied in
combination convolutional layers.

Our second test was focused on the invariance of recognition by the FTNet
with respect to rotation. On the basis of the first test, we selected several FTNet
configurations for the analysis of the rotation invariance:

1. the one with the (absolute) lowest loss value,
2. the one with the lowest loss value among those with fixed kernels (FT2 or

Conventional) in C1 and C3 layers,
3. the one with the lowest loss value among those with trainable kernels (FT2

or Conventional) in C1 and C3 layers.

It is worth noting that the configuration with the absolute lowest loss value (item
1) coincides with the one described in item 3 with the FT2 kernels.

For the purpose of testing, we have created 10 input images (manually)
(Fig. 2) and rotated them from 0◦ up to 355◦ with the step 5◦. All selected
FTNets were trained for 10 epochs. In the bottom part of Table 2, we show
those angle interval(s) where the network top prediction was not correct.

We have accomplished accuracy of 99.23% on MNIST which is competitive
result (see LeCun MNIST web-page). This accuracy was achieved without any
distortions on training set.

5 Conclusion

In this contribution, we have introduced a new convolutional neural network –
the FTNet. In its two convolutional layers, the FTNet uses fixed kernels extracted
from the discrete version of the F 2-transform. Moreover, it has a certain number
of trainable hyper-parameters. The MNIST database was used for the FTNet
training. The results were compared with the LENET-5 like network. The tests
have shown that the best FTNet configuration performs significantly better
recognition (according to the training time and the loss function value) than
the LENET-5 like network.

We have also analyzed the FTNet and LENET-5 rotation invariance. We
came to the conclusion that all tested networks and their best configurations
show similar results. In particular, the rotation invariance was demonstrated
only for relatively small angles within the interval [0◦, 30◦].

Last, but not least, we provided theoretical justification of a suitability of
the FTNet for the problem of recognition.
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