
A Parallel Swarm Library Based
on Functional Programming

Fernando Rubio, Alberto de la Encina(B), Pablo Rabanal,
and Ismael Rodŕıguez

Facultad Informática, Universidad Complutense de Madrid,
28040 Madrid, Spain

{fernando,albertoe}@sip.ucm.es, prabanal@fdi.ucm.es

Abstract. In this paper we present a library of parallel skeletons to deal
with swarm intelligence metaheuristics. The library is implemented using
the parallel functional language Eden, an extension of the sequential
functional language Haskell. Due to the higher-order nature of functional
languages, we simplify the task of writing generic code, and also the task
of comparing different strategies. The paper illustrates how to develop
new skeletons and presents empirical results.

Keywords: Metaheuristics · Parallel programming · Skeletons · Func-
tional programming

1 Introduction

When dealing with swarm optimization methods (see e.g. [4–6,11]), one of the
first problems is deciding which swarm algorithm should be chosen to solve the
problem under consideration. The same issue applies for deciding how a swarm
method should be parallelized, out of a given set of available parallel strategies.
Under these circumstances, it is very useful to provide programmers with several
implementations of several swarm intelligence methods – as long as all of them
can be easily adapted and used to solve any problem under consideration. In
this regard, the reusability and clear separation of concerns of functional pro-
grams fits particularly well. In this paper we present a library of parallel func-
tional swarm intelligence algorithms. The chosen parallel functional language
is Eden [7], which is a parallel extension of Haskell, a higher-order functional
language that guarantees the absence of side effects. The aim of our library is
providing programmers with a tool to quickly test the performance of several
swarm intelligence algorithms, as well as several parallelizing strategies.

Smaller pieces of the library have been presented in previous works.
In [12] we presented our Eden implementation of Particle Swarm Optimization

This work has been partially supported by projects TIN2012-39391-C04-04,
TIN2015-67522-C3-3-R, and S2013/ICE-2731.

c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-59153-7 1



4 F. Rubio et al.

(PSO) [6], whereas an Eden implementation of the Artificial Bee Colony algo-
rithm (ABC) [5] was given in [15]. In this paper we develop an Eden implementa-
tion of Differential Evolution [3]. In addition, we glue together these three Eden
implementations (and their parallel variants) by constructing a higher abstrac-
tion layer. The goal of this tool layer is providing a common unified interface
to all supported methods and help the programmer to automatically test the
performance of all of these three methods and their variants (as well as others
that could be provided in the future) for the target problem.

The rest of the paper is organized as follows. First, we briefly describe the
language used. Then, Sect. 3 summarizes the main metaheuristic used in this
work. Next, in Sect. 4 we illustrate how to develop generic higher-order func-
tions to deal with a concrete metaheuristic, while in Sect. 5 we show how to
provide new parallel skeletons to deal with the same metaheuristic. Afterwards,
Sect. 6 presents results obtained with our library. Finally, Sect. 7 presents our
conclusions.

2 Introduction to Eden

Eden [7] is a parallel extension of Haskell. It introduces parallelism by adding
syntactic constructs to define and instantiate processes explicitly. It is possible to
define a new process abstraction p by applying the predefined function process
to any function \x -> e, where variable x will be the input of the process, while
the behavior of the process will be given by expression e. Process abstractions are
similar to functions – the main difference is that the former, when instantiated,
are executed in parallel. From the semantics point of view, there is no difference
between process abstractions and function definitions. The differences between
processes and functions appear when they are invoked. Processes are invoked by
using the predefined operator #. For instance, in case we want to create a process
instantiation of a given process p with a given input data x, we write (p # x).
Note that, from a syntactical point of view, this is similar to the application of
a function f to an input parameter x, which is written as (f x).

Therefore, when we refer to a process we are not referring to a syntac-
tical element but to a new computational environment, where the computa-
tions are carried out in an autonomous way. Thus, when a process instantiation
(e1 # e2) is invoked, a new computational environment is created. The new
process (the child or instantiated process) is fed by its creator by sending the
value for e2 via an input channel, and returns the value for e1e2 (to its parent)
through an output channel.

In order to increase parallelism, Eden employs pushing instead of pulling of
information. That is, values are sent to the receiver before it actually demands
them. In addition to that, once a process is running, only fully evaluated data
objects are communicated. The only exceptions are streams, which are transmit-
ted element by element. Each stream element is first evaluated to full normal
form and then transmitted. Concurrent threads trying to access not yet available
input are temporarily suspended. This is the only way in which Eden processes



A Parallel Swarm Library Based on Functional Programming 5

synchronize. Notice that process creation is explicit, but process communication
(and synchronization) is completely implicit.

Process abstractions in Eden are not just annotations, but first class values
which can be manipulated by the programmer (passed as parameters, stored
in data structures, and so on). This facilitates the definition of skeletons [2,14]
as higher order functions. Next we illustrate, by using a simple example, how
skeletons can be written in Eden.

The most simple skeleton is map. Given a list of inputs xs and a function f to
be applied to each of them, the sequential specification in Haskell is as follows:

map f xs = [f x | x <- xs]

that can be read as for each element x belonging to the list xs, apply function
f to that element. This can be trivially parallelized in Eden. In order to use a
different process for each task, we will use the following approach:

map_par f xs = [pf # x | x <- xs] where pf = process f

The process abstraction pf wraps the function application (f x). It determines
that the input parameter x as well as the result value will be transmitted through
channels.

Let us note that Eden’s compiler has been developed by extending the GHC
Haskell compiler. Hence, it reuses GHC’s capabilities to interact with other pro-
gramming languages. Thus, Eden can be used as a coordination language, while
the sequential computation language can be, for instance, C.

3 Differential Evolution

Differential evolution (DE) [3] is an evolutionary algorithm for optimizing real-
valued multi-modal objective functions. Although it is related to Genetic Algo-
rithms, it is a different option in the universe of evolutionary methods. DE
maintains a population of candidate solutions and attempts to improve it by
combining existing ones. The method uses NP agents as candidate solutions,
where each of these agents is represented by an n-dimensional vector. The initial
population is randomly chosen and uniformly distributed in the search space. DE
generates new solutions by adding the weighted difference between two agents to
a third one. If the new vector improves the objective function of a predetermined
population member, this new vector will replace the one it was compared with,
otherwise, the old vector remains unchanged.

Let f : Rn → R be the function to be minimized (or maximized), and let
xi ∈ R

n be an agent (1 ≤ i ≤ NP) in the population with NP ≥ 4. The basic
DE variant implemented in this paper is explained afterwards. First of all, NP
agents are randomly created in the search space. Next, a loop is executed as
long as an ending condition is not satisfied (typically, the number of iterations
performed does not exceed the limit, or the fitness adequation is not reached).
Inside the loop and for each agent xi in the population, three agents a, b, c are



6 F. Rubio et al.

chosen. These agents must be distinct from each other and distinct from agent
xi. Next, we pick a random integer R in the range [1, n], and an empty vector y
with n positions is created. Then, the values of vector y are created as follows:
For each y(j) a random real in the range [0, 1] is assigned to variable r, and if
the value of r is lower than the crossover probability parameter, CR ∈ [0, 1], or
if j=R then the value a(j)+F×(b(j)-c(j)) is set to dimension j of variable y
(y(j)); else y(j) = xi(j). When the initialization of y finishes, if f(y)<f(xi) the
i-th agent xi is replaced with the new vector y (xi= y). At the end, the agent
with the minimum value of f (or the maximum if maximizing) is returned.

Parameter F ∈ [0, 2] is called the differential weight. Parameters F and CR are
experimentally chosen.

4 Generic Differential Evolution in Haskell

In this section we show how to develop a new (sequential) metaheuristic by using
Haskell (Eden parallelizations will be tackled in the next section). In particular,
we consider the implementation of Differential Evolution, although we could deal
with any other metaheuristic in a similar way.

Functional languages allow creating higher-order functions. Thus, we can
take advantage of them to define a generic function deSEQ implementing the
Differential Evolution metaheuristic. This function will have as input parameter
a fitness function, which can be different in each case. It also needs other input
parameters, like the number of candidate positions to be used, the number of
iterations to be performed, the boundings of the search space, and the concrete
parameters F and CR to be used. Moreover, in order to implement it in a pure
functional language like Haskell, we need an additional parameter to introduce
randomness. Note that Haskell functions cannot produce side-effects, so they
need an additional input parameter to be able to obtain different results in
different executions. The type of the Haskell function implementing Differential
Evolution can be represented as follows:

deSEQ::RandomGen a => a --Random generator

->Params --Adjustment parameters(F,CR)

->Int --Number of candidates

->Int --Maximum number iterations

->(Position->Double) --Fitness function

->Boundings --Search space boundaries

->(Double,Position) --Value and position of best candidate

Regarding the representation of Position, it must be able to deal with an
arbitrarily large number of dimensions. Thus, we can easily represent it by using
a list of real numbers. In this case, the length of such list represents the number
of dimensions, whereas the concrete elements represent the coordinate values of
each of these dimensions. Note that Boundings can be defined in a similar way,
although a pair with the lower and upper bound for each dimension is considered
in this case. Finally, the type Params only needs to handle the parameters used



A Parallel Swarm Library Based on Functional Programming 7

in Differential Evolution to tune up the algorithm, that is, F and CR, which are
real numbers. Thus, the needed auxiliary types are the following:

type Position = [Double]
type Boundings = [(Double,Double)]
type Params = (Double,Double)

After defining the types and the interface of the main function deSEQ, we
have to define its actual body. First, we have to randomly initialize the candi-
date solutions. This is done by a simple function initializeCandidates (not
shown) that distributes the candidates randomly among the search space. After
initializing the candidates, function de’ performs the real work of the algorithm
by iterating the application of the basic step as many times as needed. As in the
case of the main function deSEQ, the auxiliary function de’ will also need a way
to introduce randomness. This is solved by using function split to create new
random generators. Let us finally note that function de’ needs the same inputs
as the main function (number of iterations, fitness function, etc.), as it has to
perform the actual work, but now it uses a list of candidate positions instead of
only the number of candidates, as we have already created the appropriate list:

deSEQ sg p nc it f bo = obtainBestCandidate (de’ sg2 p it f bo initCandis)

where initCandis = initializeCandidates sg1 nc bo f

(sg1,sg2) = split sg

type Candidate = (Double,Position) -- Current value, current position

In order to define function de’ we only need to use a simple recursion on the
number of iterations. The base case will be when zero iterations remains. In that
case, we return the same list of candidates without modifying it. Otherwise, we
use function oneStepDE to perform one iteration of the algorithm, and then we
go on performing the rest of iterations by using a recursive call to function de’:

de’ _ _ 0 _ _ cs = cs

de’ sg p it f bo cs = de’ sg2 p (it-1) f bo (oneStepDE sg1 p f bo cs)

where (sg1,sg2) = split sg

For the sake of simplicity, we assume that the only finishing condition is the
number of iterations, but we can easily modify it to include alternative finishing
conditions.

Finally, we only need to define how to perform each step. First, we have to
generate the list of needed random numbers. For each candidate solution we need
three random indexes (corresponding to the candidates a, b, and c described in
Sect. 3, which will be used to generate a new candidate), one random dimension
to be modified for sure, and one random real number for each dimension. This
list of real numbers will be used to decide whether the corresponding dimension
is to be modified or not, comparing the real number with the CR parameter.
Function genRanIndexDimR generates the list of random numbers for each can-
didate, while the predefined higher-order function zipWith allows to combine
each candidate with the corresponding random numbers generated by function
genRanIndexDimR. The source code is as follows:



8 F. Rubio et al.

oneStepDE sg (dw,cr) f bo cs = zipWith combineCandidate cs rs
where rs = genRanIndexDimR sg (length cs -1) (length bo)

The definition of combineCandidate is trivial. It only has to combine one
candidate with the random candidates selected using the random numbers
rs, using the formula shown in Sect. 3. The complete program is available at
http://antares.sip.ucm.es/prabanal/english/heuristics library.

After implementing the higher-order function dealing with DE metaheuristic,
the user only needs to provide the appropriate fitness function corresponding to
the concrete problem to be solved. Note that the user does not need to under-
stand the internals of the definition of deSEQ, but only its basic interface. That
is, the programmer only has to call deSEQ providing the fitness function and the
concrete parameters to be used (number of iterations and so on).

5 Parallel Skeletons

Parallelizing a problem requires detecting time-consuming tasks that can be
performed independently. In our case, in each step of the algorithm we can deal
independently with each of the candidates. That is, in function oneStepDE we
could parallelize the evaluation corresponding to each candidate solution. By
doing so, we can create a simple skeleton to parallelize DE algorithms. How-
ever, in order to increase the granularity of each of the parallel tasks we should
avoid creating independent processes for each candidate. It is better to create as
many processes as processors available, and to fairly distribute the candidates
among the processes. This can be done by substituting zipWith by a call to
zipWith farm, a parallel version of zipWith that implements the idea of distrib-
uting a large list of tasks among a reduced number of processes.

By using zipWith farm the speedup improves. However, for each iteration of
the algorithm zipWith farm would create a new list of processes, and it would
have to receive and return the corresponding lists of candidates. We can improve
the parallel performance of the algorithm by parallelizing function deSEQ instead
of function oneStepDE. We start splitting the list of candidates into as many
groups as processors available. Then, each group evolves in parallel indepen-
dently during a given number of iterations. After that, processes communicate
among them to redistribute the candidates among processes, and then they go on
running again in parallel. This mechanism is repeated as many times as desired
until a given number of global iterations is reached.

The implementation of this approach requires using a function dePAR instead
of deSEQ. The new function dePAR uses basically the same parameters as deSEQ,
but instead of using a parameter it to define the number of iterations, it uses
two parameters it and pit. Now, the number of iterations will be defined by
it * pit, where pit indicates the number of iterations to be performed inde-
pendently in each process without communicating with other processes, whereas
it indicates the number of parallel synchronous steps to be performed among
processes. In addition to that, we also include a new parameter nPE to define

http://antares.sip.ucm.es/prabanal/english/heuristics_library


A Parallel Swarm Library Based on Functional Programming 9

the number of independent processes to be created. In the most common case,
this parameter will be equal to the number of processors available. Taking into
account these considerations, the type interface of the new function is as follows:

dePAR::RandomGen a => a --Random generator

->Params --Adjustment parameters (F,CR)

->Int --Number of candidates

->Int --Iterations per parallel step

->Int --Number of global steps

->Int --Number of parallel processes

->(Position->Double) --Fitness function

->Boundings --Search space boundaries

->(Double,Position) --Value and position of best candidate

The definition of the body of the main function dePAR requires creating
as many processes as requested in the corresponding parameter. Thus, before
defining this function, we will show how to define a function to deal with the
behaviour of each process. Such function will need the corresponding parameter
to create random values, and it will also receive the tuning parameters of the
metaheuristic (i.e. F and CR), the number of iterations to be performed in each
parallel step pit, the fitness function f, and the boundings of the search space
bo. Then, the process will receive a list with it lists of candidates through an
input channel, and it will produce as output a new list with it lists of candidates.
Note that the main function dePAR will perform it global synchronous steps,
where each step will perform pit iterations in parallel without synchronization.
Thus, dePAR will assign it tasks as input to each process, and each process
will return it solutions as output, where those solutions will be used as input
of other processes in the next global step. Let us remark that, in Eden, list
elements are transmitted through channels in a stream-like fashion. This implies
that, in practice, each process will receive a new list of candidates through its
input channel right before starting to compute a new parallel step. The complete
source code defining a process is as follows:

deP sg p pit f bo [] = []

deP sg p pit f bo (bs:bss)=de’ sg1 p pit f bo bs : deP sg2 p pit f bo bss

where (sg1,sg2) = split sg

As it can be seen, it is only necessary to define it recursively on the number
of tasks. When the input list of lists is empty, the process finishes returning an
empty list of results. Otherwise, it uses exactly the same sequential function de’
described in the previous section to perform pit iterations, and then it goes on
dealing with the rest of the input lists.

Let us now consider how to define the main function dePAR. First, it has
to create the initial list of random candidates, exactly in the same way as in
the sequential case deSEQ. Then, the main difference with the sequential case
appears: we create nPE copies of process deP. Each of them receives the main
input parameters of the algorithm (tuning parameters F and CR, fitness function,
etc.), and it also receives its own list of tasks (pins!!i). Each element of the list



10 F. Rubio et al.

of tasks contains an input list of candidates, that will be processed by deP during
pit iterations. The output of each process is a new list of lists of candidates. Each
inner list was computed after each parallel step, and they must be redistributed
among the rest of processes before starting the next global step. This is done
by function redistribute. The final result of function bestPAR is obtained by
combining the last results returned by each process. The source code is as follows:

dePAR sg p nc pit it nPE f bo = obtainBestCandidate (last poutsFlat)

where initCandidates = initializeCandidates sg nc bo f

sgs = tail (generateSGs (nPE+1) sg)

pouts=[process (deP (sgs!!i) p pit f bo # (take it (pins!!i))

|i<-[0..nPE-1]]

poutsFlat = flatXsss pouts

pins = redistribute nPE (initCandidates:poutsFlat)

It is important to note that the user of the library does not need to understand
the low level details of the previous definition. In fact, in order to use it, it is only
necessary to substitute a call to the sequential function deSEQ by a call to the
parallel scheme dePAR, using appropriate values for parameters it, pit, and nPE.
The last parameter will be typically equal to the number of available processors.
Thus, the only programming effort will be to decide the values of it and pit.
In case pit is very small, the granularity of tasks will be reduced, whereas very
large values of pit would reduce the possibility to exchange candidates among
processes. As a degenerate case, we could use it = 1 and pit being equal to the
total number of iterations to be performed. By doing so, we would create groups
searching for a solution in a completely independent way.

The previous parallel skeleton can be easily modified to handle different
approaches. For instance, when we are using several computers in parallel, it
could be the case that each of them is different. Thus, it would be reasonable
to assign more candidates to those computers with faster processors, and less
candidates to the slower ones. This can be easily done. First, instead of receiving
the number of processes, we need to receive as input parameter the speed of each
processor. This can be done by using a list of real numbers. Obviously, given the
list we can trivially know the number of processes to be created by computing
the length of the list. In the implementation, function dePAR has to be modified
to split each list of candidates according to their relative speeds. That is, pins
is now created by taking into account the speeds parameter:

dePARh sg p nc pit it speeds f bo = obtainBestCandidate (last poutsFlat)

where nPE = length speeds

initCandidates = initializeCandidates sg nc bo f

sgs = tail (generateSGs (nPE+1) sg)

pouts=[process (deP (sgs!!i) p pit f bo)#(take it (pins!!i))

|i<-[0..nPE-1]]

poutsFlat = flatXsss pouts

pins = redistrRelative speeds initCandidates poutsFlat

The redistribution considering the relative speed is done by using function
shuffleRelative, an auxiliary function that first computes the percentage of



A Parallel Swarm Library Based on Functional Programming 11

tasks to be assigned to each process, and then distributes the tasks by using
function splitWith. It is worth to comment that we do not need to change
anything else in the skeleton. In particular, the definition of the process deP
itself remains unchanged.

6 Experimental Results

In this section we illustrate the usefulness of the library by performing some
experiments. Let us remark that the higher-order nature of the language simpli-
fies the development of tools to analyze properties of the different metaheuristic.
In particular, we can write new higher-order functions whose parameters are
again higher-order functions dealing with different metaheuristics. For instance,
we can compare a list of metaheuristics mths for the same input problem (given
by a concrete fitness function and the bounds of the search space) by using a
higer-order function as follows:

compare::[(Position->Double)->Boundings->(Double,Position)]
-> (Position->Double) -> Boundings -> [Double]

compare mths fitness bounds
= map (fst . ($ (fitness,bounds)) . uncurry) mths

Note that the higher-order function receives as second and third parameters
the fitness function and the boundaries of a concrete problem, while the first
input is a list of metaheuristics to be compared, where each of them is again a
higher-order function that receives a fitness function and the boundaries of the
search space. Let us remark that the metaheuristics can have more parameters
than those appearing in function compare. For instance, Differential Evolution
has more parameters: the number of candidates, number of iterations, etc. How-
ever, as functions are first class citizens of the language, any metaheuistic can
be partially applied. As an example, we can partially apply metaheuristic deSEQ
to use a concrete random generator, concrete adjustment parameters (F, CR), a
concrete number of candidates (75) and a concrete number of iterations (2000)
by writing the following expression

deSEQ sg (0.47,0.88) 75 2000

Its type is exactly (Position->Double) -> Boundings -> (Double,Posi-
tion). That is, we can use it as one element of the first input list of function
compare. For instance, we can compare three different configurations of function
deSEQ for a single problem ackley by writing the following:

compare [deSEQ sg (0.47,0.88) 75 2000, deSEQ sg (0.47,0.88) 100 1500,
deSEQ sg (0.32,0.76) 75 2000]

ackleyFitness ackleyBounds

That is, we are comparing three different configurations. The first and the
second one use the same values for F and CR, but the first one uses 75 candi-
dates and 2000 iterations, while the second one uses 100 candidates and 1500



12 F. Rubio et al.

iterations. The third configuration uses different values for F and CR, while the
number of candidates and iterations is the same as in the first configuration. We
can also generate larger lists of configurations by combining parameters using
comprehension lists:

compare [deSEQ sg (f,cr) nc ni | f<-[0.47,0.32], cr<-[0.88,0.76],
nc<-[75,100], ni<-[1500,2000]]

ackleyFitness ackleyBounds

As it can be expected, we can easily compare the results obtained by both
sequential and parallel metaheuristics. For instance

compare ([deSEQ sg (0.47,0.88) 75 2000]
++[dePAR sq (0.47,0.88) 75 50 40 n|n<-[1..4]])

ackleyFitness ackleyBounds

compares the sequential version with four parallelizations varying the number of
processes to be used from 1 to 4, while

compare [dePAR sq (0.47,0.88) 75 pit (div 2000 pit) 4 | pit<-[50,100,200]]
ackleyFitness ackleyBounds

compares three parallel implementations, all of them using 4 processes and 2000
iterations, but varying the size of each global step from 50 to 200 iterations.
Obviously, the comparison can also include different metaheuristics as follows:

compare [deSEQ sg (0.47,0.88) 75 2000, deSEQ sg (0.47,0.88) 100 1500,
beesSEQ sg 3000 100 1500, psoSEQ sg (-0.16,1.89,2.12) 100 1500]

ackleyFitness ackleyBounds

where we compare two configurations of Differential Evolution, one configuration
of Artificial Bee Colony, and another configuration of Particle Swarm Optimiza-
tion. Our library provides a larger set of functions implementing different kinds
of comparisons. For instance, the previous function is extended to execute each
metaheuristic n times and to compute average and standard deviation results.
We also allow to receive as input not only a problem, but a list of problems, and
we analyze the results obtained for all of them, and so on.

In order to show the information we can obtain by using these tools, we com-
pare the results obtained by three different metaheuristics on a given benchmark.
In particular, we compare Particle Swarm Optimization, Artificial Bee Colony,
and Differential Evolution by using as benchmark a well-known set of functions
defined in [16], where we have removed the last six functions of such benchmark
because they are simple low-dimensional functions with only a few local minima.

In order to fairly compare the three metaheuristics, for each function we
used exactly the same number of fitness evaluations. This number of function
evaluations is the same as that defined in [16]. Regarding the tuning parame-
ters of each of the metaheuristics, we use values available in the literature. In
particular, the parameters of PSO are taken from [10], in the case of ABC we



A Parallel Swarm Library Based on Functional Programming 13

use [1], and in the case of DE we follow [9]. The results shown in Table 1 were
obtained after computing the average of 50 executions for each metaheuristic.
Note that for each metaheuristic we can find a concrete problem where it obtains
the best results. However, the metaheuristic that obtains more often the best
result in this concrete benchmark is ABC. In fact, by using [8] we can perform
an statistical analysis to quantify the differences among the metaheuristics. In
particular, aligned Friedman test can be used to check whether the hypothesis
that all methods behave similarly (the null hypothesis) holds or not. Let us con-
sider α = 0.05, a standard significance level. From results given in Table 1, we
calculate that the p-value for aligned Friedman is 0.0027, which allows to reject
the null hypothesis with a high level of significance (the p-value is much lower
than 0.05). So, the test concludes that the results of ABC, PSO, and DE are
not considered similar. Ranks assigned by this test to ABC, PSO, and DE are
respectively 19.5, 26.31, and 27.69 (smaller ranks denote better methods).

Regarding the speedups, all of them obtain reasonable speedups taking into
account that the effort needed to use the skeletons is negligible: the programmer
only changes a call to the sequential higher-order function by a call to the parallel
skeleton. Anyway, the speedup obtained by PSO is slightly better (around 10%).
The reason is that in each global step PSO only communicates the best position
found by each island, while in ABC and DE it is communicated the whole set
of bees/candidates computed in the last iteration. Thus, larger communications
reduces the speedup.

Table 1. Average optimality comparison among metaheuristics

Funct Name Dim PSO ABC DE

f1(x) Sphere model 30 1.02 · 10−4 3.87 · 10−9 6.17 · 10−4

f2(x) Schwefel’s problem 2.22 30 8.29 · 10−3 1.74 · 10−7 2.84 · 10−5

f3(x) Schwefel’s problem 1.2 30 1.93 · 10−5 3.58 · 103 3.33 · 104
f4(x) Schwefel’s problem 2.21 30 1.45 · 10−3 1.39 6.42 · 10−1

f5(x) Generalized Rosenbrock’s function 30 26.57 0.13 24.01

f6(x) Step function 30 0 0 0

f8(x) Generalized Schwefel’s problem 2.26 30 −9686.99 −12569.49 −12044.01

f9(x) Generalized Rastrigin’s function 30 6.97 · 10−8 0 9.95 · 10−2

f10(x) Ackley’s function 30 2.41 · 10−3 9.37 · 10−5 15.53

f11(x) Generalized Griewank function 30 4.69 · 10−3 1.12 · 10−10 2.53 · 10−4

f12(x) Generalized penalized function I 30 6.33 · 10−3 8.96 · 10−11 5.45 · 10−5

f13(x) Generalized penalized function II 30 4 · 10−2 8.7 · 10−9 3.99 · 10−3

f14(x) Shekel’s foxholes function 2 1.65 496.58 476.85

f15(x) Kowalik’s function 4 1.22 · 10−3 4.69 · 10−4 3.075 · 10−4

f16(x) Six-hump camel-back function 2 −1.0316 −1.0316 −1.0316

f17(x) Branin function 2 0.398 0.398 0.398



14 F. Rubio et al.

7 Conclusions and Future Work

In this paper we have shown the usefulness of the functional programming para-
digm to develop generic solutions to deal with swarm intelligence metaheuristics.
In particular, we have shown how to develop parallel skeletons for a given meta-
heuristic, namely Differential Evolution, but the same ideas can be used to deal
with any metaheuristic. The higher-order nature of the language simplifies the
development of generic functions comparing the results obtained with different
configurations.

The results obtained with our library show that the effort needed to use
our skeletons is negligible. However, the obtained speedup is good. Anyway, we
do not claim to obtain optimal speedup, but reasonable speedups at very low
programming effort.

As future work, we want to use our library to deal with NP-complete problems
appearing in the context of marketing strategies (see e.g. [13]).

References

1. Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm.
In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796,
pp. 608–619. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04441-0 53

2. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Comput. 30, 389–406 (2004)

3. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

4. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I.
(eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, Heidelberg (2010)

5. Karaboga, D., Görkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1),
21–57 (2014)

6. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Computer Society
Press (1995)

7. Loogen, R.: Eden – parallel functional programming with haskell. In: Zsók, V.,
Horváth, Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol. 7241, pp. 142–206.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32096-5 4

8. Parejo, J.A., Garćıa, J., Ruiz-Cortés, A., Riquelme, J.C.: Statservice: herramienta
de análisis estad́ıstico como soporte para la investigación con metaheuŕısticas. In:
MAEB 2012 (2012)

9. Pedersen, M.E.H.: Good parameters for differential evolution. Technical report
HL1002, Hvass Laboratories (2010)

10. Pedersen, M.E.H.: Tuning & simplifying heuristical optimization. Ph.D. thesis,
University of Southampton, School of Engineering Sciences (2010)

11. Rabanal, P., Rodŕıguez, I., Rubio, F.: Using river formation dynamics to design
heuristic algorithms. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G.,
Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73554-0 16

http://dx.doi.org/10.1007/978-3-642-04441-0_53
http://dx.doi.org/10.1007/978-3-642-32096-5_4
http://dx.doi.org/10.1007/978-3-540-73554-0_16


A Parallel Swarm Library Based on Functional Programming 15

12. Rabanal, P., Rodŕıguez, I., Rubio, F.: Parallelizing particle swarm optimization in
a functional programming environment. Algorithms 7(4), 554–581 (2014)

13. Rodŕıguez, I., Rabanal, P., Rubio, F.: How to make a best-seller: optimal product
design problems. Appl. Soft Comput. 55, 178–196 (2017)

14. Rubio, F.: Programación funcional paralela eficiente en Eden. Ph.D. thesis, Uni-
versidad Complutense de Madrid (2001)

15. Rubio, F., de la Encina, A., Rabanal, P., Rodŕıguez, I.: Eden’s bees: parallelizing
artificial bee colony in a functional environment. In: ICCS 2013, pp. 661–670 (2013)

16. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3(2), 82–102 (1999)


	A Parallel Swarm Library Based on Functional Programming
	1 Introduction
	2 Introduction to Eden
	3 Differential Evolution
	4 Generic Differential Evolution in Haskell
	5 Parallel Skeletons
	6 Experimental Results
	7 Conclusions and Future Work
	References


