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Preface

We are proud to present the set of final accepted papers for the 13th edition of IWANN –

the International Work-Conference on Artificial Neural Networks – held in Cadiz, Spain,
during June 14–16, 2017.

IWANN is a biennial conference that seeks to provide a discussion forum for
scientists, engineers, educators, and students about the latest ideas and realizations in
the foundations, theory, models, and applications of hybrid systems inspired by nature
(neural networks, fuzzy logic, and evolutionary systems) as well as in emerging areas
related to these areas. As in previous editions of IWANN, this year’s event also aimed
to create a friendly environment that could lead to the establishment of scientific
collaborations and exchanges among attendees. The proceedings include all the pre-
sented communications to the conference. The publication of an extended version of
selected papers in a special issue of several specialized journals (such as Neurocom-
puting, Soft Computing, and Neural Proccesing Letters) is also foreseen.

Since the first edition in Granada (LNCS 540, 1991), the conference has evolved
and matured. The list of topics in the successive call for papers has also evolved,
resulting in the following list for the present edition:

1. Mathematical and theoretical methods in computational intelligence. Mathematics
for neural networks. RBF structures. Self-organizing networks and methods. Sup-
port vector machines and kernel methods. Fuzzy logic. Evolutionary and genetic
algorithms.

2. Neurocomputational formulations. Single-neuron modelling. Perceptual modelling.
System-level neural modelling. Spiking neurons. Models of biological learning.

3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfigurable
systems. Supervised, non-supervised, reinforcement and statistical algorithms.

4. Emulation of cognitive functions. Decision-making. Multi-agent systems. Sensor
mesh. Natural language. Pattern recognition. Perceptual and motor functions
(visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control.

5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems.
Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and
bioinspired systems. Neural prostheses. Retinomorphic systems. Brain–computer
interfaces (BCI). Nanosystems. Nanocognitive systems.

6. Advanced topics in computational intelligence. Intelligent networks. Knowledge-
intensive problem-solving techniques. Multi-sensor data fusion using computational
intelligence. Search and meta-heuristics. Soft computing. Neuro-fuzzy systems.
Neuro-evolutionary systems. Neuro-swarm. Hybridization with novel computing
paradigms.

7. Applications. Expert systems. Image and signal processing. Ambient intelligence.
Biomimetic applications. System identification, process control, and manufacturing.
Computational biology and bioinformatics. Parallel and distributed computing.
Human–computer interaction, Internet modelling, communication and networking.



Intelligent systems in education. Human–robot interaction. Multi-agent systems.
Time series analysis and prediction. Data mining and knowledge discovery.

At the end of the submission process, and after a careful peer review and evaluation
process (each submission was reviewed by at least two, and on average 2.8, Program
Committee members or additional reviewers), 126 papers were accepted for oral or
poster presentation, according to the recommendations of the reviewers and the
authors’ preferences.

It is important to note, that for the sake of consistency and readability of the book,
the presented papers are not organized as they were presented in the IWANN 2017
sessions, but classified under 21 chapters. The organization of the papers is in two
volumes, arranged according to the topics list included in the call for papers. The first
volume (LNCS 10305), entitled “Advances in Computational Intelligence. IWANN
2017. Part I” is divided into nine main parts and includes the contributions on:

1. Bio-inspired Computing
2. E-Health and Computational Biology
3. Human–Computer Interaction
4. Image and Signal Processing
5. Mathematics for Neural Networks
6. Self-Organizing Networks
7. Spiking Neurons
8. Artificial Neural Networks in Industry, ANNI 2017 (Special Session, organized by:

Dr. Ahmed Hafaifa, Dr. Kouzou Abdellah, and Dr. Guemana Mouloud)
9. Machine Learning for Renewable Energy Applications (Dr. Sancho Salcedo Sanz,

and Dr. Pedro Antonio Gutiérrez)

In the second volume (LNCS 10306), entitled “Advances in Computational
Intelligence. IWANN 2017. Part II” is divided into 12 main parts and includes the
contributions on:

1. Computational Intelligence Tools and Techniques for Biomedical Applications
(Special Session, organized by: Dr. Miguel Atencia, Dr. Leonardo Franco, and
Dr. Ruxandra Stoean)

2. Assistive Rehabilitation Technology (Special Session, organized by: Dr. Oresti
Baños and Dr. Jose A. Moral-Muñoz)

3. Computational Intelligence Methods for Time Series (Special Session, organized
by: Dr. German Gutierrez and Dr. Héctor Pomares)

4. Machine Learning Applied to Vision and Robotics (Special Session, organized by:
Dr. José García-Rodríguez, Dr. Enrique Dominguez, Mauricio Zamora, and
Dr. Eldon Caldwel)

5. Human Activity Recognition for Health and Well-Being Applications (Special
Session, organized by: Dr. Daniel Rodríguez-Martín and Dr. Albert Samà)

6. Software Testing and Intelligent Systems (Special Session, organized by:
Dr. Manuel Núñez and Pablo Cerro Cañizares)

7. Real-World Applications of BCI Systems (Special Session, organized by:
Dr. Ricardo Ron and Dr. Ivan Volosyak)
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8. Machine Learning in Imbalanced Domains (Special Session, organized by:
Dr. Jaime S. Cardoso and Dr. María Pérez Ortíz)

9. Surveillance and Rescue Systems and Algorithms for Unmanned Aerial Vehicles
(Special Session, organized by: Dr. Wilbert Aguilar)

10. End-User development for Social Robotics (Special Session, organized by: Igor
Zubrycki, Hoang-Long Cao, and Dr. Emilia Barakova)

11. Artificial Intelligence and Games (Special Session, organized by: Dr. Antonio
J. Fernández-Leiva, Dr. Antonio Mora-García, and Dr. Pablo García Sánchez)

12. Supervised, Non-supervised, Reinforcement and Statistical Algorithms

In this edition of IWANN 2017, we were honored to have the following invited
speakers:

– Dr. Matthias Rauterberg, Technische Universiteit Eindhoven, The Netherlands:
“How to Design for the Unconscious”

– Prof. Ulrich Rückert, Bielefeld University, Germany: “Cognitronics: Resource-
efficient Architectures for Cognitive Systems”

– Prof. Le Lu, U.S. National Institutes of Health, USA: “Towards Big Data, Weak
Label and True Clinical Impact on Medical Image Diagnosis: The Roles of Deep
Label Discovery and Open-Ended Recognition”

The 14th edition of the IWANN conference was organized by the University of
Granada, University of Malaga, Polytechnical University of Catalonia, together with
the Spanish Chapter of the IEEE Computational Intelligence Society. We wish to thank
to the University of Cadiz for their support and grants.

We would also like to express our gratitude to the members of the different com-
mittees for their support, collaboration, and good work. We especially thank the local
Organizing Committee, Program Committee, the reviewers, invited speakers, and
special session organizers. Finally, we want to thank Springer, and especially Alfred
Hofmann and Anna Kramer for their continuous support and cooperation.

June 2017 Ignacio Rojas
Gonzalo Joya
Andreu Catala
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Abstract. In this paper we present a library of parallel skeletons to deal
with swarm intelligence metaheuristics. The library is implemented using
the parallel functional language Eden, an extension of the sequential
functional language Haskell. Due to the higher-order nature of functional
languages, we simplify the task of writing generic code, and also the task
of comparing different strategies. The paper illustrates how to develop
new skeletons and presents empirical results.

Keywords: Metaheuristics · Parallel programming · Skeletons · Func-
tional programming

1 Introduction

When dealing with swarm optimization methods (see e.g. [4–6,11]), one of the
first problems is deciding which swarm algorithm should be chosen to solve the
problem under consideration. The same issue applies for deciding how a swarm
method should be parallelized, out of a given set of available parallel strategies.
Under these circumstances, it is very useful to provide programmers with several
implementations of several swarm intelligence methods – as long as all of them
can be easily adapted and used to solve any problem under consideration. In
this regard, the reusability and clear separation of concerns of functional pro-
grams fits particularly well. In this paper we present a library of parallel func-
tional swarm intelligence algorithms. The chosen parallel functional language
is Eden [7], which is a parallel extension of Haskell, a higher-order functional
language that guarantees the absence of side effects. The aim of our library is
providing programmers with a tool to quickly test the performance of several
swarm intelligence algorithms, as well as several parallelizing strategies.

Smaller pieces of the library have been presented in previous works.
In [12] we presented our Eden implementation of Particle Swarm Optimization

This work has been partially supported by projects TIN2012-39391-C04-04,
TIN2015-67522-C3-3-R, and S2013/ICE-2731.
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(PSO) [6], whereas an Eden implementation of the Artificial Bee Colony algo-
rithm (ABC) [5] was given in [15]. In this paper we develop an Eden implementa-
tion of Differential Evolution [3]. In addition, we glue together these three Eden
implementations (and their parallel variants) by constructing a higher abstrac-
tion layer. The goal of this tool layer is providing a common unified interface
to all supported methods and help the programmer to automatically test the
performance of all of these three methods and their variants (as well as others
that could be provided in the future) for the target problem.

The rest of the paper is organized as follows. First, we briefly describe the
language used. Then, Sect. 3 summarizes the main metaheuristic used in this
work. Next, in Sect. 4 we illustrate how to develop generic higher-order func-
tions to deal with a concrete metaheuristic, while in Sect. 5 we show how to
provide new parallel skeletons to deal with the same metaheuristic. Afterwards,
Sect. 6 presents results obtained with our library. Finally, Sect. 7 presents our
conclusions.

2 Introduction to Eden

Eden [7] is a parallel extension of Haskell. It introduces parallelism by adding
syntactic constructs to define and instantiate processes explicitly. It is possible to
define a new process abstraction p by applying the predefined function process
to any function \x -> e, where variable x will be the input of the process, while
the behavior of the process will be given by expression e. Process abstractions are
similar to functions – the main difference is that the former, when instantiated,
are executed in parallel. From the semantics point of view, there is no difference
between process abstractions and function definitions. The differences between
processes and functions appear when they are invoked. Processes are invoked by
using the predefined operator #. For instance, in case we want to create a process
instantiation of a given process p with a given input data x, we write (p # x).
Note that, from a syntactical point of view, this is similar to the application of
a function f to an input parameter x, which is written as (f x).

Therefore, when we refer to a process we are not referring to a syntac-
tical element but to a new computational environment, where the computa-
tions are carried out in an autonomous way. Thus, when a process instantiation
(e1 # e2) is invoked, a new computational environment is created. The new
process (the child or instantiated process) is fed by its creator by sending the
value for e2 via an input channel, and returns the value for e1e2 (to its parent)
through an output channel.

In order to increase parallelism, Eden employs pushing instead of pulling of
information. That is, values are sent to the receiver before it actually demands
them. In addition to that, once a process is running, only fully evaluated data
objects are communicated. The only exceptions are streams, which are transmit-
ted element by element. Each stream element is first evaluated to full normal
form and then transmitted. Concurrent threads trying to access not yet available
input are temporarily suspended. This is the only way in which Eden processes
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synchronize. Notice that process creation is explicit, but process communication
(and synchronization) is completely implicit.

Process abstractions in Eden are not just annotations, but first class values
which can be manipulated by the programmer (passed as parameters, stored
in data structures, and so on). This facilitates the definition of skeletons [2,14]
as higher order functions. Next we illustrate, by using a simple example, how
skeletons can be written in Eden.

The most simple skeleton is map. Given a list of inputs xs and a function f to
be applied to each of them, the sequential specification in Haskell is as follows:

map f xs = [f x | x <- xs]

that can be read as for each element x belonging to the list xs, apply function
f to that element. This can be trivially parallelized in Eden. In order to use a
different process for each task, we will use the following approach:

map_par f xs = [pf # x | x <- xs] where pf = process f

The process abstraction pf wraps the function application (f x). It determines
that the input parameter x as well as the result value will be transmitted through
channels.

Let us note that Eden’s compiler has been developed by extending the GHC
Haskell compiler. Hence, it reuses GHC’s capabilities to interact with other pro-
gramming languages. Thus, Eden can be used as a coordination language, while
the sequential computation language can be, for instance, C.

3 Differential Evolution

Differential evolution (DE) [3] is an evolutionary algorithm for optimizing real-
valued multi-modal objective functions. Although it is related to Genetic Algo-
rithms, it is a different option in the universe of evolutionary methods. DE
maintains a population of candidate solutions and attempts to improve it by
combining existing ones. The method uses NP agents as candidate solutions,
where each of these agents is represented by an n-dimensional vector. The initial
population is randomly chosen and uniformly distributed in the search space. DE
generates new solutions by adding the weighted difference between two agents to
a third one. If the new vector improves the objective function of a predetermined
population member, this new vector will replace the one it was compared with,
otherwise, the old vector remains unchanged.

Let f : Rn → R be the function to be minimized (or maximized), and let
xi ∈ R

n be an agent (1 ≤ i ≤ NP) in the population with NP ≥ 4. The basic
DE variant implemented in this paper is explained afterwards. First of all, NP
agents are randomly created in the search space. Next, a loop is executed as
long as an ending condition is not satisfied (typically, the number of iterations
performed does not exceed the limit, or the fitness adequation is not reached).
Inside the loop and for each agent xi in the population, three agents a, b, c are
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chosen. These agents must be distinct from each other and distinct from agent
xi. Next, we pick a random integer R in the range [1, n], and an empty vector y
with n positions is created. Then, the values of vector y are created as follows:
For each y(j) a random real in the range [0, 1] is assigned to variable r, and if
the value of r is lower than the crossover probability parameter, CR ∈ [0, 1], or
if j=R then the value a(j)+F×(b(j)-c(j)) is set to dimension j of variable y
(y(j)); else y(j) = xi(j). When the initialization of y finishes, if f(y)<f(xi) the
i-th agent xi is replaced with the new vector y (xi= y). At the end, the agent
with the minimum value of f (or the maximum if maximizing) is returned.

Parameter F ∈ [0, 2] is called the differential weight. Parameters F and CR are
experimentally chosen.

4 Generic Differential Evolution in Haskell

In this section we show how to develop a new (sequential) metaheuristic by using
Haskell (Eden parallelizations will be tackled in the next section). In particular,
we consider the implementation of Differential Evolution, although we could deal
with any other metaheuristic in a similar way.

Functional languages allow creating higher-order functions. Thus, we can
take advantage of them to define a generic function deSEQ implementing the
Differential Evolution metaheuristic. This function will have as input parameter
a fitness function, which can be different in each case. It also needs other input
parameters, like the number of candidate positions to be used, the number of
iterations to be performed, the boundings of the search space, and the concrete
parameters F and CR to be used. Moreover, in order to implement it in a pure
functional language like Haskell, we need an additional parameter to introduce
randomness. Note that Haskell functions cannot produce side-effects, so they
need an additional input parameter to be able to obtain different results in
different executions. The type of the Haskell function implementing Differential
Evolution can be represented as follows:

deSEQ::RandomGen a => a --Random generator

->Params --Adjustment parameters(F,CR)

->Int --Number of candidates

->Int --Maximum number iterations

->(Position->Double) --Fitness function

->Boundings --Search space boundaries

->(Double,Position) --Value and position of best candidate

Regarding the representation of Position, it must be able to deal with an
arbitrarily large number of dimensions. Thus, we can easily represent it by using
a list of real numbers. In this case, the length of such list represents the number
of dimensions, whereas the concrete elements represent the coordinate values of
each of these dimensions. Note that Boundings can be defined in a similar way,
although a pair with the lower and upper bound for each dimension is considered
in this case. Finally, the type Params only needs to handle the parameters used
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in Differential Evolution to tune up the algorithm, that is, F and CR, which are
real numbers. Thus, the needed auxiliary types are the following:

type Position = [Double]
type Boundings = [(Double,Double)]
type Params = (Double,Double)

After defining the types and the interface of the main function deSEQ, we
have to define its actual body. First, we have to randomly initialize the candi-
date solutions. This is done by a simple function initializeCandidates (not
shown) that distributes the candidates randomly among the search space. After
initializing the candidates, function de’ performs the real work of the algorithm
by iterating the application of the basic step as many times as needed. As in the
case of the main function deSEQ, the auxiliary function de’ will also need a way
to introduce randomness. This is solved by using function split to create new
random generators. Let us finally note that function de’ needs the same inputs
as the main function (number of iterations, fitness function, etc.), as it has to
perform the actual work, but now it uses a list of candidate positions instead of
only the number of candidates, as we have already created the appropriate list:

deSEQ sg p nc it f bo = obtainBestCandidate (de’ sg2 p it f bo initCandis)

where initCandis = initializeCandidates sg1 nc bo f

(sg1,sg2) = split sg

type Candidate = (Double,Position) -- Current value, current position

In order to define function de’ we only need to use a simple recursion on the
number of iterations. The base case will be when zero iterations remains. In that
case, we return the same list of candidates without modifying it. Otherwise, we
use function oneStepDE to perform one iteration of the algorithm, and then we
go on performing the rest of iterations by using a recursive call to function de’:

de’ _ _ 0 _ _ cs = cs

de’ sg p it f bo cs = de’ sg2 p (it-1) f bo (oneStepDE sg1 p f bo cs)

where (sg1,sg2) = split sg

For the sake of simplicity, we assume that the only finishing condition is the
number of iterations, but we can easily modify it to include alternative finishing
conditions.

Finally, we only need to define how to perform each step. First, we have to
generate the list of needed random numbers. For each candidate solution we need
three random indexes (corresponding to the candidates a, b, and c described in
Sect. 3, which will be used to generate a new candidate), one random dimension
to be modified for sure, and one random real number for each dimension. This
list of real numbers will be used to decide whether the corresponding dimension
is to be modified or not, comparing the real number with the CR parameter.
Function genRanIndexDimR generates the list of random numbers for each can-
didate, while the predefined higher-order function zipWith allows to combine
each candidate with the corresponding random numbers generated by function
genRanIndexDimR. The source code is as follows:
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oneStepDE sg (dw,cr) f bo cs = zipWith combineCandidate cs rs
where rs = genRanIndexDimR sg (length cs -1) (length bo)

The definition of combineCandidate is trivial. It only has to combine one
candidate with the random candidates selected using the random numbers
rs, using the formula shown in Sect. 3. The complete program is available at
http://antares.sip.ucm.es/prabanal/english/heuristics library.

After implementing the higher-order function dealing with DE metaheuristic,
the user only needs to provide the appropriate fitness function corresponding to
the concrete problem to be solved. Note that the user does not need to under-
stand the internals of the definition of deSEQ, but only its basic interface. That
is, the programmer only has to call deSEQ providing the fitness function and the
concrete parameters to be used (number of iterations and so on).

5 Parallel Skeletons

Parallelizing a problem requires detecting time-consuming tasks that can be
performed independently. In our case, in each step of the algorithm we can deal
independently with each of the candidates. That is, in function oneStepDE we
could parallelize the evaluation corresponding to each candidate solution. By
doing so, we can create a simple skeleton to parallelize DE algorithms. How-
ever, in order to increase the granularity of each of the parallel tasks we should
avoid creating independent processes for each candidate. It is better to create as
many processes as processors available, and to fairly distribute the candidates
among the processes. This can be done by substituting zipWith by a call to
zipWith farm, a parallel version of zipWith that implements the idea of distrib-
uting a large list of tasks among a reduced number of processes.

By using zipWith farm the speedup improves. However, for each iteration of
the algorithm zipWith farm would create a new list of processes, and it would
have to receive and return the corresponding lists of candidates. We can improve
the parallel performance of the algorithm by parallelizing function deSEQ instead
of function oneStepDE. We start splitting the list of candidates into as many
groups as processors available. Then, each group evolves in parallel indepen-
dently during a given number of iterations. After that, processes communicate
among them to redistribute the candidates among processes, and then they go on
running again in parallel. This mechanism is repeated as many times as desired
until a given number of global iterations is reached.

The implementation of this approach requires using a function dePAR instead
of deSEQ. The new function dePAR uses basically the same parameters as deSEQ,
but instead of using a parameter it to define the number of iterations, it uses
two parameters it and pit. Now, the number of iterations will be defined by
it * pit, where pit indicates the number of iterations to be performed inde-
pendently in each process without communicating with other processes, whereas
it indicates the number of parallel synchronous steps to be performed among
processes. In addition to that, we also include a new parameter nPE to define

http://antares.sip.ucm.es/prabanal/english/heuristics_library
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the number of independent processes to be created. In the most common case,
this parameter will be equal to the number of processors available. Taking into
account these considerations, the type interface of the new function is as follows:

dePAR::RandomGen a => a --Random generator

->Params --Adjustment parameters (F,CR)

->Int --Number of candidates

->Int --Iterations per parallel step

->Int --Number of global steps

->Int --Number of parallel processes

->(Position->Double) --Fitness function

->Boundings --Search space boundaries

->(Double,Position) --Value and position of best candidate

The definition of the body of the main function dePAR requires creating
as many processes as requested in the corresponding parameter. Thus, before
defining this function, we will show how to define a function to deal with the
behaviour of each process. Such function will need the corresponding parameter
to create random values, and it will also receive the tuning parameters of the
metaheuristic (i.e. F and CR), the number of iterations to be performed in each
parallel step pit, the fitness function f, and the boundings of the search space
bo. Then, the process will receive a list with it lists of candidates through an
input channel, and it will produce as output a new list with it lists of candidates.
Note that the main function dePAR will perform it global synchronous steps,
where each step will perform pit iterations in parallel without synchronization.
Thus, dePAR will assign it tasks as input to each process, and each process
will return it solutions as output, where those solutions will be used as input
of other processes in the next global step. Let us remark that, in Eden, list
elements are transmitted through channels in a stream-like fashion. This implies
that, in practice, each process will receive a new list of candidates through its
input channel right before starting to compute a new parallel step. The complete
source code defining a process is as follows:

deP sg p pit f bo [] = []

deP sg p pit f bo (bs:bss)=de’ sg1 p pit f bo bs : deP sg2 p pit f bo bss

where (sg1,sg2) = split sg

As it can be seen, it is only necessary to define it recursively on the number
of tasks. When the input list of lists is empty, the process finishes returning an
empty list of results. Otherwise, it uses exactly the same sequential function de’
described in the previous section to perform pit iterations, and then it goes on
dealing with the rest of the input lists.

Let us now consider how to define the main function dePAR. First, it has
to create the initial list of random candidates, exactly in the same way as in
the sequential case deSEQ. Then, the main difference with the sequential case
appears: we create nPE copies of process deP. Each of them receives the main
input parameters of the algorithm (tuning parameters F and CR, fitness function,
etc.), and it also receives its own list of tasks (pins!!i). Each element of the list
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of tasks contains an input list of candidates, that will be processed by deP during
pit iterations. The output of each process is a new list of lists of candidates. Each
inner list was computed after each parallel step, and they must be redistributed
among the rest of processes before starting the next global step. This is done
by function redistribute. The final result of function bestPAR is obtained by
combining the last results returned by each process. The source code is as follows:

dePAR sg p nc pit it nPE f bo = obtainBestCandidate (last poutsFlat)

where initCandidates = initializeCandidates sg nc bo f

sgs = tail (generateSGs (nPE+1) sg)

pouts=[process (deP (sgs!!i) p pit f bo # (take it (pins!!i))

|i<-[0..nPE-1]]

poutsFlat = flatXsss pouts

pins = redistribute nPE (initCandidates:poutsFlat)

It is important to note that the user of the library does not need to understand
the low level details of the previous definition. In fact, in order to use it, it is only
necessary to substitute a call to the sequential function deSEQ by a call to the
parallel scheme dePAR, using appropriate values for parameters it, pit, and nPE.
The last parameter will be typically equal to the number of available processors.
Thus, the only programming effort will be to decide the values of it and pit.
In case pit is very small, the granularity of tasks will be reduced, whereas very
large values of pit would reduce the possibility to exchange candidates among
processes. As a degenerate case, we could use it = 1 and pit being equal to the
total number of iterations to be performed. By doing so, we would create groups
searching for a solution in a completely independent way.

The previous parallel skeleton can be easily modified to handle different
approaches. For instance, when we are using several computers in parallel, it
could be the case that each of them is different. Thus, it would be reasonable
to assign more candidates to those computers with faster processors, and less
candidates to the slower ones. This can be easily done. First, instead of receiving
the number of processes, we need to receive as input parameter the speed of each
processor. This can be done by using a list of real numbers. Obviously, given the
list we can trivially know the number of processes to be created by computing
the length of the list. In the implementation, function dePAR has to be modified
to split each list of candidates according to their relative speeds. That is, pins
is now created by taking into account the speeds parameter:

dePARh sg p nc pit it speeds f bo = obtainBestCandidate (last poutsFlat)

where nPE = length speeds

initCandidates = initializeCandidates sg nc bo f

sgs = tail (generateSGs (nPE+1) sg)

pouts=[process (deP (sgs!!i) p pit f bo)#(take it (pins!!i))

|i<-[0..nPE-1]]

poutsFlat = flatXsss pouts

pins = redistrRelative speeds initCandidates poutsFlat

The redistribution considering the relative speed is done by using function
shuffleRelative, an auxiliary function that first computes the percentage of
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tasks to be assigned to each process, and then distributes the tasks by using
function splitWith. It is worth to comment that we do not need to change
anything else in the skeleton. In particular, the definition of the process deP
itself remains unchanged.

6 Experimental Results

In this section we illustrate the usefulness of the library by performing some
experiments. Let us remark that the higher-order nature of the language simpli-
fies the development of tools to analyze properties of the different metaheuristic.
In particular, we can write new higher-order functions whose parameters are
again higher-order functions dealing with different metaheuristics. For instance,
we can compare a list of metaheuristics mths for the same input problem (given
by a concrete fitness function and the bounds of the search space) by using a
higer-order function as follows:

compare::[(Position->Double)->Boundings->(Double,Position)]
-> (Position->Double) -> Boundings -> [Double]

compare mths fitness bounds
= map (fst . ($ (fitness,bounds)) . uncurry) mths

Note that the higher-order function receives as second and third parameters
the fitness function and the boundaries of a concrete problem, while the first
input is a list of metaheuristics to be compared, where each of them is again a
higher-order function that receives a fitness function and the boundaries of the
search space. Let us remark that the metaheuristics can have more parameters
than those appearing in function compare. For instance, Differential Evolution
has more parameters: the number of candidates, number of iterations, etc. How-
ever, as functions are first class citizens of the language, any metaheuistic can
be partially applied. As an example, we can partially apply metaheuristic deSEQ
to use a concrete random generator, concrete adjustment parameters (F, CR), a
concrete number of candidates (75) and a concrete number of iterations (2000)
by writing the following expression

deSEQ sg (0.47,0.88) 75 2000

Its type is exactly (Position->Double) -> Boundings -> (Double,Posi-
tion). That is, we can use it as one element of the first input list of function
compare. For instance, we can compare three different configurations of function
deSEQ for a single problem ackley by writing the following:

compare [deSEQ sg (0.47,0.88) 75 2000, deSEQ sg (0.47,0.88) 100 1500,
deSEQ sg (0.32,0.76) 75 2000]

ackleyFitness ackleyBounds

That is, we are comparing three different configurations. The first and the
second one use the same values for F and CR, but the first one uses 75 candi-
dates and 2000 iterations, while the second one uses 100 candidates and 1500
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iterations. The third configuration uses different values for F and CR, while the
number of candidates and iterations is the same as in the first configuration. We
can also generate larger lists of configurations by combining parameters using
comprehension lists:

compare [deSEQ sg (f,cr) nc ni | f<-[0.47,0.32], cr<-[0.88,0.76],
nc<-[75,100], ni<-[1500,2000]]

ackleyFitness ackleyBounds

As it can be expected, we can easily compare the results obtained by both
sequential and parallel metaheuristics. For instance

compare ([deSEQ sg (0.47,0.88) 75 2000]
++[dePAR sq (0.47,0.88) 75 50 40 n|n<-[1..4]])

ackleyFitness ackleyBounds

compares the sequential version with four parallelizations varying the number of
processes to be used from 1 to 4, while

compare [dePAR sq (0.47,0.88) 75 pit (div 2000 pit) 4 | pit<-[50,100,200]]
ackleyFitness ackleyBounds

compares three parallel implementations, all of them using 4 processes and 2000
iterations, but varying the size of each global step from 50 to 200 iterations.
Obviously, the comparison can also include different metaheuristics as follows:

compare [deSEQ sg (0.47,0.88) 75 2000, deSEQ sg (0.47,0.88) 100 1500,
beesSEQ sg 3000 100 1500, psoSEQ sg (-0.16,1.89,2.12) 100 1500]

ackleyFitness ackleyBounds

where we compare two configurations of Differential Evolution, one configuration
of Artificial Bee Colony, and another configuration of Particle Swarm Optimiza-
tion. Our library provides a larger set of functions implementing different kinds
of comparisons. For instance, the previous function is extended to execute each
metaheuristic n times and to compute average and standard deviation results.
We also allow to receive as input not only a problem, but a list of problems, and
we analyze the results obtained for all of them, and so on.

In order to show the information we can obtain by using these tools, we com-
pare the results obtained by three different metaheuristics on a given benchmark.
In particular, we compare Particle Swarm Optimization, Artificial Bee Colony,
and Differential Evolution by using as benchmark a well-known set of functions
defined in [16], where we have removed the last six functions of such benchmark
because they are simple low-dimensional functions with only a few local minima.

In order to fairly compare the three metaheuristics, for each function we
used exactly the same number of fitness evaluations. This number of function
evaluations is the same as that defined in [16]. Regarding the tuning parame-
ters of each of the metaheuristics, we use values available in the literature. In
particular, the parameters of PSO are taken from [10], in the case of ABC we
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use [1], and in the case of DE we follow [9]. The results shown in Table 1 were
obtained after computing the average of 50 executions for each metaheuristic.
Note that for each metaheuristic we can find a concrete problem where it obtains
the best results. However, the metaheuristic that obtains more often the best
result in this concrete benchmark is ABC. In fact, by using [8] we can perform
an statistical analysis to quantify the differences among the metaheuristics. In
particular, aligned Friedman test can be used to check whether the hypothesis
that all methods behave similarly (the null hypothesis) holds or not. Let us con-
sider α = 0.05, a standard significance level. From results given in Table 1, we
calculate that the p-value for aligned Friedman is 0.0027, which allows to reject
the null hypothesis with a high level of significance (the p-value is much lower
than 0.05). So, the test concludes that the results of ABC, PSO, and DE are
not considered similar. Ranks assigned by this test to ABC, PSO, and DE are
respectively 19.5, 26.31, and 27.69 (smaller ranks denote better methods).

Regarding the speedups, all of them obtain reasonable speedups taking into
account that the effort needed to use the skeletons is negligible: the programmer
only changes a call to the sequential higher-order function by a call to the parallel
skeleton. Anyway, the speedup obtained by PSO is slightly better (around 10%).
The reason is that in each global step PSO only communicates the best position
found by each island, while in ABC and DE it is communicated the whole set
of bees/candidates computed in the last iteration. Thus, larger communications
reduces the speedup.

Table 1. Average optimality comparison among metaheuristics

Funct Name Dim PSO ABC DE

f1(x) Sphere model 30 1.02 · 10−4 3.87 · 10−9 6.17 · 10−4

f2(x) Schwefel’s problem 2.22 30 8.29 · 10−3 1.74 · 10−7 2.84 · 10−5

f3(x) Schwefel’s problem 1.2 30 1.93 · 10−5 3.58 · 103 3.33 · 104
f4(x) Schwefel’s problem 2.21 30 1.45 · 10−3 1.39 6.42 · 10−1

f5(x) Generalized Rosenbrock’s function 30 26.57 0.13 24.01

f6(x) Step function 30 0 0 0

f8(x) Generalized Schwefel’s problem 2.26 30 −9686.99 −12569.49 −12044.01

f9(x) Generalized Rastrigin’s function 30 6.97 · 10−8 0 9.95 · 10−2

f10(x) Ackley’s function 30 2.41 · 10−3 9.37 · 10−5 15.53

f11(x) Generalized Griewank function 30 4.69 · 10−3 1.12 · 10−10 2.53 · 10−4

f12(x) Generalized penalized function I 30 6.33 · 10−3 8.96 · 10−11 5.45 · 10−5

f13(x) Generalized penalized function II 30 4 · 10−2 8.7 · 10−9 3.99 · 10−3

f14(x) Shekel’s foxholes function 2 1.65 496.58 476.85

f15(x) Kowalik’s function 4 1.22 · 10−3 4.69 · 10−4 3.075 · 10−4

f16(x) Six-hump camel-back function 2 −1.0316 −1.0316 −1.0316

f17(x) Branin function 2 0.398 0.398 0.398
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7 Conclusions and Future Work

In this paper we have shown the usefulness of the functional programming para-
digm to develop generic solutions to deal with swarm intelligence metaheuristics.
In particular, we have shown how to develop parallel skeletons for a given meta-
heuristic, namely Differential Evolution, but the same ideas can be used to deal
with any metaheuristic. The higher-order nature of the language simplifies the
development of generic functions comparing the results obtained with different
configurations.

The results obtained with our library show that the effort needed to use
our skeletons is negligible. However, the obtained speedup is good. Anyway, we
do not claim to obtain optimal speedup, but reasonable speedups at very low
programming effort.

As future work, we want to use our library to deal with NP-complete problems
appearing in the context of marketing strategies (see e.g. [13]).
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Abstract. This paper shows that parallel processing is useful for feature
selection in brain-computer interfacing (BCI) tasks. The classification problems
arising in such application usually involve a relatively small number of
high-dimensional patterns and, as curse of dimensionality issues have to be
taken into account, feature selection is an important requirement to build suit-
able classifiers. As the number of features defining the search space is high, the
distribution of the searching space among different processors would contribute
to find better solutions, requiring similar or even smaller amount of execution
time than sequential counterpart procedures. We have implemented a parallel
evolutionary multiobjective optimization procedure for feature selection, based
on the island model, in which the individuals are distributed among different
subpopulations that independently evolve and interchange individuals after a
given number of generations. The experimental results show improvements in
both computing time and quality of EEG classification with features extracted
by multiresolution analysis (MRA), an approach widely used in the BCI field
with useful properties for both temporal and spectral signal analysis.

Keywords: Brain-computer interfaces (BCI) � Feature selection � Island model
based evolutionary algorithms � Multiresolution analysis (MRA) � Parallel
multiobjective optimization

1 Introduction

Many classification tasks in bioinformatics deal with patterns defined by a large
number of features. Moreover, these high-dimensional classification problems have
frequently to be solved with the number of patterns smaller than the number of features,
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thus presenting curse of dimensionality problems [1]. Therefore, feature selection is
usually required in bioinformatics [2] to eliminate redundant and noisy features in order
to improve the accuracy and interpretability of the classifiers.

Among the three different approaches for feature selection (filter, wrapper and
embedded methods) [2], our proposal in this paper corresponds to a wrapper procedure.
Although wrapper approaches use the classifier performance to evaluate the utility of a
given set of features and thus they are classifier-dependent, they are usually recognized
as the preferable approaches whenever they would be feasible [3].

One of the issues to be taken into account in the design of a feasible wrapper-based
feature selection procedure is the number of possible features because the size of the
searching space depends exponentially on that number. In high-dimensional classifi-
cation problems, several hundreds or even thousands of features usually define a very
huge searching space where efficient metaheuristics are required. This paper proposes a
parallel multiobjective evolutionary algorithm, in which the individuals of a population
represent different feature selections, and the fitness of a given individual is determined
through the evaluation of the classifier performance after training it with the corre-
sponding patterns defined by the set of selected features. Parallel processing has been
previously considered to take advantage of high performance computer architectures
for feature selection [4–8]. In [7, 8] feature selection is approached using parallel
multiobjective and cooperative coevolutionary procedures implemented through a
master-worker parallel model. In this paper, we propose an island model to implement
parallel multiobjective feature selection applied to BCI.

In what follows, Sect. 2 describes our approach to feature selection based on
multiobjective optimization and its parallel implementation through the island model.
The application considered in this paper corresponds to BCI tasks related with motor
imagery, where the features of the patterns are obtained by using Multiresolution
Analysis (MRA). The details of the application and the patterns in the database used are
provided in Sect. 3. Finally, Sect. 4 describes the experimental results and the con-
clusions are given in Sect. 5.

2 A Parallel Island Procedure for Multiobjective Feature
Selection

As this paper deals with supervised classification problems in which the labels of the
training and test patterns are known, it would be possible to evaluate the performance
of a classifier from the accuracy obtained after training it (by using the set of training
patterns). Nevertheless, other measures that quantify properties such as the general-
ization capability should be taken into account in order to improve the behavior of the
classifier in a real environment, where patterns that have not been used for training
have to be processed. To tackle these issues, we propose a multiobjective evolutionary
procedure where the selection of features is optimized for both accuracy and gener-
alization capability, both evaluated by using the training patterns.

Figure 1.a shows a scheme of the wrapper method we propose for feature selection
based on a multiobjective optimization procedure that searches a vector of decision
variables x ¼ x1; x2; . . .; xn½ � 2 Rn to optimize a function vector f(x), whose scalar
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values ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ represent the m objectives to optimize. These objec-
tives are usually in conflict, and thus multiobjective optimization should obtain a set of
non-dominated solutions called Pareto optimal solutions that define the Pareto front
(no solution in the Pareto front is worse than the others when all the objectives are
taken into account), from which it is possible to choose the most convenient solution in
specific circumstances. To solve the multiobjective optimization problem we have
implemented an evolutionary algorithm based on the NSGA-II algorithm [9], with
specific individual codification and genetic operators.

Algorithm 1. Parallel multi-objective feature selection procedure adopted in Fig. 1.b
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Fig. 1. Wrapper approach to feature selection by evolutionary multiobjective optimization:
(a) sequential procedure; (b) island parallel procedure proposed in the paper
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The main contribution of this paper is a parallel implementation of the procedure
summarized in Fig. 1.a based on an island model. This parallel approach, depicted in
Fig. 1.b, distributes the N individuals of the population among the available P pro-
cessors thus defining P subpopulations, each with N/P individuals. The pseudocode
description of the parallel procedure is provided in Algorithm 1. The procedure first
creates P threads with initialization and evaluate N/P individuals of the population (line
01 of Parallel_NSGAII_featureselection). These P threads are synchro-
nized through a barrier in line 02 to perform the evolution of P subpopulations, each
including N/P individuals, according to procedure Island_evolution. As it can be
seen, each thread requires the number of communications (comm), the number of
generations that the corresponding subpopulation has to complete between commu-
nications (genpar), and the randomly selected couples of threads that have to com-
municate after each genpar number of generations (commprof). This parallel
evolutionary multiobjective procedure, whose behavior is different from the sequential
one, allows improvement in the quality of the solutions found by using bigger popu-
lations and/or reduction in computing time.

3 Feature Selection in BCI with Multiresolution Analysis

The high-dimensional classification problem considered in this paper deals with
brain-computer interfacing (BCI) based on the classification of EEG signals corre-
sponding to motor imagery (MI) tasks. This BCI paradigm uses the series of ampli-
fications and attenuations of short duration occasioned by limb movement imagination,
the so called event related desynchronization (ERD) and event related synchronization
(ERS). In [10] several approaches for multiobjective feature selection in a MRA
(Multiresolution Analysis) system for BCI are proposed and evaluated. A MRA system
[11] applies a sequence of successive approximation spaces to describe the target
signal, thus being useful whenever the target signal presents different characteristics
across the approximation spaces. As a specific example of MRA systems, the discrete
wavelet transform (DWT) was applied in [10, 12] to characterize EEGs from motor
imagery (MI) tasks.

The patterns used in this work are built, from EEG trials, by a feature extraction
procedure based on the MRA described in [12]. Each signal obtained from each elec-
trode contains several segments to which a set of wavelets detail and approximation
coefficients are assigned. This way, considering S segments, E electrodes, and L levels
of wavelets, each EEG pattern is characterized by 2 � S � E � L sets of coefficients.
The number of coefficients in each level set depends on the level. In the dataset con-
sidered here, which was recorded in the BCI Laboratory at the University of Essex,
S = 20 segments, E = 15 electrodes, and L = 6 levels. Therefore, 3600 sets of wavelet
coefficients in total in each pattern, with from 4 to 128 coefficients in each set, char-
acterize each pattern: a total of 151200 coefficients. Nevertheless, in [12] only one
feature is assigned to each electrode and each level of approximation and detail. It is
obtained by computing the variance of the coefficient distribution and normalising the
obtained values between 0 and 1. This way, 2 � S � E � L = 3600 features constitute
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each pattern. Anyway, as the number of training patterns for each subject is approxi-
mately 180, it is clear that an efficient procedure for feature selection is required.

In [12] an approach based on the use of several classifiers is considered to reduce
the number of features characterizing the patterns applied to each classifier. Figure 2
describes the structure of the classification procedure based on a set of LDA (linear
discriminant analysis) classifiers, in which a module for majority voting based on all
the LDA outputs provides the final classification output. This way, a set of 2 � S � L
LDA classifiers with the number of inputs equaling the number of electrodes are
adopted, as shown in Fig. 2. This procedure is called OPT0 as the baseline method for
performance comparison [10].

In [10] two alternatives for feature selection in BCI with MRA, OPT1 and OPT2,
were evaluated and compared with the performance of OPT0. The alternative OPT2
selects a set of LDAs among the 2 � S � L LDAs in the structure of Fig. 2 through
the multiobjective optimization procedure described in Sect. 2. OPT1 is a simpler
alternative as it uses only one LDA classifier based on a subset of features selected from
all the available features. The two cost functions used in the multiobjective feature
selection in OPT1 and OPT2 take into account the labels assigned to the training
patterns to identify their corresponding classes. Moreover, to characterize the perfor-
mance of the classifier while it has been trained or adjusted for a given set of features
(i.e., an individual of the population), it is important not only to take into account the
accuracy obtained for the training set but also its generalization capabilities, i.e., its
accuracy for unseen instances. Thus, the first cost function is related with the Kappa
index [13] on training dataset, which takes into account the distribution of the per class
error as it is computed as ðp0 � pcÞ=ð1� pcÞ, with p0 equal to the proportion of
coincidences among the classification outputs and the labels of the patterns and pc
being the proportion of patterns on which the coincidence is expected by chance. The
second cost function is the average loss function in a 10-fold cross validation analysis
to the training patterns. This paper proposes and evaluates parallel implementation of
OPT1 and OPT2.
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Fig. 2. EEG classification with multiple LDA classifiers based on majority voting, with one
LDA classifier per segment, per level and, per type (detail and approximation) of wavelet [12]

20 J. Ortega et al.



4 Experimental Results

The parallel procedures for OPT1 and OPT2 have been implemented by using the
Parallel Computing Toolbox of Matlab® (version 8.3) and executed in a node including
two Intel Xeon E5-2620 processors (providing up to 12 threads) at 2.1 GHz and 32 GB
DDR3 RAM per node. The experiments were conducted using the dataset recorded in
the BCI Laboratory at the University of Essex [12]. For each subject, there is one data file
with data recorded for training (training patterns) and another file with data for evalu-
ation (test patterns). Each data file contains about 180 labelled patterns with data from 20
segments (S = 20), six levels (L = 6) of approximation or detail coefficients (a/d = 2),
and 15 electrodes (E = 15). The labels correspond to three imagined movements of right
hand, left hand, and feet. Each experiment has been repeated ten times in order to
complete an analysis to determine the statistical significance of the observed differences
among alternatives. The results provided in what follows correspond to the EEG data
from subjects 104, 107, and 110 (those achieving the best performance results in [12]).

Table 1 provides the average Kappa index values [13] obtained by the baseline
alternative OPT0 [10], which uses the structure of LDA classifiers [12] shown in
Fig. 2, and those by the option OPT2 [10], which searches for an optimal selection of

Table 1. Comparison of Kappa indexes and execution times of OPT0 and OPT2 with 120
individuals, 50 generations, 5 and 10 generations/communication, 4 and 8 threads on data from
subjects 104, 107, and 110 in the BCI dataset of University of Essex

Sbj. Procedure PCnf. Kappa Time (s.) p-val.

104 OPT0 0.564 ± 0.000 –

OPT2 (50/50) 0.545 ± 0.035 20892 ± 1668
OPT2 (120/50) 0.547 ± 0.040 50135 ± 2222
OPT2 (120/50; 4 thr 10 gen/comm.) PC11 0.523 ± 0.014 13919 ± 325 *0.04
OPT2 (120/50; 8 thr 10 gen/comm.) PC12 0.554 ± 0.019 7966 ± 173 0.34
OPT2 (120/50; 4 thr 5 gen/comm.) PC13 0.515 ± 0.023 13902 ± 378 *0.04
OPT2 (120/50; 8 thr 5 gen/comm.) PC14 0.535 ± 0.034 8095 ± 126 0.75

107 OPT0 0.631 ± 0.000 –

OPT2 (50/50) 0.634 ± 0.019 21167 ± 1134
OPT2 (120/50) 0.652 ± 0.022 50749 ± 1578
OPT2 (120/50; 4 thr 10 gen/comm.) PC11 0.657 ± 0.020 14214 ± 315 1.00
OPT2 (120/50; 8 thr 10 it/comm.) PC12 0.655 ± 0.017 8128 ± 129 0.33
OPT2 (120/50; 4 thr 5 it/comm.) PC13 0.645 ± 0.014 14342 ± 134 0.20
OPT2 (120/50; 8 thr 5 it/comm.) PC14 0.642 ± 0.018 8225 ± 149 0.06

110 OPT0 0.648 ± 0.000 –

OPT2 (50/50) 0.605 ± 0.045 18820 ± 1069
OPT2 (120/50) 0.619 ± 0.021 45156 ± 1991
OPT2 (120/50; 4 thr 10 it/comm.) PC11 0.628 ± 0.030 12986 ± 360 0.08
OPT2 (120/50; 8 thr 10 it/comm.) PC12 0.631 ± 0.020 7866 ± 237 0.26
OPT2 (120/50; 4 thr 5 it/comm.) PC13 0.608 ± 0.034 13064 ± 501 0.15
OPT2 (120/50; 8 thr 5 it/comm.) PC14 0.629 ± 0.026 7863 ± 142 0.42
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LDAs in the structure of Fig. 2. The data in parentheses for the OPT2 alternatives
represent the number of individuals in the population and generations of the evolu-
tionary algorithm and, in the case of parallel executions, the number of threads (4 or 8)
and generations (5 or 10) executed by each subpopulation. The different parallel con-
figurations are noted as PC11 to PC14 in the column PCnf. of Table 1. The sequential
version of OPT2 with 120 individuals and 50 generations for subjects 104, 107 and 110
requires more than twelve hours, and provides solutions with average Kappa indices
equal to 0.547, 0.652 and 0.619, respectively. The parallel versions of OPT2 require less
computing times to achieve similar levels of performance than the sequential imple-
mentation of OPT2 with 120 individuals. The parallel OPT2 implementations also
consume less time than the sequential OPT2 with a population of 50 individuals and
even improve the performance of this sequential version of OPT2 for some subjects.

Table 2. Comparison of Kappa indexes and execution times of OPT0 and OPT1 with 2000
individuals, 50 generations and 100 generations, 5 and 10 generations/communication, 4 and 8
threads on data from subjects 104, 107, and 110 in the BCI dataset of University of Essex

Sbj. Procedure PCnf. Kappa Time (s.) p-val.

104 OPT0 0.564 ± 0.000 –

OPT1 (50/50) 0.510 ± 0.056 4241 ± 375
OPT1 (120/50) 0.515 ± 0.047 10316 ± 461
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.653 ± 0.053 23279 ± 770 *0.01
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.606 ± 0.053 44787 ± 414 *0.01
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.634 ± 0.038 12104 ± 1261 *0.01
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.698 ± 0.062 12422 ± 1074 *0.01
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.673 ± 0.039 25751 ± 2000 *0.01
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.665 ± 0.033 46383 ± 1343 *0.01

107 OPT0 0.631 ± 0.000 –

OPT1 (50/50) 0.560 ± 0.041 4317 ± 188
OPT1 (120/50) 0.580 ± 0.052 10336 ± 340
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.613 ± 0.032 22653 ± 428 *0.05
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.636 ± 0.037 45039 ± 625 *0.02
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.603 ± 0.024 10746 ± 18 0.12
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.609 ± 0.023 10778 ± 33 *0.03
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.589 ± 0.028 22537 ± 1059 0.60
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.638 ± 0.029 45838 ± 975 *0.02

110 OPT0 0.648 ± 0.000 –

OPT1 (50/50) 0.450 ± 0.045 3867 ± 164
OPT1 (120/50) 0.450 ± 0.021 9312 ± 253
OPT1 (960/50; 4 thr 10 gen/comm.) PC21 0.569 ± 0.031 22640 ± 461 *0.01
OPT1 (960/100; 4 thr 10 gen/comm.) PC22 0.564 ± 0.065 43796 ± 712 *0.01
OPT1 (960/50; 8 thr 10 gen/comm.) PC23 0.566 ± 0.029 10850 ± 191 *0.01
OPT1 (960/50; 8 thr 5 gen/comm.) PC24 0.569 ± 0.031 12037 ± 1407 *0.01
OPT1 (960/100; 8thr 10gen/comm.) PC25 0.556 ± 0.074 26754 ± 2595 *0.01
OPT1 (1920/100; 8thr 10gen/comm.) PC26 0.551 ± 0.028 45355 ± 1413 *0.01
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Besides the average Kappa index values obtained by the baseline method OPT0,
Table 2 gives the results for the option OPT1 [10], which searches for an optima subset
of features that constitute the inputs to only one LDA classifier. Similarly, the data in
parentheses in Table 2 represent the number of individuals in the population and
generations of the evolutionary algorithm and, in the case of the parallel executions, the
number of threads (4 or 8) and generations (5 or 10) executed by each subpopulation.
The evaluated parallel configurations are noted as PC21 to PC26 in the column PCnf.
of Table 2. The sequential version of OPT1 with 120 individuals and 50 generations
for subjects 104, 107 and 110 requires more than four and a half hours, and provides
solutions with average Kappa indices equal to 0.515, 0.580 and 0.450, respectively. As
can be seen, the parallel versions of OPT1 improve the performance achieved by
sequential implementations of this approach with less individuals in the population, and
requires much less time than the sequential counterpart with the same population size.
Moreover, some parallel configurations of OPT1 reduce the performance differences
with respect to OPT2 or even overcome it for some subjects and parallel configurations.

Tables 1 and 2 also show results about the comparison tests to identify which
alternatives provide statistically different performance, with p-values obtained from
statistical tests with a significance level of 5%. The statistical analysis has been done
through a Kruskal-Wallis test, which provides the intervals of the Kruskal-Wallis rank
for each considered alternative for OPT2 in Table 1 and OPT1 in Table 2. For subjects
104, 107 and 110, the column noted as p-val. in Tables 1 and 2 gives the p-values
obtained after comparing each parallel configuration to the corresponding reference
sequential alternative. That is, the parallel configurations PC11 to PC14 in Table 1
have been compared to the sequential execution of OPT2 with 120 individuals and 50
generations, and the parallel configurations PC21 to PC26 in Table 2 to the sequential
execution of OPT1, also with 120 individuals and 50 generations. A p-value below
0.05 (marked with an asterisk in columns p-val.) means statistically significant dif-
ference. In Table 1, except for PC11 and PC13 for subject 104, the differences in the
Kappa indices attained by the evaluated parallel configurations are not statistically
significant. Therefore, despite the parallel island evolutionary procedure is different
from the sequential evolutionary algorithm, the quality of the results for a given
configuration of individuals in the population and a given number of generations is
similar to the sequential one, while the parallel procedure provides a significant
reduction in the execution time. In the case of PC11 and PC13, the quality of the
solutions found decreases only by less than 6% (respectively, 4.3% and 5.8%).

The average Kappa indices in Table 2 show improvements in the quality of
solutions by all the parallel configurations (PC21 to PC26) for all subjects (104, 107
and 110), with respect to the reference sequential execution of OPT1 with 120 indi-
viduals and 50 generations. These improvements are statistically significant in all the
cases but two, PC23 and PC25 for subject 107, where improvements are 4% and 1.6%
respectively. The sequential OPT2 provides better results than the sequential OPT1.
Moreover, OPT0 provides the best performance for subjects 104 and 110 and a per-
formance close to that of OPT2 for subject 107. It should be taken into account that
OPT0 and OPT2 are based on the classifier structure of Fig. 2, which uses more
features and more complex classifier structure than OPT1 that requires only one LDA
classifier. Table 2 shows that the parallel implementation of OPT1 improves its
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performance compared to the sequential OPT1 and reduces the performance differences
from OPT0 and OPT2. In some cases, it even outperformed OPT0 and OPT2. For
example, for subject 104 PC24 (the best parallel configuration for subject 104 with
OPT1) provides better results than PC12 (the best configuration for subject 104 with
OPT2) and OPT0: 0.698 against 0.554 and 0.564 respectively (a difference statistically
significant with p-value equal to 0.004). For the subjects 107 and 110, OPT0 and OPT2
still achieved better performances than some parallel configurations of OPT1. Never-
theless, the differences among the best average Kappa indices for the sequential OPT0
and OPT2 with respect to the sequential OPT1 are reduced in the parallel configura-
tions of OPT1: from 0.072 (0.652 − 0.580) to 0.019 (0.657 − 0.638) for subject 107,
and from 0.198 (0.648 − 0.450) to 0.079 (0.648 − 0.569) for subject 110.

Fig. 3. Speedups (a) and efficiencies (b) for different communication profiles and parallel
configurations of OPT2 (PC11 to PC14) for subjects 104, 107 and 110
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The parallel approach proposed in this paper reduces the execution time with respect
to the corresponding sequential version in all the cases, as shown in Table 1 (column
Time(s)). Figure 3 shows the speedups (time of the sequential version divided by the
time of a given parallel configuration) and efficiencies (speedups divided by the number
of processors) provided by the parallel configurations PC11 to PC14 in Table 1, with
respect to the sequential execution of OPT2 with 120 individuals and 50 iterations, t
(OPT2)/t(PC11) to t(OPT2)/t(PC14). Two different communication profiles have been
considered in our experiments. In the first communication alternative, each subpopu-
lation independently implements 10 iterations (generations) before communicating with
another subpopulation randomly selected. In the second one, the subpopulations com-
municate more frequently as it happens after 5 generations of independent evolution in
the subpopulations. As shown in Fig. 3, for a given number of threads, the alternative
communicating more frequently (5 iterations/communication) provides lower speedups.
Consequently, the efficiencies observed in Fig. 3.b are slightly lower in the alternatives
communicating more.

The speedups given in Fig. 4 are based on the comparison of execution time for
different parallel configurations of OPT1, as shown in Table 2. In this case, we have not
compared the parallel time with the corresponding sequential time due to their large
values (more than four days in some cases). Figure 4 provides the speedups by using 4
threads with respect to 8 threads, i.e., t(PC21)/t(PC23) and t(PC22)/t(PC25), to compare
parallel configurations with the same configuration of individuals in the population,
iterations and communication profiles, although t(PC21)/t(PC23) corresponds to 50
generations and t(PC22)/t(PC25) to 100. The speedup t(PC21)/t(PC24) compares parallel
configurations with 8 and 4 threads and the same number of generations (50 generations)
but different communication characteristics (10 and 5 generations between communi-
cations respectively). Finally, t(PC26)/t(PC25) compares parallel configuration with the
same number of threads (8 threads), generations (100 generations), and communication
profiles (10 generations between communications) but different number of individuals.
All those considered speedups should have a value near two, as shown in Fig. 4.

Fig. 4. Speedups of different parallel configurations of OPT1 (PC21 to PC22) for subjects 104,
107 and 110
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5 Conclusions

This paper proposes and analyses parallel island implementations of multiobjective
feature selection in BCI tasks with MRA. They are able to improve the quality of the
solutions by using greater populations and reduce processing time as well.

On the one hand, we have shown that, despite the parallel algorithm is not exactly
the same as the sequential one, it decreases the computing time without a statistically
significant reduction in the solution qualities given a number of generations and
individuals in the population. Although the speedups shown in Fig. 3.a correspond to
efficiencies below one (Fig. 3.b), but the efficiency decrease is relatively small. The
scalability behavior of the parallel procedure could be considered adequate for the
number of threads used in our parallel executions.

On the other hand, the parallel procedure makes it possible to improve the quality
of the solutions by using greater populations in the evolutionary algorithm but similar
amount of computing time required by the sequential implementation. It has been
shown that by using populations with as many individuals as the reference population
multiplied by the number of threads used, OPT1using a simple classifier structure is
able to match OPT2 using a complicated classifier structure or even outperform it with
similar or even lower computing times.

In [8], a parallel cooperative multiobjective approach was proposed for feature
selection in high-dimensional EEG data, which not only evolves independent
subpopulations but also assigns different areas of the searching space to different
subpopulations. This approach allows superlinear speedups in some cases although
with some performance loss. The implementation of such approach to distribute the
searching space will be also explored in the present parallel island algorithm for BCI
with MRA, along with its use in the feature selection problem for other applications
and benchmarks to compare with other previous methods.
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Abstract. High-dimensional pattern classification problems with a small num-
ber of training patterns are difficult. This paper deals with classification of motor
imagery tasks for brain-computer interfacing (BCI), which is a hard problem
involving a relatively small number of high-dimensional training patterns where
curse of dimensionality issue has to be taken into account and feature selection is
an important requirement to build a suitable classifier. Evolutionary meta-
heuristics for feature selection are usually more time-consuming than other
alternatives, but their high performances in terms of classification accuracy make
them desirable approaches. In this paper, feature selection through a wrapper
procedure based on multi-objective optimization is compared with the use of
deep belief networks (DBN) that constitute powerful classifiers implementing
feature selection implicitly. Two different classifiers, LDA (linear discriminant
analysis) and DBN, have been used to classify EEG signals with features
extracted by multiresolution analysis (MRA) and selected by a multiobjective
evolutionary method that also uses LDA to implement the fitness function of the
solutions. The experimental results show that DBNs usually provide better or
similar classification performances without requiring an explicit feature selection
phase. Nevertheless, the DBN’s classification performance significantly
decreases in problems with a very large number of features. Moreover, to achieve
high classification rates, it is necessary to determine a suitable structure for the
DBN. Therefore, in this paper we also propose a multiobjective approach to
tackle this problem.
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1 Introduction

Many classification tasks in bioinformatics deal with patterns defined by a large
number of features. Moreover, these high-dimensional classification problems have
frequently to be solved with the number of training patterns smaller than the number of
features, thus presenting curse of dimensionality problems [1]. Feature selection is
usually required in bioinformatics [2] to eliminate redundant and noisy features in order
to improve the accuracy and interpretability of the classifiers. The brain-computer
interfacing (BCI) application considered in this paper is an example of such situation. It
implies to classify EEG signals corresponding to motor imagery (MI) tasks, a BCI
paradigm that uses the series of amplifications and attenuations of short duration
conditioned by limb movement imagination, the so called event related desynchro-
nization (ERD) and event related synchronization (ERS). In particular, the BCI con-
sidered here uses patterns built by multiresolution analysis (MRA) [3], which applies a
sequence of successive approximation spaces to describe the target signal, thus being
useful whenever this signal presents different characteristics across the approximation
spaces. A specific MRA, the discrete wavelet transform (DWT) applied in [4] to
characterize EEGs from MI tasks, has been used here. This way, the patterns are built,
from an EEG trial, by a feature extraction procedure, in which each signal obtained
from each electrode contains several segments to which a set of wavelets detail and
approximation coefficients are assigned. With S segments, E electrodes, and L levels of
wavelets, each pattern is characterized by 2 � S � E � L sets of coefficients. The
number of coefficients in each level set depends on the level. For example, in the case
of the dataset recorded in the BCI Laboratory at the University of Essex, S = 20
segments, E = 15 electrodes, and L = 6 levels, therefore there are 3600 sets of coef-
ficients, with from 4 to 128 coefficients in each set, and each pattern may contain a total
of 151200 coefficients. This huge number of coefficients can be reduced, as in [4],
by computing the second moment of the coefficient distribution (variance) in
each of the 3600 sets, and normalizing the obtained value between 0 and 1. This way,
2 � S � E � L = 3600 features constitute each pattern. As the number of training
patterns for each subject is approximately 180, it is clear that an efficient procedure for
feature selection is still necessary.

One of the issues to be taken into account in the design of a feasible feature
selection procedure is the number of possible features because the size of the searching
space depends exponentially on that number. As we are involved in high-dimensional
classification problems, several hundreds or even thousands of features usually define a
very huge searching space where efficient metaheuristics are required. In this paper, we
use an evolutionary procedure where the individuals of the population represent dif-
ferent feature selections. The fitness of a given individual is determined through a
suitable utility function of the selected features. Different alternatives can be considered
to define the utility of a given feature selection. If the classes of the training patterns are
known (supervised classification problems), it is possible to evaluate feature selection
from the performance achieved by the classifier after training with the patterns
described by the set of selected features. Nevertheless, it is also possible to assign
utilities to the selected features by evaluating the clustering properties of the patterns
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consisting of these features. This alternative is useful in problems where the pattern
labels are not available (unsupervised classification problems) but, although we will not
consider it in this paper, could be also used when the labels are known.

This paper investigates the use of Deep Belief Networks (DBN) [5] for EEG
classification from two different perspectives. The first one uses a multiobjective
evolutionary metaheuristics to select the features for the inputs to the DBN. Never-
theless, in supervised classification problems, the utility function required by the
metaheuristics is usually defined by the performance of the classifier once it has been
trained by using the training set of patterns with the selected features as components.
This approach could prevent the use of powerful classifiers (as DBN) in the feature
selection phase, due to the large amount of training time they would require. As the
number of classifier trainings depends on the product of the number of individuals
(feature subsets) and the number of generations executed by the evolutionary meta-
heuristics, the limited extent to which the huge searching space could be explored in a
reasonable amount of time could limit the performance of the feature selection.
Therefore, the second approach considered in the paper tries to take advantage of the
implicit feature selection accomplished by the DBN [5] to avoid the explicit feature
selection step, although in this case some optimization procedure should be applied to
determine the best DBN structure. In this paper, a multiobjective optimization proce-
dure is devised to optimize the DBN structure.

In what follows, Sect. 2 describes our approach to feature selection based on
multiobjective optimization and the issues related with the cost functions proposed to
evaluate feature subsets. The main characteristics of DBNs are summarized in Sect. 3,
as the purpose of the paper is to analyze the performance of this classifier for BCI
applications in comparison with other classifiers such as LDA. The experimental work
conducted, the details of the database, and the results obtained are provided in Sect. 4.
Finally, Sect. 5 draws conclusions.

2 Cost Functions and Multiobjective Feature Selection

Figure 1 shows the feature selection approach adopted in the paper. It is based on a
multiobjective optimization procedure that searches a vector of features x ¼
x1; x2; . . .; xn½ � 2 Rn to optimize a function vector f(x), whose scalar values
ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ represent the objectives to optimize. These objectives are
usually in conflict, and thus multiobjective optimization should obtain a set of
non-dominated solutions called Pareto optimal solutions that define the Pareto front (no
solution in the Pareto front is worse than the others when all the objectives are taken into
account), from which it is possible to choose the most convenient solution in specific
circumstances. To solve the multiobjective optimization problem an evolutionary
algorithm based on the NSGA-II algorithm [6] was implemented, with specific indi-
vidual codification and genetic operators implemented for the application at hand.

As this paper deals with a supervised classification problem in which the labels of
the training and test patterns are known, it would be possible to evaluate the perfor-
mance of the classifier by the accuracy obtained for the validation patterns after training
it (by using the set of training patterns). Nevertheless, other measures that quantify
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properties such as the generalization capability should be taken into account in order to
improve the behavior of the classifier in a real environment, where patterns that have
not been used for training have to be processed. This is the reason to propose a
multiobjective feature selection procedure that optimizes the utility of the selected
features evaluated by both the accuracy and generalization capability of the classifier
for the available training patterns (with the selected features as components).

As in the considered EEG classification problem the classes corresponding to the
training (and test) patterns are known, it is possible to evaluate the performance of a
given feature selection by the performance of the classifier for the training patterns
described by the selected features. This way, to define this pair of cost functions, we
consider an LDA classifier [7] (a brief introduction of LDA is provided in Sect. 3), with
f1 and f2 being the accuracy and the generalization capabilities of the LDA. The cost
function f1 is related to the Kappa index [8] (f1 = 1-Kappa index) obtained after the
learning iterations executed in the feature evaluation step of the evolutionary algorithm.
The Kappa index takes into account the distribution of the per class error as it is
computed as p0 � pcð Þ= 1� pcð Þ with p0 equal to the proportion of coincidences among
the classification outputs and the labels of the patterns and pc being the proportion of
patterns on which the coincidence is expected by chance. The cost function f2 is the
average loss function in a 10-fold cross validation analysis to the training patterns
(mean squared classification error of the validation patterns over all folds).

3 The Classifiers: DBN and LDA

Deep belief networks (DBN) [5, 9] are neural network models including several hidden
layers of neurons, which have attracted a lot of interest in recent years since the
proposal of new algorithms to train deep neural structures [9] and due to their
resemblance with the way in which the human brain hierarchizes the information in
different layers of abstraction. In this paper, we investigate the performance of DBNs in
EEG classification for BCI based on motor imagery. The first problem to cope with is
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the selection of features since the number of EEG patterns available to build the
classifier is very small in comparison with the number of features that describe each
EEG pattern. Hinton et al. [5] have shown how high-dimensional sets of data are
converted into low-dimensional ones by training a DBN. This way, a DBN could be
also used to implicitly select features in classification tasks thus avoiding a previous
feature selection step in classification of high-dimensional patterns. Nevertheless, as it
has been said, two problems arise in this approach to apply it to BCI. The first one
comes from the small number of patterns usually available in BCI classification tasks,
and the high computational load to train DBNs with a large number of units and layers.
For example, as in our case the patterns are composed of more than three thousand
features, we would need a DBN having a first layer with more than three thousand
units. Moreover, the number of patterns required to train properly the DBN should be
much larger than the number of features. For example, in [5] the considered classifi-
cation tasks involve 800,000 patterns of 2000 features, 60,000 patterns of 784 features,
etc. As we will describe, in our EEG classification problem there are about 180 patterns
of over 3600 features.

Therefore, it is worth analyzing whether multiobjective feature selection makes it
possible to take advantage of DBNs in hard classification tasks affected by curse of
dimensionality problem. It has to be taken into account that the high computational cost
of DBNs prevents their use in the feature selection phase, as a large number of training
processes are required (the number of individuals in the population multiplied by the
number of generations). Thus, it would be useful to analyze the DBN performance after
applying different approaches (in particular the faster ones) to evaluating the feature
subsets in the multiobjective feature selection procedure. It is also desirable to compare
the behavior and performance of DBNs with other classifiers as shown in Fig. 2, which

Training
Patterns

DBN DBN LDA

Selected
Features

Multi-objective with LDA

(1) DBN(nfs) (2) LDA/DBN

Explicit
Feature

Selection

Classifiers

(3) LDA/LDA

Fig. 2. Summary of alternatives evaluated in the paper: (1) DBN classifier with no explicit
feature selection (DBN(nfs)); (2) DBN classifier based on multiobjetive feature selection using
LDA for fitness evaluation (LDA/DBN); and (3) LDA classifier based on multiobjetive feature
selection using LDA for fitness evaluation (LDA/LDA).
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summarizes the alternative feature selection approaches and the classifiers compared in
the paper. Thus, besides DBNs, Linear Discriminant Analysis (LDA) has been con-
sidered for comparison purposes. As detailed descriptions of DBN and LDA can be
found elsewhere, in this Section we only provide a brief summary to introduce terms,
notations and references to previous works on these classifiers.

Deep Belief Networks (DBN): As shown in Fig. 3, DBNs [5, 9] are artificial neural
network models built by layers of Restricted Boltzmann Machines (RBMs) [10], which
are Boltzmann Machines [11] including stochastic units connected to stochastic binary
feature-detecting units through symmetrically weighted connections among different
layers but not between units in the same layer. These DBNs work properly only if the
initial weights are near to those corresponding to suitable solutions. This is attained by
training each RBM through a fast unsupervised learning procedure [12] that changes
the weights w1

ij in the first hidden layer by taking into account the error between the
training patterns and their reconstruction from the state of the units in the patterns layer.
The weights w2

ij in the second hidden layer are changed according to the error between
the units in the first hidden layer and their reconstruction from the state of the units in
the second layer, and so on. After this unsupervised learning process is finished, the
backpropagation algorithm is applied as a supervised learning procedure that takes into
account the error between the obtained label and the correct one in the last layer (the
classification layer) of the network.

Linear Discriminant Analysis (LDA): Given a two-class classification problem and a
set of training patterns x ¼ ðx1; . . .; xnÞt with their corresponding class labels (for
example +1 and −1), the criterion to determine whether a pattern x belongs to a specific
class is given by a linear combination of the features of the pattern. For a constant
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threshold, T, and a weight vector, W, it should be verified that the dot product
Wt x > T if x belongs to one class, and Wt x < T if it belongs to the other class. This
way, the pattern x belongs to one class if it is located on one side of a hyperplane
perpendicular to W, and to the other class if it located on the other side. LDA supposes
that the conditional probability functions for the patterns x in each class are normally
distributed, with means l+1 and l−1, and covariances R+1 and R−1. It is also supposed
that the class covariances are equal (R+1 = R−1 = R) and have full rank. Under these
conditions, W = R−1(l+1 − l+1). For multiclass problems, there are several alterna-
tives of LDAs that can be applied. For example, it is possible to determine as many
LDAs as number of classes, with each classifier adjusted to distinguish a given class
against the other classes, and then to combine the results of the classifiers for a given
pattern. More details about LDA can be found, for example, in [13].

4 Experimental Results

The algorithms have been implemented in Matlab® (version 8.3) and executed in an
Intel Xeon E5-2620 processor at 2.1 GHz and 32 GB DDR3 RAM. The experiments
use a dataset recorded in the BCI Laboratory at the University of Essex [7]. For each
subject, there are a set of 178 patterns for training and another 178 patterns for testing.
Each of these EEG patterns is described by components corresponding to 20 segments
(S = 20), six levels (L = 6) of wavelets approximation or detail coefficients (a/d = 2),
and 15 electrodes (E = 15). The labels correspond to three imagined movements of
right hand, left hand, and feet. Each experiment is repeated ten times in order to
complete an analysis to determine the statistical significance of the observed differences
among alternatives. The results provided in what follows correspond to datasets for
three subjects noted as 104, 107, and 110.

In [4] a classification procedure was implemented based on a set of 2 � S � L LDA
classifiers with the number of inputs equaling the number of electrodes, E, and a module
for majority voting of all the LDA outputs to provide the final classification output. This
classification procedure is noted as OPT0 in Table 1, which provides the average Kappa
index values [8] to compare the classification performance of the methods developed in
this paper with that of OPT0 [4] that does not use feature selection and thus requires to
compute the 3600 features for any input EEG. Table 1 also provides the Kappa index
values for the classification procedures noted as OPT1 and OPT2. OPT1, also noted in
Table 1 as LDA/LDA, uses a feature selection procedure with cost functions f1 and f2
corresponding respectively to 1-Kappa index of the LDA classifier evaluated on the train
patterns and the generalization capability in terms of 10-fold cross validation error.
Thus, OPT1 uses LDA in the selection of the features and as the classifier in the final
performance evaluation as well, as shown in Fig. 2. OPT2 also uses LDA in the mul-
tiobjective feature selection procedure that, in this case, determines the best set of
classifiers among the 2 � S � L LDA classifiers used by OPT0. A more detailed
description of OPT0, OPT1, and OPT2 can be found in [14].

Table 1 also provides the results for the alternatives LDA/DBN and DBN(nfs) that
use DBN as the classifier. Similar to LDA/LDA, LDA/DBN uses a multiobjective
feature selection procedure, but the classification is done by a DBN that uses the features
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previously selected by using LDA to determine the corresponding fitness functions f1
and f2. We have used five different configurations (as shown in Table 2) for the DBN
with six layers. In DBN(nfs), the DBN classifier does not need feature selection (nfs
stand for “no feature selection”) as it uses all the features as inputs. In Table 1, the
results under 3600 features correspond to the datasets including the 3600 features
previously described. We have also performed experiments by considering a subset with
300 of the 3600 features. These 300 features correspond to the 300 values obtained
whenever a given level (in our case the first level) of approximation coefficient is
considered for the different 20 segments, 15 electrodes (20 � 15 = 300 different fea-
tures). The multiobjective optimization algorithm used for feature selection uses a
population of 2000 individuals and 50 generations in case of 3600 features and 300
individuals and 50 generations in case of 300 features. With respect to the evolutionary
operators, we have conducted experiments with mutation probabilities of 0.1, 0.5, 0.9,
and 1.0 respectively. The results showed that the best performance was obtained with
mutation probability of 1.0.

Table 3 provides information about the multiple comparison tests performed to
identify which alternatives obtain significantly different Kappa values on the datasets
corresponding to subjects 104, 107, and 110 with a significance level of 5%. These
comparison tests have been implemented through the Kruskal-Wallis test that provides
the intervals of the Kruskal-Wallis rank for each considered alternative.

Table 1. Comparison of average Kappa index values for subjects 104, 107, and 110 in the BCI
dataset of University of Essex, achieved by different alternatives for feature selection evaluation
(with LDA or no feature selection), classification (with LDA or DBN), and number of features
(3600 or 300)

Table 2. Number of units in the layers of the DBN configurations used in Table 1 (the averages
in columns LDA/DBN and DBN(nfs) are obtained using these DBN configurations)
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According to the mean values of the Kappa index shown in Table 1 and the sta-
tistical significance results of Table 3, some conclusions can be drawn although the
relative behavior of different alternatives presents some changes for different subjects
104, 107, and 110. First of all, the relative performances achieved by LDA/LDA and
LDA/DBN change with the subject and in general the differences in their obtained mean
values are not statistically different for a given number of features (300 or 3600).
Therefore, the feature selection by using LDA does not seem to affect the performance
achieved by the classifier, LDA or DBN. In some cases, and depending on the subject
and number of features in the datasets, LDA/LDA outperforms LDA/DBN, or vice
versa. For a given procedure (LDA/LDA, LDA/DBN, or DBN(nfs)) improvements are
observed when datasets of 300 features are used instead of datasets of 3600 features.
This is expected as, given the huge searching spaces, the efficiency of the evolutionary
multiobjective algorithm could be improved by this decrease from 3600 to 300 features.

DBN provides the best performance when the dataset of 300 features is considered.
In this case, the inherent feature selection implemented by the DBN is useful to attain
good Kappa index values. On the other hand, the use of DBN to classify the datasets
with 3600 features produces the worst results among all the considered alternatives.
The curse of dimensionality problems arise in this case and the claimed DBN inherent
feature selection does not produce a suitable effect.

Nevertheless, it has to be taken into account that only five different DBN structures
have been used in our experiments. It should be very useful to have a procedure to search

Table 3. p-values from Kruskal-Wallis tests for the analysis of the statistical significance of
differences (values below 0.05 mean statistical significance)
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for the optimal DBN structure that provides the best results for a given dataset. Thus, we
have implemented a multiobjective evolutionary algorithm that evolves a population of
DBNs. The fitness for each DBN is given by two objective functions, f1 and f2. The
function f1 is given by the average classification error on ten cross-validation datasets
obtained from the given training dataset, and the cost function f2 is the number of units in
the DBN structure. This way, the multiobjective procedure searches for the DBN with
small classification error and less complexity as well. Table 4 shows the average and best
Kappa index values on the test datasets corresponding to subjects 104, 107, and 110,
obtained after executing the multiobjective DBN optimization procedure with a popu-
lation of 50 DBNs with six layers and 20 generations. The average values are obtained
considering the solutions in the final Pareto front. The present version of the multiob-
jective evolutionary procedure explores DBN structures with the same six layers, the
number of units in the first layer is between the number of features (300 in Table 4) and
the number of features multiplied by 1.75, and the last layer has at least 10 units (the
number of DBN outputs is equal to the number of classes, i.e. three outputs in the case
considered here). The mutation and crossover operators have been applied. The mutation
operator is applied with probability equal to 0.8, changes the units in one layer (in
multiples of 20), and resizes the whole DBN to maintain the constraints in its structure.
The crossover operator is applied with probability equal to 0.2, selects two individuals
and a layer and interchanges the two parts of the corresponding structures. As shown in
Table 4, the multiobjective evolutionary procedure (column DBN opt in Table 4) is able
to obtain DBN structures (column DBN Structure) that outperforms the results obtained
in Table 1 (column DBN(nfs)) with the first set of selected DBN structures.

5 Conclusions

In classification problems with high-dimensional patterns that require feature selection,
such as the EEG classification for BCI, it is usual to evaluate a specific feature selection
method through the performance of the classifier trained with the patterns consisting of
selected features. This approach would require an unacceptable amount of time with
powerful classifiers. This is the case for DBNs, which have attracted a lot of interest
recently, not only due to their performance capabilities but also for their resemblance of
the human brain structure.

Table 4. Structures obtained by the multiobjective DBN structure optimization procedure
(column DBN Structure) and their corresponding Kappa index values (column DBN opt)

Subject DBN Structure (L1,L2,L3,L4,L5,L6) DBN opt DBN(nfs)

104 450, 560, 1090, 1190, 1020, 700 0.750
0.733+0.011

0.733
0.720+0.010

107 360, 700, 740, 620, 560, 180 0.733
0.723+0.007

0.708
0.697+0.013

110 510, 510, 750, 680, 550, 420 0.683
0.672+0.008

0.667
0.645+0.027
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This paper considers a multiobjective feature selection procedure using LDA
classifier for fitness evaluation and compares the classification performance obtained by
LDA and DBN classifiers respectively for a given feature selection. The performance of
the DBN classifiers applied to the whole set of features (3600 features in our case) and to
a subset of ad hoc selected features (300 features in our case) have been also evaluated.
In the experiments, it has been shown that, with the feature selection procedure that uses
utility functions based on the performance of classifying the training patterns with LDA,
there are no statistically significant differences in the performances of LDA (LDA/LDA
alternative) and DBN (LDA/DBN) in most cases. In cases with statistically significant
difference between the performances of LDA/LDA and LDA/DBN, as for 300 features,
LDA/LDA outperforms LDA/DBN or vice versa (any case implying differences below
5%). This circumstance demonstrates the usefulness of feature selection as a classifier
such as LDA, far less complex than DBN, would be still able to produce competitive
performances. It would be expected that using DBN to evaluate the utility of the feature
selections in the feature selection phase could improve the classification performance of
DBN. This DBN/DBN approach has not been considered here due to its high computing
time requirements thus constituting an alternative where parallel processing would be
useful and will be explored in future. Instead, we have explored the performance of
DBN when the whole set of features is used as input to the DBN.

Although DBNs allow an implicit feature selection, they could hardly provide good
performance in high-dimensional feature space with a small number of training patterns
such as in EEG classification. Nevertheless, good performance can be achieved by
DBN structures, without requiring feature selection, on the datasets with a moderate
number of features (although still larger than the number of patterns). Any way, it has
to be taken into account that feature selection, although usually requires high com-
puting times, provides a reduced set of features to accomplish the classification thus
reducing the time required to compute them in a real implementation of the classifier.

The structure of the DBN, along with its other parameters, plays an important role
in the classification performance achieved by the DBN, as shown by the multiobjective
DBN optimization procedure developed in this paper. There are many alternatives to
explore in order to improve this procedure, not only with respect to the parameters to
optimize (as in the present version only the number of units in networks changes with a
fixed number of layers), but also in the topics related with the acceleration of the
multiobjective optimization procedure.

The work presented in this paper opens an interesting approach to using complex
DBN classifiers in applications affected by curse of dimensionality. Nevertheless, more
experimental work on the tuning of different classifiers is still required to get more
definite conclusions. Moreover, recent papers [15–17] have proposed deep neural
networks and convolutional deep neural networks to extract features in EEG for BCI
tasks. As a comparison with these approaches is difficult due to differences in the
datasets and the evaluation indexes used, the implementation of some of these pro-
posals to evaluate them on our datasets, by using the Kappa index, and accomplishing
the corresponding statistical analysis of results would be very useful in the future work.
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Abstract. Multi-objective Genetic Algorithms (MOGAs) are proba-
bilistic search techniques and provide solutions of multi-objective opti-
mization problems. When MOGA reaches near optimal regions, it may
face problem in convergence due to its probabilistic nature. MOGA does
not pay attention on the neighbourhood of the current population which
makes the convergence slow. This scenario may also lead to premature
convergence. To overcome this problem, we propose an Intelligent Multi-
objective Genetic Algorithm using Self Organizing Map (IMOGA/SOM).
The proposed algorithm uses the neighbourhood property of SOM. SOM
is trained by the solutions generated by MOGA. SOM performs competi-
tion and cooperation among its neurons for better convergence. We have
compared the results of the proposed algorithm with two existing algo-
rithms NSGA-II and SOM-Based Multi Objective Genetic Algorithm
(SBMOGA). Empirical results demonstrate the superiority of the pro-
posed algorithm IMOGA/SOM.

Keywords: Multi-objective genetic algorithms · Self organizing map ·
NSGA-II · Local search

1 Introduction

In last few decades, many researchers have worked on evolutionary computation
(EC). Evolutionary computation is a generic population-based meta-heuristic
approach which uses the mechanisms inspired by biological evolution such as
selection, mutation and recombination. Candidate solutions of the optimization
problem play the role of individuals in a population and the fitness function
determines the quality of the solutions. Evolution of the population takes place
by the repeated application of the above operators. Genetic algorithm (GA) is
an evolutionary approach based on natural selection and reproduction.

Real world optimization problems are generally muti-objective in nature hav-
ing two or more objectives that are conflicting to each other. The main objective
of MOGA is to get a diverse set of optimal solutions and converge them to the
Pareto front. Diverse solutions are to be distributed uniformly throughout the
spectrum of the Pareto front.
c© Springer International Publishing AG 2017
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In MOGA, initially the set of solutions moves towards the Pareto front
quickly, but later the rate of convergence towards the Pareto front gradually
decreases making the convergence slow. The reason is that the crossover and
mutation in GA are random and they do not consider the neighbours of the cur-
rent population which are topologically similar to them. It makes GA blind about
the neighbours of the current solutions. It does not create any problem when the
solutions are far away from the Pareto front, but makes the convergence slow
when the set of solutions approach near the Pareto front. Some solutions, exist-
ing in the current population, which could lead to global optima may get lost in
the successive generations. Conventional MOGA also suffers from the problem
of genetic drift [1] due to its stochastic nature. The search process is affected by
the genetic drift as the algorithm may get stuck into the local optima and hence
the global optimal region may remain unexplored. It may lead to premature
convergence of MOGA. To avoid these problems, we have used SOM network in
the proposed model to make it more intelligent than conventional MOGA. The
objective of the proposed algorithm is to use the knowledge incurred from the
previous generations, which in turn improves the local search.

The rest of the paper is organised as follows. In Sect. 2, we have presented a
review of some works existing in the literature which are similar to the proposed
model. The proposed algorithm is presented and explained, in detail, in Sect. 3.
The simulation results and comparisons are provided in Sect. 4. In Sect. 5, we
have concluded our work and suggested some future directions of research.

2 Literature Review

The literature on multi-objective optimization problems is rich. In last two
decades, many researchers have worked on MOGAs to achieve better conver-
gence towards the optimal front. Some of the MOGAs are NSGA [2], NSGA-II
[3], SPEA2 [4], ABYSS [5], MOEA/D [6], ASMiGA [7], PAES [8], etc.

We observe that a new field of hybrid computing, where knowledge obtained
through the learning of neural network has been incorporated in MOGA. It can
be viewed as an attempt to introduce local search in the exploration of MOGA. In
2005, Arroyo and Armetano introduced an algorithm IM-MOGLS [9]. They have
used multi-objective genetic local search technique for intensifying the search in
different local regions. Local search methods have been used in MOGA in many
works [10,11] in the literature in order to enhance their performance.

There are some works, where SOM has been used to improve the perfor-
mance of MOGA. The main reason behind the selection of SOM is its topology
and distribution preserving properties. SOM has also the ability to represent high
dimensional data into a low dimensional space. In [12] Buche described SOM as a
recombination operator for interpolating the parent population. It has increased
the possible amount of information to be recombined whereas normal recombi-
nation operator uses only two solutions for recombination. An important issue
in MOGA is to make a balance between exploration and exploitation. Amour
and Rettinger [13] developed an algorithm, Intelligent Exploration for Genetic
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Algorithm. SOM has been used in it for mining the information from the evolu-
tion process which has been used to enhance the search process. Here SOM also
helped to control the problem of genetic drift in [13].

Zhang et al. have introduced regularity model-based multiobjective estima-
tion of distribution algorithm (RM-MEDA) [14]. This approach has used local
principal component analysis for building the probability model. Local Princi-
pal component analysis, a model for feature extraction, has been hybridized in
the model for extracting regularity patterns of the Pareto set from the previous
search. Yang et al. developed a hybrid multiobjective estimation of distribution
algorithm (HMEDA) [15] that uses local linear embedding, which is a manifold
learning algorithm and is used in the optimization process. In order to show bet-
ter convergence than RM-MEDA [14], Cao et al. devised an algorithm named
as manifold-learning-based multiobjective evolutionary algorithm via self orga-
nizing maps (ML-MOEA/SOM) [16]. In this algorithm, SOM is used to capture
and utilize the manifold structure of the Pareto set. In their algorithm, SOM
performs reproduction of new solutions and provide it to MOGA in order to get
better convergence. Their method has shown the performance similar to that of
RM-MEDA [14].

In [1], the authors have devised an algorithm named SOM-Based Multi
Objective Genetic Algoritm (SBMOGA). They have used VNS (Variable Neigh-
bourhood Search) [17] as a local search strategy. SOM uses a multi-objective
learning rule for its training based on Pareto Dominance. They have imple-
mented a real-world problem and has found better results than that of NSGA-II.
Another SOM-based hybrid algorithm is a self-organizing multi-objective evolu-
tionary algorithm [18], developed by Hu Zhang et al. The authors in [18] used
SOM to establish neighbourhood relationship between the current solutions.
SOM based hybrid method have also been used in [19,20].

Some of the research works have considered the neighbourhood properties of
SOM in the learning algorithm whereas in some other works Pareto dominance
property in the learning has been considered. As per our limited survey, we have
noticed that no work in the literature has used both of the above mentioned
concepts together in the learning of SOM. In the proposed algorithm, we have
used both the neighbourhood property and Pareto dominance property for the
learning of SOM.

In SBMOGA [1], the SOM neurons get updated when they are dominated
by the solutions obtained from MOGA. But, it may not be necessary to update
all the dominated neurons, as they all may not be neighbour of any particular
solution. In our proposed algorithm, we use a neighbourhood function in SOM
that helps to update those neurons that lie within a defined neighbourhood. It
is explained later in detail in Sect. 3. In SBMOGA, the SOM neurons remain
unaltered when they are not dominated by the solutions obtained from MOGA.
Hence, it does not explore the neighbourhood of SOM neurons throughout the
execution. As the SOM neurons also provide the optimal solutions, they must
explore the search space throughout the execution. Hence, we have incorporated
a neighbourhood function in the training of SOM network of the proposed model
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Fig. 1. Architecture of SOM

to continue exploring the local regions. Thus, the neighbourhood property of
SOM along with the Pareto dominance property are being utilized to overcome
the shortcomings of SBMOGA.

3 The Proposed Methodology

In the proposed algorithm, multi-objective genetic algorithm has been hybridized
with self organizingmap (SOM)network [21]. SOMhas the capability of preserving
the topology anddistribution of the input dataset, which are the solutions obtained
from MOGA. SOM basically performs a local search in the decision space of multi-
objective problems. We have used NSGA-II [3] as MOGA in the proposed model.

Implementation starts with the execution of NSGA-II. NSGA-II initializes
its population randomly and then creates its off-springs. The current population
and the off-spring population are combined and undergo frontification using fast
non-dominated sorting algorithm. NSGA-II uses crowding distance operator to
maintain the diversity of the solutions.

The solutions of the first front generated in each alternate generation of
NSGA-II are used as input for the training of the SOM. We use one dimensional
SOM output neurons in the proposed model. The number of SOM input neurons
is same as the number of decision variables in NSGA-II, denoted by k. The
number of SOM output neurons is denoted by M. Weight vectors of SOM, wj ,
(j = 1, 2, ...,M) are initialized randomly. The decision variables corresponding
to the solutions (in objective space) in the first front, generated by NSGA-II, is
used to train the SOM. The number of solutions in the first front is denoted by



44 S. Aon et al.

f, which may vary in different generations of NSGA-II. The training of SOM is
carried out for T iterations, where T equals to 50 * f in the proposed model. In
each iteration, an input vector (vi) is chosen randomly from the training dataset
of size f. The architecture of SOM is shown in Fig. 1. In the competition among
the M output neurons of SOM, the winning neuron j∗ is the Best Match Unit
(BMU), where j∗ is defined below in (1). Thus, BMU is an output neuron of
SOM from which the Euclidean distance to the input vector is minimum among
all the other SOM output neurons.

j∗ = {j|distancej = min{distance(vi(t),wj(t))}}, (1)

where j = 1, 2, ...M .
After finding the BMU, its neighbourhood radius is computed according to

an exponentially decreasing function as defined below in (2).

σ (t) = σ0 exp− t
λ (2)

Here, σ0 = initial value of the neighbourhood radius, t is the current iteration of
SOM, λ = n/log σ0 and n is the maximum number of generations of NSGA-II.

Then, we perform cooperation among the SOM output neurons. The weight
vectors of the SOM neurons, present within the neighbourhood, are updated
using (3).

wj (t + 1) = wj (t) + L (t) ∗ σj∗ (t) ∗ (vi (t) − wj (t)) , (3)

where L(t) represents the learning rate, which is a linearly decreasing function
as defined below

L (t) = 1 − t/T, t = 1, 2, ..., T

and the neighbourhood function σj∗ (t) is defined as

σj∗ (t) = exp− d2

2σ2(t) ,

where d is the Euclidean distance from the BMU (j∗) to the current SOM output
neuron.

After updating the SOM neurons, we check the dominance between the newly
updated weight vector and the previous weight vector. The dominance is based
on the concept of Pareto dominance. If wj (t + 1) dominates wj (t), then the
final weight vector for the next iteration is set to wj (t + 1). Otherwise, it is
unaltered. Thus if the solutions of the MOGA deviate from its path towards
local optima, it will be restricted by SOM as it always checks Pareto dominance
before final updation of weights. If in a generation the SOM neuron(s) reach
the global optima, it will not change in the next generation(s). The proposed
algorithm IMOGA/SOM is presented in Algorithm1.

4 Results and Discussions

To test the proposed method, we have used nine standard bi-objective uncon-
strained test functions, taken from [3]. The summary of the test functions are
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Algorithm 1. IMOGA/SOM

1

2 Hybrid Model:
3 Initialize the first population
4 Set Generation = 1
5 /* NSGA-II Starts its execution */
6 while Generation ≤ Maximum generation(n) do
7 Perform crossover
8 Perform mutation
9 Combine off-springs with their parents

10 Apply Fast Non-Dominated Sorting Algorithm (FNDSA) on the combined
population

11 Save the decision variables of the f solutions of first front obtained from FNDSA
12 if mod (Generation, 2) == 0 then
13 SOM()
14 end
15 Generate population for the next generation using Crowding Distance Operator.
16 Increment Generation by 1.

17 end
18 SOM():
19 begin
20 Consider the decision variables of f solutions generated by NSGA-II as the training data
21 Set size = f
22 Initialize t = 1
23 Set T = 50*size
24 while t ≤ T do
25 Select an input vector randomly from the training data(vi (t)), where i = 1, 2, ...f
26 Find BMU (j∗): j∗ = {j|distancej = min{distance(vi (t) ,wj(t))}}, where

j = 1, 2, ...M

27 Calculate neighbourhood radius (σ(t)): σ (t) = σ0 exp− t
λ

28 Find the SOM units present within the neighbourhood radius
29 Learning rate L(t) = 1 − t/T
30 Update the weight vectors of neighbourhood neurons:
31 wj (t + 1) = wj (t) + L (t) ∗ (σj∗ (t)) ∗ (vi (t) − wj (t))
32 Set j = 1
33 while j ≤ M do
34 if wj (t + 1) dominates wj (t) then
35 wj = wj (t + 1)
36 end
37 else
38 wj = wj (t)
39 end
40 Increment j by 1.

41 end
42 Increment t by 1.

43 end

44 end
45 Return the population of GA and the SOM weight vectors as the final solutions

presented in Table 1. For performance comparison, we have compared the pro-
posed algorithm with two existing algorithms NSGA-II [3] and SBMOGA [1].
We have used jMetal 4.5.2 [22] and MATLAB 8.1 for its simulation.

4.1 Performance Metrics

Three metrics, used to measure the performance of the algorithms, are defined
below.



46 S. Aon et al.

Table 1. Summary of the test functions

Sl. no Function name Number of decision variables Function domain

1 SCH 1 [−103, 103]

2 KUR 3 [−5, 5]

3 POL 2 [−π, π]

4 FON 3 [−4, 4]

5 ZDT1 30 [0, 1]

6 ZDT2 30 [0, 1]

7 ZDT3 30 [0, 1]

8 ZDT4 10 x1 ∈ [0, 1]xi ∈ [−5, 5], i > 1

9 ZDT5 10 [0, 1]

(i) Convergence Metric (Υ ) [3] measures how much the obtained set of solu-
tions is close to the Pareto front. Smaller value is considered for better
convergence.

(ii) Diversity Metric (Δ) [1] is used to measure how much the solutions are
diverse throughout the spectrum of the Pareto front. The range of the
values of diversity metric is [0, 1]. More close is the value to 1, better is the
diversity. Diversity metric, used here, is the revised version of that used in
[1]. The diversity metric is defined below in (4).

Δ =

∑
Objectives

∑D
i=1 count

No. of Objectives ∗ D
, (4)

where the objective space is divided into D number of divisions for each
objective and count will be 1 whenever any point from the obtained set of
solutions belongs to ith division for the corresponding objectives.

(iii) Inverted Generational Distance (IGD) [16] measures both the convergence
and diversity of the obtained set of solutions. It is defined as follows.

IGD(F, F ∗) =
∑

u∈F ∗ distance(u, F )
|F ∗| , (5)

where F ∗ represents the Pareto front, F represents the obtained set of
solutions and u represents a point in the Pareto front.Lesser the value better
is the IGD.

4.2 Parameter Settings

For NSGA-II, population size, maximum number of generations, crossover prob-
ability and mutation probability are respectively set to 100, 100, 0.9 and 1/k,
where k is the number of decision variables of the test functions. For SOM net-
work, we have considered the number of output neurons M as 100 and initialized
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the weight vectors randomly in the range of the corresponding decision space.
Neighbourhood radius has been initialized to the radius of the decision space.
We have used the same parameter values for all of the three algorithms NSGA-II,
SBMOGA and proposed IMOGA/SOM. The SOM, used in the proposed algo-
rithm, has been executed for alternate 50 generations, as mentioned earlier in
Sect. 3.

4.3 Experimental Results

The values of the convergence metric (Υ ), diversity metric (Δ) and the IGD
metric for three algorithms: (i) NSGA-II, (ii) SBMOGA and (iii) The proposed
IMOGA/SOM are presented in Table 2, where bold entries represent best results.

Table 2. Simulation results

Function Algorithm Υ Δ IGD

SCH NSGA-II 0.0182 0.7250 0.0183

SB-MOGA 0.0135 0.8650 0.0135

IMOGA/SOM 0.0140 0.8600 0.0140

KUR NSGA-II 0.0444 0.6750 0.0443

SB-MOGA 0.0390 0.7500 0.0389

IMOGA/SOM 0.0368 0.7350 0.0366

POL NSGA-II 0.0647 0.7050 0.0643

SB-MOGA 0.0555 0.7350 0.0553

IMOGA/SOM 0.0554 0.7300 0.0551

FON NSGA-II 0.0057 0.6750 0.0056

SB-MOGA 0.0057 0.7500 0.0056

IMOGA/SOM 0.0057 0.7350 0.0056

ZDT1 NSGA-II 0.0228 0.7300 0.0227

SB-MOGA 0.0225 0.8300 0.0224

IMOGA/SOM 0.0221 0.7600 0.0220

ZDT2 NSGA-II 0.0227 0.7100 0.0227

SB-MOGA 0.0224 0.7700 0.0225

IMOGA/SOM 0.0222 0.8050 0.0222

ZDT3 NSGA-II 0.0162 0.5650 0.0161

SB-MOGA 0.0160 0.6600 0.0160

IMOGA/SOM 0.0162 0.5850 0.0161

ZDT4 NSGA-II 0.6012 0.0850 0.6027

SB-MOGA 0.6011 0.1400 0.6027

IMOGA/SOM 0.5942 0.1050 0.5953

ZDT6 NSGA-II 0.2379 0.2550 0.2378

SB-MOGA 0.2379 0.2950 0.2378

IMOGA/SOM 0.2379 0.2600 0.2378
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Table 2 shows that for all 9 test functions: SCH, KUR, POL, FON, ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6, the proposed algorithm is better than NSGA-II with
respect to all the three metrics: Υ , Δ and IGD. For the convergence and IGD
metrics, results show that the proposed algorithm IMOGA/SOM performs bet-
ter for 5 functions: KUR, POL, ZDT1, ZDT2 and ZDT4, however SBMOGA
shows better results for 2 functions: SCH and ZDT3. The remaining functions
FON and ZDT6 have shown competitive results for both the convergence and
IGD metrics. SBMOGA has greater diversity than the proposed IMOGA/SOM
except for the function ZDT2. The simulation graphs are shown in nine figures,
Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10, for nine test functions, where the solutions
are plotted in the objective space of the respective function. The figures con-
firm the convergence of the SOM neurons towards the Pareto front. Though the
proposed algorithm IMOGA/SOM gives a diverse set of solutions, SBMOGA
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has shown better diversity. However, for test function ZDT2, IMOGA/SOM has
shown greater diversity.

5 Conclusion

In this study, we have proposed a hybrid model IMOGA/SOM based on SOM
and MOGA in order to get better convergence for continuous bi-objective uncon-
strained optimization problems. SOM is used in the proposed model to perform
a local search, which helps the solutions to reach close to the pareto front.

We have compared the results of our algorithm with two existing algorithms
NSGA-II and SBMOGA. The proposed algorithm performs better than NSGA-
II with respect to all of the three metrics and better than SBMOGA with respect
to convergence and IGD metrics.

The proposed method may be improved further in two ways. Firstly, neigh-
bourhood functions for SOM can be improved. Secondly, use of optimum number
of SOM output neurons without keeping it fixed may give better results. The
proposed algorithm can also be extended for problems having more than two
objectives.
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Abstract. Scheduling problems are very hard computational tasks with
several applications in multitude of domains. In this work we solve a
practical problem motivated by a real industry situation, in which we
apply a genetic algorithm for finding an acceptable solution in a very
short time interval. The main novelty introduced in this work is the use of
a priority based chromosome codification that determines the precedence
of a task with respect to other ones, permitting to introduce in a very
simple way all problem constraints, including setup costs and workforce
availability. Results show the suitability of the approach, obtaining real
time solutions for tasks with up to 50 products.

Keywords: Evolutionary and genetic algorithms · Job shop problems ·
Priority encoding scheme

1 Introduction

Manufacturing companies usually work against clients orders, and unfortunately
several times they cannot afford a client order because they had no enough
resources to attend it timely. In this sense, a good scheduling plan could be
enough to resolve the situation for delivering the orders at the expected time.
Thus, an optimized Job planning is essential for manufacturing companies in
order to optimize resources, minimize inefficiencies and maximize productivity
that usually translates in greater benefits and increased competitiveness [1,10].

There are several levels of organization and planning according to the time
horizon of the decisions involved. Flow shop systems are known in the field of
production logistics which is called scheduling theory. This theory includes com-
plicated schedules, e.g., production schedules and school schedules, transporta-
tion, personal and many others [2]. Even if planning or scheduling are problems

c© Springer International Publishing AG 2017
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affecting most companies there is no systematic solution given the large number
of specific variables for each particular case that makes hard to automatize the
whole process [3,4,7].

Even on simple production scheduling projects, there are multiple inputs,
multiple steps, several constraints and limited resources. In general, a resource
constrained scheduling problem consists of:

– A set of jobs that must be executed.
– A finite set of resources that can be used to complete each job.
– A set of constraints that must be satisfied.

• Temporal Constraints: The time window in which the task should be
completed.

• Procedural Constraints: The precedence order in which each task must
be executed.

• Resource Constraints: Are enough resources available when they will be
needed?

– A set of objectives to evaluate the scheduling performance.

A typical factory floor setting is a good example of this type of problems where
scheduling which jobs need to be completed on which machines, by which employ-
ees in what order and at what time. In very complex problems (NP-Hard) such
as scheduling, there are no known algorithms for finding an optimal solution
in polynomial time, so in the present work we resort to searching for a “good”
suboptimal answer. Scheduling problems most often use heuristic algorithms to
search for the optimal solution. Heuristic search methods suffer as the inputs
become more complex and varied.

Genetic algorithms are well suited for solving production scheduling prob-
lems, because unlike several other heuristic methods genetic algorithms operate
on a population of solutions rather than on a single solution [6,8,11]. In produc-
tion scheduling this population of solutions consists of several answers that may
have different sometimes conflicting objectives. For example, in one solution we
may be optimizing a production process to be completed in a minimal amount of
time. In another solution we may be optimizing for a minimal amount of defects.
By cranking up the speed at which we produce we may run into an increase in
defects in our final product.

As the number of jobs are increased, this produces also an increase on the
number of constraints and as a consequence an increase on the complexity of
the problem. Genetic algorithms are ideal for these types of problems where the
search space is large and the number of feasible solutions is small.

To apply a genetic algorithm to a scheduling problem we must first represent
it as a chromosome, an ordered set of individual genes. Usually, one way to
represent a scheduling genome is to define a sequence of tasks and the start
times of those tasks relative to one another. Each task and its corresponding
start time represents a chromosome. Nevertheless this kind of approach involves
defining the existing constraints as extra conditions, that requires checking for
new solutions, slowing down the whole process. A new approach is taken in this
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work regarding the encoding of the solutions in a chromosome, that contain
genes coding the priorities set for each job, permitting from these priorities to
construct potential solutions. These type of approach has been applied before
on similar type of tasks [5,9] but as far as we know it is the first time to be
applied to a scheduling problem with the complexity described in the present
work, involving the use of different routes and operations for executing a given
job as specified by a real world situation, taking also into account workforce
availability and production line setup costs.

2 Problem Description

A production order (J) is issued within a factory. The order comprises the pro-
duction of a number of different products (jobs) (ji), which can be obtained by
using one or more production lines (L). Usually, each job (ji) has a deadline
and a priority value defined. In order to produce the final product ji, a produc-
tion line is divided into one or more sequential operations (O), each of them
needing several kinds of resources (tools, operators, etc.). Moreover, each job ji
can be executed following different production routes Ri,k containing different
operations.

2.1 Factory Description

A factory is modeled as a set of heterogeneous resources:

Operators (W ). The factory workforce is composed of different specialised oper-
ators. The availability of an operator is given by a calendar which reflects
shifts and holidays. The operators availability is checked at the time of build-
ing a solution from a chromosome.

Machines or production lines (L). A set of tools and machines to perform
different tasks. The speed of the machine is dependent on the task. Addition-
ally, a machine may be off duty for scheduled periods of time, or unavailable
due to being reserved by a previous production order.

L = {l1, l2, . . . , ll} (1)

2.2 Workflow

Production order (J): Consists of a set of jobs that have to be scheduled
efficiently.

J = {j1, j2, . . . , jn} (2)

Jobs (ji): A job specifies the quantity of a product i that has to be manufactured
according to the production order.
Due to production constraints, customer orders, etc., some jobs have a higher
priority than others. A numerical value p(ji) ∈ [0, . . . , 100] is set for each job,
and this considered as part of the definition of the problem. Additionally, a
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job can be constrained by a fixed release date and/or a deadline. In some
situations, the completion of certain jobs is required before other jobs can
start their task. We define the boolean Jobs Dependency Matrix (JDM)
such that the element JDMi,j define if the job Ji must conclude before jj
begins.

Routes (Ri): A job can be done by using a combination of several production
lines, and this is specified according to defined routes, that consists in a set
of sequential operations needed to complete the job.

Ri =
{
ri1, r

i
2, . . . , r

i
m

}
(3)

As said before, each possible route rim defines a series of operations (Or,i
k ):

rir =
{

Or,i
1 , Or,i

2 , . . . , Or,i
k

}
(4)

Operation (Or,i
k ): The operation Or,i

k is the kth non-preemptive action in which
a job jt is divided following a route rir.
An operation is characterized by a series of attributes:

– A priority, initially given as the job priority pi.
– A production speed.
– A production line l ∈ L where the operation will be performed.
– A subset of the available operators W :

opsr,ik =
{

wr,i,k
1 , . . . , wr,i,k

o |wr,i,k
m ≤ wm, wm ∈ W

}
(5)

– A setup time, as the time spent on the preparation of a production line
before performing a different type of operation (essentially, specifies the
costs of changing the actual operation of a line.

Table 1 shows an example of an order including three jobs, different possible
routes in some cases and the operations included in each route.

In conclusion, when a production order arrives at the factory, routes should
be chosen for each job, and schedule each operation taking into account the
following factors:

– The priority of the operation.
– If all the previous tasks in (JDM) has been finished.
– The set of machines that can execute the operation.
– The needed setup time to prepare the machine.
– The needed time to execute the operation in this machine.
– The operators available that can use this machine in this moment.

The main goal of the scheduling problem is to minimize the production time
of the order, finishing each job by its deadline.
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Table 1. Example of possible routes that can be executed in a hypothetical planning.
The production order is composed by three tasks J = {j1, j2, j3}. The job j1 can
be implemented on two routes R1 =

{
r11, r

1
2

}
, job j2 can be implemented on two

different routes too R2 =
{
r21, r

2
2

}
, however the task j3 should follow just the route

r31 (R3 =
{
r31
}
). The ‘Operations’ column shows the sequential order of operations

stipulated by the route, necessary to execute the job.

Task Routes Id Operations

j1 r11 1 O1,1
1 , O1,1

2 , O1,1
3

r12 2 O1,2
1 , O1,2

2

j2 r21 3 O2,1
1 , O2,1

2

r22 4 O2,2
1 , O2,2

2

j3 r31 5 O3,3
1

3 Genetic Algorithm Description

In the field of artificial intelligence, a genetic algorithm (GA) generates solutions
to optimization problems using operators inspired by natural evolution, such
as inheritance, mutation, selection, and crossover. Candidate solutions to the
optimization problem play the role of individuals in a population, while a fitness
function determines the quality of the solutions. Evolution of the population then
takes place after the repeated application of the above operators. Algorithm1
shows the general scheme of a standard genetic algorithm.

Initialize algorithm;
Evaluate population;
while (not condition end) do

Generate new solutions (Elitism, Crossover and Mutation);
Evaluate new solutions;

end
return leader;

Algorithm 1. General scheme of a genetic algorithm

Initialization: The initial population is generated randomly. This population is
made up of a set of chromosomes from which is possible to create solutions
to the problem.

Evaluation: A fitness function is set in order to evaluate the goodness of each
candidate solution. In the present work, the aim is to minimize the fitness
function.

End condition: The GA should stop when the optimal solution is reached,
but as this is usually unknown, alternative stopping criteria are set. Two
criteria are used in this work: (a) setting a maximum number of iterations
(generations) related to the maximum amount of time permitted, (b) stopping
the evolution of the system when no change in the fitness value is observed
for a certain number of generations.
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Selection: Chromosomes with lower fitness are more likely to be selected, and
form part of the next generation.

Crossover: Crossover is the main genetic operator. This operator represents
sexual recombination, and through its application a new individual is obtained
from two parent chromosomes chosen with higher probability for those with
lower fitness value.

Mutation: The mutation operator, applied to individuals to be included in a
new generation, modifies randomly some genes of the chromosome, avoiding
the solutions to get caught in local minima.

3.1 Chromosome Definition

In a GA, a population of candidate solutions, called chromosomes, is evolved
toward better solutions. In the present scheme, each chromosome does not rep-
resents directly a solution but contains the necessary information to generate a
valid scheduling solution. Each chromosome ci is composed by a integer vector of
genes with length T + M . The length of T is the cardinality of the set J (Eq. 2)
and M is the number of all the possible operations that can be scheduled. So, the
first T genes indicate the route assigned to each planning task using Ri (Eq. 3)
for each ji task. Figure 1 shows the structure of a chromosome for the example
task described in Table 1. The first part contains a random chosen route from
the possible ones for each scheduled job, and the second part the priorities set
for each of the operations needed in order to complete the jobs according to the
chosen route. Priorities values in the chromosome are obtained from the priori-
ties assigned to each job (all operations from a route belonging to the same job

Fig. 1. Structure of the chromosome used in the GA, composed by two main parts:
the first one containing the information about which route is chosen for each job, and
the second one containing the priorities related to the operations.
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have the same value) plus a random number in the range [0, 25] that introduce
variability in the possible solutions to the problem.

As each chromosome should be a potential solution, we explain now how
to build a solution from a given chromosome. The first part of the chromosome
indicates for each job which is the chosen route. Now, in order to build a solution,
only the priorities of the operations including in these chosen routes are taken
into account. Two container sets are created from the priorities, one containing
the operations that can be executed at present time, and second container with
the rest of operations (those that need to wait for other operations to finish
in order to be executed, as stated in the dependence matrix JDM). From the
first container, the operation with the largest priority is chosen and assigned to
the line that will make that operation to finish earlier, and the same procedure
is done with the rest of operations included in the first container (this process
is done in a greedy manner, as not all possibilities are analyzed but an order
shortcut is taken). In the next step, the operations that can be executed after
the one already scheduled are moved from container 2 to container one and the
whole cycle is repeated until no operations are left in either container.

3.2 Fitness Function Definition

The fitness function computes how ‘good’ is a potential solution, and thus a
proper definition is essential for the success of the GA. Two main aspects should
be taken into account for the definition of the fitness function: first, a high cor-
relation between low fitness values and good problem solution, and second that
the evaluation of the fitness functions would not be too costly computationally
as the algorithm needs to compute it several times during its execution.

In the analyzed case the fitness function is defined as the whole time needed
to execute all jobs plus a penalty term that adds the delays of each job weighted
by its priority related value:

fitness = Total execution time + Σ p(ji) × Delay(ji),

where the sum consider only terms for which the delay is a positive value (i.e., tasks
finishing ahead of its set finish time are not beneficial regarding the penalty term).

Delay (ji): time delay obtained for a specific job (ji) in a solution respect to
the set deadline.

4 Results

In order to study the performance of the proposed algorithm, seven synthetic
production orders have been generated, composed by sets from 5 to 50 jobs. A
20% of an order’s jobs is dependent on other jobs, i.e., they cannot start until
other jobs have finished. Each job can be executed following an average of 3
routes, each of one comprising an average of 3 operations, where each operation
requires a workforce between 1 and 10 operators.

Each production order has been scheduled 10 times analyzing performance
values for the following combination of parameters:



Solving Scheduling Problems with Genetic Algorithms 59

– Population size: {25, 50, 100} (individuals)
– Elitism (selection): [0, 10] %
– Cross-over rate: 20%, 50%, 80%
– Mutation rate: [0, 20]%
– Stagnation at 10000 epochs.

Also as mentioned before, an important aspect for the success of a GA is
the correct definition of a fitness function. In order to evaluate the choice fol-
lowed in this work, we have first computed the correlation (Pearson Correlation
value) between the fitness values obtained for problems with different number
of products and the total execution time, the total delay and the float times.
Total execution time has been defined before, total delay is the sum of all delays
produced on individual jobs with respect to the set deadline, and float time is
the margin (or flexibility) that every operation has to be delayed without affect-
ing the project completion deadline. The results are shown in Table 2, where
high values are obtained in almost all cases, noting that the negative values for
the correlation between fitness and float times is expected as for worse solutions
(largest fitness value) lower values of float times are expected.

Table 2. Correlation between the fitness defined function and the whole problem
execution time, delay and float times.

# of products Exec. times Float times Delay

5 1.0000 −0.9999 0.8936

10 1.0000 −0.9998 0.9272

15 0.8897 −0.8702 0.8943

20 0.9973 −0.9972 0.9990

30 0.9907 −0.9837 0.9917

40 0.9997 −0.9945 0.9929

50 0.9956 −0.9831 0.9767

Figure 2 shows the values obtained for the fitness as a function of the size of
the GA population for different values of products from 5 to 50 in computer sim-
ulations allowed to take a maximum of two minutes for best parameter choices.
Fitness values grows approximately linear as a function of the number of prod-
ucts as revealed by analyzing the results across all subplots in Fig. 2, indicating
an efficient behavior of the proposal. Further, an increase of the size of the pop-
ulation produces a decrease in fitness values, indicating that it will be possible
to improve the current results by increasing further the population size.
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Fig. 2. Fitness value as a function of the population size for different number of prod-
ucts.

5 Conclusions

A solution for a real world scheduling problem has been proposed using genetic
algorithms with a priority encoding scheme. The main novelty in the proposal is
the type of chromosome used in the GA that permits to define possible solutions
to the problem in a very simple way, taking into account all specified problem
variables and restrictions. A fitness function that includes a penalty term related
to job production delays seems to be effective, based on the results obtained
so far and on a correlation analysis performed. As an overall conclusion, the
present proposal has permitted to find acceptable solutions in real time (two
minutes time were allowed for obtaining a solution) and further improvements
are underway, mainly by introducing an incremental approach that will permit
the application of the present proposal to orders with more than 50 products.
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Abstract. The success of a metaheuristic is directly tied to the good
configuration of its free parameters, this process is called Tuning. How-
ever, this task is, usually, a tedious and laborious work without scientific
robustness for almost all researches. The absence of a formal definition
of the tuning and diversity of metaheuristic research contributes to the
difficulty in comparing and validating the results, making the progress
slower. In this paper, a tuning method named Cross-Validated Racing
(CVR) is proposed along with the so named Biased Random-Key Evo-
lutionary Clustering Search and applied to solve instances of the Permu-
tation Flow Shop Problem (PFSP). The proposed approach has reached
99.1% of accuracy in predicting the optimal solution with the parameters
found by Irace tuning method. Configurations generated by Irace, even
different, have obtained results with the same statistical relevance.

Keywords: Metaheuristics · Tuning · Machine learning · Racing algo-
rithms · Irace

1 Introduction

Many optimization metaheuristics involve a large number of design choices and
performance parameters that need to be properly tuned to reach their best per-
formance. The design and parameter tuning of optimization metaheuristics has
been done in a trial-and-error fashion, with poor systematization, extremely
designer-expertize dependent. Such approach has a number of disadvantages [1]:
time-intensive human effort, highly based on intuition, biased and sometimes
not reproducible, limited to a set of instances, poorly explored in designer alter-
natives, and so on. Instead of manual ad-hoc process, automatized systematics
methods has been employed for algorithm tuning. The alternative tuning meth-
ods include offline approaches as racing approaches [3,4], and online ones, as
adaptive parameter control, hyperheuristic, and so on. Offline approaches are
useful especially due to possibility of employ more strict statistical methods to
validate hypothesis.

c© Springer International Publishing AG 2017
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Automatic metaheuristic configuration has been described as a machine
learning problem [1]. In a primary tuning phase (training), an algorithm config-
uration is chosen, given a set of training instances representative of a particular
problem. In a secondary production (or testing) phase, the chosen algorithm
configuration is used to solve unseen instances of the same problem. Automatic
algorithm configuration intend to find the parameter set that increases the gener-
alization capability. By this point of view, another negative aspect with respect
to manual ad-hoc process is that the same instances are used during tuning
phase (training) and final evaluation (test or generalization), probably leading
to a biased assessment of performance.

Cross-Validation is a statistical method that allows evaluating and comparing
learning algorithms by crossing-over training and test instance groups in succes-
sive rounds, computing statistical measures at last. K-fold method is a basic
form of cross-validation that involves K rounds, where in each round, K − 1
folds are used to training and the remaining one to test [5]. In optimization,
an algorithm and its parameters can be understood as the model that solves a
given problem. The use of automatic configuration along with machine learning
techniques can favor the finding of more accurate and extensible models with
great generalization power.

This paper aims to propose Cross-Validated Racing (CVR) as a robust
and extensible metaheuristic tuning approach, that is capable of finding the
best parameter settings for an optimization metaheuristic independently of the
instance set used for training. The so named Biased Random-Key Evolutionary
Clustering Search (BRKeCS) is also proposed to solve instances of Permutation
Flow Shop Problem (PFSP), making possible to simplify some components of
the Clustering Search [2] and to apply the tuning method.

A problem of scheduling operations in Flow Shop environment is a problem
of scheduling production in which n jobs should be processed by m distinct
machines, having the same processing flow in the machines. Usually, the solu-
tion to the problem is to determine a sequence of jobs among the n! possibles
sequences that minimize the time interval between the beginning of execution of
the first job on the first machine and the execution time of the last job on the
last machine (Makespan). Permutation Flow Shop problem (PFSP) has been
investigated and a sort of different optimization methods has been proposed
[6–8,10].

This paper is organized as follows. In Sect. 2 previous approaches are con-
sidered. Section 3 details the proposed Genetic Algorithm method, consider-
ing method particularities, solution encoding, genetic operators and individual
reconstruction. In Sect. 4, foundations of racing tuning approaches are presented.
Section 5 is devoted to describe the Cross-Validated Racing based on Iterative
Race. In Sect. 6 computational results are presented for problem instances found
in the Literature. At last, the findings and conclusions are summarized in Sect. 7.
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2 Previous Approaches

The new resulting hybrid optimization algorithm has been recently employed to
solve problems related to minimization of tool switches [17].

Biased Random-Key Genetic Algorithms represent a class of algorithms to
solve optimization problems where the solutions are random-keys vectors [15],
i.e., an array of real number in continuous interval [0, 1] that need to be decoded
before fitness evaluation. A decode function is responsible for converting the
array of keys in a feasible solution in the problem domain. Afterwards, the objec-
tive function can be computed. An important advantage of the use of a key space
is the strong independence of the optimization algorithm in relation to the prob-
lem domain, since the solutions are be converted and evaluated, leaving only to
the designer the implementation of the decoder/evaluator procedure.

The algorithm involves a population of p random keys, generated in the
range [0, 1], over a number of iterations called generations. The population is
partitioned into two groups: a small pe of elite solutions, composed of the indi-
viduals with the best ratings, and the remainders p−pe denominated as non-elite
group. The elite individuals are kept non mutated during next generations. From
crossover operations between pe and the mutants pm new individuals are pro-
duced.

Clustering Search (CS) is a generic way of combining search metaheuris-
tics with clustering in order to detect promising regions so that these regions
are subsequently exploited by problem-specific heuristics [20]. CS dynamically
divides the search space into clusters employing a metaheuristic based meth-
ods, responsible to generate candidate solutions continuously during the search
process.

Evolutionary Clustering Search (ECS) is a hybrid evolutionary algorithm
that employs the CS framework to locate promising search areas, represented
by cluster centers, c. The number of clusters NumCl can be fixed a priori or
dynamically determined in running time. The cluster coverage is determined by
a distance metric that computes the similarity between a given solution and the
cluster center. Hamming and Euclidean distance metrics are popular ones [2].

In ECS, a selected individual sk is presented to the clustering process, yield-
ing in activated cluster centers cj depending on distance metric ℘(sk, cj) and
predefined radius rj . Activated clusters receive proportionally votes and can be
better exploited posteriorly by local search procedures. A Non-activated cluster
can be removed and the respective search area, framed by it, is forgotten. Con-
sidering Gj (j=1,2,··· ) as all current detected clusters, the following rule defines
when a new cluster must be created:

cnew = sk if ℘(sk, cj) > rj ,∀Gj , or (1)

When an individual is quite similar to an existent cluster, the assimilation
rule is applied to cluster center, cj , and the similar individual, sk, yielding in a
new positioning of the cluster, c′

j :

c′
j = cj ⊕ β(sk � cj), otherwise. (2)
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where ⊕ and � are abstract operations over cj and sk meaning, respectively,
addition and subtraction of solutions. The operation (sk �cj) means how distant
are the solutions sk and cj , considering the distance metric. A learning rate, β,
of this difference is used to update cj , giving c′

j . Assimilation plays an important
role in clustering process, since clusters must to frame and represent a search
area where exists an oversampling of candidate solutions, identifying probably a
promising search area.

The number of votes (density) received by each cluster are checked up at
regular generation intervals, indicating which are promising. Finally, the local
search procedure provides an exploitation mechanism in alleged promising areas.

BRKGA has been employed to generate candidate solutions for the clustering
process [17]. BRKGA makes possible to simplify some components of the CS,
allowing the need to implement only the decoder and local search heuristics as
represented below by Fig. 1.

Fig. 1. BRKGA+CS conceptual design [17]

Despite the number of applications involving CS based algorithms [12,13],
a certain difficulty rests on the need for specific procedures for distance metric,
assimilation and local search, beyond native metaheuristic operators. Besides, a
lot of performance parameters need to be tuned as well.

3 BRKeCS Applied to Permutation Flow Shop Problems

In this section, specific procedures used in this application are presented a well
as their performance parameters that are needed to be tunned. Unlike regular
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BRKGA, this BRKeCS implementation employs the Blender Crossover (BLX-
α) [16]. Given two chromosomes p1 and p2, the chromosome q is produced by
q = p1 + α(p2 − p1) where α � U(−α, 1 + α), with U represents a uniform
distribution. Typically, the alpha values are 0.5 or 0.25.

Local Search procedure is an essential part to effectiveness of BRKeCS, since
the promising areas of search space should be explored as soon as they are
discovered. BRKeCS use the 2-opt heuristics to intensify this exploration [18].
A complete 2-opt local search compares every possible valid combination of the
swapping mechanism, evaluating the candidate solution’s neighborhood. This
technique can be applied to many permutation related problems [19].

The Decoder procedure is designed to guarantee that feasible solution in the
problem domain:

Φ(Rn) → N (3)

where n is a number of jobs (size of the chromosome) was implemented.
The optimization problem to PFSP is solved finding the minimum cost given

by:
minimize

i,p=1..n; k,h=1..m
C = tik + τki

subject to tik � 0
tik − tih � τik.

tpk − tik + K(1 − yipk) � τik

tpk − tik + K(yipk) � τpk

yipk ∈ 0, 1

(4)

where tij is the arrive time of job i in machine j, τik is the processing time of job
i in machine k, yipk is a boolean fields that represents if o job i was processed
before the job p in machine k.

In this work, the following parameters are needed to be tuned: number of
clusters NumCl, population size P , mutation rate pm, elite rate pe, maximum
number of individuals to make a cluster promising Lambda, maximum number
of local search rMax, width and depth of local search.

4 Tuning of Metaheuristics

Following [1], Tuning Problem can be described by the following components:

– θ: set of candidates configurations
– I: set of instances
– PI : probability of a instance i to be selected to be solve
– t : I → R: function linking the computing time for each instance
– c: random variable that represents the cost of the best solution found by

running the θ setting on the instance i for t(i) seconds
– C ⊂ R: range of c representing its possible values
– PC : probability that c is the cost of the best solution found by running the θ

setting for t(i) seconds on the i instance. Its notation is given by PC(c|, i)
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– C(θ) = C(θ|Θ, I, Pi, PC , t): criterion that needs to be optimized, measuring
the desirability of θ

– T : amount of time feasible for experimentation given a set of candidate con-
figurations on a set of instances.

Based on these concepts, the Tuning Problem can be formally described as
the 7-Tuple 〈Θ, I, PI, PC, t, C, T 〉 where the goal is given by:

θ = arg min
θ

C(θ). (5)

In a tuning problem, a finite set of candidate configurations Θ is given along
with a class of instances I. The cost of the best i solution found with a candidate
θ at a time t(i) is a stochastic quantity described by a conditional measure PC .
The problem is to find, within a time T, the best setting according to a criterion
C, when the measures PI e PC are unknown, but a sample of instances can be
obtained to test the candidate configurations. One expects to find the cost μ
expressed by the integral

μ =
∫

cdPC(c|θ, i)dPI(i). (6)

The above expression cannot be computed analytically since the values of
PC e PI , are not known. However, the samples can be analyzed and, according
to these measurements, the quantities μ(θ) can be estimated [11].

4.1 Racing Approach

Racing algorithms are inspired by the Hoeffding Race Algorithm [14], used to
solve selection models on Machine Learning. The idea behind tuning with racing
algorithms is that the performance evolution of a candidate configuration can
be performed incrementally. In fact, the empirical average μ̂k(θ) =

∑k
j=1 cθ

j , of
the results obtained for any experiment k is an estimate of the criterion given
for Eq. (6).

Since the instances ii, i2, ..., ik are sampled according to the measure PI and
observed the costs cθ

1, c
θ
2, ..., c

θ
k, the best solutions found in a time execution t for

a θ configuration of the metaheuristic. The Algorithm 1 exemplifies the operation
of a generic Racing algorithm.

Based on these elements, one can conclude that the racing algorithm therefore
generates a sequence of sets of candidate configurations: Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ ....
In that the step of a set Θk to Θk+1 is done by discarding configurations that
appear to be suboptimal to the information base of step k. If in the step k, the
set of candidate solutions is still Θk−1, in other words, there was no change, a
new instance is considered.

Each instance θ ∈ Θk−1 is performed over ik and each cost cθ
k is added to

the vector ck−1(θ), forming different vectors ck(θ), one for each θ ∈ Θk−1. The
step k ends with the definition of a set Θk derived from the deletion of Θk−1

candidates by means of a statistical test that compares the vectors ck(θ) for all
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Algorithm 1. Generic Racing algorithm
1: procedure Racing(M,Test) � Total number of experiments and Statistical Test
2: numExp ← 0 � Number of experiments
3: numInst ← 0 � Number of instances
4: C ← AllocateMatrix(maxInstances, Θ)
5: survivors ← Θ
6: while numExp + |survivors| > M & numInstances + 1 > maxInst do
7: i ← chooseInst() � Random selection of instances
8: numInst ← numInst + 1
9: for all θ ∈ survivors do

10: s ← runExp(θ, i) � run BRKeCS
11: numInst ← numInst + 1
12: C[numIns, θ] ← evaluate(s)
13: survivors ← deleteCandidates(survivors, C, Test)
14: θ ← Best(survivors, C)
15: return θ � best configuration

θ ∈ Θk−1. The described process ends when there remains only one candidate for
the surviving configuration, when the maximum number of instances is reached
or when the number of defined experiments are executed.

The advantage of the racing approach is the better allocation of computa-
tional resources among the candidate configurations. Instead of spending com-
putational time to estimate the performance of lower candidates, the racing algo-
rithms focuses on the most promising candidates and gets the lowest variance
estimate for them.

5 Tuning by Cross-Validated Racing

5.1 Cross-Validation Methodology

The validation task, in the scope of Machine Learning, is a process of determining
the degree of reliability of the model built in relation to the data presented. The
test methodologies adopted in the project were cross-validation with K-folds
used in Machine learning. In the K-folds Cross-Validation method, the training
set original is divided into K subsets. Of these K subsets, a subset is retained
to be used in the validation of the model and the remaining K − 1 subsets are
used in training. The cross-validation process is, then, repeated K times, so that
each of the K subsets are used exactly once as a test data for model validation.

For this experiments, it will used a iterated racing procedure, which is an
extension of racing algorithm proposed by Balaprakash [4] named Irace.

The main purpose of Irace is to automatically configure optimization algo-
rithms by finding the most appropriate settings given a set of instances of an opti-
mization problem. The advantage of using Irace and cross-validation (CVR) is
that Irace generates a set of tuning configurations for each step of the validation,
but since each fold is a representative set, the configurations generated by Irace,
even different, have the same statistical relevance. Allowing that researchers who
use the same procedure can be able of to compare their metaheuristics.
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The final result of this process is the average performance of the Irace in the
K tests. The purpose of repeating multiple test times is to increase the Accuracy
of the Irace.

6 Computational Results

In all experiments, each run of the metaheuristics takes a limits if 2.000.000
objective function calls and 1000 trials are considered for statistical significance.
In each trial, the configuration selected is tested on 10 test instance of the chosen
set. For the tests, the Taillard’s Benchmark [9] was divided in 5 folds mutually
exclusive (no repetitions of instances), each set of instances within each fold are
a representative set of Benchmark. The largest group of instances (500 jobs and
20 machines) was removed to a final accuracy test.

Accuracy is given by:

Ac =
1
v

v∑
i=1

εyi,yi
(7)

where v is the number of validation data and εyi,yi
is the residual error repre-

sented by:

εyi,yi
=

yi − yi

yi
(8)

in that yi and yi are known optimum and found optimum, respectively.
Table 1 represents the BRKeCS results to Cross Validated racing algorithm,

the values of each Fold is the average residual error of Irace over the chosen group
of instances, in other words, the process of training over each Fold results in a
specific parameter configuration that is applied over a random set of instances
(20× 5, 20× 10...) generating a residual error εyi,yi

Fold.

Table 1. Cross-validation results to Irace

Set εyi,yi
Fold1 εyi,yi

Fold2 εyi,yi
Fold3 εyi,yi

Fold4 εyi,yi
Fold5

20× 5 0 0 0 0 −0.0008*

20× 10 0.0006 0 0 0 0

20× 20 0 0.0004 0.0025 0 0.0021

50× 5 0 0.0014 0.0003 0.0029 0.0003

50× 10 0.0085 0.0107 0.0069 0.0022 0.01741

50× 20 0.0147 0.0188 0.0199 0.0079 0.0140

100× 5 0 0.0041 0.0034 0.0017 0.0009

100× 10 0.0046 0.0132 0.0107 0.0208 0.0182

100× 20 0.0171 0.0283 0.0316 0.0204 0.0177

200× 10 0.0091 0.0116 0.0112 0.0165 0.0056

200× 20 0.0222 0.0193 0.0256 0.0253 0.0179

εyi,yi
0.0070 0.0098 0.0102 0.0089 0.0085

Ac = 0.0089 == 99.1%
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Table 2. Comparison between BRKeCS tuned by CVR and different algorithms

Set εyi,yi
CDS εyi,yi

SA εyi,yi
PAL εyi,yi

CV R

20 × 5 0.0949 0.0940 0.01082 −0.00016

20 × 10 0.1213 0.1860 0.01528 0.00012

20 × 20 0.0964 0.3260 0.1634 0.001

50 × 5 0.0610 0.03 0.0534 0.00098

50 × 10 0.1298 0.17 0.1403 0.00914

50 × 20 0.1577 0.28 0.1794 0.1506

100 × 5 0.0513 0.04 0.0251 0.00202

100 × 10 0.0915 0.11 0.0913 0.0135

100 × 20 0.1419 0.15 0.1555 0.02302

εyi,yi
0.1050 0.1540 0.09272 0.0222

Fig. 2. Comparison between tuned residual error and default residual error

Based on Table 1, the average residual error of CVR over Taillard’s Bench-
mark [9] is 0.0089 or 0.89%, in other words, the accuracy of the model in predict
the optimum with the parameters found by Irace is 99.1%. In validation test,
the set of instances 20 × 5 presented a average residual error lower than known
optimum of the literature.

Exact solution methods for the problem of PFSP are still limited to small
instances, n ≤ 20 and even to them the running time continues to be large. In
Table 2, residual errors of heuristics that are cited in [21]: PAL [22], CDS [23]
and the Simulated Annealing (SA) [24] are compared with the BRKeCS tuned
by CVR. The efficiency of CVR tuning is representative and wins the others in
all groups of instances.

Figure 2 represents the degree of improvement in residual error according to
the number of jobs for BRKeCS. The tuning caused a general improvement of
26.44% in the optimum quality. For small instances, the gain was 5%, followed
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Fig. 3. Average residual error of big instances 500 × 20

by medium instances with gain of 20%. Using the validated model, a final exper-
iment was performed over the biggest set of instances (500× 20) with gain of
32.78% as showed by Fig. 3.

7 Conclusion

This paper provided some evidence of the effectiveness of Cross-Validated Racing
Approach for tuning metaheuristics and more in general for tuning stochastic
algorithms making it accessible for future researchers a standard tuning model
that allow the comparison of different algorithms. CVR has improved by almost
27% of the default results, showing what is possible compare metaheuristics
using the same metodology of test, tune in and still improve residual error.

Other innovative element that can to be considered as original contribution
was the developing of the Hybrid Metaheuristic BRKeCS that presented good
results for solving the problem PFSP.
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Antonio Jesús Rivera Rivas(B), Francisco Charte Ojeda,
Francisco Javier Pulgar, and Maria Jose del Jesus

Department of Computer Science, University of Jaén, Jaén, Spain
{arivera,fcharte,fpulgar,mjjesus}@ujaen.es

Abstract. A large amount of the data processed nowadays is multil-
abel in nature. This means that every pattern usually belongs to several
categories at once. Multilabel data are abundant, and most multilabel
datasets are quite large. This causes that many multilabel classification
methods struggle with their processing. Tackling this task by means of
big data methods seems a logical choice. However, this approach has been
scarcely explored by now. The present work introduces several big data
multilabel classifiers, all of them based on decision trees. After detailing
how they have been designed, their predictive performance, as well as
the execution time, are analyzed.

Keywords: Multilabel classification · Big data · Decision trees

1 Introduction

Pattern classification is among the most popular machine learning (ML) tasks.
Usually, each data pattern is associated to one category (the class label). Starting
from a set of previously labeled samples, classification algorithms train a model
(the classifier). Once trained, the classifier can be shown new unlabeled patterns
and it produces the predicted label as output. Decision trees (DT) are well-
known classifiers [1], quick to build and easily interpretable. DT ensembles, such
as Random Forest (RF) [2], are also quite effective, producing good predictive
performance.

A large part of the data generated nowadays is made of patterns linked to
several categories at once, instead of only one. Music clips can produce a subset
of the existing emotions [3], images can be categorized into several groups [4],
blog posts and questions in forums are assigned a set of tags [5], etc. The task
of learning from data pattern which are assigned several labels is known as
multilabel classification (MLC) [6]. The use of DTs in MLC, multilabel DTs
(MDTs), is also a common option.

The amount of new images, videos, music clips, blog posts and other mul-
tilabel contents uploaded everyday to the Internet is impressive. As a conse-
quence, MLC algorithms have to be able to process large datasets, a work that
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usually takes a long time. Facing this problem through Big Data (BD) tech-
niques, notably by distributing the workload among a group of machines, seems
a natural choice. Nonetheless, it is a barely explored alternative.

This work aims to propose five different MDT implementations based on BD
techniques. Three of them are BD multilabel versions of the well-known ID3 [7],
CART [8] and C4.5 [9] algorithms. The other two are ensembles of MDTs, as
it is known that ensembles tend to improve classification results. In addition,
ensembles are easier to parallelize in a BD environment than other techniques.
The five proposals will be experimentally tested with a double goal. Firstly,
the predictive performance of each alternative will be compared. Secondly, the
improvement in running time as the number of parallel nodes is increased is
analyzed.

The remainder of this paper is structured as follows. Section 2 introduces the
foundations of MLC and some concepts related to DTs designed to work with
BD infrastructure. The five proposed MDTs for BD are presented in Sect. 3. In
Sect. 4 the experimental framework is detailed and results are discussed. Finally,
some conclusions are drawn in Sect. 5.

2 Preliminaries

The methods presented in Sect. 3 are MDTs designed for BD environments.
Therefore, it is essential to know the foundations of MLC, introduced in Sub-
sect. 2.1, as well as some notions about BD infrastructures such as Hadoop and
Spark, brought in Subsect. 2.2.

2.1 Multilabel Classification

Multilabel datasets (MLDs) emerge naturally in certain fields, such as music
and video categorization [3,10], image tagging [4], document classification [11]
or gene function identification [12]. An MLD can be defined as a subset of
A1 ×A2 × ...×Af ×P(L), being Ai the f input features and P(L) the powerset
of L, the full set of labels appearing in the data. There is no difference between
the input space of an MLD and a traditional dataset. By contrast, the output
space of the former is made of a set of 0s and 1s (labelset), stating which of the
labels in L are relevant for each pattern. Therefore, a classifier have to be able
to predict several outputs simultaneously.

Aside of the number of labels, which can be seen as the length of the labelset,
several other metrics can be extracted from the samples’ labelsets [13]. The two
most common are label cardinality (Card) and label density (Dens). Yi being the
labelset of the ith-instance in the MLD D, Card (1) is simply the average number
of relevant labels in the MLD. Dens (2) is the normalized label cardinality1.

1 Card, Dens and many other multilabel characterization metrics can be easily
obtained with the mldr package [14].
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Card =
1

|D|
|D|∑

i=1

|Yi| (1) Dens =
1

|L|
1

|D|
|D|∑

i=1

|Yi| (2)

MLC has been faced mainly through two different approaches [6], data trans-
formation and method adaptation. The former aims to produce binary or mul-
ticlass datasets from the MLD, so that they can be processed with traditional
classification algorithms. The latter, on the contrary, advocates for rewriting
these traditional algorithms, making them able to work with multilabel data
natively.

Although several transformation methods have been proposed in the litera-
ture, two of them stand out because are frequently used as foundation of many
other algorithms. They are Binary Relevance (BR) and Label Powerset (LP).

– BR consists in producing as many binary datasets as labels there are in
the MLD, training an independent classifier for each label. The predictions
provided by these classifiers are joined to obtain the final labelset. Obviously,
the number of models to build (and the time needed to do it) increases linearly
with the number of labels.

– Whereas BR relies in binary classifiers, LP do it in multiclass ones. The
trick lies in considering each distinct labelset as class identifier. The major
drawback of this approach is that theoretically 2|L| different classes could
exist.

Regarding the method adaptation approach, multilabel algorithms based on
the best known models, such as trees [15], neural networks [16], support vector
machines [12] or nearest neighbors [17], can be found in the literature.

2.2 Decision Trees for Big Data

The recent advances in communications and storage technologies have led to the
emergence of big databases, in a context where ”big” has to be understood as
beyond the processing capacity of current personal computers. The answer to
this scenario was the use of clusters of computers. For facing complex ML tasks
different BD frameworks have been developed over time, such as Hadoop and
Spark [18], both from the Apache Foundation.

Hadoop relies on an own distributed file system [19], named HDFS, and the
approach to distribute the workload is the popular Map-Reduce [20]. Unlike
Hadoop, Spark supports in-memory data sharing. This technique produces a
noticeable improvement in running time, notably when multiple-pass computa-
tions over the data are needed. Depending on specific conditions, Spark runs
as 100 times faster than Hadoop. In addition, a basic library of ML methods
running over Spark, named MLlib [21], is available. Among the provided ML
algorithms, a generic ID3/CART DT can be found.

The cornerstone of Spark is the Resilient Distributed Dataset (RDD). It
represents a data collection that is distributed among a set of machines (cluster
nodes). Spark is able to cache RDDs in memory, reusing them between successive
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parallel operations. In the following, we refer to the number of nodes used to
process the data as number of RDD partitions. The goal of an Spark cluster is
to reduce the total running time by distributing the workload among its nodes.
Therefore, the more nodes there are in the cluster, the less time will be spent
in processing the data. However, partitioning and distributing the data is also a
time-consuming task. Depending on the amount of data, this preparatory work
could take longer than the reduction obtained by the parallelization. So the
number of RDD partitions is a parameter that could need some adjustment.

3 Multilabel Decision Trees for Big Datasets

Taking as foundation the generic tree implementation provided by MLlib [21],
the data mining library for Spark, three MDT algorithms were designed, ID3,
CART and C4.5. All of them are based on the LP transformation, previously
defined, so the labelsets are taken as class identifiers. Then, two ensembles of
MDTs are also proposed, BR and RF. The details about these proposals are
provided in the following subsections.

3.1 Classifiers Based on Single MDT

To learn a single MDT from an MLD, instead of a collection of binary trees, the
LP transformation has been used. Thus, each labelset in an MLD is taken as the
class identifier. In addition, multilabel versions of entropy and the Gini index,
the metrics used to decide the variable used in each split of the tree, are needed.

Based on [15], and being L the full set of labels in the MLD, p(l) the proba-
bility of l being relevant and q(l) = 1− p(l), the entropy measurement is defined
as shown in (3). Analogously, (4) corresponds to the Gini index computation.

Entropy = −
∑

l∈L
p(l) log p(l) + q(l) log q(l) (3)

Gini = 1 −
∑

l∈L
p(l)2 + q(l)2 (4)

Based on the MLlib implementation of ID3 [7], a multilabel version using
(3) and the LP transformation was implemented. In the same way, the MLlib’s
version of CART [8] was adapted to work with MLDs, using (4) and the same
transformation. Since C4.5 is not available in MLlib, it was written as extension
of the existing ID3 algorithm following [9]. This implied essentially implementing
the pruning procedure of C4.5, producing smaller trees with a better ability of
generalization.

The main difference between the classical implementation of these methods
and the one made here, based on Spark, is that the latter parallelizes the task
of evaluating the goodness of the attributes to be used in each split.
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3.2 Classifiers Based on Ensembles

Tree ensembles, such as RF, are among the most popular and best performing
classifiers. Since they train several independent models, ensembles are specially
suitable for work distribution in a cluster. Each tree will be built independently,
once the data partitions have been sent to each node.

The first ensemble is based on the BR transformation, using C4.5 as underly-
ing classifier. Therefore, there will be as many trees as labels in the MLD. Each
one will learn to differentiate patterns for which one label is relevant against all
the others, as explained in Sect. 2. The predictions provided by the individual
trees, at test time, are later combined to get the full labelset.

RF is proposed as the second MDT ensemble. As in BR, this approach also
generates multiple trees. However each one is a MDT processing all labels, not
a binary tree. A random subset of the input features is chosen to train the trees,
as usual in RF. The trees are built with the multilabel C4.5 version described in
the previous subsection. The maximum tree depth is set to 5 and the ensemble
uses 100 trees, as recommended in [22].

4 Experimentation

In this section how the previously described methods have been empirically
tested is explained. Section 4.1 outlines the experimental framework. The con-
ducted experimentation has two main goals. Firstly, the classification perfor-
mance produced by each one of the MDT implementations will be assessed in
Sect. 4.2. Later, in Sect. 4.3, the execution time of each method, as well as the
influence of the number of partitions in running time, will be analyzed. This
way, the best algorithm could be chosen according to time restrictions and clas-
sification performance demands, as discussed in Sect. 4.4.

4.1 Experimental Framework

The MDTs have been tested using six MLDs2 having disparate traits, as shown
in Table 1. Three of them, medical [24], slashdot [25] and tmc2007 [11] come
from the text domain, emotions [3] and scene [4] have their origin in the mul-
timedia sources, while yeast [12] was produced from genetic data. The number
of instances and attributes will mainly impact the execution time of the algo-
rithms. On the other hand, the number of labels and cardinality are attributes
that influence the predictive behavior of the models. Depending on the transfor-
mation applied to the data, the number of labels can also increase the running
time.

Each MLD was partitioned following a 5 folds cross validation, thus each run
used 80% of data to train the model and the remainder 20% as test patterns.
Reported results are mean values over these 5 runs per MLD/method.

2 All of them can be found in the RUMDR [23] repository.
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Table 1. Main characteristics of the MLDs

Dataset Instances Attributes Labels Cardinality

emotions 593 72 6 1.869

medical 978 1 449 45 1.245

scene 2 407 294 6 1.074

slashdot 3 782 1 079 22 1.181

tmc2007 28 596 500 22 2.158

yeast 2 417 198 14 4.237

Aiming to analyze how the number of RDD partitions affected execution
time, the training and testing was repeated six times using a different configura-
tion. The used values are 1, 2, 4, 8, 16, 32 and 64. Theoretically, as the number
of RDD partitions grows execution time should decrease, since the work is dis-
tributed among a larger amount of machines. The cluster used has 14 nodes and
each node disposes of 2 x Intel Xeon E5-2670v2 and 64 GB of RAM.

The predictions made by each classifier were assessed by means of five per-
formance metrics. Let Yi be the ground truth labelset of the ith-instance, Zi

the predicted one, Δ the symmetrical difference, and �� the Iverson operator
(returns 1 if the expression is true, 0 otherwise). Hamming Loss (5), Accuracy
(6), F-Measure (8), and Subset Accuracy (9) are defined as follows. Hamming
Loss is a loss metric, so the lower the value the better is performing the classifier.
For the other four metrics, higher values are better.

Hamming Loss =
1
n

1
k

n∑

i=1

|YiΔZi| (5)

Accuracy =
1
n

n∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi| (6)

Precision =
1
n

n∑

i=1

|Yi ∩ Zi|
|Zi| , Recall =

1
n

n∑

i=1

|Yi ∩ Zi|
|Yi| (7)

F-Measure = 2 ∗ Precision ∗ Recall

Precision + Recall
=

2TP

2TP + FP + FN
. (8)

Subset Accuracy =
1
n

n∑

i=1

�Yi = Zi� (9)

Micro F-Measure (10) differs from F-Measure in the way it is averaged.
Instead of computing the metric for each instance, the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) for all the instances
are aggregated, then the measure is computed. L denotes the full set of labels
appearing in the MLD. Additional details about all these metrics can be found
in [6].
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Micro F-Measure = F-Measure(
∑

l∈L
TPl,

∑

l∈L
FPl,

∑

l∈L
TNl,

∑

l∈L
FNl) (10)

In addition to the previous metrics, running times were also gathered to
compare the influence of the number of RDD partitions in the total execution
time.

4.2 Classification Performance

Firstly, the interest is in determining which one of the MDTs produces better
classification results. The values corresponding to each evaluation metric are
depicted in Fig. 1. Each bar plot shows results for the six MLDs processed with
the five algorithms. As can be observed, the bar associated to RF is noticeable
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Table 2. Classification results

above the others (below for Hamming Loss) in many cases. BR seems to be the
closer contender, performing at the same level than RF sometimes.

The exact values are provided in Table 2. Best results have been highlighted
in bold. From these values, that RF is the best performer can be drawn. It
achieves the highest (lowest for Hamming Loss) value in all cases, with only a
pair of ties.

To better elucidate how each algorithm compare to others regarding classi-
fication performance, in Table 33 all of them have been ranked. The rightmost
column shows the average ranking for all performance metrics. As can be seen,
the second best performer is C4.5, ahead of the BR transformation. By contrast,
CART gets the worst results.

3 Names of metrics have been abbreviated to better fit them as column captions.
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Table 3. Average ranking by metric

Algorithm HL Acc F-M SA MF-M Avg. rank

RF 1.000 1.000 1.083 1.000 1.000 1.017

C4.5 2.833 2.250 2.333 2.333 2.500 2.450

BR 2.333 4.000 3.250 4.333 3.167 3.417

ID3 4.333 3.583 3.833 3.500 3.667 3.783

CART 4.500 4.167 4.500 3.833 4.667 4.333

4.3 Execution Time Analysis

The main goal of distributing the workload among a group of machines is to
reduce the total execution time taken by the process. In this case, the process is
the training of each classifier. The number of RDD partitions have been set to
different values, aiming to analyze at which extent increasing the parallelization
level decreases running time.

Since it has been already proven that ID3 and CART produce poor clas-
sification performance, time analysis will be focused in the other three MDT
implementations. Figure 2 shows execution times in seconds for each MLD and
method. The X axis is common to all plots, indicating the number of RDD parti-
tions. Y axes are independent, stating the running time in seconds. Experiments
taking longer than 10 h were discarded, this is the reason to the lacking of data
points in tmc2007 for 1 and 2 partitions.

As would be expected, in general running time decreases as the number of
RDD partitions grows. However, there are a few exceptions such as RF while
trained with emotions, medical and yeast. In these cases increasing the number
of partitions from 32 to 64 implies a deterioration instead of an improvement,
taking significantly longer. This could be explained by the fact that the process
of dividing the problem and distributing it among the machines in the cluster,
takes longer than the savings obtained by sharing the workload.

4.4 Discussion

From the observation of the previous results, choosing the best MDT alternative
is a matter of deciding what is most important in each case, predictive perfor-
mance or running time. To obtain the best possible classification of new patterns
RF is the correct choice, with a large advantage over the other algorithms. RF
is an ensemble, a collection of C4.5 trees each of them generated from a random
subset of the features. Therefore, obtaining better results than a single C4.5
classifier is not strange. BR is also an ensemble, but each one of the trees is
focused in predicting one label only, working independently of the other trees.
The approach of creating several trees taking the relationship among labels into
account, through the LP transformation, proves to be superior.

As would be expected, the running times for the ensembles, BR and RF, are
longer than for the single C4.5 MDT. However, increasing the number of RDD
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partitions reduces these times until they get quite close in some cases. As can
be observed in Fig. 2, BR is slower with the MDLs which have more labels, such
as tmc2007 and slashdot, since it has to produce a larger set of classifiers. On
the contrary, RF is more affected by the number of samples and attributes, as it
has to produce bigger trees as these numbers grow. In general, for MLDs with
many labels RF will produce the best classification results in less time than BR,
although depending on the number of RDD partitions some surpassing could
exists (as with the medical MLD). C4.5 running times are always the lowest,
but they only benefit from distributing the work among machines with the larger
MLDs. As can be stated from Fig. 2, for MLDs such as emotions, scene and yeast
the line for C4.5 is almost flat.

Overall, given its predictive performance and for being able to reduce running
time as the number of RDD partitions is increased, RF seems to be the best deci-
sion when it comes to choose a multilabel decision tree algorithm for big data
environments.
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5 Conclusions

The amount of new data patterns produced every day is huge, mainly in form
of images, videos, sounds and texts due to the emergence of services such as
Flickr, Instagram, YouTube! and personal blogs. These patterns are multilabel
in nature, and could be grouped/categorized/tagged into several classes. Hence
the interest in having methods able to perform multilabel classification with big
databases.

In this work five different decision tree based methods have been proposed.
Three of them are multilabel versions of well-known ID3, CART and C4.5 algo-
rithms, using an adapted entropy/Gini metric and based on the LP transfor-
mation. The other two, RF and BR, are ensembles of classifiers, following two
distinct approaches. The former trains several trees with a subset of the input
features and all labels, while the latter trains an individual tree for each label
with all the features.

A two-way experimental study has been conducted. The first part has led as
result that RF is the best choice when only predictive performance matters. The
second part analyzed how the total running time could be reduced by increasing
the number of RDD partitions. The behavior of RF and BR was dependent of
the MLD characteristics, noticeably the number of labels. As ensemble methods,
their running time was always higher than that of single-MDT classifiers such
as C4.5.

Acknowledgments. This work is partially supported by the Spanish Ministry of
Science and Technology under project TIN2015-68454-R.
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Abstract. Evolutionary machine learning is an emerging research area
that covers any combination of evolutionary strategies and machine
learning. In support vector machines, metaheuristics have been widely
employed to tune parameters, select features or obtain a reduced sub-
set of support vectors. However, there are only a few works that aim
at embedding evolutionary strategies into the support vector regres-
sors training process, i.e., to apply evolutionary methods to solve the
quadratic optimization problem. In this paper, we intend to solve the
quadratic optimization problem for support vector regression in its dual
formulation by employing genetic algorithms. Our proposal was vali-
dated in real-world datasets against state-of-the-art methods, such as
sequential minimal optimization, iterative single data algorithm, and a
classical mathematical method. The results revealed that our proposal is
a competitive alternative, which often reduced the generalization error
and achieved sparse solutions.

Keywords: Support vector regression · Genetic algorithms · Evolution-
ary machine learning

1 Introduction

The SVR training process requires the solution of a quadratic optimization prob-
lem, which can be described in its primal or dual formulation. The dual formu-
lation is presented in terms of a set of Lagrange multipliers and the bias [21].
Methods such as Sequential Minimal Optimization (SMO) [9], Iterative Single
Data Algorithm (ISDA) [12], and Quadratic Programming (QP) [11] have been
applied to obtain the aforementioned set of Lagrange multipliers, as well as the
bias. Unfortunately, the classical mathematical methods, such as QP, require
large matrices manipulation and may lead to more numerical precision errors,
since QP solves quadratic programming problem by numerical optimization.

As known, support vector classifiers and regressors are achieved by solving
different quadratic optimization problems. In a nutshell, in their dual formu-
lation, the difference is mainly in terms of the equation to be maximized and
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also in terms of the number of Lagrange multipliers associated with a certain
pattern. Actually, SVC and SVR dual formulations are described as having one
and two Lagrange multipliers for each pattern, respectively. Along with these
differences, as a constraint, the couple of Lagrange multipliers for a certain pat-
tern should not assume zero values at the same time [25]. Thus, any algorithm
proposed to solve this quadratic optimization problem must successfully handle
these challenging requirements.

Evolutionary Machine Learning (EML) is an emerging research area con-
cerning any combination of evolutionary strategies and machine learning.
Metaheuristics, such as Simulated Annealing (SA) [24], Genetic Programming
(GP) [2], Particle Swarm Optimization (PSO) [14], and Genetic Algorithms
(GAs) [27] are alternatives to numerical optimization based methods. Due to
GAs inherent features, some optimization problems can be solved without sup-
posing linearity, differentiability, continuity or convexity of the objective func-
tion. In general, GAs have been widely employed to deal with parameters tun-
ing [3,10], features selection [15] and also to obtain a reduced-set SVM [19,20,26].
The few related works aimed at solving SVC in its primal formulation are
presented in [23] and, in its dual formulation in [7,17]. Only recently, a solu-
tion we proposed fulfilled each and every constraint for SVCs [7]. Nevertheless,
approaches that solve the SVR quadratic optimization problem by GAs are
quite scarce in the literature. An approach related to the quadratic optimization
problem for regression (SVR) was found in [22], however it is restricted to the
primal formulation. In this paper, we aim at solving the SVR quadratic opti-
mization problem in its dual formulation. Our approach employs GAs to handle
the quadratic optimization problem and its constraints towards obtaining the
dual set of Lagrange multipliers, as well as, the bias. The proposal is validated
with real-world datasets and compared with state-of-the-art methods, such as
SMO, QP and ISDA. The remaining content of this paper is organized as fol-
lows. In Sect. 2 we review the fundamentals of SVR and briefly introduce GAs
in Sect. 3. Then, our proposal, the Evolutionary Support Vector Regression, is
presented in Sect. 4. After that, we present the simulations in Sect. 5, and finally,
our conclusion remarks are presented in Sect. 6.

2 Support Vector Machines for Regression

Consider a training set X = {xi, yi}l
i=1, so that xi ∈ R

d is an input sample and
yi ∈ R is the corresponding dependent variable. The goal is to find a function

f(x) = wTx + b, (1)

that has at most ε deviation from the dependent variable yi and also it is as flat
as possible. In SVR, we measure the error of approximation and it corresponds to

dealing with the Vapnik ε-insensitive loss function |ξi|ε =
{

0, if |ξi|ε ≤ ε,
|ξi| − ε otherwise.

The loss is equal to zero if the difference between the predicted and the measured
value yi is less than ε. If the difference is larger than ε, this difference is used as
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Fig. 1. Dashed lines: Vapnik ε-insensitive loss function. Solid line: predicted function.
Adapted from [12].

the error. The equation defines an ε tube as shown in Fig. 1. The predicted values
inside the tube mean the loss (error or cost) is zero. For all other predicted points
outside the tube, the loss is equals to the magnitude of the difference between
the predicted value and the radius ε of the tube [12].

In order to ensure that f(x) has at most ε deviation from the dependent
variable yi, one has to minimize the norm ‖w‖2 = wTw. The SVR primal
problem [25] is defined as

min P (w, ξi, ξ
∗
i , b) =

1
2
wTw + C

l∑
i=1

(ξi + ξ∗
i ), (2)

subject to

⎧⎪⎨
⎪⎩

yi − wTxi − b ≤ ε + ξi

wTxi + b − yi ≤ ε + ξ∗
i

ξi, ξ
∗
i ≥ 0

, (3)

where b is the bias, {ξi}l
i=1 and {ξ∗

i }l
i=1 are the slack variables that allow some

errors, the constant C > 0 determines the trade-off between the flatness in
Eq. (1) and the amount up to which deviations larger than ε are tolerated.

In most of the cases, the optimization problem in Eq. (2) is more easily to
solve in its dual formulation. Therefore, a Lagrange function is built from the
primal problem and its constraints by introducing a dual set of variables,

Lp(w, b, ξ, ξ∗, α, α∗) =
1
2
wTw + C

l∑
i=1

(ξi + ξ∗
i ) −

l∑
i=1

αi(ε + ξi − yi + wTxi + b)

−
l∑

i=1

α∗
i (ε + ξ∗

i + yi − wTxi − b) −
l∑

i=1

(ηiξi + η∗
i ξ∗

i ),

(4)
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where αi, α∗
i , ηi, η∗

i ≥ 0 are Lagrange multipliers that have to satisfy posi-
tivity constraints. The optimality conditions at the saddle point for this prob-
lem are obtained by setting all derivatives with respect to the primal variables
(w, b, ξ, ξ∗) equal to zero [21]. Thus, the dual problem is defined as

max Ld(α,α∗) = −1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )x
T
i xj

− ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i ), (5)

subject to αi, α
∗
i ∈ [0, C] and (6)

l∑
i=1

(αi − α∗
i ) = 0, (7)

so that the Eq. (1) is rewritten as

f(x) =
l∑

i=1

(αi − α∗
i )x

T
i x + b. (8)

There can never be a set of Lagrange multipliers αi, α
∗
i which are both

nonzero, since αiα
∗
i = 0. We suggest the reader to obtain more details in [21].

The nonlinear versions is achieved by preprocessing the training set X by using
the kernel trick replacing the dot product xi

Tx with a kernel function k(x,xi).

3 Genetic Algorithms

Genetic Algorithms [27] are metaheuristics inspired by natural evolution
processes, such as inheritance, mutation, natural selection and reproduction.
Such metaheuristics are used to solve optimization problems by adopting a pop-
ulation of candidate solutions, named individuals, which evolve towards better
solutions. In this population, each individual has a set of genes, named chro-
mosome, that is changed through mutation or combined with another one by
crossover processes. A typical genetic algorithm requires: (i) a genetic represen-
tation related to the solution domain, and (ii) a fitness function to evaluate the
individuals.

4 Proposal: Evolutionary Support Vector Regression

Our proposal, henceforth called Evolutionary Support Vector Regression
(ESVR), relies on finding the Lagrange multipliers for SVR by a single objec-
tive genetic algorithm. Similarly to SMO, QP, and ISDA, the ESVR inputs are
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the training set, the regularization parameter C and the deviation ε. Firstly,
the initial population is built at random so that each individual represents one
possible solution, i.e., the Lagrange multipliers values from Eq. (5). The ini-
tial population already satisfies that αiαi∗ = 0 and the first constraint in Eq.
(6), but needs to be adjusted to comply with the second constraint in Eq. (7).
Such adjustment algorithm is presented later. Then, for each next generation
and until ESVR reaches a defined stop criteria: (i) the elitism is applied, which
involves preserving a small proportion of the best individuals into the next gen-
eration; (ii) a fraction of new individuals are generated by the crossover process,
and (iii) the remaining individuals are obtained through the mutation operator.
The adjustment algorithm is applied when necessary during the aforementioned
steps since crossover and mutation operators violate the second constraint from
Eq. (7). Finally, when ESVR stops and the Lagrange multipliers were found, the
bias value is computed from Eq. (8) and the Lagrange multipliers and bias are
returned. For sake of simplicity, the ESVR flowchart is depicted in Fig. 2.

Fig. 2. ESVR flowchart: the dotted rectangle comprehends GA steps which are first
executed and return the set of Lagrange Multipliers (Dual variables); then the support
vectors are selected and the bias computed.

The ESVR stops when (i) it reaches a certain generation limit number or
(ii) the average relative change in the best fitness function value is less than or
equal to 1.0e − 4. Once we find the Lagrange multipliers, we compute the bias b

from Eq. (8) as b = 1
l

∑l
i=1

(
yi − ∑l

i=1(αi − α∗
i )x

T
i x

)
.

4.1 Genetic Representation

In SVR, each sample is related to the Lagrange multipliers αi and α∗
i . As stated

in Sect. 2, αiα
∗
i = 0, i.e., αi or α∗

i is equals to 0 since a set of Lagrange multi-
pliers can not be both simultaneously nonzero. Therefore, considering αdiff

i =
(αi−α∗

i ), it is straightforward to one realizes, through Eq. 5, that αdiff
i ∈ [−C,C]

and (αi − α∗
i ) ∈ [−C,C], which means that
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αi, α
∗
i = 0 if αdiff

i = 0,

αi = 0 and α∗
i = |αdiff

i | if αdiff
i < 0,

αi = |αdiff
i | and α∗

i = 0 if αdiff
i > 0.

(9)

As for the genetic representation, the individual was defined as a real-valued
genes vector αdiff = [(α1 − α∗

1), (α2 − α∗
2), . . . , (αi − α∗

i ), (αl − α∗
l )], where

αdiff
i ∈ [−C,C]. The individual must have l genes, since the training dataset

has l samples. The generated individual must handle the two SVR constraints
αi, α

∗
i ∈ [0, C] and

∑l
i=1(αi − α∗

i ) = 0 from Eqs. (6) and (7), respectively. The
Lagrange multipliers αi and α∗

i are easily retrieved from αdiff
i , one can see an

example in Fig. 3

α α α α α α α α

α

α

α

α α α α α α α α

α α α α α α α α

Fig. 3. Retrieving α and α∗ from αdiff through Eq. (9).

4.2 Fitness Function

The fitness function is the same as Eq. (5) with a slight modification since
our proposal is in terms of minimization F(αdiff ) = 1

2

∑l
i=1

∑l
j=1(αi − α∗

i )

(αj − α∗
j )x

T
i xj + ε

∑l
i=1(αi + α∗

i ) − ∑l
i=1 yi(αi − α∗

i ), where αi and α∗
i are

retrieved from αdiff according to Eq. (9).

4.3 Genetic Operators

Since our genetic representation deals with the Lagrange multipliers, the Inter-
mediate Recombination [18] crossover operator was defined. In such arithmetic
operator, the offspring is chosen somewhere around and between the variable
values of the parents. Let p = [pi, . . . , pn] and q = [qi, . . . , qn] be the parents.
The offspring z is computed by zi = βipi + (1 − βi)qi, i = 1, . . . , n, where
βi ∈ [−g, 1 + g] is a scaling factor chosen uniformly at random and g defines the
area size for possible offspring. When g = 0, the z area is the same size as the
area spanned by the parents p and q. The generated offspring needs to be fixed
through the adjustment algorithm (Sect. 4.4) since z ∈ [−C,C] and it is feasible
just with respect to the first constraint in Eq. (6). The g value is set to 0 in our
crossover operator. The swap mutation [5] is defined as the mutation operator.
It selects two genes and swaps their values. Since such operator can violate the
second constraint in Eq. (7), these ones are fixed by the adjustment algorithm.
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4.4 Adjustment Algorithm

Our genetic representation already complies with the first constraint in Eq. (6)
because it has bounded genes. On the other hand, those individuals may violate
the second constraint in Eq. (7). To overcome such situation, the individuals are
fixed through the adjustment algorithm. This is a common strategy in the GAs
literature [16]. The adjustment algorithm is presented as follows.

Adjustment(αdiff , C)

1. α, α∗ ← Retrieve(αdiff )

2. s ←∑l
i=1(αi − α∗

i )
3. while |s| �= 0 do
4. if s > 0 then
5. k ← Rand[1, l]
6. if αk > |s| then
7. αk ← αk − |s|
8. else
9. αk ← 0

10. if Rand[0, 1] < 0.5
11. α∗

k ← C
12. end if
13. end if
14. αdiff

k ← (αk − α∗
k)

15. else
16. k ← Rand[1, l]
17. if α∗

k > |s| then
18. α∗

k ← α∗
k − |s|

19. else
20. α∗

k ← 0
21. if Rand[0, 1] < 0.5 then
22. αk ← C
23. end if
24. end if
25. αdiff

k ← (αk − α∗
k)

26. end if
27. s ←∑l

i=1(αi − α∗
i )

28. end while
29. return αdiff

The main idea of our adjustment algorithm is to iteratively reduce an amount
from αi or α∗

i selected at random until αdiff complies with the second constraint.
In order to explain it, consider s ← ∑l

i=1(αi −α∗
i ), if s > 0, that means we need

to reduce from αi, or reduce from α∗
i otherwise. If it is not possible to reduce s

from αi, there are two (selected at random) alternatives in this case: αi = 0 or
α∗

i = C. We highlight that our adjustment algorithm reduces an amount from
αi or α∗

i instead of increasing them and it also avoids changing those Lagrange
multipliers already equal to zero. This behavior reduces the number of support
vectors.

5 Simulations and Discussion

We carried out simulations on six real-world datasets from the UCI repository
of machine learning databases [1]: (i) Servo (SER) with 4 variables and 167
patterns; (ii) CPU with 6 variables and 209 patterns; (iii) Boston (BOS) with
13 variables and 506 patterns; (iv) Ailerons (AIL) with 5 variables and 7129
patterns, and (v) Elevators (ELE) with 6 variables and 9517 patterns and also
on (vi) Motorcycle (MOT) with 1 variable and 103 patterns from [8].
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5.1 Experimental Setup

First, for each dataset, the data normalization was performed following
v

′
i = vi−ηV

σV
, where ηV and σV are the mean and the standard deviation of

V , respectively. After this normalization, the data is normally distributed with
mean zero and standard deviation of one.

Then, we conducted 30 independent runs on each dataset, 80% of the data
samples were randomly selected for training purposes and so the remaining 20%
of the samples were used for assessing the regressors’ generalization performance.
The same selected at random training and test sets were used by SMO, QP, ISDA
and ESVR. The ESVR works on reduced training set through k-medoids algo-
rithm, k = 500 [13] when l > 500. As one will see, such approach have not
an effect on ESVR performance. All experiments were performed with Gaussian(
k(x,xi) = exp

(
−σ−2 ‖x − xi‖2

))
and linear kernel. The Gaussian kernel para-

meter σ was tuned by applying a grid search with 5-fold cross-validation over
the training dataset, where σ ∈ [2−15, 2−14, . . . , 23]. The SVR hyperparameter
ε was fixed ε = 0.001 and the regularization parameter C was selected by the
following prescription C = max(|ȳ + 3σy|, |ȳ − 3σy|), where ȳ and σ are the
mean and the standard deviation of the y values of the training set. For more
details see [4].

After all 30 independent runs we present the results and discussion in terms of
mean and standard deviation of the MSE and number of support vectors (#SV).
These results were validated through the Friedman non-parametric statistical
test [6] along with Tukey-Kramer test to compare SMO, QP and ISDA to ESVR.

5.2 Results and Discussion

The results for SVR trained by SMO, QP, ISDA, and ESVR are presented in
Tables 1 and 2, for linear and Gaussian kernel, respectively. Those results which
outperformed the other methods related to MSE value are in bold face. We also
present the results of applying the Friedman statistic test [6] in column ST, in
which ✓ is a relation of equivalence from the others methods related to ESVR,
while ✗ indicates a considerable difference among them.

By analyzing the Table 1 one can conclude that the performances of the
ESVR were equivalent or even superior to those achieved by the SMO, QP and
ISDA for each dataset and it also achieved the lowest MSE value for 4/6 of the
datasets. Moreover, our proposal produced sparse solutions and it was sparser
than the others methods for CPU, SER, MOT and ELE. On the ELE dataset,
the largest set used in our experiments, the proposal ESVR was equivalent to
the ISDA, and outperformed ISDA on AIL dataset, the second largest set used
in our experiments. As one can see, there are no results for QP on AIL and ELE
datasets due to the computational cost the method demanded.

Related to the results with the Gaussian kernel (see Table 2), one can see
that the performance results among the methods were similar and a few better
than with linear kernel. The proposal ESVR it is still equivalent to the others
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methods. On AIL dataset, ISDA achieved the lowest MSE value, and ESVR
lower than SMO.

Table 1. Results of 30 independent runs with linear kernel.

MSE #SV

Dataset Method (μ) (σ) ST (μ) (σ)

CPU SMO 6.27e+03 6.54e+03 ✓ 1.67e+02 0.00e+00

QP 6.24e+03 6.49e+03 ✓ 1.67e+02 1.83e−01

ISDA 6.37e+03 6.70e+03 ✓ 1.50e+02 5.91e+00

ESVR 5.21e+03 5.14e+03 - 1.33e+02 2.19e+01

SER SMO 1.90e+00 7.68e−01 ✗ 1.34e+02 3.05e−01

QP 1.90e+00 7.77e−01 ✗ 1.34e+02 3.05e−01

ISDA 1.91e+00 7.67e−01 ✗ 1.33e+02 9.10e−01

ESVR 1.27e+00 4.58e−01 - 1.03e+02 1.80e+01

BOS SMO 2.55e+01 8.10e+00 ✗ 4.05e+02 3.05e−01

QP 2.54e+01 8.09e+00 ✗ 4.05e+02 0.00e+00

ISDA 2.64e+01 8.52e+00 ✗ 3.17e+02 1.90e+01

ESVR 3.82e+01 1.29e+01 - 3.33e+02 5.50e+01

MOT SMO 2.28e+03 5.52e+02 ✓ 1.06e+02 1.83e−01

QP 2.29e+03 5.64e+02 ✓ 1.06e+02 0.00e+00

ISDA 2.31e+03 5.68e+02 ✓ 1.04e+02 1.27e+00

ESVR 2.17e+03 4.44e+02 - 6.59e+01 7.24e+00

AIL SMO 4.68e−08 8.24e−09 ✗ 1.39e+01 1.87e+00

QP

ISDA 4.37e−08 4.26e−09 ✓ 1.37e+01 1.88e+00

ESVR 3.37e−08 4.10e−09 - 4.07e+02 8.07e+01

ELE SMO 2.51e−06 1.32e−07 ✗ 1.44e+03 1.90e+02

QP

ISDA 2.11e−06 7.81e−08 ✓ 5.57e+02 8.42e+01

ESVR 2.16e−06 8.03e−08 - 3.10e+02 1.15e+02

The Fig. 4 present the 30 executions of SMO, QP, ISDA and ESVR as a
relation between the normalized MSE value and which percentage from training
set was used as support vectors. We present in the Fig. 4(e, f) the best perfor-
mance achieved by the ISDA and ESVR on MOT dataset with the Gaussian
kernel. The SV up stands for those samples that αi > 0 and SV low if α∗

i > 0.
Since the behavior of SMO, QP and ISDA methods are similar, one can see the
results in Table 2, we opt to present only the ISDA solution. On MOT dataset,
the proposal achieved the lowest MSE value.
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Table 2. Results of 30 independent runs with Gaussian kernel.

MSE #SV

Dataset Method (μ) (σ) ST (μ) (σ)

CPU SMO 6.15e+03 6.75e+03 ✓ 5.12e+01 7.90e+00

QP 6.15e+03 6.76e+03 ✓ 5.11e+01 7.66e+00

ISDA 6.49e+03 7.69e+03 ✓ 4.47e+01 5.98e+00

ESVR 6.77e+03 8.42e+03 - 1.31e+02 2.17e+01

SER SMO 4.54e−01 3.75e−01 ✓ 5.83e+01 1.66e+01

QP 4.54e−01 3.75e−01 ✓ 6.02e+01 1.78e+01

ISDA 4.60e−01 3.91e−01 ✓ 5.63e+01 1.71e+01

ESVR 5.06e−01 3.87e−01 - 9.00e+01 1.59e+01

BOS SMO 1.02e+01 4.15e+00 ✗ 2.79e+02 1.35e+01

QP 1.02e+01 4.16e+00 ✗ 2.79e+02 1.35e+01

ISDA 9.86e+00 3.63e+00 ✗ 2.75e+02 1.13e+01

ESVR 1.57e+01 5.98e+00 - 3.28e+02 6.01e+01

MOT SMO 5.81e+02 1.88e+02 ✓ 1.06e+02 0.00e+00

QP 5.81e+02 1.88e+02 ✓ 1.06e+02 0.00e+00

ISDA 5.81e+02 1.88e+02 ✓ 1.06e+02 2.54e−01

ESVR 5.74e+02 1.71e+02 - 6.20e+01 2.26e+01

AIL SMO 6.63e−08 4.57e−09 ✗ 2.12e+02 0.00e+00

QP

ISDA 3.80e−08 2.99e−09 ✓ 1.06e+02 0.00e+00

ESVR 4.86e−08 6.46e−09 - 4.35e+02 7.09e+01

ELE SMO 2.29e−06 1.10e−07 ✗ 3.74e+03 1.48e+02

QP

ISDA 2.09e−06 9.78e−08 ✓ 2.93e+03 1.83e+02

ESVR 2.48e−06 1.38e−07 - 4.53e+02 6.42e+01

One can see that the behavior of SMO, QP and ISDA are very similar, and
it was necessary more support vectors with linear kernel. ESVR tries to keep the
same behavior with both linear and Gaussian kernel, and also achieves sparser
solutions in both of them. On AIL and ELE datasets, which are the largest
datasets used in our experiments, ESVR achieved the lowest MSE with linear
kernel and, with the Gaussian kernel the ESVR performance was equivalent
to ISDA. Overall, the results indicate that ESVR is very competitive in terms
of MSE since it achieved similar or even the lowest MSE values. Furthermore,
ESVR is also competitive with respect to the number of support vectors. The
performance on larger datasets was superior in some cases and equivalent to
ISDA performance. As shown ESVR can be applied successfully in huge datasets
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(a) AIL: Linear kernel (b) AIL: Gaussian kernel

(c) ELE: Linear kernel (d) ELE: Gaussian kernel

(e) ISDA (MSE = 488.52) on MOT (f) ESVR (MSE = 484.78) on MOT

Fig. 4. MSE (normalized) in test and %SV from training set on AIL and ELE.

since even on a reduced training set, the performance achieved was equivalent
or even superior to the compared methods.

6 Conclusion

We propose the Evolutionary Support Vector Regression to solve the quadratic
optimization problem from Support Vector Regression (SVR) in its dual for-
mulation through Genetic Algorithms. Our proposal successfully embedded the
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SVR constraints, so that it is able to handle the dual optimization problem
and still obtain the Lagrange multipliers and the bias in a seamlessly way. The
simulations and statistical tests results indicate that our proposal is competitive
when compared with the state-of-the-art methods such as SMO, ISDA, and some
classical mathematical methods while reducing the generalization error, achiev-
ing sparse solutions and also maintaining its simplicity since it does not need
complex mathematical computations. Future works aim at adding improving the
initial population by introducing heuristics to select support vector candidates
in order improve the solution quality.
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Abstract. Temporal code-driven stimulation is a new closed-loop stim-
ulation method for information processing research in biological systems.
The biological signal is processed and an event-based binary digitization
is performed in real time. Patterns of temporal activity in the system are
matched with binary codes and stimulation is triggered after the detec-
tion of a predetermined code. This paper presents the characteristics of
this closed-loop methodology together with novel analytical possibilities
derived from using an information-theoretic approach. The implementa-
tion of this method for its application to the study of coding schemes in
fish electroreception is presented. Finally, our preliminary results showed
that code-driven stimulation decreases the discharge frequency of the
electric fish and increases the probability of sparser codes. The relation
between those two measures can be used to assess the analysis of factors
involved in the information processing in the system.

1 Introduction

From a single neuron to entire neural systems, interaction-response loops have a
relevant role at all levels of the nervous systems. These closed-loop interactions
are also relevant in sensory perception from the environment. In the last few
years, there is an increasing advance in closed-loop methodologies applied to the
study of biological systems (Chamorro et al. 2012; Schiff 2012; El Hady 2016;
Lareo et al. 2016) and a growing need to use real-time protocols to establish
such closed loops.

Closed-loop methods allow to dynamically stimulate a biological system
depending on its own activity. These activity-dependent methods are a com-
plementary approach to the traditional stimulus-response approaches. Different
closed-loop stimulation protocols have been employed in a wide variety of neuro-
science related domains (Chamorro et al. 2012; Muñiz et al. 2011; Madhav et al.
2013; Roth et al. 2014; Potter et al. 2014; Forlim et al. 2015; Biró and Giugliano
2015).
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 101–111, 2017.
DOI: 10.1007/978-3-319-59153-7 9
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Most closed-loop techniques only discriminate between the presence or
absence of a certain event or use the instantaneous value of a monitored sig-
nal to trigger the stimulus (Muñiz et al. 2011; Berényi et al. 2012; Ehrens et al.
2015; Forlim et al. 2015). The coding scheme of a neural system can also be
addressed with modern closed-loop protocols. Adaptive sampling is a relevant
example where an information-theoretic measure is used for selecting the stim-
ulus presented to the system (Benda et al. 2007).

Taking these characteristics into account, we have recently defined a new
closed-loop stimulation method to investigate the presence and role of different
coding schemes in biological systems: temporal code-driven stimulation (Lareo
et al. 2016). First, a binary digitization of the analog biological signal is per-
formed in real time. Event trains are represented as binary codes and a code is
selected to be used as a trigger for stimulation. The response to this code-driven
stimulation can be used to assess sequential processing in the system and to
characterize it.

As a proof of concept, we have applied this method to the weakly electric fish
Gnathonemus Petersii. These fish, from the pulse mormyrids family, possess a
remarkable electrosensory system and are a well-known example of a biological
system with temporal coding (Bullock et al. 2006; Baker et al. 2013). Weakly
electric fish generates electric fields using an electric organ (Caputi et al. 2002;
Bullock et al. 2006; Von der Emde et al. 2010). Electric organ discharges (EODs)
are then detected as distortions in the electric field around the fish body using
electroreceptors. The EODs can be easily detected non-invasively in alive and
active freely-behaving animals using the appropriate hardware (Jun et al. 2012;
Forlim and Pinto 2014; Forlim et al. 2015). The pulse waveform of this fish is
stereotyped, but the time between pulses vary considerably (Baker et al. 2013;
Carlson and Gallant 2013; Forlim and Pinto 2014). The inter-pulse intervals
(IPIs) carry information about the behavioral state of the fish (Carlson 2002;
Carlson and Gallant 2013; Forlim and Pinto 2014), i.e., information is encoded
in the temporal structure of the IPI patterns. These IPIs also change depending
on external electrical stimulation (Kramer 1979; Forlim et al. 2015).

In this paper we present new analyses using this methodology, temporal code-
driven stimulation (Lareo et al. 2016), to stablish stimulation-response loops in
real time. We have conducted some validation experiments in electroreception.
We compare the fish response to closed-loop stimulation to control sessions with-
out stimulation and to open-loop stimulation. In the methods section we describe
the real time setup, the stimulation protocols and the validation experiments
conducted. Then, the results of these experiments are analyzed and discussed.
In particular, here we complement previous analyses based in the IPI distribu-
tion with ones based in the distribution of binary codes in the response signal.
A possible link between both is discussed.
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2 Materials and Methods

2.1 Hardware and Software Setup

The acquisition platform consisted of a computer running the software imple-
menting the temporal code-driven stimulation algorithm (Fig. 1-A), hardware to
process and acquire the fish’ signal (Fig. 1-B) and an aquarium with the living
system (Fig. 1-C). The aquarium has 4 differential dipoles to measure the fish sig-
nal, displayed forming an asterisk (Fig. 1-C) at medium depth in the tank. The
signal received by the dipoles was amplified (TL082 JFET-Input Dual Oper-
ational Amplifier with a gain of approximately: 91 kΩ/2.2 kΩ ≈ 42), summed
(LM741 Operational Amplifiers) and squared (AD633 Analog Multiplier). Sig-
nal was acquired at 17 kHz by a data acquisition (DAQ) board (NI PCI-6251,
National Instruments Corporation) in a PC-compatible computer. Stimulation
was generated in real time by software and delivered using the same DAQ board
by a silver tip dipole, placed at the bottom-middle of the tank (Forlim et al.
2015; Lareo et al. 2016). The fast electric signalling of the fish requires the men-
tioned high acquisition rate and precise real-time software technology to build
closed-loop interactions.

Fig. 1. (A) Graphic User Interface of RTBiomanager software running a temporal code-
driven stimulation session and acquiring signal from the real system. (B) Acquisition
system, the signal received by the dipoles was amplified, summed, squared and acquired
at 17 kHz by a data acquisition (DAQ) board in a PC-compatible computer. (C) Dipole
setup used for temporal code-driven stimulation in electroreception experiments.

For better re-usability and portability we used general purpose computers
with an open-source real time operating system. We chose Ubuntu Linux with
a real time kernel patch named Real Time Application Interface, RTAI1. Real
1 https://www.rtai.org/.

https://www.rtai.org/
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time technology assures preemption in the tasks related to interacting with the
biological system. RTAI provides an application programming interface (API)
which permits the execution of periodic tasks in hard real time.

Temporal code-driven stimulation protocols were implemented in a toolbox
which can be used in conjunction with real time software responsible for man-
aging the closed-loop (Lareo et al. 2016). We selected RTBiomanager, an open-
source real time software for this purpose (Muñiz et al. 2005, 2008, 2009), aside
with a code-driven extension (Lareo et al. 2016).

2.2 Stimulation Protocols

For comparison purposes, we defined two stimulation protocols in our method-
ology: a code-driven closed-loop protocol and an open-loop one.

The experimental protocol consists of four ordered sessions (Fig. 3-A): 10 min
control session without stimulation (C1); 10 min code-driven stimulation session
(CL); 10 min control session (C2); 10 min open-loop stimulation session (OL).

The open-loop protocol does not take into account the activity of the fish. It
is designed to compare changes in the system with those that occur under closed-
loop stimulation. Both protocols worked as real time periodic tasks with high
priority within the processor (Fig. 2) and run regularly (with a predetermined
real-time period and strict time constraints) during the stimulation sessions.

Fig. 2. Illustration of real time task management at the processor. Code-driven stim-
ulation and open-loop stimulation work as real time periodic tasks with high prior-
ity within the processor. Vertical lines represent real time interruptions, which have
strict temporal constraints. Δt1 is the processor time dedicated to the real-time task
(operations of the protocol being runned). Δt2 is the remaining time between real-
time interruptions, dedicated to lower priority (non real-time) operations, such as GUI
updates.

Code-Driven Protocol. The code-driven protocol acquired the signal from
the biological system. The protocol processed this signal to binary digitize it in
real time and if a triggering code was detected it delivered a stimulus (Fig. 3-A).

To digitize the monitored signal to a binary sequence, we divided it into N
time windows of size Δt. Then we assigned a bit value depending if an event is
detected in the time window: 1 when an event is present and 0 otherwise. This
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results in a discrete temporal sequence {et; t = 1 . . . N} where et could be 0 or
1 (Fig. 3-B).

We defined a code CL
t of size L (number of bits) at time t as a sequence

of symbols CL
t = {et−L; . . . ; et−1; et}, where t is the time when the sequence is

detected. Bits were superimposed between codes as we used a shift of 1 bit. CL
t

was the sequence that happened at time t formed by the events between t-L
and t. Accordingly, there were N-L+1 words of L bits in each time series.

For selecting an appropriate Δt, the system must be first characterized using
data from control sessions without stimulation. We selected its value using a
maximum entropy criterion. For that, the signal was digitized using several values
of Δt, obtaining different set of codes CL = {cL1 , cL2 , . . . , cLn} and the probability
of each code.

Regarding the codes, here we used L = 4 and ended by 1, 8 different words
to trigger the stimulus (24 = 16 possible codes, 8 ended by 1). We selected as
trigger a code with mean probability of occurrence.

The entropy was then calculated as:

H(C4) = −
∑

i

P (c4i )logP (c4i )

where P (c4i ) is the probability of occurrence of c4i .
The entropy H(C4) is related to the variability of the set and it represents

the signal capability of encoding information. After calculating the entropy of
the signal for different values of Δt, we selected the appropriate parameter value
which maximized entropy.

Once Δt and the triggering code were selected, we conducted a code-
driven session, the biological signal was acquired and then digitized to a binary
sequence, using the same binarization technique explained before. Temporal
sequences of events were detected in real time as binary codes. The stimula-
tion was delivered after the detection of the triggering code. We chose a 500 Hz
sinusoidal stimulus, 2.5 V in amplitude, lasting between 200 ms and 300 ms.

Open-Loop Protocol. We defined an open-loop stimulation protocol (i.e. stim-
ulation that does not take into account the activity of the fish). It aims to
compare changes in the system due to code driven stimulation (i.e. stimulation
triggered by the activity of the fish) with changes due to open-loop stimulation.
This open-loop protocol delivered stimulation at the same average frequency
than in code-driven sessions.

The temporal sequence were divided into regular time windows. Only one
stimulus was triggered per window. The stimulus is randomly sent any time
inside this window. For selecting an appropriate window time, we divide the
number of stimuli delivered during a previous code-driven session by the total
time of that session.
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Fig. 3. Experimental schema (A) and binarization example (B). Consists of four
ordered sessions: First control session, code-driven closed-loop session, second control
session and open-loop stimulation session. Characterization of the system is done after
every first control session to select an appropriate Δt and trigger C4

t to stablish the
closed-loop.

2.3 Description of the Experimental Protocols and Analysis

We have conducted 4 experiments using temporal-code driven and open-loop
stimulation. Two fish of the species Gnathonemus Petersii were used, 10–13 cm
long, acquired from local dealers of Madrid, Spain. They were housed in a 30
L (40 × 30 × 25) cm tank, water temperature was kept at 25 ◦C, exposed to
natural illumination. All experiments were noninvasive and all animals behaved
normally after the experiments.

We analyzed the electrical activity during different sessions: control sessions
without stimulation, stimulation triggered by code 0101 and open-loop stimula-
tion sessions. The experimental protocol (Fig. 3) was described in Sect. 2.2.

Histograms of the codes detected in each session were used to study changes in
the code distribution under different stimulation conditions Data was recorded in
real time and also stored for an offline analysis, where code distributions between
control and stimulation sessions were compared.

This analysis was complemented with an offline processing of the original
non-binarized signal, detecting time between events (IPIs). We used histograms
of the IPIs, quantile-quantile plots (qqplots) and tukey mean-difference plots in
order to compare the distribution of IPIs between closed-loop and open-loop
sessions (Cleveland 1993). Changes in these distributions due to stimulation are
related to changes in the information processing of the system.

Finally, to establish a relation between IPIs analysis and codes, we grouped
the codes according to the number of events in it and calculate the prob-
ability of each group as the sum of the independent probabilities of occur-
rence of each code in a group. Depending on the activity of the system rep-
resented in each code, we defined three groups low, medium and high: low =
{0000, 0001, 0010, 0100, 1000}; medium = {0011, 0101, 0110, 1001, 1010, 1100};
high = {0111, 1011, 1101, 1110, 1111}.
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3 Results

We compared the response of the system to code-driven stimulation with the
control sessions and with the response obtained due to open-loop stimulation
to detect a characteristic distinct response. We calculated codes histogram, IPI
histogram, qqplots comparing IPI distribution between sessions. We selected
code 0101 as the triggering code due to its capacity to produce changes in the
system, observed during previous studies (Lareo et al. 2016).

The IPI histogram comparing IPIs during control sessions for all experiments
with those during code-driven stimulation using code 0101 (Fig. 4-A) showed an
increment of the probability of firing larger IPIs (between 250 and 350 ms).
In the qqplot, dots above the reference line confirms that the fish increased
the probability of firing longer IPIs for all ranges under code-driven stimulation.
This behavior was also observed for each experiment independently. In the tukey-
mean difference plot one can see that mean difference and standard deviation
for all 4 experiments. It also showed that mean IPIs are longer during closed-
loop stimulation when compared to those during the control session. For IPIs
around 200 ms, IPIs discharged during stimulation sessions were from 50 to 120
ms longer than those during the control sessions.

Oppositely, when stimulating using open-loop protocol, fish increased the
probability of firing shorter IPIs (Fig. 4-B). In the qqplot the dots are below the
reference line within from 160 to 260 ms.
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(B) Control sessions and Open-loop sessions
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Fig. 4. IPIs histogram, qqplot and tukey mean-difference plot comparing IPIs between
sessions. Results from 4 experiments using the same triggering code (0101).
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Fig. 5. Mean probabilities of each code group for the experiments depicted in Fig. 4.
Group low represents codes with 3 or 4 zeros. Group medium represents codes with
2 zeros. Group high represents codes with 0 or 1 zeros. The bar chart showed the
mean probability of each group in each session for all experiments. When comparing
temporal-code driven stimulation sessions to the control 1 sessions, it showed an incre-
ment in the sparser codes (low group, increment of 9%) and a decrement of the high
activity codes (high group, decrement 6%). It also showed a minor increment (6%)
in the low codes and a minor decrement (3%) in high activity codes when comparing
control 2 sessions and open-loop stimulation.

Regarding the codes emmited by the system (Fig. 5), it is shown that the
sparser codes in the group low increased their probability during code-driven
stimulation from 0.38 to 0.47, which means an increment of 9% in average for
the probability of emmiting a code within that group. The codes in the group
high decreased its probability from 0.19 to 0.13 (a decrement of 6% in average).
These changes are quantitatively smaller during open-loop stimulation. Com-
paring codes during control 2 and open-loop stimulation sessions it showed an
increment from 0.45 to 0.51 in average in the low group and a decrement from
0.11 to 0.08 in the high group. The probability of emitting codes from the group
medium remain almost unchanged between sessions (0.43 during control 1, 0.4
during code-driven stimulation, 0.44 during control 2 and 0.41 during open-loop
stimulation).

4 Conclusions

Temporal code-driven stimulation is a closed-loop stimulation technique based
on the detection of sequences of events to trigger the stimulation. It can be used
to address the relevance of a specific code in a biological system with complex
activity-dependent encoding or decoding mechanisms. We can match the tem-
poral activity of the system to a binary signal in terms of presence/absence of
a predetermined event. Then, we can identify activity patterns as binary codes
and select one code to be used as a trigger for stimulation. Therefore the stimu-
lation depends on the system’s activity in a closed-loop way. These codes, due to
their structure, carry information about the pulse timing. The interaction with
the biological system serves to test the relevance of predetermined sequences of
events in the coding scheme.
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Using a simple code-driven stimulation we have validated this technique
addressing the presence of binary codes in electric fish signaling. Previous analy-
sis done in terms of changes in the IPI distribution among sessions (Lareo et al.
2016) were complemented here with an analysis of the binary codes emitted
by the system. The application of information-theoretic cost functions has been
shown effective in previous experiments using closed-loop approaches (Benda
et al. 2007; DiMattina and Zhang 2011, 2014). Accordingly, it is an important
step to consider the distribution of binary codes in the system response, and link
it to how the information is processed by the system.

A decrease in the IPI frequency (longer IPIs) is observed when the system
is under closed-loop stimulation. Thus, an increment in the emission of sparser
codes (codes with more zeros) is expected. In average, for all the experiments
conducted, we observed minor changes in the code-emission pattern under open-
loop stimulation than those under closed-loop (Fig. 5). This is in agreement with
the expected behavior and stablishes a relation between IPI distribution and code
emission probabilities. IPI distribution is frequently used to detect changes in
the information processing of the system (Carlson 2002; Forlim and Pinto 2014;
Forlim et al. 2015; Lareo et al. 2016), so this relation suggests that considering
code probabilities in the response can improve the analysis. Nevertheless, this is
only a validation for the methods and more experiments are needed to quantify
this behavior.

We concluded that temporal code-driven stimulation methods can be applied
to study the electroreceptive system. The existence of sequential IPI patterns
related with the fish behavior expose that sequences of pulses have relevance
for the system. We showed that temporal code-driven stimulation can modify
the fish electrical behavior in a distinctive way. This can be observed attending
to changes in the IPIs distribution, but also to changes in the code emission
pattern. Thus, we can use this methodology to test the relevance of different
sequential patterns for a given system in a closed-loop way, exposing relevant
sequential dynamics hidden until now.
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110 Á. Lareo et al.
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Muñiz, C., de Borja Rodŕıguez, F., Varona, P.: Rtbiomanager: a software platform
to expand the applications of real-time technology in neuroscience. BMC Neurosci.
10(1), 1 (2009)

http://dx.doi.org/10.1007/11499220_10
http://dx.doi.org/10.1007/11499220_10


Analysis of Electroreception with Temporal Code-Driven Stimulation 111
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Abstract. In this paper, we describe a study of a parameter estimation
technique to estimate a set of unknown biological parameters of a non-
linear dynamic model of dengue. We also explore a Levenberg-Marquardt
(LM) algorithm to minimize the cost function. A classical mathematical
model describes the dynamics of mosquitoes in water and winged phases,
where the data are available. The main interest is to fit the model to
the data taking into account the parameters estimated. Numerical sim-
ulations were performed and results showed the robustness of LM in
estimating the important parameters in the dengue disease problem.

Keywords: Computational population dynamics · Ordinary differential
system · Aedes · Dengue

1 Introduction

Dengue is a subject of intense research and it has been a major public health
problem worldwide, especially in tropical and subtropical countries such as
Brazil, where its incidence has increased in recent years. The World Health
Organization (WHO) [1] states that about half of the world’s population is now
at risk. About 100 million people are infected in more than 100 countries from all
continents and many people die as a consequence of dengue. It is a viral infection
febrile disease caused by a virus of the family Flaviridae, transmitted by female
mosquito bites, usually of the genus Aedes aegypti (A. a.) and living in urban
habitats [2,3]. A. a. also transmits Chikungunya and Zika virus infections. There
are four different serotypes of the dengue virus (DEN-1 - DEN-4). Despite great
improvements in hygiene, sanitation and vector control, disease containment
remains one of the biggest challenges for the modern world. Studies addressing
the combat of dengue using different methodologies can be found in the literature
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[4–6]. The dengue vaccine has been licensed for use, but only to people living
in endemic areas (WHO). Nevertheless, despite all efforts, knowledge leading to
improvement and progress in the development of new tools and strategies for
dengue prevention is very important, necessary and still far from ideal [7]. The
main focus of this paper is the mathematical and computational investigation
of the parameter estimate technique coupled to the Levenberg-Marquardt (LM)
algorithm to solve the problem of estimating a set of biological parameters in
the dengue disease.

2 The Dynamic Epidemiological Model

Here we describe the mathematical model involving the mosquito population
dynamics [16]. Tables 1 and 2 show the state variables and biological parameters,
respectively.

Table 1. State variables for the mosquito population at time t.

A(t) Aquatic phase (immature forms)

I(t) Non-fertilized females

F (t) Fertilized females (after mating)

M(t) Male insects (natural male)

Table 2. Biological parameters for the model (1).

Parameter Description Value [17] Unit

γ Ratio of transition to winged form 0.121 days−1

β The effective mating rate 0.7 days−1

r The proportions of females 0.5 −
(1 − r) The proportions of males 0.5 −
μA Aquatic phase mortality rate 0.0583 days−1

μI Unmating female mortality rate 0.0337 days−1

μF Mating fertilized mortality rate 0.0337 days−1

μM Male mortality rate 0.06 days−1

φ Intrinsic oviposition rate 6,353 days−1

C Carrying capacity 3 mosquito−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA
dt = φ

(

1 − A

C

)

F − (γ + μA)A
dI
dt = rγA − (β + μI)I
dF
dt = βI − μF F

dM
dt = (1 − r)γA − μMM

(1)
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Let us define X(t) = [A(t), I(t), F (t),M(t)] representing the continuous solu-
tion vector of the system (1) at time t. In this study, the system is solved numer-
ically. Therefore, in the next section we describe the discrete-time model and
numerical method used to obtain the respective numerical solution Xi at time
discretization i.

2.1 The Discretized Model

To obtain the numerical solutions, the classical backward Euler integration
method is used for the time discretization of the ODE system (1). The main
advantage of using this numerical scheme in a particular case to estimate a set
of unknown parameters is because it is easy to correspond all discrete parame-
ters known available in time t with each time discrete i to be considered within
the scheme. More details can be found in [8].

3 Parameter Estimation Technique

The parameter estimation technique is often presented in the literature as an
optimization problem concerning an objective function in the form of least
squares [9–12]. In such problems, having a dataset available, a mathematical
model is chosen and it is sought to minimize the sum of the squared distances
called residues, between each of the given points and the adjusted curve.

3.1 The Problem

Let us introduce the notations to present the problem of parameter estimation
below:

– i ∈ {1, . . . , m}, where m is the last day of the data observation;
– E = {Xiobs}: the set of the observed data, ∀i = 1, · · · ,m;
– Xiobs: the observed state variables;
– Xl

iobs: the l-th component of the Xiobs, l = 1, · · · , k, k is the number of
equations;

– Xi: the solution of a dynamic population model, ∀i = 1, · · · ,m;
– Xl

i: the l-th component of the solution Xi, l = 1, · · · , k;
– b = [biobs]: the vector of known parameters (observed data), ∀i = 1, · · · ,m;
– p = (p1, · · · , pn), where n is the number of parameters to be estimated.

Problem 1 (Find the local minimal). Let us consider the function w : Rn →
Rm, m ≥ n. We need to find the minimal of ‖ w(p) ‖, i.e., find the local minimal
p∗ of W (p), given by

W (p) =
1
2
wT(p)w(p) =

1
2

‖ w(p) ‖2, (2)

where ‖ . ‖ is the euclidian norm and w(p)T is the transpose of the w(p).
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Definition 1 (Cost function). Let the cost function W be defined as:

W (p) =
1
2

‖ w(p) ‖2 =
1
2

m∑

i=1

wi(p)2 =
1
2

m∑

i=1

k∑

l=1

(Xl
i(p,b) − Xl

iobs)
2, (3)

In this study, the main problem involving parameter estimation consists of:

Problem 2 (Minimize W ). Determine p that minimizes the cost function W ,
subject to pk ≥ 0,∀k = 1, · · · , n.

Then, to solve Problem (2), we applied the algorithm described as follows.

Algorithm 1 (Parameter Estimation)
Step 1 - Input the observed data;
Step 2 - Set initial parameter guess p0 = [p01, · · · , p0n] for p;
Step 3 - Build a function to calculate X from a mathematical model;
Step 4 - Calculate the cost function W from Eq. (3);
Step 5 - Build a routine to minimize W ;
Step 6 - Return p.

The next section describes the LM method as an alternative method to use
in the parameter estimation problem.

3.2 The LM Technique to Estimation

The LM method is a computational optimization technique used to solve non-
linear square problems [10–13]. It is the result of an improvement of the Gauss-
Newton method which, in turn, consists of a modification of Newton’s method.
It was proposed by [14], related to a suggestion published by [15]. As Newton
and Gauss-Newton’s methods, LM is an iterative method inherent to non-linear
optimization methods. This means that given a starting point p0 the method
produces a sequence of vectors p1,p2,p3... which is expected to converge to the
local minimum p∗ of the function to be adjusted. The short form of the LM
algorithm can be described as following.

Algorithm 2 (The Levenberg-Marquardt short form)
Step 1 - Input p := p0; λ := λ0

Repeat until it STOPS:
Step 2 - Solve (J tJ + λI)hlm = −g
Step 3 - pnew := p + hlm

Step 4 - Update λ

where g = J(p)Tw(p) is the gradient of the LM method; J(p)|ik = ∂wi

∂pk
(p)

the Jacobian Matrix; hlm is the LM descent-direction and λ > 0 is the damp-
ing parameter given by Madsen [10]. Then, considering the Algorithm2, the
optimization form of the LM algorithm applied in this study can be finally
summarised as below:
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Algorithm 3 (The LM Technique for Parameter Estimation)
Step 1 - Define p = p0 and ν = 2;
Step 2 - Calculate B = J(p)TJ(p) and g = J(p)Tw(p);
Step 3 - Do λ = τ ∗ max{bii};
Step 4 - If ‖ g ‖∞≤ ε1, go to Step 8;
Step 5 - Solve (JTJ + λI)hlm = −g, in hlm, with λ ≥ 0;
Step 6 - If ‖ hlm ‖≤ ε2(‖ p ‖ +ε2), go to Step 8;

Otherwise, Do pnew = p + hlm;
Calculate 	 = (W (p) − W (pnew))/(L(0) − L(hlm));

Step 7 - If 	 > 0, do p = pnew, up to date B and g, and Do
λ = λ ∗ max{ 1

3 , 1 − (2	 − 1)3} and ν = 2;
Otherwise, Do λ = λ ∗ ν and ν = 2 ∗ ν;
it = it + 1; Back to Step 4;

Step 8 - Return p.

where 	 = W (p)−W (pnew)
L(0)−L(hlm) defined as the gain ratio of the method. The stop-

criteria used were ‖ g ‖∞ ≤ ε1, ‖ pnew − p ‖ ≤ ε2(‖ p ‖ +ε2) and it ≥ itmax,
where ε1 and ε2 are the precisions, it and itmax are the number of interations
and maximal interation, respectively.

4 Results

Here, we present the numerical results obtained by adopting the novel technique
for estimation parameters, Algorithm 3, as described in this paper. To perform
the numerical simulations and tests, the following information 1–5 should be
considered.

1. Parameters to be estimated: p = (μF , C, μM );
2. Available data: Xiobs = [Aiobs, Fiobs,Miobs];
3. Observed parameters: b = [φiobs];
4. Initial conditions (A0, F0,M0) = (0, 100, 30);
5. Parameters of simulations: Time-step dt = 1, τ = 10−3 and ε1 = ε2 = 10−8.

The data used to test the parameter estimation technique described in this paper
refer to the variables A, F and M for the population of winged and aquatic mos-
quitoes, with an oviposition rate per capita φ, at different temperatures −15 ◦C,
20 ◦C, 25 ◦C and 30 ◦C, and from the experiments carried out in two different
cities (A and B) from the São Paulo State. The state variable I is neglected in
this work, due to its rapid transition to state F . In these experiments, a total of
100 newly emerged female and 30 male mosquitoes were placed in a cage contain-
ing amber glass with filter paper for egg laying. Inside the cage, the necessary
food (water with honey) was available ad libitum. Once a day, the mosquitoes
received a blood meal from an immobilized rat in order to allow the fertilized
eggs to develop. Each day the eggs were counted on the filter paper and then
replaced. In order to obtain the ratios and oviposition, the new individuals were
removed, decreasing the population at the end of the experiment. The number of
male and female survivors was also recorded daily. Table 3 presents all parameter
estimations by using the LM algorithm.
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Table 3. Parameters estimated for cities A and B.

μF C μM

A B A B A B

15 ◦C 0.0388 0.0392 727.0709 82.1313 0.0624 0.0421

20 ◦C 0.0174 0.0258 132086.0575 89881.9725 0.0398 0.0666

25 ◦C 0.0249 0.0311 1363006.7101 1104267.7859 0.0666 0.0416

30 ◦C 0.0318 0.0282 469855.7423 639707.7831 0.1008 0.0795

4.1 Comparison of the Estimations for µF and µM (25 ◦C)

Table 4 shows the estimated values for μF and μM at 25 ◦C compared to those
presented by Thomé et al. [16]. Note that the values of μF - city B and μM - city
A are very close to those shown by [16]. Concerning parameter C, the relatively
high values obtained can be justified by the abundant availability of nutrients
to the mosquitoes during the experiments, considering the data as described.

Table 4. Comparisons μF and μM estimations (25 ◦C).

Thomé et al. [16] Present work

μF μM μF - City A μF - City B μM - City A μM - City B

0.0337 0.06 0.0249 0.0311 0.0666 0.0416

4.2 Comparison of the Estimations for µF

In Table 5, it can be observed that for approximately 15 ◦C and 25 ◦C, in city B,
our estimations for μF are relatively close to those of [17]. This relationship is
also observed at 15 ◦C for city A.

Table 5. Comparison μF estimations for different temperatures and cities.

Yang et al. [17] Present work

Temperature (◦C) μF Temperature (◦C) μF - City A μF - City B

15.30 0.03608 15 0.0388 0.0392

20.05 0.04216 20 0.0174 0.0258

25.64 0.03043 25 0.0249 0.0311

31.33 0.04391 30 0.0318 0.0282

In the next section, the sequences of figures show the curves from numerical
test predictions of the model compared to data of A, F and M , where it is
possible to observe the model fit these data.
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4.3 Estimation Tests
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Fig. 1. Test 1: Dynamic of dengue mosquito populations A(t), F (t) and M(t) (from
top to bottom) for the cities A (left) and B (right) in 15 ◦C. Red line means predictions
of the model and black dots depict the observed data of the aquatic phase, fertilized
females and males of dengue mosquitoes. (Color figure online)

In Test 4, the Pearson correlation coefficient ρ [12] values were calculated,
indicating the strong linear correlation between the parameters estimated and
the real data. Table 6 shows the ρ values for cities A and B at the temperature
of 30 ◦C (Fig. 4).

Table 6. ρ values (30 ◦C).

A F M

City A 0.999989726 0.998431825 0.996482096

City B 0.999976721 0.999048742 0.995447591
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Fig. 2. Test 2: Dynamic of dengue mosquito populations A(t), F (t) and M(t) (from
top to bottom) for the cities A (left) and B (right) in 20 ◦C. Red line means predictions
of the model and dots depict the observed data of the aquatic phase, fertilized females
and males of dengue mosquitoes. (Color figure online)

In the next section, we draw some conclusions about the novel technique to
estimate parameters in the dynamic population applied in the dengue disease
problem.

5 Conclusions

In this paper, we described a novel technique to investigate important biological
parameters involving the dengue mosquito population. The parameter estimation
technique was used to estimate a set of unknown parameters of a nonlinear
model of dengue that describes the dynamics of mosquitoes in water and winged
phases. The LM algorithm was explored to minimize the cost function to fit
the model to the dengue data available, taking into account the parameters
estimated. The results obtained show that this field of parameter estimation can
be an important data analysis tool to apply in dynamic population systems, in
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Fig. 3. Test 3: Dynamic of dengue mosquito populations A(t), F (t) and M(t) (from
top to bottom) for the cities A (left) and B (right) in 25 ◦C. Red line means predictions
of the model and black dots depict the observed data of the aquatic phase, fertilized
females and males of dengue mosquitoes. (Color figure online)

particular to analyze the dengue disease problem involving real data. Thus, the
main conclusions are:

1. In all tests performed, the model was able to fit the dengue data;
2. The comparisons from the numerical solutions with data show the robustness

of the code to fit the dengue data available.
3. There is closeness between the estimated parameters and values from the

literature;
4. The results show that this technique can be an important data analysis tool

to be applied in dynamic population systems;
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Fig. 4. Test 4: Dynamic of dengue mosquito populations A(t), F (t) and M(t) (from
top to bottom) for the cities A (left) and B (right) in 30 ◦C. Red line means predictions
of the model and black dots depict the observed data of the aquatic phase, fertilized
females and males of dengue mosquitoes. (Color figure online)

5. The methodology presented here improved the application of the LM algo-
rithm as an optimization alternative to analyze the dengue disease problem
involving real data.
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Abstract. Although Next-Generation Sequencing (NGS) has more
impact nowadays than microarray sequencing, there is a huge volume
of microarray data that has not still been processed. The last repre-
sents the most important source of biological information nowadays due
largely to its use over many years, and a very important potential source
of genetic knowledge deserving appropriate analysis. Thanks to the two
techniques, there is now a huge amount of data that allows us to obtain
robust results from its integration. This paper deals with the integration
of RNASeq data with microarrays data in order to find breast cancer
biomarkers as expressed genes. These integrated data has been used to
create a classifier for an early diagnosis of breast cancer.

Keywords: Computational biology · RNASeq · Bioinformatics ·
Microarray · Classification · SVM · Feature selection · Integration

1 Introduction

Cancer is the second leading cause of death worldwide, just behind cardiovascu-
lar disease. Specifically, breast cancer is one of the five most dangerous cancers
in the world, showing a high mortality rate according to World Health Organi-
zation (WHO) and being the cancer with the highest impact among the female
population [12]. Today, many breast cancer diagnosis are done when a patient
presents several related symptoms, thus increasing the mortality risk. If the can-
cer has spread in the organism, treatment becomes more difficult, and generally
the chances of surviving are much lower. However, cancers that are diagnosed
at an early stage are more likely to be treated successfully. Therefore, it is pri-
mordial to find biomarkers that allow an early diagnosis of breast cancer. Two
sequencing technologies has been used to compute the genes expression, which
are explained and compared below:

1.1 Microarray Technology

Microarray is a method that allows the measurement of the value expressions of a
large number of genes simultaneously from a collection of microscopic DNA spots
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 123–131, 2017.
DOI: 10.1007/978-3-319-59153-7 11
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attached to a solid surface. This technology is based on the DNA hybridization
process, so that DNA is hybridized for each of the spots that represent one gene
value expression. Once the step is finished with a laser, the expression values are
read and written in a file with the extension .CEL.

A summarized microarray workflow is presented at the Fig. 1. As can be seen,
once microarray data are available, all of them are processed and filtered from
a quality analysis to be later normalized. Once this was done, the last step is
the integration of all microarrays. VirtualArray tool [5] has been used for the
integration process.

Fig. 1. Microarray gene expression integration pipeline

1.2 RNASeq Technology

This technology appeared as a revolutionary tool for transcriptome and as a
natural evolutionary step in the study of the genome after the massive use of
microarray technology. In this sense, one of the most advantageous aspects is
that although RNASeq can be used only for transcriptome profiling, it also can
be combined with other functional genomics methods to enhance the analysis
of gene expression. Expression is quantified by counting the number of reads
mapped to each locus in the transcriptome assembly step. This expression level
can be calculated for exons or genes using contigs or reference transcript annota-
tions. These observed RNASeq read counts have been robustly validated against
previous technologies such as microarrays or quantitative polymerase chain reac-
tion (qPCR) [13].
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1.3 Comparison Between both Technologies

RNASeq is being widely used within the scientific community for gene expression
studies and it is replacing DNA microarray technology. RNASeq offers an impor-
tant number of advantages over microarrays [17], although the computational
cost of RNASeq experiments are also higher than microarray technology:

– RNASeq allows to detect the variation of a single nucleotide.
– Genomic sequence knowledge is not necessary in RNASeq.
– RNASeq provides quantitative expression levels.
– RNASeq provides isoform-level expression measures.
– RNASeq offers a broader dynamic range than microarrays.

In spite of these advantages, microarrays are still used because of their lower
costs. Besides, as microarrays have been used for a longer period, there exist
many robust statistical method to analyzed them. There are many significant
microarray experiments already available and even there are also a high number
of microarray datasets that have not been analyzed so far. These datasets might
have information that could reveal important facts and candidate biomarkers.
In any case, the transition to RNASeq keeps going on. Both technologies can
be applied together to the extent that microarray data could be used to create
a classifier for RNASeq samples, and like Nookaew et al. explained [11], a high
consistency between RNASeq and microarray data exists, which encourages to
follow using microarray as a versatile tool for gene expression analysis. This
experiment is a first approach that only intends to show the potential in the
integration of both technologies, obtaining a significant improvement in classifi-
cation level with the introduction of some samples of RNASeq together with a
huge quantity of samples of microarray.

2 Materials and Methods

All analyzed RNA samples were obtained from NCBI GEO web platform [2].
108 samples from microarray series and 6 samples from RNASeq samples.

Table 1 shows a summary about the series used and their origin. As it can be
seen, there are series from different countries, and thus there are samples from
different ethnic groups. Furthermore, there are different sequencing technologies
in the experiment including samples from Affymetrix [4] and Illumina [6] More-
over, there are data from different generation sequencing. In summary, samples
have been integrated from different generation sequencing, technologies, plat-
forms and countries, bringing all of them heterogeneity to the study.

Both microarray and RNASeq data have passed a strict pipeline. Microarray
samples require restrictive quality analysis to discard non-representative samples
which took place due to incorrect acquisition, as well as normalization during
pre-processing in order to adapt the range of quantification variability of the
samples considered. Once this is done, from an available set of high quality
samples, reliable biomarkers have been obtained from the application of a feature
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Table 1. Input series, technology, quantification and number of samples/outliers.
RNASeq samples are highlighted in darker gray.

Series Technology Quantification # Quality Samples # Excluded Outliers Samples Origin
GSE52712 Affymetrix Gene Expression 19 1 Manchester (UK)
GSE40987 Affymetrix Gene Expression 10 0 Boston (USA)
GSE52262 Affymetrix Gene Expression 16 0 Houston (USA)
GSE12790 Affymetrix Gene Expression 20 1 San Francisco (USA)
GSE46834 Illumina Gene Expression 8 0 New York (USA)
GSE68651 Illumina Gene Expression 35 1 Southampton (UK)
GSE78011 Illumina Counts 3 0 Louisville (USA)
GSE81593 Illumina Counts 3 0 New York (USA)
TOTAL Integrated 114 3

selection algorithm. Thus, a gene ranking has been obtained to be applied in
the classification stage and to train the classifier with an increasing number
of genes. 47 genes comply the statistical restrictions of logarithmic fold change
(| logFC |≥ 2) and p-value ≤0.001 to form the final ranking of relevant genes
considered as potential biomarkers of the disease. logFC represents the difference
between breast cancer and control expressed values, whilst p-value represents the
probability of obtaining a result equal or higher than what it was observed when
the null hypothesis is true.

Differently, for the extraction of the RNASeq data from the fastq original
files, tools like tophat2 [7], bowtie2 [8], samtools [9] and htseq [1] have been used
to obtain the count files. Once the count files have been obtained, the expression
values have been calculated using the counts and the NOISeq R package [16].

Later, the normalized expression values have been integrated directly with
the normalized values belonging to microarrays. Same statistic restrictions were
considered on RNASeq respect to logFC and p-value. For expressions genes in
both of them limma R package [14] has been used. This tools allows the expres-
sions values to calculate the expressed genes independently of the technology
used. All RNASeq pipeline from SRA data to gene expression values can be seen
in Fig. 2.

Fig. 2. RNASeq gene expression integration pipeline
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The genes considered as relevant during the microarray samples processing
have been used as a filter, as if they were a mask, to directly select such genes
in the quantification obtained with RNASeq samples. From the gene ranking
previously obtained, the RNASeq samples have been classified.

The pipeline followed in this integration and classification process of all the
samples can be seen in Fig. 3.

Fig. 3. Microarray and RNASeq integration pipeline

For classification, Support Vector Machine (SVM) [10] algorithm had been
used using also minimum Redundancy Maximum Relevance (mRMR) [3] for
features selection. SVM algorithm is based on the idea of separating the
different categories in a problem through a hyperplane. The algorithm calculates
the maximum-margin hyperplane that maximizes the distance between different
classes. On the other hand, mRMR algorithm will rank in first position the gene
that contains the maximum relevance information but minimum redundancy
information with respect to the rest of the genes, and so forth, it will proceed
with the whole ranking.

3 Results

According to the methodology described in the previous section, results obtained
in the development of this research are next presented. After obtaining the 46
expressed genes from microarray (as can be seen at the Table 2), two different
validations for checking the correct integration of the data have been proposed:
on the one hand, validation with exclusively microarray data and, on the other
hand, Validation from the integration of RNASeq with the above.
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Table 2. 46 expressed genes calculated from 108 microarray samples

Gene name logFC P. Value Gene name logFC P. Value

KRT6A −5,6245 1,2425E−36 GNA15 −3,0134 6,4947E−39
S100A2 −5,0766 2,8493E−35 KRT6B −2,9109 1,2327E−27
KRT14 −4,5092 2,3764E−23 BNC1 −2,8127 5,2979E−41
IL20RB −4,1428 8,5258E−35 FBP1 2,7717 2,8626E−12
NNMT −3,8639 2,1313E−18 RAB38 −2,7692 3,1577E−30
KRT19 3,5780 1,1504E−14 TSPYL5 2,7625 1,4045E−13
SFRP1 −3,5533 1,3229E−41 NMU −2,6986 1,0537E−24
SERPINB5 −3,5242 1,6435E−38 EVA1C −2,6693 1,5478E−31
ADRB2 −3,4898 2,6899E−36 GPR87 −2,6684 2,3311E−31
DSG3 −3,4567 9,8795E−37 CPVL −2,6536 4,3830E−22
CLCA2 −3,4201 1,8646E−32 CBS 2,6525 1,5263E−31
SLPI −3,4063 3,3555E−25 CASP1 −2,6212 8,8105E−22
C3 −3,3636 5,9826E−29 FAM83A −2,5882 1,5410E−24
HENMT1 3,2120 1,3924E−26 SDPR −2,5647 5,0039E−27
CXCL1 −3,1760 5,0443E−25 MSLN −2,5447 9,6283E−26
COL17A1 −3,1650 8,3370E−34 WBP5 −2,5391 3,5403E−15
PRKCDBP −3,1516 2,2807E−21 DFNA5 −2,5290 3,3008E−20
UCP2 3,1334 4,8393E−18 IRX4 −2,4620 5,6860E−24
EFHD1 3,1332 2,4777E−30 BEX2 2,4220 1,0773E−18
RGS2 −3,0960 1,3639E−27 BIRC3 −2,4075 9,3570E−30
IFI16 −3,0862 4,3263E−17 SLC26A2 −2,3175 4,0183E−33
ZBTB16 −3,0713 3,8496E−33 C3orf14 2,2990 9,8396E−22
DNER −3,0677 7,3521E−25 ACOT4 2,2539 3,0642E−19

For the experiment, 108 microarray samples have been used to create the
classifier for breast cancer, with the aim of achieving early diagnosis when unla-
beled samples are presented. This classification tool makes use of SVM and the
mRMR feature selection algorithm. This algorithm selects the most relevant
genes to perform the classification. Leave One Out Cross Validation (LOO) [15]
was used to assess the classification process.

Results obtained are shown in the Fig. 4. This figure includes two simulations.
Red line represents the accuracy using only microarray data for training and
validation through the genes ranking calculated previously by feature selection
algorithm. On the other hand, the blue line shows the same results but adding
the 6 RNASeq samples to the dataset. As can be seen, RNASeq samples bring
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to the classifier more accuracy thanks to the existing differentiation in level of
quantification between cancer samples and healthy samples. With microarray
data the classifier reaches 96% of accuracy with only 6 genes of the ranking.
However, when RNASeq data is added, accuracy rises to 99% with the same 6
genes, and to 100% of accuracy when 41 genes from RNASeq are considered.

Fig. 4. Ranking of variables applied to breast cancer classification using Microarray
and RNASeq data integrated

4 Conclusions

An heterogeneous data integration from different technologies (microarray and
RNASeq) that quantify the quantity of RNA in human biological samples is
carried out in this work.

An appropriate merging has been achieved from the combination of both bio-
logical samples. Firstly, a mapping has been necessary to convert RNASeq raw
data (in counts) towards their equivalent gene expression values. Later, an aggre-
gation was possible because gene expression values from different technologies
are comparable.

This work shows how the integration of heterogeneous data from differ-
ent microarrays platforms and even from different sequencing technologies as
RNASeq can be achieved in order to improve statistical significance as well as to
obtain results that are independent of the applied sequencing technology. Specif-
ically, this work has satisfactorily integrated data from series of Affymetrix and
Illumina microarrays technologies and RNASeq from Illumina HiSeq. Addition-
ally, 46 possible breast cancer biomarkers genes have been found from microarray
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gene expression. Extensively, these genes were checked using RNASeq samples
in the classification step. This fact showed that these genes were independent of
the sequencing technologies used.

The most significant novelty of this work is the development of a high-
accuracy classification method combining microarray and RNASeq data, thus
mixing different sequencing technologies with different operation pipelines. This
classifier allows to take advantage of all the available microarray existing data,
more abundant than the RNASeq, moreover integrating both types of data. As
future work, the authors intend to add a larger number of RNASeq samples with
the aim of using only the RNASeq samples for the validation step, using a set
of expressed genes selected from the microarray gene expression data.

Acknowledgements. This work was supported by Project TIN2015-71873-R (Span-
ish Ministry of Economy and Competitiveness -MINECO- and the European Regional
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Abstract. Polysomnography analysis for sleeping disorders is a disci-
pline that is showing interest in the development of reliable classifiers to
determine the sleep stage. The most common methods shown in the liter-
ature bet for classical learning techniques and statistics that are applied
to a reduced number of features in order to tackle the computational
load. Nowadays, the application of deep learning to the sleep stage clas-
sification problem seems very interesting and novel, therefore, this paper
presents a first approximation using a single channel and information
from the current epoch to perform the classification. The complete Phy-
sionet database has been used in the experiments. Deep learning has
been applied to the time and frequency domains from the EEG signal
obtaining a good performance and promising further work.

Keywords: Deep learning · Sleep stage classification · Time and fre-
quency domains

1 Introduction

Among the various disciplines where deep learning is gaining popularity, Biomed-
ical Engineering is one of the most promising due to the large amount of data
available from the different devices recording biosignals, historic records, genetic
profiles, etc. Several of the consequences of successful applications are better treat-
ments, alert automatization, preventive monitoring, just to mention a few.

In the field of neuroscience and, more concretely, in the analysis of the sleep
process, the number of sensors and signals is large as it involves the brain itself
(by Electroencephalography (EEG)) and the rest of the body (Electrooculogra-
phy (EOG) for the eye and other muscles). When the information is combined
the term Polysomnography analysis is used. The classification of sleep stages is
useful to study Alzheimer, sleep disorders, epilepsy.

Rechtschaffen and Kales where the ones who, in 1968, defined some criteria
to classify the sleep stages that were defined as: wakefulness, REM stage (Rapid
Eye Movement) and the NREM stage (no Rapid Eye Movements stage), which is
composed of four differentiated stages (NREM1, NREM2, NREM3 and NREM4)
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 132–141, 2017.
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[1]. Not too far away in time, the NREM stages were reduced to three taking
the name of Slow Wave Sleep (SWS) [2].

The process to obtain the hypnogram that contains all the sleep stages from
a polysomnogram requires the division of the original signals in epochs that are
periods of 30 s. Each epoch is mapped into a stage (according to the recommen-
dations in [2]. During the epoch, a change in the sleep stage might occur, in
these cases, the experts must determine which is the most relevant and assign
it, not existing an standard criterion.

Previous approaches of applying machine learning to the task of classifying
sleep stages perform feature extraction: in [3] Spectral Relative Power coefficients
(SRP) are extracted from the Fast Fourier frequency transformation of the EEG
signal, from the spectrum previously divided in the relative bands associated to
brain activity during sleep (Alpha, Theta, Delta, Sigma, Beta). Once the vari-
ables are obtained, a single hidden-layer neural network is designed to perform
classification. Other works include combination of different features extraction
systems to enhance the classification accuracy [4].

In this paper, all the problem is addressed directly with deep learning so the
first phase of feature extraction is performed automatically in the network. One
of the benefits of doing so is that all the redundant information can be squeezed
improving the accuracy of the classifier.

Previous work was made in [5], in which a set of experiments with a dataset
of 25 patients using Deep Learning techniques were carried out. Hand-extracted
features are compared with Deep Belief Network extracted features from EEG,
EOG and EMG. The deep learning approach attains a 67.4% of accuracy in
patient cross-validation (CV), needing a data balance process. However this work
did not follow the R&K rules as epochs were 1 s long and transition epochs were
eliminated.Another approach apply Convolutional Neural Networks on the time
domain together with data from previous and following epochs [6] obtaining an
overall accuracy of 74%. However, they use cross-validation on only 20 patients.
In a different work [7], a group of 10 patients is used to train a deep belief
network to extract features from the polysomnogram signals (2 EEG channels,
EOG and EMG) to attain a 91% of patient CV accuracy.

The present work was motivated by the aim of using a single EEG chan-
nel as source of information in order to allow the use of simpler devices, and
the consideration of complete databases to attain a more realistic performance
estimation on unseen data. Two different deep learning approaches were com-
pared. Patient cross-validation was utilized as performance measure. The rest of
the paper is organized as follows: Sect. 2 introduces the deep learning architec-
ture and the methodology used. Section 3 presents the results obtained in the
Physionet database [8], in Sect. 4 conclusions and further work are drawn.

2 Materials and Methods

For the sake of completeness, all patients from the Physionet database [5] and
the updated R&K rules have been used in order to optimize a Deep Learning
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(with a Convolutional Network architecture) classification model and using only
information from the current epoch in each classification. Time and frequency
domains will be evaluated using deep learning techniques; temporal connectivity
in the time domain will be operated using a Convolutional Network architecture.

2.1 Deep Learning

Deep Learning can be defined as a set of algorithms and statistical models which
form part of Statistical Learning and Artificial Intelligence. These algorithms
are based on deep neural networks (classical neural networks with many layers
and neurons, see Fig. 1) and usually require larger databases to be trained than
traditional neural networks.

Thanks to the higher number of hidden layers and neurons, deep learning
allows the designers to obtain transformations and relationships that would be
hidden to the expert’s eye at first and not requiring a preprocessing stage (like
feature selection).

Fig. 1. Example of fully-connected deep neural network with four output neurons.

As the architecture becomes bigger, the possibilities regarding its structure
increase as well. Apart from fully-connected networks, the two other most well-
known deep learning architecture are convolutional neural networks, which per-
form convolution operations over the inputs, and recurrent neural networks,
which present neuron connections that can form loops. For further reading about
deep learning, [9] presents a very complete view of the subject.

2.2 Convolutional Neural Networks

Convolutional Neural Networks are composed by a set of connected convolutional
layers; the convolution operation can be interpreted as a filter/kernel which is
applied over a region of the input space. The size of the convolutions is specified
during the design phase, but the content of the filter (what is being looked for)
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is learned during the training from the regional characteristics that the input
data presents. Opposite to fully-connected feed forward neural networks, convo-
lutional networks share the synaptic weights. Therefore this network is appropri-
ate to data with local connectivity such as images, sound or time series, as their
spatial structure can provide pattern and abstraction extraction of different sizes
and levels.

The three main components of a convolutional neural network are [9] (Fig. 2):

– Convolutional layer: It represents the main difference with multilayer percep-
tron and applies a filter over the inputs space: in a one dimensional problem,
along that one; in a 2-D image, along the width and height. Filters have
lower dimension than the input space size, in order to detect the presence
or absence of patterns. Filters can be applied several times in a deep set of
layers.

– Pooling layer: The pooling layers intend to reduce the spacial dimensions of
the convolutional layer outputs. They replace the output of the convolutional
layer in a specific point by a combination of its neighborhood. This way,
although loss of information can occur, it is generally convenient to reduce
over-fitting and diminishing the dimensional complexity of the data for the
next network layers.

– Fully-connected layer: After the successive operation over a set of convolu-
tional and pooling layers, and in order to extract the relevant information
from the high-dimensional data, a final higher level processing is carried out
through one or several fully-connected layers. These layers will be directly
connected to the output layer to perform the classification itself.

Fig. 2. Example of convolutional network [10] used in image classification. Spacial
information on different sub-regions of the image are used to perform the classification.

2.3 Evaluation of the Models

In order to evaluate the performance obtained by each model, the well-known
cross-validation [11] has been used. Since the number of patients is small, a
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Leave One Out (LOO) approach was feasible to be applied, giving the chance
to be more accurate. This way, any expectable patient variability in EEG sig-
nals recorded or in their manual classification, is reflected in the expected per-
formance of the model, making it a more realistic performance measure. This
performance measure has been used in most of the latest revised works [4,6,7].

2.4 Dataset

Dataset used for the experiments was extracted from the public repository Phy-
sioNet [8]. A total of 25 overnight polysomnogram (21 male and 4 female, with
ages between 28 and 68 -mean age of 50 years old) from the St. Vicent’s Uni-
versity Hospital, from whom it was suspected that they suffered from any sleep
disturbance, were considered. Recorded polysomnogram signals included: two
EEG channels (C3-A2 and C4-A1) at 128 Hz, two EOG -two eyes- at 64 Hz,
EMG also at 64 Hz, and other signals related to patient movement, posture and
breathing.

Data was provided under EDF format and single EEG channel (C3-A2) was
used in this work, which agrees with recommendations in the manual of sleep
stage classification of Rechtschaffen and Kales. Before epoch segmentation, pre-
processing using a Notch filter at 50 Hz and a high pass filter at 0.3 Hz [5,12] was
performed. Also signal was down-sampled to 64 Hz to reduce the input data size
and the temporal correlation among the variables. Each epoch’s corresponding
sleep stage was tagged by a single expert.

Average sleep data duration from the patients is 6.9 h. In total, 20075 epochs
are available from the 25 patients, with a total operation time of 173.2 h. The
histogram of the sleep stages is given in Fig. 3. Certain data imbalance can be
observed as class NREM2 is the most frequent one with a 33.6% of the total
epochs classification. The second most frequent stage is the awaken one with
a 22.36% of the total, which can be comprehensible as the patients analyzed
present symptoms of sleep disorders. SWS stage (union of NREM3 and NREM4)
remains with a 12.81% of the total, NREM1 with a 16.37% and REM with a
14.5%.

3 Experiments and Results

3.1 Time Domain Classification

Local connectivity among the variables in the time domain was the objective
aimed to take advantage of by using a Convolutional Neural Network. This
type of architecture has been previously used with success on different types of
signals [13–16]. Thus taking these as reference, temporal structures from the data
were aimed to be extracted automatically using this deep learning technique.
Hyperparameters of the network were obtained by trial and error. The filter
sizes were established in order to allow the extraction of time patterns from
lower frequency bands (Delta waves from 0.5–3 Hz) until higher frequency bands
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Fig. 3. Histogram over the 5 sleep stages in the complete set of data from the 25
patients. 0 awaken, 1 REM, 2 NREM1, 3 NREM2, 4 SWS

(sleep spindle or sigma patterns until 16 Hz). Two convolutional layers with
pooling were used in order to reduce the input space maps; next a single fully-
connected layer to the output was used. An initial subdivision of training and
test from a subset of the data was used for hyperparameter obtaining. Later,
patient cross-validation was performed for their final tunning.

The resulting convolutional neural network architecture designed can be seen
in Fig. 4. Most relevant hyper-parameters of the model are detailed in Table 1.

Fig. 4. Neural network architecture operating in the time domain

This convolutional network when validated using patient-cross-validation,
attained a 68.6% of precision and a 54.6% of mean F-measure over the five sleep
stages.
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Table 1. Hyperparameters of the designed deep neural networks in the work.

Hyperparameter Value

EEG time domain convolutional network

Filter size in the first convolutional layer 8

Number of filters in the first layer (depth) 9

Stride of the first convolutional network 2

Stride of the first max-pooling layer 2

Filter size in the second convolutional layer 16

Number of filters in the second layer (depth) 18

Stride of the second convolutional network 2

Stride of the second max-pooling network 2

Number of neurons in the fully-connected layer 2500

Max. number of iterations in the batch gradient descent 2000

Batch size 512

Learning rate 0.01

Dropout regularization keep-rate 0.5

EEG frequency domain fully-connected network

Number of neurons in the fully-connected layer 1600

Max. number of iterations in the batch gradient descent 2000

Batch size 512

Learning rate 0.01

Dropout regularization keep-rate 0.5

3.2 Frequency Domain Classification

Spectral analysis over a signal may allow the detection of frequency patterns;
visually it can be used to reveal the predominance or absence of characteristic
patterns and complexes from the sleep stages.

The use of classifiers based on manually extracted features from the EEG
was performed for instance in [17] for sleep stage classification with relatively
positive results. However using the raw spectrum of the signal to perform direct
classification is a less explored field, which can be tackled by Deep Learning
techniques.

A direct neural network working with the raw spectrum obtained by Short-
Time Fourier Transform STFT (0.5 Hz to 32 Hz, corresponding to the variation
of physiological waves [17]) on 30 s epoch was designed. In order to reduce the
width of the limit discontinuities (leakage), a Hanning window was used together
with the FFT (which according to our tests provided the best results).

According to [18], spectral phenomena happening in different frequency
regions are different, thus weight sharing in the network only have sense on a
limited bandwidth. A convolutional network wouldn’t therefore be that effective
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in this problem. So, a fully-connected network with a hidden layer of 1600 neu-
rons using Dropout as regularization to reduce the over-fitting was designed and
trained. Most relevant hyper-parameters for this network can be seen in Table 1
(Fig. 5).

Fig. 5. Neural network architecture operating in the frequency domain

Patient leave-one-out cross-validation led to a 68.9% of accuracy and 57.5% of
mean F1 measure. These results are similar to that of the previous convolutional
network working in the time domain (Table 2).

Table 2. Summary of the results of the two proposed deep networks

Model Accuracy Std Acc. F1-measure

Time domain 68.6% 7.53 54%

Frequency domain 68.9% 7.52 57.5%

In relation to the patient-cross-validation results and the confusion matrix
associated, two interesting facts are observed, that also were seen in [5]. In most
patients, NREM1 stage was the worst classified, which can be due to the lit-
tle physiological differences among this one and NREM2 stage [19] as well as
the special consideration of the manual classification of the two stages. Second,
there is a high variability in the classification accuracies per patient, being the
two worst ones 51.3% and 65.3%, and the best ones 85.3% and 83.6%. These
differences are expectable due to the different interferences in the polysomno-
gram recordings, as well as the inter-individual physiological and brain operation
differences.
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4 Conclusions and Further Work

This paper has presented the adaptation of deep learning to the problem of sleep
stage classification in such a way that the problem has been decomposed into two
sub-domains and the dataset tackled is complete in comparison with previous
approaches.

Due to the complexity of the problem, the average accuracy of 68.6% and
68.9% obtained in patient-cross-validation is considered very promising taking
into account that it uses a single EEG channel with no more information, and
it is not making use of other epochs’ information to classify the current epoch.
Thus although other recent works using deep learning for this problem get better
results [6,7], they worked with a subset of the data, used more information from
the polysomnogram to perform the classification, or used a neighbor epochs
information in their operation.

As future work it is intended to make use of Stacked Sequential Learning, as
a way of including epochs’ neighborhood information for the classification, which
has demonstrated to highly increase the performance of the sleep stage classifi-
cation problem [4] as well as combining the different classifiers like ensembles or
integrated in a more complex deep learning architecture.

Acknowledgements. This work was supported by Project TIN2015-71873-R (Span-
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Abstract. With interactive evolutionary computation it is possible to introduce
the subjective preferences of the decision maker within the general algorithm
evolution criteria. The problem that generates this is user fatigue, since it has to
evaluate a considerable number of plants designs in each generation. To avoid
user fatigue it is proposed to substitute the direct evaluation through the mouse
by means of a numerical scale by an eye tracking system in which the system
“captures” the evaluation that the user assigns to the plants through the gaze
behavior. This article presents a first approximation to this solution. The results
obtained in the experiments are promising and a clear relationship between the
parameters that define the gaze behavior of the user with the score assigned to
the designs can be seen.

Keywords: Unequal area facility layout problem � Eye tracking � Interactive
genetic algorithm � User fatigue � Gaze behavior

1 Introduction

Facility Layout Design (FLD) determines the placement of facilities (sometimes called
departments) in a manufacturing plant. The goal is to achieve the most effective
arrangement in order to meet one or more objectives and optimize plant efficiency.

Plant layout design is important to achieve production efficiency, since it directly
influences manufacturing costs, leading times, work in process and productivity [1].
A good distribution of facilities contributes to the overall efficiency of operations and
could reduce between 20% and 50% of the total operating cost [2].

There are many types of facility layout problem (FLP) [3] but all of them depend on
the specific features of manufacturing systems (e.g., production variety and volume,
material handling system chosen, different possible flows allowed for parts, number of
floors, facility shapes and the pick-up and drop-off locations) and different techniques to
solve them (e.g., exact approaches, approximated approaches, heuristics, meta-heuristics
[4] as for example.

One of the most studied approaches to the FLP is unequal area facility layout
problem (UA-FLP) [5]. UA-FLP considers a rectangular plant layout that is made up
by unequal rectangular facilities that have to be placed effectively over the plant layout.
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Initially, different methods were used to approach UA-FLP, only considering
quantitative criteria (e.g. material handling cost, closeness or distance relationships,
adjacency requirements and/or aspect ratio). These approaches, however, may not
adequately represent all of the relevant non quantitative information that affect a human
expert involved in design (e.g. engineers, architects, and designers in general) [6]. The
qualitative features are complicated to be considered with a classical heuristic or
meta-heuristic optimization [7, 8]. Examples of qualitative features can be: facility
location preferences, distribution of the remaining spaces, relative placement prefer-
ences, or any other subjective preference that can be considered as important by the
decision maker (DM). A correct effective facility layout evaluation procedure needs the
consideration of qualitative and quantitative criteria [9].

An interactive genetic algorithm (IGA) was proposed to consider qualitative and/or
subjective criteria through the interaction of the algorithm with a DM.IGA considers
the knowledge of the DM in the search process, adjusting it to their preferences in each
generation of the algorithm [8], in this way, the interactive evolutionary computation
(IEC) gives the advantage of considering qualitative criteria against the classical
heuristic or a meta-heuristic optimization. In addition, these qualitative features can be
subjective, not known at the beginning or changed during the process. Therefore, they
can not be formulated as an objective function of a classical optimization problem. IEC
can greatly contribute to improve optimized design by involving users in searching for
a satisfactory solution [10]. In this IEC the fitness function is replaced by a human’s
user evaluation [11]. Thus, intuition and domain knowledge can be involved in the
identification of good designs [12].

Including the knowledge of an expert in the algorithm is essential to be able to
consider qualitative features. Also, it provides other advantages: finding a solution that
satisfies the DM, it does not have to be an optimal solution (it is not safe to find it) [13];
select the best trade-off solution when a conflict among objectives or constraints exists
[14]; help the algorithm in the process of searching, to consider the user’s preferences
[15–17]; do not have to specify all preferences previously; DM can learn about the
progress of their own choices or preferences [14]; stimulate the user creativity [18];
obtain original, innovated and practicable solutions.

In the last years, new approaches have been implemented to improve the operation
and performance of the IGA. The goal is normally to reach better solutions, in less time
and reducing the fatigue of the DM, and considering user preferences. For example,
using a neural network to discharge the DM evaluation task [19], includingniching
techniques into the approach in order to preserve population diversity which avoids
presenting similar solutions to the designer in the same iteration of the algorithm [20].

According with Takagi [11], one of the major problems of the IEC is user fatigue.
For this reason, one of the priorities of IEC application should be to reduce user fatigue.
Some factors that directly affect user fatigue are: number of generations of the algo-
rithm and number of representative individuals shown to the user. One problem of
reducing user fatigue is that the IEC converges too fast because population diversity is
lost too soon. In this way, the algorithm does not explore enough solutions and will be
unable to find a satisfactory solution. There has to be a balance between user fatigue
and convergence of the solution.
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There are different methods for trying to reduce user fatigue: visualizing individuals
in a multi-dimensional searching space in a 2-D space [21]; using genetic programming
to learn subjective fitness functions from human subjects, using historical data from an
interactive evolutionary system for producing pleasing drum patterns [22]; augmenting
user evaluations with a synthetic fitness function combining partial ordering concepts,
notion of non-domination from multi objective optimization, and support vector
machines to synthesize a fitness model based on user evaluation [23, 24] and using a
system of interactive differential Evolution (IDE) [25] among others.

The methods commented previously are focused on improving the algorithm per-
formance, but they do not guarantee that the user fatigue could always be reduced.
Searching different techniques to reduce DM’s fatigue, reducing the active participation
of DM could be interesting [26]. In this way, some works analyzed the use of an eye
tracking systems to capture the DMpreferences in other fields [27]. Eye trackers
measure gaze behavior during task execution, visualize what areas on a screen are
inspected, and thus provide clues on what information was included in the decision
making process. They are used, for example, in educational or cognitive psychology to
understand expert performance [28]. Eye tracking provides a potential for new insight
into the reasoning process [29].

Traditionally, in each one of the generations of the IEC the user is asked to evaluate
each solution by assigning a rating or selecting with the mouse. Some studies propose a
framework that uses in real time gaze information to predict which parts of a screen are
more significant for a user [30]. Eye movement based analysis can improve traditional
performance, protocol, and walk through evaluations of computer interfaces. Overall,
data obtained from eye movements can significantly enhance the observation of users’
strategies while using computer interfaces, which can subsequently improve the pre-
cision of computer interface evaluations [31]. User fatigue can be reduced following
users eyes movement and without sacrificing quality of fitness evaluation [32]. There is
a close relationship between the behavior gaze and the final choice or decision on the
part of the user. [33].

According to several authors some of the most important parameters to consider in
the gazing behavior are fixations and visit. Michalski and Grobelny [34, 35] analyzed
the main parameters to be taken into account to be able to obtain useful conclusions
from user’s eyes movement; Gere et al. [36] in this experiment a close relation was
found between gazing behavior and choice by the applied models and where the
workflow is well-suitable to similar practical eye-tracking problems and [37] in his
conclusion explain that exist significant positive correlations between two eye tracking
parameters (fixation count and visit duration) and the choice rate.

The main goal is to find a technique that allows to reduce the fatigue of an expert in
the evaluation process of an IGA using eye-tracking, and maintaining the evaluation
effectiveness previously obtained. In this paper a new approach combining an IGA with
the use of an eye tracker is proposed.

The rest of the paper is organized as follows. In Sect. 2, the materials used and the
approach and development of the experiment are presented. In Sect. 3, the results of the
experiment are shown and commented. Finally, conclusions and suggested future work
are given in Sect. 4.
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2 Method

2.1 Materials and Experiment Design

An eye tracker model Tobii X2-30 and software Tobii Studio v3.3.0.567. have been
used for the experiments. Data generated in Tobii Studio were exported to Microsoft
Excel 2013 for analysis.

In order to evaluate the performance of eye tracking to evaluate the designs pre-
sented to the DM, a previous evaluation, scoring each plant from 1 to 5, has been used.
The objective of the experiment is to analyze whether is possible to relate the evalu-
ation made by the DM with the parameters of the eye-tracking.

The experiment has been developed using a problem with 12 facilities to be
arranged in an area of 35 � 55 [38]. In this case we have defined a single interest group
with the following restrictions, a solution that has the plant layout divided into three
bays, where facility ‘B’ touches any side of the layout, and facility ‘A’ is located in the
bottom right corner of the plant layout adjacent to facility ‘F’.

The experiment was designed as follows: to begin with, a complete test of the IGA
has been carried out as it has been done so far, in the Fig. 1 shows the execution of the

Fig. 1. Example of a generation in the IGA.
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IGA. In each of these iterations, screenshots have been made (one for each generation)
and the test has been completed with a certain solution.

The next step was to export the images obtained by the IGA to Tobii Studio in
order to be evaluated by an expert.

Tobii Studio allows to define areas of interest (AOIs) on the images that are
displayed to the user. An AOI is a defined section on an image and could be define
more than one AOI on an image. At the end of the experiment Tobii Studio allows to
analyze the information of each AOI separately. In this way, an individual analysis of
each one of the areas defined on the image can be obtain.

Then, the different areas of interest on each one of the images showed to the expert
during the evaluation process have been defined. In each image nine AOIs have been
defined corresponding with each one of the plant to be evaluated. This step has been
done for each of the images (one for each generation).

Tobii Studio can manage a large number of parameters, metrics and descriptive
statistics. It also provides different means to see the results of the experiment: a
recording of the experiment, images of the heat maps, duration of the fixations, etc.

2.2 Experimental Procedure

At first, expert was informed about the general objective of the study. Then placed in
front of the screen with the Tobii located on the lower edge of the screen. Before
starting the test Tobii Studio always performs a calibration test. The task of the experts
was to observe each of the images presented to him (each corresponding to a gener-
ation) and to value them based on the requirements specified at the beginning. The
images were presented in the same order in which they were generated by the appli-
cation by order of generation. During the whole process, subjects’ visual activities were
registered by the eye tracking system.

3 Results and Discussions

In this section an analysis of the results obtained in the experiment was performed. The
9 generations used in the experiment have been analyzed, but the emphasis should be
on generations 0, 1, 2, 7 and 8. In the first three it is possible to see how the problem
begins to converge towards a concrete solution and the last two show how the algo-
rithm reaches a concrete solution.

The scores indicated by the expert in the execution of the IGA [8] are shown so
they can be compared with the data obtained using the Tobii: generation 0 (2,2,2,2,2,
1,1,1,2), generation 1 (2,4,1,2,3,2,2,3,1), generation 2 (1,3,2,2,1,1,3,3,1), generation 7
(4,4,3,4,4,4,4,4,4) and generation 8 (4,4,4,4,4,4,4,4,4).

Analysis has been focused on the data obtained in each of the generations dis-
cussed. Each generation includes: the heat map generated by the Tobii Studio, the
graphs of the parameters exported from Tobii Studio to Microsoft Excel and the ratings
assigned by the expert in the execution of the IGA. To obtain the conclusions the
following parameters have been considered as the most relevant: fixation count, total
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fixation duration, visit count and total visit duration [34, 35]. Now the generations are
going to be analyzed and discussed.

Figure 2 shows the results obtained in generation 0. The first generation is totally
random so the expert does not know a priori what he is going to see. For this reason
many red areas are obtained in the heat map, since the expert has distributed his
attention among all the plants. As can be seen in the graphs, there are no significant
differences in the values obtained in the different parameters.

The data obtained from the IGA experiment showed that the expert assigned a score
of 1 to 2 to all the plants, which means that none of the proposed solutions met the
requirements and, at the same time, they were all equally interesting. With the eye
tracker equivalent results are obtained, no plant has captured the attention of the expert
over the others. Moreover, analyzing the images of the plants you can see that none
meets the specified requirements.

Figure 3 illustrates the results obtained in generation 1. The heat map shows that
the expert focused his attention on plant 2. Graphs show how the parameters of plant 2
stand out over the others. The expert evaluated plant 2 with a higher rating than the
others (4), so that the data obtained with the eye tracker and the IGA are consistent.
Analyzing the image can be seen that this plant is the one that best suits the require-
ments. In generation 1 we see that the algorithm converges to a fairly good solution and
these are the results obtained. It should be noted the heat zones obtained in the rest of
the plants. Green areas are clearer and even blurred, since the expert gives them less

Fig. 2. Results of generation 0. (Color figure online)
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attention compared to plant 2. The data obtained in the graphs confirm these details,
there is a big difference in all parameters between plant 1 and the rest of the plants [30].

Figure 4 describes the results obtained in generation 2. The heat map shows that the
expert focused his attention on plant 8. Graphs show how the parameters of plant 8
stand out from each other. The expert evaluated plant 8 with 3 points, as well as plants
2 and 7. In the heat maps and graphs it is shown that the expert does not pay much
attention to plants 2 and 7. The plant 2 does not approach a good solution and the plant
7 is worse solution than plant 8. The data obtained with the eye tracker are better than
those obtained in the IGA experiment. In this generation, the algorithm converge to a
good solution too.

Figure 5 shows the results obtained in generation 7. The images of the plants show
that the algorithm converge to a solution (the plants are quite similar due to the loss of
the population diversity). The heat map shows that several plants catch the attention of
the expert. Graphs show that plants 1 and 3 have less attention of the expert (in this
case the plant 3 would not be an acceptable solution), but among the rest of plants there
are not significant differences. In the evaluation made by the expert in IGA can see that
all plants are rated 3 or 4. This means that there are no plants for which the expert has a
particular preference over the others.

Figure 6 illustrates the results obtained in generation 8. Both the heat map and the
graphs show that the expert has distributed his attention among most plants. A higher
count of fixations in plants 1, 3 and 4 can be seen. Such plants are perfectly valid within
the requirements. As in the previous generation the algorithm converge a solution and
the population diversity has disappeared. All plants are evaluated with 4 points for the
expert in IGA. These scores are perfectly compatible with the results obtained.

Fig. 3. Results of generation 1. (Color figure online)
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Fig. 4. Results of generation 2.

Fig. 5. Results of generation 7.
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The next link shows the complete execution of the experiment generated with
the Tobii Studio. (https://drive.google.com/open?id=0Bw91P0kj7BnUQ2pNLWcySkh
WMTQ).

4 Conclusions

The objective of this experiment is minimizing the fatigue of the user in each one of the
iterations in the plant evaluation process through the eye tracker system. The results
obtained are quite positive. In most cases, the scores obtained by the eye tracker system
are enough close to the scores assigned by the expert in the process of numerical scale
evaluation through the mouse. Even, in some cases the results obtained by the eye
tracker have been better. This evaluation method allows a considerable reduction in the
evaluation time and fatigue of the user, besides, it reduces the need to have to evaluate
plant to plant using a mouse. Only by gaze behavior the same solutions have been
obtained that the evaluation by hand of an expert, even in some cases, these solutions
have been better.

The fulfillment of the initial approaches of this work open ample possibilities to
improve the mentioned evaluation processes, therefore we believe it is convenient to
continue working in this area of research. Thus, future lines of work could be other
types of problems with different grades of difficulty or different number of facility.
Additionally, it could be analyzed by a statistical analyzing.

Fig. 6. Results of generation 8.
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Alfredo Nazábal(B) and Antonio Artés(B)

Department of Signal Theory and Communications and Gregorio Marañón Health
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Abstract. This work studies the problem of reducing the energy con-
sumption of wearable sensors in a Human Activity Recognition (HAR)
system. A HAR system is implemented using Hidden Markov Models,
where decisions over the acquisition of new data are made based on
the entropy of the posterior distribution of the activities. This problem
is intractable in general, so three different active sensing algorithms are
implemented to find numerically the data acquisition events. The perfor-
mance of these algorithms is evaluated using a HAR database, resulting
in a significant reduction on the number of observations acquired, thus
reducing the energy consumption, while maintaining the performance of
the system.

1 Introduction

Human Activity Recognition (HAR) is a field that has grown considerably in
the last years, illustrating its huge influence in many modern social applications
including ambulatory monitoring of elderly patients, human behaviour charac-
terization or camera surveillance applications [1]. For example, in a monitoring
application the knowledge of the activities being performed is critical to evalu-
ate the context in which the patients are being monitored. The target activities
of these applications range from simple activities such as walking, sitting or
standing to more complex activities such as eating, sleeping or tooth brushing.

Wearable sensors are a common approach in long term monitoring HAR sys-
tems [2,3]. The most popular ones are inertial sensors, either used by themselves
or combined with other multiple sensors. Some examples include a Parkinson
symptoms detection system [4] and a gesture recognition system [5]. Smart-
phones, in particular, are gaining popularity in HAR systems as they include
several built-in sensors that provide information of the daily activities of its
user [6].
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Sensor-based activity recognition systems present several inherent problems,
like the position of the sensors in the body, the noisy nature of the input obser-
vations or the energy consumption of the devices. The energy consumption prob-
lem in smart-phones is an important topic [7], since the HAR system shares its
resources with the rest of the applications in the device and the embedded sen-
sors are primary sources of power consumption. During short periods of time, it
is reasonable to use all the information provided by the built-in sensors, however,
when continuous monitoring is considered, the optimization of the battery and
memory of the devices employed is critical. The main purpose of this paper is
to develop a framework where the joint optimization of the energy consumption
of the sensors and the performance of the HAR system is achieved.

The main approach to solve this problem consists of minimizing the data
acquisition of the sensors. In [8] the authors propose a framework that uses a
hierarchical sensor management strategy to recognize user activities as well as
to detect activity transitions and decide which sensors to use at any given time.
Instead of the ad hoc approximation considered in [8], we follow a systematic
approach to decide when to perform the data acquisition. In this work, a HAR
system based on Hidden Markov Models (HMMs) is considered. At a sampling
rate of tens of Hertz, the mass of the posterior probability distribution of the
activities given the observations is located on a single activity during most of
the time. Accordingly, the uncertainty of the performed activity is low in gen-
eral, as well as the entropy of the posterior distribution. When no observations
are available, the posterior probability distribution corresponds asymptotically
with the stationary distribution of the HMM, and the entropy of this posterior
increases. A novel active sensing strategy is proposed to exploit this property,
i.e. to stop acquiring observations when the entropy is low, and to estimate
the time instant when the entropy reaches a certain threshold and new samples
need to be acquired again. This is a reasonable assumption in a long term activ-
ity recognition system, where some activities are performed constantly during
extended periods of time and only a few data samples are needed to recognize
these activities.

The rest of the paper is organized as follows. Section 2 introduces the problem
and the notation used in this work. In Sect. 3 three algorithms are developed to
solve the active sensing problem numerically. Section 4 shows the results of the
algorithms in a HAR database and Sect. 5 concludes the paper.

2 Problem Statement

Data acquired from the sensors, X = {x1,x2, · · · ,xN}, is defined as a sequence
of N vector observations of dimension D, xn ∈ R

D. This data is modelled using
a HMM (Fig. 1), where S = {s1, s2, · · · , sN} is the sequence of hidden states
explaining the data, with sn ∈ {1, · · · ,M} and M being the number of possible
states. A HMM is characterized by three parameters [9], the initial probabilities
distribution π = p(s1), the transition matrix A ∈ R

M×M , with elements aij =
p(sn+1 = j|sn = i) and

∑
i aij = 1, and the observations probability distribution

p(xn|sn).
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Fig. 1. Graphical representation of the Hidden Markov Model

The posterior of the state sn given all the observations until time instant n,
x1:n, is defined by the forward step of the Forward-Backward algorithm. This
posterior is denoted as αn � p(sn|x1:n) with elements αn(i) = p(sn = i|x1:n).

To compute the probability of any state in the future, n + n0, given the
current known data, all the states between the current time instant n and the
future time instant n + n0 are marginalized. In a Markov Chain this probability
is obtained multiplying n0 times the transition matrix by the posterior of sn

αn+n0 =
∑

sn:n+n0−1

p(sn+n0 , sn:n+n0−1|x1:n) = An0αn (1)

Equation (1) represents the knowledge over the posterior of sn from time
instant n to the future. The entropy of αn+n0 provides a measure of the uncer-
tainty of the future activities in terms of n0. The entropy of a random variable
X with probabilities p(x) is defined as H(X) � −∑|x|

i=1 p(xi) log p(xi), where |x|
is the dimensionality of the vector x.

The active sensing problem can be defined as the set of techniques required
to find the values of the future time instant n0 where the entropy of (1) exceeds
a certain threshold H0. At this time instant, the posterior distribution becomes
unreliable, hence new data needs to be acquired to reduce the entropy. The
solution of n0 is obtained from

H(αn+n0) = −(An0αn)T log(An0αn) < H0 (2)

where (·)T denotes the transpose operation. Unfortunately, (2) is intractable in
general, so a numerical approximation is needed to obtain n0.

3 Active Sensing Strategies

3.1 Activity Independent Approximation

The transition matrix of a HMM is a stochastic matrix with a limiting distri-
bution or stationary state p, i.e. as n0 → ∞, An0αn = p for every αn. The
existence of this limiting distribution implies that the entropy of αn+n0 must
converge

lim
n0→∞ H(αn+n0) = −pT log(p) = H(p)
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In the limit, the entropy of αn+n0 is independent of the posterior of the activ-
ities, only depending on the structure of the transition matrix. Thus, a naive
approximation to solve this problem consists of finding the value of n0 where
the system reaches the limiting distribution p.

Every stochastic matrix has at least one eigenvalue that is equal to 1 and
the largest absolute value of all its eigenvalues is also 1. In fact, the limiting
distribution of the stochastic matrix is the eigenvector corresponding to the
eigenvalue equal to 1. The n-power of the transition matrix can be expressed as
An = UΛnU−1, where U is the matrix of eigenvectors of A and Λ is a diagonal
matrix containing its eigenvalues {λ1, · · · , λM}, where |λ1| > |λ2| > · · · > |λM |.
This means that the eigenvectors of the transition matrix remain unaltered and
only the n-power of the eigenvalues is needed.

The activity independent method consists of finding the minimum value of
n0 that satisfies |λ2|n0 < ε, where ε controls the precision of the approximation,

np
0 =

⌊
log(ε)

log(|λ2|)

⌋

(3)

With this condition, An0αn � p, as the only contribution of the transition matrix
is related to the first eigenvalue λ1 = 1 and all the other values of Λ decrease to
zero faster.

Figure 2 shows an example of H(αn+n0) as a function of n0 for a transition
matrix with M = 10 states. For any transition matrix, this function is not
monotonically increasing in general, with several local maxima in the interval
[0, np

0] that are greater than the value of the entropy in the limiting distribution.
When n0 > np

0, H(αn+n0) converges to the entropy of the limiting distribution
H(p). When n0 = 0, the value is just the entropy of the posterior of sn, H(αn).
Choosing the value np

0 as the time instant when new data is sampled is a naive
approximation, since there exists in general an interval of values in [0, np

0] where
the uncertainty is greater than H(p). We need to choose n0 in the first interval
where (2) holds.

3.2 Threshold Method

A direct approach to solve the data acquisition problem consists of finding
numerically the value of n0 that satisfies (2), given that a suitable value of H0

is chosen. If a small value of H0 is considered the uncertainty will be too small
and more data than needed would be acquired. If H0 is too large, this value is
not reached since the entropy is bounded above and data is not acquired again.
The value of H0 is chosen in terms of the entropy of the limiting distribution,
H0 = cH(p), where c ∈ [0, 1] is a parameter that controls the distance to the
entropy of the limiting distribution H(p). Thus, the threshold method consists
of finding the maximum value of n0 such as (2) holds,

H(αn+n0) < cH(p)
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Fig. 2. Toy example of the entropy H(αn+n0) for a transition matrix with 10 states

When c = 1, the threshold is equal to the entropy of the limiting distribution.
Depending on the structure of the transition matrix, this could be problematic.
If H(αn+n0) is monotonically increasing in terms of n0, this solution reduces
to the naive approximation, i.e., n0 = np

0. By choosing c < 1 data is acquired
sooner, and the posterior distribution of the activities can be updated properly.
For small values of c, the data is acquired too quickly, so the reduction in the
number of observations is negligible. As the value of c increases, the separation
of the intervals when new data is acquired becomes larger, reducing the number
of observations employed and thus the energy consumption.

3.3 Line Intersection Method

Fixing a threshold on the entropy is not always the best approach. An alter-
native method, where H0 is not fixed in advance, consists of selecting n0 as
the intersection between two lines, a constant line defined by the entropy of
the limiting distribution y1(n) = H(p) and the tangent line of the entropy at
some nk ∈ [0, np

0]. This line intersection method reaches different values of H0

depending on the activities being performed.
The equation of the tangent line to H(αn+nk

) at nk is defined as

y2(n) = yk + m(n − nk)

where yk is the entropy of the posterior at nk, H(αn+nk
), and m is the slope

of the tangent line, that corresponds to the derivative of the entropy at nk,
H ′(αn+nk

):

yk = −(Ankαn)T log(Ankαn)
m = −(U log(Λ)ΛnkU−1αn)T log(Ankαn)
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Computing the intersection between both lines y1(n) = y2(n) and replacing
yk and m by its expressions, the value of the intersection point is obtained

n = nk +
pT log(p) − (Ankαn) log(Ankαn)

(U log(Λ)ΛnkU−1αn)T log(Ankαn)

The problem of choosing a representative nk ∈ [0, np
0] still remains. One method

consists of increasing constantly nk as long as the value of the slope is greater
than a certain value. As it approaches the maximum of the entropy, the slope
will decrease and the intersections of both lines will provide a good estimate
of n0.

4 Experiment Results

The algorithms presented in Sect. 3 are tested using a HAR database created
using APDM Opal [10] wearable inertial sensors.1 This database contains the
measurements from eight different people with two sensors placed on the waist
and the ankle. Only one of the sensors is assumed to be available during each
of the experiments, evaluating the active sensing algorithms in two different
settings. All the sequences contain a combination of five different activities: run-
ning, walking, standing, sitting and lying (in no particular order) under semi-
naturalistic conditions in an indoor environment during a minimum of 20 min.

A HMM classifier with a Gaussian mixture observation model is trained for
each sensor using the standard Baum-Welch algorithm [11]. The HMMs employ
the structure described in [12], assigning three states per activity. A leave-one-
person-out methodology is used in training, where one sequence is left out to test
the entropy algorithms using the model parameters obtained during the training
with the rest of the sequences.

The duration of the window where the sensors are acquiring new observations
is set as a parameter for all the algorithms. Three different window sizes are
used in the experiments, W = {5, 10, 20} s. When the time window is over, the
sensors stop acquiring data, and the active sensing algorithms decide the next
time instant n0 where the sensors need to acquire a new window of observations.

In the activity independent algorithm, three different precision values are
used, ε = {0.1, 0.01, 0.001}. In the threshold algorithm, three different values
of c = {0.7, 0.8, 0.9} are used. In the line intersection algorithm, the algorithm
stops when the value of the slope of the line y2, is less than 0.1, 0.01 and 0.001.

Table 1 shows the average reduction of the number of observations in each
of the settings and the average precision loss of the system due to this sam-
ple reduction. In particular, in Fig. 3 the precision loss of all of the methods
is compared in terms of the number of observations used in the waist sensor
experiment.

Decreasing the number of samples acquired reduces the performance of the
system. However, under the same conditions, the loss in precision is not heavily
1 The dataset is available at http://www.tsc.uc3m.es/dataproy/har/databases.zip.

http://www.tsc.uc3m.es/dataproy/har/databases.zip
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Table 1. Average percentage of sensor observations employed and precision loss of all
the algorithms using both sensors. The first part corresponds to the activity indepen-
dent algorithm, the second part to the threshold algorithm and the last part to the
line intersection algorithm.

W(s) Algorithm
parameter

Waist
precision loss

Ankle
precision loss

% of Waist
sensor data used

% of Ankle
sensor data used

5 0.1 −0.0705 −0.1233 27.18% 24.59%

10 0.1 −0.0827 −0.1247 36.12% 32.80%

20 0.1 −0.0724 −0.1048 48.23% 42.36%

5 0.01 −0.1947 −0.1919 16.40% 15.45%

10 0.01 −0.1742 −0.1802 23.52% 20.17%

20 0.01 −0.1749 −0.1311 32.58% 34.01%

5 0.001 −0.2902 −0.2801 11.73% 11.25%

10 0.001 −0.2546 −0.2350 17.88% 16.69%

20 0.001 −0.2780 −0.1819 25.31% 26.81%

5 0.7 −0.0473 −0.0545 36.86% 36.98%

10 0.7 −0.0317 −0.0507 50.54% 48.42%

20 0.7 −0.0315 −0.0296 61.16% 59.57%

5 0.8 −0.0659 −0.0853 29.29% 29.10%

10 0.8 −0.0655 −0.0617 39.90% 38.51%

20 0.8 −0.0582 −0.0628 51.37% 48.45%

5 0.9 −0.1098 −0.1878 20.47% 20.61%

10 0.9 −0.1127 −0.1530 28.46% 27.69%

20 0.9 −0.1019 −0.1369 40.34% 36.52%

5 0.1 −0.0070 −0.0032 54.82% 55.77%

10 0.1 −0.0053 0.0010 67.52% 67.59%

20 0.1 −0.0166 0.0045 76.25% 76.83%

5 0.01 −0.0390 −0.0417 31.49% 34.89%

10 0.01 −0.0212 −0.0358 45.81% 49.30%

20 0.01 −0.0180 −0.0174 60.99% 63.00%

5 0.001 −0.1513 −0.2008 16.39% 13.42%

10 0.001 −0.1242 −0.1564 26.03% 24.53%

20 0.001 −0.1067 −0.1348 37.79% 33.30%

influenced by the reduction in window size. It is more important to update the
model with new observations when the entropy increases than to acquire large
windows of observations, since the entropy is practically zero during these win-
dows. The best model in terms of precision loss is the line intersection algorithm,
though the number of samples used is in general larger than in the other mod-
els. The threshold algorithm is the second in terms of performance. The activity
independent algorithm performs worse than the others, since the posterior of
the activities is not considered while computing the next time instant when new
data must be acquired.
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Fig. 3. Comparison of all the algorithms in Sect. 3 using three different window sizes
for the waist sensor. A1 is the activity independent algorithm, A2 is the threshold
algorithm and A3 is the line intersection algorithm.

Fig. 4. Accuracy of the threshold model with parameter c = 0.7 and a window size
of 5 s. The activity estimation when observations are available is represented in green,
and in red the activity estimation when no observations are available. In (a) the true
activity is represented in blue while in (b) it represents the estimated activity when all
observations are available. (Color figure online)

Figures 4a and b show an example of the effects of the threshold algorithm
over the acquired samples for each activity using one of the sequences. The
number of samples required when a static activity like sitting is performed is
much less than in the case of a dynamic activity like walking, and also the
distance between two consecutive data acquisitions is much larger. Furthermore,
Fig. 4b shows that the performance of the algorithm in terms of the estimated
activities while using all the observations is not affected by the data reduction.
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Fig. 5. Comparison between the estimated activities in the upper figure and the entropy
of the forward step in the bottom figure using the threshold algorithm (a) and the
line intersection algorithm (b). In the threshold algorithm c = 0.7 and in the line
intersection algorithm the limit of the slope is set to 0.1. The window size is set to 5 s.

There exist several differences in the entropy evolution between the different
algorithms. In general, when a static activity is performed, the entropy of the
forward step increases more slowly compared to the dynamic activities. This
effect can be observed in more detail in Figs. 5a and b. In the threshold algorithm
the entropy increases until a certain fixed threshold, where the algorithm acquires
a new window of data. The number of windows acquired in each activity differs
considerably. In the line intersection algorithm, the next time window is chosen
when the derivative of the entropy, i.e. the slope, is less than 0.1. Depending
on the shape of the entropy function, we stop at different values. This effect
is reduced when the parameter of the model decreases, since the entropy of the
limiting distribution is constant for a specific transition matrix. Also, the number
of observation windows used in this model is larger in general, leading to shorter
periods of time where there is no data acquisition and consequently to reduce
the loss in precision of the system.

5 Conclusions

A systematic approach to solve the problem of energy consumption reduction in
HAR systems with inertial sensors have been proposed. This work shows that
using the maximum entropy of the posterior of the activities, the number of
observations can be reduced while maintaining the performance of the recogni-
tion system. Three different methods to deal with the data acquisition problem
have been implemented and evaluated, emphasizing the importance of updat-
ing the model with new observations when the entropy increases rather than
acquiring large windows of observations. The number of observations acquired
can be reduced to 31% while only decreasing the precision by 0.039, although
other operation points are also possible depending on the specifications of the
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problem. Furthermore, the acquisition system depends strongly on the performed
activities, needing less observations while performing static activities compared
to the dynamic activities case.
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Abstract. Sky computing is a new computing paradigm leveraging
resources of multiple Cloud providers to create a large-scale distributed
infrastructure. N2Sky is a research initiative promising a framework for
the utilization of Neural Networks as services across many Clouds inte-
grating into a Sky. This involves a number of challenges ranging from
the provision, discovery and utilization of N2Sky services to the manage-
ment, monitoring, metering and accounting of the N2Sky infrastructure.
This paper focuses on the semantic discovery of N2Sky services through
a human-centered querying mechanism termed as N2Query. N2Query
allows N2Sky users to specify their problem statement as natural lan-
guage queries. In response to the natural language queries, it delivers a
list of ranked neural network services to the user as a solution to their
stated problem. The search algorithm of N2Query is based on the seman-
tic mapping of ontologies referring to problem and solution domains.

Keywords: Neural network as a service ·Virtual organization · Semantic
description · Cloud computing

1 Introduction

Sky providers aggregate the services scattered across various Cloud-based
infrastructures to provide the concept of sky computing. The sky computing
in this way copes with the problem of vendor lock-in and extends the flexibility,
transparency and elasticity of the integrated infrastructure as compared to that
of a single Cloud. Sky computing has taken another step forward towards the
realization of virtual collaborations, where solutions are virtual and resources
are logical. The exchanging data among researchers is the main stimulus point
for the development. This is just as valid for the neural information process-
ing community as for any other research community [13]. As described by the
UK e-Science initiative [16] many goals can be achieved by using new stimula-
tion techniques, such as enabling more effective and seamless collaboration for
scientific and commercial communities.
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 167–178, 2017.
DOI: 10.1007/978-3-319-59153-7 15
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In the context of our work, we designed N2Sky a virtual neural network
(NN) simulator for the computational intelligence community [14]. It provides
access to neural network resources and enables infrastructures fostering multi
Cloud resources. On the one hand, neural network resources can be generic
neural networks trained by a specific learning paradigm and training data for
given problems whereas on the other hand they can represent already trained
networks, which can be used for given application problems. The vision of N2Sky
is the provisioning of neural networks where any member of the community can
access or contribute neural networks all over the Internet.

The number of neural networks is expected to be very large and continuously
growing. These neural network objects are distributed on a worldwide scale on
the Internet administratively under the umbrella of the N2Sky virtual organ-
isation on participating resource nodes. Searching for specific neural network
resources providing solutions to given problems can be a time consuming and
difficult task. We developed an ontology-based approach for searching semanti-
cally the resource pool of N2Sky, where the generic idea was presented in [12].
In this paper, we present N2Query, an implementation of our generic semantic
query approach as a component of the N2Sky infrastructure. It allows N2Sky
users to search for neural networks by using natural language. The N2Query
component is depicted in Fig. 1. The N2Query architecture consists of:

– A semantic querying interface that allows the user to specify his/her problem
description in natural language form (query).

– An ontology mapping mechanism that allows N2Query to recognise the
semantic of the natural language query in form of an ontology (called problem
ontology). Then a mapping algorithm is applied to match N2Query’s problem
ontology against an already constructed solution ontology resulting in a list
of adequate neural networks.

– A ranking mechanism to deliver a list of links to neural network resources of
the N2Sky virtual organisation for solving the problem.

– An XML based Neural Network resource representation language to maintain
and search the problem and solution ontologies.

Fig. 1. N2Query in context with N2Sky

The structure of the paper, is as follows: The state of the art of neural network
simulators and the baseline research are given in Sect. 2. Section 3 highlights the
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activities of the overall N2Query process. Section 3 discusses the architecture of
all services and components of the N2Query engine. A use case and the execution
process of the N2Query are presented in Sect. 4. Finally, the paper concludes our
findings and presents our plans for future work.

2 Related Work

Over the last few years, a lot of simulation environments have been developed to
mimic the behaviour of artificial and biological neural networks [9]. IQR [1] is a
neurone simulator which allows neuronal models to control the behaviour of real
devices in real-time. NeuroSpace [3] aims to integrate neural networks into rela-
tional database. NEUVISION [8] is a simulation environment used to simulate
large-scale neuronal networks. NeuroWeb [11] lets users exchange information
(neural network objects, neural network paradigms) and exploits available com-
puting resources for neural network specific tasks (specifically training of neural
networks).

Actually, there is no simulator or environment cover all simulation
approaches, being able to solve a different kind of problems in the Cloud. In
the course of our research, we designed and developed N2Sky [14], a virtual
organization (VO) for the community of computational intelligence (CI), pro-
viding access to neural networks and enabling infrastructures to foster federated
Cloud resources [12].

N2Sky supports qualified users to easily run their simulations by accessing
data related neural network resources that has been published by the N2Sky
service manager and the N2Sky data service [5]. Moreover, N2Sky provides a
facility to end users to solve their problems by using predefined objects and
paradigms. For the purpose of thin clients a simple Web browser, which can
execute on a PC or a smartphone, can be used to access the front-end, the N2Sky
(Mobile) Web Portal. It is relying on the N2Sky user management service which
grants access to the system [14].

N2Sky aroused strong interest even beyond the CI community1. This endeav-
our of providing an environment for the access to practically unlimited resources
faces one specific challenge. We propose a centralised registry approach col-
lecting all semantic knowledge of neural network objects by semantic web
technologies [9].

N2Sky offers neural network resources as a service which dynamically uses
the available computing environment to reduce the execution time. Summing
up, the N2Sky environment provides [14]:

– Sharing of neural network paradigms, objects and related information
between the researchers and end user world wide.

– Reduction of training time of neural network by automatically selecting
appropriate parallel implementations of the neural network services exploiting
suitable Cloud resources.

1 http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/.

http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/
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– Transparent access to High-end neural network resources stored in Cloud
environment.

– Uniform Look and feel for location independence of computational, storage
and Network resources.

N2Sky uses ViNNSL description language for describing neural networks par-
adigm to allow for easier sharing of resources between the paradigm provider and
the customers [6].

3 N2Query Architecture

Using the N2Query users can submit his/her query formulated in natural lan-
guage through the N2Query interface, which further interacts with the N2Sky
infrastructure to look for the plausible solutions for the user and responds
through the same interface. Figure 2 shows the high level process of N2Query.
The detail of every stage through the process will be covered in the subsequent
sections however a rather general description is aimed here to gradually build
the understanding of the reader. After the user submits his/her query in the
natural language form, the Stanford Language Processor is applied for the syn-
tax and semantic analysis of the query. The processed problem statement is then
sought out through the already built problem ontology. The nodes of the problem
ontology that are marked relevant with the user problem are then linked with
the relevant nodes of already available solution ontology producing the ontology
mapping for the specific problem. The ontology mapping results into the iden-
tification of the neural networks required to solve the submitted problem. The
retrieved neural networks are afterwards ranked by applying ElasticSearch and
are conveyed to the user as the solution of his problem.

Fig. 2. N2Query components control flow

The architecture of N2Query and the system services are depicted in Fig. 3.

The N2Query (Mobile) Web Portal: It provides the access point to the N2Query
system by a web browser interface which can be used on PCs, tablets or even a
smartphones. N2Querry provides two different interfaces to the user, a free text
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Fig. 3. N2Query architecture and components

and a directory search. Figure 5 shows, the N2Query free text interface. The
directory interface depicted in Fig. 7 allows a category search and offers a brief
description of the mechanism of N2Query interface by providing some examples
to show how the user can interact with N2Query interface.

Natural Language Processor Service: This service analyzes the semantic defin-
ition behind user query. The NLP service applies five steps (Lexical Analysis,
Syntactic Analysis (Parsing), Semantic Analysis, Discourse Integration, Prag-
matic Analysis) to understand the meaning of statements.

Problem Ontology Service: This service is based on a hierarchy of known neural
network problems. This service aims to classify the user’s problem under one or
more categories of typical neural network problems, as approximation, optimi-
sation, searching etc.

Solution Ontology Service: This service stores all solutions provided by managed
neural network resources in the N2Sky virtual organisation in a hierarchical form.
The solution ontology can specify one or more solutions for a specific problem.

NN Resource Architecture Web Service: This service administrates N2Sky neural
network objects which are considered as solution(s) for a specific problem and
can be used under the umbrella of the N2Sky simulator.
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ViNNSL Description Web Service: This service is responsible for attributing
N2Sky with ViNNSL description files. These files describe the structure of man-
aged neural network objects, which are used by N2Sky for creating and training
neural networks.

WordNet Web Service: WordNet is a big lexical database of English language.
Nouns, verbs, adverbs and adjectives are grouped into sets of synonyms (synsets),
each expressing a distinct concept [10]. This service delivers a list of words and
synonyms to the NLP service to create lists of all synonyms of the user problem.

N2Query Registry: This service contains all well answered queries. N2Query
checks first if the user question is already asked before. If so, this service delivers
the stored solution (NNs + ViNNSL) to N2Sky to retrain the network and get
solution(s).

Elasticsearch Service: This service is responsible for ranking solutions and pub-
lishes a list of filtered solutions.

Mapping Service: This service provides the mapping technique to match a spe-
cific problem to possible solutions using SPARQL query language and then
deliver list of solutions of that problem.

Three ontology combination paradigms can be distinguished, ontology link-
ing, ontology mapping, and ontology importing [4]. For our problem, we apply
ontology linking, where individuals from distinct ontologies are connected with
links.

The concept is as follows: We administer basically two ontologies, a problem
ontology and a solution ontology [6]:

– The problem ontology consists of a hierarchical organisation of typical neural
network application problems, as classification, optimization, approximation,
storage, pattern restoration, cluster analysis, feature extraction etc. In the
ontology hierarchy these main domains are finer distinguished till the single
problem specifications show up in the leave nodes.

– The solution ontology stores all known N2Sky neural networks organized
according to their paradigm, as perceptron, multi-layer backpropagation, self-
organizing maps (Kohonen cards), recurrent networks (Elman, Jordan, etc.),
cellular neural networks, etc. Here the ontology delivers a fine grained struc-
ture finally giving the neural network objects (trained neural networks for a
specific problem) as leaves.

Figure 4 depicts the two ontologies for solving the problem of “Face Recogni-
tion” (see case study section). Our N2Query component has already connected
them (the nodes are connected with links). The links between problem-solution
ontology simulate the mapping process between the defined problem with solu-
tion(s). We generate a mapping of problem ontology nodes, describing a specific
problem, to solution ontology nodes, denoting network objects, which deliver a
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Fig. 4. Mapping between solution ontology (right) and the problem ontology (left) for
the “face recognition” problem

solution for this problem. Links can be defined not only between leaves of the
hierarchies but also between internal nodes.

Based on the ViNNSL semantic information of an N2Sky resource the map-
ping between problems to solutions can be done by N2Sky administrators manu-
ally, and by an automatic mapping during insertion of the new network objects.

Integrating with the Ontologies. This workflow for integrating new neural
network resources into the knowledge repository of N2Sky can be described by
the following Algorithm A1 [12].

Algorithm A1

1. N2Sky resource provider (RP) attributes its Neural Network Resource (NNR)
with a ViNNSL Description (VD) specifying structural and semantic infor-
mation.

2. RP sends VD together with NNR or URI of NNR to N2SKy knowledge
repository.

3. VD is integrated into Problem Ontology (PO) according to problem domain.
4. NNR or its URI is integrated into Solution Ontology (SO) according to net-

work paradigm.
5. Link between VD insertion node in PO and NNR insertion node in SO is

created.

Querying the Ontologies. The search algorithm is as follows: Based on the
natural language keywords of the user query a scan over the problem ontology
is performed. Hits, patterns matching the scan, resembled by nodes in the hier-
archy, are collected and the links to the solution ontology are followed. There, a
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scan of the network objects, representing solutions to the problems, is done and
fitting results are reported to the user. The sequence of the results can be guided
by a fitting rank of problem to solution matches. By this approach, the effort for
delivering matching neural network resources is centralized in the management
service. By this approach, the number of network resources to be checked is
pruned dramatically by only checking (solution) resources which are (obviously)
targeting the problem domain. The generic workflow for executing a query on
the knowledge repository can be described by the following AlgorithmA2 [12].

Algorithm A2

1. User describes in natural language his/her Problem Description PD using
N2Query interface.

2. Cognitive representation of the problem description delivering a synset SS
(set of cognitive synonyms).

3. Problem description is classified according to SS in PO delivering set of PO
nodes.

4. Links from PO nodes to respective SO nodes are followed.
5. SO nodes are starting points of tree search delivering URIs of possible solution

candidates.
6. V D of solution candidates are analyzed and ranked according to match with

PD.
7. Ranked list is reported to user.

4 N2Query Case Study

In this work, we choose the problem of Face-Recognition as a case study
example [7].

In our use case, the user submits a query “How to solve face recognition
problem” as shown in Fig. 5. The query is then processed and the results are
displayed in the same interface.

Our approach to solve this problem consists basically of two phase, the ontol-
ogy integration phase and the ontology query phase.

4.1 Ontology Integration Phase

The prerequisite for the user query is that the required neural network object
must be present in the ontology architecture as well as the required ontology
mapping should already be available within the system. The search process is
performed on this ontology architecture. In the integration phase a neural net-
work resource, e.g. a trained neural network object, which is provided by a
member of the N2Sky virtual organization, is entered into the solution ontol-
ogy. We use as running example the face recognition problem [7]. It is assumed
the respective Backpropagation network was realized and contributed to N2Sky.
Hereby the Algorithm A1, presented in Sect. 3, has to be executed:

The provider of the NN resource, the Backpropagation network, uses the
ViNNSL language for the description of the problem and paradigm domain in
step A1/1. Hereby, the paradigm and problem domain tags of ViNNSL are used.
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Fig. 5. N2Query free text user interface

In step A1/3 the description of the NN resource, Classification → Machine
Learning→ Biometric → FaceDetection → Gender, is integrated into the problem
Ontology.

The NN resource is integrated into the Solution Ontology accordingly to
its paradigm family in step A1/4, Backpropagation → DNN→ FaceRecogni-
tion → PCA.

In step A1/5 an appropriate link from problem to Solution Ontology is cre-
ated pointing from problem description to the respective physical NN resource,
see Fig. 4.

4.2 Ontology Query Phase

In the following we show how a natural language free text user query is analyzed
by the N2Query system.

The following query analysis steps refer to the workflow from Fig. 3, marked
as ordered numbers integrating various components of the N2Query architecture.

1. The user query is sent to the Natural Language Processing (Stanford Parser)
web service to analyze the semantic of that query.

2. The NLP web service connects with WordNet web service which delivers a
list of words and synonyms of the user problem.

3. If the query has been asked before, the N2Query Registry service sends all
details to the Mapping service. This service is responsible for gathering neural
network paradigms as solutions of that problem. Afterwards, the Mapping
web service publishes solution(s) to N2Sky for retraining networks.

4. The Problem Ontology service receives the recognised statement of the user
query in form of tokens. That service classifies the user problem under the
hierarchical structure of the most known neural network problems.
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5. The SPARQL query algorithm is applied on the problem ontology to match
the user problem with stored problems. Conclusively the SPARQL query
engine sends all matched classifications to the Mapping service.

6. The Mapping service matches the problem(s) to the solution ontology.
Figure 4 shows the mapping between solution ontology and the problem
ontology for the face recognition problem.

7. Solution Ontology service looks up the solutions by a respective SPARQL
query.

8. The Solution Ontology service gets the respective neural network objects
from the NN Resources Architecture service. Figure 6 shows the SPARQL
query and the list of URIs of neural network objects as solutions using
Protégé ontology tool.

9. The solution Ontology service receives also the respective ViNNSL descrip-
tion file(s) which describe the received neural network objects.

10. The Elasticsearch service is applied on the received solution(s) for ranking
and filtering results and publishes a list of solutions of the user problem to
the N2Sky simulator.

11. N2Sky receives the published solution(s) (NN objects and ViNNSL) and
starts creating, training, retraining and evaluating neural networks for the
user problem.

12. N2Sky send the final result(s) to the user as shown in the bottom right
pane in Fig. 5. Figure 7 represents another possibility to present results in a
structured directory interface.

Fig. 6. SPARQL query and list of URI’s of NN objects as solutions using Protégé

In this process, we use the Stanford parser for Natural Language Processing.
The problem-solution ontologies are implemented by RDF and processed by the
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Fig. 7. N2Query directory and guide interface

OWL semantic web languages [15]. Huge storage repositories for RDF data have
been developed, which store the RDF triples in a relational database (RDB) [2].
So, we use the Eclipse RDF4J Framework for ontology storage. According to the
steps in the last section N2Query starts to map from the solution to the problem
ontology to retrieve the existing solutions to that problem. In this process we use
SPARQL language for the matching process. Thus, specifically the Algorithm A2,
see Sect. 3, is executed by applying sematic web techniques:

In step A2/1, querying the N2Query tool by a natural language phrase like,
“How to Solve the Face Recognition Problem”, the N2Query system tries to
recognise the semantic representation of this problem using Stanford natural
language processor (step A2/2), and receives in the synnet set a phrase like
“Face Recognition”. In step A2/3 the SPARQL Query algorithm classifies the
user query into the problem domain, and, following the link to the Solution
Ontology (step A2/4), delivers by a subtree traversal (A2/5) the possible URIs
of the existing NN objects. Based on the ViNNSL descriptions in step A2/6 the
system produces and reports a ranked list of qualified solution URIs to the user’s
problem (A2/7).

5 Conclusion and Future Work

The N2Sky project manages neural network resources on a worldwide basis.
Provisioning of adequate networks to given problems is a critical success factor
of the N2Sky project. Hence we developed the N2Query component which is able
to process natural language queries for finding matching networks.
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In this paper, we have outlined the technical architecture and implementa-
tion of the N2Query system using semantic web tools. Further, we defined the
different workflows for the ontology management and query processing.

N2Query is an integral part of the next release of N2Sky which delivers a
comprehensive redesign of N2Sky’s architecture by micro-services, docker tech-
nique and dynamic Cloud deployment.
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Abstract. Independent Component Analyzers Mixture Models (ICAMM) are
versatile and general models for a large variety of probability density functions.
In this paper, we assume ICAMM to derive a closed-form solution to the
optimal Least Mean Squared Error predictor, which we have named E-ICAMM.
The new predictor is compared with four classical alternatives (Kriging, Wiener,
Matrix Completion, and Splines) which are representative of the large amount of
existing approaches. The prediction performance of the considered methods was
estimated using four performance indicators on simulated and real data. The
experiment on real data consisted in the recovering of missing seismic traces in a
real seismology survey. E-ICAMM outperformed the other methods in all cases,
displaying the potential of the derived predictor.

Keywords: Prediction � ICA � Non-linear � Non-Gaussian � Interpolation

1 Introduction

Prediction is one of the fundamental problems in statistical signal processing [1], in
which some unknown values in a given domain (e.g., time, space, time-space) are to be
estimated from some known values of the same nature and domain. It is part of other
fields like spectral analysis, coding, time series analysis, interpolation and smoothing,
and appears in many areas of application. Many methods exist to implement linear and
nonlinear predictors, broadly classified into statistical and deterministic methods. Sta-
tistical approaches rely on searching for solutions to the implicit estimation problem,
while deterministic methods define some objective function to be minimized under some
constraint imposed by the training sample set. In spite of the huge amount of previous
work in statistical prediction methods, new developments are still possible if new sta-
tistical models appear, so that new solutions can be found. In this paper, it is assumed
that the joint probability density of the data can be modeled with an Independent
Component Analyzers Mixture Model (ICAMM) [2–4]. ICAMM is a versatile non-
Gaussian mixture model which encompasses most of the usual statistical models,
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including Gaussian Mixture Models, as particular cases. This generality implies that
ICAMM can be used in a large variety of scenarios, for instance in the change detec-
tion field [5]. Therefore, we have derived a closed-form non-linear Least Mean Squared
Error (LMSE) predictor for cases in which ICAMM is an appropriate model for the
observed data. The corresponding predictor will be called E-ICAMM. The new method
has been compared with already existing predictors, both by simulation and by real data
analysis. We have selected four methods, which may be considered representative of
many of them: Kriging, Wiener structures, Matrix Completion, and Splines. Kriging [6]
is a linear predictor widely-used in geostatistics and other applications where the
topographical distribution of the signal is important. It is also a 2D implementation of a
linear LMSE predictor, and thus, an appropriate reference with which to compare
E-ICAMM. The Wiener predictor [7] is composed by a linear predictor followed by a
nonlinear scalar correction term. The Wiener predictor was chosen as representative of
methods that try to keep the simplicity of the linear solution while being closer to the
non-linear LMSE solution. Matrix Completion [8] is a non-linear method that estimates
missing data in a matrix from a few revealed entries. This method was chosen because it
does not rely on statistical concepts but rather in structural assumptions about the data.
Finally, Splines [9] are representative of deterministic methods which approximate
complex function stepwise by local polynomials.

2 Independent Component Analysis Mixture Model

The proposed method is based on Independent Component Analysis (ICA) [10]. ICA
assumes that the observation at time instant n; x(n), can be modeled as an instantaneous
linear transformation of a set of independent sources sðnÞ; xðnÞ ¼ A � sðnÞ. Here, A is
the mixing matrix of size ½R�M�, where R is the number of variables of each
observation; M is the number of sources; and n is the current time instant. We will
assume for simplicity that there are as many observed variables as sources R ¼ Mð Þ
and that A can be inverted to find W, the demixing matrix. Due to the independence
consideration of ICA, the multivariate probability density function of the observations
can be obtained as a product of one-dimensional marginal densities,

pxðxðnÞÞ ¼ j det Wj � QM
m¼1

psmðsmðnÞÞ. There is a wide range of multivariate non-

Gaussian probability densities from real applications that can be modeled by adapting
the marginal distributions and the mixing matrix, such as electroencephalographic
(EEG) data (e.g., [10, 11]). The standard ICA model was recently extended to an ICA
Mixture Model [2, 3]. In ICAMM, it is assumed that the data are separated in K
mutually-exclusive classes and each class is modeled using a different ICA. Therefore,
the data are modeled as xðnÞ ¼ Ak � skðnÞþ bk, where k is the class at time n, denoted
by Ck nð Þ, k 2 ½1;K�; Ak and skðnÞ are respectively the mixing matrix and the sources of
the ICA model of class k; and bk are the corresponding bias vectors. Essentially, bk
determines the location of the k-th cluster and Ak , sk determine its shape. Again, we
will assume that the mixing matrices can be inverted to find the demixing matrices,Wk.
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Given the mixture model and the independence of the sources, the probability density
of the observations can be expressed as

pðxðnÞÞ ¼
XK
k¼1

PðCkÞpðxjCkÞ ¼
XK
k¼1

PðCkÞj detðWkÞj
YM
m¼1

pðsk;mðnÞÞ ð1Þ

where PðCkÞ is the prior probability of class k; wT
K;m is the m-th row of the demixing

matrix of class k, Wk ¼ A�1
k ; and sk;mðnÞ ¼ wT

k;mðxðnÞ � bkÞ is the estimated value of
the m-th source of class k at time n. Mixture models emanate in a natural manner in the
field of classification/segmentation methods. Since the data are categorized into several
mutually exclusive classes, the class can be estimated by maximizing the posterior
probability of the observation, PðCkðnÞ j xðnÞÞ.

3 Non-linear Least Mean Squares Predictor Based
on ICAMM (E-ICAMM)

The Least Mean Squared Error (LMSE) predictor is the conditional mean of unknown
data with respect to known data, ẑLMSE ¼ E zjy½ � ¼ R

z � p zjyð Þ � dz. In this work, we
propose a novel non-linear LMSE method that implements the conditional expectation
by assuming an Independent Component Analysis Mixture Model.

Let us assume that we want to recover Munk unknown values from observation
vector xðnÞ using its remaining Mk ¼ M �Munk known values and a known ICA
Mixture Model. Without any loss of generality, one can split known and unknown
values into vectors yðnÞ and zðnÞ, respectively, so that xðnÞ ¼ ½yðnÞT ; zðnÞT �T . This
split can be different for each data point but we will not denote this explicitly. For
brevity, we drop the ðnÞ notation in the following. Given the mixture model, the
conditional expectation E zjy½ � can be obtained as

E zjy½ � ¼
XK
k¼1

E zjy;Ck½ � P Ckjyð Þ ð2Þ

where E zjy;Ck½ � is the conditional expectation for class k, and it could be interpreted as
the solution to the prediction problem if the current observation belonged to that class.
Assuming that the observation belongs to class k, the sources of that class can be
estimated using the ICAMM parameters:

sk ¼ Wkðx� bkÞ ¼ Whyi;k Whzi;k
� � y

z

� �
�Wkbk ¼ Whyi;kyþWhzi;kz�Wkbk ð3Þ

where Whyi;k and Whzi;k denote the columns of the demixing matrix Wk that multiply
y and z, respectively. Whyi;k is of size ½M �Mk� and Whzi;k is size ½M �Munk�. By
taking the conditional expectation with respect to ðy;CkÞ on (3) and moving the terms
around, we arrive to
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Whzi;k E½zjy;Ck� ¼ E½skjy;Ck� þWkbk �Whyi;ky ð4Þ

Equation (4) is an overdetermined system of equations with M equations and Munk

unknowns (the values E zjy;Ck½ �). There are a number of ways to solve this system,
such as using the pseudo-inverse of Whzi;k:

E½zjy;Ck� ¼ Whzi;k þ E½skjy;Ck� þWkbk �Whyi;ky
� � ð5Þ

where superindex + denotes the pseudo-inverse. Solving the system requires knowl-
edge of conditional expectation of the sources, E skjy;Ck½ �, which is generally
unavailable. In order to obtain a closed-form solution, we assume that
E skjy;Ck½ � �E skjCk½ �, where E skjCk½ � is estimated for each class directly from the
original training set used to estimate the ICAMM parameters. If the sources are cen-
tered, E skjCk½ � becomes a vector of zeros.

The E-ICAMM algorithm is proposed in Table 1. The conditional probability
PðCkjyÞ is computed using Bayes’ rule from pðyjCkÞ; k ¼ 1. . .K, which may be learned
using any statistical modeling from training data (a dimension-reduced ICAMM would
be an option). We have named the above method E-ICAMM (Expectation using
ICAMM). Table 1 also includes a procedure to compute the covariance of the prediction

error e ¼ ðE½zjy� � z�Þ, E½eeT jy� ¼ PK
k¼1

E½eeT jy;Ck�PðCkjyÞ, which can be used to

estimate prediction error.

In practice, the ICAMM parameters are not known beforehand, and instead they
have to be estimated from training data. The estimation algorithm depends on the kind
of data available for training. For supervised data, the parameters of each chain can be
calculated using any of the traditional ICAMM estimation algorithms (e.g., [2, 3]).

Table 1. E-ICAMM algorithm, including the estimation of the prediction error.

Initialize for k ¼ 1. . .K
E½skjy;Ck� ¼ E½sk�, Rsk jy;Ck

¼ IM (an identity matrix of size M �M½ �)
Calculate the E-ICAMM solution

E½zjy;Ck� ¼ Whzi;k þ E½skjy;Ck� þWkbk �Whyi;ky
� �

; k ¼ 1. . .K

E½zjy� ¼
XK
k¼1

E½zjy;Ck�PðCkjyÞ

Estimate prediction error

E½z zT jy;Ck� ¼ E½zjy;Ck�E½zjy;Ck�T þWhzi;k
þ
Rsk jy;Ck

Whzi;k þ
� �T

E½e eT jy;Ck� ¼ E½z zT jy;Ck� � E½zjy;Ck�E½zjy�T

� E½zjy�E½zjy;Ck�T þE½zjy�E½zjy�T

E½e eT jy� ¼
XK
k¼1

E½e eT jy;Ck�PðCkjyÞ
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4 Experiments on Simulated Data

The classification performance of E-ICAMM was measured by Monte Carlo experi-
ments on several sets of simulated data. E-ICAMM was compared with the following
methods: Ordinary Kriging [6]; a Wiener structure that implemented a nonlinear stage
after the Ordinary Kriging prediction [12]; matrix completion via the smoothed rank
function method (SRF) [13]; and Splines [9]. The reasons for selecting each of these
methods were explained in the Introduction. During each iteration of the simulations,
the data were drawn from a randomly-initialized ICA Mixture Model. We considered 8
different sets of parameters for the ICAMM, with different number of variables
M; Mk; Munkð Þ, number of classes Kð Þ, and type of independent sources: uniform (U),
Laplacian (L), K distributed with shape parameter m ¼ 1 ðK1Þ, and K distributed with
m ¼ 10 (K10). Details on each set are shown in Table 2. Regardless of type, all sources
were normalized to zero mean and unit variance. During each iteration of the Monte
Carlo experiments, N ¼ 1000 data were generated from each set of ICAMM param-
eters. Then, the first half of the data was used to train the considered methods (e.g.,
obtaining an estimated ICAMM for E-ICAMM) and the performance of the proposed
methods was tested on the second half of the data. Prediction performance was

Table 2. Details of all sets of parametes for ICAMM used in the simulations.

Set # 1 2 3 4 5 6 7 8

K 2 2 2 2 2 3 3 3
M 3 4 4 4 3 4 3 4
Mk 2 2 2 2 2 2 2 2
Munk 1 2 2 2 1 2 1 2
Sources U, L U, L L, K1 K1, K10 U, L,

K1
U, L,
K1

U, L,
K1, K10

U, L,
K1, K10
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Fig. 1. Performance indicators for the 8 datasets.
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estimated by four error indicators: the Normalized Mean Square Error (NMSE); the
Kullback-Leibler Divergence (KLD); the correlation between the true data and the
estimated data (CORR); and the Structural Similarity Index (SSIM, [14]). This process
was repeated 500 times per set of ICAMM parameters, for a grand total of 6,500
iterations, and results were averaged for each set. The results for the eight sets of
ICAMM parameters are shown in Fig. 1. E-ICAMM yielded the best performance in
all cases.

5 Application on Seismic Signals for Underground Surveying

The basic technique of seismic exploration [15] consists of generating seismic waves
and measuring the response in a series of geophones, usually disposed along a straight
line directed toward the source. Typically, the recorded data are subject to signal
processing techniques to enhance their quality and to improve their interpretation by
the user (see [16] and references therein). There are multiple applications for seismic
exploration, the most important of which is underground exploration, for example, to
locate mineral deposits [17]. In this work, the proposed prediction methods were tested
on a public dataset from BP Amoco [18] (available at http://ahay.org/data/bppublic/
PUBLIC_2D_DATASETS/2.5d/). Out of the whole data set, a single 2-D slice of data
(also known as seismogram) was chosen for this experiment. The selected seismogram
comprises 240 traces, each one 352 samples long. The vertical sampling period
is 9.9 ms and the horizontal sampling period is 25 m. For the experiment, it was
assumed that several seismic traces were completely or partially corrupted and the
proposed prediction methods were used to interpolate the missing information in these
traces. This kind of scenario is relatively common in seismic studies, since they involve
large amounts of devices over a large area of terrain, in hostile environments or under
unfavorable meteorological conditions.

The selected seismogram was treated as an image. In order to apply E-ICAMM, the
image was split into squares or “patches” of fixed size, ½L� L�. Then, each patch is
transformed into a column vector with M ¼ L2 components by vertically concatenating
the columns of the patch. These vectors are considered as the observations xðnÞ, which
are then partitioned into in known and unknown data. This patching process was used
for E-ICAMM, SRF and Wiener, but it is unnecessary for Kriging and Splines, which
are already designed to work with two-dimensional data. In this work, we considered
patches of size ½8� 8� samples, which were converted to column vectors of M ¼ 64
variables. This patch size is typical in image processing applications, owing in part to
the importance of JPEG compression and other methods related to the discrete cosine
transform (DCT, [19]), and patch size is usually determined using rather empirical
methods. Given the size of the seismogram, this resulted in 1320 patches of size
½8� 8�.

The experiment was set up as follows. First, the seismogram was split in ½8� 8�
patches as explained above and these patches were used to train the parameters of the
proposed methods. For E-ICAMM, a one-class ICAMM was trained, thus M ¼ L2 ¼
64 and K ¼ 1. After training, a number of traces were removed completely (marked as
missing) from the seismogram and the proposed methods were used to reconstruct
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these missing traces. To determine performance across the whole seismogram, missing
traces were positioned so that every patch was missing j traces, that is, missing jL
values. For instance, if 6 traces were removed from a ½8� 8� patch, this means that 48
out of 64 values were missing. In order to test the behavior of the proposed methods
with respect to the number of missing data, the number of missing traces per patch
waschanged from 1 to 6.

Figure 2 shows the performance of the proposed methods. The results obtained by
SRF for this application were considerably lower than those yielded by the other
methods, and thus SRF was omitted from the figure for clarity. Results varied
depending on the chosen performance indicator; while CORR and KLD show Kriging
as the worst predictor, its values of NMSE and SSIM were sometimes close to those of
E-ICAMM. In general, Wiener structures achieve a middle ground between Kriging
and the proposed non-linear predictor. However, the value of SSIM obtained with the
Wiener predictor is much lower than that of the other methods, which indicates that the
Wiener method did not properly reconstruct the local structures in the data. Finally,
E-ICAMM yielded the best results for all considered error indicators.

6 Conclusions

This paper has presented a new closed-form non-linear LMSE: E-ICAMM. The pre-
dictor is derived assuming a non-Gaussian mixture model (ICAMM) for the joint
probability density of the observations. The versatility and generality of ICAMM
allows a wide scope of applications were the new predictor, which is optimal for the
assumed conditions, can outperform other methods. This was verified by comparison
with four other well-known prediction approaches which cover a wide range of
alternative predictors. The proposed method outperformed the other considered
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methods in a wide array of simulated conditions, as well as for the prediction of
missing reflection seismology data from a real application. There are several lines of
research for future development of the method. An important issue that can be
developed is the incorporation of prior knowledge in ICAMM as it has been done in
semi-blind source separation for single ICA models [20].
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Abstract. This paper presents a novel method for modeling the joint behavior
of a number of synchronized Independent Component Analysis Mixture Models
(ICAMM), which we have named Multi-chain ICAMM (MCICAMM). This
allows flexible estimation of complex densities of data, subspace classification,
blind source separation, accurate local dynamic learning, and global dynamic
interaction. Furthermore, the proposed method can also be used for classification
following the maximum a posteriori, forward-backward, or Viterbi procedures.
MCICAMM outperformed competitive methods such as ICAMM, SICAMM,
and Dynamic Bayesian Networks for the classification of simulated data and the
automatic staging of electroencephalographic (EEG) data from epileptic patients
performing a neuropsychological test for short-term memory. Therefore, the
potential of the method to suit different kind of data densities and to deal with
the changing non-stationarity and non-linearity of brain dynamics was demon-
strated. MCICAMM parameters provide a structured result that might be
interpreted in several applications.

Keywords: Dynamic modeling � ICA � HMM � Non-Gaussian �
Non-parametric estimation � EEG

1 Introduction

Statistical modeling methods pursue an approximated mathematical description of the
underlying data-generating process from a certain phenomenon under analysis. In order
to simplify this process, most methods assume that the data are stationary. This
assumption, however, is not valid in many real-world applications. This difficulty is
solved by introducing non-stationarity in the model using e.g. Hidden Markov Models
(HMM, [1]), which are usually based on simple linear models. In cases where linear
models are not enough to reproduce the dynamics of the data, non-stationarity is treated
by considering non-linearities in the probability modeling, e.g., by variational learning
of non-linear state-space models [2] or Extended Kalman Filters augmented with local
searches [3]. Statistical dynamic models have been used in EEG (electroencephalo-
graphic) signal analysis, e.g., brain oscillation analysis [4] and decoding upper limb
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movement [5]. In general, these analyses assume methods based on Gaussian Mixture
Models (GMM), which provide adequate statistical modeling capabilities but it is
difficult to associate the model with real physical phenomena.

We propose in this paper a dynamic modeling method based on mixtures of
independent component analyzers (ICA). Briefly, ICA is a blind source separation
technique that models the observations as a linear mixture of a set of statistically-
independent non-Gaussian sources [6]. ICA has been used in many applications on real
data (e.g., [7, 8]). The parameters of ICA have been shown to be related with physical
processes such as brain sources or similarities between ICA and image processing in
the visual cortex [7]. ICA was recently extended to ICA Mixture Models (ICAMM,
[9]), where sources from the same class are still independent, but dependencies
(non-linearities) between sources from different classes is considered. ICAMM has
been successfully applied to different fields such as signal reconstruction [10] and
change detection [11].

The method proposed here defines a general framework to characterize the joint
dynamic behavior of a number of synchronized ICAMM models, which we have
named multi-chain ICAMM (MCICAMM). MCICAMM jointly considers the degrees
of freedom provided by multiple ICAMM to model complex masses of densities,
subspace classification, and blind source separation, besides accurate local dynamic
learning, and global dynamic interaction. Therefore, this method should be suitable to
deal with a broad range of real problems where higher flexible density estimation,
accurate detection and characterization of changes in the data dynamics are required.
Besides, mixing matrices, bias vectors, and transition matrices estimated by MCI-
CAMM can be also used for further analyses. In this work, we applied MCICAMM to
EEG signal analysis.

2 Independent Component Analysis Mixture Models

Independent Component Analysis [6] assumes that the observation at time n, xðnÞ, can
be modeled as an instantaneous linear transformation of a set of independent sources,
sðnÞ; xðnÞ ¼ A � sðnÞ. This model was extended to an ICA Mixture Model in [9], where
it is assumed that the data are separated in K mutually-exclusive classes and each class
is modeled using a different ICA. Therefore, xkðnÞ ¼ Ak � skðnÞþ bk , k ¼ 1; . . .;K,
where k is the class at time n, denoted by CkðnÞ; Ak and skðnÞ are respectively the
mixing matrix and the sources of the ICA of class k; and bk are the corresponding bias
vectors. Essentially, bk determines the location of the k-th cluster and Ak , sk determine
its shape. For simplicity, we will assume that the mixing matrices can be inverted to
find the demixing matrices, Wk.

ICA and ICAMM are usually estimated under the assumption that the data are time
independent. This assumption is relaxed in Sequential ICA Mixture Models
(SICAMM) [12, 13]. SICAMM is a non-linear hidden dynamic model where each state
is associated with a class of an ICA Mixture Model. In essence, the class change is
modeled as a first-order Markov process (or Markov chain). Thus, the class at the
current time instant is independent from the class at past time instants, given the class at
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time n� 1. The observations during each hidden state (class) are modeled by an ICA,
jointly considering ICAMM and Hidden Markov Models.

3 Multi-chain ICAMM (MCICAMM)

We propose a general framework to characterize the joint behavior of L synchronized
ICA Mixture Models (or “chains”), which we have called Multi-chain ICAMM
(MCICAMM). MCICAMM jointly considers the degrees of freedom provided by
ICAMM to model complex masses of densities, subspace classification, and hidden
source separation, providing accurate local dynamic learning and global dynamic
interaction. The temporal dependences between the L groups of data, each modeled by
a different mixture of ICA, are characterized by conditional probabilities that model the
temporal influences between classes. As a matter of fact, in order to model asym-
metrical and complex dependences, the class of each chain at time n is dependent on
the classes of all chains at time n� 1.

The degrees of freedom of MCICAMM allow it to accurately model complex local
non-Gaussian probability densities without losing global modeling capabilities, while
also considering time dependences. Furthermore, it is known that ICA can produce not
only a valid statistical model of the data, but also sources with physical or physiological
meaning, such as the extraction of physiologically significant sources for EEG data
(e.g., [7]). This capability is inherited by the proposed method. Thus, unlike models
that are purely statistical in nature, MCICAMM can obtain a representation of the data
that reflects both their probability density function and their underlying generating
models that can be related with the analyzed physical phenomenon.

Before tackling the model itself, we will define several notations which will ease
the theoretical development of MCICAMM. Let us assume that there are L data chains,
and that the parameters for the l-th chain will be denoted by an ðlÞ superscript. The
observation from the l-th chain at time n is denoted by xðlÞðnÞ, and it is a vector of size
MðlÞ. Each chain is assumed to have been modeled by an ICAMM with KðlÞ classes
whose parameters are: WðlÞ

kl , s
ðlÞ
kl ðnÞ, b

ðlÞ
kl , kl ¼ 1; . . .;KðlÞ. The set of observations from

all the chains at a given time is xðnÞ ¼ ½xð1ÞðnÞT ; xð2ÞðnÞT ; . . .; xðLÞðnÞT �T , and the
history of all these sets of observations up to time n is XðnÞ ¼ ½xð0Þ; xð1Þ; . . .; xðnÞ�.
Finally, we define the class vector k ¼ ½k1; k2; . . .; kL�T as a particular combination of
classes from each one of the L chains, with 1� kl �KðlÞ. The classes from all models at
time n are denoted by ckðnÞ ¼ ½Ck1ðnÞ; . . .;CkLðnÞ�T .

In MCICAMM, the Markov assumption is extended from each individual chain to
the joint sets by defining pðXðnÞjckðnÞÞ ¼ pðxðnÞjckðnÞÞ � pðXðn� 1ÞjckðnÞÞ. Thus,
pðXðnÞjckðnÞÞ is a function of the current set of observations for all chains and the
probability density of the previous set of observations, Xðn� 1Þ. In order to simplify
the model, the conditional independence of the data is extended from single chains to
the whole MCICAMM chain structure, therefore:
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pðxðnÞjckðnÞÞ ¼
YL

l¼1

j detðWðlÞ
kl Þj �

YMðlÞ

m¼1

ps wðlÞ
k;m

� �T
� xðlÞðnÞ � bðlÞkl
� �� �

ð1Þ

MCICAMM can perform classification by MAP (maximum a posteriori) estima-
tion, i.e., maximizing PðckðnÞjXðnÞÞ. This probability can be estimated considering the
multiple chains in MCICAMM as follows:

PðckðnÞjXðnÞÞ ¼ pðxðnÞjckðnÞÞ � pðckðnÞjXðn� 1ÞÞ
PKð1Þ

k01¼1

PKð2Þ

k02¼1
� � � P

KðLÞ

k0L¼1
pðxðnÞjck0 ðnÞÞ � pðck0 ðnÞjXðn� 1ÞÞ

ð2Þ

where pðxðnÞjckðnÞÞ is obtained using (1) and PðckðnÞjXðn� 1ÞÞ can be estimated
from the posterior probabilities of the previous time instant:

PðckðnÞjXðn� 1ÞÞ ¼
XKð1Þ

k01¼1

XKð2Þ

k02¼1

� � �
XKðLÞ

k0L¼1

pkk0 � Pðck0 ðn� 1ÞjXðn� 1ÞÞ ð3Þ

where pkk0 is the transition probability from combinations of classes k0 ¼
½k01; k02; . . .; k0L�T to combination k ¼ ½k1; k2; . . .; kL�T . The initial values for (3) can be
estimated as the prior probabilities of each combination of classes,

Pðckð0ÞjXð�1ÞÞ ¼ Pðckð0ÞÞ ¼
QL

l¼1
PðCklð0ÞÞ. Other classification procedures that

exploit the temporal dependences in the data are also possible, such as the
forward-backward procedure and Viterbi decoding ([14, 15], respectively).

4 Simulations

The performance of MCICAMM was compared with that of the following methods:
ICAMM; SICAMM; a Bayesian Network using GMM, named BN1; a Dynamic
Bayesian Network that implemented a continuous HMM; and a Dynamic Bayesian
Network that implemented a continuous Coupled HMM (CHMM). The Dynamic
Bayesian Networks use GMM and were named DBN1 and DBN2, respectively.
Classification uses MAP criterion (MCICAMM+MAP), Baum-Welch (MCICAMM+
BW), and Viterbi (MCICAMM+VI) procedures.

The data were randomly drawn from a MCICAMMmodel: two chains (L ¼ 2), two
classes (Kð1Þ ¼ Kð2Þ ¼ 2), and observations of dimension two in both chains
(Mð1Þ ¼ Mð2Þ ¼ 2). These values were selected to obtain a model that was simple, yet
informative enough to show the behavior of the proposed method. The mixing matrix
and centroid for each class were randomly initialized. The sources followed a Laplacian
distribution with zero mean and unit standard deviation. Transition probabilities of both
chains were set using variables, a and b:
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If the other chain was in class 1 at time n� 1 :

pðlÞ11ðnÞ ¼ pðlÞ22ðnÞ ¼ a; pðlÞ12ðnÞ ¼ pðlÞ21ðnÞ ¼ 1� a

If the other chain was in class 2 at time n� 1 :

pðlÞ11ðnÞ ¼ pðlÞ22ðnÞ ¼ a� b; pðlÞ12ðnÞ ¼ pðlÞ21ðnÞ ¼ 1� ða� bÞ

ð4Þ

where 0� a� 1 and a� 1� b� a, l ¼ 1; 2. a is the intra-chain dependence parameter
(sets the time dependence of each chain with respect to past values of the same chain).
Conversely, b is the inter-chain dependence parameter (sets the time dependence of
each chain with respect to past values of the other chain). Transition probabilities pkk0
were calculated from these values.

For each iteration of the Monte Carlo experiment, a random MCICAMM model
was set as indicated above and N ¼ 1024 observations, xðnÞ, n ¼ 1; . . .;N, along with
their respective classes, ckðnÞ, were randomly drawn from the model. Half the data was
used for training and the other half was used for classification testing.

MCICAMM and DBN2 were configured as the multiple-chain model used for data
generation (L ¼ 2; Kð1Þ ¼ Kð2Þ ¼ 2; Mð1Þ ¼ Mð2Þ ¼ 2). For the other methods that use
only one chain (ICAMM, SICAMM, BN1, DBN1), a single model was used for the
data of both chains, xðnÞ. These models were set to K 0 ¼ Kð1Þ � Kð2Þ classes. Thus, ecah
class of single chain methods was considered equivalent to one combination of classes
of MCICAMM and DBN2. For instance, class 1 of SICAMM was considered as
equivalent to the combination of classes k1 ¼ ½1; 1�T of MCICAMM, and different
from any other combination of classes. Parameter estimation for the ICA-based
methods was performed using supervised training; the ICAMM parameters were
estimated using the MIXCA procedure [16] and transition probabilities were estimated
by counting. The number of Gaussian components of GMM for each node was selected
from 3 to 20 by minimizing the Akaike information criterion [17]. Similar number of
components has been used in several applications on EEG data (e.g., [18]).

Two separate experiments were performed to consider the variations of intra-chain
and inter-chain dependence. For the first experiment, b ¼ 0:1 and a was changed from
0.6 to 0.99 (quasi-complete dependence) in steps of 0.025. For the second experiment,
a ¼ 0:8 and b was changed from 0.3 to 0.8 in steps of 0.06. The experiments were
repeated 300 times for each a, b value performing 7500 iterations.

Figure 1 shows the average classification error rate with respect to variations of a
(Fig. 1.a) and b (Fig. 1.b). Results were consistent for both experiments. The
non-dynamic methods (ICAMM and BN1) maintained their performance when
sequential dependence increased, while most of the dynamic methods (DBN1,
SICAMM and MCICAMM) increased their performance as a and b increased. This
improvement increased consistently with both a and b. The low performance of DBN2
was due to problems with estimating the model from the training data. SICAMM and
MCICAMM performed better than DBN1, and MCICAMM achieved the best classi-
fication performance due to exploitation of time cross-dependences between chains.
The best result was always yielded by MCICAMM+BW, which consistently obtained a
classification error rate 0.1 lower than that DBN1.
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5 Experiments on Real Data

EEG is the record of electrical brain activity at the scalp level in real time. It has been
used in many applications for medical diagnosis and recently in novel fields such as
biometric identification/authentication [19]. MCICAMM was tested on a set of EEG
signals from four epileptic patients performing a learning and memory neuropsycho-
logical test (Barcelona Neuropsychological Test - TB, [20]). In each trial, the partici-
pant is shown an abstract line figure during 10 s. There is a 1-second retention interval
and afterward the participant is told to select the shown figure out of a group of four
similar figures. The test consists of ten trials and scoring is given depending on the
number of correct responses. TB was split in two classes, [stimulus+retention] vs.
[response], and the methods were used to classify brain activity.

MCICAMM and DBN2 used two chains, one for each brain hemisphere, while the
rest of the methods used all 19 channels at once. Both chains considered the same
classes: in this case, chain structure is used to isolate the contributions of each brain
hemisphere. Such division could be used, for instance, to determine hemispheric
dominance during certain tasks and measure spatial neglect [21]. In terms of the
MCICAMM parameters, we have: L ¼ 2 models (one for each brain hemisphere);
K 1ð Þ ¼ K 2ð Þ ¼ 2 classes ([stimulus+retention] vs. [response]); and M 1ð Þ ¼ M 2ð Þ ¼ 9
EEG channels (channels on the left side of the head vs. channels on the right side of the
head).

The parameters of each method were estimated using supervised training on the
first half of the data and classification performance was tested on the second half of the
data. Given the vastly-different prior probabilities of each class, classification perfor-
mance was measured using the balanced error rate (BER) and Cohen’s kappa coeffi-
cient (j, [22]). BER is in interval [0, 1], and a low value is better than a high value.
Cohen’s kappa is in interval [−1, 1] and a high value is better than a low value.
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Fig. 1. Average classification error rate of the considered methods on data drawn from a
MCICAMM with respect to: (a) intra-chain dependence, a; (b) inter-chain dependence, b.
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Table 1 shows the average BER and kappa across the four subjects. In concordance
with the results in Sect. 4, ICA-based methods obtained a better overall performance
than Bayesian networks, and dynamic methods performed better than non-dynamic
methods. The latter is particularly marked in the case of MCICAMM, which obtained
noticeably better results than the other methods. The best average result was yielded by
MCICAMM with Viterbi and Baum-Welch procedures. The high classification errors
overall, however, show that this classification is a difficult problem. Figure 2 shows the
results of each of the considered methods for one of the subjects (results for other
subjects were similar). The results of the non-dynamic methods (BN1, ICAMM) tended
to oscillate very fast or to remain stuck at one particular class. DBN1 achieved good
and bad results in several subjects, with an overall better result than both non-dynamic
methods. On the other hand, SICAMM and MCICAMM consistently yielded good
results. Finally, MCICAMM+BW and +VI showed very few rapid changes, yielding
very smooth classifications.

Table 1. Average results of the automatic staging of EEG data for the four subjects.

Method ICAMM SICAMM MCICAMM BN1 DBN1 DBN2
+MAP +BW +VI

BER .374 .266 .220 .172 .189 .434 .373 .324
Kappa .235 .417 .489 .591 .574 .109 .218 .323

0 5 10 15 20 25 30 35 40 45

ICAMM

SICAMM

MCICAMM+MAP

MCICAMM+BW

MCICAMM+VI

BN1

DBN1

DBN2

True data

Time [s]

Fig. 2. Results for the automatic staging of EEG data for one of the subjects. In all cases, “high”
represents the [response] class and “low” represents [stimulus+retention] class.
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6 Conclusions

We have introduced a novel method to characterize the joint behavior of synchronized
ICA Mixture Models (ICAMM), which we have called Multi-chain ICAMM
(MCICAMM). In MCICAMM, subspace classification, learning of interaction
dynamics, and hidden source separation are jointly considered. The capabilities of
MCICAMM to model local and global dependencies were tested by measuring its
classification performance on a large number of simulations and automatic staging of
EEG signals from epileptic patients performing a neuropsychological memory test.
MCICAMM outperformed the other competitive methods: ICAMM, SICAMM,
Bayesian (BN) and Dynamic Bayesian Networks (DBN) that implemented a contin-
uous CHMM. Furthermore, this improvement increased with intra- and inter-chain
dependence. The configuration of MCICAMM allowed brain hemisphere analysis and
accurate detection of small dynamic changes in each hemisphere. The improvement
obtained by MCICAMM with respect to the best-performing Dynamic Bayesian
Network was 0.15 for the balanced error rate and 0.27 for Cohen’s kappa. Furthermore,
the MCICAMM parameters provided a structured result that might be interpreted on its
own in future works.
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Abstract. The generation of photo-realistic images is a major topic in
computer graphics. By using the principles of physical light propagation,
images that are indistinguishable from real photographs can be generated.
However, this computation is a very time-consuming task. When simulat-
ing the real behavior of light, individual images can take hours to be of suf-
ficient quality. This paper proposes a bio-inspired architecture with spik-
ing neurons for acceleration of global illumination rendering. This archi-
tecture with functional parts of sparse encoding, learning and decoding
consists of a robust convergence measure on blocks. Feature, concatena-
tion and prediction pooling coupled with three pooling operators: convo-
lution, average and standard deviation are used in order to separate noise
from signal. The pooling spike neural network (PSNN) represents a non-
linear mapping from stochastic noise features of rendering images to their
quality visual scores. The system dynamic, that computes a learning para-
meter for each image based on its level of noise, is a consistent temporal
framework where the precise timing of spikes is employed for information
processing. The experiments are conducted on a global illumination set
which contains diverse image distortions and large number of images with
different noise levels. The result of this study is a system composed from
only two spike pattern association neurons (SPANs) suitably adopted to
the quality assessment task that accurately predict the quality of images
with a high agreement with respect to human psycho-visual scores. The
proposed spike neural network has also been compared with support vec-
tor machine (SVM). The obtained results show that the proposed method
gives promising efficiency.

Keywords: Dynamic learning ·Global illumination ·Pooling strategies ·
Sparse coding · Pooling spike neural network · Support vector machine

1 Introduction

Generating photo-realistic pictures is a very ambitious goal and it has been one
of the major driving forces in computer graphics. Visual realism has always been
c© Springer International Publishing AG 2017
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a strong motivation for research in the field and it is a selling point for many
graphics-related commercially available product [1]. Formulating the global illu-
mination problem as the rendering equation allows for a unified approach when
computing images. One of the most influential consequences of the rendering
equation was the development of Monte Carlo ray tracing [2]. Thus, it became
possible to compute photo-realistic images assuming that the algorithm ran long
enough in order to reduce noise to an acceptable level. Different strategies have
been proposed to quickly compute the global illumination of a scene. Parker et al.
described a programmable ray tracing engine designed for the GPU [3]. Another
method for obtaining real-time frame rates is to sacrifice accuracy for speed. One
such solution is to approximate indirect lighting reflected from surfaces as a set
of virtual point lights [4].

Despite the different strategies used for speeding up computation, the
processing costs of these methods remain proportional to the number of rays,
which effectively limits the inter reflection effects they can simulate. Various
perceptual models have been proposed to detect stochastic noise in global illu-
mination algorithms. They are based on perceptual quality metrics [5] and visual
attention [6]. However these models which require long computation time have
been simplified but their simplifications have not been validated. They require
some features and modifications in order to obtain accurate response.

In this paper, we investigate the use of machine learning in order to detect
automatically the presence of noise in synthetic images. Building quality metrics
based on machine learning for global illuminations have additional challenges
over metrics for natural images. The metrics are often full-reference, namely
they rely on a non-distorted copy of the image for evaluating the distorted one
[7]. However in rendering, such a non-distorted image is not available and a blind
quality assessment approach is desirable. In contrast non-reference image quality
metrics are inferior in performance to full-reference metrics [8]. In a third type
of methods, the reference image is only partially available, in the form of a set of
extracted features made available as side information to help evaluate the quality
of the distorted image. This is referred to as reduced-reference quality assessment
[9]. These methods are limited to small sizes of images, due to the required
number of kernels that grows with the size of the training set. In addition, they
require large amounts of carefully chosen labeled images to tune the parameters
of the perception model in order to give a good precision on the testing scenes.
In the objective to solve these drawbacks, the authors realized a spike neural
network (SNN) for detecting stochastic noise [10]. However this model, which is
based on input vectors with 182 spikes, was unable to learn a complete global
illumination scene with different levels of noisy images. In addition, the adopted
receptive fields coding technique was not based on bio-inspired approaches in
order to meet real time processing.

The main contribution of this paper is to design a simple biological archi-
tecture of pooling spike neural network (PSNN) with a small input vector of 26
spikes and two learning SPANs. The system is integrated in a consistent scheme
by processing precise-timing spikes where sparse coding, learning and decod-
ing are involved. Through learning, the neurons adapt their synaptic weights
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and detect surrounding environment by using a dynamic learning parameter for
each sub-image on the learning scene based on its level of noise. We experiment
the use of different strategies for feature, concatenation and prediction pooling.
A comparative analysis of results between the PSNN and the SVM models is
realized on different rendering images. We show the advantage of the proposed
PSNN in terms of small number of parameters and accurate testing. The paper
is structured as follows: Sect. 2 describes how to build the global illumination
scenes set and the pooling layers structure, Sect. 3 explains the architecture of
the PSNN perception model, whereas Sect. 4 shows the experimental results.
Finally Sect. 5 states some conclusions and future research.

2 Global Illumination Set and Pooling Layers Structure

The scenes Bar, Class and Cube consist of diffuse surfaces with complex geom-
etry (Fig. 1). In the Deskroom1, DeskRoom2, and Sponza scenes, objects with
different shapes and material properties are placed together presenting rich and
complicated shading variations under different lighting conditions (Fig. 2). These
recent scenes start to be used for visualization with a good rendering and they
are challenging for the new technique we propose. The images are cut into sixteen
non-overlapping blocks of sub-images of size 128× 128 pixels for the scenes with
512 × 512 resolution. We set the maximum number of rays per pixel to 10100 in
order to obtain non-distorted copies of the images. The labeling process selects
images computed using diffuse and specular rendering and ask the observers for
their qualities. The observers which are from different locations have faced the
same display conditions [9]. The learning and the testing sets contain images
with different percentages of homogeneous regions, edges, and exhibit different
light effects. The average number of rays that are required for each block to be
perceived as identical to the reference one is shown in Fig. 3.

In order to separate the noise from signal, a sub-image is computed by apply-
ing to the luminance component different pooling strategies. The feature pooling
is performed element by element on each version of the sub-image in a deep learn-
ing process using thirteen layers. We use Averaging (A1–A2), Gaussian (G1–G6)
[11], Median (M1–M2) [12] and Wiener (W1–W2) [13] convolutions of depth

Fig. 1. (a) Blocks of the scene Bar, (b) blocks of the scene Class, (c) blocks of the
scene Cube (Color figure online)
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Fig. 2. (a) Blocks of the scene DeskRoom1, (b) blocks of the scene DeskRoom2, (c)
blocks of the scene Sponza (Color figure online)

Fig. 3. Thresholds variation for the blocks of the scenes Bar, Class, Cube, DeskRoom1,
Sponza and DeskRoom2

and spread equal one. Next, the image is denoised using Wavelet decomposition
(Wav) [14] (see Table 1). The sub-image noise is estimated as a pixel subtraction
between the current sub-image and the sub-image computed by each layer. The
mean and the standard deviation pooling are applied to the thirteen activation
layers. Next, the feature concatenation pooling is performed by concatenating
the versions features vectors in a single longer feature vector in order to obtain
a total of 26 noise features vector used as input to the PSNN model. The noise
features are obtained by computing the difference between the noise features of
quick ray traced sub-image of scene and the current one. Finally, the prediction
pooling is performed for each sub-image of the scene.

Table 1. Feature pooling architecture

Layers L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Type A1 A2 G1 G2 G3 G4 G5 G6 M1 M2 W1 W2 Wav

Size 3 × 3 5 × 5 3 × 3 5 × 5 3 × 3 5 × 5 3 × 3 5 × 5 3 × 3 5 × 5 3 × 3 5 × 5

Standard deviation 0.5 0.5 1 1 1.5 1.5

Padding 1 2 1 2 1 2 1 2 1 2 1 2
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3 Architecture of the Pooling Spike Neural Network

The system is composed from three layers. The encoding layer generates a set
of activity patterns that represents the pooling stochastic noise features, the
learning layer tunes the SPANs parameters making sure that they respond to
noise features correctly and the decoding layer extracts information about the
global illumination images qualities [16] (Fig. 4).

3.1 Encoding Neurons

We provide a biologically coding method about how spikes could be generated
from noise features. Such method which is based on the sub-threshold membrane
oscillations (SMOs) [17] can encode information using sparse coding with a good
temporal selectivity. Each encoding neuron unit contains a positive, a negative
and an output neurons. The encoding unit is connected to a noise feature signal
I and the SMO. The potential of the positive neuron is the summation of I
and the SMO. The potential of the negative neuron is the subtraction of I and
the SMO. The neuron will fire a spike if the membrane potential crosses the
threshold θe. The firing of either the positive neuron or the negative neuron will
cause a spike from the output neuron (Fig. 4). The equation of the encoding unit
is described as:

SMOi = Gcos(wt + ϑi) (1)

where G is the magnitude of the SMO, w = 2π/T is the angular velocity and
ϑi is the initial term defined as:

ϑi = ϑr + (i − 1)Δϑ ∀i = 1, 2 . . . N (2)

where ϑr is the reference term, Δϑ is the difference between nearby encoding
neurons and N is the number of encoding neurons. We set ϑr = 0, Δϑ = 2π/N ,
G = 0.5 and the threshold value θe = 0.5 in order to obtain sparse spikes. Figure 5
shows the spikes of the scene Bar distributed sparsely for the 26 SPANs.

Fig. 4. (a) Encoding unit composed from positive, negative and output neurons. (b)
Architecture of the PSNN from three layers
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Fig. 5. Spikes of the scene Bar distributed sparsely for the 26 SPANS

3.2 Learning Neurons

The neurons are Leaky Integrate and Fire (LIF) described by the following
equation [15]:

τm
dui

dt
= −ui(t) + RmIsyn

i (t) (3)

where Isyn
i is the input signal current, τm = RmCm is the membrane time con-

stant, Rm = 1MΩ and Cm = 15nF are the membrane resistance and capacitance
respectively. The neuron fires a spike if its state variable ui crosses a predefined
threshold θ. The set of all firing times of a neuron i is denoted by:

Fi =
{

tfi , 1 ≤ f ≤ n
}

≡ {t, ui(t) ≥ θ} (4)

After firing an output spike at time tfi , the state variable ui is reduced and then
the neuron receives input from a set of pre-synaptic neurons j ∈ Γi, where:

Γi = {j : j presynaptic to i} (5)

The dynamic of the neuron i at time t in the Spike Response Model (SRM) can
be expressed as:

ui(t) =
∑

tfi ∈Fi

η(t − tfi ) +
∑
j∈Γi

wij(
∑

tfj

K(t − tfj )) + Vrest (6)

where wij is the synaptic weight, Vrest is the resting potential of the neuron and
tfj is the firing time of the jth neuron. The kernel K(.) models the un-weighted
post-synaptic potential of a neuron j ∈ Γi. It is defined as follows [16]:

K(t − tfj ) = V0(exp(
−(t − tfj )

τs
) − exp(

−(t − tfj )
τf

))H(t − tjf ) (7)
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where τs and τf are the slow and fast decay constants respectively. V0 is a
normalization factor such that the maximum value of the kernel is 1. H(t − tfj )
is the heavy-side function which vanishes for tfj ≤ t. The kernel η(.) which
models the membrane potential during a spike can hence be described by a
certain standard time course defined by [18]:

η(t − tfi ) = −η0exp(
−(t − tfi )

τ
)H(t − tfi ) (8)

where η0 is the amplitude of the relative refractoriness and τ is a decay time
constant. The evaluation of neural dynamics is performed on a time step Δt =
0.1ms which assures a stable PSNN. We find that the final time tf = 20ms
is sufficient for the PSNN, so it can fire for the different sub-images [10]. The
learning rule for the nth image is defined as follows:

Δwij(n) =

⎧
⎪⎨
⎪⎩

λδ(n)Ut if Pm

−λδ(n)Ut if Nm

0 otherwise

(9)

where Ut =
∑

tfj <tmax
K(tmax − tfj ), Pm (Positive misclassified) denotes that

the neuron should fire but its state is silent, Nm (Negative misclassified) denotes
that the neuron should keep silent but its state is firing and tmax denotes the
time at which the neuron reaches its maximum potential. The training is stopped
either when the neuron successfully separates all training samples or when the
maximum iterations is reached.

Employing only one fixed learning parameter λ is not an optimal solution
because it cannot detect surrounding environment in order to complete learning
efficiently. Consequently, weights changes drastically or slowly in every learning
period which leads to low learning efficiency. To tackle this problem, we propose
a learning technique inspired from the perceptron based spiking learning rule
defined in [19]. A dynamic learning parameter δ(n) is computed for the nth
noisy image in the learning base which is not classified correctly depending on
its noise level. This parameter is computed as follows:

– In case of positive misclassified neurons, the dynamic learning parameter δ(n)
is computed as the distance between the threshold θ and the maximum decod-
ing neuron voltage. This method can avoid excessive weights modification if
the neuron decoding voltage is close to the threshold.

– In case of negative misclassified neurons, the dynamic learning parameter δ(n)
is expressed as the distance between its firing time and the nearest firing time
for the next noisy images classified correctly. Using this technique, weights
change slowly if the next noisy image firing time is close to its nearest classified
image and conversely weights vary drastically.

The steps of the learning process are explained in Algorithm1.
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Algorithm 1. Learning algorithm for the PSNN model
Require: a set of scenes where each scene is divided into 16 blocks of sub-images
1: Initialize the weights, the parameter λ and dynamic the learning parameters δ for

all sub-images extracted from the 16 blocks.
2: Read randomly a sub-image I from the set of scenes.
3: Extract the luminance vector and apply to it the pooling strategies in order to

obtain the 26 features.
4: Provide the difference between the features of the test sub-image and a quick ray

traced sub-image of the scene.
5: Convert these features into spikes using SMOs encoding units.
6: Apply the learning rule defined in Eq. (9) for each of the noisy sub-image.
7: Repeat steps 2–4 for all the sub-images.
8: Compute the dynamic learning parameters δ for all sub-images in case of positive

or negative misclassified neurons.
9: Repeat from step 2 until the maximum iteration is reached.

3.3 Decoding Layer

The decoding layer consists of two SPANS. The first SPAN fires a spike only
for noisy images. The second SPAN fires a spike only for denoised images. The
decision neuron selects the SPAN with the maximum voltage in order to decide
about the quality of the image.

4 Experimental Results

In order make a comparative analysis between the PSNN and the SVM models,
the sub-images of the scene Bar are used for learning and the sub-images of the
scenes Class, Cube, DeskRoom1, DeskRoom2 and Sponza are used for testing.
We apply the pooling strategies in order to select a vector of size 26 noise features
as input to the SVM. The output of SVM is negative for noisy images and strictly
positive otherwise. We use V-times cross validation techniques with different
RBF kernels to determine the standard deviation σ and the margin trade-off
parameter C [9]. The learning set is decomposed into 101 groups of size 16 records
each. We find that the optimal values of C and σ are equals respectively to 64
and 4. The optimal number of support vectors is equal 258.25. The maximum
precision is equal to 93.25% (Figs. 6 and 7).

Table 2. Parameters values of the SPAN

Parameter τs τf τ θ V0 Vrest η0

Value 15 ms 3.75 ms 1ms 1 mV 1 mV 0 mV 1mV
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In case of PSNN, the parameters are chosen as shown in Table 2 and the input
of the network is a vector of 26 sparse spikes. The initial weights are selected
randomly in the interval [0, 1] and the initial learning rate is selected equal to
0.01 as it assures a stable PSNN with a good convergence. During learning,

Fig. 6. Precision and mean number of SVs for different values of C

Fig. 7. Precision and mean number of SVs for different values of σ

Fig. 8. Variation of precision during the learning process
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Fig. 9. Mean square error variation for the blocks of sub-images

the sub-images of the scene Bar were introduced randomly to the PSNN and
the maximum precision obtained is equal to 92.8% on the scene Bar after 50
cycles (Fig. 8). Next, the ray rendering is applied on the scenes Bar, Class, Cube,
DeskRoom1, DeskRoom2 and Sponza. Figure 9 shows the variation of the mean
square error (MSE) for the optimal architectures. Table 3 shows the average
of the MSE for the images of the global illumination scenes. It is shown that
the PSNN model assures a minimum average of MSE on the scenes Cube and
Sponza. The SVM model is slightly better in performance than the PSNN only
on the learning scene Bar, where the two models give similar average of MSE on
the scenes Class, DeskRoom1 and DeskRoom2. Figure 10 shows the variation of
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the actual thresholds of the perception models and the desired human psycho-
visual scores. We find that the PSNN outperforms the SVM model on the scenes
Cube, DeskRoom1, DeskRoom2 and Sponza, whereas the two models give similar
scores on the scene Class. The SVM assures better convergence than the PSNN
only on the leaning scene Bar. However, the PSNN model needs less number of
parameters than SVM. The number of parameters is equal to 26 × 258 = 6708
for SVM, while the number of parameters is equal to 26 × 2 = 52 for PSNN.

Fig. 10. Thresholds variation for the blocks of sub-images
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Table 3. Average mean square error of the global illumination scenes

Scene SVM (average MSE) PSNN (average MSE)

Bar 0.02 0.03

Class 0.04 0.04

Cube 0.06 0.04

DeskRoom1 0.03 0.03

DeskRoom2 0.04 0.04

Sponza 0.04 0.03

5 Conclusion

This paper proposes a PSNN model for acceleration of Global Illumination ren-
dering. The architecture of the PSNN with functional parts of sparse encoding,
learning and decoding consists of a robust convergence measure on blocks. We
have shown the performance of the PSNN by using three different pooling strate-
gies in order to separate noise from signal. Feature pooling, feature concatenation
and prediction pooling coupled with three pooling operators: convolution, aver-
age and standard deviation. The learning algorithm detects surrounding environ-
ment by using dynamic learning parameter for each noise’s level in the learning
set. We show that the proposed technique composed from a simple architecture
with 26 inputs and 2 neurons offers a good prediction on the testing scenes
when compared with the SVM model which has a complex architecture with
26 inputs and 258 kernels. Future work will investigate a way to optimize the
PSNN model on a GPU using parallel computing. In this case, a real proof based
on computation time can be performed between this model and other kernels
models. Moreover, our approach requires building multiple PSNNs for different
noise thresholds in order to create a complete framework with large amounts of
rendering images.
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Abstract. In recent years, new autonomous physiological close-loop controlled
(PCLC) medical devices for oxygen delivery are being researched. Most of this
PCLC devices are based on the feedback of arterial oxygen saturation, measured
using a pulse oximeter. However, pulse oximeters may provide spuriously low
or high SpO2 values. In this work, a different approach to adjust automatically
oxygen dosing in portable oxygen concentrators (POC) according to the phys-
ical activity performed by patients with COPD is presented. To that purpose, the
ability of various machine-learning algorithms to recognize four human daily
activities from sensor signals collected from a single waist-worn tri-axial
accelerometer is evaluated. A set of 56 features was considered and recognition
accuracy of up to 91.15% on the four activities of daily living was obtained
using a SVM classifier. The associated activity recognition error rate was lower
than 5%, ensuring a low percentage of time wrongly assigned to a certain
activity. The underlying idea is the hardware implementation of the SVM
classifier to control the oxygen flow in intelligent portable oxygen concentrators.

Keywords: COPD � Human daily activity recognition � Oxygen therapy � Long
term oxygen therapy � Pervasive healthcare � Portable oxygen concentrator

1 Introduction

Oxygen is essential for human beings and other living organisms. Our cells need a
constant supply of oxygen and lungs extract it from air and transfer it to blood, that
supplies oxygen to body cells. Many diseases affect the lung’s ability to transfer
oxygen to blood what can cause hypoxemia, respiratory failure and death. Chronic
Obstructive Pulmonary Disease (COPD) is the most frequent respiratory illness what
lead to respiratory insufficiency. The global prevalence of COPD in people aged 40 and
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over is 11.7% [1] and in 2013 is estimated as the fifth leading cause of reduced
Disability-Adjusted life years across the world [2]. In addition, the economic burden of
COPD is very high in developed countries. In the European Union, direct costs was
estimated at over 38.6 billion euros a year [3].

While lung damage because of COPD is irreversible, there are treatments that can
increases life expectancy in patients with severe resting hypoxemia, such as long-term
oxygen therapy (LTOT) [4]. Oxygen therapy has long become a cornerstone in the
treatment of patients with COPD and other hypoxemic and hypercapnic chronic res-
piratory diseases. Actually, clinical application for the use of oxygen has extended
beyond the hospital setting to homes. Home oxygen therapy in COPD patients is
usually coupled with physical rehabilitation what improves memory, physical perfor-
mance, dyspnea and quality of life [5]. Therefore, the need for adequate and light
portable oxygen devices to suit patient daily activities remains clear.

However, despite the variety of portable oxygen sources for COPD therapy
available currently, existing devices cannot respond to all the requirements of patients.
In fact, oxygen, used during COPD patient’s therapy, is a drug and just like any other
drug it has to be cautiously prescribed and monitored [6]. Oxygen needs for patients
with COPD vary during sleep, due to nocturnal oxygen desaturations [7], rest and
physical activity [8]. Therefore, oxygen should be delivered to avoid both hypoxia and
hyperoxia along the changing daily activities.

In traditional flow oxygen delivery, the amount of administered oxygen is generally
adjusted manually by selecting the prescribed level of oxygen flow (in l/min in con-
tinuous flow devices and in discrete levels in pulse-based devices). In LTOT, the
titration of flow rate depends on the patient profile, him/her mobility, the adequate
correction of arterial oxygen saturation (SpO2) during stand and exercise, and other
related factors. Flow rate settings can be adjusted by the patient either mechanically (by
directly regulating the flow valve using a knob) or electronically, by using a keyboard
to select an option among a short discrete range, usually from 1 through 5.

However, manually adjustment of the flow rate is a time-consuming task that
requires experienced and trained patients [9]. These limitations convert systems for the
automatic flow rate control in a desirable achievement.

In recent years, new autonomous physiological close-loop controlled (PCLC)
medical devices for oxygen delivery are being researched. These PCLC devices may be
able to automate manual adjustments during oxygenation. The potential benefits of
automated oxygen therapy affect:

• patients, by improving control of oxygenation and monitoring
• health care systems by reducing workload, improving monitoring and compliance

with recommendations, reducing oxygen use and promoting early hospital dis-
charge following exacerbations of COPD) [10].

In most of these approaches, oxygen saturation (SpO2), measured using a
pulse-oximeter, is the process variable for the control algorithm [11]. Oxygen dosing is
adjusted automatically to maintain a target arterial saturation, customized for the specific
patients’ needs. However, robustness of control algorithms, fail-safe mechanisms and
limited sensors reliability are among the reasons for the lack of practical application of
this new generation of oxygen devices [12].
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In this work, we propose a different approach to adjust automatically oxygen dosing
in patients with COPD. Human activities recognition from wearable devices is being
applied for long-term recording and clinical access to patient’s activity information [13,
14]. In this paper, we present and evaluate the ability of various machine-learning
algorithms to recognize four human daily activities (walking, standing, walking
upstairs and walking downstairs) from sensor signals collected from a single
waist-worn tri-axial accelerometer. The underlying idea is that this algorithm would be
implemented in a sensor device to control oxygen flow in portable oxygen concen-
trators. The oxygen flow would be automatically set according to the physical activity
performed by the patient and real-time detected.

The rest of the paper is organised as follows. Section 2 presents an overview of the
domiciliary oxygen devices. Section 3 details the proposed control scheme, the used
dataset, features, and the evaluated machine learning algorithms. Section 4 presents the
results of the evaluation of the validated algorithms. Finally, Sect. 5 captures the
conclusions and the future work.

2 Background on Domiciliary Oxygen Devices

Selection of oxygen device is essential and must match the patient’s profile [6]. In this
regards, multiple modalities are becoming available for portable oxygen therapy:
portable compressed gas cylinders (CGC), portable liquid oxygen systems (LOX), and
portable oxygen concentrators (POCs).

CGC is a low cost and widely available source of LTOT. However, CGCs are
heavy devices with some safety issues what make them inadequate for active patients.

Some studies showed benefits of LOX over gaseous oxygen in terms of patients’
acceptability, duration and hours of therapy received [15]. POCs can work on both DC
and AC voltages, and are ideal for home use since there is no need for regular refilling.
In addition, the operating cost of a POC is minor [6].

A typical POC comprises an air compressor, two cylinders filled with zeolite
pellets, a pressure-equalizing reservoir, some valves, tubing and a cooling system that
keeps the POC from overheating. The control algorithm and performance differ among
manufacturers and models [16].

While portable CGC and LOX devices are not adequate for COPD patients who
need to develop his mobility daily, POCs have allowed many patients with chronic
lung disease to travel and maintain active lifestyles [17]. The results from this study
will ultimately applied to the automatic adjustment of the flow valve in POCs.

3 Methods

3.1 Proposed Intelligent Portable Oxygen Concentrator (iPOC)

Figure 1 details schematically the proposed intelligent POC system (iPOC). Feedback
control can be implemented with a single input-single output (SISO) table look-up
controller. The feedback control law T can be tabulated by a table look-up function.
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This look-up function is provided by the clinicians and customized for the specific
needs of the patients following well-established titration procedures [18].

A microprocessor receives measurements from a triaxial accelerometer sensor and
computes the physical activity in real-time (y). A finite state machine (Mealy machine)
whose output value is determined by both its current state and the current input is used
to determine the physical activity (PA) state that will input the controller.

Figure 2 illustrates the designed Mealy machine considering the four different PA
states used in this study. An smartphone, with inbuilt accelerometer sensor, could be
used to perform the PA detection tasks [14]. The new control variable u is obtained
from the static table taking into account previous state un−1 to avoid errors in the
transition between different degrees of PA. The controller then outputs the corre-
sponding control signal to the flow regulator managing the delivery of a suitable
oxygen dose to the patient. Accordingly, the oxygen flow target (l/min) updates con-
tinuously using the automatic classification of PA.

O2
Source

Patient

Accelerometer

Sensor ModuleFeedback
Control Law

T(yn,un-1)

Portable Oxygen Concentrator (POC)

Oxygen Flow

Patient

Microprocessor
Unit

un
yn

Fig. 1. Block diagram of the control scheme for the proposed intelligent portable oxygen
concentrator (iPOC).
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Fig. 2. State diagram to limit the evolution between different physical activity degrees. PAn:
state corresponding to the detected physical activity n.
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3.2 Automatic Physical Activity Recognition

Metabolic equivalent (MET) express the energy cost of physical activities, and varies
from 0.9 (sleeping) to 23 running at 22.5 km/h. Oxygen uptake VO2 (ml/min) relates to
MET according to the following formula:

MET ¼ VO2

3:5 � m ð1Þ

where m is the mass of the patient in kilograms [19]. Physical activity level is lower
than 1.5 (very inactive persons) in patients with COPD from Global Initiative for
Chronic Obstructive Lung Disease stage III and IV [20]. Therefore, intense activity is
not expected in the targeted users. Since the MET, and accordingly the VO2, of static
postures such as sitting, standing still and lying in the bed shows low variations, only
four common activities with moderate MET values cover the spectrum of PA per-
formed by users. These activities were selected for automatic recognition because they
pose a need for updating the oxygen flow delivered to the patient. Table 1 illustrates
the selected activities and their corresponding METs adapted from [21].

3.3 Dataset and Signal Processing

In order to train and validate an automatic system for recognizing the four degrees of
physical activity previously established, the Smartphone-Based Recognition of Human
Activities and Postural Transitions Data Set, available at the UCI Machine Learning
Repository was used [22]. This dataset contains recorded sensor inertial signals of a
sample of 30 subjects while performing six basic activities: three static activities (sit-
ting, standing and lying down) and three active activities (walking, walking-upstairs,
walking-downstairs). 3-axial linear acceleration was sampled at a constant rate of
50 Hz. The subjects wore on the waist a smartphone (Samsung Galaxy S II) with an
embedded accelerometer and gyroscope. In this study, only data captured with the
accelerometer were used and the three passive activities were merged into one
according to the abovementioned rationale.

Table 1. Physical activities for automatic recognition and the corresponding MET values and
VO2. The mass of the user in kilograms is referred as m.

Activity Description Intensity MET
(W/kg)

VO2

(l/min)
Sitting, standing
still or lying in
bed

Lying down awake, sitting (watching
TV, typing, desk work) or standing still

Light 1.3 0.00455*m

Walking Walking (up to 2.5 mph) around home,
store or office

Light 3 0.01050*m

Walking
downstairs

Descending stairs, carrying 15 lb load Moderate 3.5 0.01225*m

Walking upstairs upstairs, carrying 1 to 15 lb load Moderate 5 0.01750*m
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The dataset contains 400 activity instances and 13.182 s of recording. The obtained
dataset was randomly partitioned into two sets, where 70% of the volunteers was
selected for generating the training data (7415 samples) and 30% the test data (2996
samples). The accelerometer sensor signal was preprocessed by applying noise filters
and then sampled in activity windows of 2.56 s and 50% overlap. The body component
of the sensor acceleration signal was separated from the gravitational component using
a Butterworth high-pass filter with 0.3 Hz cutoff frequency.

3.4 Features, Machine Learning Algorithms and Evaluation Metrics

In order to reduce the computational burden, only time-domain features were consid-
ered. From each window, a total of 56 time domain features were estimated: mean,
standard deviation, median absolute deviation, largest value, smallest value, skewness,
kurtosis, signal magnitude area, average sum of the squares, interquartile range, signal
entropy, 4th order Burg autoregression coefficients and Pearson correlation coefficient
were computed for each axis and for the accelerometer magnitude signal. Angle
between tri-axial signal mean and vector was also computed for each axis. Finally, the
calculated features were normalized and bounded within [−1,1].

Features were tested by using various supervised machine-learning algorithms such
as decision tree (DT), linear discriminant analysis (LDA), radial basis function network
(RBF), feedforward multilayer perceptron (MLP), and support vector machine (SVM).

C4.5 generation algorithm was applied to create a single-tree model. A pruning
process was adopted to minimize the cross-validated error. MLP was trained with the
conjugate gradient algorithm. One hidden layer with 13 neurons was used. This number
was automatically optimized in the range from 2 to 20. Logistic activation function was
selected for the hidden and the output layer neurons. Concerning the SVM classifier,
C-SVC (regularized support vector classification) model with the RBF kernel function
was chosen. The model parameter values are 40.78 and 1.35 for C and Gamma,
respectively. Matlab software was used for training and validating the different models.

Regarding the evaluation metrics, we considered the overall accuracy, sensitivity,
specificity and the activity recognition error rate (ARER). ARER was estimated as the
percentage of time that has been wrongly assigned to an activity [23]:

ARER %ð Þ ¼ 100
Time secð Þwrongly classified

Session durationðsecÞ ð2Þ

4 Results

Figure 3 shows the accelerometer data along the x-axis for each of the four activities
under recognizing (standing/sitting/laying down, walking, walking upstairs and
down-stairs).

All the features described in the previous section were extracted from each
recording within 50% overlapped consecutive time windows of 2.56 s. The calculated
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feature set constituted the input for the automatic physical activity classification
through the abovementioned machine learning algorithms.

Tables 2 and 3 report the confusion matrices obtained while discerning among the
four proposed physical activities. In particular, Table 3 shows the classification accu-
racy and the corresponding ARER values for each classifier. Overall, SVM offered the
highest performance, yielding 95.19% accuracy and 4.85% ARER.
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Fig. 3. Accelerometer data along the x-axis for each of the four activities of daily living.

Table 2. Confusion matrixes and performance parameters for different validated classifiers. DT:
decision tree C4.5, LDA: linear discriminant analysys, RBF: radial basis function, MLP:
multilayer preceptron, SVM: support vector machine. PA1: walking, PA2: walking upstairs,
PA3: walking downstairs, PA4: sitting, standing still or lying.

PA1 PA2 PA3 PA4 Sensitivity (%) Specificity (%)
DT PA1 412 70 14 0 83.06% 94.84%

PA2 107 342 22 0 72.61% 94.50%
PA3 21 61 338 0 80.48% 98.56%
PA4 1 8 1 1599 99.38% 100.00%

LDA PA1 472 21 3 0 97.18% 94.84%
PA2 120 347 4 0 75.58% 98.30%
PA3 33 19 368 0 89.05% 99.84%
PA4 1 1 1 1606 99.94% 100.00%

RBF PA1 482 13 1 0 97.18% 94.84%
PA2 112 356 3 0 75.58% 98.30%
PA3 17 29 374 0 89.05% 99.84%
PA4 0 1 0 1608 99.94% 100.00%

MLP PA1 473 1 22 0 95.36% 95.28%
PA2 95 374 2 0 79.41% 98.65%
PA3 21 32 367 0 87.38% 99.07%
PA4 2 1 0 1606 99.81% 100.00%

SVM PA1 480 3 11 2 96.37% 96.52%
PA2 75 382 14 0 80.25% 98.53%
PA3 7 32 381 0 90.48% 99.03%
PA4 0 0 0 1609 100.00% 99.86%
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5 Discussion and Conclusion

Intelligent POC technology could offer a very important benefit to the patient. Close
loop oxygen concentrators described in scientific literature are mostly based on the
feedback of SpO2, measured by using a pulse oximeter sensor. However, various
causes has been documented to provide spuriously low or high SpO2, such as excessive
movement, poor finger perfusion resulting from vasoconstriction and/or hypotension,
carbon monoxide poisoning, light influence, etc. [24]. The search for more robust and
reliable sensors able to operate against patient variability and environmentally changing
scenarios is a challenge.

The main cause for what a patient with COPD needs to update the oxygen flow
obtained using a POC is related to the changing activities of daily living. The auto-
mated recognition of physical activities has been researched intensively during the last
decade, and its application to the respiratory field is promising. Accelerometer sensors
could support the automatic recognition of the simple physical activities performed by
patients with severe COPD degree. Simultaneously, they could support patients in
identifying patterns during their daily physical activities, promoting a more active
lifestyle.

In this regards, this study poses a first step to devise a new iPOC, to manage
automatically the need for oxygen. A selected set of 56 features and different machine
learning algorithms were used for evaluating recognition performance using a public
database of physical activity signals.

Recognition accuracy of up to 91.15% on four everyday activities using a single
tri-axial accelerometer was obtained using a SVM classifier. The associated ARER was
lower than 5%, ensuring a low percentage of time wrongly assigned to a certain activity.

Future works include combining classifiers to outperform individual classifiers,
collecting of data from users with COPD and implementing the algorithm into a
commercial POC.
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Abstract. This work presents a novel approach for automatic detection
of the epiretinal membrane in Optical Coherence Tomography (OCT)
images. A tool able to detect this pathology is very valued since it can
prevent further ocular damage by doing an early detection. This app-
roach is based in the location of the inner limiting membrane (ILM) layers
of the retina. Then, the detected locations are classified using a local-
feature based vector in order to determine presence of the membrane.
Different tests are run and compared to establish the appropriateness of
the approach as well as its practical validity.

Keywords: Epiretinal membrane · Retinal layers · Medical imaging ·
Optical coherence tomography

1 Introduction

Epiretinal membrane (ERM), also called macular pucker, is a macular pathology
that can cause minor damage to the retina, like central vision decrease and
metamorphopsia [11]. This disease can be caused by changes in the vitreous
humor [4] and, consequently, the response of immune system to protect the
retina can sometimes provoke that a number of cells converge on the macular
area. This situation produces a transparent layer (Fig. 1) that, like every scar
tissue, contracts causing tension on the retina, specifically on the inner limiting
membrane (ILM). This phenomenon contributes to the appearance of ERM.

Since this pathology is frequently asymptomatic, it is imperative to develop a
reliable system of detection to avoid further complications caused by its increas-
ing severity.

In order to detect the ERM, ophtalmologists can work with the patient clini-
cal history, looking for diabetes and ocular diseases or surgeries. Also, specialists
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Fig. 1. Different appearances of ERM

can perform a complete ophthalmological evaluation to check for ERM, but at
an additional cost and work hours.

The most precise way to evaluate the retinal morphology is doing an optical
coherence tomography (OCT) scan [2], since the ERM appears as a bright layer
on the retina [1]. Also, detecting irregularities on the retinal surface and/or
retinal thickening, between others, can also mean that ERM is present on the
patient.

Surgery may be needed when facing symptomatic ERM, e.g. vision loss,
diplopia or debilitating metamorphopsia. When indicated, pars plana vitrectomy
is performed [9]. However, ERM can recur and require further surgery. This
recurrence rate can be reduced by undergoing ILM peeling [7].

The detection of the ERM is a manual process done by a specialist, but
some tools have been developed to help with this task. Wilkins et al. [13] work
with OCT pictures in real time, correcting patient’s eye movement with image
processing algorithms. Once the images are obtained, the specialist manually
places computer cursors on the superficial and deep retinal boundaries. These
boundaries are based on reflectivity and thickness differences between different
areas of the retina.

Comparatively, other studies [3,6,8] work with spectral-domain OCT (SD-
OCT). Its main advantage in comparison to time-domain OCT (TD-OCT) is the
easier visualization of intraretinal layers (as the photoreceptor layer) through
higher resolution pictures and the possibility of obtaining 3D images. This tech-
nique allows the specialists to obtain accurate surface maps and capture tension
lines caused by the ERM on the ILM.

With this work we aim to create an automatic tool to detect epiretinal mem-
brane presence on OCT pictures. The methodology consists on the processing
of the OCT picture to locate the ILM layer of the retina, continuing with the
extraction of relevant features of this layer. Finally, we will classify these data
using classifiers trained beforehand to identify presence of ERM in the vicinity
or adherent to the retina.
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2 Methodology

Our methodology is based on the classification of the ILM located points to
determine the presence of the membrane. To reach this goal, several stages are
proposed, as shown on Fig. 2.

Fig. 2. Methodology used for the developing process

The first step is a preprocessing stage in order to remove undesired structures
in the OCT input image as well as enhancing relevant ones.

Afterwards, the goal is to locate the ILM as it represents our region of interest
(ROI) given the fact that it is the location where the membrane appears. To
this end, an active contour model (Snake) [5] is used to get the location of the
topmost layer of the retina in the picture. This model will try to adapt its shape
to the shape of the inner limiting membrane. Consequently, a fair amount of
information is available about the split between background and eye zones.

In the next step, once the ILM is located, a feature extraction procedure
takes place in each ILM location point in order to establish the presence of the
membrane by using a trained classifier on these features, which would be the
last step of our method. The feature vector for a ILM point would be defined in
a small local window of the image surrounding that particular point. The idea
behind this is to check for the ERM also in the zones where it is not adhered to
the retina.

In order to be able to classify the existence of membrane, the vector will be
based on local histograms of intensity, as this is the main characteristic of the
membrane to be recognized. Following sections explain each step in more detail.

2.1 Region of Interest Segmentation

Preprocessing. In order to be able to correctly fit the shape of the Snake on
top of the ILM, some preprocessing operations are performed on the image to
avoid unnecessary elements. Figure 3 shows an example of the different steps
at this stage. We remove every black border surrounding the OCT image and
then we apply a Gaussian filter with σ = 1.5. This value was found to be good
at preserving relevant features while filtering significantly. Finally, we apply a
morphological operator (opening) to finish the cleaning of the picture and ease
up the execution of the geometrical model.
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(a) Original picture (b) Removal of black borders

(c) Gaussian filter (d) Opening operator

Fig. 3. Preprocessing applied to an OCT image sample

Layer Segmentation. After preparing the image, since we want to approxi-
mate the shape of the inner limiting membrane, we use the active contour model
mentioned beforehand. This model is initialized above all the layers of the retina,
near the top border of the picture. When executed, it will try to converge on the
topmost layer and adapt to its shape.

In this particular case we use a different approach of the Snake. We only allow
downwards movement and, if the energy does not decrease, for a particular node
this is stopped. This way, we ensure every point remains on their respective
start columns. Also, with this approach, the Snake does not converge around an
object, but instead lands on top of the upper layer, behaving as intended.

The energy of a Snake is defined in (1).

E =
∫

(α(s)Econt + β(s)Ecurv + γ(s)Eimg)ds (1)
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Snake is defined as N points p1, p2, ..., pN , so the formulations for each energy
term are explained on (2), (3) and (4).

Econt = ‖pi − pi−1‖2 (2)

Ecurv = ‖pi−1 − 2pi + pi+1‖2 (3)

Eimg = −‖∇I‖ (4)

where ∇I is the gradient of the intensity computed at each Snake point.
In order to get the Snake to adapt to the region of interest (ROI), an external

energy is built based on the principle of distance to gradient. The main idea is
to give the Snake an indication of the distance to the ROI (ERM and ILM)
being the first relevant gradients in each image column on the ILM which is very
strong also in the image. To achieve this energy, first edges are calculated via
Sobel and Feldman [12]. In general, we will aim to detect the limit between the
background and the inner limiting membrane as a border, since we want the
Snake to position above this sector.

Once we have this region segmented, we apply the Euclidean distance trans-
form for the edge image. The resulting picture will be passed to the Snake as
the external energy parameter. This way, the Snake will try to stick to the zones
of less energy, that is, the zones where a border exist (the closest one being the
border on the inner limiting membrane). An example of this procedure can be
found on Fig. 4. Figure 4b shows the borders detected by the edge extraction
algorithm, symbolized as white pixels. Figure 4c represent the external energy
of the Snake, where dark areas are the zones of minimal energy. Lastly, Fig. 4d
shows the final result of the Snake after finishing its iterations. Green crosses
mark the topmost border (ideally ERM or ILM).

2.2 Feature Extraction

Once the ROI is located in the image it is needed to establish the presence or
absence of epiretinal membrane along the retina surface of a particular image.
The hypothesis to achieve this is that luminosity of membrane differs sufficiently
from ILM, the retina and image background. Thus, local features based on inten-
sity can be defined on a vicinity of each Snake node to determine the existence of
membrane in it by analyzing luminosity patterns. This is, a location with darker
values above and under the central point should be a floating ERM, while if it
only has dark values above and bright points under, can be a ERM next to the
ILM or ERM nonexistence, depending on the intensity of the central window
(brighter values are associated with ERM presence).

Following this hypothesis, after the Snake finishes its execution in the pre-
vious stage, local intensity features are computed for each node. These features
need to contain information of the surroundings of the obtained points, more pre-
cisely from the vertical area around the point. Having this information allows
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Fig. 4. Region of interest segmentation procedure steps (Color figure online)

us to differentiate between points situated on the background from the ones
situated on the ILM.

To this end, we will be using a series of vertical areas centered on the points
of the Snake (Fig. 5). This area is divided in a series of W squared windows. For
each of these windows, we will calculate afterwards the intensity histogram with
N bins for the area. By appending all the bin values the feature vector is built.
Lastly, all W feature vectors are combined in one full feature vector containing
N ×W elements. This vector represents the intensity values of the entire vertical
area of the point.

For this work five regions are considered centered around the node. As Fig. 5
shows, data located above or under the limits on the defined windows do not
contribute with any meaningful data for ERM location as it only adds redundant
information. In the result section, several studies are conducted to establish a
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Fig. 5. Vertical window around a Snake point. (a): Area around a Snake point. (b):
Feature window of the associated point with Wsize = 13. (c): Histogram of the central
squared window of (b).

suitable value for window size. Nevertheless, size of the regions is matter of study
in our experiment section.

We calculate the histogram with N bins for each squared window. This
process will give us N discrete values for each window. Afterwards, all of these
values will be converted to a full feature vector containing N × W values total.
This vector contains all relevant information about the point and the surround-
ing area, more precisely its luminosity.

2.3 Layer Classification

The final stage of the methodology is to perform a classification based on the
intensity feature vectors. This way, each node is labeled as including ERM or not.

We will classify the points extracted from the image using a series of classi-
fiers trained previously by using a 10-fold Cross-validation method with a set of
samples manually labeled by a clinician. Each fold will use 90% of the samples as
training samples and 10% as test samples. The models being used on this section
are a Naive Bayes classifier, a Multilayer Perceptron and a Random Forest. We
will generate different classifiers for each class with different parameters: number
of bins and size of the squared windows. An example of the ERM recognition is
shown on Fig. 6.

3 Experimental Results

OCT scans were obtained with a tomograph CIRRUSTMHD-OCT Zeiss, with
Spectral Domain Technology. The resolution of the images is 490×500 pixels.

Our working set is comprised of 129 images showing different sections of the
eye. ERM presence can be found in some of the pictures. Training samples have
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Fig. 6. Result of classification with Random Forest, Wsize = 13 and Nbins = 15.
Circles symbolize absence of ERM and squares presence of ERM

been randomly selected from all the pictures. In different experiments, separation
between training and test is done accordingly as explained in following sections.

The energy terms used by the Snake in our experiment are shown on Table 1.
These values have been selected because with the picture set we are using they
give the Snake enough traction to provide a good approximation of the shape
of the ILM. The high γ value allows the Snake to adapt to the ILM or ERM
shape (zones of high energy), while α and β are less relevant because we only
allow downwards movement so keeping the points clustered is not a relevant
problematic.

Table 1. Energy terms used for the Snake

Energy type Parameter Value

Econt α 0.8

Ecurv β 0.4

Eimg γ 2.0

Our study of the methodology is done by performing two different experi-
ments. First, we aim to separate the samples between 2 classes (membrane and
no membrane) to get a first approximation about the presence or absence of
ERM. Lastly, those samples will be divided instead on 4 classes, subdividing
membrane class on membrane and floating membrane (ERM separated from the
retina). Similarly, no membrane class is split on no membrane (points of the
ILM with ERM absence) and background.

Our goal is to check what is the most accurate approximation (2 or 4 classes)
while improving the behavior of the classifiers used by refining the parameters
passed as input.
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3.1 2-Class Classification

We will test first the behavior of the classifiers when using 2 different classes to
split the data, as seen on Fig. 7:

Fig. 7. Structure types used on classification

– 60 samples from class membrane. These points are the ones belonging to any
point where ERM exists.

– 60 samples from class no membrane. This class contains any point not pos-
sessing ERM, either background or ILM without membrane.

These samples were used to train different classifiers. Each training iteration
was repeated 10 times to obtain more accurate metrics. The results appearing
here are the average of every iteration. Accuracy is defined in (5).

Acc = (TP + TN)/(P + N) (5)

where TP and TN are True Positive and Negative values, while P and N are
Positive and Negative values.

To evaluate the results, we use a k-fold cross-validation with k = 10 [10].
The different types of classifiers we used are a Multilayer Perceptron, a Naive

Bayes classifier and a Random Forest classifier. These three approximations pro-
vide us a vast array of behaviors, allowing us to conclude what is the best
approach for this problem.

The following tables (Table 2a, b and c) show the results of obtaining the
accuracy of each classifier for different values of window size (Wsize) and number
of bins (Nbins). The most accurate classifier in each series is bolded for clarity.

A more in-depth comparison between the best approximation of each class
is done by comparing side to side the ROC curves of each classifier (Fig. 8). We
can conclude that with the results we have obtained (Fig. 9), the best classifier
is the one based in Random Forest method, accuracy-wise and with better ROC
values.
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Table 2. Accuracy of different classifiers

(a) Multilayer Perceptron accuracy

Nbins
Wsize 5 10 15 20 25

5 75.75% 73.50% 72.67% 72.00% 69.83%

9 83.17% 80.92% 77.75% 76.75% 76.17%

13 86.92% 83.33% 84.92% 79.25% 77.75%

17 84.08% 79.50% 81.92% 78.08% 77.50%

21 79.75% 79.25% 81.83% 79.83% 84.17%

25 82.25% 82.33% 79.25% 79.50% 82.25%

(b) Naive Bayes classifier accuracy

Nbins
Wsize 5 10 15 20 25

5 68.92% 70.17% 64.58% 68.17% 63.33%

9 70.92% 76.08% 73.58% 73.92% 74.42%

13 72.33% 80.83% 79.08% 73.33% 74.42%

17 80.50% 78.75% 75.08% 70.33% 70.83%

21 71.83% 76.83% 75.33% 76.75% 70.08%

25 79.92% 73.92% 73.53% 75.83% 69.75%

(c) Random Forest classifier accuracy

Nbins
Wsize 5 10 15 20 25

5 79.67% 78.00% 78.00% 75.17% 75.25%

9 84.83% 85.83% 85.58% 83.92% 82.08%

13 87.33% 91.08% 91.25% 88.08% 86.75%

17 86.33% 85.92% 85.92% 85.67% 85.83%

21 83.83% 84.42% 83.58% 85.75% 83.75%

25 84.67% 81.25% 84.75% 84.58% 81.83%
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Fig. 8. ROC Curves for each best classifier. Random Forest scores above the other 2
classifiers

3.2 4-Class Classification

In this experiment the goal was to assess the performance of a classifier able to
distinguish four scenarios:

– Class membrane. These points are the ones belonging to zones where the
ERM is fixed to ILM layer.

– Class floating membrane. Here we group ERM points situated on the back-
ground.
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Fig. 9. Accuracy for Random Forest classifiers with 2 classes. Best results are found
with Wsize = 13 and Nbins = 15

– Class no membrane. This class contains points from the retina not containing
ERM.

– Class background. Background points not belonging to any of the other classes
are classified here.

For each class we have obtained 30 samples that will be used for training,
test and validation of the classifiers. In Fig. 7 a sample of each different class is
shown.

Based on the previous results, we will work with a Random Forest classifier
with default parameters and same input data as the last section. Results can be
seen on Fig. 10.

As before, we choose the most accurate classifier. With the information of
Table 3 we can conclude that the best model is, as before, the one with Nbins =
15. In this case, to make a deeper analysis, we extract its confusion matrix
(Table 4). With this data, we can deduct that differentiating between membrane
and no membrane class is the process that contributes the most to the inaccuracy
of the classifier. This is coherent with our last approach (splitting between those
both classes only) being the main focus of this work.

Table 3. Accuracy for Random Forest with 4 classes and Wsize = 13

Number of bins (Nbins)

5 7 9 11 13 15 17 19 21 23 25

84.17% 85.75% 86.50% 86.42% 85.83% 88.34% 86.25% 86.00% 88.05% 86.50% 84.92%

We can see that the behavior of each approximation is similar: a low value
of Wsize or too high causes inaccuracy in the classifiers since we are introducing
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Fig. 10. Accuracy for Random Forest classifiers with 4 classes. Best results are found
with Wsize = 13

Table 4. Confusion matrix for Random Forest with Wsize = 13 and Nbins = 15
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Membrane 1 5 0
80.0%

24
20.0%

Floating
0 0 0

100.0%
membrane

30
0.0%

No membrane 7 0 0
76.7%

23
23.3%

Background 0 1 0
96.7%

29
3.3%

77.4% 93.8% 79.3% 100.0% 88.3%
22.6% 6.2% 20.7% 0.0% 11.7%

Membrane Floating No membrane Background
membrane

Obtained results

noise instead of useful information. Also, we see better accuracy with Nbins
values in the range of 13 to 17. As with window size, values too low or too high
provoke inconsistencies in the classification. Better values for 2 classes and 4
classes are situated on Wsize = 13, giving us a good approximation about what
is a good value to get the most information but avoiding unnecessary noise.

4 Conclusions

Identifying the appearance of epiretinal membrane is an important process in the
opthalmologic field, since it can improve the results of ERM extraction surgery.

In this paper, we have developed an automatic process to detect the ERM on
OCT pictures with deformable models. First, we situated a number of points on
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the suitable area where the ERM can appear. Then, we extracted information
from a series of windows situated around those points. With this information, we
generated a feature vector from the values of the histograms of those windows.
Lastly, we used different classifiers to classify those feature vectors and obtained
the classes associated to each point.

The methodology is very recent and open for improvement. Nevertheless,
results have been so far very promising, justifying further development within
this field. These results may be improved by increasing the number of samples
used in training, to split better the classes membrane and no membrane and
increase the precision of the classifiers. Also, the use of more samples will provide
the classifiers with better data about each class, improving the overall robustness
of the system.

A first proof about the ideal number of classes was also developed, allowing us
to conclude that the approximation using only 2 classes is more accurate than
introducing another 2 classes, giving us 4 in total. In future works, a tool to
separate the points of ERM fixed on the retina from the ones on the background
will need to be developed to provide that information to specialists.
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Abstract. The presented paper is focused on ways of digital image
analysis of ultrasound B-images based on echogenicity investigation in
determined Region of Interest (ROI). An expert system has been devel-
oped in the course of the research. The goal of the paper is to demonstrate
how to interconnect automatic finding of the position of the substantia
nigra using Artificial Neural Network (ANN) with supervised learning
and ROI-based image analysis. For substantia nigra is able to detect the
position using ANN from B-image in transverse thalamic plane. From
this is computed echogenicity index grade inside the ROI as parkinson-
ism feature. The methodology is well applicable for a set of images with
the same resolution. The results have shown practical application of ANN
learning in this case. The second part of the paper is focused on detec-
tion of atherosclerotic plaques. An experimental prospective study shown
the using ANN can be highly time-consuming problem due to complex-
ity of B-images. The plaques have no standardized shape and size in
comparison with SN. To objective appraisal of using ANN to automatic
finding atherosclerotic plaque in B-image we need a large set of images
of normal and pathological state. Although it is very important using
ANN, automatic detection in highly time-consuming problem for ANN
training.

Keywords: Ultrasound · Substantia nigra · B-MODE · B-images ·
Stroke ultrasound · Parkinson’s Disease · Neural networks ultrasound

1 Introduction to B-MODE Imaging

B-MODE imaging is one of the most important modes for diagnostic ultrasound.
A B-image is represented as a two-dimensional image in grayscale. Each pixel
P [x;y] of digitized B-image is displayed as a point with a brightness degree H
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corresponding to tissue echogenicity. The echogenicity is defined as the abil-
ity to reflect or transmit ultrasound waves in the context of surrounding tis-
sues [1]. There are anechoic, hypoechoic and hyperechoic structures. In the case
of the reflection is zero, the structure is anechoic. Hyperechoic structures in
B-image are displayed as white, hypoechoic as gray and anechoic as black, i.e.
each echogenicity grade is expressed by gray level in B-image. Some structures
have variable echogenicity according to many factors. The Fig. 1 demonstrates
different echogenicity degrees in B-image.

In this study are used images with 256◦ of H, in other words from H = 0 to
H = 255.

2 A Set of Used Images

This study is primarily focused on analysis of transcranial B-images in trans-
verse thalamic plane [2]. The first investigated structure is the substantia nigra
in the midbrain followed by different brain structures commonly examined in
neurosonology. Within a pilot study are also used B-images of atherosclerotic
plaques. The main goal is to demonstrate using the approach for different B-
images. No image pre-processing steps have been used.

Fig. 1. A B-image in transverse thalamic plane with marked window 5× 5 cm consists
ipsilateral and contralateral SN

3 Principle of the ROI-Based Image Analysis in B-MODE

There are many ways to automatic recognition of structures in the field of dig-
itized image processing. Our study is focused on neurosonology. The substan-
tia nigra is an area in the midbrain. In B-images is characterized by different
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echogenicity grade depending of death of dopaminergic cells. In normal case the
SN is anechogenic, increased echogenicity is caused by the death of the cells
which is the main feature of Parkinson’s Disease. Thanks to early diagnostics is
possible to help prevent the development of symptoms. ROI-based principle is
based on fact that is not required to analyze the whole image but only a ROI
which is a subset of the image matrix. For example, ultrasound images used in
this study have the resolution of 768×576 pixels. In practice, not only in medical
image analysis, is needed to observe only examined parts of the image. Formally,
ROI is represented as a submatrix of the image matrix. In neurology we need
to define ROI for different brain structures for which the software is adaptable.
The adaptability is one of the key features to define a new ROI to extend the
functionality for different structure in B-image. In the developed application is
able to automatically locate the ROI according to coordinate preset. In case of
using images with the equal resolution, is able to set location of the ROI with
option of manual shift to correct position. Also has been inspected how to recog-
nize the shape and position of substantia nigra. For this purpose has been used
a set of 100 images with identical resolution from the same ultrasound machine.
The automatic positioning based on artificial neural network with supervised
learning have already published [3,4].

4 Supervised Learning of Artificial Neural Networks in
Digital Image Processing

Artificial Neural Networks represent one of phenomena in various image process-
ing fields. In this study, the ANN are used to find position of the ROI according
to coordinates. To this processing is used a feedforward MLP network with
supervised learning based on Error-Backpropagation Algorithm. The goal is to
minimize the network error

Et =
n∑

j=1

Ep (1)

represented as the summation of partial errors

Ep =
1
2
(yj − dj)2 (2)

where yj is j -th output and dj is a desired output. The partial errors are com-
puted for each input xj . The backpropagation algorithm can be described by
the following algorithm:

1. Weights initialization to random small values
2. Set the input vector and the vector of desired outputs
3. Compute the real output yj for input xj

4. Compute the network error (1) from all partial errors (2)
5. Weights adaptation

The algorithm ends if Et < Ed or determined number of cycles or maximal time
of the learning is exceeded.
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4.1 Training of the ANN and Experimental Results

The goal of the training is to learn correct position of the SN depending on the
training set. Because is used the set of images with equal resolution and each image
is cut in the same size, the correct position of the SN can be predefined. Used ANN
is composed of 2 hidden layers. Thanks to equal resolution and window size, the
default correct position of the center of the ROI is given by

S = [2.00; 2.00] (3)

as the initial position of desired output (5). If the output position is incorrect, is
necessary to retrain the network by manual positioning. The coordinates of a new
position are added into the training set. The goal is to achieve successful detection
of the substantia nigra area by minimization of the error of the correct position.
See Fig. 2 with experimental results of the ROI position. Totally has been used
a set of 100 images to training the ANN with correct position. To train of the
ANN have been used images with normal, e.g. low echogenicity grade of SN. It
was observed if the results are reliable used also for hyperechoic SN (Fig. 2). The
finding of the position can be successfully used for images with equal resolution
and in which SN. The ANN should be better adapted with many more samples
with significant differences between images. The adaptation of the position find-
ing is the one of crucial goals of the ANN training. In other words, the goal is to
train the ANN to reliable recognition of the position of the SN for any B-image in
transverse thalamic plane (Fig. 1). There are two following aspects:

– minimal total error Et

– to find a position which is applicable for almost all B-images in thalamic
transverse plane

There are two crucial requirements to successful application. In experimental
study with a set of 100 images which have equal resolution and size, the ANN
evinced acceptable results. Correlation coefficient between desired and observed
results was r > 0.8 and also have been judged intra- and inter- κ coefficients in
which were achieved κintra = 0.75 and κinter = 0.82.

Fig. 2. Experimental results of SN positioning by the ANN learning
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4.2 Brief Description of Used ANN

In this case the following ANN is used:

– multilayer feedforward network
– 1 input layer, two hidden layers, 1 output layer
– supervised learning based on Error Back-Propagation algorithm
– logic sigmoid activation function

To input layer is get an input vector and a weight vector of n inputs. Based on
multiplication is computed the inner potential

ζ = xj · wj (4)

where xi are inputs of coordinates and wi are randomly set weights from 0 to 1.
Each input is multiplicated by the weight. In this case the inputs represents the
coordinates S (3). During the computation in hidden layers is computed the
partial error Ep (2) for each input. Log-sigmoid transfer function

y =
1

1 + e−λx
(5)

and
y =

1
1 + e−x

(6)

if the λ = 1 (sigmoid steepness). The sigmoid steepness influences learning speed.
The goal is to learn ANN to compute optimal coordinates of the position of the
SN which can be applicable in general. To global error (2) minimization is used
Mean Squared Error (MSE) given by

1
n

n∑

j=1

(yj − dj)
2 (7)

In general, MSE is considered as the error between predictions and observed
values. In this case, MSE describes the error between desired coordinates and
observed coordinates of the position. The goal is to find the coordinates with
minimal error and which can be used in general for any B-image.

4.3 Complexity of Intelligent Learning

Intelligent learning of ANN is a complex and time-consuming problem. In case
of B-images, the learning is very complicated due to B-image structure. There
are many aspects which make the image processing very complicated, e.g. non-
linear speckle noise and ultrasound artifacts (shadowing, reverberation, mirror
imaging), etc. The accuracy >95% of the learning is required by an experienced
sonographer. From one’s own experience and from the point of view of the expe-
rienced sonographer, the learning is not the main goal to useful employment. The
goal of this research is to use many different ANN approaches. In other words,
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we can find the optimal activation function, number of hidden layers, weights
adaptation and another criteria for an optimal ANN learning. The learning phase
is the first phase of the process. Accuracy of the learning phase must be vali-
dated by evaluation phase; the comparison of the global error (2) of the ANN.
There is highly time-consuming phase with repeating of the learning phase due
to complexity of the B-image structure. There is necessity to use a large set of
images with different resolution, SN echogenicity grade and position of the SN
to evaluate the accuracy.

5 Using in Developed Software

We have developed the software tool designed for evaluation of echogenicity grade
of the SN [5,6]. Five echogenicity grades are distinguished in neurosonology, i.e.
from hypoechoic to hyperechoic. This software is based on binary thresholding
algorithm inside the selected ROI and computing echogenic area inside the SN
to Parkinson’s Disease diagnosis [6]. Greater echogenic area represents higher
probability of Parkinson’s Disease. Let H represents the intensity level of a pixel
and T is a threshold, then

H > T (8)

For each T is computed how many pixels are >T and subsequently is converted
into real mm2. The echogenicity grade of the SN is evaluated on the basis of num-
ber white pixels depending on the condition (4) for thresholds T ∈ 〈0; 255〉. See
Fig. 3 with an example of decreasing number of pixels depending on threshold T.

Fig. 3. Thresholding results for SN measurement.

Output values, their context and statistical analysis of measured descriptors
is discussed in [7–9].

6 Prospective Study on Atherosclerosis Recognition

The methodology has been developed with respect to universal using not only for
transcranial images. The software could be used for various ultrasound B-images
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because the principle is designed with respect to universal application. We want
to investigate risk evaluation of atherosclerotic plaques in B-images. Firstly, we
must find some features in B-images for reliable detection of atherosclerosis.
The goal of this prospective study is to inspect how atherosclerotic plaques are
distinguishable. Atherosclerotic plaques can be distinguished by size, homogene-
ity, shape, composition, etc. This prospective study is focused on finding these
features to distinguish normal and pathological cases. In comparison with exam-
ined brain structures, in case of atherosclerotic plaque is not applicable to use
a predefined ROI with equal size and shape. There are two main known crucial
limitations. The first limitation is about displaying of atherosclerotic plaques in
B-image; how to reliably distinguish plaques. The second limitation is closely
related with the principle of the developed software. The predefined ROI is used
in case of analysis of SN and some other structures which substantially do not
change size and position. The output from the software represents measured val-
ues of the echogenic area. Due to using the equal ROI, echogenicity grade can be
compared depending on area inside the ROI. To investigation of SN echogenic-
ity grade is used an elliptical ROI with default area A = 50 mm2, see Fig. 3. In
case of investigation of atherosclerotic plaques is not applicable to use ROI with
constant area. Each plaque appears differently and must be defined a special
ROI and we cannot compare decreasing area (Fig. 3). Figure 4 shows three dif-
ferent ROIs corresponding to atherosclerotic plaques defined by an experienced
sonographer.

Fig. 4. Three different ROI corresponding to atherosclerotic plaques in B-image

Due to different size of ROI in each case, is not possible to compare decreasing
area, see Fig. 5. In case of SN and another brain structures is used equal size of
the ROI for all cases.

6.1 Automatic Recognition of the Plaque Using ANN

For atherosclerotic plaques using ANN is much more complicated in comparison
with SN. There is a way how to recognize shape of the plaque using ANN. The
automatic recognition of the shape could be based on Region-Based training
or training based on echogenicity grade. There are two crucial barriers. Firstly,
the learning of the ANN to successful recognition of the plaque shape could be
time-consuming problem because the shape has no standardization. So, to train
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Fig. 5. The results of descending area are incomparable

the ANN requires a huge sample of different normal and pathological findings,
e.g. based on correlation with histology. Secondly, how to select some features as
inputs into ANN input layer to computing? Simply, what we get from one image
as reliable feature could not be reliable from another image. The recognition
of the plaque by ANN is much more complicated in comparison with finding
position of the SN. In B-image each plaque is displayed differently (different
size, shape, echogenicity, etc.). On the ground of the differences the recognition
of the plaque is highly time-consuming. First of all, very large set of images is
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needed to start. We have only small set of images at present but a large database
is created concurrently with analysis of preserved histological patterns. To find
features, the patterns must be analyzed and compared with B-images. After this
step could be analyzed if findings in B-image correspond to histological patterns.

6.2 Ratio of Hyperechoic Pixels

In connection with these facts is possible to compute ratio instead of area. The
core of the computing could be based on ratio between number of hyperechoic
pixels to total number of pixels independently on shape and size of the ROI. The
ratio could be a feature to distinguish normal and pathological cases. Is this solu-
tion acceptable for medical practice? Exist some better features to atheroscle-
rotic plaques analysis in B-images? Even though is one of possible ways to ana-
lyze atherosclerotic plaques in B-images with using developed software. It is to
research in the near future. The software has been also used for experimen-
tal investigation of insula [10]. Recently has been performed an experimental
study with 23 images of atherosclerotic plaques [11]. The images were visually
distinguished (homogeneity, low heterogeneity and strong heterogeneity) by an
experienced sonographer. The aim was to observe reproducibility using selected
statistical descriptors. However, the results did not produce reliable markers
caused by number of images and the ambiguity of manually selected ROI.

7 Results, Conclusions and Future Goals

The study is focused on ROI-based image processing of ultrasound B-image on
the basis of developed software in MATLAB originally designed to analysis of
echogenicity of substantia nigra. The software has been developed since 2009
but recently the limitations are crucial to using the software. These limitations
lie in the approach how to define ROI. The future goals are focused on using
the software to analysis of atherosclerotic plaques in B-images. Investigation of
automatic finding of the ROI using ANN is one of crucial part of this research.
There are some different ways how to recognize ROI using ANN but is not a
primary goal at present. In case of ultrasound B-images, it requires very exact
and time-consuming learning of the ANN given the B-image complexity (noise,
resolution, initial settings of gain, etc.). There is no large set of images correlated
with histological analysis. Nevertheless, the results demonstrated that finding the
position of the SN is partially applicable, primarily for a set of the images with
equal size and resolution. The achieved correlation was >0.8 and inter-/intra- κ
coefficients were 0.75 and 0.82. To find an optimal learning and evaluating phase
of ANN is needed larger set of images and try to set different input parameters
of ANN. Using ANN to automatic detection of the atherosclerotic plaque is
considered as very progressive way but also highly time-consuming and much
more complicated. The performed experimental study with the set of 23 images
is not sufficient to unbiased results. First of all, there is necessity to obtain a
large set of B-images compared with histological patterns to find corresponding
features depending on progression of atherosclerosis.
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Abstract. The aging of the population is a matter of concern due to its asso-
ciation with various diseases in humans that limit their quality of life. Among
them, glaucoma is one of the leading causes of blindness in the world. To its
early diagnose, retinal fundus images are visually inspected by experts. In recent
years, image-based computer aided diagnosis systems have been proposed.
Automatic segmentation of Optic Disc (OD) and cup areas are their first and
most difficult tasks. In this paper, a computerized technique aimed to their
extraction from the original images is presented. The tool is related to human
perception due to the use of an advanced color metric, CIE94 within a uniform
color space, CIE L*a*b* to compute pixels’ color gradients [1]. Based on this
information, a classifier assigns a probability value to each of the pixels,
meaning its suitability for being part of the Optic Disc and Cup border. The tool
has been tested on 200 images from different public databases achieving an
accuracy value of 96.63%. This quality level makes the proposed color-based
image processing system capable to assist the physicians in glaucoma screening
programs.

Keywords: Glaucoma � Optic disc � Cup � Cup to disc ratio � Machine
learning � Retinal images � Diabetic retinopathy

1 Introduction

There is a widespread need of the medical community of tools for the detection and
management of diseases involving the retina in a more cheap and efficient way [2]. The
reason is clear: with the increase of the average world population age, the number of
patients suffering from eye diseases has increased. This growth has led to a relative
proliferation of ophthalmologic services, especially in the rural areas of developed
countries. Recent studies suggest the existence of 37 million of blind people.
The VISION 2020 initiative is having a considerable impact in reducing blindness
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caused by eye infections, but a greater effort is still needed to solve problems such as
cataracts, glaucoma and diabetic retinopathy [3], especially when it is known that three
quarters of all blindness can be prevented or treated when are early diagnosed [4].

Ocular screening programs are effective if the disease is identified at an early stage.
These ocular procedures consist on the acquisition and study of color images of the
retina, currently acquired non-invasively by an expert ophthalmologist. With the large
number of patients performing eye examinations in an ordinary way, this added work
represents a time consuming task for the medical expert, who must analyze and
diagnose each one of them. It becomes evident the need to automate the task of
analyzing the large number of retinal images leaving the medical expert with those
dubious or problematic. This automation would have a positive effect on the patient
since he would receive his results in a shorter time interval. Several eye-screening
programs have been developed in the past with an acceptable sensitivity and specificity
in relation to the associated costs [5, 6]. However, there is still great potential for cost
and time reduction, increased effectiveness and extension to remote areas [2].

Among all eye diseases, the present article proposes a useful tool for the diagnosis
and treatment of glaucoma, the second leading cause of blindness in developed
countries [2]. This ocular disease is characterized by the progressive loss of nerve fibers
in the retina that causes changes in the appearance of the optic disc (OD) and cup. The
majority of affected individuals do not present symptoms in the early stages of the
disease, suffering visual field defects and progressive loss of vision in later stages. The
changes in the appearance of the OD and the cup make this disease suitable for
diagnosis using advanced techniques of image processing. These techniques should
extract information from the image, especially col-or and form, to translate it into a
likelihood of suffering the disease.

The state of the art regarding image processing for the diagnosis of glaucoma is
presented below. Given the relevance of the color information for this application, the
methods will be presented according to the color model that they use from the most
basic that use the image in gray scale to the more advanced ones that use spaces
adapted to human perception.

Although OD has well defined characteristics, its automatic segmentation is not
straightforward since there are numerous variations on its appearance due to the
pathology itself or due to the presence of other anomalies in the patient. The edge
detection of the OD has received a great deal of attention from image processing
specialists [4].

A large group of works are based on the grayscale image. The reason is that these
methods use well-known algorithms that have been developed in the past for other
applications. In addition, until relatively recently, invasive gray-scale angiographies
were the ones the researchers took as a starting point for their algorithms. In this way,
most techniques use these algorithms taking advantage of the work done for years by
researchers in the field of image processing. They are, therefore, less innovative not
taking into account color information [5–8].

The use of color in retinographies is quite limited. Most of the existing algorithms
do not exploit the color image in its three-plane representation (RGB, HSV, etc.) but
make use of a single color plane treating it as a grayscale image. Most of the methods
employ a plane of the RGB space since this is the simplest representation because the
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image is usually stored in this format [9–11]. Another frequently used color space is
some of the HSV family given the intensity or hue separation. These color spaces are
not uniform, that is, the distance between colors measured in them does not correspond
to perceived color differences [12].

Finally, there are methods that are based on the luminance coordinate (L*) of the
uniform space CIE L*a*b*, [4, 13].

Sometimes, two planes are used but independently, that is, part of the processing is
done in one plane and another part is performed in another [14]. Only a few articles
mention the use of the three planes (usually in the RGB space in combination with the
grayscale image) but, again, processing them separately [15]. The use of color spaces
related to human perception is generally forgotten, with a minority being the techniques
designed in the uniform color space CIE L*a*b*, [16].

As we can see, the work focused on the detection of OD is numerous. In the case of
cup, however, the number of articles is not so high, perhaps because of the greater
difficulty in precisely finding the edge of this area, which in many cases is diffuse or
presents occluded regions by the strong presence of blood vessels. In some OD, this
area is almost imperceptible being very difficult its location by traditional methods [4].

The selection of a color space for the detection of cup is usually based on the search
for a greater contrast in the brightness of this zone with respect to the background of the
retinography. The most common selection is the use of a single color plane with the G
of the RGB space being mostly adopted [17, 18]. There are also some techniques based
on the R and B planes [19, 20], being of minor use the color plane a* of the space of
color adapted to human perception CIE L*a*b* [21].

As for the use of combined color planes, the processing is carried out in separate
planes and the result obtained in each of them is combined in some way. The most used
planes return to the RGB space, selecting two of them or using the three [22]. Other
planes used are the S and V of the HSV color space [23]. The methods that make use of
the vectorial nature of the color in uniform spaces, CIE L*a*b* in [4, 24] and JCh of
the color appearance model CIECAM02 in [25], are scarce.

Given the relevance of the disease and the evolution of available algorithms, the
number of publications regarding the diagnosis of glaucoma has increased in the last
five years. Most of them are based on the calculation of the CDR and its subsequent
comparison with a fixed threshold value. Within these methods the chosen color space
is mostly RGB, given its simplicity. Moreover, these techniques only use the G [26–28]
plane although some use the image in gray scale [29].

Other techniques include some additional measures for distinguishing between
healthy and glaucomatous images. In [30] processing is performed in the V plane of the
HSV space. Once the OD and the cup are extracted, the CDR and the thickness of the
neuroretinal ring are calculated in relation to their location in the OD. If the CDR is
greater than 0.3 and the calculated thickness is not distributed as expected, the image is
considered glaucomatous.

At the view of this reading we can infer:

(1) They do not take into account the adaptation to human perception nor the
advanced theory of color limiting in the information they get from the images.

(2) They mainly use basic processing techniques, especially gray-level approaches.
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(3) Despite the fact that high success rates are presented, around 94%, the algorithms
are not rigorously validated: the images usually belong to private bases with an
unknown degree of difficulty and, therefore, of representativeness. The number of
images is very low ranging from 30 to 196. This number is mostly around 40. The
image base is usually biased containing a larger number of healthy images.
Usually a single database per article is used, which can lead to the method
describing well those images and not others.

In this article we propose the use of color information in a perceptually adapted
color space CIE L*a*b* along with an advance color distance to compute color
variations that characterize OD and cup areas.

2 Methods

Regarding the development of the tool, we have selected 200 images from six publicly
available databases [31–36]. Some of these retinal fundus images correspond to healthy
eyes while others correspond to different ocular pathologies. The images have been
chosen because they offer a wide range of appearances, illumination and colors as it can
be seen in Fig. 1.

2.1 Pre-processing

The initial step involves locating a Region of Interest (ROI) to achieve a considerable
reduction in computational resources [37, 38]. This selection was made by initially
locating the OD center and retaining a square area centered on it. The total ROI area is
7% of the total eye area. This restriction is usually adopted by other state of the art
techniques [1]. Some ROI examples can be seen in Fig. 1.

2.2 Perceptually Adapted Color Derivatives

For each pixel on each ROI 25 color directional derivatives are computed, each one
corresponding to an angle from 0º to 360º with an interval of 15º of separation. As in
[39] a Sobel mask is used in CIE L*a*b* with CIE94 color difference. The derivative
can be obtained by subtracting two vectors: the first one containing the positive
coefficients of the mask, V+, and the other one with the negatives ones, V− (Fig. 2).

Where a (x, y) = [L* (x, y), a* (x, y), b* (x, y)]’ are the color values of a pixel with
coordinates (x, y).

The norm of the derivative m is obtained as:

m ¼ DE94 V þ ;V�ð Þk k ð1Þ

with DE94 V þ ;V�ð Þ a. the CIE94 color difference between both vectors (Fig. 3).
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Fig. 1. Images (a), (b), (c) and (d) represent some region of interest obtained from the original
retinographies. The variability of appearances is a key point for the development of a robust
system. (Color figure online)

Fig. 2. The original image is process in masks and two vectors are computed regarding the
orientation selected. The upper matrix represents the image neighbourhood under consideration
while the lower matrices are two examples of gradient masks rotated 0º and 45º.
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2.3 Proposed Features

A feature vector that is mainly compounded by the 25 color gradients previously
explained represents each pixel on each image and other characteristics related to its
color, its position and its spatial relation to the optic disc center. This vector contains:

(1) 25 color gradients values.
(2) Color values: L*, a* and b*.
(3) 1 value corresponding to distance to the centre.
(4) 1 value corresponding to the angle respect to the centre.
(5) 2 values relating to the position (i, j) of the pixel

2.4 Classification

Each pixel, on the base of its feature vector, is assigned to a one of these three possible
classes: background, optic disc or cup with a complex tree classifier. Decision tree

θ=15° θ=30°

θ=45° θ=60°

Fig. 3. Gradient images corresponding to four different orientations: h = 15°, h = 30°, h = 45º
and h = 60°
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classifiers are simple yet widely used classifiers [40]. Their structure is similar to a tree
with a root, internal nodes and leaves. The root has no incoming edges and zero or
more outgoing edges. Internal nodes have one incoming edge and two or more out-
going edges. Moreover, leafs or terminal nodes, have one incoming edge and no
outgoing edges [40]. The root and internal nodes are capable to differentiate samples
regarding their features while each of the leaves corresponds to a different class. Inside
this family of tree classifiers, complex tree is characterized by having many leaves that
makes many fine distinctions between classes (maximum number of splits is 100).

3 Results and Discussion

The tool has been validate with 200 images selected from six publicly available
databases [31–36]. For ground truth generation, the images where manually annotated
by two experts that delineated OD and cup areas.

For classification we have selected a complex tree classifier with 10-fold cross
validation meaning that the image dataset is split randomly into 90% for training and
the remaining 10% for testing, something that is repeated ten times in order to generate
unbiased results.

The performance of the proposed system, including accuracy and also the speci-
ficity and sensitivity of the classifier for the three categories are presented in Table 1.
The proposed technique has achieved a high level of accuracy: 96.63%, a sensitivity
(Se) of 98.88%, 79.16% and 79.55%, and a specificity (Sp) of 90.90%, 98.07% and
99.43% respectively for the three classes. The three classes are background (class 1),
optic disc (class 2) and cup (class 3).

Some examples of the obtained results are shown in Fig. 4. The images used are
characterized by a high level of difficulty due to the presence of almost imperceptible
cups, abnormal OD sizes, etc. However, the tool is capable to accurate delineate the
edges of both areas when results (blue) and ground truth (green) are compared.

Table 1. Performance of the validated complex tree classifier for the three classes, background
(class 1), optic disc (class 2) and cup (class 3).

Background Optic disc Cup

Sensitivity 98.88% 79.16% 79.55%
Specificity 90.90% 98.07% 99.43%
PPV 98.82% 77.12% 85.04%
NPV 91.30% 98.28% 99.18%
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(a) (f) (k) (p) 

(b) (g) (l) (r) 

(c) (h) (m) (s) 

(d) (i) (n) (t) 

(e) (j) (o) (u) 

Fig. 4. Some examples of the results obtained with the tool. The automatically detected edges of
the OD and cup regions are marked in blue over the ROI images (a)–(e) and (l)–(o) while their
corresponding manually annotated ground truths are marked in green (f)–(j) and (p)–(u). (Color
figure online)
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4 Conclusion

This paper presents a perception adapted technique for Optic Disc and Cup segmen-
tation on retinal fundus images based on color gradients and Complex tree classifier.
Compared to state of the art techniques this method has a significantly more simple
structure and does not need to detect blood vessels or quantify vessels bends. More-
over, it not only deals well with different kind of retinal appearances but also is capable
of segmenting almost inexistent Optic Disc and Cup areas due to the values of the color
gradient in the vessels edges.
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Abstract. This paper tackles the design and evaluation of cost sensitive
Support Vector Machine (2C-SVM) based radar detectors in presence of
Gaussian and K-Distributed clutter. 2C-SVM based solutions are able
to approximate the Neyman-Pearson detector for a specific false alarm
rate (PFA). Real data acquired in different wind conditions by a coher-
ent, pulsed and X-Band radar were considered. A statistical analysis is
carried out to design the 2C-SVM for detecting targets with unknown
parameters in Gaussian and non-Gaussian interference. A grid search of
the best training parameters to approximate the pair detection probabil-
ity (PD) and PFA of the NP detector is required. Results prove the capa-
bility of the 2C-SVM based detectors to maximize the PD for a desired
PFA independently of the detection problem likelihood functions.

Keywords: 2C-SVM · Neyman-Pearson detector · Gaussian clutter ·
K-Distributed clutter

1 Introduction

A traditional security system is based on active radar sensors used for surveil-
lance and monitoring tasks. In Fig. 1, the general structure of a scanning radar is
presented. The radar detection problem can be formulated as a binary hypothesis
test, where the detector has to decide between target absence (null hypothesis,
H0) and target presence (alternative hypothesis, H1). The most extended detec-
tor criterion in radar applications is the Neyman- Pearson (NP) detector, which
maximizes the Probability of Detection, PD, maintaining the Probability of False
Alarm, PFA, lower than or equal to a given value [1,2].

If z̃ is the observation vector generated at the output of the synchronous
detector and p(z̃|H0) and p(z̃|H1) are the detection problem likelihood func-
tions, a possible implementation of the NP detector consists in comparing the
Likelihood Ratio (LR), Λ(z̃), to a threshold selected according to PFA require-
ments, ηlr [2], and deciding in favour of H1 when the LR output is higher than
the selected threshold, and in favour of H0 when the LR output is lower than the
selected threshold (1). This approach requires a complete statistical characteri-
zation of the observation vector under both hypotheses, and significant detection
c© Springer International Publishing AG 2017
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Fig. 1. General architecture of a coherent radar receiver

losses are expected when the true likelihood functions are different from those
assumed in the LR detector design.

Λ(z̃) =
p(z̃|H1)
p(z̃|H0)

H1

≷
H0

ηlr(PFA) (1)

In practice, clutter and target statistics are variable. Although clutter para-
meters can be estimated from radar measurements, target ones are really difficult
to estimate. If the parameters the likelihood functions depend on, φ, are random
variables (RVs) and their Probability Density Functions (PDF’s) are known, the
optimum detector in the NP sense can be implemented by comparing the average
likelihood ratio (ALR) to a detection threshold fixed according to PFA require-
ments [2]. The ALR formulation usually leads to integrals without analytical
solution, and suboptimal approaches are proposed: numerical approximations of
the ALR, or the Generalized Likelihood Ratio (GLR), which uses the maximum
likelihood estimation of the parameters governing the likelihood functions in the
LR, as if they were correct [2,3]. Note that GLR test requires infinite number
of LRs detector to cover all possible values of φ, so an implementation cannot
be carried out. As an alternative the Constrained Generalized Likelihood Ratio
(CGLR)is expressed in (2) where K is the finite number of LR detectors designed
for equispaced discrete values in the expected variation range of φ.

max
ϕk

Λ(z̃, ϕk)
H1

≷
H0

ηcglr(PFA) k = 1, . . . ,K (2)

This paper tackles the design of radar detectors based on Support Vector
Machines (SVMs) to maximize the detection probability in composite hypoth-
esis testing problems. The possibility of approximating the optimum detector
using supervised learning machines trained to minimize a suitable error func-
tion has been previously studied [4]. Although, the output of a discriminative
learning machine permits to obtain an estimate of the posterior probabilities of
the (binary) hypotheses if and only if the surrogate cost which is applied for
training is a Bregman divergence [5]. SVMs are an intelligent agent that are an
approximate implementation of the method of structural risk minimization that
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can provide good generalization on detection and classification problems with-
out incorporating problem-domain knowledge [6,7]. In [8,9], SVMs, the original
SVM formulation (C-SVM) and the cost-sensitive SVM one (2C-SVM), are used
to design detectors considering NP and minimax criteria. In [10], a theoretical
study about the capabilities of SVMs to approximate the NP detector reveals
that only 2C-SVM based solutions are able to approximate the optimum one for
any specific PFA value associated with the costs assigned to miss detections and
false alarms.

In this paper, the validation of the 2C-SVM based detector with real radar
data is considered. Real data acquired by a coherent, pulsed and X-Band radar
deployed on Signal Hill by Council for Scientific and Industrial Research (CSIR)
[11] were considered. 2C-SVMs, trained in a supervised manner, are designed
and evaluated in Gaussian and non-Gaussian radar scenarios. Results confirm
the capability of 2C-SVM based solutions to maximize the PD for a desired PFA.

2 2C-SVM Based Approximation to the NP Detector

Let’s consider a learning machine with one output to classify input vectors
z = [�e(z̃1),�e(z̃2), ...,�e(z̃P ),�m(z̃1),�m(z̃2), ...,�m(z̃P )]T into two hypoth-
esis, H0 and H1. The training set is composed of Ni pre-classified patterns from
Hi, with desired outputs tHi

, i ∈ {0, 1}, and N = N0 + N1. The output of the
learning machine is denoted by f(z).

In 2C-SVMs, the function implemented by the learning machine (f(z) =
wT Φ(z) + b) is a linear function of the results of mapping the input pattern z
into a higher dimensional space H with the functions Φ(z), that are known as
kernel functions [6]. The parameters of the learning machine are the weights
vector w, the bias constant b, and the parameters the functions Φ(z) depend on.
The SVM is based on the hyperplane which maximizes the separating margin
between the two classes, that can be obtained mathematically by solving the
following unconstrained optimization problem defined in expression (3) [9]:

min
f,ξ,γ

{

1
2‖w‖2 + Cγ

∑

i∈X0
ξi + C(1 − γ)

∑

i∈X1
ξi

}

tHi
f(zi) � 1 − ξi i = 1, ..., N

ξi ≥ 0 i = 1, ..., N

(3)

where C and γ control of the cost associated with the two possible errors: Cγ
associated with false alarms and C(1−γ) associated with detection losses. ξi are
slack variables to relax the separability constraints when the training data can
not be completely separable by an hyperplane (

∑

i ξi is an upper bound on the
number of training errors).

The function approximated by a 2C-SVM trained in a supervised manner to
minimize (3) when N → ∞ is calculated in [10] and expressed in (4).

f0(z) = −1 if (1 − γ)P (H1)f(z|H1) < γP (H0)p(z|H0)
f0(z) = 1 if (1 − γ)P (H1)f(z|H1) > γP (H0)p(z|H0)

(4)
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After training, the 2C-SVM will provide outputs close to +1 or −1, depending
on the conditions expressed in (4). If the output of the 2C-SVM is compared to
a threshold η0 = 0, the intermediate value between +1 and −1, the decision rule
is equivalent to:

f0(z)
H1

≷
H0

η0 = 0 ⇒ f(z|H1)
f(z|H0)

H1

≷
H0

ηlr =
γP (H0)

(1 − γ)P (H1)
(5)

Varying the value of γ, we can select different thresholds of the likelihood
ratio based detector. And varying ηlr, we can implement detectors with pairs
(PFA, PD) corresponding to different points of the Receiver Operating Charac-
teristic (ROC) curve of the NP detector. However, the surrogate cost which is
applied for training is not a Bregman divergence, so if the applied threshold
is changed, an approximation error to another ROC point has to be assumed.
Then, a 2C-SVM based detector can maximize the PD for a given PFA using
the corresponding ηlr and training the 2C-SVM with the associated γ. Unfor-
tunately, it is difficult to fix the threshold theoretically, and it must be fixed
experimentally. In addition, the training set size is finite and the C parameter
will be used to increase the generalization capability. A grid search in C − γ
space has to be carried out to approximate the desired point of the NP ROC
curve.

3 Experimental Results

Real radar data acquired by X-Band radar deployed on Signal Hill by Council for
Scientific and Industrial Research (CSIR) are used to demonstrate the capability
of 2C-SVMs to maximize the PD for a given PFA value. The datasets used in
this study are available to the international radar research community on [12].

Signal Hill location (Fig. 2(a)) provided 140◦ azimuth coverage of which a
large sector spanned open sea whilst the remainder looked towards the West
Coast coastline from the direction of the open sea. Grazing angles ranging from
10◦ at the coastline to 0.3◦ at the radar instrumented range of 37.28 NM (Nau-
tical Miles) were obtained. The pulse repetition frequency was 2 kHz and the
range resolution is 15 m. A collaborative 4.2 m inflatable rubber boat, that can
be considered as a point target, was used during some measurements (Fig. 2(b)).

Datasets were recorded with different local wind conditions. The average
wind speed varied between 0 knots and 40 knots and the significant wave height
ranged between 1 and 4.5 m. Then, in function of the selected dataset and the
associated wind conditions, sea echoes can be modelled as Gaussian or non-
Gaussian clutter.

The selected files are Dataset 08-028.TStFA and Dataset 10-104.TTrFA, and
main parameters of the acquisitions are summarized in Table 1 [12]. There is no
available information about target speed or GPS data. The squared envelopes
in logarithmic units of the first pulses of the patterns are presented in Fig. 3.

A CGLR composed of K = 2P LR detectors designed for discrete values
of unknown target parameter equally spaced in the variation interval can be



2C-SVM Based Radar Detectors 261

(a) Plan overview (b) Small boat deployed during
measurement trial

Fig. 2. Radar environment considered in [12]

(a) Dataset 08-028.TStFA (b) Dataset 10-104.TTrFA

Fig. 3. Logarithmic squared amplitude of the first pulses of the patterns for all range
cells associated with the selected files

Table 1. Acquisition specifications of selected datasets [12]

Dataset 08-028.TStFA Dataset 10-104.TTrFA

Acquisition time 33.9625 s (1, 045 patterns) 64.48 s (1, 984 patterns)

Range extend 2248.4 m (151 gates) 1, 903.7 m (128 gates)

Significant wave height <0.1 m, 246.5 N 2.48 m, 244.8 N
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used to approximate the NP detector [14,15]. Both CGLR and 2C-SVM based
detectors require for the design stage a statistical analysis of the databases based
on the Empirical Cumulative Distribution Function (ECDF). Goodness-of-fit
test, the Kolmogorov-Smirnov test, was used to validate the clutter model using
the decision parameter that indicates the result of the hypothesis test (1 if the
test rejects the null hypothesis at the 5% significance level, 0 otherwise).

2C-SVMs are designed assuming the quadratic function (6) as kernel function
due to the better performance compared to radial basis for large training sets
[13]. The training set size is composed of 1, 000 patterns (P (H0) = P (H1) = 0.5).

Φ(zi, zj) = (1+ < zi, zj >)2 < zi, zj >=
∑L

l=1 zi,lzj,l (6)

The desired PFA is set to 10−4. PFA and PD values have been estimated
using Monte-Carlo simulations and the data availability guarantees a relative
estimation error lower than 25%.

3.1 Statistical Analysis of Real Radar Data

Attending to significant wave height (Table 1), the sea state is calm (code 1)
for Dataset 08-028.TStFA and moderate (code 4) for Dataset 10-104.TTrFA.
Under these conditions, Rayleigh and K-Distribution can be used for modeling
sea clutter amplitude, respectively.

The ECDFs of the sea clutter amplitude samples are estimated and compared
to theoretical Rayleig and K-Distribution CDF. Samples of 27th and 40th range
gates for Dataset 08-028.TStFA and Dataset 10-104.TTrFA respectively are con-
sidered. The comparisons between the empirical and the theoretical CDFs are
presented in Fig. 4. The Visual inspection in Fig. 4 confirms a very good agree-
ment with Gaussian and K-Distributed clutter model respectively. Table 2 details
the results provided by the KS-Test.

(a) Dataset 08-028.TStFA (b) Dataset 10-104.TTrFA

Fig. 4. CDFs for the sea clutter amplitude samples of the real radar data
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Table 2. KS-Test for the sea clutter amplitude samples of the real radar data

Dataset 08-028.TStFA

Distributions Parameters Decision

| x | Rayleigh (x ≥ 0) Fx(x) = 1 − exp−x2/2σ2
σ = 0.42783 KS-Test: 0

| x | K-Distribution (x ≥ 0) ν = 1.0040 KS-Test: 0

Fx(x) = 1 −
(

2
2ν ·Γ (ν)

(
2 · x
√

ν
μ

)ν

· Kν

(
2 · x
√

ν
μ

))
μ = 0.42810

Dataset 10-104.TTrFA

Distributions Parameters Decision

| x | Rayleigh σ = 0.4455 KS-Test: 1

| x | K-Distribution ν = 3.9357 KS-Test: 0

μ = 0.3969

The K-distribution is formed by compounding two separate probability dis-
tributions, one representing the radar cross-section (RCS) and the other rep-
resenting speckle. The component representing the RCS is a slowly varying
non-negative Gamma process that introduces a power modulation of the local
backscatter, consequence of longer wavelength sea waves (texture), τ [n]. The
component representing speckle is modeled as a complex Gaussian random
process, g[n]. As the power modulation is slower than the speckle component, it is
possible to approximate the received clutter sequence by the following expression:

zk[n] =
√

τ [k]g[n] n = k, ..., k + Lc − 1 (7)

where Lc is the coherence length of sea texture, the number of time samples
for which the texture can be considered constant. Expression (8) can be used to
estimate the texture and the hypothetical speckle time sequences, respectively,
for each possible Lc.

τ̃ [n] = 1
Lc

∑k=n+Lc
2 −1

k=n− Lc
2

| zk[n] |2 g̃[n] = zk[n]√
τ̃ [n]

(8)

In Fig. 5(a), the KS-Test values obtained by comparing the texture sequence
CDF to a gamma distribution for different Lc are presented. The threshold of a
5% significance level is also depicted. It is possible to conclude that the coherence
length of sea texture is between 0.08 and 0.43 s. As the 64-pulses-patterns time
is 0.0325 s, a constant texture can be considered in each pattern. Additionally,
the real and imaginary parts fulfil the Jarque-Bera goodness-of-fit test (it is
a goodness-of-fit test of whether sample data have the skewness and kurtosis
matching a normal distribution), so the Gaussian distribution fits the real and
imaginary parts of speckle. In Fig. 5(b), the speckle amplitude ECDF is depicted
confirming the approximation to a Rayleigh distribution.

Proposed detection schemes present an important dependence on the clut-
ter one-lag clutter correlation coefficient (ρc), so the Autocorrelation Func-
tion (ACF) for the pulses associated with the same pattern was studied. The
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(a) KS-Test statistic of the texture for
different Lc

(b) CDFs for the amplitude of speckle
component (Lc = 0.18s)

Fig. 5. Statistical analysis of the speckle component for 27th range cell of Dataset
10-104.TTrFA

(a) Sea clutter spectrum of Dataset
08-028.TStFA

(b) Target spectrum of Dataset
08-028.TStFA

(c) Sea clutter spectrum of Dataset
10-104.TTrFA

(d) Target spectrum of Dataset
10-104.TTrFA

Fig. 6. Doppler Shift of range cells of real radar data (RCS [dBm2 · Hz−1])
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estimated ρc is equal to 0.8 and 0.966 for Dataset 08-028.TStFA and Dataset
10-104.TTrFA respectively. In Fig. 6, the spectra for range cells associated with
seal clutter and target returns are presented. The spectra corresponding to sea
clutter correlated echoes are localized close to the zero Doppler, while spectra
of range cells corresponding to target echoes present a variable Doppler shift,
Ω ∈ [−0.0491, 0.0982] rad for Dataset 08-028.TStFA and Ω ∈ [−0.6; 0.6] for
Dataset 10-104.TTrFA.

Clutter and target powers, ps and pc, were estimated to generate the design
CGLR and the 2C-SVM training sets. In Table 3, the estimated power and the
mean SIR = 10 log(ps/pc) is detailed.

Table 3. Estimated power levels or real radar data

ps pc SIR (dB)

Dataset 08-028.TStFA 20.7564 0.3510 17.72

Dataset 10-104.TTrFA 2.0068 0.3969 7.04

3.2 CGLR and 2C-SVM Detection Performance

Attending to statistical analysis, two radar scenarios with different detection
problem likelihood functions are considered for designing and testing the con-
sidered detectors:

– Dataset 08-028.TStFA: CGLR and 2C-SVM are design for detecting targets
with unknown Doppler shift in Gaussian interference. Swerling I target to
model vessel echoes acquired by marine radars was assumed [16].

– Dataset 10-104.TTrFA: detection schemes are designed for detecting targets
with unknown Doppler shift in K-distributed interference. Swerling V targets
model was selected in order to have the capability of formulating the LR
detector analytically [17,18].

In Fig. 7, the grid searchs in the C and γ space to select the best 2C-SVM
training values in both environments are depicted. The represented logarithmic
PFA values were estimated using η0 = 0. The detection performances of the
2C-SVMs designed with the suitable pairs (γ, C) applied to real radar databases
are compared with the PD provided by the CGLR for PFA = 10−4 in Fig. 4.
The pair (γ = 0.99, C = 10) provides the best approximation to the CGLR
performance for PFA = 10−4 independently of the case study.

2C-SVM, designed with (γ = 0.99, C = 10), based solutions provides similar
detection performance to the CGLR detector for the PFA closest to the desired
one. Figure 8, show the considered detection schemes outputs for considered
radar scenarios. The estimated centroids are depicted and the target trajectories
are clearly detected by the CGLR and 2C-SVM detectors with both databases.
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(a) Dataset 08-028.TStFA (b) Dataset 10-104.TTrFA

Fig. 7. 10 log(PFA) resulted from a grid search in (γ, C) for 2C-SVM

Table 4. 2C-SVM and CGLR detection performances with real radar data

Dataset 08-028.TStFA Dataset 10-104.TTrFA

Detector PFA PD PFA PD

CGLR 1.553 · 10−4 0.8016 1.0183 · 10−4 0.5101

SVM C γ

10 0.99 1.0503 · 10−4 0.8008 1.1024 · 10−4 0.4879

10 0.95 15.2247 · 10−4 0.8563 20.1065 · 10−4 0.8372

103 0.7 0.9145 · 10−4 0.7847 23.3584 · 10−4 0.5111

(a) CGLR detector applied to
Dataset 08-028.TStFA

(b) 2C-SVM detector applied to
Dataset 08-028.TStFA

(c) CGLR detector applied to
Dataset 10-104.TTrFA

(d) 2C-SVM detector applied to
Dataset 10-104.TTrFA

Fig. 8. Estimated centroids for the real radar matrices
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4 Conclusions

This paper tackles the problem of designing and validating a 2C-SVM radar
detector capable of approximating the optimum Neyman-Pearson detector for
given PFA in composite hypothesis testing problems characterized by targets
with unknown parameters in Gaussian and K-Distributed clutter.

In [10], a theoretical study to obtain the function the learning machine con-
verges to after training, if a sufficiently large number of training patterns was car-
ried out. The 2C-SVM implements a function with only two values, but they are
obtained depending on which is higher (1− γ)P (H1)p(z|H1) or γP (H0)p(z|H0).
In this case, the detector that is implemented when the output of the 2C-SVM
is compared to a threshold with an intermediate value between the possible out-
puts, is equivalent to the Neyman-Pearson detector for a fixed pair (PFA, PD).
The values of PFA and PD varies with the parameter γ that can be used to select
different points in the ROC curve of the NP detector. As the number of training
patterns is finite and the relation between γ and PFA is usually unknown, a grid
search in C − γ space has to be carried out to approximate the desired point of
the NP ROC curve.

The evaluation of the 2C-SVM detection performance is also studied using
real data available at [12]. Clutter and target statistics are analyzed to design the
synthetic training set. Two datasets with different wind conditions are selected
to consider two cases study: detecting Swerling I targets with unknown Doppler
shift in Gaussian interference and detecting Swerling V targets with unknown
Doppler shift in spiky K-Distributed clutter. Sub-optimum approaches to the
ALR detector based on the CGLR are considered as reference detectors. Results
obtained for PFA = 10−4 confirm the similarity of the CGLR and 2C-SVM based
solution detection capabilities. 2C-SVMs are quite good systems to approximate
the NP detector for a given point of the ROC curve.
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Abstract. Uncertainty analysis of an Artificial Neural Network (ANN) based
method for spectral analysis of asynchronously sampled signals is performed.
Main uncertainty components contributions, jitter and quantization noise, are
considered in order to obtain the signal amplitude and phase uncertainties using
Monte Carlo method. The analysis performed identifies also uncertainties main
contributions depending on parameters configurations. The analysis is per-
formed simultaneously with the proposed method and two others: Discrete
Fourier Transform (DFT) and Multiharmonic Sine Fitting Method (MSFM), in
order to compare them in terms of uncertainty. Results show the proposed
method has the same uncertainty as DFT for amplitude values and around
double uncertainty in phase values.

Keywords: Sine-fitting methods � Spectral analysis � ADALINE � ANN �
Digital measurement � Uncertainty � Monte-Carlo � DFT

1 Introduction

The use of nonlinear electronic components connected to the electricity grid it is
becoming more common in our daily life. These components add harmonic and
inter-harmonic content to the electric signal, which results in a deterioration of the
quality of the power supplied, an increase in losses and a decrease in the reliability of
the whole system. In this situation, it is increasingly important to accurately determine
the harmonic content of the power signals. For these reasons, several National
Metrological Institutes (NMIs) have implemented methods to measure power in
non-sinusoidal conditions [1, 2]. These new methods make use of the versatility of the
digital techniques, especially considering the possibility of obtaining the spectral
analysis of the signals of interest, and are based on the use of traditional algorithms, as
DFT. These methods require synchronous sampling in order to be accurate. To over-
come this problem, some authors [3, 4] have proposed the use of asynchronous sam-
pling combined with the use of non-synchronous spectral analysis. In particular sine
fitting methods [5] have been extended successfully to the multi-harmonic case [6].

Alternatively, a new method based on ANN was presented [7]. The method is based
in the implementation of the multi-harmonic sine fitting algorithm [5] by mean of a
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I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 269–280, 2017.
DOI: 10.1007/978-3-319-59153-7_24



multilayer perceptron neural network (MLP). The ANN method, as the sine fitting, has
the advantage with respect to the traditional spectral analysis methods that it does not
require synchronism between generation and sampling, which reduce the complexity of
the hardware implementation. In comparison with the conventional multi-harmonic
sine fitting method, the ANN method, has a simpler implementation and does not
require special adjustments of coefficients for convergence, that depend on the type of
signal being analyzed [6]. The propose method has been implemented in the Spanish
electrical power primary standard, at Centro Español de Metrología [9, 10]. Addi-
tionally, this approach has the advantage to allows, with reduced complexity, modi-
fications of the signal model to be analyzed. In this sense, this work was extended
recently to obtain inter-harmonic components in [8].

At a primary level, the traceability of such sampling systems is a complex task due
to the complexity of the tests and validations of involved algorithms. The main con-
tribution of this work is the validation for sinusoidal signals of the ANN based spectral
analysis method proposed in [7] by means of Monte Carlo method. In order to obtain
useful results for real applications, parameters configurations used in laboratory will be
used.

Following sections are structured as follows: in Sect. 2 the system to be charac-
terized is briefly presented; in Sect. 3 the Monte Carlo method applied to the charac-
terization of high precision measurement systems is introduced; methodology of the
tests carried out is described in Sect. 4 and results are reported in Sect. 5; finally,
Sect. 6 exposes the conclusions of this work.

2 Network Description

Let us consider a signal of interest, y(t), stationary in the range of analysis, formed by
K harmonic frequencies of the fundamental frequency, fac. The signal can be described
mathematically in the terms of Eq. (1), where y(t) is formed by the sum of the con-
tributions of the DC component, the fundamental frequency, fac, and its multiples,
fk = k•fac, k 2[2, K].

y tð Þ ¼ Cþ
XK

k¼1
Ak � cos 2pkfactð ÞþBk � sin 2pkfactð Þ½ � ð1Þ

The proposed ANN based method [7], MANNFM (Multiharmonic ANN Fitting
Method), performs the spectral analysis of a steady state periodical signal composed by
harmonics as described in Eq. (1). This is done by means of the multilayer neural
network of Fig. 1.

Input data to the ANN are the N time instants - t[n], n 2 [0, N−1]- at which the
samples of y(t), y[n], are taken. The time vector, t, is scaled by the factor 2�p in order to
generate the arguments of cosines and sines of Eq. (1).

The network implements the K order Fourier series synthesis equation. Briefly,
Layer 1, implemented by means of an ADALINE neuron without bias and linear
transfer function, has the object to implement the scale factor of the fundamental
frequency, fac, in the arguments of the cosines and sines of the synthesis equation. The
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output of Layer 1 is connected in parallel to Layers 2 and 3, both of which are
implemented by K ADALINE neurons with cosine and sine transfer functions
respectively. The position of each neuron in the array of neurons determines its weight
value, so that the k scale factor of each harmonic in the cosine and sine arguments is
implemented by this weight. As a result, the input to the transfer functions of the
neurons of Layers 2 and 3 are the completed arguments of the cosines and sines of the
Fourier synthesis equation.

Consequently, the input from the harmonic section to Layer 4 are the arrays
cos(2�p�k�fac�t), k 2 [1, K] and sin(2�p�k�fac�t), k 2 [1, K]. Layer 4 implements, finally,
the sum of the synthesis equation, by means of 2�K neurons with linear transfer
functions. The weights of the neurons connected to Layer 2 are identified as the Ak

coefficients of Eq. (1), and the weights of the neurons connected to Layer 3 are
identified as the Bk coefficients of Eq. (1). In addition, Layer 4 includes the DC
component of the Fourier synthesis series, C, by means of its bias value, which is
available in this layer. Therefore, at this point, the output of Layer 4 is equivalent to the
output of the Eq. (1), y(t), in the time instants t[n], n 2[0, N−1].

As mentioned above, this high precision algorithm has been implemented and
tested in the measurements system of the Spanish NMI as part of the electrical power
primary standard.

3 Propagation of Distributions and Simulation Using
the Monte Carlo Method

As mentioned previously, due to the complexity of the MANNFM uncertainty eval-
uation, the MCM is used. In this section the basis of the MCM and its application to
this purpose are presented. The Guide to the Expression of Uncertainty in Measurement
(GUM) [11] provides the framework for uncertainty evaluation, which has three main
stages: formulation, propagation and summarizing. At the Formulation stage the
N input quantities, X = (X1, …, XN) upon which the output quantity, Y, depends, are
determined and their probability distribution functions (PDF), are assigned. In the
Propagation stage, the PDFs for the Xi are propagated through the measurement model,

Fig. 1. The ANN architecture proposed [7].
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Y = f(X), in order to obtain the PDF of the output Y. Finally, in the Summarizing stage,
using de PDF obtained for Y, the expectation of Y, y, and its standard deviation, u(y),
are obtained1.

The propagation of distributions can be implemented analytically if a mathematical
representation of the PDF for Y can be obtained. However, in practice this option is
possible in simple cases and for more complex situations approximations based on
Taylor series must be applied. When these approximations are not possible either (e.g.,
complex or nor linear models) numerical methods must be used.

The base of MCM [12], Fig. 2, is to sampling the PDF for Y, obtainingM values yr,
for r = 1, …, M. Each yr is obtained by sampling at random from each of the PDFs for
Xi, and evaluating the model at the samples values so obtained. In case of several
output variables [13], the foundation is the same but Y is a vector provided by a vector
function or model f(X).

Consequently, in order to apply MCM, it is only necessary that Y can be formed
from the values of X. Although Monte Carlo method is used as a mean to provide a
numerical representation of the PDF for Y, it is also a simulation process that provides
information about the input/output PDFs relationship of a system modeled as f(X). So,
the method can be used not only to obtain output uncertainties of a measurement, but
also to simulate a system [14] and evaluate the impact of different parameters as well as
the impact of the different uncertainty contributions in the output uncertainties. The
second approach will be used in this work.

4 Methodology Applied

4.1 Simultaneous Comparison of Three Methods

In order to compare MANNFM results with those obtained by other methods, the same
tests have been applied to other two methods: DFT [15] and MSFM [6]. DFT can be
considered as a reference, given that, in ideal conditions, provides the spectrum of the

Fig. 2. MCM propagation of distributions for 3 independent input quantities

1 Although there is a coincidence between some terms used in GUM and this work nomenclatures,
since there is no possibility of confusion, GUM nomenclature has been maintained in this section in
order to simplify its reading.
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signal under analysis without error. When synchronous sampling is not possible, fitting
methods are used [3, 5] in order to avoid DFT errors due to spectral leakage.
As MANNFM, MSFM is a fitting method, but solved in a conventional way, solving a
non-linear equation system iteratively.

As can be observed in Fig. 3, for comparison purposes the same signal, x(t), will be
sampled and applied to the three methods. The DFT will process synchronous samples
of x(t), xs[n], while MSFM and MANNFM will process asynchronous samples of x(t),
xa[n], obtained in a set of time instants ta[n], where ta[n] = t[n]�(1 + na), being na the
error of synchronism (relative) between generation and sampling.

4.2 Uncertainties Contributions Considered

Two uncertainty components will be considered in this work, jitter contributing to time
uncertainty of each sampled point, the sampling jitter; and quantization contributing to
a voltage uncertainty of each sampled point.. Both of them have been theoretically
studied for DFT [16, 17].

Regarding jitter, a rectangular distribution has been considered. Taking into
account the specifications of usual laboratory instruments, two jitter values (maximum)
will be contemplated: 3�10−12 s and 1�10−7 s. The first value is the jitter specification
for the National Instruments 5922 digitizer, and the second one is the jitter specifica-
tions for the Keysight 3458A digital multimeter used in [9, 10].

Concerning the quantization, it has been simulated taken into account three usual
laboratory resolutions or number of bits, Nbits, values: 16, 18 and 21 bits, which
correspond again with the HP 3458A resolution derived from the aperture time ranges
configured for high, medium and low sampling frequency respectively. Regarding the
full scale parameter, 1.2 V has been used, which is the value for the 1 V range of the
HP 3458A in digital operation mode.

In order to evaluate independent and jointly the impact of both contributions to the
total uncertainty of the three methods, the scheme presented in Fig. 3 will be simulated
with three different sampling situations: (i) samples affected only by quantification;
(ii) samples affected only by jitter; and (iii) samples affected by quantification and jitter.
Terms q, j and jq respectively will be used in reference to signals and results related to
this three sampling situations.

Fig. 3. Scheme for the comparison of the three methods
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4.3 Parameters Values Considered

Several parameters values (according to real values used in laboratory) of the signal to
be sampled, have been considered in order to evaluate their impact to the estimated
uncertainty. A sinusoidal signal has been consider, with fundamental frequency, fac,
53 Hz and amplitude 1 V. Concerning to the phase of the sampled signal, uniformly
distributed random values between ± p radians have been generated.

Regarding the ratio R = fs/fac, being fs the sampling frequency, three values have
been selected, around 24, 124 and 261, related to low, medium and high sampling
frequencies, respectively.

Concerning the number of samples, N, it has to be considered that (i) the Keysight
3458 internal memory maximum capability (for maximum precision) is 37888 samples
and (ii) N and M should not have common factors in order to obtain maximum
information of the sampled signal. Consequently, three N values (1311, 7073 and
15457), related to low, medium and high number of samples have been selected and
used in each ratio value. Being M the number of periods involved in the measurement,
R can be also expressed as R = N/M. So, variations of N keeping R constant implies
also to vary M. Table 1 shows the values of R, N and M considered. In order to assure
the DFT conditions, for N and M integer values have been selected (which imply light
variations of the ratio R obtained).

Finally, about the error of synchronism, na, random values up to ±20%, uniformly
distributed, have been considered. The Interpolated FFT (IpFFT) [18] algorithm has
been used in order to obtain initial estimation of the fundamental frequency for the
asynchronous methods. No convergence problems have been detected in any simulation.

4.4 Computational Hardware Used

In order to perform the MCM in the different configurations established, large com-
putational resources are required. For this work, resources provided by the University
of Málaga‘s supercomputing center (UMSC) have been used. The computational

Table 1. Sampling frequency parameters values considered to estimate the uncertainty of the
system.

N M R fs

H 15457 59 261.983 H
M 7073 27 261.963
L 1311 5 262.200
H 15457 125 123.656 M
M 7073 57 124.088
L 1311 11 119.182
H 15457 625 24.731 L
M 7073 286 24.731
L 1311 53 24.736
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resources are based in the Cluster Intel E5-2670, with shared memory machines with
2 TB of RAM each and AMD Opteron 6176 and ESX virtualization clusters.

5 Results

All tests have been performed in the same way: with the selected parameters and the
uncertainty contributions defined in Sect. 4.2, 106 trials of the MCM has been per-
formed over the three methods (as described in Sect. 4.1) in order to obtain a numerical
representation of their PDF outputs.

All the obtained PDFs are Gaussian. The values have been expressed in deviations
to nominal (absolute) and those deviations have been fitted to a normal PDFs by means
of Matlab© normfit function, obtaining their mean and standard deviation, r. For each
output of each method, mean represents the deviation to nominal and standard devi-
ation its uncertainty for a confidence level of 62.8%. In next subsections we will
present the most significant results of the tests performed, in terms of mean and
standard deviation.

Methods Comparison
A first test was performed in order to evaluate similarities between methods outputs
and, at the same time, evaluate independent and jointly the impact of jitter and
quantization to total uncertainty. Maximum jitter was fixed to 100 ns and Nbits was set
to 16. The ratio was set to low and 15457 samples were considered (M = 625).
Tables 2, 3 and 4 show results considering respectively jitter, quantization and both
effects on the three methods, for amplitude and phase of the fundamental frequency.

Table 2. Mean (E) and standard deviation (r) of fundamental frequency deviations to nominal
amplitude (DA1) and phase (DU1) for three methods - only jitter considered

Ej{DA1}
(µV)

rj (DA1)
(µV)

Ej{DU1}
(µrad)

rj (DU1)
(µrad)

DFT 1.06E-04 5.50E-02 6.69E-04 9.55E-02
MPSF –1.09E-04 5.49E-02 –6.22E-04 1.89E-01
MANNFM –1.11E-04 5.49E-02 –6.21E-04 1.89E-01

Table 3. Mean (E) and standard deviation (r) of fundamental frequency deviations to nominal
amplitude (DA1) and phase (DU1) for three methods - only quantization considered

Eq{DA1}
(µV)

rq (DA1)
(µV)

Eq{DU1}
(µrad)

rq (DU1)
(µrad)

DFT 6.25E-04 1.12E-01 1.26E-04 1.12E-01
MPSF 1.16E-03 1.12E-01 –1.28E-03 2.41E-01
MANNFM 1.15E-03 1.12E-01 –1.28E-03 2.41E-01
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Several conclusions can be reached with these results. Firstly, the mean deviations
to nominal for amplitude and phase are around zero, always lower to 2�10−9 v or 2�10−9
rad. These values have been repeated with the rest of R, N, jitter and Nbits values. So,
from now, we will present only standard deviation values will be presented. Addi-
tionally, for the three methods, the phase standard deviation is lightly higher than
amplitude standard deviation.

Concerning the fitting methods, results show that both provide almost identical
results, which is logical, due both methods solve the same optimization problem in
different ways. And comparing DFT and fitting methods, both provides very similar
results in amplitude, with practically identical standard deviation, but higher standard
deviations (in a factor around 2) is obtained in phase by fitting methods.

Relating to jitter and quantization impact in the three methods results, for the values
selected, although both affect to the total standard deviation, quantization has more
impact than jitter. On the other hand, results show that their jointly impact is equivalent
to the quadratic sum of the independent impacts. That can be explained because
although quantization is an uncertainty over the amplitude value and jitter is an
uncertainty over the time instant of sampling, jitter is in the last part a noise over the
amplitude [1], so both contributions apply, at the end, to the same variable.

Impact of R and N in Results
In order to evaluate R and N impact on the methods results, for each combination of
jitter and number of bit values, the 9 points from Table 1 were simulated. Tables 5 and
6 show standard deviation results obtained for amplitude and phase of the fundamental
frequency in the case of jitter value of 100 ns and 16 bits of quantization. In order to
unify data as much as possible, both tables simultaneously present values obtained
considering only jitter (j), only quantization (q) and both (jq).

Firstly, Tables 5 and 6 confirm in a more general way conclusions obtained in
previous sections about methods comparisons. Moreover, from both tables it can be
observed that for three methods and three cases j, q and jq, the R value does not affect
the standard deviations of amplitude and phase, while the N value impacts clearly in the
results, so that lower N values produces higher standard deviations. The same beha-
viour can be observed for the rest of jitter and Nbits values combinations.

Impact of Jitter and Number of Bits on Results
In order to evaluate jitter and resolution impact in the three methods, each combination
of Maxjit and Nbits values defined in Sect. 4.2 were considered for simulation.
Regarding R, taking into account previous test results, a single value (the intermediate)

Table 4. Mean (E) and standard deviation (r) of fundamental frequency deviations to nominal
amplitude (DA1) and phase (DU1) for three methods - jitter and quantization considered

Ejq{DA1}
(µV)

rjq (DA1)
(µV)

Ejq{DU1}
(µrad)

rjq (DU1)
(µrad)

DFT 7.31E-04 1.25E-01 7.94E-04 1.53E-01
MPSF 1.05E-03 1.33E-01 –1.91E-03 3.06E-01
MANNFM 1.05E-03 1.33E-01 –1.91E-03 3.06E-01
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was fixed. Finally, the three N (and M) values were additionally considered, in order to
observe the N influence.

So, 18 simulation points were performed. In all of them, results obtained consol-
idate previous tests conclusions: the fitting methods provide identical results which, at
the same time respect DFT results, are identical in amplitude and higher by a factor
around around 2 in phase sigma. For this reason and with the aim of synthetize, only
MANNFM results will be presented in this section, but all conclusions obtained can be
applied to DFT and MSFM.

Results for MANNFM are presented in Tables 7 and 8, which show standard
deviations obtained for amplitude and phase of the fundamental frequency at any
simulation point. In order to unify data as much as possible, both tables simultaneously
present values obtained considering only jitter (j), only quantization (q) and both (jq).

Table 5. Standard deviation of fundamental frequency amplitude deviations to nominal values
(µV) for three methods in Table 1 points, considering: only jitter (j), only quantization (q) and
both (jq)

N

1311 7073 15457

R R R

24 123 262 24 123 262 24 123 262

DFT q 4.18E-01 4.18E-01 4.18E-01 1.86E-01 1.86E-01 1.86E-01 1.12E-01 1.12E-01 1.12E-01

j 1.88E-01 1.87E-01 1.88E-01 8.08E-02 8.08E-02 8.09E-02 5.47E-02 5.47E-02 5.47E-02

jq 4.60E-01 4.60E-01 4.59E-01 1.82E-01 1.82E-01 1.82E-01 1.25E-01 1.25E-01 1.24E-01

MSFM q 4.14E-01 4.09E-01 4.15E-01 1.81E-01 1.77E-01 1.80E-01 1.20E-01 1.21E-01 1.21E-01

j 1.88E-01 1.88E-01 1.89E-01 8.08E-02 8.08E-02 8.08E-02 5.47E-02 5.46E-02 5.46E-02

jq 4.55E-01 4.53E-01 4.56E-01 1.97E-01 1.95E-01 1.96E-01 1.33E-01 1.32E-01 1.32E-01

MANNFM q 4.14E-01 4.09E-01 4.15E-01 1.81E-01 1.77E-01 1.80E-01 1.20E-01 1.21E-01 1.21E-01

j 1.88E-01 1.88E-01 1.89E-01 8.08E-02 8.08E-02 8.08E-02 5.47E-02 5.46E-02 5.46E-02

jq 4.55E-01 4.53E-01 4.56E-01 1.97E-01 1.95E-01 1.96E-01 1.33E-01 1.32E-01 1.32E-01

Table 6. Standard deviation of fundamental frequency phase deviations to nominals values
(µrad) for three methods in Table 1 points, considering: only jitter (j), only quantization (q) and
both (jq)

N

1311 7073 15457

R R R

24 123 262 24 123 262 24 123 262

DFT q 4.14E-01 4.14E-01 4.14E-01 2.12E-01 2.12E-01 2.12E-01 1.21E-01 1.21E-01 1.21E-01

j 3.25E-01 3.25E-01 3.25E-01 1.40E-01 1.40E-01 1.40E-01 9.47E-02 9.47E-02 9.47E-02

jq 5.27E-01 5.26E-01 5.26E-01 2.26E-01 2.26E-01 2.27E-01 1.53E-01 1.53E-01 1.53E-01

MSFM q 8.27E-01 8.24E-01 8.19E-01 3.54E-01 3.56E-01 3.54E-01 2.41E-01 2.40E-01 2.41E-01

j 6.50E-01 6.51E-01 6.55E-01 2.80E-01 2.80E-01 2.80E-01 1.89E-01 1.89E-01 1.89E-01

jq 1.05E + 00 1.05E + 00 1.06E + 00 4.53E-01 4.53E-01 4.53E-01 3.06E-01 3.06E-01 3.06E-01

MANNFM q 8.27E-01 8.24E-01 8.19E-01 3.54E-01 3.56E-01 3.54E-01 2.41E-01 2.40E-01 2.41E-01

j 6.50E-01 6.51E-01 6.55E-01 2.80E-01 2.80E-01 2.80E-01 1.89E-01 1.89E-01 1.89E-01

jq 1.05E + 00 1.05E + 00 1.06E + 00 4.53E-01 4.53E-01 4.53E-01 3.06E-01 3.06E-01 3.06E-01
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First of all, again previous conclusions are confirmed in more general test: as in
previous section, higher N values results in lower standard deviations for both only
jitter and only quantization.

Regarding Maxjit effect on j results, for the lower Maxjit value, 3 ps, we can
observe very low standard deviation values, with maxima (for lower N) of 5.7�10−12 V
and 19.7�10−12 rad. On the other hand, for 100 ns, we can observe maxima standard
deviations values of 0.2�10−6 V and 0.6�10−6 rad.

Regarding the quantization effect on points selected, we can observe in Fig. 4 that
N and Nbits variations have comparable effects on the standard deviations values
obtained. This can be useful to compensate the effects of one parameter with the other.
For example, as we can observe in Fig. 4, the standard deviation obtained for 18 bits
and 1311 samples can be nearly obtained with 16 bits if 15457 samples are considered.

Finally, regarding the combined impact of jitter and quantization, it can be observed
from Tables 7 and 8 that in the low jitter point, impact of jitter is no significant in front
of quantization impact, so that the combined (jq) standard deviations are equal to those
of the only quantization considered case (q).

Table 7. Standard deviation of fundamental frequency amplitude deviations to nominal values
(µV) for Maxjit, Nbits and N values simulated, considering: only jitter (j), only quantization
(q) and both (jq)

N

1311 7073 15457

Nbits Nbits Nbits

16 18 21 16 18 21 16 18 21

Maxjit
3 ps

j 5.68E-06 5.68E-06 5.68E-06 2.42E-06 2.42E-06 2.42E-06 1.64E-06 1.64E-06 1.64E-06

q 3.94E-01 1.03E-01 1.27E-02 1.76E-01 4.49E-02 5.54E-03 1.18E-01 2.96E-02 3.84E-03

jq 3.94E-01 1.03E-01 1.27E-02 1.76E-01 4.49E-02 5.55E-03 1.18E-01 2.96E-02 3.84E-03

Maxjit
100 ns

j 1.89E-01 1.89E-01 1.89E-01 8.05E-02 8.05E-02 8.05E-02 5.48E-02 5.48E-02 5.48E-02

q 3.94E-01 1.03E-01 1.27E-02 1.76E-01 4.49E-02 5.54E-03 1.18E-01 2.96E-02 3.84E-03

Jq 4.51E-01 2.16E-01 1.90E-01 1.95E-01 9.26E-02 8.07E-02 1.31E-01 6.29E-02 5.50E-02

Table 8. Standard deviation of fundamental frequency phase deviations to nominal values
(µrad) for Maxjit, Nbits and N values simulated, considering: only jitter (j), only quantization
(q) and both (jq)

N

1311 7073 15457

Nbits Nbits Nbits

16 18 21 16 18 21 16 18 21

Maxjit
3 ps

j 1.97E-05 1.97E-05 1.97E-05 8.33E-06 8.33E-06 8.33E-06 5.68E-06 5.68E-06 5.68E-06

q 8.68E-01 2.04E-01 2.63E-02 3.53E-01 8.82E-02 1.10E-02 2.36E-01 6.05E-02 7.42E-03

jq 8.68E-01 2.03E-01 2.63E-02 3.53E-01 8.83E-02 1.10E-02 2.36E-01 6.04E-02 7.43E-03

Maxjit
100 ns

j 6.56E-01 6.56E-01 6.56E-01 2.78E-01 2.78E-01 2.78E-01 1.89E-01 1.89E-01 1.89E-01

q 8.68E-01 2.04E-01 2.63E-02 3.53E-01 8.82E-02 1.10E-02 2.36E-01 6.05E-02 7.42E-03

jq 1.06E+00 6.87E-01 6.56E-01 4.58E-01 2.90E-01 2.78E-01 3.04E-01 1.99E-01 1.89E-01
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In the case of Maxjitt equal 100 ns more similar contributions are obtained, so that
both effects contribute to the combined impact. Even so, with the lower N and Nbits
values the main contribution is due to quantization although jitter also contributes. So,
if Nbits raise, at lower N, the quantization contributions decreases; till with 21 bits, the
main contribution is due to jitter. When N value is increased to it next value, the same
behavior is observed, changing the main contribution depending on the Nbits value.

6 Conclusions and Future Work

Analysis performed has provided practical values of MANNFM standard deviation
(amplitude and phase of the fundamental) for its use in practical measurements in
laboratory. In the worst case, obtained results show uncertainties - for 95.5% of con-
fidence level (2r) - lower than 1.7 µV and 2.12 µrad for amplitude and phase
respectively. From the methods comparison performed, it has been found that fitting
methods, MANNFM and MSFM, provides identical results. Respect DFT, fitting
methods are very similar in amplitude but their standard deviation for the phase of the
fundamental is higher than that of DFT by a factor around 2. Besides that, behavior of
fitting methods regarding uncertainty contributions (jitter sampling and quantization
noise) and sampling parameters (R and N) follow the same tendencies than DFT.

Further work is also necessary in order to study uncertainties for fundamental and
harmonics components when signals with harmonic content are sampled. Other fre-
quencies have to be studied also, in order to identify jitter effect when higher funda-
mental frequencies are necessary.
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Abstract. Product matching aims at disambiguating descriptions of products
belonging to different websites in order to be able to recognize identical ele-
ments and to merge the content from those identical items. Most approaches face
this matter applying various machine learning methods to textual product
descriptions. Recently some authors are including information extracted from an
image associated to a textual description of a product. Modern machine learning
methods, such as content based information retrieval (CBIR) or deep learning,
can be applied to this type of images since they can manage very large data sets
for finding hidden structure within them, and for making accurate predictions.
This information could boost the performance of the traditional textual matching
but at the same time increase the computational complexity of the process. In
this paper we review some CBIR and deep learning models and analyse the
performance of these approaches when they are applied to images for product
matching. The results obtained will help to introduce a combined classifier using
textual and image information.

1 Introduction

The growth of the Internet has fuelled the availability of e-commerce marketplaces and
search engines must face with a huge amount of ambiguity and inconsistencies in the
data. The identification and matching of different items as the same product is essential
to obtain accurate and reliable results. The task of Product Matching consists of
identifying, matching and merging records that correspond to the same product from
several data sources [4, 27, 28], allowing the development of tools for product mon-
itoring, product comparison and pricing analysis.

When textual information is used, the matching is based on the application of some
approximate string similarity measure that maps a pair of strings to a real number. From
character-based approaches, through token-based or the use of hybrid methods, there
exists a wide variety of metrics that can be used to obtain some idea of how similar or
different two attribute values are [23, 29, 30].
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In the case of using image information, Content-Based Image Retrieval (CBIR)
[1–4] and deep learning [2, 5–7] techniques can be used in order to link images from
different websites.

CBIR is the application of computer vision techniques to measure image similarity.
These techniques make use of visual contents to look up images from large scale image
databases in agreement with user interests. Different CBIR approaches have been
proposed for the purpose of image matching, object detection or image classification.
Normally, each CBIR method is specialized in a particular feature type, for example:
morphological descriptors, colour descriptors or keypoint descriptors. Frequently, a
mashup of different CBIR features are used to reduce the “semantic gap” existing
between low and high level pixel images perceived by the human, because in many
cases, only one descriptor can not reduce this gap.

In recent years, a new machine learning approach known as deep learning has been
applied to many different fields. It is based on algorithms inspired by the structure and
function of artificial neural networks but using a deeper architecture in which many
layers are connected. In contrast with CBIR techniques, deep learning algorithms are
always learning features automatically not requiring human intervention.

In this work, different CBIR and deep learning techniques have been evaluated in
the context of linking images for product matching. The dataset to train and validate the
models has been built by hand taking images from two different web sites. This study
can be useful to append multimedia information in Product Matching processes with
regard to obtain better results in conjunction with the textual information.

2 Content Based Image Retrieval

CBIR manages the visual contents of an image, such as color, shape, texture and spatial
layout to perform and index the image. Normally, these visual contents are described
by multi-dimensional feature vectors. To get back images, users hand over the recovery
system with examples or sketched figures, then, the system adjusts these examples into
internal representation of feature vectors.

Object shapes are significant features used in CBIR, and Fourier descriptors [8]
have a special relevance for extracting these features. Some of these characteristics are:
low complexity, translation invariance, rotation invariance and scale invariance. All of
these properties can be found in different Fourier descriptors implementations [3,
8–11]. In particular Fourier descriptors are necessary for extracting the object shape
signature, in this work we applied the centroid distance technique. Figure 1 shows the
extraction process, from the original image, first segmentation is applied and then
Fourier descriptors are calculated.

Other important CBIR techniques group is called keypoint [1, 12, 13]. These
techniques detect the most significant points within a region, working independently of
the object shapes, colours and textures. Figure 2 shows the input and output of the
keypoint extraction process, which correspond to the original image and the keypoint
drawn in green circles, respectively.

In this paper, two different CBIR algorithms based on keypoint techniques are used,
SURF (Speeded Up Robust Features) [12] and BRISK (Binary Robust Invariant
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Scalable Keypoints) [1]. SURF is considered the most relevant keypoint technique and
the most computationally efficient amongst the high-performance methods to date. On
the other hand BRISK, shows a very high performance and sometimes lower error ratio
and computational cost than SURF.

3 Deep Learning

In traditional pattern recognition and machine learning, feature engineering is a
labour-intensive task that usually requires a domain expertise to transform the data into
a feature vector. Despite the importance of this stage, current learning algorithms lack
the ability to extract and manage information from data.

Deep learning allows automatically discovering features from raw data, creating
representations of the data that can make easier the extraction of useful information to
classification, prediction, etc.

Deep learning methods are formed by the composition of multiple non-linear
transformations, that promote the re-use of features, and can potentially lead to pro-
gressively more abstract features at higher layers of representations [6]. For example,
an image starts with a matrix pixel value. The features learned in the first layer usually
represent the presence or absence of edges at particular locations. The second layer
detects arrangements of edges. The third layer detects combinations that correspond to
parts of objects. Next layers would detect objects. The main characteristic of these
methods is that these layers of “features discovering” are not design by human, but
automatically learned from raw data [7].

In the last years deep learning has been used in many different fields as image
classification [14, 15], natural language processing [16], DNA mutation detections
[17, 18], etc.

Convolutional Neural Networks (CNN) are a modification of traditional multilayer
perceptrons. These networks are specifically designed to work with inputs of large
dimensions or features. Convolutional Neural Network (CNN) can obtain very good

Fig. 1. Fourier descriptors extraction process.

Fig. 2. Keypoint extraction process. From the original image (left image) the technique returns
the most significant points, green circles in the right image (Color figure online)
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results in image processing tasks such as: image classification, object recognition, face
recognition, etc. The main CNN characteristics are: local connections, weight sharing,
pooling and multiple stacked layers.

In traditional Neural Network each neuron is connected with every other neuron in
the same layer. This is problematic when the number of neurons in the layer is very
high. For example, when the input is a small image of 200 � 200 pixels, the input
vector has 120.000 elements (200 � 200 � 3), consequently each neuron has 120.000
parameters. In order to make this model more efficient, each neuron can be connected
only with another few neurons; this idea is known as local connections.

Figure 3 shows an example where each neuron is connected with three neurons of
the previous layer; in this example each neuron only has information of three adjacent
pixels. Moreover, weight sharing is also shown in this figure, instead of having lots of
weights to train, the same weights can be reused at each location, reducing the number
of parameters and making networks easier to train.

CNN are very similar to ordinary Neural Networks, they are made up of neurons
that have learnable weights and biases. The typical CNN architecture is composed of
several convolutional layers and pooling layers. The convolutional layers make up the
core building block of CNN and have the computationally-intensive part of the process;
they are usually responsible for detecting local features from the previous layer.
Additionally, it is common to periodically insert a pooling layer in-between successive
convolutional layers in order to progressively decrease the number of parameters and
computation in the network. The CNN model can be very generalizable because the last
layer is able to extract high-level features from input data.

The challenging ImageNet dataset [25], have became a benchmark to measure the
performance of the different proposals. AlexNet [14], GoogLeNet [21] and ResNet [22]
have been the winners in the last few years using CNN-based architectures. In 2012 the
model proposed by Alex Krizhevsky et al., AlexNet, achieved a winning top-5 test
error rate of 15.3%, compared to 26.2% achieved by the second-best entry. The model
consisted of five convolutional layers, some of which followed by a pooling layer and
three fully-connected layers with a final 1000-way softmax classification layer.

Fig. 3. Local connection and weight sharing example. In this configuration each neuron is
connected with three neurons of the previous layer, sharing her weights.
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GoogLeNet [21] reduced the global number of parameters and outperformed
AlexNet in 2014. The CNN architecture is formed by 22 convolutional layers and five
pooling layers. The final output is a 1000-way softmax classification layer. Finally, In
2015 ResNet [22], composed by 152 layers, won the challenge obtaining a very good
generalization performance.

4 Design of the Experiment

In this experiment we try to link products that are offered in two different web sites,
making use of the corresponding products images. The data set has been generated by
hand considering 785 different products and then, taking 785 images of these products
from two different web pages.

Figure 4 shows an example of three different products from the data set, in each site
the corresponding picture of the object can be similar, but not equal; differences in
perspective, orientation, colour and size might exist.

The classification hit rate has been measured over the validation set, calculating the
number of images that have been correctly identified. The matching is carried out using
a similarity measure.

Fourier descriptors, BRISK and SURF are the CBIR methods selected to be
compared. All of them using the data set that has been split into train (500 images) and
validation (285 images) sets.

As similarity measure the number of keypoints in common is used in order to link
an image from website 1 with another one from website 2. This number of keypoints
can be calculated with or without normalization.

The use of Jaccard index [24] allows the management of normalized data, useful for
future data processing. However, this measure uses the number of keypoints in com-
mon divided into the total number of keypoints from both sets. The higher the per-
centage, the more similar the two feature vectors. Although it is easy to interpret, it is

Fig. 4. Images from the dataset. Two images of the same product can have similar or very
different pictures when they are taken from different web sites.
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extremely sensitive to large sample size and may give erroneous results, especially
when the number of keypoints is different between the two vectors under comparison.
Then, in this work the absolute number of keypoints (without normalization) is used as
similarity measure in CBIR methods. Experiments have been analysed using keypoints
ranging from 1 to 500 Keypoints. This upper limit is greater enough in order to cover
all the image features.

In practice for deep learning, training an entire CNN from scratch is not an easy
task because a dataset of sufficient size is needed. Instead it is usual to use pre-trained
models, such as: AlexNet, GoogLeNet and ResNet, thus, only the specific validation
set is needed, in our work, 285 images from web 1 and 285 images from web 2.

In addition, these CNN models are usually used for classification purposes, how-
ever in this work we are interested in identifying the most similar image, therefore we
have considered the last output before the final classification layer as our actual output.
In this way we obtain an array of features for each image that is used to measure how
similar (cosine similarity [23]) is an image belonging to the validation set of a given
web to another image from the validation set of the second web.

5 Results

CBIR models have been trained over 500 products and then tested over 285 samples.
The results obtained with CBIR-methods do not achieved the 50% of success in any
case. The example shown in Fig. 5, can explain the reasons to have such low results. In
this figure all the methods failed in the matching, in a case where images from web 1
and web 2 are clearly more similar than the final assigned product. In this example,
using SURF method.

In order to prevent these classification errors, further experiments have been carried
out with SURF. First of all, two different matching methods were used to compare the
keypoints set. First method consists of a multiple matching, in which a keypoint from
an image can be assigned to various keypoints of the image being compared. The
second method consists of a unique matching, where keypoints are assigned just to
other keypoint of the image under comparison.

Moreover we have considered different tests varying the number of descriptors.
Figure 6 shows the hit rate obtained for both matching approaches, multiple (blue

Fig. 5. First image is the product on web 1, the second image corresponds to the same on web 2
and third image is the image returned by SURF

286 M. Rivas-Sánchez et al.



color) and unique (red color), as well as taking into account the number of descriptors,
from 1 to 500 keypoints. The use of a number of keypoints lower than 25 is not
recommended, since not reliable results can be obtained. For example, in Fig. 6 shows
that one keypoint obtains the best result. This is a spurious outcome; when an image
with just a keypoint is compared with all dataset images, the number of coincident
keypoints is zero, due to this fact, the full dataset is returned as matched images. In
general, unique matching presents lower error rates than multiple method, and the use
of all keypoints is needed to not to lose information.

Hit rates for the three CBIR-based methods are shown in Table 1. The best result is
obtained by SURF method using unique matching and 500 keypoints, reaching an
accuracy equal to 40%.

The segmentation stage needed in Fourier descriptors is not suitable for this kind of
dataset, since there exists a great variety of background intensity, contrast, brightness,
etc. Thus, Fourier descriptors have provided the worst results in classification.

Table 2 shows the results obtained with different deep learning models. The best
accuracy is obtained using AlexNet model, although GoogLeNet obtains very similar
accuracy, using the cosine distance. These rates are better than SURF hit rate, therefore
in general, deep learning can overcome the results obtained by CBIR methods.

Fig. 6. Hit rate obtained per number of descriptors, from 1 to 500, and for both matching
approaches of SURF, multiple (blue color) and unique (red color). (Color figure online)

Table 1. Hit Rates obtained with different CBIR methods

Method Hit rate

Fourier descriptors 1%
BRISK 21%
SURF 40%
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Comparing SURF and AlexNet, the number of images that have obtained the same
similarity measure can be another indicator of the precision of the matching. Figure 7
shows the number of similar distances obtained for each image belonging to the val-
idation set. The lower number of similar distances, the better, meaning that lower
classification error rates will be committed since less ambiguity is present. The average
number of similar images is 2 for AlexNet, whereas SURF obtains a value of 6.

Studying in more detail the results obtained by both methods, SURF and AlexNet,
we can observe that some images are so different that no classifier would be able to find
the correct image (Fig. 8). If these extreme cases were avoided, the error rate could be
reduced in all the methods. In particular AlexNet hit rate would be 67%.

Table 2. Results obtained with different deep learning models

Model Hit rate

AlexNet 60%
GooGleNet 59%
ResNet 48%

Fig. 7. Block size for SURF and AlexNet. Ordinate axis shows the block size and abscissa axis
corresponds to each test image

Fig. 8. Products from the validation set whose images are totally different in each web page
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6 Conclusions and Future Work

In this work we have compared different CBIR and deep learning techniques in the
context of linking images for product matching. A priori, both approaches are suitable
to be applied to this task since they can manage very large data sets for finding hidden
structure within them, and for making accurate predictions. Fourier descriptors, SURF
and BRISK have been trained and tested using a dataset built by hand, taking images
from two different web sites, and pre-trained models (Alexnet, GoogLeNet and ResNet)
based on deep learning approaches were validated using the same validation dataset.
The matching was carried out using the number of keypoints in common and cosine
distance for CBIR and deep learning respectively.

SURF was the best method among the CBIR models, but SURF hit rate did not
reach the 50%. We studied the performance over a wide range of keypoints, and we
found that a number lower than 25 is not recommended since not reliable results have
been found. AlexNet and GoogLeNet have shown better results, obtaining a hit rate
around 67%.

In some cases, images from each web page are so different that the matching is not
feasible, thus in order to improve the results, future work must addressed the hard task
of extent, by hand, the dataset and the generation of a product matching model com-
bining text and images.
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Abstract. Trying to find clusters in high dimensional data is one of the
most challenging issues in machine learning. Within this context, sub-
space clustering methods have showed interesting results especially when
applied in computer vision tasks. The key idea of these methods is to
uncover groups of data that are embedding in multiple underlying sub-
spaces. In this spirit, numerous subspace clustering algorithms have been
proposed. One of them is Sparse Subspace Clustering (SSC) which has
presented notable clustering accuracy. In this paper, the problem of simi-
larity measure used in the affinity matrix construction in the SSC method
is discussed. Assessment on motion segmentation and face clustering high-
lights the increase of the clustering accuracy brought by the enhanced SSC
compared to other state-of-the-art subspace clustering methods.

Keywords: Sparse Subspace Clustering · Similarity measure ·
Enhanced SSC · Motion segmentation · Face clustering

1 Introduction

Clustering is a basic task in machine learning that attempts to segment individ-
uals or objects into meaningful groups. For this reason, several clustering meth-
ods have been proposed [1]. However, the choice of the most appropriate method
remains an open question that depends essentially on the nature of the data and
the area of application. Unfortunately, applied to high dimensional data, conven-
tional clustering methods fail to generate significant results. Indeed, clustering in
such spaces is extremely difficult and the calculation of similarity becomes very
expensive. Also, in the case of high dimensional spaces, groups of data can be
defined only by certain subsets of dimensions and these relevant dimensions may
differ from one group to another. Recently, to overcome this challenge, a new
technique has been emerged which is the subspace clustering [2]. The purpose of
this method is to reveal clusters that exist in multiple underlying subspaces. In
fact, subspace clustering can be considered as a generalization of the principal
component analysis (PCA) method in which the points do not lie around a single
lower dimensional subspace but rather around a union of subspaces. Moreover,
this method can be regarded as a special clustering problem where neighbors are
c© Springer International Publishing AG 2017
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not close according to a pre-defined notion of metric but rather belong to the
same lower dimensional structure.

Subspace clustering problem arises in many computer vision applications,
specially motion segmentation [3] and face recognition [4]. In fact, for these
applications, data points in the same cluster i.e. face images of a person under
different illumination conditions and feature points of a moving rigid object in a
video sequence, lie on a low-dimensional subspace. Thus, clustering a collection of
data points is reduced to finding low-dimensional subspaces fitting each group of
data. Over the last few years, numerous subspace clustering methods have been
proposed. These methods can be broadly divided into four principle categories:
algebraic, statistic, iterative and spectral subspace methods [5]. In particular,
spectral subspace clustering methods promise to become strong competitors for
the rest of methods. In general, the spectral clustering methods aim to construct
a similarity matrix W ∈ R

N×N by computing the pairwise similarity among all
the N data points. Let G(V,E) be an undirected graph where V is the set of N
vertices and E is the set of weighted edges wij between each pair of points i and
j. Then, the K clusters are obtained by applying the K-means to the subset of
K eigenvectors of the laplacian matrix L ∈ R

N×N constructed from W . In this
spirit, spectral subspace clustering methods have the challenge to build the most
representative similarity matrix W that captures whether two points belong to
the same subspace or not. According to the similarity measure, two main families
can be extracted from spectral subspace clustering approaches. Below, each one
of them is described:

– Similarity measure based on principal angles computing from this
category we can cite two methods: Local Subspace Affinity (LSA) [6] and
Spectral Local Best Fit Flats (SLBF) [7] which consist as a first step to find
the nearest neighbors for each data point and fit a local subspace to this
point using PCA. Then, to construct the affinity matrix, a special similarity
measure based on the calculation of the m principal angles between each pair
of local subspaces is computed. Finally, a spectral technique [8] is applied to
have the data segmentation. The advantages of these methods are essentially
the conceptual simplicity. However, the neighbors of a point could contain
points in different subspaces. Therefore, a fundamental challenge for these
methods is to select the most appropriate size of the neighborhood.

– Similarity measure based on sparse coefficient matrix the state-of-
the-art methods including Sparse Subspace Clustering (SSC) [9,10] and Low
Rank Representation (LRR) [11,12] subspace clustering succeed to overcome
the problem of neighbors size by directly fit for each point a local subspace
neighbors. Indeed, these two methods exploit the fact that every data point in
a union of subspaces can be expressed as a linear combination of a few other
data points from its own local subspace. This motivation is used to compute
the sparse coefficients matrix C, which is used then to build a subspace clus-
tering affinity matrix as W =| C | + | C |T . Finally, K-means is applied to
the subset of K eigenvectors of the laplacian matrix obtained from W .
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We are interested here to the SSC method which has showed great clustering
results [10]. The SSC has succeeded to provide an exact neighborhood around
each point. However, and despite of the robust theoretical bases of the SSC
method, the SLBF method succeeded to give also very competitive clustering
results [7], due to the reliable estimation of the subspaces and specially to the
pairwise similarity measure based on the calculation of the angles between the
estimated subspaces.

For this reason, the contribution of this work is to revisit the graph sim-
ilarity measure in SSC in order to improve the clustering performance. The
idea is to exploit the ratio of overlapping membership between local subspaces.
This information is added to the pairwise similarity measure wij , for some data
points, to consolidate the fact of belonging to the same final subspace or clus-
ter. Thus, we propose a novel similarity measure for the SSC method that will
enhance its clustering performance. The rest of the paper is structured as fol-
lows. Section 2 reviews the main formulations of the SSC method. In Sect. 3, the
proposed method E-SSC is introduced. In Sect. 4, some experiments carried out
on ‘Feret’ and ‘Hopkins 155’ datasets are produced and finally, a conclusions and
ideas for further work are summarized in Sect. 5.

2 Related Work

According to [9,10], the SSC is one of the most successful subspace clustering
methods. In fact, it is considered as a spectral clustering method where the
similarity graph is based on the sparse representation.

Precisely, let the data matrix Y = [y1 y2 ...yN ] that lies in the union of the
l subspaces, the key idea behind SSC is what we call the self-expressiveness
property of the data. This self-expressiveness means that each data point yi can
be expressed as a linear combination of other data points from the dataset i.e.:

yi = Y ci, cii = 0 (1)

Where ci = [ci1 ci2 ... ciN ]T and cii = 0 eliminates the trivial solution of
writing a data point as a linear combination of itself. However, this representation
is not unique. Therefore, the main motivation here, that there exist a single
solution ci, such that the most of its coefficients are zero. Concerning the non-zero
coefficients, they correspond ideally to data points from the same subspace as
yi. This solution is named as a subspace-sparse representation and it is obtained
by solving the optimization problem defined as:

min ‖ ci ‖0 s.t. yi = Y ci and cii = 0 (2)

Where ‖ . ‖0 denotes the number of non-zero elements of ci. But, since, this
problem is NP-hard, l0-norm is replaced by its l1-convex relaxation [13]. Thus,
the optimization problem becomes:

min ‖ ci ‖1 s.t. yi = Y ci and cii = 0 (3)
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This problem is expressed according to the matrix form as:

min ‖ C ‖1 s.t. Y = Y C and diag(C) = 0 (4)

Where C = [c1 c2 ... cN ] ∈ R
N×N is the sparse coefficient matrix.

To deal with real world issues, where data is corrupted by noise, the opti-
mization problem is modified as a LASSO problem which is solved as follows:

min ‖ C ‖1 +
λz

2
‖ Y − Y C ‖2F s.t diag(C) = 0 (5)

Where λz > 0 is a regularization term in the objective function, ‖ . ‖F designs
the Frobenius norm selected as the appropriate norm to detect noise.

After finding a set of neighbors for each data point that are estimated to be
in the same local subspace as the query point, a similarity graph is constructed
based on the sparse representation coefficients between each pair of data such as:
wij =| cij | + | cji |. Eventually, the data segmentation is obtained by applying
the K-means to the subset of K eigenvectors of the laplacian matrix L ∈ R

N×N

constructed from the similarity matrix W where K is the number of clusters.

Fig. 1. Flowchart presenting the main steps of the SSC method

Figure 1 illustrates a flowchart that summarizes the main steps of the SSC
method. Applied to face clustering and motion segmentation [10], SSC appears
effective in identifying the underlying subspaces.

3 Contribution

The main challenge of the spectral subspace clustering technique is to construct
the best similarity matrix which captures whether two points belong to the
same subspace or not. According to the similarity measure, two main families
can be extracted: the first is the one based on principal angles computing and
the second is using the sparse coefficient matrix. The last one is described as:
wij =| cij | + | cji |. In this contribution, we discuss the ability of this measure
to describe effectively the similarity between two points. In fact, the weight wij

of the edge between two data points (in the order of 1 in the normalized case)
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Fig. 2. Example of two points y1 and y2 neighborhoods and overlapping

can have an important value. Nevertheless, these points do not really belong to
the same final subspace (cluster). Thus, in this case, this value may influence the
clustering accuracy. Based on this assumption, we propose an improvement of
the existing measure, taking into account the information of the neighborhoods
and the overlap between them.

According to the classic SSC, the sparsest representation is obtained when
each point is expressed as a linear combination of points in its own subspace. In
this way, the idea consists in dividing the data points into two groups. On the
one hand, the first group contains the pairs of points that are considered to be
highly probable to belong to the same final subspace. Indeed, these points are
expressed one by the other, i.e. one is in the neighborhood of the other. On the
other hand, the second group incorporates the data points that do not verify
the previous condition. For only the first group of data, we will compute the
overlapping rate between each pair of local subspaces around two data points.
This is done in order to increase the attraction between these points in the
similarity graph. For Example, as illustrated in Fig. 2 two points y1 and y2 are
written respectively as:

y1 = c2y2 + c4y4 + c7y7 + c8y8 + c9y9 + c10y10 + c12y12

y2 = c1y1 + c3y3 + c4y4 + c5y5 + c6y6 + c7y7 + c11y11 + c14y14

Thereby, y2 belongs to the neighborhood of y1 denoted by:

Vy1 = {y2, y4, y7, y8, y9, y10, y12}
and y1 belongs to the neighborhood of y2 denoted by:

Vy2 = {y1, y3, y4, y5, y6, y7, y11, y14}
Afterwards, the degree of overlap between the two neighborhoods Vy1 and Vy2

is measured as:

O(Vy1 , Vy2) =
card(Vy1 ∩ Vy2)
card(Vy1 ∪ Vy2)

(6)



296 S. Hechmi et al.

In this way, the overlap information is added. If this script is generalized, the
new similarity measure is written as:

wij =| cij | + | cji | + O(Vyi
, Vyj

) (7)

and O(Vyi
, Vyj

) is defined as:

O(Vyi
, Vyj

) =

{
O(Vyi

, Vyj
) =

card(Vyi
∩Vyj

)

card(Vyi
∪Vyj

) if yi ∈ Vyj
and yj ∈ Vyi

0 Otherwise
(8)

Where Vyi
and Vyj

denotes successively the neighborhood of yi and the neighbor-
hood of yj . Thus, the enhanced SSC algorithm noted as E-SSC is summarized
as:

Algorithm 1. E-SSC
Input: A data matrix Y = [y1 y2 ... yN ] that lies in the union of K subspaces.

1. Solve the problem (4) for free data or (5) in the case of noise corrupted data.
2. Normalize the columns of C as ci = ci

‖ci‖∞ [10]
3. Form the graph W with N nodes representing the N data points as:

wij =| cij | + | cji | +O(Vyi , Vyj ) (9)

4. Apply spectral clustering to the laplacian matrix.

Output: The cluster membership of Y .

4 Experimental Results

In this section, the experiments to verify the effectiveness of the proposed method
compared to other subspace clustering methods [5] are assessed. We evaluate the
clustering results on two publicly real world datasets, which are ‘Hopkins155’ [14]
for motion segmentation and ‘Feret’ [15] for face clustering. These datasets are
commonly used in testing machine learning algorithms specially for subspace
clustering methods [16,17]. To measure the subspace clustering performance,
two criteria are adopted:

1. The rate of misclassified points which presents the percentage of the misclas-
sified points in relation to all the classified points. Therefore, it gives an idea
of the final clustering quality. This measure is defined as:

Error % =
#of misclassified points

#of total points
× 100% (10)
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2. The Normalized Mutual Information [18] which is generally used to evaluate
the performance of spectral clustering approaches. Let U be the clustering
result vector and T be the true label vector. We suppose that p(U) and p(T )
are respectively the joint probability mass functions of U and T . Then, the
NMI measure is defined as:

NMI (U, T ) =
I(U, T )

[H(U) + H(T )]/2
(11)

Where H(U) and H(T ) are the entropies of p(U), p(T ) and I(U, T ) denotes
the mutual information between p(U) and p(T ).

4.1 Motion Segmentation

Motion segmentation is a fundamental pre-processing step for different computer
vision applications including video indexing, video surveillance, traffic monitor-
ing, robotics, etc. The main idea of motion segmentation is to classify a set of
tracked feature points into different groups that correspond to different moving
objects (Fig. 3).

Fig. 3. Samples of images of some video sequences from ‘Hopkins155’ database with
ground truth superimposed.

Indeed, under the affine camera model, the 2-D feature points of a set of
3-D real world data points (from a rigidly moving object) lie to a subspace of
dimension at most 4 in R

2F where F is a frame in a video sequence. Therefore,
motion segmentation of tracked feature points is reduced to a subspace clustering
problem, where each subspace corresponds to a single motion. In this context,
the SSC method is known as one the most effective approaches in terms of
accuracy [5]. Thus, we aim to prove the performance of our method compared
to the SSC and the LRR methods since they use the same similarity measure
based on the sparse coefficients. Also, we compare the E-SSC to the SLBF and
the LSA methods which use a similarity measure based on the calculation of the
angles between subspaces. For these tests, we consider the standard benchmark
‘Hopkins 155’. This benchmark can be divided into two main groups: 120 video
sequences containing 2 motions and 35 video sequences having 3 motions. For
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Table 1. Clustering error results on the ‘Hopkins 155’ dataset

Algorithms LRR LSA SLBF SSC E-SSC

(a) 2F-dimensional data points

2 Motions

Mean 4.10 4.23 1.16 1.58 1.70

Median 0.22 0.56 0.00 0.00 0.00

3 Motions

Mean 9.89 7.02 3.63 4.40 3.90

Median 6.22 1.45 0.00 0.56 0.61

(b) 4K-dimensional data points using PCA

2 Motions

Mean 4.83 3.61 1.16 1.83 1.74

Median 0.26 0.51 0.00 0.00 0.00

3 Motions

Mean 9.89 7.65 3.63 4.40 3.90

Median 6.22 1.27 0.00 0.56 0.61

both SSC and E-SSC methods, λz = 800
µz

where μz is calculated from the data
matrix as: μz � minmax

j �=i
| yT

i yj |.
In Table 1, the performance of the subspace clustering methods are compared.

According to [10], we use in experiments, two type of data: the original 2F
dimensional features data points and the 4K dimensional projection data points
since the feature trajectories of K objects or motions in a video sequence are
almost lying in 4K dimensional linear subspaces. As shown in the table, the new
similarity measure used in the E-SSC method succeeds to give very competitive
results specially compared to the SSC method.

Fig. 4. Comparison of the NMI scores on the ‘Hopkins 155’ dataset. (a): results on 2F
dimensional data points. (b): results on 4K dimensional data points
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In Fig. 4, the E-SSC is compared to the SSC method in terms of the average
of NMI values recorded for all the video sequences cited above. Thus, we observe
that the proposed method out-performs the SSC method for both type of pro-
jections 2F and 4K. In fact, the modified similarity measure succeed to provide
a better subspace clustering affinities between the nodes of the similarity graph.

4.2 Face Clustering

As a second application context, we evaluate the performance of the SSC and the
proposed E-SSC methods on the ‘b’ subset of ‘Feret’ database for face clustering.
This dataset contains 1400 facial images with the size 80×80 pixels of 200 persons
taken under different illumination and pose conditions. In addition, each person
has 7 frontal images noted as: ‘ba’, ‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’ and ‘bk’ with different
facial expressions (Fig. 5). For the experiment, 40 subjects of this dataset were
chosen randomly and divided into 4 groups of data such that each group contains
10 subjects. To see the effect of the number of subjects, we test for all choices of
K ∈ {2, 4, 6, 8, 10}. Thus, we apply the subspace clustering methods for all the
sets of K subjects with λz = 60

µz
.

Fig. 5. Facial images for one person from the Feret database

In Fig. 6(a) the average of misclassification error is presented to prove the
performance of the E-SSC compared to the classic SSC. The results recorded by
E-SSC are 7.46, 29.71, 38.91, 43.12 and 43.93 for the number of subjects 2, 4, 6,

Fig. 6. Clustering results on Feret dataset: (a) presents the clustering error rates and
(b) presents the NMI scores.
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8 and 10 respectively. However, we have 11.45, 35.45, 46.37, 48.91 and 51.07 for
the classic SSC. As it can be seen, the proposed E-SSC achieves lower clustering
error rates than the SSC method. Moreover, in Fig. 6(b), the average of NMI
results is presented. We have recorded 77.75, 62.20, 60.69, 60.86 and 62.83 for
all the different choices of subject number (2, 4, 6, 8 and 10 respectively) for E-
SSC. Nevertheless, the average NMI scores of the SSC method are: 67.30, 56.05,
55.95, 57.76 and 60.55. Therefore, the E-SSC method gives better results than
those given by the SSC method in terms of clustering quality. These results are
explained by the effect of the new pairwise similarity measure used by the E-SSC
method. In fact, this measure has succeeded in attracting more the data points
that are supposed to be in the same final cluster and thus it improves the final
clustering accuracy.

5 Conclusion

In this paper, we have proposed an enhancement of the SSC method based on
a novel pairwise similarity measure. The main motivation is to exploit the idea
of overlapping between local subspaces around the data points. Then, we have
incorporated this information in the existent measure under some conditions.
The experimental results on the ‘Hopkins155’ database for motion segmentation
and on ’Feret’ dataset of face clustering, have revealed consistently the per-
formance of the proposed E-SSC compared to the traditional SSC and other
state-of-the-art spectral subspace clustering methods. For future work and in
the purpose to improve more the clustering accuracy of the E-SSC method, we
will focus on transforming our method in the Riemannian manifolds which are
known for their ability to detect nonlinear shapes.
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Abstract. The paper is devoted to the problem of a neural network-
based robust simultaneous actuator and sensor faults estimator design
for the purpose of the Fault Diagnosis (FD) of non-linear systems. In par-
ticular, the methodology of designing a neural network-based H∞ fault
estimator is developed. The main novelty of the approach is associated
with possibly simultaneous sensor and actuator faults. For this purpose,
a Linear Parameter Varying (LPV) description of a Recurrent Neural
Network (RNN) is exploited. The proposed approach guaranties a pre-
defined disturbance attenuation level and convergence of the estimator.
The final part of the paper presents an illustrative example concerning
the application of the proposed approach to the multi-tank system fault
diagnosis.

1 Introduction

Technological progress leads to increasing the complexity of the processes and
systems. Such complexity may result in an increased incidence of their malfunc-
tion. It causes the need for developing new and more effective FD methods. In the
last few decades, three groups of fault diagnosis methods were developed simul-
taneously. The first one consists of numerous relatively simple and easy to apply
methods which rely on the analysis of the signals from diagnosed system. The
second group is represented by qualitative methods demanding deep knowledge
about the diagnosed system. The last group is called quantitative methods, which
are based on the application of the model of the diagnosed system. The quanti-
tative methods seem to be especially attractive because they can be applied for
example in the Fault Tolerant Control (FTC) systems [3,6,7,13,16,18,19,23].

Among the model-based FD methods two main groups can be distinguished:
analytical methods and computational approaches [12,14,17,20,24]. The analyt-
ical methods are based on the models which are based on the physical description
of the diagnosed system. In contrast, the computational approaches rely on the
models which only reflect the behaviour of the diagnosed system. Regardless of
the kind of fault diagnosis method, it should be reliable for any conditions. In
other words, the fault diagnosis method should be robust against the noises,
disturbances and model uncertainty [10,14,16,22]. Moreover, the FD method
should be universal to be applied for a wide class of systems. Furthermore, the
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 305–316, 2017.
DOI: 10.1007/978-3-319-59153-7 27
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efficient FD should provide a knowledge about fault detection, identification and
isolation. Such knowledge is specially required if the method can be applied in
the FTC systems.

It should be underlined that the fault diagnosis methods created on the basis
of analytical models are mature and widely applied in the industry. Such methods
allow simultaneous fault detection, identification and fault estimation. Unfortu-
nately, such methods cannot be applied for some classes of the systems when
the analytical model of the diagnosed system is not available. Such drawback is
not present in the case of the computational intelligence methods such as Arti-
ficial Neural Networks (ANNs) [8]. In this approach, the model can be created
in the procedure of system identification on the basis of the measurements from
the diagnosed system. It is especially attractive in the case of multidimensional,
complex, dynamic and highly non-linear systems. Unfortunately, the ANNs have
also some drawbacks, e.g., the training problems or the complex mathemati-
cal description which make them difficult to combine with analytical methods.
They are rarely available in the form of the state-space neural model with its
uncertainty description frequently used for the robust FD [14,21]. Moreover, the
ANNs can be relatively easily applied in the fault detection tasks although it
is very difficult to perform the fault isolation and fault identification with their
application.

To join the advantages of the neural networks-based models and analytical
approaches in the context of their applications in the FD tasks, a novel method-
ology of designing of Neural Fault Diagnostic Scheme (NFDS) is proposed. The
application of the ANNs in the FD system is possible by transformation of
the neural model without linearization into a Linear Parameter Varying (LPV)
form [1,2,4]. It should be underlined that the final NFDS will be described in the
ANN-like form. It will facilitate its practical implementation. Moreover, the pro-
posed design procedure boils down to solving a set of Linear Matrix Inequalities
(LMIs).

The proposed approach is superior over other FD approaches because it is
able to detect and estimate both actuators and sensors fault vectors simultane-
ously. Moreover, in the developed approach, the robustness of the FD scheme
is achieved by minimizing an influence of external disturbances. The result-
ing methodology guarantees that a prescribed disturbance attenuation level is
achieved with respect to the state as well as actuator and sensor fault estimation
errors while guaranteeing convergence of the observer.

The paper is organized as follows. Section 2 presents basic information about
the RNN model and its LPV representation which can be used in the FD tasks.
Subsequently, Sect. 3 describes a novel robust UIO design procedure that can be
used for the state and actuators and sensors fault estimation. Section 4 shows
an example of the application of the developed approach in the task of the
actuators and sensors robust FD of the multi-tank system. The final part of the
paper concerns the concluding remarks.
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2 Problem Statement

Let us consider the following discrete-time system

xk+1 = f (xk,uk) , (1)

where xk ∈ R
n and uk ∈ R

r is the state and input vector, respectively, while
f (·) is an unknown non-linear function which are describing the system with
respect to the state and input.

As demonstrated in [15], such a system can be efficiently modelled with
RNN. Furthermore, by introducing sensor and actuator fault it boils down to
the following form:

xk+1 = Axk + B
[
uk + fa,k

]
+ A0σ (E1xk) + B0σ

(
E2

[
uk + fa,k

])
, (2)

yk = Cxk + fs,k, (3)

where σ (·) is a nonlinear activation function of hidden layers. Matrices A, B,
A0, B0, E1, E2 are the block weight matrices. Moreover, fa,k ∈ Fa ⊂ R

r is the
actuator fault while fs,k ∈ Fs ⊂ R

m stands for the sensor fault vector.
The goal is to represent (2)–(3) in the LPV-like form:

xk+1 = A (α) xk + B (α) uk + B (α) fa,k + W 1wk (4)

yk = Cxk + fs,k + W 2wk, (5)

where α is appropriate scheduling parameter and wk is an exogenous disturbance
vector. Moreover, W 1 and W 2 denote its distribution matrices. It can be easily

shown that wk can be split in such a way as wk =
[
wT

1,k,w
T
2,k

]T
where w1,k

and w2,k are process and measurement uncertainties, respectively.
It should be noted that the derivation presented here is partially based on [1].

The problem of transforming neural state-space model (2)–(3) into (4)–(5) has
the following property

(A(α), (B(α)) ∈ θ = Co{(Ai,Bi), i = 1, . . . , p}. (6)

Let also define the varying parameter αi [1]:

αi =

{
σ(Ei

1xk+Ei
2uk)

Ei
1xk+Ei

2uk
, Ei

1xk + Ei
2uk �= 0

1, Ei
1xk + Ei

2uk = 0
, (7)

where 1 < i < p denotes ith row of a respective matrix. Then (2), can be
rewritten as

xk+1 = Axk + B
[
uk + fa,k

]
+ A0ΘE1xk + B0ΘE2

[
uk + fa,k

]
+ W 1wk,

(8)
with diagonal Θ ∈ �p×p in the form

Θ = diag (α1, . . . , αp) . (9)
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Using the above results, it is proposed to transform the neural network (2)–(3)
into

xk+1 = Axk + B
[
uk + fa,k

]
+ g (xk) + h(uk+fa,k) + W 1wk, (10)

yk = Cxk + fs,k + W 2wk, (11)

with g (xk) =
∑p

i=1 αiAi
0E

(i)
1 xk and h(uk) =

∑p
i=1 αiBi

0E
(i)
2 uk.

Furthermore, the neural model can be written in a traditional LPV shape
(4)–(5) where A(α) = A+

∑p
i=1 αiA

i, B(α) = B +
∑p

i=1 αiA
i. Moreover, as it

was shown, no linearization is used for transforming the neural network (2)–(3)
into LPV form (4)–(5). Having a general system description, it is possible to
develop and estimator which will be able to estimate sensor and actuator fault
simultaneously.

3 Estimator Design

To handle the above defined problem of simultaneous estimation of the state xk

as well as actuator fa,k and sensor fs,k faults, the following novel observer is
proposed:

x̂k+1 = A (α) x̂k + B (α) uk + B (α) f̂a,k + Kx

(
yk − Cx̂k − f̂s,k

)
, (12)

f̂a,k+1 = f̂a,k + Ka

(
yk − Cx̂k − f̂s,k

)
, (13)

f̂s,k+1 = f̂s,k + Ks

(
yk − Cx̂k − f̂s,k

)
, (14)

where Kx, Ka, Ks are the gain matrices for the state, actuator and sensor fault,
respectively.

Based on (2)–(3) the state estimation error can be described as follows:

ek+1 = xk+1 − x̂k+1 = A (α) + B (α) uk + B (α) fa,k + W 1wk

− A (α) x̂k − B (α) uk − B (α) fa,k − KxCxk − Kxfs,k

− KxW 2wk + KxCx̂k + Kxf̂s,k

= [A (α) − KxC] ek + B (α) ea,k − Kxes,k + [W 1 − KxW 2] wk,

(15)

where ea,k and es,k are the actuator and sensor fault errors, respectively. Fur-
thermore, the dynamics of the actuator fault estimation error is given by:

ea,k+1 = fa,k+1 − f̂a,k+1 = fa,k+1 + fa,k − fa,k − f̂a,k − KaCxk

− Kafs,k − KaW 2wk + KaCx̂k + Kaf̂s,k

= εa,k + ea,k − KaCek − Kaes,k − KaW 2wk,

(16)

with εa,k = fa,k+1 − fa,k which denotes an error between consecutive samples
of the actuator fault. The dynamics of the sensor fault estimation error obeys:

es,k+1 = fs,k+1 − f̂s,k+1 = fs,k+1 + fs,k − fs,k − f̂s,k − KsCxk

− Ksfs,k − KsW 2wk + KsCx̂k + Ksf̂s,k

= εs,k + [I − Ks] es,k − KsCek − KsW 2wk,

(17)
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with εs,k = fs,k+1 −fs,k which denoting the error between consecutive samples
of the sensor fault.

Furthermore, by constructing the super-vectors ēk+1=
[
eT
k+1,e

T
a,k+1,e

T
s,k+1

]T

and vk =
[
wT

k , εT
a,k, ε

T
s,k

]T
, the estimation error of the state and fault can be

presented in a compact form

ēk+1 = X (α) ēk + Zvk, (18)

with:

X (α) = Ā (α) − K̄C̄ , (19)
Z = W̄ − K̄V̄ , (20)

where:

Ā (α) =

⎡

⎣
A (α) B (α) 0
0 I 0
0 0 I

⎤

⎦ , C̄ =
[
C 0 I

]
, K̄ =

⎡

⎣
Kx

Ka

Ks

⎤

⎦ ,

W̄ =

⎡

⎣
W 1 0 0
0 I 0
0 0 I

⎤

⎦ , V̄ =
[
W 2 0 0

]
.

(21)

Based on above results, the following theorem can be defined:

Theorem 1. For a prescribed disturbance attenuation level μ > 0 for the state
and fault estimation error (18), the H∞ observer design problem for the system
(2)–(3) and the observer (12)–(14) is solvable if there exist matrices P , U and
N such that the following constraints are satisfied:

⎡

⎢
⎣

I − P 0 Ā (α)T U − C̄
T
NT

0 −μ2I W̄ U − V̄
T
NT

UĀ (α) − NC̄ UW̄ − NV̄ P − U − UT

⎤

⎥
⎦ ≺ 0. (22)

Proof. The problem of the designing the H∞ observer [11,25] is to obtain matri-
ces N ,U and P such that

lim
k→∞

ēk = 0 for vk = 0, (23)

‖ēk‖l2 ≤ μ‖vk‖l2 for vk �= 0, ē0 = 0. (24)

To solve the problem, it is satisfactory to find a Lyapunov function such that

ΔVk + ēT
k ēk − μ2vT

k vk < 0, (25)

where:

Vk = ēT
k P ēk, P 	 0, (26)

ΔVk = Vk+1 − Vk. (27)
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As a consequence by using (18) it is easy to show that

ΔVk + ēT
k ēk − μ2vT

k vk = ēT
k

(
X (α)T PX (α) + I − P

)
ēk

+ ēT
k

(
X (α)T PZ

)
vk + vT

k

(
ZTPX (α)

)
ēk

+ vT
k

(
ZTPZ − μ2I

)
vk < 0,

(28)

and by introducing

v̄k =
[
ēk

vk

]
, (29)

it can be shown that (28) can be rewritten to the following form

v̄T
k

[
X (α)T PX (α) + I − P X (α)T PZ

ZTPX (α) ZTPZ − μ2I

]
v̄k ≺ 0, (30)

which is equivalent to
[
X (α)T

ZT

]
P

[
X (α) Z

]
+

[
I − P 0

0 −μ2I

]
≺ 0. (31)

Now, let us recall the following lemma [5]:

Lemma 1. The following statements are equivalent:

1. There exists X (α) 	 0 such that

V TX (α) V − W ≺ 0. (32)

2. There exist X (α) 	 0 such that
[−W V TUT

UV X (α) − U − UT

]
≺ 0. (33)

Applying Lemma 1 to (30) gives
⎡

⎣
I − P 0 X (α)T UT

0 −μ2I ZTUT

UX (α) UZ P − U − UT

⎤

⎦ ≺ 0, (34)

and then substituting:

UX (α) = UĀ (α) − UK̄C̄ = UĀ (α) − NC̄ , (35)
UZ = UW̄ − UK̄V̄ = UW̄ − NV̄ , (36)

completes the proof. 
�
The final design procedure can be summarized as follows:

1. Find Ai, Bi for all i according to g (xk) =
∑p

i=1 αiAi
0E

(i)
1 xk and h(uk) =

∑p
i=1 αiBi

0E
(i)
2 uk,

2. Select μ and solve LMI (22) to get matrices N , U and P ,
3. Calculate K̄ = U−1N ,

4. Determine gain matrices K̄ =
[
KT

x ,KT
a ,KT

s

]T
.
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4 Illustrative Example

To verify the proposed approach a multi-tank system is employed which is
depicted in Fig. 1. Such a system was developed for simulating the real indus-
trial multi-tank system in the laboratory conditions. It can be regularly used
to test practically linear and non-linear methodologies used in control, identi-
fication and fault diagnosis. The considered system consists of three separate
tanks placed in cascade. The tanks are equipped with drain valves as well as
electro-valves and level sensors. These sensors based on a hydraulic pressure
measurement. Those tanks are differently shaped what implies the nonlineari-
ties of the system. The liquid level in each tank varies in the range from 0 up to
0.35 [m]. The lower bottom tank is a water reservoir for the system. The multi-
tank system is fed with a DC water pump which is used to fill the upper tank
by the liquid. The water outflows from the tanks due to gravity. The multi-tank
system exchanges data with the level sensors, it also communicates with valves
and a pump with a PC-based digital controller through the dedicated I/O board
and the power interface. Real time software is controlled by the I/O board with
MATLAB/SIMULINK environment. For more information the reader is referred
to [9].

Firstly, following [15], the disturbances influencing the system are distributed
through:

W 1 = 0.01I3×3, W 2 = 0.01I3×3, (37)

The sampling time of the system is set to 0.01[s]. It should be mentioned that
the neural network was trained using Levenberg-Marquardt backpropagation
algorithm. Figure 2 presents the real system output (solid line) in all of the
tanks and the response of the neural network (dashed line) for a given training
input.

Fig. 1. Multi-tank system
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Fig. 2. Real water level and its neural network representation

Moreover, let us consider the following fault scenarios:

fa,k =
{−0.45 · uk, 5000 ≤ k ≤ 7500,

0, otherwise, (38)

fs,1,k = 0,

fs,2,k =
{

y2,k + 0.04, 6000 ≤ k ≤ 8000,
0, otherwise.

fs,3,k =
{

y3,k − 0.1, 7000 ≤ k ≤ 9000,
0, otherwise.

(39)

which means that the actuator fault can be regarded as an intermittent one.
Note that temporary sensor faults occurred in two of three sensors, and they
were partly at the same time. Moreover, the sensor faults appear during the
actuator malfunction. This is a realistic situation that might happen in the
industrial conditions.

Figure 3 presents the response of the states for the first, second and third
tank as well as their estimates (red dashed line) and measured by a sensor
(black solid line). In these plots, it can be seen that the estimates are following
the real states irrespective to the fact of fault occurrence. It can be said that the
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Fig. 3. The response of the system (Color figure online)
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Fig. 4. The actuator fault

state estimate is fault-resistant. In Fig. 4, it is shown the actuator fault and its
estimate (dashed line). To show the effectiveness of the proposed approach with
respect to actuator fault and to simplify the interpretation of the fault signal,
it has been scaled to the range from 0 to 1. According to the fault scenario
the value −0.45 in this graph represent the 45% loss of the effectiveness of the
pump. The observer estimates the real fault highly satisfactory, which clearly
confirms its effectiveness. Figure 5 presents the sensor faults and their estimates.
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Fig. 5. The sensor faults

The observer estimates the sensor faults with very high accuracy. The results
obtained with the proposed approach clearly show its quality and recommended
its straightforward implementation in fault-tolerant control systems.

5 Conclusions

The main objective of this paper was to exploit appealing nonlinear modelling
features of neural networks along with novel analytical scheme for the purpose
of simultaneous sensor and actuator fault estimation. The usual frameworks pre-
sented in the literature can be used either for sensor or actuator fault estimation.
This is realised under unrealistic assumption that either all sensors all or actu-
ator all fault free. The proposed approach reduces the above conservatism and
the above assumptions are not longer required. The paper presents a full design
procedure along with convergence analysis. The final part of the paper shows
an illustrative example regarding multi-tank system, which clearly exhibits the
efficiency of the proposed approach.
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Abstract. Bioinspired Neural Networks have in many instances paved
the way for significant discoveries in Statistical and Machine Learning.
Among the many mechanisms employed by biological systems to imple-
ment learning, gain control is a ubiquitous and essential component that
guarantees standard representation of patterns for improved performance
in pattern recognition tasks. Gain control is particularly important for
the identification of different odor molecules, regardless of their concen-
tration. In this paper, we explore the functional impact of a biologically
plausible model of the gain control on classification performance by rep-
resenting the olfactory system of insects with a Single Hidden Layer
Network (SHLN). Common to all insects, the primary olfactory pathway
starts at the Antennal Lobes (ALs) and, then, odor identity is computed
at the output of the Mushroom Bodies (MBs). We show that gain-control
based on lateral inhibition in the Antennal Lobe robustly solves the clas-
sification of highly-concentrated odors. Furthermore, the proposed mech-
anism does not depend on learning at the AL level, in agreement with
biological literature. Due to its simplicity, this bioinspired mechanism
may not only be present in other neural systems but can also be further
explored for applications, for instance, involving electronic noses.

Keywords: Gain control · Concentration invariance · Neural networks ·
Olfactory system · Antennal lobe · Pattern recognition

1 Introduction

Neuroscience has always intrinsically operated at the intersection of many hard
and soft sciences, with a balancing application and fundamental research. Many
statistical methods have clear biological inspirations [3,11,13], which are then
applied back to relevant scientific problems [1,23,28]. In particular, Neural Net-
works presented a steep growth of interest due to recent success of deep and wide
neural networks [6,14]. Since the recent discovery of the power of using neural
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 317–326, 2017.
DOI: 10.1007/978-3-319-59153-7 28
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networks for pre-processing and feature extraction [7], new exciting developments
have been proposed to a wide range of applications in Machine Learning.

Classification of time series recorded from volatiles is one of the applica-
tions that have benefited from Neural Networks [3,4]. Many insects were shown
to excel at recognizing patterns based on olfactory information [37], and with
response fast response times [20,36]. The main properties and features of the
olfactory pathways of most insects can be modeled as a Single Hidden Layer
Network (SHLN) [8,12], as described in Fig. 1. Odor volatiles trigger waves of
excitation in the Olfactory Receptor Neurons (ORNs), which send direct affer-
ents to the Antennal Lobe (AL). In the Antennal Lobe, the Projection Neurons
(PNs) and Local Neurons (LNs) operate to extract features [16]. Then, PNs
project onto the Kenyon Cells (KCs), in the Mushroom Bodies (MBs). Odor-
rewarded information then happens at the Mushroom Body Output Neurons
(MBONs). From the point of view of Machine Learning, Hebbian learning takes
place between KCs and MBONs [8]. However, one of the key properties employed
by the MBs it the sparse code at the KC level [26]. Because part of the LNs are
inhibitory, it is possible that one of the operations performed at the AL is to
balance the olfactory signal to different levels of concentration [2,24,34]. Sev-
eral studies suggest that this independence over concentration is achieved dur-
ing the pre-processing phase of olfactory system, by a gain control mechanism
[22,25,31,33].

Fig. 1. Representation of the model based on a Single Hidden Layer Network (SHLN).
Odor volatiles induce currents in the Olfactory Receptor Neurons (ORNs), which relay
information into the Antennal Lobe (AL). Our model considers the Projection Neu-
rons (PNs) in the AL as the input layer. Local Neurons (LNs) makes excitatory and
inhibitory connections to PNs. Then the information is sent to the Kenyon Cells (KCs),
located at the Mushroom Bodies (MBs). Finally, odor identity is encoded at the Mush-
room Body Output Neurons (MBONs). Following the biological literature, Hebbian
learning is only applied to the connections between KCs and MBONs.
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In this paper, we propose an exploratory analysis of a bioinspired mathe-
matical approximation of this gain control mechanism. To model the olfactory
system of insects we used a SHLN with the connectivity indicated by in Fig. 1.
To stimulate the SHLN, we used Gaussian patterns with variable intensities and
variances to model odors with different concentrations. Following experimental
observations [26], more concentrated odors created more overlap between differ-
ent classes. Our gain control mechanism improved significantly the classification
performance of the SHLN, increasing the robustness of the neural network to
larger concentrations. Because this bioinspired mechanism is only based on the
lateral inhibition from local interneurons, it is likely that other neural archi-
tectures also employ a similar strategy. Furthermore, because this method only
requires the addition of a single layer in an artificial neural network, this mathe-
matical can potentially be developed for applications that depend fast response
and low energy, such as devices that record time series from chemical sensors [9].

2 Methods

This section is divided into three parts. First, we introduce the proposed gain
control mechanism. Next, we describe the computational model that implements
this gain control. Finally, we describe the patterns used to simulate different
concentration, necessary to test this mechanism.

2.1 Lateral Inhibition in the Antennal Lobe

We propose a gain control mechanism based on observations from neuroscience
of lateral inhibition from ALs into the PNs. This is assumed to subside excessive
activity that may burst from the ORNs, generating a codification of stimulus
that is independent of concentration [2]. To develop our gain control mechanism,
we assumed that the odor information received by PNs and LNs is proportional,
which means that, at the population level,

NPN∑

j=1

PNj ≈ α

NLN∑

i=1

LNi, (1)

where PNj and LNi are the neural activities of the j-th PN neuron and of the
i-th LN neuron, respectively. Finally, α is ratio between PN and LN populations
(∼2.77 for the locust, which has ∼830 PNs and ∼300 LNs). This coefficient was
used to calculate the total activity of the LNs as a function of the activity of the
patterns (PNs), shown in Sect. 2.2. We modeled the lateral inhibition using the
following non-linear relation,

PNj = PNj − PNjβ

(
NLN∑

i=1

LNi − δ

)
, j = 1, . . . , NPN . (2)

In the last equation, β ∼ 1/
∑NLN

i=1 LNi is the weight of the inhibitory connection
from LNs to PNs, and δ is a small threshold. Finally, the non-linear multiplication
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of
∑NLN

i=1 LNi and PNj assures that PNs with lower activities will remain with
lower activities.

2.2 Definition of the Input Patterns

We tested the classification performance of the proposed gain control mechanism
by using artificial stimulation of odors with different identities and concentra-
tions. We used Gaussians with different centers to encode the identity of the
odor (Fig. 2a). Two total number of different odor identities were used, 100 and
1000. Thus, each odor identity elicited the activity of spectrum of PN neurons,
in agreement with experiments. To represent different concentrations, we scaled
the Gaussian by a sigmoidal function (Fig. 2b). This pattern can be described
by the following equation:

PNj =

[
A0 +

A
1 +

(
K
C

)Q

]
exp

(
− (j − jk)2

2C
)

, (3)

where C is the concentration, jk is the center of the j-th odor identity, A0 = 0.05
is the residual activity, A = 0.95 is a parameter that determines the maximum
activity, K = 10 defined the concentration at which half of the maximum level
was achieved, and Q = 3.2 defined the slope of the resulting sigmoid. This

Fig. 2. Odor stimulation as represented by Gaussian patterns. (a) Different odor iden-
tities are modeled as Gaussians centered at different PN neurons (C = 1). To generate
more realistic stimulation, we added noise to Gaussian centers (black) for changing
them to another of PNs belonging to the same pattern class (gray). (b) Neural activity
variability in function of concentration. (c) Activity in the PN neurons elicited by an
odor with small level of noise. (d) Activity in the PN neurons for a larger level of noise.
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follows a common psychophysical response of neural populations to different
intensities [21].

We used on total five different levels of concentration. Because the sigmoidal
function changes the variance of the Gaussian, neighboring PN neurons also
become active (in agreement with experiments [29,30]). Thus, higher concen-
trations increase the overlap between the activities generated by two different
odors. Finally, to simulate the noise experienced in real biological systems, we
added a multiplicative, white noise to the Gaussian. We show simulated activity
of PN neurons for several values of concentration, for the same odor, with small
(Fig. 2c) and large (Fig. 2d) levels of noise.

2.3 Neural and Network Model

The computational model is based on a SHLN, following the connectivity
described in Fig. 1. We used PNs in the AL as input to the network, KCs as
hidden layer, and MBONs the output. The gain control was implemented by a
lateral inhibitory connection between LNs and PNs. We selected the number of
neurons in each population by matching empirical observations in the MBs of
locusts [15].

KCs were implemented as McCulloch-Pitts neurons in all neurons of the
hidden and output layers. Let xi be the state of the i-th PN neuron. Then, the
state yj of the j-th KC neuron can be written as a function of the PNs,

yj = ϕ

(
NPN∑

i=1

cjixi − θj

)
, j = 1, . . . , NKC , (4)

with NKC = 5000 being the number of KCs and NPN = 100, the number of
PNs. The function ϕ is the Heaviside function. We selected the threshold θj

heterogeneously throughout the KCs to improve the classification performance
[16,17] and to maintain the sparsity of KC activity [26]. Finally, Cji was the
weight linking the i-th PN and j-th KC. The connectivity matrix C is deter-
mined randomly by independent Bernoulli processes with probability pc for each
existing connection and 1 − pc for each lack of this [5,8,10]. The value used for
this probability is 0.1, according to [16,17].

MBONs were trained to identify odors of Nclass = 10 classes, and 5
different concentrations separately. To achieve that, each different class was
assigned subgroups of 10 MBONs, where a winner-takes-all mechanism was
implemented with lateral inhibition [10,27,32]. Thus, on total we simulated
NMBON = 10×Nclass = 100 MBONs. Thus, the state z� of the �-th MBON was
described as

z� = ϕ

⎛

⎝
NKC∑

j=1

w�jyj − 1
Nclass

Nclass∑

k=1

NKC∑

j=1

wkjyj − ε�

⎞

⎠ , l = 1, . . . , Nclass, (5)

with ε� representing the threshold of activation of the �-th MBON. Because learn-
ing only happened between KCs and MBONs, we used a 5-fold cross validation
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to fit the weights W�j using Hebbian learning. Finally, W was initialized as
a random matrix with standard normal distribution for the elements, and the
updates were controlled by Hebbian probabilities p+ = 1 (strengthening) and
p− = 0.05 [8,18].

3 Results

The proposed gain control mechanism improved the classification performance,
especially for large concentrations (Fig. 3). For lower concentrations, the dif-
ference in performance between the network with and without gain control is
insignificant. Even for a moderate level of noise (Fig. 3 center), the classifica-
tion error of the network with gain control is below 10%, while the error of the
network without gain control is larger than 20%. If the noise level is further
increased (Fig. 3 right), then the performance of both networks drastically drops
much. However, the presence of gain control reduces the classification error at
least by a fourth (Fig. 3, top right).

We also report that the classification became more robust against noise when
the gain control mechanism was applied (Fig. 4). Although the classification error
of the network with gain control increases rapidly from medium to large levels
of noise, it is always considerable smaller than that of the network without gain

Fig. 3. Gain control improves the classification performance, especially for higher con-
centrations. All results are the average of 10 simulations for the test data set using
supervised learning and 5-fold cross-validation. We show the classification performance
when either 100 (top) or 1000 (bottom) different patterns were presented to the neural
network. Left: With gain control, the classification error rate is insignificant. Center:
With moderate levels of noise, the gain control mechanism maintains a reasonable per-
formance. Right: With a high noise, although the performance drops significantly with
the concentration, the network that employed gain control is always 10% more accurate
than that no gain control.
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Fig. 4. Even for high concentrations, classification using gain control becomes more
robust against noise. Both plots show the classification error rate as a function of the
level of noise applied to the patterns. To represent the worst case scenario, we used the
largest concentration (C = 20).

Table 1. Classification errors obtained for higher concentrations and datasets of 1000
patterns. Table with same results from right panel of Fig. 4. First column determines
the presence of the gain-control mechanism, and the following columns represent the
various levels of noise tested.

Has gain-control? Low noise Medium noise Large noise

No 16.35 24.22 39.41

Yes 0.05 2.91 23.73

control. For the largest concentration and with 1000 patterns, the difference
between the classification error between using and not using gain control is
always greater than 15% (see Table 1 for numerical values). Furthermore, in our
simulations with highest level of noise, the classification error of the network
with gain control is half the error without gain control.

4 Discussions

We studied a mathematical model of gain-control mechanism based on the con-
nectivity presented by the olfactory system of insects. This system is able to
recognize the identity of an odorant across a range of concentrations. Our gain
control used the known the lateral inhibition that exists in the Antennal lobe
(AL) [24], where many researchers believe that a concentration-invariant coding
is created [31,33,34]. We showed that our gain control mechanism outperformed
another network with the same connectivity but without gain control. Even with
large amounts of noise applied to the artificial odor stimuli, the gain control was
able to enhance the classification performance by almost 10%.

Our gain control mechanism was able to solve the classification of highly con-
centrated odors robustly. Because the concentration essentially creates a substan-
tial overlap in the representation of odors from various classes, the performance
of classifiers without any gain-control is impaired. Thus, reducing the overlap
in the representation of odorants, implementing gain control does not only sup-
press outbursts of activity from input layers but also robustly improves learning
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in Mushroom Bodies. To achieve this, we assumed that the population activity of
Local Neurons (LNs) scaled linearly with the Projection Neurons (PNs) when the
concentration of the odor increased. Furthermore, although the inhibition from
LNs must counterbalance the excess of excitation from the Olfactory Receptor
Neurons (ORNs), it cannot shut down the communication between these two
populations. Thus, evolution must have driven the equilibrium between excita-
tion of PNs by ORNs and inhibition by LNs. There are, however, other possible
gain control mechanisms that need to be further studied [35].

Sound and reliable pre-processing bring many direct advantages to biological
systems. The existence of inhibitory local interneurons is ubiquitous in many
areas of the brain, and in many cases these small populations of neurons may be
controlling activity levels [19]. Also, because this gain control condition can be
efficiently implemented, by only adding one extra neural population, this solu-
tion may also be of interest to applications. One direct application would be
arrays of chemical sensors, the resistance of which increases with the concentra-
tion of a given chemical [38]. From the point of view of Machine Learning, this
methodology only adds two new meta-parameters that needs to be optimized.

Acknowledgments. This research was supported by the Spanish Government
projects TIN2010-19607 and TIN2014-54580-R, the predoctoral research grant
BES-2011-049274, NIH grant R01GM113967 and CNPq grant 234817/2014-3.
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Abstract. In this research paper, the concept of hyper-spherical/hyper-
ellipsoidal separability is introduced. Method of arriving at the optimal
hypersphere (maximizing margin) separating two classes is discussed.
By projecting the quantized patterns into higher dimensional space (as
in encoders of error correcting code), the patterns are made hyper-
spherically separable. Single/multiple layers of spherical/ellipsoidal neu-
rons are proposed for multi-class classification. An associative memory
based on hyper-ellipsoidal neuron is proposed.

1 Introduction

In an effort to model the biological neural network, perceptron provided an impor-
tant beginning. Rosenblatt proved the convergence theorem associated with the
learning law, when the patterns are linearly separable. The notion of linear separa-
bility provided the conceptual basis for statistical learning theory based on sup-
port vector machines developed by Vapnick et al. Specifically non-linearly sep-
arable patterns are mapped to higher dimension space where they become lin-
early separable by means of suitable kernel. This approach provided a method of
arriving at a feature space where the classification is rendered easy. To progress
the investigation, the notion of circular, spherical and hyper-spherical separabil-
ity concepts are introduced. Using such concept optimal circular/spherical/hyper-
spherical separating decision manifolds in 2-class case that maximizes the margin
are derived. A novel method of multi-state neuron, called Spherical Neuron is pro-
posed. It is reasoned that such a neuron enables classification of certain type of
multiple classes(i.e. structured multi-class classification). Efforts are underway to
train single/multi-layer networks of such neurons.

2 Circular/Spherical/Hyper-Spherical Separable
Patterns: Optimal Separating Circle/Sphere/
Hyper-Sphere

2.1 Motivation for Spherical Separability

Pattern’s are said to be hyper-spherically separable if there exists a hyper-sphere
which separates two classes. While, pattern’s are said to be linearly separable if
there exists a hyperplane which separates two classes.
c© Springer International Publishing AG 2017
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A necessary condition for linear separability of pattern’s belonging to two
classes to imply spherical separability is that all the patterns belonging to at-
least one of the classes are bounded in (L)2-norm.

Lemma: Under the above condition linear separability implies spherical sepa-
rability.

Proof: Consider the patterns belonging to the class which is bounded. The
centroid of the pattern is computed using MVEE (minimum volume enclosing
ellipsoid).

Since the patterns belonging to two classes are linearly separable, there exists
a hyperplane (not necessarily unique) which separates them. Using the above
computed center, consider a hypersphere which is tangential to the hyperplane
(in the worst case). Such a hypersphere hyper-spherically separates the patterns
belonging to 2-classes.

2.2 Two Class Classification of Circularly/Spherically/
Hyper-Spherically Separable Patterns in 2/3/N
Dimensional Space

Notations used in the section are as following.

– ω1 and ω2: classes which are being separated.
– X and Y : data points belonging to classes ω1 and ω2 respectively. For N

dimension case X,Y ∈ RN . Similarly for 2 dimension X,Y ∈ R2.
– Point C(c1, c2, . . . , cN ): center of the circle/sphere/hyper-sphere which

divides the pattern in two classes. For N dimension case C ∈ RN .
– dmax, dmin: farthest and closest distances from C of points in ω1 and ω2

respectively.
– C is the centre of the MVEE of the class which is bounded. We use

Khachiyan’s algorithm [6] for the computation of MVEE.

2-D Separation Case. Patterns are circularly separable in 2 dimension if there
exists a circle which can separate both the classes.

Let ω1, ω2 be circularly separable. There exists a C ∈ R2 i.e. C(c1, c2). The
optimal circle which separates classes is at distance (dmax + dmin)/2 from C.
When a new data point Z(p, q) is given for classification the decision is taken
using following function

Z(p, q) =

{
ω1 if (p − c1)2 + (q − c2)2 < (dmax + dmin)/2
ω2 otherwise

(1)

3-D Separation Case. Patterns are spherically separable if there exists a
sphere which can separate both the classes.
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Let ω1, ω2 be spherically separable. There exists a C ∈ R3 i.e. C(c1, c2, c3).
The optimal sphere which separates classes is at distance (dmax + dmin)/2 from
C. When a new data point Z(p, q, r) is given for classification the decision is
taken using following function

Z(p, q, r) =

⎧⎪⎨
⎪⎩

ω1 if (p − c1)2 + (q − c2)2 + (r − c2)2 <

(dmax + dmin)/2
ω2 otherwise

(2)

N-D Separation Case. Patterns are hyper-spherically separable if there exists
a hyper-sphere which can separate both the classes.

Let ω1, ω2 be hyper-spherically separable. There exists a C ∈ RN i.e.
C(c1, c2, . . . , cN ). The optimal hyper-sphere which separates classes is at dis-
tance (dmax+dmin)/2 from C. When a new data point Z(z1, z2, . . . , zN ) is given
for classification the decision is taken using following function

Z(z1, z2, . . . , zN ) =

⎧⎪⎨
⎪⎩

ω1 if (z1 − c1)2 + (z2 − c2)2 + . . . +
(zN − cN )2 < (dmax + dmin)/2

ω2 otherwise
(3)

It is clear that if patterns belonging to two classes are linearly separable, they
are hyper-spherically separable. But hyper-spherical separability does not imply
linear separability (by a hyperplane). For instance, if the patterns belonging
to two classes are spherically symmetric about the origin, they are clearly not
linearly separable.

In the spirit of SVM, we have found the optimal hypersphere separating
two classes. Training patterns belonging to classes are presented serially one
class after the other, the distance from center (of one class) is varied with every
training pattern. Optimal hypersphere is computed for 2-class problem. It readily
applies for Multi-class case based on one against rest approach.

2.3 Multi Class Classification of Circularly/Spherically/
Hyper-Spherically Separable Patterns in 2/3/N Dimensional
Space

Notations for the section are as following.

– ω1, ω2, . . . , ωM : M classes which are being separated. Also ω = ω1 ∪ ω2 ∪ . . .
∪ ωM .

– Xi: data points belonging to classes i∈(1,M). For N dimension case X ∈RN .
– Point Ci(ci1, ci2, . . . , ciN ): center of the circle/sphere/hyper-sphere which

divides the pattern in i ∈ (1,M) classes. For N dimension case C ∈ RN .
– A class ti where i ∈ (1,M) is introduced which contains all the points which

lie inside circle/sphere/hyper-sphere by which ωi is enclosed. Also t = t1 ∪
t2 ∪ . . . ∪ tM .

– di1, di2: farthest and closest distances from Ci of points in ti and t − ti
respectively.



330 R.M. Garimella et al.

2-D Case. Let ω1, ω2, . . . , ωM be M classes which are circularly separable. We
use one vs rest approach to classify the data points. The optimal circle which
separates classes is at distance (di1 + di2)/2 from the center. When a new data
point Z(a, b) is given for classification, then

Z(a, b) ∈ ti if (a − cix)2 + (b − ciy)2 < (di1 + di2)/2 ∀i ∈ (1, n) (4)

Z(a,b) belongs to one of wx in ti, which can be found using distance based
algorithms. Similar approach can be followed for 3-D and N-D cases.

It is important to note that, in the theory of error correcting codes, an infor-
mation word is mapped to the associated codeword using an encoder. Also the
coding spheres at hamming distances less than or equal to the minimum dis-
tance of the code are disjoint. Using this idea, we project quantized patterns
from lower dimension space (in the spirit of SVMs), where they become spher-
ically separable. In the following section we summarize the known results from
earlier literature.

Vapnick’s idea was to project non-linearly separable patterns into a higher
dimensional space to render them linearly separable. This idea motivated the
authors to see if certain non-hyper-spherically separable patterns can be rendered
as hyper-spherically separable patterns without projecting them into a higher
dimensional space. Details are provided in the following section.

3 Linear Transformation of Non-hyper-Spherically
Separable Patterns to Spherically Separable Patterns:
Quadratic Neuron

Traditionally, single artificial neuron called perceptron was based on the concept
of linear separability. Rosenblatt proposed a learning law which converges (i.e.
the synaptic weights converge), when the patterns are linearly separable. The
resulting hyperplane is one among various possible hyperplanes that separate
the patterns into two classes.

Vapnick, by introducing the concept of margin, showed that the problem of
synthesizing optimal hyperplane (i.e. a hyperplane which maximizes the margin)
separating two classes can be formulated as a Quadratic optimization problem.

These two approaches remained as the basis for research related to artificial
neural networks (e.g. classification problem).

The authors contemplated on the possibility of combining the logical basis
of above two approaches for classification. They succeeded in such an effort by
introducing hyper-spherical separability concept. The details are summarized
below.

In McCulloh-Pitts neuron, the net contribution is computed using the inner
product of weight vector and the vector of the inputs. This net contribution
is operated on by signum activation function, to arrive at the neuron output.
Such a model of neuron is utilized to classify linearly separable patterns (by a
hyperplanes). Generalizing this idea, several researchers proposed a neuron where
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higher order synaptic operations (e.g. quadratic synaptic operations) are utilized
to arrive at the net contribution which is operated on by signum activation
function [5].

In such a neuron model, the activation function is retained as signum func-
tion. It is thus clear that such models of neuron classify non-linearly separable
patterns. Specifically, let W be a symmetric M × M matrix and X̄ be a M × 1
vector of inputs. The output of neurons

y = signum{X̄TWX̄ − T0} (5)

Here T0 is a threshold value.

Assumption: W be a positive symmetric matrix. Hence by cholesky decompo-
sition we have W = NNT , where N is a

Applying it in Eq. (5)

X̄TWX̄ = X̄TNNT X̄ = ZTZ =
M∑
i=1

zi
2 (6)

where Z = NT X̄. Thus output of such a neuron is given by

y = signum{
M∑
i=1

zi
2 − T0} (7)

Claim: The patterns arrived at by the above linear transformation are hyper-
spherically separable.

Note that using above idea, first documented in research monograph [7], NP-
hard problem of maximum cut computation is reduced to multi-linear objective
function optimization over hypercube [9].

It is well known that homogeneous multivariate polynomial (of degree higher
than two) can be expressed in terms of symmetric tensor. Using cholesky type
decomposition of symmetric tensor, the results in this section can be generalized.

The approach proposed in this section naturally leads to the idea of trans-
forming the patterns by a non-linear transformation (when they are separable
by certain manifold) such that they become spherically separable (without pro-
jecting to higher dimensions).

In the view of discussion in Sects. 2 and 3, a natural question arises whether
the patterns which are not hyper-spherically separable can be projected to higher
dimension where they are hyper-spherically separable (in spirit of SVM design
policy). This issue is addressed in the following section. Patterns are preprocessed
to ensure that they can be encoded (projected into higher dimension) into suit-
able codewords of an error correcting code. It is clear that the patterns in various
coding spheres are hyper-spherically separable. Such a procedure ensures noise
robustness for patterns classification. The following correspondence is identified
between pattern classification and coding theory. Here patterns correspond to
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information words, class centers correspond to codewords and clusters corre-
spond to coding spheres.

In the following section, we briefly refer to some earlier work of Bruck et
al. relating associative memories to error correcting codes. Also, we generalize
the concept of spherical separability resulting in spherical neuron for multiclass
classification.

4 Hybrid Neural Networks: Spherical Separability:
Spherical Neuron

Bruck and Blaum have shown that hopfield neural network is naturally associ-
ated with a graph-theoretical code in the sense that code words are associated
with stable states [2]. They generalize the result to linear error correcting codes
and non-linear error correcting codes. Effective code words are associated with
stable states and vice-versa in the sense that they are the local/global optima
of an energy function (associated with the encoder of an error correcting code).
Thus effectively a one step associate memory (realized by encoder) performs
clustering of data points. In [1], one of the authors proposed hybrid neural net-
works where encoders are cascaded with multi-layer perceptron, a feedforward
network. It is clear that the patterns in different coding spheres are spherically
separable. Figure 1 depicts the idea.

Fig. 1. Hybrid neural networks

The elements of pattern vectors can always be quantized such that they
belong to the set {0, 1, 2, . . . , p − 1} for a suitable chosen prime p. Such patterns
constitute the information words (as in theory of error correcting codes). They
are projected to a higher dimensional space by a suitable encoder to render them
hyper-spherically separable. The minimum distance of the block code determines
the radius of hamming sphere/euclidean sphere around each code word that ren-
ders the codewords hyper-spherically separable. Currently we are investigating
the finer details of such approach.

Spherical Neuron: Multi-class Classification
In the above discussion, in two dimension circularly separable patterns (belong-
ing to two classes) are classified. More generally, hyper spherically separable
classes are classified into 2-classes in higher dimensions. Motivated by the idea
of ceiling neuron [8], we introduce a novel neuron called Spherical neuron, which
performs classification of patterns belonging to multiple classes with certain
restrictions/structure. The details of such neuron are presented below.
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The inputs belong to M classes. They are clustered around the center
(a1, a2, . . . , aN ) = Ā. It could be the origin of N-dimensional euclidean space.
Let an input vector be (x1, x2, . . . , xN ). The output class y is determined in
following manner

y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

class 1 if d(X̄, Ā) ≤ r1

class 2 if d(X̄, Ā) ≤ r2
...
class M if d(X̄, Ā) ≥ rM

(8)

Here d(X̄, Ā) is the euclidean distance between the vectors X̄ and Ā. Note here
that spherical neuron activation function has resemblance to the neurons utilized
in radial basis function networks. It is multi-valued in this case.

Several such neurons are placed in one or more layers to perform fine classi-
fication of input patterns.

We can conceive of Ellipsoidal neuron, where the distance d(X̄, Ā) is com-
puted in the following manner (with Ā = 0̄).

d(X̄, 0̄) = (
x1

b1
)2 + (

x2

b2
)2 + . . . + (

xN

bN
)2 (9)

Single or multiple layers of ellipsoidal neurons are utilized for fine classifica-
tion of input data.

Generalizing the notion of spherical neuron for multiclass classification, we
propose hyper-ellipsoidal neuron in the following section. Also, associative mem-
ory based on such a neuron in proposed.

5 Error Correcting Codes: Clustering

The problem of clustering of patterns is well studied in pattern recognition litera-
ture and various interesting algorithms such as K-means algorithm are proposed.
In most of these algorithms the pattern assume values in euclidean space. Some
literature exists on clustering of patterns whose coordinates/components assume
integer values (i.e. say vector space over a finite field).

We realized that linear/nonlinear error correcting codes enable clustering of
patterns after encoding in a higher dimensional space in the sense of hamming
distance. We recognized that such an approach could provide insights into multi-
class classification of patterns. To facilitate such an approach the components
of patterns must be quantized into integer values which can always be done by
choosing the integer value to be a sufficiently large prime number.

Our goal is to ensure that patterns which are not hyper-spherically separable
in lower dimensional space be made hyper-spherically separable (in the ham-
ming/euclidean distance) in a higher dimensional space by encoding. We expect
that such a goal can always be achieved. There are effectively two approaches.

1. Covering class region with hyper-spheres and clustering in pattern
space: The class region in pattern space need not be hyper-spherical. But, it
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can always be covered with hyper-spheres. Using well known or new clustering
algorithms, centroids of clusters/sub-clusters are determined.
These centroids, which form the information words in the coding theory sense,
are encoded into codewords/patterns in higher dimensional space. Using the
minimum distance of error correcting code, it can always be reasoned that
the classes in higher dimensional space are hyper-spherically separable under
some conditions.

2. Pattern encoding and clustering in codeword space: Patterns in lower
dimensional space constitute information words in the coding theory sense.
They are encoded into codewords (by projecting into higher dimensional
space) by the encoder of a suitable linear/nonlinear error correcting code. The
code words are suitably clustered in such a way that the minimum distance
increases. Hence, the patterns in higher dimensional space become hyper-
spherically separable.

Now, we briefly illustrate the idea of achieving hyper-spherical separability
using an error correcting code. Let the pattern vector components be quantised
using the alphabet {0, 1}. For the sake of example, let the pattern vector be
the 1 × 4 row vector. Also, let the 16 possible such pattern vectors correspond
to 16 different classes (i.e. centroids of classes). Now, we employ the encoder
of a (7, 4) hamming code to map such pattern vectors (information words) into
codewords. It is well known that the minimum distance of (7, 4) hamming code
is 3. Hence hamming/euclidean hyper-spheres of radius one centered around the
codewords are disjoint. Thus by projecting the patterns 4-dimensional euclidean
space to 7-dimensional euclidean space using the encoder we made the patterns
hyper-spherically separable.

In general, an (n, k) block code with minimum distance 2t + 1 over {0, 1}
alphabet can be utilized to make k dimensional binary pattern vectors (which
are not hyper-spherically separable) belonging to different 2k classes to be hyper-
spherically separable in 7-dimensional space. The euclidean spheres of radius√

t(or Hamming spheres of radius t) around the codewords are disjoint.
The above approach ensures that the classification is noise tolerant/robust

(enabling correction of t errors). We expect that by means of finer quantization,
patterns which are not hyper-spherically separable can always be rendered hyper-
spherically separable by means of a suitable encoder under some conditions. We
are actively investigating this approach for pattern classification using hyper-
spherical separability.

6 Hyper-Ellipsoidal Neuron: Associative Memory

Hopfield proposed an associative memory [3] based on McCulloch-Pitts neuron
(which assumes +1 or −1 values). In literature, associative memories are pro-
posed based on multi state neuron [4]. In this research paper, we propose an
associative memory based on hyper-ellipsoidal neuron. Let the state space of
such an associative memory be the bounded lattice i.e. each component of the
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state vector, V̄ (n) assumes values in the set {0, 1, 2, . . . ,M}. Let there be N neu-
rons and let the symmetric synaptic weight matrix be W̄ . The i’th component
of the state vector at time n + 1 is computed in the following manner

Vi(n + 1) = f(net) (10)

where
net = wi1V

2
1 (n) + wi2V

2
2 (n) + . . . + wiNV 2

N (n)

f(net) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if net < T1, Threshold

1 if T1 ≤ net < T2

...
M − 1 if TM−1 ≤ net < TM

M if net ≥ TM

As in case of Hopfield associative memory, the neural network is operated
in the serial mode (state of only one neuron is updated at a given time i.e.
asynchronously) or fully parallel mode (state of all the neurons is updated at
any given time i.e. fully synchronously).

It is clear that the network dynamics is periodic (because of choice of f(.)).
Convergence to stable state (i.e. cycle of length one) or a cycle of certain length
is currently being investigated. Energy function based approach to investigate
nature of dynamics is being currently pursued.

7 Experiments and Results

Following are the results for optimal circular separation case. Two circularly
separable classes, having 1000 data points were generated randomly. We have
compared our method against SVM with linear, polynomial and rbf kernels and
K nearest neighbors algorithm with k = 3. The result is repeated with different
noise level (mixing of classes). Figures 2 and 3 show the graphical representation
of the results.

Table 1. Comparison of classification results among SVM with polynomial, rbf and
linear kernels, KNN (n=3) and our procedure. Numbers represent the accuracy at
various noise levels.

Error .1 .15 .2 .22

Polynomial 0.5350 0.5749 0.4799 0.4774

RBF 1.0 0.9825 0.9575 0.9375

Linear 0.6474 0.4799 0.5324 0.4774

KNN 1.0 0.9825 0.9499 0.9425

Our 1.0 0.9849 0.9599 0.9425

Table 1 and Fig. 4 show the comparison among various methods. It is clear
that our method provides competitive performance with simple computation.
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(a) (b)

Fig. 2. Classification with low pattern noise

(a) (b)

Fig. 3. Classification with high pattern noise

Fig. 4. Comparison of various results.



Optimal Spherical Separability: Artificial Neural Networks 337

8 Conclusion

In this research paper, it is reasoned that the concept of hyper-spherical separa-
bility (always implied by linear separability, when one of the classes is bounded)
enables efficient classification of multiple classes of linearly separable patterns
(one against the rest approach). Also, it is reasoned that certain non-spherically
separable patterns can be made spherically separable by a linear transformation
without projecting them into higher dimensional space. Using the results from
the theory of error correcting codes, it is reasoned that hyper-spherical separa-
bility (of quantized patterns) can always be ensured by encoding (i.e. projecting
into a higher dimensional space) under some conditions. Finally, the concept of
hyper-ellipsoidal neuron and an associative memory based on such a neuron is
proposed.
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Abstract. Machine ensembles are learning architectures that offer high
expressive capacities and, consequently, remarkable performances. This
is due to their high number of trainable parameters.

In this paper, we explore and discuss whether binarization techniques
are effective to improve standard diversification methods and if a simple
additional trick, consisting in weighting the training examples, allows
to obtain better results. Experimental results, for three selected classi-
fication problems, show that binarization permits that standard direct
diversification methods (bagging, in particular) achieve better results,
obtaining even more significant performance improvements when pre-
emphasizing the training samples. Some research avenues that this find-
ing opens are mentioned in the conclusions.

Keywords: Classification · Multi-Layer Perceptron · Ensemble classi-
fiers · Bagging · ECOC

1 Introduction

Although the expressive power –the capacity of a machine to establish gen-
eral input-output correspondences– of one-hidden layer Multi-Layer Perceptrons
(MLPs) is theoretically unbounded if an appropriate number of hidden units is
included [1,2], the limited number of labeled training examples that are available
in practice reduces it.

A way of overcoming this limitation is to build ensembles of MLPs –or other
Learning Machines– by diversifying the training of each of them. An ensemble
of classifiers is basically composed of a group of machines that try to solve the
same problem but under different conditions –diversity– and their outputs are
combined aiming at obtaining a system that hopefully is more accurate than any
of its members [3]. To achieve this goal, the members of the ensemble, usually
known as base learners or simply learners, must be diverse. Put it very simple,
two machines are diverse when their errors are not coincident.

In this regard, there are two basic families of ensembles. The first, we are
called committees, consists in training the base learners with different examples
c© Springer International Publishing AG 2017
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and their outputs are aggregated, usually by simple procedures (direct averag-
ing or majority vote, for example). Among committees, we can mention two
relevant techniques: Bagging [4], in which bootstrap resampling of the samples
provides the training sets for the learners, and label switching [5], in which
randomly switching examples’ labels serves to introduce diversity. The second
family of ensembles, which we call consortia, simultaneously train the units and
the aggregation. Among consortia, boosting, whose basic forms appeared in [6,7],
has proved to be very effective for improving the performance of single learners.
The key aspect is to iteratively design and aggregate classification units paying
more attention to the examples that present higher classification errors. Mix-
ture of Experts [8], the second most relevant consortia designs, show moderate
performance when designed for classification, and the existing modifications to
increase it, such as [9], require a huge computational effort.

A different kind of ensembles are those resulting from decomposing a multi-
class problem into a number of binary problems whose solutions indicate the
class corresponding to each sample. They are called binarization techniques.

The idea of combining binarization methods with one of the above-mentioned
techniques (committees or consortia) for solving multi-class problems is not
something novel. In [10], it was studied the performance of combining both bag-
ging and binarization techniques over one dataset. The results obtained were not
very satisfactory since the overall performance was the same as with only bag-
ging. In [11], bagging and binarized ensembles were evaluated for nine datasets
using a bias-variance framework and making comparisons with single neural
networks based classifiers. The results obtained outperformed bagging and bina-
rization in some cases, while in other cases gave similar results.

In this work, we take a further step and, we also explore a simple additional
alternative that could be applied together with the combination of binarization
techniques and standard diversification methods, aiming at increasing the per-
formance of the overall ensemble. This alternative is pre-emphasis, i.e., weighting
the training samples according to an auxiliary classifier, taking into account the
critical character of each sample, i.e., its proximity to the classification bor-
der and its classification error following the ideas of [12,13]. In [14], we proposed
flexible enough pre-emphasis approaches that allowed remarkable improvements,
requiring a very modest computational cost in the design phase, but not in oper-
ation, i.e., to classify unseen samples.

The rest of the paper is organized is follows. In Sect. 2, we present a
brief review of ensembles that are produced by binarizing multi-class prob-
lems. Section 3 presents the weighting function that is used for pre-emphasis
in multi-class problems. Section 4 describes the experimental framework: the
selected datasets and the MLP based machines, the ensemble architectures to
be studied, the binarization method to be applied, as well as the type of auxiliary
classifier that is used to determine the amount of pre-emphasis needed for the
training samples. Experimental results and their discussion are also included in
this section. The most important conclusions of our work and some open research
lines close this contribution in Sect. 5.



Pre-emphasis for Improving Binarized Ensembles 341

2 Binarization

There are three popular techniques for reducing a multi-class problem into a
series of binary classification problems, namely: One vs. One (OvO), One vs.
Rest (OvR) (also known as One vs. All), and Error Correcting Output Codes
(ECOC) [15]. ECOC methods come from the area of communications for correct-
ing data errors during transmission. They are based on adding some redundant
information to the block to be transmitted, hence obtaining a codeword. In the
context of ensembles, the use of ECOC consists in creating base classifiers and
training them according to the information obtained from a pre-established code
matrix. Experimental work has shown that ECOC offers improvement over OvO
and OvR classification methods [15,16]. This is basically the reason why in this
work we explore the application of ECOC for binarizing ensembles.

We continue with a short review of ECOC technique. Table 1 shows an exam-
ple of an ECOC matrix for a 4-class classification problem [16].

Table 1. An exhaustive ECOC for a 4-class decision problem [16]. C0 to C3 are the
classes, P0 to P6 are the binary problems. The codeword (row) that is nearest to the
vector of units’ outputs indicates the class to be selected.

Class Problem

P0 P1 P2 P3 P4 P5 P6

C0 1 1 1 1 1 1 1

C1 0 0 0 0 1 1 1

C2 0 0 1 1 0 0 1

C3 0 1 0 1 0 1 1

In the example at hand, each class is assigned a unique binary string of
length 7. The string is also called codeword. For example, Class 2 (C2) has the
codeword 0011001. During the training process, one binary problem is learned
for each column. In this respect, for the first column, we build a binary classifier
to separate {C0} from {C1,C2,C3}. Thus, it seems clear to notice that seven
classifiers are trained in this way. To classify a new sample, x(n), all seven binary
classifiers are evaluated to obtain a 7-bit string. Finally, the given sample is
classified by computing the similarity between the obtained 7-bit string and the
codeword for each class, by using the Hamming distance metric.

3 Proposed Pre-emphasis Function

As mentioned in the Introduction, we have considered in this work the training
of machines using pre-emphasized samples where the amount of pre-emphasis is
determined by an auxiliary classifier.
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For binary classifiers, the pre-emphasis used on training sample x(n) can be
written as indicated in the following double-convex combination of three terms:

p
(
x(n)

)
= α + (1 − α)

[
β

(
e(n)a

)2

+ (1 − β)
(

1 −
[
o(n)a

]2)]
(1)

where e
(n)
a is the classification error for input sample x(n) and o

(n)
a is the output of

the auxiliary classifier for sample x(n). It seems clear to notice that the underlying
idea of the pre-emphasis function is that the training samples should be weighted
based on two measures: How large the error is in the auxiliary classifier and how
close its output is to the decision boundary.

The two pre-emphasis parameters, α and β, have values between zero and
one (0 ≤ α, β ≤ 1), and are determined by a process of Cross-Validation (CV)
in our experiments.

Extending expression (1) to the case of multi-class formulations is not an easy

task since the term
(

1 −
[
o
(n)
a

]2)
does not have a direct equivalent. However, if

discriminative forms are considered, which are effective for training multi-class
machines, it is possible to replace it for (1−|o(n)ac − o

(n)
ac′ |) or similar forms, where

o
(n)
ac is the softmax output of the auxiliary classifier for the true class and o

(n)
ac′ is

the output whose value is the nearest to o
(n)
ac among the rest.

4 Experiments and Their Discussion

4.1 Databases

We will limit our presentation of results to a few appropriately selected multi-
class databases that are frequently used as benchmark sets for this kind of exper-
iments: the synthetic dataset Firm-Teacher Clave-Direction Classification [17]
and two real problems, Satimage [18] and Vehicle [19]. All of them are obtained
from the UCI Repository of Machine Learning Databases [20]. Table 2 illustrates
the main characteristics of these problems: number of classes, number of dimen-
sions and numbers of training and test samples. When the dataset had no pre-
defined train/test partitions (that is, the case of Firm-Teacher Clave-Direction
Classification and Vehicle datasets), a random partition has been created with
70/30% for training and test, respectively, keeping the relative proportions of
the classes in each subset. From now on, we will denote the databases by their
three first letters.

4.2 Machines and Their Designs

The architectures under study as well as the single classifier employ MLPs with
one-hidden layer as base learners because they are unstable and powerful enough
machines. They are trained by the Back-Propagation algorithm to minimize the
mean squared error between the desired output and what the network actually
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Table 2. Characteristics of the benchmark problems.

Dataset Notation # Train
samples

# Test
samples

Dimension # Classes

Firm-Teacher Clave-Direction Fir 10800* - 16 4

Satimage Sat 4435 2000 36 6

Vehicle Veh 946* - 18 4

*The total number of samples of the datasets without separate train and test sets (Fir
and Veh) are listed under the number of training samples. For these datasets, a random
partition has been created with 70/30% for training and test, respectively, keeping the relative
proportions of the classes in each subset.

outputs, initializing all the weights at random values from a [−0.2, 0.2] uniform
distribution. The learning rate for both layers (hidden and output layers) is set
to be 0.01, which has been experimentally proven to allow to reach convergence.

As mentioned, the architecture of the MLP based classifiers, explored in the
experiments, consists of three layers (input, hidden and output layers). In this
architecture, the number of input neurons corresponds to that of the attributes
used to characterize the input samples (that is, it is consistent with the dimen-
sion of the datasets shown in Table 2), the number of output neurons is related
to the classes we are interested in (in a binary classification problem may be
enough to have a single output neuron) and the number of hidden neurons (H)
depends on the adjustment of the complexity of the MLP. To achieve an optimal
ensemble behavior, this appropriate number of hidden neurons has to be fixed.
Despite each ensemble can need a different H value, aiming at carrying out a
fair comparison in computational terms, we have preferred to fix the same H for
all the bagging sampling rates. Then, this parameter is established by means of
a 20-run × 5-fold CV.

However, when using the binarization technique, for each binary problem, a
different H has to be fixed. In this case, for each dichotomic problem, the value of
H is separately obtained also by means of a 20-run× 5-fold CV. This obviously
increases the computational cost.

An 80/20 early stopping mode is applied to stop training.

4.3 Conventional Diversification

Bagging is carried out by means of conventional bootstrap (sampling with
replacement) in our experiments, exploring different sizes B of the diversified
training sets: 60, 80, 100, 120 and 140% the size of the original set of training
examples. We also examine different number of ensemble units, M = 11, 21, 31,
41, 51, 101 and 201. We remark that these values serve to ensure that perfor-
mances saturate, as we will see later.

We apply bagging in two different forms:

1. To construct ensembles of different, diversified MLPs;
2. Just at the classification layer, applying the diversification after getting the

output values of a single MLP which is trained without diversity.
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We will denote these designs by MLP-O (overall) and MLP-T (T-form) archi-
tectures, respectively. With this in mind, when we apply bagging to multi-class
problems, two different architectures are obtained:

– MLP-BINARIZED-O: As shown in Fig. 1(a), bagging is applied to input data
to construct M machines, and the final class is decided by a majority vote
of their outputs that are obtained by means of ECOC ensembles that follow
each diverse MLP;

– MLP-BINARIZED-T: In this scenario, as illustrated in Fig. 1(b), there is
only one MLP structure and bagging is being imposed to its outputs values
to construct M diverse ECOC ensembles, whose outputs are also aggregated
by a majority vote rule.

Fig. 1. Illustrative architectures showing the ways of combining diversity and bina-
rization techniques in this work for solving multi-class problems: MLP-BINARIZED-O
architecture (Fig. 1(a)) and MLP-BINARIZED-T architecture (Fig. 1(b)). MLP is a
single Multi-Layer Perceptron; ECOCn are the diverse ECOC ensembles. MV: major-
ity vote; x: input; o: output class decision.

It is clear to notice that O structures theoretically require a higher design
effort, because M MLP machines have to be trained. To reduce it to affordable
computational charges, we apply a frequently used simplification: to design more
than M MLP bagging units (450, here) for each value of B, and to select M of
them at random. Average performances are obtained for 10 independent selec-
tions. Of course, this reduces a little bit the diversity advantage, but we remark
that our goal here is just to verify if diversity can improve single shallow MLP
performance.
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4.4 Binarization

In our series of experiments, we will use the C-class exhaustive ECOCs of [16],
for the combination between overall and T-form architecture and bagging shown
in Fig. 1. According to [16], for classification problems of 3 ≤ C ≤ 7 classes, we
construct a code length 2C-1 − 1 as follows. Row 1 is all ones. Row 2 consists of
2C-2 zeros followed by 2C-2 − 1 ones. Row 3 consists of 2C-3 zeros, followed by
2C-3 ones, followed by 2C-3 zeros, followed by 2C-3 − 1 ones. In row i, there are
alternating runs of 2C-i zeros and ones.

4.5 Pre-emphasis

In the design of a single classifier, it seems clear that pre-emphasis weight-
ing should be applied to the input training samples. However, for both MLP-
BINARIZED-O and MLP-BINARIZED-T architectures previously described,
the question arising here is: What is the way to apply the pre-emphasis weight-
ing? In the first scenario, MLP-BINARIZED-O structure, the pre-emphasis is
applied to the inputs to each diverse MLP, and in the second situation, MLP-
BINARIZED-T architecture, two options have been considered in our experi-
ments: The first is to weight the inputs to the single MLP and the second consists
of separately pre-emphasizing each binary problem that appears after applying
bagging at the outputs values of the single MLP based classifier. Preliminary
results showed that best performances were obtained when weighting the input
data to the binarized problems and, consequently, this is the way we have cho-
sen for pre-emphasizing samples in the MLP-BINARIZED-T architecture in our
experiments.

To determine the values for the pre-emphasis parameters, α and β, we used
10-run × 5-fold CV for the three datasets. As mentioned, the values for these
parameters that we considered were in the interval [0, 1] at increments of 0.1.

The auxiliary machine used in the experiments that provides the values to
compute pre-emphasis weights according to expression (1) is an MLP with one-
hidden layer of 50 neurons, because it was experimentally shown that this number
of neurons provided the best results over a validation set for the three datasets.

4.6 Experimental Results

The results of our experiments (% error rate averages ± standard deviations,
averaged for 10 different selections of learners in the case of bagging and for 10
runs when using ECOC ensembles) are shown in Tables 3 (Fir), 4 (Sat), and 5
(Veh) for the test sets. Best results are indicated in boldface (even if statistical
differences are not significant). Additionally, we also include the performance of
the design which does not apply neither bagging diversity nor ECOC binarization
(denoted as MLP), as well as the designs which only apply bagging (indicated as
MLP bagging) and the designs which employ ECOC without bagging (marked
as MLP-ECOC), aiming at appreciating what is the advantage which can be
attributed to the inclusion of the combination of different forms of diversity
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explored in this work. As mentioned in Sect. 4.3, although different sizes B of
the diversified training sets (60, 80, 100, 120 and 140%) have been explored as
well as different number of ensemble units (M = 11, 21, 31, 41, 51, 101 and 201),
Tables 3, 4 and 5 summarized the most remarkable results.

Having a look at the tree mentioned tables, the first thing to remark is that
clear performance saturation effects appear when M or B increase. This indicates
that extending the exploration margins is unnecessary. Furthermore, for the three
databases under study, all kinds of diversity explored in this work appear to be
effective, both O and T bagging: as an example, for Veh dataset, error reduction
achieved is about 30%. Obviously, the T-form architecture must be preferred,
because it requires lower computational training and operation efforts. Please
note that in general, no significant differences appear between separate bagging
and ECOC diversifications.

A detailed observation of the mentioned tables leads to the following
conclusions:

– For Fir dataset: Directly applying bagging or ECOC achieved success in
improving performance. Note that a simple ECOC reduces 18% the error
rate, while the best scenario when applying bagging achieves a reduction of
about 14%. Results are slightly better when applying jointly ECOC and bag-
ging, M = 31 and B = 120% T-design being the best option in which error
rate is approximately reduced up to 22%.

– For Sat dataset: Applying bagging or ECOC separately achieves reducing
the error, ECOC ensembles being those which obtain the greater reduction
(≈8%), as just happened for the previous dataset. However, when jointly
applying ECOC and bagging, results are negative for small values of B, but
moderate benefits appear when parameter B increases, M = 21 and B = 140%
T-design achieving an error reduction of about 11%.

– For Veh dataset: Simple ECOC approximately reduces 25% the error rate,
which is greater than the best error reduction obtained when applying bagging
(≈22%). On the other hand, we can observe that jointly applying ECOC and
bagging, results are better, especially when M and B parameters increase,
M = 51 and B = 120% T-design reaching an error reduction of roughly 31%.

Please note that if the number of training samples in the datasets is low,
the results are more unstable and differences are statistically less significant.

We have taken a further step and we have applied pre-emphasis techniques to
the designs that provided the best performances. Table 6 shows the results. For
comparative purposes, the results obtained when the pre-emphasis is not applied
(see Tables 3, 4 and 5 for further details) are also presented, as well as the results
of the single MLP classifier when the input samples are pre-emphasized (MLP
PrE) and when they are not pre-emphasized (MLP). For each problem, the
values for α, β obtained by CV are given in parentheses.

It can be observed that the PrE MLP-BINARIZED-T performances are
clearly and systematically better than any other results. Error rates decay around
40% in some cases.
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Table 3. Test (%) error rate averages ± standard deviations for the diversified classi-
fiers applied to problem Firm-Teacher Clave-Direction (Fir).

MLP 14.66 ± 0.18

MLP-ECOC 12.03 ± 0.13

MLP bagging B B
M 120% 140%

11 12.87 ± 0.11 12.75 ± 0.15
21 12.73 ± 0.10 12.66± 0.14
31 12.83 ± 0.09 12.71 ± 0.12

MLP-BINARIZED-O
B B B

bagging
M 100% 120% 140%

11 12.75 ± 0.13 12.04 ± 0.11 12.13 ± 0.10
21 12.64 ± 0.11 11.70± 0.10 12.01 ± 0.11
31 12.58 ± 0.09 11.83 ± 0.09 11.97 ± 0.09

MLP-BINARIZED-T
B B B

bagging
M 100% 120% 140%

21 12.47 ± 0.07 11.65 ± 0.08 11.97 ± 0.08
31 12.35 ± 0.07 11.53± 0.07 11.86 ± 0.07
51 12.33 ± 0.07 11.60 ± 0.07 11.75 ± 0.08

Table 4. Test (%) error rate averages ± standard deviations for the diversified classi-
fiers applied to problem Satimage (Sat).

MLP 10.28 ± 0.98

MLP-ECOC 9.44 ± 0.40

MLP bagging B B B
M 100% 120% 140%

11 10.58 ± 0.84 10.04 ± 0.63 10.14 ± 0.60
21 10.39 ± 0.71 9.88± 0.55 10.19 ± 0.62
31 10.43 ± 0.69 9.94 ± 0.57 10.21 ± 0.55

MLP-BINARIZED-O
B B B

bagging
M 100% 120% 140%

11 10.34 ± 0.44 9.24 ± 0.38 9.35 ± 0.39
21 10.23 ± 0.37 9.31± 0.42 9.29 ± 0.37

MLP-BINARIZED-T
B B

bagging
M 120% 140%

11 9.31 ± 0.39 9.23 ± 0.34
21 9.29 ± 0.36 9.18± 0.29
31 9.25 ± 0.31 9.22 ± 0.28
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Table 5. Test (%) error rate averages ± standard deviations for the diversified classi-
fiers applied to problem Vehicle (Veh).

MLP 18.91 ± 3.79

MLP-ECOC 14.20 ± 3.40

MLP bagging B B
M 120% 140%

51 14.93 ± 3.41 14.73 ± 3.16
101 14.80 ± 3.35 14.69± 3.11
201 14.89 ± 3.27 14.75 ± 3.08

MLP-BINARIZED-O
B B B

bagging
M 100% 120% 140%

31 14.72 ± 3.24 13.59 ± 3.33 13.82 ± 3.20
51 14.68 ± 3.19 13.51± 3.29 13.85 ± 3.21
101 14.51 ± 3.20 13.63 ± 3.26 13.80 ± 3.18

MLP-BINARIZED-T
B B B

bagging
M 100% 120% 140%

31 14.87 ± 3.29 13.19 ± 3.30 13.42 ± 3.25
51 14.78 ± 3.19 13.04± 3.25 13.18 ± 3.14
101 14.80 ± 3.15 13.08 ± 3.22 13.16 ± 3.11

Table 6. Comparison of test (%) error rate averages ± standard deviations for the
benchmark problems considered in our experiments when pre-emphasis is applied.

Dataset MLP MLP-BINARIZED-T bagging

No PrE PrE (α, β) No PrE PrE (α, β)

Fir 14.66 ± 0.18 11.87 ± 0.05 (0.3, 0.5) 11.53 ± 0.07 10.34 ± 0.03 (0.4, 0.6)

Sat 10.28 ± 0.98 9.26 ± 0.31 (0.4, 0.3) 9.18 ± 0.29 8.13 ± 0.17 (0.4, 0.5)

Veh 18.91 ± 3.79 14.05 ± 2.32 (0.6, 0.3) 13.04 ± 3.25 11.59 ± 1.67 (0.5, 0.4)

All these results seem to indicate that pre-emphasizing the samples of bina-
rized ensembles is extremely useful to obtain high performance MLP-based clas-
sifiers and that T-form diversity is fruitful if binarization is applied.

5 Conclusions

In this paper, we have not only checked that binarization is effective to improve
standard diversification techniques –bagging, in particular–, but we have also
seen how a simple technique consisting in weighting the training examples
allows to obtain even more important performance improvements. In all the
three datasets under study, experimental results show that to combine a flexible
enough pre-emphasis function with ECOC binarized and diversified MLP based
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classifiers, permits an error reduction bigger than their separate application,
achieving until 40% error rate reductions in a dataset.

Between the two explored ensemble architectures –O form, corresponding to
a full diversification and T-form, in which diversity is applied after designing the
MLP based classifier, the second approach reaches lower error rates. Since it is
also better from the perspective of the required training and operating compu-
tational efforts, it must be preferred for MLP based classifiers. It is also worth
mentioning that the saturation performance with respect to the diversification
parameters make their selection an easy validation problem.

Needless to say, much more work –considering other problems, other clas-
sifiers, and other sources of diversity– is needed to completely appreciate the
potential of combining diversity and binarization techniques, including appro-
priate pre-emphasis sample weighting schemes. Finally, we must remark that
to combine this kind of designs with other auxiliary techniques that serve to
improve the performance of MLPs classifiers is a promising way to get excellent,
or even record performance practical implementations.
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Abstract. In this research paper, a novel ordinary quaternionic hop-
field type network is proposed and the associated convergence theorem
is proved. Also, a novel structured quaternionic recurrent hopfield net-
work is proposed. It is proved that in the parallel mode of operation,
such a network converges to a cycle of length 4.

1 Introduction

Hopfield neural network based on McCulloch-Pitts model of artificial neuron
provided an interesting associative memory. The complex valued generalization
of such a neural network with suitable complex signum function was proposed
by Jankowski et al. [1] and was subject to intensive study by Zurada et al. [2].
To be exact, in [1], the authors utilized phase quantization idea to arrive at a
complex Hopfield network that formed the basis for earlier quaternionic neural
networks [4]. Also, utilizing Quaternions (a generalization of complex numbers)
and suitable definition of complex signum function (as in [1]), an associative
memory was studied in [3,4]. It is recently shown in [5] that in such a quaternionic
Hopfield network, convergence result conjectured in [3,4] will not hold (i.e. a
counter example was provided).

The authors [6] proposed a novel Complex Hopfield network based on magni-
tude quantization through a different complex Signum function and proved the
convergence theorem (with complex hypercube as the State Space). Also, in [7],
the authors studied the dynamics of a real valued recurrent Hopfield network.
Further in [8], the authors proved convergence theorems associated with struc-
tured Complex recurrent Hopfield networks. The generalizations of such neural
networks led to the quaternionic Hopfield network discussed in this research
paper. This research paper investigates the dynamics of structured quaternionic
Hopfield type neural networks. Here we prove the convergence theorems of the
network. We expect many applications for our Quaternionic Hopfield Network.

This research paper is organized as follows. In Sect. 2, quaternionic Hopfield
network based on quaternionic Hermitian synaptic weight matrix is described
and convergence theorem is proved. In Sect. 3, dynamics of interesting structured
quaternionic recurrent Hopfield type networks is studied. Experimental results
are provided in Sect. 4. Octonionic networks are introduced and their limita-
tions are discussed in Sect. 5. Future work is discussed in Sect. 6 and this paper
concludes in Sect. 7.
c© Springer International Publishing AG 2017
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2 Dynamics of Ordinary Quaternionic Hopfield Type
Network

In research literature, artificial neurons whose output is a complex number were
studied. Generalizing this idea, Artificial Neural Networks (ANNS) in which the
output is a unit quaternion are proposed and studied. In this research paper we
consider artificial neurons whose output belongs to the following set

H = {a + i b + j c + k d where a = ±1, b = ±1, c = ±1, d = ±1} (1)

i.e. each artificial neuron is in one of the 24 = 16 states. We consider an artificial
neural network with M such neurons. Thus, the state space of such a network
is the so called QUATERNIONIC UNIT HYPERCUBE with 16M possible ele-
ments.

Let the state of ith neuron at time t is denoted by vi(t). The neurons are con-
nected to each other with the synaptic weights being quaternions. The synaptic
weights is a Hermitian quaternions matrix i.e.

W = W ∗ i.e. wij = w∗
ji

(where w∗
ji denotes the conjugate of quaternion wji). The state of ith neuron at

time t + 1 is computed in the following manner

vi(t + 1) = QSIGN{
M∑

j=1

wij vj(t) − Ti} (2)

where Ti is the threshold at the ith neuron and Quaternionic signum function is
defined in the QSIGN

QSIGN(a + i b + j c + k d) = sign(a) + i sign(b) + j sign(c) + k sign(d)

The Quaternionic Hopfield type neural network operates in the following modes.

– SERIAL MODE: At any given time t, state update (to the state at time t+1)
is performed at only one node/neuron

– FULLY PARALLEL MODE: At any given time t, state update is performed
simultaneously at all M nodes/neurons

– Other parallel modes: State update is performed at l neurons simultaneously,
where 1 < l < M .

In the state space of quaternionic Hopfield network, there are distinguished states
called STABLE STATES. They have a special property such that once the net-
work reached a stable state, it will remain there forever (i.e. no change in the
State vector happens after any update.)

The following convergence theorem summarizes the dynamics of a Quater-
nionic Hopfield type neural network (discussed in this research paper).
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Theorem 1. Let N = (W,T ) represent a quaternionic Hopfield network. The
following dynamics is exhibited by such an artificial neural network.

– In the serial mode of operation, the neural network always converges to a
stable state.

– In the fully parallel mode of operation, the neural network converges to a
Stable State or exhibits a cycle of length 2.

Proof: Let W be the quaternionic matrix such that

wij = w̄ji for i �= j (3)
wij = 0 for i = j (4)

Now, let V (t) be the state vector at a given time t. Energy at time instant
t is

E(t) = V (t)+ W V (t), where + represents conjugate transpose. (5)

=
∑

i

∑

j i�=j

vi(t) wij vj(t) (6)

Now let us assume that ith neuron is updated. The energy difference is

E(t+1)−E(t) =
∑

j

(v̄i(t+1)− v̄i(t)) wij vj(t)+
∑

j

v̄j(t) wji (vi(t+1)− vi(t)) (7)

= (v̄i(t + 1) − v̄i(t))
∑

j

wij vj(t) + (
∑

j

v̄j(t) wji) (vi(t + 1) − vi(t)) (8)

Now,

(
∑

j

v̄j(t) wji) (vi(t + 1) − vi(t)) = (
∑

j

v̄j(t) wji) (vi(t + 1) − vi(t)), (∵ A = A)

(9)

= (v̄i(t + 1) − v̄i(t))(
∑

j

w̄ji vj(t)) (10)

= (v̄i(t + 1) − v̄i(t))(
∑

j

wij vj(t)), (∵ w̄ji = wij) (11)

Hence,

E(t+1)−E(t) = (v̄i(t+1)− v̄i(t))
∑

j

wijvj(t)+(v̄i(t + 1) − v̄i(t))(
∑

j

wij vj(t))

(12)

= 2 ∗ Realpart{(v̄i(t + 1) − v̄i(t))(
∑

j

wij vj(t))} (13)
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Now let
vi(t) = a1 + a2 i + a3 j + a4 k (14)

vi(t + 1) = b1 + b2 i + b3 j + b4 k (15)

∑

j

wij vj(t) = c1 + c2 i + c3 j + c4 k (16)

Now,
Realpart{(v̄i(t + 1) − v̄i(t))(

∑

j

wij vj(t))} =

Realpart{(b1 − a1) + (a2 − b2)i + (a3 − b3)j + (a4 − b4)k
∗(c1 + c2i + c3j + c4k)}

(17)

= (b1 − a1)c1 + (b2 − a2)c2 + (b3 − a3)c3 + (b4 − a4)c4 (18)

Now, as per our update rule

QSIGN(
∑

j

wij vj(t)) = vi(t + 1) (19)

So, b1 and c1 are of same sign. b2 and c2 are of same sign. Similarly b3, c3 and
b4, c4. So Realpart in (18) is ≥ 0. Hence E(t + 1) − E(t) ≥ 0. So, convergence.

Note 1. The above theorem explains the operation of quaternionic Hopfield net-
work as an ASSOCIATIVE MEMORY. The proof for the theorem on parallel
mode of operation can be obtained by converting the network to an equivalent
model using a bipartite graph and applying the serial case result proved earlier.
It is similar to [9].

3 Dynamics of Structured Quaternionic Recurrent
Hopfield Type Network

In this sector, we consider a quaternionic Hopfield network whose synaptic weight
matrix W , is not a Hermitian matrix. Specifically we first consider the case where
W is Skew Hermitian matrix (whose entries are quaternions) i.e. W = −W ∗.
The following theorem summarizes the dynamics of such a quaternionic recurrent
Hopfield network.

Theorem 2. Let R = (W,T ) specify a quaternionic recurrent Hopfield network
(with W being a Skew Hermitian matrix whose elements are quaternions). Then
if the network is operated in a fully parallel mode, a cycle of length 4 in the state
Space is observed.
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Proof: Let W be the quaternionic matrix such that

wij = −w̄ji for i �= j (20)
wij = 0 for i = j (21)

Let the energy function at time instant t be

E(t) = Real{V (t − 1)+ W V (t)} (22)

Now,

E(t + 1) − E(t) = Real{V (t)+ W V (t + 1) − V (t − 1)+ W V (t)} (23)

V (t − 1)+ W V (t) = ((V (t − 1)+ W V (t))+)+

= ((W V (t))+V (t − 1))+

= (V (t)+ W+ V (t − 1))+

= −(V (t)+ W V (t − 1))+ ∵ W+ = −W (24)

E(t+1)−E(t) = �E = Real{V (t)+ W V (t+1)+(V (t)+ W V (t−1))+} (25)

Let V (t)+W = A + B + C + D where A is a vector corresponding to real part.
B is vector corresponding to ith component. C is vector corresponding to jth

component and D is vector corresponding to kth component, i.e. we split the
quaternionic matrix into corresponding matrices related to each component.

−WV (t) = AT − BT − CT − DT

WV (t) = −AT + BT + CT + DT (26)

Note 2. Assume that, at any given time W V (t) �= 0

Let

V (t + 1) = VR(t + 1) + VI(t + 1) + VJ(t + 1) + VK(t + 1)
V (t − 1) = VR(t − 1) + VI(t − 1) + VJ(t − 1) + VK(t − 1)

�E = Real{V (t)+ W V (t + 1)} + Real{V (t)+W V (t − 1)}
= AVR(t + 1) + BVI(t + 1) + CVJ (t + 1) + DVK(t + 1) + AVR(t − 1)

+BVI(t − 1) + CVJ(t − 1) + DVK(t − 1)
= A(VR(t + 1) + VR(t − 1)) + B(VI(t + 1) + VI(t − 1))

+C(VJ (t + 1) + VJ(t − 1)) + D(VK(t + 1) + VK(t − 1)) (27)

We know V (t+ 1) = QSIGN(W V (t)). Now from 26, we can say that elements
in VR(t + 1) and A have opposite sign.

A(VR(t + 1) + VR(t − 1)) < 0
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Again from 26, we can say that elements in VI(t + 1) and B have same sign.

B(VI(t + 1) + VI(t − 1)) < 0,∵ i2 = −1

Similarly, C(VJ (t + 1) + VJ(t − 1)) < 0 and B(VK(t + 1) + VK(t − 1)) < 0. So,
�E < 0. But, we know, in parallel mode, �E = 0 during the cycle. So, if we
put �E = 0 in 27, we get

VR(t + 1) = −VR(t − 1)
VI(t + 1) = −VI(t − 1)
VJ(t + 1) = −VJ(t − 1)
VK(t + 1) = −VK(t − 1)

(28)

V (t+1) = −V (t−1), implies V (t+3) = V (t−1). We obtain a cycle of length 4.

4 Experimental Results

Here we constructed two networks using 10 nodes and 15 nodes respectively. The
synaptic weight matrix is an arbitrary Hermitian quaternionic matrix and the
initial state is randomly chosen and the network is operated in serial mode. We
found that both the networks converged after finite iterations and the resulting
energy graphs are as follows (Figs. 1 and 2):

Fig. 1. Network with 10 nodes

Note that, the energy values are non-increasing and converged after some
finite iterations.

Now, we will look into the parallel mode of operation. A network with 40
nodes is constructed with weight matrix as skew Hermitian quaternionic matrix
and initial state is randomly chosen. The network is operated in parallel mode
and we found that network reached a cycle of length 4 as predicted by our above
proposed theorem. The energy graph is as follows (Fig. 3):
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Fig. 2. Network with 15 nodes

Fig. 3. Network with 40 nodes

5 Hopfield Network Using Octonions

The natural thought of generalizing the theorems lead to constructing a network
based on octonions (8 dimensional numbers) which are extension of quaternions.
They are noncommutative and nonassociative. Every octonion x can be denoted
as x = a + be1 + ce2 + de3 + ee4 + fe5 + ge6 + he7
where ‘a’ is the scalar part and remaining are vector parts. The multiplication
table of octonions is as follows:

Consider a network of M nodes, where the value of each neuron belongs
to the following set O = {a + be1 + ce2 + de3 + ee4 + fe5 + ge6 +
he7 where a, b, c, d, e, f, g, h = ±1} Now, consider the signum function as similar
to the quaternion case i.e.
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* e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1

OSIGN(a+ be1 + ce2 + de3 + ee4 + fe5 + ge6 +he7) = sign(a)+ sign(b)e1 +
sign(c)e2 + sign(d)e3 + sign(e)e4 + sign(f)e5 + sign(g)e6 + sign(h)e7

Now, Consider the synaptic matrix W as Octonionic Hermitian matrix which
means W = W ∗ i.e. wij = w∗

ji. Note that each element of the weight matrix is
octonion.

The conjugate of octonion is similar to the quaternion and complex case.
Now, when the network is operated in serial mode(update one node at a

time), we found that there is no need for the network to converge unlike the
case of quaternions. This is because the energy function defined earlier is nei-
ther increasing nor decreasing in this case. This is also verified empirically.
Hence there is no convergence in serial mode in case of the above constructed
network. This happened because the properties of the octonions are very lim-
ited(restricted) compared to the quaternions.
Example: (AB)* = B* A* holds in quaternions but not in octonions. There are
many other limitations in properties.

The network is also operated in parallel mode. There is no convergence or
cycles of fixed length. The obtained cycle lengths are arbitrary unlike the case
of quaternions in which we observed cycles of length 2 when the network is
constructed similarly.

Now, we considered the weight matrix to be skew Hermitian octonionic
matrix and operated the network in parallel mode which is similar to Sect. 2
but we did not obtain cycles of length 4 unlike the case of quaternions. These
lead us to a conclusion that the convergence of a network is very much depen-
dent on the algebra of the numbers involved because it makes the energy function
increasing or decreasing or neither of them. So, it is difficult to construct hopfield
networks with higher dimensional numbers than quaternions.

6 Future Work

Now, we consider the most general quaternionic synaptic weight matrix in the
rectangular representation (like complex number based matrix)

W = A + i B + j C + k D (29)
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Note: If C and D are null matrices, then we arrive at the special case of complex
valued networks.

Now, the following equality holds true for synaptic weight matrices considered
in Sects. 2 and 3.
Hermitian: A = AT , B = −BT , C = −CT ,D = −DT

Skew Hermitian: A = −AT , B = BT , C = CT ,D = DT

Generalizing, we arrive at 16 possible quaternionic synaptic weight matrices
out of which we already studied 2 cases (Hermitian and skew Hermitian). We
also want to study the remaining cases. Now, there are another class of matrices
which are of the form:
B = AT or − AT , C = AT or − AT ,D = AT or − AT

where W = A + i B + j C + k D.
Those are known as braided matrices which are first introduced in [8]. These
type of structured matrices provided good results like cycles of length 8 in [8]
for complex valued networks. So, we want to further investigate our proposed
quaternionic network using such type of matrices.

Till now, we used the polar representation of the quaternions. Now, we can
consider the polar representation and apply various magnitude and phase quan-
tizations as a part of the signum function and look into the dynamics of the
network.

In our research efforts, we proved interesting convergence theorems associated
with ordinary and recurrent Hopfield networks based on real numbers, complex
numbers and quaternions. As in the case of [10], we discuss the existence, syn-
thesis of quaternionic hopfield neural network proposed in this paper as future
work. We also want to investigate continuous time quaternionic, complex valued
Hopfield neural networks, in the spirit of [11].

Bruck and Blaum [13] proved the connection between hopfield associative
memory(with quadratic energy function) as well as Generalized associative mem-
ories(with higher degree energy function) and error correcting codes. We expect
that quaternionic Hopfield network can be naturally related to generalized error
correcting codes. Details are being worked out.

The authors proposed a convolutional associative memory in [12] by mod-
elling the synapse as an FIR filter. The advantage of such a network is that,
the state of a neuron is a sequence unlike a single value in case of traditional
networks due to which the network is capable of leveraging the multi-model data
for an associative memory model. We want to apply it our proposed quaternion
network and observe the dynamics of the network as a part of the future work.

We proposed neuronal models in which the state is multiple valued (rather
than binary valued). For instance, ceiling neuron, modulo neuron are proposed in
our earlier works. Using such multi-state artificial neurons, associative memories
can be designed. Starting with an initial state, operation of such novel associative
memories either lead to convergence or cycles of various lengths. Specifically
complex valued as well as quaternionic associative memories of such type will be
investigated for interesting dynamic behaviour.
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In various associative memories (real number valued state, complex number
valued state, quaternion valued state) proposed by the authors (from [14–20])
and the other researchers, at a single neuron, there is only one threshold value.
Thus the state at any neuron is a single scalar value. We propose interesting novel
associative memories where the net contribution at any neuron is thresolded
using multiple thresold values. Thus, the state at any neuron is a vector. We
propose to investigate the dynamic behavious of such associative memories. The
reason behind proposal of such associative memories is to tesselate the state
space into fine grained regions and increase the state space dimension and size.
Thus, it is possible to increase the number of stable states.

6.1 Heterogenous Associative Memories

We previously discussed network of associative memories, by connecting a col-
lection of homogenous associative memories in certain topology. But, when we
contemplate over the functioning of biological brain, it is clear that audio, video
etc. information is stored and retrieved effectively from the memory. Thus, our
goal is to emulate such functioning in artificial memories.

We are naturally led to connecting a varied collection of associative memories
associated with different types of information in a certain topology. In such a
network, the distinct blocks must be coordinated and synchronized for storage
and retrieval of information.

7 Conclusion

In this research paper, convergence theorem associated with a novel quaternionic
hopfield type associative memory is proved. Dynamics of a Structured quater-
nionic hopfield type network is also discussed when operated in parallel mode.
Octonionic networks are introduced and their limitations are discussed. Some
interesting ideas are discussed as a part of the future work.
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Abstract. This paper presents the deduction of the quasi-Newton learn-
ing methods for training quaternion-valued feedforward neural networks,
using the framework of the HR calculus. Since these algorithms yielded
better training results than the gradient descent for the real- and
complex-valued cases, an extension to the quaternion-valued case is a
natural idea to enhance the performance of quaternion-valued neural
networks. Experiments done on four time series prediction applications
show a significant improvement over the quaternion gradient descent
algorithm.

Keywords: Quaternion-valued neural networks · Quasi-Newton
algorithms · Time series prediction

1 Introduction

Over the last few years, the domain of quaternion-valued neural networks has
received an increasing interest. Popular applications of these networks range
from chaotic time series prediction [1], color image compression [2], color night
vision [3], polarized signal classification [4], to 3D wind forecasting [5–7].

In the 3D and 4D domains, where some signals are naturally expressed in
quaternion-valued form, these networks appear as a natural choice for solving
problems such as time series prediction. Several methods to increase the efficiency
of learning in quaternion-valued neural networks have been proposed, including
different network architectures and different learning algorithms, some of which
are specially designed for this type of networks, while others are extended from
the real-valued case.

One of the most effective from the class of second order methods used to min-
imize a cost function, is, in theory, the Newton method, see [8]. But because it
needs the explicit calculation of the Hessian matrix of the cost function, more pre-
cisely its inverse, which is a computationally expensive task, quasi-Newton meth-
ods have been developed. They replace the explicit calculation of the Hessian
with an approximation of it, which is positive definite by construction, to avoid
the convergence problems in the Newton method when the Hessian is not positive
definite.
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 362–374, 2017.
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First applied, among others, by [9,10] to the training of neural networks, the
quasi-Newton learning method has proved to be very efficient in the real-valued
and complex-valued [11] cases. Because of these performances, it seems natural
to extend this learning algorithm to quaternion-valued neural networks, also.

The rest of the paper is organized as follows: Sect. 2 is an introduction to
the HR calculus, which is a type of calculus used for extending real-valued algo-
rithms to the quaternion-valued domain. Section 3 is concerned with the deriva-
tion of the quaternion-valued quasi-Newton algorithms using the HR calculus.
Experimental results of four applications of the proposed algorithms are shown
and discussed in Sect. 4, along with a description of each problem. Section 5 is
dedicated to presenting the conclusions of this study.

2 The HR Calculus

We will first present the basics of the HR calculus [12], which will be later used
to deduce the quasi-Newton algorithms for a quaternion-valued error function.

Let H = {qa + ıqb + jqc +κqd|qa, qb, qc, qd ∈ R} be the algebra of quaternions,
where ı, j, k are the imaginary units satisfying ı2 = j2 = κ2 = ıjκ = −1. For any
μ ∈ H, we define the operation qμ := μqμ−1. Then, for any q = qa + ıqb + jqc +
κqd ∈ H, we have qı = ıqı−1 = qa+ıqb−jqc−κqd, qj = jqj−1 = qa−ıqb+jqc−κqd,
qκ = κqκ−1 = qa − ıqb − jqc + κqd. If f : H → H, the HR derivatives of f can be
defined by ⎛

⎜⎜⎜⎝

∂f
∂q
∂f
∂qı

∂f
∂qj

∂f
∂qκ

⎞
⎟⎟⎟⎠ :=

1
4

⎛
⎜⎜⎝

1 −ı −j −κ
1 −ı j κ
1 ı −j κ
1 ı j −κ

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

∂f
∂qa
∂f
∂qb
∂f
∂qc
∂f
∂qd

⎞
⎟⎟⎟⎠ .

Now, consider a quaternion vector q = (q1, q2, . . . , qN )T ∈ H
N , which can be

written as q = qa + ıqb + jqc + κqd ∈ H
N , where qa, qb, qc, qd ∈ R

N . We have
that qı = ıqı−1 = qa + ıqb − jqc − κqd, qj = jqj−1 = qa − ıqb + jqc − κqd,
qκ = κqκ−1 = qa − ıqb − jqc + κqd ∈ H

N . We denote

H
q :=

⎛
⎜⎜⎝

q
qı

qj

qκ

⎞
⎟⎟⎠ ∈ H

4N ,
R
q :=

⎛
⎜⎜⎝
qa

qb

qc

qd

⎞
⎟⎟⎠ ∈ R

4N , J :=

⎛
⎜⎜⎝
IN ıIN jIN κIN

IN ıIN −jIN −κIN

IN −ıIN jIN −κIN

IN −ıIN −jIN κIN

⎞
⎟⎟⎠ ,

where IN is the N ×N identity matrix. With these notations, we can write that

H
q = J

R
q.

It can be verified that JHJ = JJH = 4I4N , and so we also have that

R
q =

1
4
JHH

q. (1)
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A function f : HN → R can now be seen in three equivalent forms

f(q) ⇔ f(
H
q) := f(q,qı,qj,qκ) ⇔ f(

R
q) := f(qa,qb,qc,qd).

If we define the operators

∂f

∂q
:=

(
∂f

∂q1
, . . . ,

∂f

∂qN

)
,

∂f

∂
H
q

:=
(

∂f

∂q
,

∂f

∂qı
,

∂f

∂qj
,

∂f

∂qκ

)
,

∂f

∂
R
q

:=
(

∂f

∂qa
,

∂f

∂qb
,

∂f

∂qc
,

∂f

∂qd

)
,

we have, from the chain rule, that

∂f

∂
H
q

=
1
4

∂f

∂
R
q
JH ⇔ ∂f

∂
R
q

=
∂f

∂
H
q
J.

Now, if we define

∇qf :=
(

∂f

∂q

)H

, ∇H
q
f :=

(
∂f

∂
H
q

)H

, ∇R
q
f :=

(
∂f

∂
R
q

)T

,

where (·)T and (·)H represent the transpose and the Hermitian transpose, respec-
tively, the previous relations can be written as

∇H
q
f =

1
4
J∇R

q
f ⇔ ∇R

q
f = JH∇H

q
f. (2)

Similarly, by defining

∇2
qf :=

∂

∂q

(
∂f

∂q

)H

, ∇2
H
q
f :=

∂

∂
H
q

(
∂f

∂
H
q

)H

, ∇R
q
f :=

∂

∂
R
q

(
∂f

∂
R
q

)T

,

we obtain that

∇2
H
q
f =

1
16

J(∇2
R
q
f)JH ⇔ ∇2

R
q
f = JH(∇2

H
q
f)J. (3)

3 Quasi-Newton Learning

Let’s assume that we have a quaternion-valued neural network with an error
function denoted by E : HN → R, and an N -dimensional weight vector denoted
by w ∈ H

N . We start with the quasi-Newton algorithm for the real-valued case,
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in which the function E(w) can be viewed as E(
R
w). The iteration for calculating

the value
R
w

∗
, for which the minimum of the function E(

R
w) is attained, is

R
wk+1 =

R
wk − αk

R
Hk

R
gk, (4)

where
R
gk := ∇R

wk

E ∈ R
4N , and

R
Hk ∈ R

4N×4N is an approximation of the inverse

of the Hessian matrix ∇2
R
wk

E. The value of αk ∈ R is determined using an inexact

line search that minimizes E(
R
wk+1) = E(

R
wk −αk

R
Hk

R
gk). In our experiments, we

used the golden section search, which is guaranteed to have linear convergence,
see [13].

Using (2) and (3), we have that

R
gk = JHH

gk

and
R
Hk =

1
16

JH
H
HkJ,

where
H
gk := ∇H

wk

E ∈ H
4N , and we took into account the fact that

R
Hk approx-

imates (∇2
R
wk

E)−1 and
H
Hk approximates (∇2

H
wk

E)−1. Thus, relation (4) can be

written as
1
4
JH H

wk+1 =
1
4
JH H

wk − αk
1
16

JH
H
HkJJHH

gk,

where we also used relation (1), or, equivalently,

H
wk+1 =

H
wk − αk

H
Hk

H
gk. (5)

Now, the update expression of the inverse Hessian approximation for the
symmetric rank-one (SR1) method is

R
Hk+1 =

R
Hk +

(
R
pk −

R
Hk

R
qk)(

R
pk −

R
Hk

R
qk)T

(
R
pk −

R
Hk

R
qk)T

R
qk

, (6)

where
R
pk :=

R
wk+1 − R

wk,
R
qk :=

R
gk+1 − R

gk.

Again from (1) and (2), we obtain

H
pk :=

H
wk+1 − H

wk,
H
qk :=

H
gk+1 − H

gk.

Taking the above relations into account, Eq. (6) becomes 1
16J

H
H
Hk+1J =

1
16J

H
H
HkJ + ( 1

4J
HH
pk− 1

16J
H

H
HkJJ

HH
qk)(

1
4J

HH
pk− 1

16J
H

H
HkJJ

HH
qk)

H

( 1
4J

H
H
pk− 1

16J
H

H
HkJJH

H
qk)

HJH
H
qk

, which is equiva-

lent to
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H
Hk+1 =

H
Hk +

(
H
pk −

H
Hk

H
qk)(

H
pk −

H
Hk

H
qk)H

(
H
pk −

H
Hk

H
qk)H

H
qk

.

Up until now we have worked with vectors from H
4N . Ideally, we would like

to work with vectors directly in H
N . Considering the definition of

H
q for q ∈ H

N ,
this is done by taking the first N elements of the vector

H
q. For this, we denote

H
rk :=

H
pk −

H
Hk

H
qk,

and so
rk = pk − (H1

kqk + H2
k(qk)ı + H3

k(qk)j + H4
k(qk)κ),

where H1
k := (

H
Hk)11, H2

k := (
H
Hk)12, H3

k := (
H
Hk)13, H4

k := (
H
Hk)14 ∈ H

N×N

are block components of the matrix
H
Hk ∈ H

4N×4N . We can compute

(
H
pk −

H
Hk

H
qk)HH

qk =
H
r

H

k

H
qk = 4Re(rH

k qk),

where Re(q) represents the real part of the quaternion q, i.e. Re(q) = qa, if
q = qa + ıqb + jqc + κqd ∈ H. The iteration (5) becomes

wk+1 = wk − αk

(
H1

kgk + H2
k(gk)ı + H3

k(gk)j + H4
k(gk)κ

)
, (7)

where the iterations for calculating the matrices H1
k, . . . ,H4

k are:

H1
k+1 = H1

k +
rkrH

k

4Re(rH
k qk)

,

...

H4
k+1 = H4

k +
rk((rk)κ)H

4Re(rH
k qk)

. (8)

Relations (7) and (8) now give the quaternion-valued symmetric rank-one (SR1)
method.

Proceeding in the same manner, we can deduce the update rule of the inverse
Hessian approximation for the Davidon-Fletcher-Powell (DFP) method (see [14])
in the form

H
Hk+1 =

H
Hk +

H
pk

H
p

H

k

H
p

H

k

H
qk

−
H
Hk

H
qk

H
q

H

k

H
Hk

H
q

H

k

H
Hk

H
qk

.

Now, by denoting
H
rk :=

H
Hk

H
qk, we have that

rk = H1
kgk + H2

k(gk)ı + H3
k(gk)j + H4

k(gk)κ,
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and the matrices H1
k, . . . ,H4

k are computed using the iterations:

H1
k+1 = H1

k + ρkpkpH
k − σkrkrH

k

...
H4

k+1 = H4
k + ρkpk((pk)κ)H − σkrk((rk)κ)H , (9)

where
ρk :=

1
4Re(pH

k qk)
and σk :=

1
4Re(qH

k rk)
.

Thus, the quaternion-valued Davidon-Fletcher-Powell (DFP) method is given by
Eqs. (7) and (9).

The most popular quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method (see [15]), for which the following inverse Hessian
approximation iteration can be similarly obtained:

H
Hk+1 =

H
Hk −

H
pk

H
q

H

k

H
Hk

H
q

H

k

H
pk

−
H
Hk

H
qk

H
p

H

k

H
q

H

k

H
pk

+
H
pk

H
q

H

k

H
qk

H
p

H

k(
H
q

H

k

H
pk

)2 +
H
pk

H
p

H

k

H
q

H

k

H
pk

.

In this case, if we denote
H
rk :=

H
Hk

H
qk and

H
sk :=

H
pk

H
q

H

k , then

rk = H1
kgk + H2

k(gk)ı + H3
k(gk)j + H4

k(gk)κ

and

sk = pkqH
k + (pk)ı ((qk)ı)H + (pk)j ((qk)j)H + (pk)κ ((qk)κ)H

.

Now, the quaternion-valued Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
is given by relation (7) and the following updates for the matrices H1

k, . . . ,H4
k:

H1
k+1 = H1

k − ρkpkrH
k − ρkrkpH

k

+ ρ2ksksH
k + ρkpkpH

k ,

...
H4

k+1 = H4
k − ρkpk((rk)κ)H − ρkrk((pk)κ)H

+ ρ2ksk((sk)κ)H + ρkpk((pk)κ)H ,

where
ρk :=

1
4Re(qH

k pk)
.

Lastly, of practical importance is the one step secant (OSS) method (see
[16]), which pertains to the class of quasi-Newton algorithms, although it does
not require storing the inverse Hessian approximation, like the BFGS method
from which it was derived. The update rule (5) in this case has the form

H
wk+2 − H

wk+1 = αk+1

(
−H
gk+1 + Ak

H
pk + Bk

H
qk

)
,
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where

Ak = −
⎛
⎝1

4
+

H
q

H

k

H
qk

H
q

H

k

H
pk

⎞
⎠

H
p

H

k

H
gk+1

H
q

H

k

H
pk

+
H
q

H

k

H
gk+1

H
q

H

k

H
pk

,

Bk =
H
p

H

k

H
gk+1

H
q

H

k

H
pk

.

We can process this to yield the relations that give the quaternion-valued one
step secant (OSS) method :

wk+2 − wk+1 = αk+1 (−gk+1 + Akpk + Bkqk) ,

where

Ak = −
(

1
4

+
qH

k qk

Re(qH
k pk)

)
Re(pH

k gk+1)
Re(qH

k pk)
+

Re(qH
k gk+1)

Re(qH
k pk)

,

Bk =
Re(pH

k gk+1)
Re(qH

k pk)
.

In order to apply the quasi-Newton algorithms to quaternion-valued feedfor-
ward neural networks, we only need to calculate the gradient gk of the error
function E at different steps, which we do by using the quaternion-valued back-
propagation algorithm.

4 Experimental Results

4.1 Linear Autoregressive Process with Circular Noise

The prediction of linear signals and chaotic signals represents a popular applica-
tion of quaternion-valued neural networks. It is a time series regression problem,
in which the future value of a signal is estimated based on its past behavior. The
following experiments were done in the M -step ahead prediction setting, with
M = 1.

An important benchmark firstly proposed in [17], and used in [18–22] for
the complex-valued case, and in [23–26] for the quaternion-valued case, is the
prediction of the quaternion-valued circular white noise

n(k) = na(k) + ınb(k) + jnc(k) + κnd(k),

where na, nb, nc, nd ∼ N (0, 1), passed through the stable autoregressive filter
given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k).

In this and the next experiments, we trained quaternion-valued feedforward
neural networks using the general gradient descent algorithm (GD), the quasi-
Newton algorithm with symmetric rank-one updates (SR1), the quasi-Newton
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algorithm with Davidon-Fletcher-Powell updates (DFP), the quasi-Newton algo-
rithm with Broyden-Fletcher-Goldfarb-Shanno updates (BFGS), and the one
step secant method (OSS). The learning rate for the GD algorithm was taken
to be 0.1, a value which empirically gave the best results.

The tap input of the filter was 4, and, consequently the networks had 4 inputs.
A single hidden layer of 4 neurons and an output layer of one neuron complete
the architecture of the networks. The activation function for the hidden layer
was the fully quaternion hyperbolic tangent function G2(q) = tanh q = eq−e−q

eq+e−q ,

and the activation function for the output layer was the identity G3(q) = q.
Training was done for 5000 epochs with 5000 training samples.

After running each algorithm 50 times, the averaged results are given in
Table 1. The table presents a measure of performance called prediction gain,
defined by Rp = 10 log10

σ2
x

σ2
e
, where σ2

x represents the variance of the input signal
and σ2

e represents the variance of the prediction error. The prediction gain is
given in dB, and, because of the way it is defined, a bigger prediction gain
means better performance.

In this case, DFP and SR1 gave approximately the same results, with BFGS
performing better and OSS worse.

Table 1. Experimental results for linear autoregressive process with circular noise

Algorithm Prediction gain

GD 4.51

SR1 6.73

DFP 6.61

BFGS 7.23

OSS 5.11

4.2 Linear Autoregressive Process with Noncircular Noise

This experiment involves the prediction of the quaternion-valued noncircular
white noise

n(k) = na(k) + ınb(k) + jnc(k) + κnd(k),

given by na = N (0, 1), nb = −0.6na + N (0, 1), nc = 0.8nb + N (0, 1), nd =
0.8na − 0.4nb + N (0, 1), passed through the same stable autoregressive filter
given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + n(k).

It was also used in [25,26] to test quaternion-valued learning algorithms.
The tap input of the filter was 4, and so the networks had 4 inputs, 4 hidden

neurons, and one output neuron. The only difference between this experiment
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and the previous one is the noncircular noise n(k). The networks were trained
for 5000 epochs with 5000 training samples.

The averaged results after 50 runs of each algorithm are given in Table 2. The
measure of performance was the prediction gain, like in the above experiment.
The situation is rather different in this case, making a strong point for the
extension of all these algorithms to the quaternion-valued case. SR1 performed
best in this case, followed by DFP and BFGS with similar results, and finally by
OSS. The improvement over the classical gradient descent algorithm is obvious
in this experiment, also.

Table 2. Experimental results for linear autoregressive process with noncircular noise

Algorithm Prediction gain

GD 0.15

SR1 3.74

DFP 3.59

BFGS 3.12

OSS 2.61

4.3 3D Lorenz System

The Lorenz system is given by the ordinary differential equations

dx

dt
= α(y − x)

dy

dt
= −xz + ρx − y

dz

dt
= xy − βz,

where α = 10, ρ = 28 and β = 2/3. This chaotic time series prediction prob-
lem was used to asses the performance of quaternion-valued neural networks
in [1,26–30].

Like in the above experiments, the tap input of the filter was 4, and so the
networks had 4 inputs, 4 hidden neurons, and one output neuron. The net-
works were trained for 5000 epochs with 1337 training samples, which result
from solving the 3D Lorenz system on the interval [0, 25], with initial conditions
(x, y, z) = (1, 2, 3).

After running each algorithm 50 times on this problem, the average results
are given in Table 3, in the same form as in the above experiments.

In this experiment, DFP and SR1 performed approximately in the same way,
OSS slightly better, and the best was BFGS.
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Table 3. Experimental results for the 3D Lorenz system

Algorithm Prediction gain

GD 7.56

SR1 11.74

DFP 11.27

BFGS 13.74

OSS 12.09

4.4 4D Saito Chaotic Circuit

The last experiment concerns the 4D Saito chaotic circuit given by
[
dx1
dt
dy1
dt

]
=

[ −1 1
−α1 α1β1

] [
x1 − ηρ1h(z)
y1 − η ρ1

β1
h(z)

]

[
dx2
dt
dy2
dt

]
=

[ −1 1
−α2 α2β2

] [
x2 − ηρ2h(z)
y2 − η ρ2

β2
h(z)

]
,

where h(z) =

{
1, z ≥ −1
−1, z ≤ 1

, is the normalized hysteresis value, and z = x1+x2,

ρ1 = β1
1−β1

, ρ2 = β2
1−β2

. The values of the parameters are (α1, β1, α2, β2, η) =

(7.5, 0.16, 15, 0.097, 1.3). Also a chaotic time series prediction problem, the 4D
Saito chaotic circuit was used to benchmark quaternion-valued neural networks
in [1,23,25,31–34].

The architectures of the networks were the same as the ones in the previ-
ous experiments. We trained the networks for 5000 epochs with 5249 training
samples, which result from solving the 4D Saito chaotic circuit on the interval
[0, 10], with initial conditions (x1, y1, x2, y2) = (1, 0, 1, 0).

The prediction gains after 50 runs of each algorithm are given in Table 4.
In this last experiment, OSS had the best performance, followed closely by

BFGS, and lastly by SR1 and DFP.

Table 4. Experimental results for the 4D Saito chaotic circuit

Algorithm Prediction gain

GD 5.76

SR1 11.71

DFP 11.10

BFGS 16.24

OSS 16.94
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5 Conclusions

The deduction of the most known variants of the quasi-Newton algorithm for
training quaternion-valued neural networks was presented, starting from the real-
valued case and using the framework of HR calculus to extend these methods to
the quaternion-valued case.

Experimental results of four well-known time series prediction problems, each
solved using the four variants of the quaternion-valued quasi-Newton algorithm
have showed that all the quasi-Newton methods performed better on the pro-
posed problems than the classical gradient descent algorithm, with an improve-
ment in prediction gain of as much as 11 dB in some cases.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method had the best per-
formances among the quasi-Newton variants in two of the four applications. The
one step secant method (OSS) performed best in one application, the symmet-
ric rank-one (SR1) method in another, and the Davidon-Fletcher-Powell (DFP)
method generally performed slightly worse. Thus, no algorithm is always better
than all the others, yet another argument for the extension of these learning
methods to the quaternion-valued case.

To conclude, their performance in solving different linear and chaotic time
series prediction problems prove that quasi-Newton algorithms represent efficient
methods for training feedforward quaternion-valued neural networks.
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Abstract. Over the last few years, neural networks with values in mul-
tidimensional domains have gained a lot of interest. A non-associative
normed division algebra which generalizes the complex and quaternion
algebras is represented by the octonion algebra. It does not fall into the
category of Clifford algebras, which are associative. Delayed octonion-
valued recurrent neural networks are introduced, for which the states
and weights are octonions. A sufficient criterion is given in the form of
linear matrix inequalities, which assures the global exponential stability
of the equilibrium point for the proposed networks. Lastly, a numerical
example illustrates the correctness of the theoretical results.
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matrix inequality · Time delay

1 Introduction

In recent years, neural networks with values in multidimensional domains have
been studied with increasing interest. The most popular form of multidimen-
sional neural networks are the complex-valued neural networks. First introduced
in the 1970s (see, for example, [1]), they have recently received more attention,
especially due to their numerous applications, ranging from those in telecom-
munications and image processing, to those in complex-valued signal processing
(see, for example, [2,3]).

Another type of multidimensional networks, defined on the 4-dimensional
quaternion algebra, are the quaternion-valued neural networks. They were first
introduced in the 1990s as a generalization of the complex-valued neural net-
works, see [4,5]. Lately, the have been used in an increasing number of appli-
cations, like chaotic time series prediction, the 4-bit parity problem, and, very
recently, quaternion-valued signal processing.

A generalization of both the complex and quaternion algebras are the Clifford
algebras, which have dimension 2n, n ≥ 1. The numerous applications in physics
and engineering of Clifford or geometric algebras made them appealing for use
in the field of neural networks, also. Thus, Clifford-valued neural networks were
defined in [6,7], and later discussed, for example, in [8]. Because of the Clifford
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 375–385, 2017.
DOI: 10.1007/978-3-319-59153-7 33



376 C.-A. Popa

algebras’ underlying connection with geometry, possible applications of neural
networks with values in these algebras include processing different geometric
objects and applying different geometric models to data.

The 8-dimensional algebra of octonions represents a different generalization
of the complex and quaternion numbers, which does not fall into the Clifford
algebra category. The easiest way to see this is by considering the fact that
Clifford algebras are associative, whereas the octonion algebra is not. However,
the octonions form a normed division algebra, an important property, especially
for applications, which Clifford algebras don’t have. This means that a norm and
a multiplicative inverse can be defined for them. Moreover, it can be proved that
the complex, quaternion, and octonion algebras are the only normed division
algebras that can be defined over the field of real numbers.

With many applications in physics and geometry (see [9,10]), octonions have
also been successfully applied to signal processing in the very recent years (see
[11]). Taking all the above facts into consideration, the definition of octonion-
valued neural networks seemed a promising idea, first in the form of feedforward
networks [12]. Octonion-valued neural networks may be applied in signal process-
ing and all other areas related to higher-dimensional object processing.

On the other hand, at the beginning of the 1980s, Hopfield introduced an
energy function with the purpose of studying the dynamics of fully connected
recurrent neural networks, see [13,14]. He also showed that this type of network
can be applied to solving combinatorial problems. Since then, Hopfield neural
networks have found numerous applications, especially in the synthesis of asso-
ciative memories, image processing, speech processing, control systems, signal
processing, pattern matching, etc.

Over the last few years, generalizations of the Hopfield neural networks to
multidimensional domains have appeared. Complex-valued Hopfield networks
were proposed in [15–17], quaternion-valued Hopfield networks in [18,19], and
Clifford-valued Hopfield networks in [20,21]. As a consequence, taking all the
above-discussed facts into account, this paper introduces delayed octonion-
valued Hopfield neural networks, which could be applied to solve octonion opti-
mization problems.

The rest of the paper is organized as follows: Sect. 2 gives the definition of
delayed octonion-valued Hopfield neural networks, and an assumption and a
useful lemma. A sufficient condition for the global exponential stability of the
equilibrium point of these networks is given in Sect. 3. The correctness of the
theoretical results is proved by a numerical example in Sect. 4. The conclusions
are given in Sect. 5.

Notations: R denotes the set of real numbers, R
n denotes the n dimensional

Euclidean space, and R
n×n the algebra of real square matrices of dimension

n×n. AT denotes the transpose of matrix A and ∗ denotes the symmetric terms
in a matrix. In denotes the identity matrix of dimension n. || · || is the vector
Euclidean norm or the matrix Frobenius norm. A > 0 (A < 0) means that A is
a positive definite (negative definite) matrix. λmin(P ) is defined as the smallest
eigenvalue of positive definite matrix P .
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2 Preliminaries

We start by defining the algebra of octonions and highlighting some of its
properties.

The algebra of octonions is defined as

O :=

{
x =

7∑
p=0

[x]pep

∣∣∣∣∣ [x]0, [x]1, . . . , [x]7 ∈ R

}
,

where ep represent the octonion units, 0 ≤ p ≤ 7. They satisfy the following
multiplication table

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

The addition of octonions is defined by

x + y =
7∑

p=0

([x]p + [y]p)ep,

and the multiplication is given by the multiplication of the unit octonions shown
in the above table. Scalar multiplication is given by

αx =
7∑

p=0

(α[x]p)ep,

and thus O is a real algebra. It can be verified using the multiplication table
that eiej = −ejei �= ejei, ∀i �= j, 0 < i, j ≤ 7, which means that O is not
commutative, and that (eiej)ek = −ei(ejek) �= ei(ejek), for i, j, k distinct, 0 <
i, j, k ≤ 7, or eiej �= ±ek, which shows that O is also not associative.

The conjugate of an octonion x is defined by

x = [x]0e0 −
7∑

p=1

[x]pep.
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Using the conjugate, the norm of an octonion can be defined as

||x|| =
√

xx =

√√√√ 7∑
p=0

[x]2p,

and the inverse of an octonion as x−1 = x
||x||2 . Thus, O is a normed non-

associative division algebra, unlike the 8-dimensional Clifford algebras, which
are associative algebras, but not division algebras. In fact, the only three real
division algebras that can be defined are the complex, quaternion, and octonion
algebras.

We can now introduce octonion-valued Hopfield neural networks, for which
the states and weights are from O. The following set of differential equations
describes this type of networks:

ẋi(t) = −dixi(t) +
N∑

j=1

aijfj(xj(t)) +
N∑

j=1

bijgj(xj(t − τ)) + ui, (1)

for i ∈ {1, . . . , N}, where xi(t) ∈ O is the state of neuron i at time t, di ∈ R,
di > 0, is the self-feedback connection weight of neuron i, aij ∈ O is the weight
connecting neuron j to neuron i without delay, bij ∈ O is the weight connecting
neuron j to neuron i with delay, fj : O → O is the nonlinear octonion-valued
activation function of neuron j without delay, gj : O → O is the nonlinear
octonion-valued activation function of neuron j with delay, τ ∈ R is the delay and
we assume τ > 0, and ui ∈ O is the external input of neuron i, ∀i, j ∈ {1, . . . , N}.

The derivative dxi(t)
dt is defined as the octonion formed by the derivatives of

each element [xi(t)]p of the octonion xi(t) with respect to t:

ẋi(t) =
dxi(t)

dt
:=

7∑
p=0

d([xi]p)
dt

ep.

Thus, the above set of differential equations has values in O, and the multi-
plication between the weights and the values of the activation functions is the
octonion multiplication.

We need to make an assumption about the activation functions, in order to
study the stability of the above defined network.

Assumption 1. The following Lipschitz conditions are satisfied by the
octonion-valued activation functions fj and gj:

||fj(x) − fj(x′)|| ≤ lfj ||x − x′||, ∀x, x′ ∈ O,

||gj(x) − gj(x′)|| ≤ lgj ||x − x′||, ∀x, x′ ∈ O,

where lfj > 0 and lgj > 0 are the Lipschitz constants, ∀j ∈ {1, . . . , N}. Moreover,
we denote Lf = diag(lf1 I8, l

f
2 I8, . . . , lfNI8), Lg = diag(lg1I8, l

g
2I8, . . . , l

g
NI8).
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We will first transform the system of octonion-valued differential Eq. (1) into
a real-valued one. For this, we will expand each equation in (1) into 8 real-valued
equations:

[ẋi(t)]p = −di[xi(t)]p +
N∑

j=1

7∑
q=0

[aij ]pq[fj(xj(t))]q

+
N∑

j=1

7∑
q=0

[bij ]pq[gj(xj(t − τ))]q + [ui]p, (2)

for 0 ≤ p ≤ 7, i ∈ {1, . . . , N}, where [x]pq represents an entry of the matrix
mat(x), defined by

mat(x) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x]0 −[x]1 −[x]2 −[x]3 −[x]4 −[x]5 −[x]6 −[x]7
[x]1 [x]0 −[x]3 [x]2 −[x]5 [x]4 [x]7 −[x]6
[x]2 [x]3 [x]0 −[x]1 −[x]6 −[x]7 [x]4 [x]5
[x]3 −[x]2 [x]1 [x]0 −[x]7 [x]6 −[x]5 −[x]4
[x]4 [x]5 [x]6 [x]7 [x]0 −[x]1 −[x]2 −[x]3
[x]5 −[x]4 [x]7 −[x]6 [x]1 [x]0 [x]3 −[x]2
[x]6 −[x]7 −[x]4 [x]5 [x]2 −[x]3 [x]0 [x]1
[x]7 [x]6 −[x]5 −[x]4 [x]3 [x]2 −[x]1 [x]0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we now denote vec(x) := ([x]0, [x]1, . . . , [x]7)T , the Eq. (2) can be written as

vec(ẋi(t)) = −diI8vec(xi(t)) +
N∑

j=1

mat(aij)vec(fj(xj(t)))

+
N∑

j=1

mat(bij)vec(gj(xj(t − τ))) + vec(ui), (3)

for i ∈ {1, . . . , N}. Furthermore, by denoting y(t) = (vec(x1(t))T , vec(x2(t))T ,
. . . , vec(xN (t))T )T , D = diag(d1I8, d2I8, . . . , dNI8), A = (mat(aij))1≤i,j≤N ,
B = (mat(bij))1≤i,j≤N , f(y(t)) = (vec(f1(x1(t)))T , vec(f2(x2(t)))T , . . . , vec
(fN (xN (t)))T )T , g(y(t − τ)) = (vec(g1(x1(t − τ)))T , vec(g2(x2(t − τ)))T , . . . , vec
(gN (xN (t−τ)))T )T , u = (vec(u1)T , vec(u2)T , . . . , vec(uN )T )T , and also y = y(t),
yτ = y(t − τ), system (1) can be written as

ẏ = −Dy + A f(y) + B g(yτ ) + u. (4)

The equilibrium point of (4) can now be shifted to the origin, and so the system
(4) becomes

˙̃y = −Dỹ + A f̃(ỹ) + B g̃(ỹτ ), (5)

where ỹ = y−ŷ, ỹτ = yτ −ŷ, f̃(ỹ) = f(ỹ+ŷ)−f(ŷ), and g̃(ỹτ ) = g(ỹτ +ŷ)−g(ŷ).

Remark 1. Systems (5) and (1) are equivalent, meaning that any property that
holds for system (5), will also hold for system (1). For this reason, from now on,
we will only study the global exponential stability of the origin of system (5).

We will also need the following lemma:
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Lemma 1 [22]. For any vector function y : [a, b] → R
8N and positive definite

matrix M ∈ R
8N×8N , the following linear matrix inequality (LMI) holds:

(∫ b

a

y(s)ds

)T

M

(∫ b

a

y(s)ds

)
≤ (b − a)

∫ b

a

yT (s)My(s)ds,

where the integrals are well defined.

3 Main Results

We give an LMI-based sufficient condition for the global exponential stability of
the origin of (5).

Theorem 1. If Assumption 1 holds, then the origin of system (5) is globally
exponentially stable if there exist positive definite matrices P , Q1, Q2, Q3, S1,
S2, S3, S4, positive block-diagonal matrices R1, R2, R3, R4, all from R

8N×8N ,
and ε > 0, such that the following linear matrix inequality (LMI) holds

(Π)9×9 < 0, (6)

where Π1,1 = 2εP − PD − DP + Q1 + τS2 + τ−1e−2ετS1 + τDS1D +
Lf

T
R1Lf +Lg

T
R3Lg, Π1,3 = PA−τ−1e−2ετS1−τDS1A, Π1,6 = PB−τDS1B,

Π2,2 = −e−2ετQ1 + τ−1e−2ετS1 + Lf
T
R2Lf + Lg

T
R4Lg, Π3,3 = Q2 + τS3 −

R1 + τA
T
S1A, Π3,6 = τA

T
S1B, Π4,4 = −e−2ετQ2 −R2, Π5,5 = Q3 + τS4 −R3,

Π6,6 = −e−2ετQ1 − R4 + τB
T
S1B, Π7,7 = −τ−1e−2ετS2, Π8,8 = −τ−1e−2ετS3,

Π9,9 = −τ−1e−2ετS4.

Proof. We begin by defining the Lyapunov-Krasovskii functional

V (ỹ(t)) = e2εtỹT (t)P ỹ(t)

+
∫ t

t−τ

e2εsỹT (s)Q1ỹ(s)ds

+
∫ t

t−τ

e2εsf̃T (ỹ(s))Q2f̃(ỹ(s))ds

+
∫ t

t−τ

e2εsg̃T (ỹ(s))Q3g(ỹ(s))ds

+
∫ 0

−τ

∫ t

t+θ

e2εs ˙̃yT (s)S1
˙̃y(s)dsdθ

+
∫ 0

−τ

∫ t

t+θ

e2εsỹT (s)S2ỹ(s)dsdθ
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+
∫ 0

−τ

∫ t

t+θ

e2εsf̃T (ỹ(s))S3f̃(ỹ(s))dsdθ

+
∫ 0

−τ

∫ t

t+θ

e2εsg̃T (ỹ(s))S4g(ỹ(s))dsdθ.

The time derivative of V along the trajectories of system (5) is

V̇ (ỹ) = e2εt
[
2εỹT P ỹ + ˙̃yT P ỹ + ỹT P ˙̃y + ỹT Q1ỹ − e−2ετ ỹτT Q1ỹ

τ

+ f̃T (ỹ)Q2f̃(ỹ) − e−2ετ f̃T (ỹτ )Q2f̃(ỹτ ) + g̃T (ỹ)Q3g̃(ỹ)

− e−2ετ g̃T (ỹτ )Q3g̃(ỹτ ) + τ ˙̃yT S1
˙̃y −

∫ t

t−τ

e2ε(s−t) ˙̃yT (s)S1
˙̃y(s)ds

+ τ ỹT S2ỹ −
∫ t

t−τ

e2ε(s−t)ỹT (s)S2ỹ(s)ds + τ f̃T (ỹ)S3f̃(ỹ)

−
∫ t

t−τ

e2ε(s−t)f̃T (ỹ(s))S3f̃(ỹ(s))ds + τ g̃T (ỹ)S4g̃(ỹ)

−
∫ t

t−τ

e2ε(s−t)g̃T (ỹ(s))S4g(ỹ(s))ds

]

≤ e2εt
[
2εỹT P ỹ + (−Dỹ + A f̃(ỹ) + B g̃(ỹτ ))T P ỹ + ỹT P (−Dỹ

+A f̃(ỹ) + B g̃(ỹτ )) + ỹT Q1ỹ − e−2ετ ỹτT Q1ỹ
τ + f̃T (ỹ)Q2f̃(ỹ)

− e−2ετ f̃T (ỹτ )Q2f̃(ỹτ ) + g̃T (ỹ)Q3g̃(ỹ) − e−2ετ g̃T (ỹτ )Q3g̃(ỹτ )

+ τ ˙̃yT S1
˙̃y − τ−1e−2ετ

(∫ t

t−τ

˙̃y(s)ds

)T

S1

(∫ t

t−τ

˙̃y(s)ds

)

+ τ ỹT S2ỹ − τ−1e−2ετ

(∫ t

t−τ

ỹ(s)ds

)T

S2

(∫ t

t−τ

ỹ(s)ds

)

+ τ f̃T (ỹ)S3f̃(ỹ) − τ−1e−2ετ

(∫ t

t−τ

f̃(ỹ(s))ds

)T

S3

(∫ t

t−τ

f̃(ỹ(s))ds

)

+ τ g̃T (ỹ)S4g̃(ỹ) − τ−1e−2ετ

(∫ t

t−τ

g̃(ỹ(s))ds

)T

S4

(∫ t

t−τ

g̃(ỹ(s))ds

)]
,

(7)

where the inequality was deduced using Lemma 1.
The Lipschitz conditions in Assumption 1 are equivalent with

||fj(x) − fj(x′)|| ≤ lfj ||x − x′||

⇔ ||vec(fj(x)) − vec(fj(x′))|| ≤ lfj ||vec(x) − vec(x′)||,
for j ∈ {1, . . . N}, and the analogous ones for the functions gj . Now, from
these inequalities we can deduce that there exist positive block-diagonal matri-
ces R1 = diag(r11I8, r

1
2I8, . . . , r

1
NI8), R2 = diag(r21I8, r

2
2I8, . . . , r

2
NI8), R3 =

diag(r31I8, r
3
2I8, . . . , r

3
NI8), R4 = diag(r41I8, r

4
2I8, . . . , r

4
NI8), such that
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0 ≤ ỹT Lf
T
R1Lf ỹ − f̃T (ỹ)R1f̃(ỹ), 0 ≤ ỹτT Lf

T
R2Lf ỹτ − f̃T (ỹτ )R2f̃(ỹτ ), (8)

0 ≤ ỹT Lg
T
R3Lg ỹ − g̃T (ỹ)R3g̃(ỹ), 0 ≤ ỹτT Lg

T
R4Lg ỹ

τ − g̃T (ỹτ )R4g̃(ỹτ ). (9)

Adding inequalities (8) and (9), with inequality (7), yields

V̇ (ỹ) ≤ e2εtζT Πζ, (10)

where

ζ =
[
ỹT ỹτT f̃T (ỹ) f̃T (ỹτ ) g̃T (ỹ)g̃T (ỹτ )(∫ t

t−τ
ỹ(s)ds

)T (∫ t

t−τ
f̃(ỹ(s))ds

)T (∫ t

t−τ
g̃(ỹ(s))ds

)T
]T

,

and Π is defined by (6). Condition (6) says that Π < 0, so we can infer from
(10) that V̇ (ỹ) < 0, which means that V (ỹ(t)) is strictly decreasing for t ≥ 0.
From the definition of V (ỹ(t)), we can further deduce that

e2εtλmin(P )||ỹ(t)||2 ≤ e2εtỹT (t)P ỹ(t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Consequently,

||ỹ(t)||2 ≤ V0

e2εtλmin(P )
⇔ ||ỹ(t)|| ≤ Me−εt, ∀t ≥ 0,

for M =
√

V0
λmin(P ) . Thus, we obtained the global exponential stability for the

origin of system (5).

4 Numerical Example

We now give a numerical example to prove the correctness of the result derived
above.

Example 1. Consider the following delayed octonion-valued Hopfield neural net-
work with two neurons:{

ẋ1(t) = −d1x1(t) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t − τ)) + u1,

ẋ2(t) = −d2x2(t) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t − τ)) + u2,
(11)

where d1 = 50, d2 = 40, and

vec(a11) = (1, 1, 2, 2, 1,−1,−1, 1)T , vec(a12) = (2, 1, 1,−2, 2, 1,−2, 2)T ,

vec(a21) = (2,−2, 2, 1, 2,−2, 1, 2)T , vec(a22) = (1, 2, 2,−2, 1, 1, 2,−2)T ,
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Fig. 1. State trajectories of elements of x1 and x2 in Example 1

vec(b11) = (2, 1, 2, 1,−2, 2,−1, 2)T , vec(b12) = (−2, 2,−2, 2, 1, 2,−2, 2)T ,

vec(b21) = (1,−2, 2,−2, 1, 2, 2, 2)T , vec(b22) = (1, 2, 2, 1, 2,−2,−2, 1)T ,

vec(u1) = (10,−20, 30,−40, 50,−70, 80,−90)T ,

vec(u2) = (90,−40, 10,−60, 30,−80, 50,−20)T ,

fj ([x]p) =
1

1 + e−[x]p
, gj ([x]p) =

1 − e−[x]p

1 + e−[x]p
, p ∈ {0, 1, . . . , 7}, j ∈ {1, 2}.

We have that lf1 = lf2 =
√
2
2 and lg1 = lg2 = 2

√
2. Also, the constant delay is

τ = 0.5.
The global exponential stability of the equilibrium point of system (11)

is obtained by solving the LMI in condition (6) in Theorem 1, to get
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ε = 3, R1 = diag(3.1392I8, 3.0388I8), R2 = diag(0.4777I8, 0.4685I8), R3 =
diag(0.2165I8, 0.1348I8), R4 = diag(0.0017I8, 0.0016I8). (The values of the other
matrices are not given due to space limitations.) The state trajectories of the
elements of octonions x1 and x2 are given in Fig. 1, for four initial values.

5 Conclusions

The definition of the delayed octonion-valued recurrent neural networks was
given. Under the assumption that the activation functions satisfy the Lipschitz
condition, a sufficient criterion expressed as a linear matrix inequality was
derived, which assures that the equilibrium point of these networks is globally
exponentially stable. The effectiveness of the proposed criterion was showed by
providing a numerical example.

The future will most likely bring even more applications for the complex- and
quaternion-valued neural networks, and also for the Clifford-valued neural net-
works, which represents their generalization. Octonion-valued neural networks
can be used as an alternative to networks defined on Clifford algebras of dimen-
sion 8, especially due to the property of being a normed division algebra that
the octonion algebra has.
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Abstract. The Forward Stagewise Regression (FSR) algorithm is a pop-
ular procedure to generate sparse linear regression models. However, the
standard FSR assumes that the data are fully observed. This assumption
is often flawed and pre-processing steps are applied to the dataset so that
FSR can be used. In this paper, we extend the FSR algorithm to directly
handle datasets with partially observed feature vectors, dismissing the
need for the data to be pre-processed. Experiments were carried out on
real-world datasets and the proposed method reported promising results
when compared to the usual strategies for handling incomplete data.

1 Introduction

Missing data is a common occurrence in many real-world domains that may
have a significant effect on the results of machine learning algorithms. Roughly
speaking, in the problem of learning from incomplete datasets, a machine learn-
ing algorithm has to learn from input vectors where some of its attributes are
unknown. Possible reasons for the absence of these attributes are transmission
and storage problems, operator failure, measurement error and etc. [1].

According to Little and Rubin in [2], understanding the missingness mech-
anism is fundamental to the task of designing solutions to handle the missing
data problem. Missing data mechanisms are usually classified into three main
groups: Missing Completely at Random (MCAR), Missing at Random (MAR)
and Not Missing at Random (NMAR). In MCAR, the missingness of a com-
ponent is independent of its real value and any value of other components on
the dataset. This characterization is often seen as very restrictive and various
authors consider that it is very unlikely in real-world applications [3]. A more
realistic approach is the MAR mechanism. In MAR, the missingness of a compo-
nent is independent of the value itself but can be related to the observed values.
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 386–395, 2017.
DOI: 10.1007/978-3-319-59153-7 34
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Finally, MNAR characterizes a whole different situation where the instance is
not missing at random. In MNAR the missing probability is related to the value
of the missing component and handling such problems usually requires a model
of the missingness mechanism. In this work, we consider the case where the prob-
ability of a component being missing is not related to its value, hence we adopt
the less restrictive option, assuming that the missing data is MAR.

Considering the MAR framework, the simplest strategy to handle missing
data is the Listwise Deletion (LD). In this method, only fully observed input
vectors are used to build the learning model. Although LD is simple and popular,
it may lead to poor modeling as the number of vectors with missing components
increases [4]. In such cases, a better solution consists in filling the missing compo-
nents with likely values. The so-called imputation strategies comprise a variety
of methods mostly based on either probabilistic models or regression methods
[4]. In the probabilistic approach, the vectors in the dataset are assumed to
be i.i.d. random variables and inference is carried out to estimate the missing
values. The Conditional Mean Imputation (CMI, [5]) is a widely used statistical
imputation method in which the missing components are filled according to their
expected values given the observed components of the same vector. In general,
one can assume the data follow any distribution, being the multivariate normal
distribution the most common use.

It is worth noting that, in the context of machine learning, data imputation
based methods consist of pre-processing steps, i.e., the learning process only
starts when the missing data vectors are filled or deleted. Recently, [1,6] propose
variants of machine learning methods that can handle missing data directly
and thus do not require any pre-processing step. In addition to being elegant
solutions, those methods also achieved promising results.

The Forward Stagewise Regression (FSR, [8]) algorithm is a linear regression
sparse model. According to Hastie et al. [9], there are two main reasons that
explain why sparse linear models are preferable to non-sparse ones (e.g., linear
models coupled with least-squares estimation). First, sparse models often pro-
duce lower variance predictions, and hence good generalization. Second, models
with reduced number of nonzero coefficients tend to represent only strong effects
of the data, thus eliminating details that may be important to a further analy-
sis. The FSR follows a strategy for constructing a sequence of sparse regression
estimates: it starts with all coefficients equal to zero, and iteratively updates the
coefficient of the variable that achieves the maximal correlation with the current
residual [7].

In this paper we propose a new variant of the FSR algorithm with a built-
in mechanism to handle missing data. The proposed model is based on the
estimation of the expected correlations between each feature and the vector of
residuals at each iteration. To compute the necessary steps, we assume that
the data are normally distributed. Results show that our method is able to
outperform LD and CMI strategies in various real-world datasets.

The remainder of the paper is organized as follows. Section 2 overviews the
FSR algorithm. Section 3 introduces the proposed method to extend the FSR
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to incomplete data. Section 4 reports the empirical assessment of the proposal,
comparing it to the CMI and LD strategies. Conclusions are given in Sect. 5.

2 Forward Stagewise Regression

Consider a regression setup in which you are given a set D = {(xi, yi)}Ni=1

of input/output training examples, such that x1, · · · ,xN are p-dimensional
input column vectors and y1, · · · , yN are their respective scalar outputs. Fur-
thermore, define the N × p matrix X = [x1, · · · ,xN ]T and the column vector
y = [y1, · · · , yN ]T . We assume a linear relationship between the input and output
variables (a linear model) of the form:

y = Xθ + r, (1)

where r ∈ R
N denotes a column vector of residuals and θ = [θ1, · · · θp]T repre-

sents the parameters of the linear model.
The goal in sparse linear estimation is to provide an estimate θ̂ of the para-

meters θ such that the l2-norm of the residuals is small while having as many as
possible entries in θ̂ with values equal to zero. This is usually achieved by the
following minimization problem:

θ̂ = arg min
θ′

‖y − Xθ′‖2 + λ‖θ′‖1, (2)

where ‖ · ‖2 and ‖ · ‖1 denote the l2 and l1 norms, respectively, and we use
θ′ to distinguish from the actual parameter vector. This formulation leads to
a quadratic programming problem and thus many numerical methods can be
used to solve it [8]. Among the various methods, the Forward Stagewise Regres-
sion algorithm leads to an approximate solution by means of simple iteractive
procedure.

The Forward Stagewise Regression algorithm computes θ̂ by iteratively
selecting and increasing the value of one of its coefficients θ̂j according to the
correlation between Xj and a vector of residuals r. Henceforth, we use Xj to
denote the jth column of X, that is, Xj = [x1j , x2j , · · · , xNj ]T . In other words,
Xj comprises the values of the jth feature of all input points. At the beginning
of the FSR, the estimates θ̂ are set to zero so that the vector r reduces to y. At
each iteration, both parameters and residuals are updated. The FSR algorithm
is detailed in the following steps:

1. Start with θ̂(0) = 0 and r(0) = y. In addition, standardize the columns of X
to have zero mean and unit variance.

2. For each iteration t = 1, 2, . . .
3. Find the feature index j ∈ {1, · · · , p} most correlated with the residual vari-

able at instant t − 11.
1 We are assuming that the vectors {xi} are realizations of a p-dimensional random

variable. Likewise, r comprises N samples from the residual random variable. We
use the method-of-moments estimator for the correlation between jth variable and
the residual variable, that is, 1

N
XT

j r.
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4. Update the parameter estimate according to:

θ̂
(t)
j ← θ̂

(t−1)
j + δ

(t)
j , such that δ

(t)
j =

{
ε, if XT

j r
(t−1) > 0,

−ε, otherwise.
, (3)

where the step-size ε > 0 is a pre-defined constant.
5. Update the vector of residuals as follows:

r(t) ← r(t−1) − δ
(t)
j Xj . (4)

6. Go back to step 2 until the residuals are uncorrelated with all the predictors.

3 Proposed Method

We now consider the case where some instances of X have one or more missing
entries. We are interested in reformulating the FSR algorithm to handle such
case. In this matter, we first need to tackle the problem of estimating the corre-
lation between the j-th feature and the residual variable, i.e., the value of XT

j r
when some entries of Xj and/or r are missing. Under this scenario, we can con-
sider the missing components of X as random variables. Thus, in the general
case where any entry of X can be missing, the expected value of the desired
correlation is given by

E
[
XT

j r
]

= E
[
XT

j y − XT
j Xθ

]
= E[XT

j y] − E[XT
j Xθ]

=
N∑
i=1

(
yiE[xi,j ]

) −
N∑
i=1

(
E[xi,jxT

i θ]
)

=
N∑
i=1

(
yiE[xi,j ] − E[xi,j ]E[xT

i θ] + Cov[xi,j ,xT
i θ]

)

=
N∑
i=1

(
yiE[xi,j ] −

(
E[xi,j ]

p∑
k=1

θkE[xi,k] +
p∑

k=1

θkCov[xi,k, xi,j ]
))

=
N∑
i=1

(
yiE[xi,j ] −

p∑
k=1

θk
(
E[xi,k]E[xi,j ] + Cov[xi,j , xi,k]

))
(5)

In the missing data scenario, there is uncertainty only on the unob-
served/missing entries of X, as the observed values are constants, i.e., E[xi,j ] =
xi,j if xi,j is not missing. Likewise, Cov[xi,j , xi,k] = 0 if xi,j or xi,k are not
missing.

Equation (5) expresses the expected correlation as a function of the expected
values of the inputs and the covariance between different attributes of the same
input vector. Let Mi denote the indices of the unobserved entries of xi. Further-
more, let Oi = {1, . . . , p}\Mi. Thus, the vector xi can be divided into two parts
[xi,Oi

,xi,Mi
].
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We are interested in computing the expected value of Xjr conditioned on
the observed values of X. For that, as shown in Eq. (5), we need to compute the
expected value of, and the covariance between, the missing entries of each train-
ing point xi conditioned on the observed entries of the same vector, compactly
written as E[xi,Mi

|xi,Oi
] and Cov[xi,Mi

|xi,Oi
].

According to [1], under the assumption that xi ∼ N (μ,Σ), we can obtain
E[xi,Mi

|xi,Oi
] and Cov[xi,Mi

|xi,Oi
] as follows:

E[xi,M |xi,O] = μM + ΣMOΣ−1
OO(xi,O − μO), (6)

Cov[xi,M |xi,O] = ΣMM − ΣMOΣ−1
OOΣOM , (7)

where we omitted the dependence of i in M and O for simplicity. The subscripts
OO, OM , MO and MM refer to the subsets of the full covariance matrix Σ
between missing and observed variables of xi. Additional details can be found
in [1].

The FSR for incomplete data can be summarized as follows:

1. Start with θ̂(0) = 0 and r(0) = y. In addition, standardize the columns of X
to have zero mean and unit variance.

2. For each iteration t = 1, 2, . . .
3. Find the feature index j most correlated with the residual variable at instant

t − 1:
j = arg min

k=1,...,p
E[Xkr(t−1)|XO], (8)

where XO refers to all pairs of indexes (i, j) at which xi,j is observed.
4. Update the parameter estimate according to:

θ̂
(t)
j ← θ̂

(t−1)
j + δ

(t)
j , such that δ

(t)
j =

{
ε, if E[Xjr(t−1)|XO] > 0,

−ε, otherwise.
.

(9)
5. Update the vector of residuals as follows:

r(t) ← r(t−1) − δ
(t)
j E[Xj |XO]. (10)

6. Go back to step 2 until the residuals are uncorrelated with all the predictors.

Remarkably, Eq. (5) can be written concisely as:

E
[
Xjr

]
= E

[
Xj

]T
y − E

[
Xj

]T
E

[
X

]
θ −

N∑
i=1

eTj Cov[xi]θ (11)

where ej is the jth vector of the canonical basis of Rp and Cov[xi] is the full
covariance matrix of the example xi (which is the covariance matrix of the
missing entries padded with zeros in the components related to the observed
entries).

Therefore, one can conclude that the proposed method differs from com-
mon imputation strategies as the last term in Eq. (11) takes into account the
uncertainty concerning the missing data entries.
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4 Performance Evaluation

To asses the performance of the proposed method, named Forward Stagewise
Regression for Incomplete datasets (FSRI), we carried out a set of experiments

Table 1. Datasets description.

# Features # Training samples # Test samples

Wine 13 100 78

CPU 9 139 70

Cancer 32 129 65

Automobile price 15 106 53

Forest Fire 4 344 173

Table 2. Average MSE between the outputs of each linear model and the target
outputs. The number of input vectors with missing entries varies from 10% to 50%.

Wine

10% 20% 30% 40% 50%

FSRI 6.3404 6.5319 6.7531 7.3600 8.1164

CMI 6.6190 7.5510 10.7476 22.9362 54.9262

LD 12.0314 23.6968 35.8139 - -

CPU

10% 20% 30% 40% 50%

FSRI 2.7838e+05 2.8849e+05 2.9230e+05 3.2206e+05 3.2950e+05

CMI 2.8381e+05 3.0676e+05 3.4010e+05 4.5708e+05 6.2148e+05

LD 3.3261e+05 4.1271e+05 7.8900e+05 1.3920e+06 -

Automobile price

10% 20% 30% 40% 50%

FSRI 4.2238e+08 4.2386e+08 4.1773e+08 4.2275e+08 4.1695e+08

CMI 4.4615e+08 4.9690e+08 7.7811e+08 1.8076e+09 3.4648e+09

LD 1.5076e+09 1.1875e+09 - - -

Cancer

10% 20% 30% 40% 50%

FSRI 8.5119e+04 8.2159e+04 8.0475e+04 7.9577e+04 7.7541e+04

CMI 9.2285e+04 9.4305e+04 9.9716e+04 1.1450e+05 1.6995e+05

LD 1.4298e+05 - - - -

Forest-fire

10% 20% 30% 40% 50%

FSRI 6.4320e+05 6.7355e+05 6.8613e+05 6.9128e+05 7.0489e+05

CMI 6.4374e+05 6.7554e+05 6.9017e+05 6.9693e+05 7.1871e+05

LD 6.4787e+05 7.2750e+05 9.2299e+05 1.2284e+06 1.6003e+06
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Table 3. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.30 of the maximum norm as
the comparison point

Wine

10% 20% 30% 40% 50%

FSRI 0.0028 0.0060 0.0114 0.0168 0.0297

CMI 0.0031 0.0077 0.0151 0.0232 0.0402

LD 0.0345 0.1261 0.2264 0.2236 0.2635

CPU

10% 20% 30% 40% 50%

FSRI 949.5511 1642.1833 2362.9053 2609.0817 2905.4348

CMI 994.5057 1767.8236 2581.6698 2890.8464 3208.9734

LD 2858.6407 4416.8752 4713.3837 5112.4878 5491.9145

Automobile price

10% 20% 30% 40% 50%

FSRI 4.99136e+05 7.89447e+05 1.37572e+06 1.64525e+06 2.34146e+06

CMI 5.38478e+05 9.24256e+05 1.65136e+06 2.06429e+06 3.04505e+06

LD 6.07145e+06 1.43461e+07 1.09962e+07 1.48738e+07 2.57570e+07

Cancer

10% 20% 30% 40% 50%

FSRI 315.5959 689.3359 879.4547 939.1615 941.2634

CMI 321.0407 714.4983 984.0727 1214.7930 1433.9887

LD 2738.7149 - - - -

Forest-fire

10% 20% 30% 40% 50%

FSRI 1.3064 2.6853 3.1192 4.2199 5.1891

CMI 1.3349 2.9743 3.6451 5.192 6.3540

LD 1.3788 3.7616 7.3096 10.2142 12.6646

with 5 arbitrary real-world datasets, available at [10]. We compare FSRI to
standard methods used to handle missing data. For each dataset, we varied the
amount of inputs with missing variable from 10% to 50%. The description of the
datasets is presented in Table 1.

The FSRI was compared to the Listwise Deletion (LD) and the Conditional
Mean Imputation (CMI). Both CMI and LD were used as pre-processing steps
and the standard FSR was used to generate the linear models. For FSRI and
CMI, we estimate the parameters of the data distribution using the Expectation
Conditional Maximization (ECM, [5]) algorithm for datasets with missing values.

All methods were compared based on two criteria, the Mean Square Error
(MSE) between y and the results of each model and Mean Squared Difference
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Table 4. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.45 of the maximum norm as
the comparison point

Wine

10% 20% 30% 40% 50%

FSRI 0.0033 0.0065 0.0125 0.0194 0.0348

CMI 0.0032 0.0087 0.0179 0.0283 0.0520

LD 0.0425 0.1681 0.3012 0.3126 0.2575

CPU

10% 20% 30% 40% 50%

FSRI 1277.7359 2385.4040 3638.0817 4105.8572 4838.1707

CMI 1370.3084 2707.6797 4261.6337 4913.7103 5758.5741

LD 4757.6309 7546.5486 8578.5215 9597.8471 11329.4762

Automobile price

10% 20% 30% 40% 50%

FSRI 6.39862e+05 1.08062e+06 1.88349e+06 2.19982e+06 3.00759e+06

CMI 6.97030e+05 1.26571e+06 2.29862e+06 2.74333e+06 3.96610e+06

LD 7.66190e+06 1.52016e+07 2.54035e+07 2.24063e+07 -

Cancer

10% 20% 30% 40% 50%

FSRI 815.4529 1432.2428 1835.1505 1571.4583 1542.1451

CMI 859.2785 1783.3939 2393.9583 2772.8872 3309.5005

LD 5932.4867 - - - -

Forest-fire

10% 20% 30% 40% 50%

FSRI 1.8247 3.6323 4.1453 5.2285 7.4526

CMI 1.8937 4.2270 5.4768 8.0466 10.3822

LD 2.3055 6.5959 13.2102 18.6168 23.3338

between the Coefficients (MSDC) of each linear model and the linear model
obtained by a FSR on the same dataset without missing values. All experi-
ments were repeated 500 times. Table 2 shows the average MSE obtained in the
experiments.

Beforehand, it is important to clarify that some of the LD results are not
filled which indicates that the FSR algorithm was not able to converge due to the
significant number of discarded examples. Concerning the other AMSE values,
one can see that the average MSE for all methods increase as the number of
missing data increases. However, it is noticeable that FSRI had the lowest AMSE
for all datasets and missing data percentages. This performance gap is even more
significant in the experiments with the highest number of missing data.
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Table 5. Average MSDC between each linear model and the linear model obtained by
a FSR on the same dataset. In this experiment we set 0.60 of the maximum norm as
the comparison point

Wine

10% 20% 30% 40% 50%

FSRI 0.0033 0.0084 0.0169 0.0262 0.0426

CMI 0.0037 0.0104 0.0221 0.0350 0.0630

LD 0.0511 0.1926 0.3183 0.5117 -

CPU

10% 20% 30% 40% 50%

FSRI 1191.6427 2369.9071 3796.9097 4585.2540 5591.5145

CMI 1313.4053 2841.6674 4745.0750 5810.1135 7133.1241

LD 5174.1832 8978.9877 11144.0691 12598.5600 18165.6937

Automobile price

10% 20% 30% 40% 50%

FSRI 8.20843e+05 1.55785e+06 2.47574e+06 3.08841e+06 3.95091e+06

CMI 8.92548e+05 1.80668e+06 3.03822e+06 3.66187e+06 5.14811e+06

LD 9.34456e+06 1.83650e+07 2.34479e+07 - -

Cancer

10% 20% 30% 40% 50%

FSRI 1471.5130 2002.8079 2187.5142 2280.6016 1995.2143

CMI 1561.4253 2983.8447 4298.5120 4711.2356 5891.7460

LD 7616.6000 - - - -

Forest-fire

10% 20% 30% 40% 50%

FSRI 2.0451 4.1852 4.8350 5.6707 9.1165

CMI 2.1624 5.2306 6.8008 10.2454 14.4056

LD 3.2613 9.3837 20.2777 28.8248 36.5733

Along with the MSE, we computed the MSDC metric to quantify the dif-
ference between the linear model generated by each method and an ideal linear
model obtained by a FSR on a complete (no missing data) dataset. We decided
to compare the methods on several instants during the learning process. The
instants are defined according to the norm of the weights generated by each
method. We considered the norm obtained by the FSR in the complete dataset
as the maximum norm and evaluated all method at 3 different ratios of this
norm. Such procedure was adopted to provide a fair comparison since different
methods show weight vectors with varying norms at each iteration. Tables 3, 4
and 5 show the MSDC values for the ratios 0.3, 0.45 and 0.6.
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As can be noticed, the difference between the weight vectors generated by
each method and the ideal linear model increased with the number of missing
data. Once again FSRI had the best overall performance being less sensible to
the presence of missing data.

5 Conclusions

In this paper we proposed a variant of the Forward Stagewise Regression algo-
rithm for incomplete datatsets. In the proposed method, named FSRI, we con-
sidered the inputs as normally distributed random variables and modified the
steps of FSR such that weights are incremented according to the expected corre-
lation of the residuals and each of the features. FSRI was compared to popular
strategies to handle missing values and achieved promising results.

It is worth highlighting that the performance of FSRI can be significantly
degraded if the normality assumption of the training set does not hold. Hence we
are currently working to extend the FSRI formulation for non-Gaussian datasets
using nonparametric/semi-parametric models

Acknowledgments. The authors acknowledge the support of CNPq (Grant
456837/2014-0 and research fellowship).
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Abstract. We propose a new convolutional neural network – the FTNet
and explain its theoretical background referring to the theory of a higher
degree F-transform. The FTNet is parametrized by kernel sizes, on/off
activation of weights learning, the choice of strides or pooling, etc. It
is trained on the database MNIST and tested on handwritten inputs.
The obtained results demonstrate that the FTNet has better recogni-
tion accuracy than the automatically trained LENET-5. We have also
analyzed the FTNet and LENET-5 rotation invariance.

1 Introduction

Deep learning (DL) [1] neural networks have proven themselves as efficient tools
for pattern recognition [2–4]. One of the main principles of the DL is based
on automatic extraction of “good” features [5] using a general-purpose learning
procedure [6,7]. This is opposite to hand designed feature extractors that require
a considerable amount of testing time and expert skills [8–10].

In this contribution, we argue with the absolutization of the above given
main principle and propose the theoretical background of FTNets – convolu-
tional neural networks (CNN) that use kernels related to a higher degree F-
transform [11]. The FTNet is parametrized by kernel sizes, on/off activation
of weights learning, the choice of strides or pooling, etc. It is trained on the
database MNIST and tested on handwritten inputs.

The obtained results demonstrate that the FTNet has better recognition
accuracy than the automatically trained LENET-5 [12]. The efficiency of the
proposed FTNet (measured in training time) is higher. Last, but not least, we
provide the theoretical justification of a suitability of the FTNet for the problem
of recognition.

To confirm our conclusion, we compare the FTNet networks with the
LENET-5 (both are trained on the dataset MNIST ) on various recognition tests.
The results are discussed in Sect. 4.2. We have chosen LENET-5, because it was
specially designed for dataset MNIST whose objects are hand drawn integers
from 0 to 9 together with their various transforms. LENET-5 has a reasonable
size, good performance accuracy and serves as a prototype for many other con-
volutional networks. Moreover, LENET-5 and its modifications are included into
many modern machine learning frameworks.
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 396–407, 2017.
DOI: 10.1007/978-3-319-59153-7 35
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The structure of the paper is as follows: in Sect. 2 we give a short characte-
riation of convolutional neural networks; Sect. 3 recalls the main facts about the
higher degree F-transform and specifically F 2-transform - the technique, which
will be used in the proposed FTNet networks; Sect. 4 contains description of
tests and discussion of their results.

2 Convolutional Neural Networks

Convolutional Neural Networks [13] are hierarchical models capable of learning.
The hierarchy consists of layers of units. The layers are connected together in
a cascade manner. They can be specified according to their types. One of the
types is a convolutional type. Units in convolutional layer are partially con-
nected to units of the previous layer, unlike units in fully connected layers.
Each units of a convolutional layer performs operation known as convolution1,
thus the layer name. The purpose of a convolutional layer is to extract fea-
tures. Multiple convolutional layers connected one after another extract features
of higher abstractions. Multiple connected convolutional layers are interlarded
with pooling (sub-sampling) layers which should ensure tolerance to translations
and distortions (Fig. 1).

Fig. 1. LENET-5 architecture reproduced from [12]

CNN architecture reproduced from paper [13] is considered as perhaps the
first that deserves the label deep [1]. The difference between deep and shallow
networks is not clearly distinguished (more on the topic can be found in the
article [1]). Learning deep convolutional neural network (DNN ) using a learn-
ing algorithm (the back-propagation with gradient descent [14]) proved to be
computationally heavy. The problem of intense computations was simplified by
the advent of programmable GPUs (frameworks cuDNN, Caffe, Theano, Torch,
Tensorflow, etc.).

CNN is one of the best tools in the task of classification especially image
classification. Dataset MNIST is an example of benchmark that confirms this
claim. The following web page2 contains error rates of different neural networks
1 Weighted average in case of convolutional layers. Weights are being learned.
2 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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sorted into groups by their types. The best neural network displayed on the
website has only 0.23% (23 miss-classifications in 10000) error rate. Another
example is competition ILSVRC (Large Scale Visual Recognition Challenge). In
some cases mean average precisions nearly doubled between 20143 and 20154.

3 The F-transform of a Higher Degree (Fm-transform)

In this section, we recall the main facts (see [11] for more details) about the
higher degree F-transform and specifically F 2-transform - the technique, which
will be used in the proposed below CNN with the FT kernels (FTNet).

3.1 Fuzzy partition

The F-transform is the result of a convolution of an object function (image,
signal, etc.) and a generating function of what is regarded as a fuzzy partition
of a universe.

Definition 1. Let n > 2, a = x0 = x1 < . . . < xn = xn+1 = b be fixed nodes
within [a, b] ⊆ R. Fuzzy sets A1, . . . , An : [a, b] → [0, 1], identified with their
membership functions defined on [a, b], establish a fuzzy partition of [a, b], if they
fulfill the following conditions for k = 1, . . . , n:

1. Ak(xk) = 1;
2. Ak(x) = 0 if x ∈ [a, b] \ (xk−1, xk+1);
3. Ak(x) is continuous on [xk−1, xk+1];
4. Ak(x) for k = 2, . . . , n strictly increases on [xk−1, xk] and for k = 1, . . . , n−1

strictly decreases on [xk, xk+1];
5. for all x ∈ [a, b] holds the Ruspini condition

n∑

k=1

Ak(x) = 1. (1)

The elements of fuzzy partition {A1, . . . , An} are called basic functions.
In particular, an h-uniform fuzzy partition of [a, b] can be obtained using the

so called generating function

A : [−1, 1] → [0, 1], (2)

which is defined as an even, continuous and positive function everywhere on
[−1, 1] except for on boundaries, where it vanishes. Basic functions A2, . . . , An−1

of an h-uniform fuzzy partition are rescaled and shifted copies of A in the sense
that for all k = 2, . . . , n − 1;

Ak(x) =

{
A(x−xk

h ), x ∈ [xk − h, xk + h],
0, otherwise.

3 http://image-net.org/challenges/LSVRC/2014/results.
4 http://image-net.org/challenges/LSVRC/2015/results.

http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2015/results
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Below, we will be working with one particular case of an h-uniform fuzzy
partition that is generated by the triangular shaped function Atr and its h-
rescaled version Atr

h , where

Atr(x) = 1 − |x|, x ∈ [−1, 1], and Atr
h (x) = 1 − |x|

h
, x ∈ [−h, h].

A fuzzy partition generated by the triangular shaped function Atr will be referred
to as triangular shaped.

3.2 Space L2(Ak)

Let us fix [a, b] and its h-uniform fuzzy partition A1, . . . , An, where n ≥ 2 and
h = b−a

n−1
5. Let k be a fixed integer from {1, . . . , n}, and let L2(Ak) be a set of

square-integrable functions f : [xk−1, xk+1] → R. Denote L2(A1, . . . , An) a set
of functions f : [a, b] → R such that for all k = 1, . . . , n, f |[xk−1,xk+1] ∈ L2(Ak).
In L2(Ak), we define an inner product of f and g

〈f, g〉k =
∫ xk+1

xk−1

f(x)g(x)dμk =
1
sk

∫ xk+1

xk−1

f(x)g(x)Ak(x)dx,

where
sk =

∫ xk+1

xk−1

Ak(x)dx.

The space (L2(Ak, 〈f, g〉k)) is a Hilbert space. We apply the Gram-Schmidt
process to the linearly independent system of polynomials {1, x, x2, . . . xm}
restricted to the interval [xk−1, xk+1] and convert it to an orthogonal
system in L2(Ak). The resulting orthogonal polynomials are denoted by
P 0
k , P 1

k , P 2
k , . . . , Pm

k .

Example 1. Below, we write the first three orthogonal polynomials P 0, P 1, P 2

in L2(A), where A is the generating function of a uniform fuzzy partition, and
〈·, ·〉0 is the inner product:

P 0(x) = 1,
P 1(x) = x,

P 2(x) = x2 − I2, where I2 = h2
∫ 1

−1
x2A(x)dx,

If generating function Atr is triangular shaped and h-rescaled, then the polyno-
mial P 2 can be simplified to the form

P 2(x) = x2 − h2

6
. (3)

We denote Lm
2 (Ak) a linear subspace of L2(Ak) with the basis

P 0
k , P 1

k , P 2
k . . . , Pm

k .
5 The text of this and the following subsection is a free version of a certain part of [11]

where the theory of a higher degree F-transform was introduced.
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3.3 Fm-transform

In this section, we define the Fm-transform, m ≥ 0, of a function f with polyno-
mial components of degree m. Let us fix [a, b] and its fuzzy partition A1, . . . , An,
n ≥ 2.

Definition 2 [11]. Let f : [a, b] → R be a function from L2(A1, . . . , An), and let
m ≥ 0 be a fixed integer. Let Fm

k be the k-th orthogonal projection of f |[xk−1,xk+1]

on Lm
2 (Ak), k = 1, . . . , n. We say that the n-tuple (Fm

1 , . . . , Fm
n ) is an Fm-

transform of f with respect to A1, . . . , An, or formally,

Fm[f ] = (Fm
1 , . . . , Fm

n ).

Fm
k is called the kth Fm-transform component of f .

Explicitly, each kth component is represented by the mth degree polynomial

Fm
k = ck,0P

0
k + ck,1P

1
k + · · · + ck,mPm

k , (4)

where

ck,i =
〈f, P i

k〉k
〈P i

k, P
i
k〉k

=

∫ b

a
f(x)P i

k(x)Ak(x)dx
∫ b

a
P i
k(x)P i

k(x)Ak(x)dx
, i = 0, . . . ,m.

Definition 3. Let Fm[f ] = (Fm
1 , . . . , Fm

n ) be the direct Fm-transform of f with
respect to A1, . . . , An. Then the function

f̂m
n (x) =

n∑

k=1

Fm
k Ak(x), x ∈ [a, b], (5)

is called the inverse Fm-transform of f .

The following theorem proved in [11] estimates the quality of approximation
by the inverse Fm-transform in a normed space L1.

Theorem 1. Let A1, . . . , An be an h-uniform fuzzy partition of [a, b]. Moreover,
let functions f and Ak, k = 1, . . . , n be four times continuously differentiable on
[a, b], and let f̂m

n be the inverse Fm-transform of f , where m ≥ 1. Then

‖f(x) − f̂m
n (x)‖L1 ≤ O(h2),

where L1 is the Lebesgue space on [a + h, b − h].

3.4 F 2-transform in the Convolutional Form

Let us fix [a, b] and its h-uniform fuzzy partition A1, . . . , An, n ≥ 2, gener-
ated from A : [−1, 1] → [0, 1] and its h-rescaled version Ah, so that Ak(x) =
A(x−xk

h ) = Ah(x−xk), x ∈ [xk −h, xk +h], and xk = a+kh. The F 2-transform
of a function f from L2(A1, . . . , An) has the following representation

F 2[f ] = (c1,0P 0
1 + c1,1P

1
1 + c1,2P

2
1 , . . . , cn,0P

0
n + cn,1P

1
n + cn,2P

2
n), (6)
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where for all k = 1, . . . , n,

P 0
k (x) = 1, P 1

k (x) = x − xk, P 2
k (x) = (x − xk)2 − I2, (7)

where I2 = h2
∫ 1

−1
x2A(x)dx, and coefficients are as follows:

ck,0 =

∫ ∞
−∞ f(x)Ah(x − xk)dx
∫ ∞

−∞ Ah(x − xk)dx
, (8)

ck,1 =

∫ ∞
−∞ f(x)(x − xk)Ah(x − xk)dx
∫ ∞

−∞ (x − xk)2Ah(x − xk)dx
, (9)

ck,2 =

∫ ∞
−∞ f(x)((x − xk)2 − I2)Ah(x − xk)dx
∫ ∞

−∞ ((x − xk)2 − I2)2Ah(x − xk)dx
. (10)

In [11,15], it has been proved that

ck,0 ≈ f(xk), ck,1 ≈ f ′(xk), ck,2 ≈ f ′′(xk), (11)

where ≈ is meant up to O(h2).
Without going into technical details, we rewrite (8)–(10) into the following

discrete representations

ck,0 =
l∑

j=1

f(j)g0(ks − j), ck,1 =
l∑

j=1

f(j)g1(ks − j), ck,2 =
l∑

j=1

f(j)g2(ks − j),

(12)

where k = 1, . . . , n, n = � l
s�, s is the so called “stride” and g0, g1, g2 are

normalized functions that correspond to generating functions Ah, (xAh) and
((x2 − I2)Ah). It is easy to see that if s = 1, then coefficients ck,0, ck,1, ck,2 are
results of the corresponding discrete convolutions f � g0, f � g1, f � g2. Thus, we
can rewrite the representation of F 2 in (6) in the following vector form:

F 2[f ] = ((f �s g0)TP0 + (f �s g1)TP1 + (f �s g2)TP2), (13)

where P0, P1, P2 are vectors of polynomials with components given in (7), and
�s means that the convolution is performed with the stride s, s ≥ 1.

Example 2. We choose the triangular shaped generating function Atr : [−1, 1] →
[0, 1] and consider it on the discrete domain D = {−1,−2/3,−1/3, 0, 1/3, 2/3, 1}.
Below, we show four matrices G0, G1,1, G1,2 G2 of 5 × 5 kernels6 that are used
for functions of two variables and correspond to the three above considered
convolutions with g0, g1, g2.

G0 =

⎛

⎜⎜⎜⎜⎝

0.000 0.000 0.000 0.000 0.000
0.000 0.062 0.125 0.062 0.000
0.000 0.125 0.250 0.125 0.000
0.000 0.062 0.125 0.062 0.000
0.000 0.000 0.000 0.000 0.000

⎞

⎟⎟⎟⎟⎠

6 The size is determined by only five non-zero values of Atr on D.
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G1,1 =

⎛

⎜⎜⎜⎜⎝

−0.074 −0.074 0. 0.074 0.074
−0.148 −0.148 0. 0.148 0.148
−0.222 −0.222 0. 0.222 0.222
−0.148 −0.148 0. 0.148 0.148
−0.074 −0.074 0. 0.074 0.074

⎞

⎟⎟⎟⎟⎠

G1,2 =

⎛

⎜⎜⎜⎜⎝

−0.074 −0.148 −0.222 −0.148 −0.074
−0.074 −0.148 −0.222 −0.148 −0.074
0.000 0.000 0.000 0.000 0.000
0.074 0.148 0.222 0.148 0.074
0.074 0.148 0.222 0.148 0.074

⎞

⎟⎟⎟⎟⎠

G2 =

⎛

⎜⎜⎜⎜⎝

0.062 0.049 −0.037 0.049 0.062
0.049 −0.049 −0.148 −0.049 0.049
0.037 −0.148 −0.333 −0.148 0.037
0.049 −0.049 −0.148 −0.049 0.049
0.062 0.049 −0.037 0.049 0.062

⎞

⎟⎟⎟⎟⎠

Let us remark that in the context of convolutional neural networks, matrices G0,
G1,1, G1,2 G2 determine convolution filters. In the context of the F-transform,
they depend on the chosen partition of underlying universe and do not depend
on the functions they are applied to.

3.5 F 2-transform in the FTNet Architecture

We propose to modify the LENET-5 [12] and replace convolution-type units in
the first and third convolution layers C1 and C3 by the similar units which realize
the computation of the F 2-transform coefficients according to (12) and adapted
to functions of two variables. We use the meaning (11) of the F 2 coefficients
and specify features in the feature maps of the convolution layer C1 as partial
derivatives (positive and negative) of an input function (of two variables) with
respect to each single variable up to the second degree. In more details, the six
matrices G0, −G0 G1,1, G1,2, G2, −G2 are convolved with the input 2D image in
order to produce the mentioned partial derivatives at uniformly distributed nodes
over the image domain. Thus, we have six feature maps in C1. Each feature map
of C1 is connected (via subsampling layer S2) with each feature map of C3 -
thus, we have thirty six feature maps in C3. The meaning of feature in C3

corresponds to all possible mixed partial derivatives up to the third degree.
The features extracted in C1 and C3 are used to classify objects in MNIST.

Our justification is based on the Theorem1 which says that the inverse Fm

(particularly, F 2) transform approximates any function with sufficient quality.
The number 2 of convolutional layers was set up empirically, and this turned out
to be sufficient for the recognition purpose from MNIST. Thus, in comparison
with the LENET-5 we use less number of convolutional layers. Other layers in
the FTNet are of the fully-connected types and serve the same purposes as in
the LENET-5.

Let us discuss the learning of convolution filters represented by matrices
G0, −G0 G1,1, G1,2, G2, −G2. These filters can be excluded from the learning
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procedure on the basis of the mentioned above Theorem regarding the universal
approximation. However, if they are learned (and this is confirmed by our tests),
then the quality of approximation is adapted to a narrower class of objects (they
constitute a certain dataset) and it is better than in the general case (valid for
a generic class of objects).

4 Experiments and Results

We have used the FTNet (based of the LENET-5 [12]) architecture as the base-
line for our experiments. The details of the FTNet architecture are described in
Table 1 and Sect. 4.1 where the following notation is used: convolution layers C1

and C3, subsampling layers S2 and S4 and fully connected layers FC5 and FC6.
We have examined the impact of the following hyper-parameters: convolution
kernel size D, presence and type of the subsampling S, layer weights trainability
T , and a form of the layer weights initialization I on the network performance.
We have used all possible combinations of the hyper-parameters of C1, S2, C3

and S4 in the grid search with the purpose to select the optimal setting with
respect to the quality of recognition (loss function).

Table 1. FT-Net architecture.

Hyper-paramater C1 S2 C3 S4 FC5 FC6

Kernel size 5 × 5 - 5 × 5 - - -

# feature maps 6 - 36 - - -

Stride 1 × 1 pooling 1 × 1 pooling - -

Pooling size - 2 × 2 - 2 × 2 -

# FC units - - - - 500 10

4.1 FTNet Architecture

In this section, we describe details of one particular FTNet architecture where
the hyper-parameters are: D = 5 × 5, S = max pooling. Below, we characterize
other details: layers, connection types, input, intermediate and output objects.

The first layer of the FTNet is convolutional C1, it has 6 feature maps with
the size of 28×28. To ensure the same size of the feature maps and image, padding
is used. Each C1 unit has 25 connections to input image. Unit connections are
spatially close, forming 5×5 neighborhood called unit’s receptive field ; the latter
overlaps with others unit’s receptive fields. The C1 has 25 · 6 + 6 (trainable)
parameters and 784 · 25 · 6 + 6 connections.

The C1 feature maps are connected to the max pooling layer S2. The S2 units
have 2×2 non-overlapping receptive fields from which they select the maximum.
S2 effectively decreases the feature maps size to 14 × 14. The S2 has 784 · 6
connections.
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The convolutional layer C3 is connected to S2 outputs. Each 14×14 output is
convolved with all C3 kernels (they are the same as in C1) creating 62 new feature
maps with the size of 14 × 14. The C3 has 25 · 62 + 62 (trainable) parameters
and 784/4 · 25 · 62 + 62 connections.

The C3 feature maps are connected to the max pooling layer S4 that further
reduces their size to 7 × 7.

The S4 feature maps are inputs to the fully connected layer FC5. The FC5

has 500 units, each connected to all outputs from S4, therefore the FC5 has
7 · 7 · 62 · 500 (trainable) parameters/connections.

The FC5 output vector is the input to the last fully connected layer FC6

that has 10 units. The FC6 has 500 ·10 (trainable) parameters/connections. The
FC6 output vector goes through the softmax layer. Softmax layer normalizes an
input vector to that whose sum of components is equal to 1.

The C1, C3 and FC5 uses Rectified Linear activation function (RELU) [2].

4.2 Tests

The proposed network was tested on grayscale images from the database MNIST.
The MNIST consists of 70000 28×28 images7. They were normalized to the size
of 20×20 so that the centering and the color ratio of the original 28×28 images
were preserved.

Two sets of kernels were selected for testing. They determine feature maps
in layers C1 and C3. The first set (referred to as “FT2”) is composed by the
F 2-transform kernels represented above by the six matrices G0, −G0 G1,1, G1,2,
G2, −G2. The second set (referred to as “Conventional”) is composed by the
widely used kernels with the same meaning as the F 2-transform ones: they spec-
ify partial derivatives (positive and negative) of an image function with respect
to each single variable up to the second degree. These kernels are: Gauss, Sobel,
Laplace and their derivatives such as -Gauss (multipled by -1), 90Sobel (rotated
by 90◦) and -Laplace.

Our first test was focused on the choice of an optimal combination with
respect to the chosen loss function – the cross entropy. With this purpose, we
have applied a grid search over all combinations of the hyper-parameters (D,S, T
and I).

The results were clustered into 3 groups based on the following values of the
loss function: {≈1.5,≈6,≈25}. We have observed that the clustering (and by this,
the quality of recognition) essentially depends on the presence of subsampling.
In more details:

Fig. 2. Numbers used for testing rotation invariance.

7 60000 training and 10000 testing.
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Table 2. Selected optimal networks, their parameters and performance.
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– in the group with the loss value ≈1.5, the subsampling (in the form of the
max pooling or stride) accompanies both convolutional layers;

– in the group with the loss value ≈6, the subsampling was applied in combi-
nation with exactly one convolutional layer;

– in the group with the loss value ≈25, the subsampling was not applied in
combination convolutional layers.

Our second test was focused on the invariance of recognition by the FTNet
with respect to rotation. On the basis of the first test, we selected several FTNet
configurations for the analysis of the rotation invariance:

1. the one with the (absolute) lowest loss value,
2. the one with the lowest loss value among those with fixed kernels (FT2 or

Conventional) in C1 and C3 layers,
3. the one with the lowest loss value among those with trainable kernels (FT2

or Conventional) in C1 and C3 layers.

It is worth noting that the configuration with the absolute lowest loss value (item
1) coincides with the one described in item 3 with the FT2 kernels.

For the purpose of testing, we have created 10 input images (manually)
(Fig. 2) and rotated them from 0◦ up to 355◦ with the step 5◦. All selected
FTNets were trained for 10 epochs. In the bottom part of Table 2, we show
those angle interval(s) where the network top prediction was not correct.

We have accomplished accuracy of 99.23% on MNIST which is competitive
result (see LeCun MNIST web-page). This accuracy was achieved without any
distortions on training set.

5 Conclusion

In this contribution, we have introduced a new convolutional neural network –
the FTNet. In its two convolutional layers, the FTNet uses fixed kernels extracted
from the discrete version of the F 2-transform. Moreover, it has a certain number
of trainable hyper-parameters. The MNIST database was used for the FTNet
training. The results were compared with the LENET-5 like network. The tests
have shown that the best FTNet configuration performs significantly better
recognition (according to the training time and the loss function value) than
the LENET-5 like network.

We have also analyzed the FTNet and LENET-5 rotation invariance. We
came to the conclusion that all tested networks and their best configurations
show similar results. In particular, the rotation invariance was demonstrated
only for relatively small angles within the interval [0◦, 30◦].

Last, but not least, we provided theoretical justification of a suitability of
the FTNet for the problem of recognition.
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11. Perfilieva, I., Danková, M., Bede, B.: Towards f-transform of a higher degree. In:

IFSA/EUSFLAT Conference (2009)
12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Proc. IEEE 86, 2278 (1998)
13. Fukushima, K.: Biol. Cybern. 36, 193 (1980)
14. Williams, D.R.G.H.R., Hinton, G.: Nature 323, 533 (1986)
15. Perfilieva, I., Kreinovich, V.: Fuzzy Sets Syst. 180, 55 (2011)



Class Switching Ensembles for Ordinal
Regression
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Abstract. The term ordinal regression refers to classification tasks in
which the categories have a natural ordering. The main premise of this
learning paradigm is that the ordering can be exploited to generate more
accurate predictors. The goal of this work is to design class switching
ensembles that take into account such ordering so that they are more
accurate in ordinal regression problems. In standard (nominal) class
switching ensembles, diversity among the members of the ensemble is
induced by injecting noise in the class labels of the training instances.
Assuming that the classes are interchangeable, the labels are modified at
random. In ordinal class switching, the ordering between classes is taken
into account by reducing the transition probabilities to classes that are
further apart. In this manner smaller label perturbations in the ordinal
scale are favoured. Two different specifications of these transition prob-
abilities are considered; namely, an arithmetic and a geometric decrease
with the absolute difference of the class ranks. These types of ordinal
class switching ensembles are compared with an ensemble method that
does not consider class-switching, a nominal class-switching ensemble,
an ordinal variant of boosting, and two state-of-the-art ordinal classifiers
based on support vector machines and Gaussian processes, respectively.
These methods are evaluated and compared in a total of 15 datasets,
using three different performance metrics. From the results of this eval-
uation one concludes that ordinal class-switching ensembles are more
accurate than standard class-switching ones and than the ordinal ensem-
ble method considered. Furthermore, their performance is comparable to
the state-of-the-art ordinal regression methods considered in the analy-
sis. Thus, class switching ensembles with specifically designed transition
probabilities, which take into account the relationships between classes,
are shown to provide very accurate predictions in ordinal regression
problems.
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1 Introduction

Ensemble methods have been successfully employed in numerous machine learn-
ing applications, including standard supervised learning problems [2,7,8], clus-
tering [25] and image segmentation [13], among others. The goal in ensemble
learning is to build a diverse collection of learners whose predictions are com-
plementary. If the errors of the individual predictors are independent, they can
be averaged in a combination step. This results in a global ensemble prediction
that is more accurate than the one of individual classifiers. There are a number
of strategies that can be used to build ensembles of diverse base learners. One
of the most effective approaches to generate variability is to take advantage of
the brittle character of the base learners and apply randomization techniques
either in the dataset used for induction (e.g. training base learners with different
bootstrap samples, as in bagging), or in the learning algorithm itself (e.g. build
building random trees by considering splits only within a random subset of fea-
tures, as in random forest). Another possibility is the injection of noise in the
class labels. This technique was first introduced by Breiman under the name of
Output smearing for regression, or Output flipping for classification problems [3].
In regression problems, the values of the dependent variable are contaminated
with additive Gaussian noise. For classification, class labels are flipped at ran-
dom with the restriction that the proportion of instances of the different classes
is fixed. A direct extension of this technique, in which the class labels are simply
modified at random, without ensuring that the class proportions are maintained,
was analysed and seen to be more effective in ensembles of decision trees [19]
and neural networks [18].

Despite their usefulness and demonstrated competitive performance, there
are some areas of machine learning in which ensembles have been barely used.
An example of this is the problem of ordinal regression, where these learning tech-
niques have been applied only recently [9,15,16,21], with promising results. The
problem of ordinal regression, also known in the literature as ordinal classifica-
tion, is a supervised learning task in which the labels to be predicted are discrete,
yet present an intrinsic ordering, which is relevant to the prediction problem at
hand. For example, those surveys where students evaluate their teachers are usu-
ally based on an ordinal scale {poor, average, good, very good, excellent}. How-
ever, misclassifying excellent teachers as poor should be far more penalised than
misclassifying them as very good. While it is possible to simply use standard clas-
sification techniques (which ignore the ordering of the labels) or regression tech-
niques (which disregard the discrete nature of the labels and assume a specific
distance between them), it is generally advantageous to consider specific meth-
ods that take into account the ordinal nature of the problem [12], not only for
classification, but also in all the stages of the learning process, such as data pre-
processing or performance evaluation. One of the most widely used approaches
to ordinal regression are decomposition methods [12], which decompose the
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original ordinal variable into simpler classification problems [10,21], usually
binary tasks, and the predictions of the corresponding classifiers are fused to
produce an unique ordinal output. This approach can be seen as an ensemble
where the diversity is introduced by the differences found in the classification
tasks, and it is very natural in the case of ordinal regression because the classes
can be joined according to different strategies (e.g. by a cascade binary utility
model [14] or simply mixing neighbouring classes [10]). For example, for a given
rank q, a direct question could be: “Is the label of pattern x greater than q?”.
Decomposition methods are popular within the ordinal classification literature,
given that any binary classifier can be generally used as a base learner, with-
out the need of reformulating the model to deal with the order of the classes.
The main problem with this type of techniques is that the number of learn-
ers is relatively low (usually the number of classes minus one) and that fusing
the different outputs is not straightforward [4]. Another differentiated group of
ensemble-based approaches for ordinal regression are based on the concept of
boosting. Some of these strategies rely on the confidence of a binary classifier
[11,15,22], which can be used as an ordering preference, while others extend the
well-known AdaBoost algorithm [16,23]. Finally, there are other strategies that
make use of a base ordinal learner for the ensemble construction and introduce
diversity as a term to be optimised during classifier construction [9] or that
impose a global constraint to ensure that ordinal requirements are met [24].

In this article, we propose to design class-switching ensembles to address ordi-
nal regression problems. To do so, different techniques are proposed to maintain
and exploit the order information, based on a switching probability function
that decreases with the rank difference. Our experiments compare seven differ-
ent approaches in 15 datasets, showing that the ordinal class-switching approach
outperforms the standard one and it is competitive with the state-of-the-art
methods.

The rest of this paper is structured as follows: Sect. 2 discusses the design
principles behind standard class-switching ensembles and describes how they are
built. In Sect. 3 the class switching method for ensemble generation is adapted to
address ordinal regression problems. The effectiveness of the ensembles generated
with the variants of class switching proposed is evaluated in an extensive set
of experiments on benchmark ordinal regression problems, whose results are
reported and analysed in Sect. 4. Finally, Sect. 5 summarises the contributions
of this work and outlines some concluding remarks.

2 Class Switching Ensembles

In nominal classification problems, one generally assumes that the classes are
independent of each other and their labels interchangeable. When designing
machine learning algorithms, these properties are incorporated in the predic-
tion mechanism. For instance, in decision trees the class label assignment is
performed at the leaf nodes. Those instances that, as a result of the hierarchy
of Boolean queries at the inner nodes of the decision tree, are assigned to a leaf
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node receive the label of the majority class of the training instances assigned to
that node. Similarly, in ensembles, majority voting is used. In the voting process,
each predictor is allowed to vote for a single class. In neural networks, 1-of-K
encoding is typically used for prediction problems with K classes. In this type
of encoding, the kth class is represented as a vector of K bits, all of which are 0,
except for the kth bit, which is equal to 1. The classes can be thought of as lying
on the vertices of a regular simplex, and are therefore at equal distance from each
other. The noise injection process in nominal class switching also assumes that
classes are interchangeable: to build an individual ensemble classifier, a subset of
training instances are selected at random. Then, the class label of these instances
is modified also in a random fashion, assigning equal probabilities to switching
the label to one of the other K − 1 classes. Finally, a base learner is generated
by applying the same base learning algorithm to the perturbed dataset. Once
the ensemble has been completed, the predictions of the individual classifiers are
combined by majority voting. Since the realizations are independent, the noise
in the class labels is averaged out by the combination process. Furthermore, the
variability induced can have a positive effect in the representation capacity of
the ensemble.

In particular, when unpruned CART decision trees are used as base learners,
class-switching ensembles achieve high prediction accuracy, provided that high
switching rates (modifying the class label of a substantial fraction ≈0.6(K −
1)/K of the training instances) and sufficiently large ensembles (of size ≥ 1000)
are used. Similar improvements can be obtained using neural networks [18].
The goal of this work is to adapt this ensemble construction method to ordinal
regression problems, in which class labels are ordered. If this ordering is relevant
for prediction, designing a noise injection scheme that takes into account these
relations among the class labels should lead to further accuracy improvements
for this type of problems.

3 Ordinal Class Switching Ensembles

Consider a labelled dataset D = {(xn, yn)}N
n=1. Assume that the dependent

variable takes values in a finite set, yn ∈ {c1, c2, . . . , cK}, which has an intrinsic
ordering; that is, c1 < c2 < . . . < cK , where < is an order relation provided by
the nature of the classification problem.

To take advantage of the ordering relation among the class labels, we make
the assumption that instances whose class labels are close to each other are
more similar than instances whose class labels are further apart. Therefore,
when selecting the modified class labels, one should assign higher probability
to nearby classes. Specifically, we will choose a set of transition probabilities
{pi→j ; i, j = 1, . . . ,K} with the following properties: If |i−j| < |i−k| ⇒ pi→j <
pi→k,∀i, j, k ∈ {1, . . . , K}. Hence, the transition probability matrix should be
V-shaped with respect to the class labels ck, in the same way that cost matrices
need to be V-shaped in the context of ordinal regression [17].

In this paper, we consider two different possibilities for constructing a
V-shaped transition matrix:
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– The probability of transition arithmetically decreases when the distance to
the original class increases (arithmetic ordinal class switching, AOCS):

p∗
i→j =

⎧
⎨

⎩

p∗, if i = j,
1 − p∗

|i − j| , if i �= j,
(1)

where 0 ≤ p∗ ≤ 1 is the parameter that sets the probability of not transition-
ing to a different class.

– The probability of transition geometrically decreases when the distance to
the original class increases (geometric ordinal class switching, GOCS):

p∗
i→j =

⎧
⎨

⎩

p∗, if i = j.
1 − p∗

2|i−j| , if i �= j.
(2)

Given that the transition probabilities must add up to one, these matrices need
to be normalised by rows:

pi→j =
p∗

i→j
∑K

k=1 p∗
i→k

. (3)

For example, for an ordinal regression problem with K = 5 classes and p∗ = 0.6,
the transition matrices are:

PAOCS =

⎛

⎜
⎜
⎜
⎜
⎝

0.54 0.18 0.12 0.09 0.07
0.16 0.49 0.16 0.11 0.08
0.11 0.16 0.47 0.16 0.11
0.08 0.11 0.16 0.49 0.16
0.07 0.09 0.12 0.18 0.54

⎞

⎟
⎟
⎟
⎟
⎠

,PGOCS =

⎛

⎜
⎜
⎜
⎜
⎝

0.62 0.21 0.10 0.05 0.03
0.17 0.52 0.17 0.09 0.04
0.08 0.17 0.50 0.17 0.08
0.04 0.09 0.17 0.52 0.17
0.03 0.05 0.10 0.21 0.62

⎞

⎟
⎟
⎟
⎟
⎠

,

Note that, because of the normalization of class probabilities, the probability
that a label remains unchanged (elements in the main diagonal of the matrix)
decreases for central labels in the ordinal scale. This is sensible in ordinal regres-
sion, given that the changes in the extreme labels should be less likely.

4 Experiments

This section describes the experiments used to evaluate the performance of the
ensembles generated with the variants of ordinal class switching proposed and
an analysis of the results of these experiments.

4.1 Methods Compared

The experiments are designed to compare the accuracy of ensembles generated
with the two ordinal variants of class switching introduced in this paper (AOCS
and GOCS, see Sect. 3 with standard (nominal) class switching (NCS, see Sect. 2)
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and an ensemble that does not make use of a label perturbation strategy for the
different members of the ensemble (Orig). All the ensembles generated use clas-
sification trees as base learners, as in previous studies on class switching [19]. We
used the implementation included in the Python scikit-learn machine learning
framework [20], in which an optimised version of the CART algorithm is con-
sidered for tree induction. This implementation considers heuristic algorithms,
where locally optimal decisions are made at each node. This makes the induction
process non deterministic, therefore different trees can be obtained depending
on the seed used for random number generation. This introduces diversity for
the Orig algorithm, where no perturbation of the dataset is performed.

Besides evaluating whether ensembles generated with ordinal class switching
methods are more accurate than their nominal counterparts, we compare their
performance also with other state-of-the-art ordinal classifiers analysed in [12];
namely, we consider the reduction from ordinal regression to binary support vec-
tor machine classifiers (REDSVM) [17], the reformulation of Gaussian processes
for ordinal regression (GPOR) [5] including automatic relevance determination,
and an ensemble method, the ORBoost method with all margins [15].

4.2 Measures of Performance

Different metrics can be used to evaluate ordinal regression classifiers. The most
common ones are accuracy (Acc) and Mean Absolute Error (MAE). Acc is the
rate of correctly classified patterns:

Acc =
1
N

N∑

i=1

I(y∗
i = yi),

where yi is the correct label of the ith instance, y∗
i is the predicted one, and

I(·) is a Boolean test. This measure characterises the global performance in the
classification task, without taking into account the ordering of the classes.

The Mean Absolute Error is an average deviation in absolute value of the
predicted rank from the true one [1]:

MAE =
1
N

N∑

i=1

|O(yi) − O(y∗
i )|,

where O, O(cj) = j, 1 ≤ j ≤ K. MAE values range from 0 to K − 1 (maxi-
mum deviation in number of ranks between two labels). Given that some of the
datasets considered are imbalanced, we also consider the average of the MAEs
across classes (AMAE) [1]:

AMAE =
1
K

K∑

j=1

MAEj =
1
K

K∑

j=1

1
nj

nj∑

i=1

|O(yi) − O(y∗
i )|,

where nj is the number of patterns in class j. The value of AMAE range from
0 to K − 1.
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4.3 Datasets and Experimental Setup

A battery of 15 ordinal regression datasets is used for evaluation. Their char-
acteristics are summarised in Table 1. The selected datasets are very different
in terms of numbers of patterns, attributes, classes and class distribution to
ensure that the conclusions of the study cover a sufficiently wide rage of ordi-
nal regression problems. The experimental protocol is similar to the one used in
[12]. The results reported are averages over 30 random partitions into training
(3/4 of the data) and test sets (1/4 of the data), considering the same partitions
than in [12]1. Consequently, the results for GPOR, ORBoost and REDSVM were
directly taken from [12].

Table 1. Characteristics of the benchmark datasets used in the experiments.

Dataset #Pat. #Attr. #Classes Class distribution

ERA 1000 4 9 (92, 142, 181, 172, 158, 118, 88, 31, 18)

ESL 488 4 9 (2, 12, 38, 100, 116, 135, 62, 19, 4)

LEV 1000 4 5 (93, 280, 403, 197, 27)

SWD 1000 10 4 (32, 352, 399, 217)

Automobile 205 71 6 (3, 22, 67, 54, 32, 27)

Balance-scale 625 4 3 (288, 49, 288)

Bondrate 57 37 5 (6, 33, 12, 5, 1)

Eucalyptus 736 91 5 (180, 107, 130, 214, 105)

Newthyroid 215 5 3 (30, 150, 35)

Pasture 36 25 3 (12, 12, 12)

Squash-stored 52 51 3 (23, 21, 8)

Squash-unstored 52 52 3 (24, 24, 4)

Tae 151 54 3 (49, 50, 52)

Toy 300 2 5 (35, 87, 79, 68, 31)

Winequality-red 1599 11 6 (10, 53, 681, 638, 199, 18)

In all cases (Orig, NCS, AOCS and GOCS) ensembles of T = 1001 predictors
are used. The outputs of the ensemble classifiers are combined using a soft vot-
ing rule: The global ensemble prediction for a given instance, characterised by
the vector of attributes x, is cj = arg maxci

∑T
t=1 pti(x), where pti(x) is the

probability assigned by the tth ensemble classifier to the class label ci. These
probabilities are approximated as the fraction of samples of the corresponding
class in the leaf node to which the instance is assigned. In class switching, after
preliminary experiments, p∗ is set to 0.6.

The hyperparameters for REDSVM are selected by using a nested five fold
cross-validation over the training set. The criterion used to determine the optimal
1 Available at http://www.uco.es/grupos/ayrna/orreview.

http://www.uco.es/grupos/ayrna/orreview
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hyperparameter values is MAE. A Gaussian kernel function is used, and both
the value of the cost parameter C and the width of the kernel are determined
considering the range {10−3, 10−2, . . . , 103}. In GPOR, the hyperparameters are
determined by part of the optimisation process. Following the recommendation
given in [15], the ensemble size in ORBoost is T = 2000. In this method, nor-
malised sigmoid functions are used as base learners. The smoothness parameter,
γ is set to 4.

4.4 Results

In Table 2 the values of Acc, MAE and AMAE obtained by the different meth-
ods in the test set are presented. The measures are averages and standard devi-
ations (in a smaller font) over the 30 random training/test partitions.

In Table 3 the average ranks (in terms of the values of Acc, MAE and AMAE
in the test partitions for the 15 datasets) are presented. Specifically, rank 1 cor-
responds to the best performance and rank 7 to the worst one. From the results
presented in this table, it is apparent that the Orig ensembles have poor perfor-
mance results. This is probably related to the low diversity among the ensemble
classifiers: since the same unperturbed training data are used to build the indi-
vidual classifiers, the only source of variability is the intrinsic randomness of
the base learning algorithm. Both ordinal class switching ensembles (AOCS and
GOCS) yield better performance than standard (nominal) class switching (NCS).
The geometric decrease (GOCS) leads to better overall results than the arith-
metic one (AOCS) when the performance is measured in terms of measures such
as Acc and MAE. However AOCS outperforms GOCS when the metric is class-
specific (e.g. using AMAE). In general, the accuracy is competitive with respect
to the state-of-the-art methods considered (GPOR and REDSVM). The ordinal
class-switching ensembles are clearly more accurate than ORBoost ensembles.
The statistical significance of the differences of performance between the dif-
ferent methods is determined using the guidelines given in [6]. Specifically, a
non-parametric Friedman’s test (at a significance level of α = 0.10) has been
applied for Acc, MAE and AMAE rankings. The confidence interval is, in this
case, C0 = (0, F(α=0.10) = 1.85). The values of the statistic are FAcc: 2.53 /∈ C0,
FMAE : 3.34 /∈ C0 and FAMAE : 2.17 /∈ C0. Consequently, the test rejects the null-
hypothesis that, as measured by the average rank, the algorithms have similar
performance.

Considering AOCS and GOCS as the control methods, we apply the post-hoc
Holm’s test [6]. The performance of the i-th and j-th algorithms are compared
using the statistic:

z =
Ri − Rj
√

J(J+1)
6N

,

where J is the number of algorithms (J = 7, in our case), N is the number of
datasets (N = 15, in our case) and Ri is the average rank of the i-th method
(see Table 3). Asymptotically, this statistic is normally distributed, which allows
us to quantify the significance of the differences observed at the corresponding
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Table 2. Average and standard deviation of Acc, MAE and AMAE values obtained
for the different methods compared

Dataset Orig NCS AOCS GOCS GPOR ORBoost REDSVM

Acc

ERA 0.2570.024 0.2550.025 0.2590.029 0.2580.028 0.2880.027 0.2400.021 0.2490.019

ESL 0.6420.033 0.6510.035 0.6520.035 0.6530.035 0.7130.031 0.6770.022 0.7130.030

LEV 0.6140.021 0.6130.024 0.6210.023 0.6210.022 0.6120.030 0.6090.029 0.6270.024

SWD 0.5400.029 0.5510.026 0.5620.025 0.5620.024 0.5780.031 0.5610.032 0.5710.027

Automobile 0.7880.061 0.8200.047 0.8160.049 0.8170.050 0.6110.073 0.7060.055 0.6830.070

Balance-scale 0.7720.019 0.8020.023 0.7750.024 0.7750.024 0.9660.012 0.9680.016 0.9990.004

Bondrate 0.4630.110 0.5240.074 0.5530.070 0.5590.070 0.5780.032 0.5420.091 0.5640.055

Eucalyptus 0.6090.030 0.6740.032 0.6810.032 0.6790.032 0.6860.034 0.6200.029 0.6380.035

Newthyroid 0.9400.038 0.9690.017 0.9690.018 0.9690.018 0.9660.024 0.9580.029 0.9680.023

Pasture 0.7620.105 0.7810.147 0.7530.138 0.7530.138 0.5220.178 0.7000.121 0.6740.116

Squash-stored 0.6240.119 0.6990.110 0.7040.101 0.7040.101 0.4510.100 0.6360.124 0.6210.132

Squash-unstored 0.7640.112 0.8350.085 0.8390.085 0.8390.085 0.6440.162 0.7030.098 0.7310.119

Tae 0.5820.057 0.5700.071 0.5800.062 0.5800.062 0.3280.041 0.5970.057 0.6010.068

Toy 0.8850.033 0.9360.025 0.9340.026 0.9330.026 0.9540.022 0.9480.025 0.9770.012

Winequality-red 0.6150.020 0.6850.017 0.6850.016 0.6860.016 0.6060.015 0.6660.021 0.6270.020

MAE

ERA 1.3830.065 1.3720.065 1.3350.060 1.3340.061 1.2410.051 1.2500.041 1.2190.044

ESL 0.3850.040 0.3700.042 0.3700.040 0.3670.040 0.3010.035 0.3400.025 0.3060.037

LEV 0.4250.027 0.4290.031 0.4170.027 0.4170.026 0.4220.031 0.4340.030 0.4100.023

SWD 0.4990.034 0.4840.031 0.4670.028 0.4660.027 0.4400.032 0.4630.036 0.4450.031

Automobile 0.3270.108 0.2630.074 0.2660.074 0.2650.076 0.5940.131 0.3480.079 0.4030.092

Balance-scale 0.2640.028 0.2300.031 0.2500.031 0.2500.031 0.0340.012 0.0320.017 0.0010.004

Bondrate 0.7390.163 0.6300.104 0.5920.105 0.5870.103 0.6240.062 0.5310.110 0.6130.081

Eucalyptus 0.4470.035 0.3500.036 0.3430.036 0.3440.037 0.3310.038 0.4150.036 0.3950.036

Newthyroid 0.0600.038 0.0310.017 0.0310.018 0.0310.018 0.0340.024 0.0420.029 0.0290.022

Pasture 0.2380.105 0.2190.147 0.2470.138 0.2470.138 0.4890.190 0.3000.121 0.3300.111

Squash-stored 0.4240.156 0.3350.132 0.3270.122 0.3270.122 0.6260.148 0.3640.124 0.3460.145

Squash-unstored 0.2360.112 0.1680.086 0.1610.085 0.1610.085 0.3560.162 0.3050.106 0.2620.122

Tae 0.5210.092 0.5530.104 0.5230.095 0.5230.095 0.8610.155 0.5040.088 0.4610.060

Toy 0.1170.035 0.0640.025 0.0660.026 0.0670.026 0.0460.022 0.0520.025 0.0240.013

Winequality-red 0.4570.026 0.3510.019 0.3490.019 0.3480.019 0.4250.017 0.3650.021 0.4170.020

AMAE

ERA 1.4280.122 1.4050.114 1.3700.099 1.3720.102 1.3720.108 1.4270.102 1.4130.086

ESL 0.5860.086 0.5720.081 0.5690.084 0.5690.083 0.4770.094 0.5540.096 0.4590.116

LEV 0.6030.061 0.6030.054 0.6010.051 0.6020.051 0.6540.050 0.6150.044 0.6200.046

SWD 0.5790.052 0.5810.054 0.5790.052 0.5800.051 0.5890.040 0.5760.039 0.6080.034

Automobile 0.3160.131 0.3200.127 0.3140.120 0.3130.120 0.7920.200 0.4000.120 0.4640.135

Balance-scale 0.4630.022 0.4400.022 0.4550.023 0.4550.023 0.0510.023 0.0420.029 0.0010.003

Bondrate 1.1670.320 1.2040.182 1.1610.168 1.1610.163 1.3600.122 0.8390.260 1.1440.275

Eucalyptus 0.4700.039 0.3780.040 0.3700.038 0.3720.039 0.3620.040 0.4340.040 0.4290.039

Newthyroid 0.0850.056 0.0560.035 0.0610.039 0.0610.039 0.0620.049 0.0670.049 0.0480.040

Pasture 0.2380.105 0.2190.147 0.2470.138 0.2470.138 0.4890.190 0.3000.121 0.3300.111

Squash-stored 0.4520.224 0.3920.197 0.3920.192 0.3920.192 0.7970.234 0.3680.129 0.3860.162

Squash-unstored 0.2070.135 0.1700.137 0.1720.143 0.1720.143 0.4430.226 0.3410.174 0.3830.184

Tae 0.5210.092 0.5530.104 0.5220.095 0.5220.095 0.8630.164 0.5030.087 0.4590.059

Toy 0.1180.035 0.0630.023 0.0680.026 0.0710.028 0.0440.025 0.0540.027 0.0240.016

Winequality-red 0.9710.118 0.9580.076 0.9520.076 0.9560.078 1.0650.065 0.9740.048 1.0800.083
For each dataset the best result is marked in bold face; the second best in italics.
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Table 3. Average test rankings over the 15 datasets for Acc, MAE and AMAE.

Method Orig NCS AOCS GOCS GPOR ORBoost REDSVM

Acc 5.40 4.00 3.13 3.07 4.20 4.67 3.53

MAE 5.80 4.20 3.40 3.20 4.33 4.07 3.00

AMAE 5.00 3.93 3.00 3.40 5.13 3.73 3.80

The best result is in bold face and the second one in italics.

Table 4. Results of the Holm procedure using AOCS and GOCS as control methods:
corrected α values, compared method and p-values, ordered by significance.

i α/(7 − i) Control method

AOCS GOCS

Method p-value Method p-value

Acc

1 0.01667 Orig 0.00406+ Orig 0.00310+

2 0.02000 ORBoost 0.05191 ORBoost 0.04252

3 0.02500 GPOR 0.17630 GPOR 0.15079

4 0.03333 NCS 0.27190 NCS 0.23673

5 0.05000 REDSVM 0.61209 REDSVM 0.55412

6 0.10000 GOCS 0.93265 AOCS 0.93265

MAE

1 0.01667 Orig 0.00235+ Orig 0.00098+

2 0.02000 GPOR 0.23673 GPOR 0.15079

3 0.02500 NCS 0.31049 NCS 0.20489

4 0.03333 ORBoost 0.39802 ORBoost 0.27190

5 0.05000 REDSVM 0.61209 REDSVM 0.79985

6 0.10000 GOCS 0.79985 AOCS 0.79985

AMAE

1 0.01667 GPOR 0.00684+ GPOR 0.02799+

2 0.02000 Orig 0.01123+ Orig 0.04252

3 0.02500 NCS 0.23673 NCS 0.49896

4 0.03333 REDSVM 0.31049 AOCS 0.61209

5 0.05000 ORBoost 0.35254 REDSVM 0.61209

6 0.10000 GOCS 0.61209 ORBoost 0.67261

+: statistical difference with α = 0.10.

significance level (α). The value of α is adjusted to take into account that multiple
comparisons are made. The adjustment is made by a sequential procedure: the
ordered p-values are p1, p2, . . . , pJ−1, so that p1 ≤ p2 ≤ . . . ≤ pJ−1, and each pi

is compared with α/(J − i). The results of these tests are presented in Table 4.
The tests conclude that the differences between AOCS and Orig are statistically
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significant for Acc and MAE, as well as those between GOCS and Orig for the
same metrics. In terms of AMAE, AOCS is significantly better than GPOR and
Orig, while GOCS is significantly better than GPOR.

5 Conclusions

In this work, we propose to take into account the ordering between classes to
improve the accuracy of class switching ensembles in ordinal regression problems.
To this end, the class switching protocol is modified so that, in the noise injection
process, a class label that is closer to the original one has a higher probability
of being selected. Two variants of the class switching procedure are considered.
In the first one (AOCS) the probability of changing the original label to another
one decreases arithmetically with the distance between the target label and the
original one. In the second one, the decrease with this distance is geometric
(GOCS). For global measures of performance, such as accuracy (Acc) or the
Mean Average Error (MAE), the geometric scheme provides the best results.
However, when measures that incorporate more information on the relationship
among the classes, such as the average of the MAEs across classes (AMAE),
are used, the arithmetic scheme performs better than the geometric scheme.
Both types of ordinal class switching ensembles are more accurate than standard
(nominal) class switching, which assumes that the classes are interchangeable
(i.e., it discards the information on the ordering of the classes). Furthermore,
their generalization capacity is comparable to, and in some cases better, the
state-of-the-art ordinal regression methods.
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19. Mart́ınez-Muñoz, G., Suárez, A.: Switching class labels to generate classification
ensembles. Pattern Recogn. 38(10), 1483–1494 (2005)

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)
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Abstract. The Continuous Hopfield Neural Network (CHN) is a neural
network which can be used to solve some optimization problems. The
weights of the network are selected based upon a set of parameters which
are deduced by mapping the optimization problem to its associated CHN.
When the optimization problem is the Traveling Salesman Problem, for
instance, this mapping process leaves one free parameter; as this para-
meter decreases, better solutions are obtained. For the general case, a
Generalized Quadratic Knapsack Problem (GQKP), there are some free
parameters which can be related to the saddle point of the CHN. Whereas
in simple instances of the GQKP, this result guarantees that the global
optimum is always obtained, in more complex instances, this is far more
complicated. However, it is shown how in the surroundings of the saddle
point the attractor basins for the best solutions grow as the free para-
meter decreases, making saddle point neighbors excellent starting point
candidates for the CHN. Some technical results and some computational
experiences validate this behavior.

Keywords: Artificial neural networks · Optimization · Machine
Learning · Hopfield network

1 Introduction

Artificial neural networks are frequently used today in Machine Learning to solve
all kinds of classification, regression and clustering problems. Moreover, neural
networks can also be used to solve optimization problems in areas such as Oper-
ations Research, Control Theory, Image Processing, etc. Among such networks,
the Hopfield network, the Kohonen network and the Boltzmann machines have
been some of the most popular choices of network architectures.

The Hopfield network, also frequently referred to as the Hopfield model, is
considered to be one of the milestones [9] for the renaissance of neural networks at
the beginning of the 1980s and one of the most influential recurrent networks [1].
Hopfield proposed two models based on the concept of associative memory: the
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 420–431, 2017.
DOI: 10.1007/978-3-319-59153-7 37
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discrete model [4], and a generalization that can take all real values in the interval
[0, 1], the continuous model [5].

The Continuous Hopfield Network (CHN) is a recurrent neural network with
an associated differential equation, whose states evolve from an initial point to
an equilibrium point by minimizing a Lyapunov function. Since the Lyapunov
function is associated with the objective function of the optimization problem
(i.e. the mapping process), the equilibrium or stable point matches a local opti-
mum of the optimization problem.

The CHN consists of a fully interconnected neural network with n continuous
valued units (neurons) and a smooth sigmoid activation function. The dynamics
of the CHN is described by the differential equation (see Fig. 1):

du
dt

= −u
τ

+ Tv + ib

where, ∀i, j ∈ {1, . . . , n}:

ui is the current state of neuron i
vi is the output of neuron i
Ti,j is the strength of the connection from neuron j to neuron i
ibi is the offset bias of neuron i

being the output function g(ui) a hyperbolic tangent:

vi = g(ui) =
1
2

(
1 + tanh

(
ui

u0

))
, u0 > 0

T

ib1

+ +
−

g−1

1
s

1/τ

g
du
dt

v(0)

u v

Fig. 1. Dynamical system associated to the Continuous Hopfield Network

The existence of an equilibrium point (ue such that u(t) = ue ∀t ≥ te for
some te ≥ 0) is guaranteed [3] if a Lyapunov or energy function exists. As shown
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by Hopfield [5], if T is symmetric, then the following Lyapunov function exists:

E(v) = −1
2
vtTv − (ib)tv +

1
τ

n∑
i=1

∫ vi

0

g−1(x)dx

The idea is that the network’s Lyapunov function, when τ −→ ∞, is associated
with the cost function to be minimized in the combinatorial problem. Therefore,
the CHN will solve those combinatorial problems which can be expressed as the
constrained minimization of:

E(v) = −1
2
vtTv − (ib)tv (1)

which has its extremes at the corners of the n-dimensional hypercube [0, 1]n.
The optimization problem to be mapped in this paper is an extension of the

well-known Knapsack Problem.
The Quadratic Assignment Problem (QAP) was introduced by Koopmans

and Beckmann in 1957 [7] to solve assignment of industrial plants to locations.
In a generalized form, a QAP problem can be stated as a Generalized Quadratic
Knapsack Problem (GQKP) in the following way:

min
{

1
2

n∑
i,j=1

vipi,jvj +
n∑

i=1

viqi

}

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=1

rk,ivi ≤ bk k = 1, . . . , m1

n∑
i=1

rk,ivi = bk k = m1 + 1, . . . ,m

vi ∈ {0, 1} i = 1, . . . , n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

In order for the GQKP to be properly mapped into a CHN, the inequalities
must be translated into equalities. This is done by introducing the slack vari-
ables vn+1, . . . , vn+m1 , where, ∀k ∈ 1, . . . , m1, each vn+k gets weighted by the
coefficient rk,n+k = bk − ∑

j/rk,j<0 rk,j :

min
{

1
2

n∑
i,j=1

vipi,jvj +
n∑

i=1

viqi

}

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ek(v) ≡
n∑

i=1

rk,ivi + rk,n+kvn+k = bk k = 1, . . . ,m1

ek(v) ≡
n∑

i=1

rk,ivi = bk k = m1 + 1, . . . , m

vi ∈ {0, 1} i = 1, . . . , n
vn+k ∈ [

0, 1
]

k = 1, . . . ,m1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
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The GQKP may be expressed in matrix form in the following way:

min
v

{
1
2
vtPv + qtv

}

subject to

⎧⎨
⎩

Rv = b
vi ∈ {0, 1} i = 1, . . . , n
vn+k ∈ [

0, 1
]

k = 1, . . . ,m1

⎫⎬
⎭

This paper is organized as follows: following the Hopfield neural approach,
an illustrative example of a GQKP is introduced in Sect. 2. The mapping of the
problem and its parameter setting are respectively obtained in Subsects. 2.1 and
2.2. Then, in Subsect. 2.3, the saddle point of the objective function of this GQKP
example is computed. This saddle point can be moved outside of the Hamming
hypercube of solutions of the GQKP by varying the free parameter on which
it depends; at this point, the entire hypercube is inside the attractor basin of
the optimum solution and, consequently, the optimum solution for this example
is guaranteed. Some computational experiences (Subsect. 2.4) are provided to
validate the previous analytic results. Finally, conclusions and future research
are drawn in Sect. 3. Some technical results required in Subsect. 2.2 are detailed
in AppendixA.

2 Mapping the GQKP into the CHN. An Illustrative
Example

The following simple optimization problem is proposed:

min
{

1
2 (4 v1

2 − 2 v2
2)

}
subject to v1 + v2 = 1

which may be expressed as a GQKP problem with the following values:

P =
[

4 0
0 −2

]
, q =

[
0
0

]
, R =

[
1 1

]
, b =

[
1
]

(2)

Note that no slack variables are required in this example.

2.1 Mapping the Problem

Following the procedure by Talaván and Yáñez [12], the mapping between the
CHN and the GQKP is carried out.

The feasible solutions set is described by:

HF ≡ {v ∈ HC : Rv = b} =

⎧⎨
⎩

ek(v) = bk k = 1, . . . , m1,m1 + 1, . . . ,m
vi ∈ {0, 1} i = 1, . . . , n
vn+k ∈ [

0, 1
]

k = 1, . . . , m1

⎫⎬
⎭
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HC ≡ {v ∈ H : vi ∈ {0, 1} i = 1, . . . , n}
and the Hamming hypercube H ≡ {

v ∈ [0, 1](n+m1)
}
.

Therefore, for the example introduced this section:

HF ≡
{

e1(v) = v1 + v2 = 1
v1, v2 ∈ {0, 1}

}

which has two solutions
{[

1
0

]
,

[
0
1

]}
, being

[
1
0

]
the optimal solution.

The optimization problem minv∈HE(v) is considered to be the mapping of
the GQKP if

E(v) = EO(v) + ER(v), ∀v ∈ H

satisfies

– EO(v) = α( 12v
tPv + qtv), being directly proportional to the objective

function
– ER(v) is a quadratic function that penalizes the violated constraints of the

problem and guarantees the feasibility of the CHN solution.

Using the energy term proposed by Talaván and Yáñez [12]:

ER(v) =
1
2

(Rv)t
Φ (Rv) + vtdiag (γ) (1 − v) + βtRv

and the values from Eq. 2, the energy function of the mapped GQKP is:

E (v) = EO(v) + ER(v)
= α

(
1
2v

tPv + qtv
)

+ 1
2 (Rv)t

Φ (Rv) + vtdiag (γ) (1 − v) + βtRv
= α

(
2 v1

2 − v2
2
)

+ 1
2φ1,1 (v1 + v2)

2 − γ1v1 (v1 − 1) − γ2v2 (v2 − 1)
+ β1 (v1 + v2)

(3)
Comparing the energy function obtained in Eq. 3 with the energy function of

the CHN, E(v) = 1
2v

tTv − (ib)tv (Eq. 1), the following values for T and ib are
obtained:

T = − (αP + RtΦR − 2diag (γ)) = −α

[
4 0
0 −2

]
−

[
1
1

]
φ1,1

[
1 1

]
+ 2

[
γ1 0
0 γ2

]

=
[−4α − φ1,1 + 2γ1 −φ1,1

−φ1,1 2α − φ1,1 + 2γ2

]

ib = − (αq + Rtβ + γ) = −α

[
0
0

]
+

[
1
1

]
β1 −

[
γ1
γ2

]
=

[−β1 − γ1
−β1 − γ2

]
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2.2 Parameter Setting

Once the energy function has been determined, the parameters (Φ,γ,β) must
be chosen so that any local minimum of the energy function corresponds with a
feasible solution of the optimization problem. A stability analysis for the mapped
GQKP example is carried out, looking for a parameter setting that guarantees
that the CHN is stable in the feasible solutions and unstable in the non-feasible
ones. From such analysis (see details in AppendixA), the following set of inequal-
ities is deduced:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−4α − φ1,1 + 2γ1 ≥ 0
2α − φ1,1 + 2γ2 ≥ 0

φ1,1 ≥ 0
4α + 2φ1,1 − γ1 + β1 ≥ ε

γ2 + β1 ≤ −ε

and by solving the system of linear inequalities, the following parameter setting,
which leaves α and φ1,1 as free parameters, is obtained:

γ1 = 2α +
φ1,1

2
, γ2 =

φ1,1

2
− α, β1 = −α

2
− φ1,1, ε =

3α

2
+

φ1,1

2

2.3 The Saddle Point

Using the parameter setting obtained in Sect. 2 and the energy function from
Eq. 3, the energy function for the GQKP example is:

EO(v) = α
(
2v2

1 −v2
2

)
, ER(v) = α

(−2v2
1 + v2

2 +
3

2
(v1−v2)

)−φ1,1

(1
2
v1 +

1

2
v2−v1v2

)

E (v) = EO(v) + ER(v) =
3
2
α (v1 − v2) − 1

2
φ1,1 (v1 + v2 − 2v1v2)

being the partial derivatives of E(v):

E1(v) =
3α

2
− φ1,1

2
+ v2φ1,1 E2(v) = v1φ1,1 − φ1,1

2
− 3α

2

Making the derivatives equal to zero, the saddle point v∗ for E(v) is com-
puted in terms of α and φ1,1:

(v∗)t = [v∗
1 , v

∗
2 ] =

[
1
2

(
1 +

3α

φ1,1

)
,

1
2

(
1 − 3α

φ1,1

)]

Choosing a value for φ1,1 that verifies φ1,1 ≤ 3α, it is guaranteed that the
saddle point moves outside of the Hamming hypercube, leaving the entire hyper-
cube inside the attractor basin of the optimum solution, [ 01 ]. Figure 2 shows the



426 L. Garćıa et al.

φ1,1 = 1000 φ1,1 = 5

0

v1

0.5-500

-400

0

v = 1003
2000 , 997

2000

0.2

v2

-300

0.4

E
(v
) -200

0.6 10.8

-100

1

0

0

v1

0.5-4
0

-3

0.2

v2

0.4

-2

v = 4
5 , 1

5

E
(v
)

0.6

-1

10.8 1

0

φ1,1 = 3 φ1,1 = 2

0

v1

0.5-3

-2.5

0

-2

0.2

v2

0.4

-1.5

E
(v
)

0.6

-1

10.8

-0.5

1

v = (1, 0)0

0.5

v1

-2.5

-2

1-0.2

-1.5

v2

0

-1

0.2

E
(v
)

0.4

-0.5

0.6

0

0.8 1

0.5

v = 5
4 , 1

4

Fig. 2. Energy function of the GQKP example with different values for φ1,1

energy function and its saddle point for different values of φ1,1 (α = 1). It is
shown that choosing values for φ lower that 3α in the energy function leave only
one attractor basin inside the Hamming hypercube that leads to the optimum
solution.

In a more formal way, it can be noted that for a fixed value of α, when φ1,1

tends to ∞ the saddle point is:

lim
φ1,1→ ∞

(v∗)t =
[
1
2
,
1
2

]

and is outside the Hamming hypercube when φ1,1 tends to 0:

lim
φ1,1→ 0

(v∗)t = [∞,−∞]

2.4 Computational Experiences

The analytic results from in Sect. 2.3 have also been validated using a CHN
simulator developed using MATLAB (The MathWorks Inc., Natick, MA, USA).

Figure 3 shows the attractor basins for the energy functions in Fig. 2, includ-
ing some intermediate cases. The basins have been obtained by solving multiple
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φ1,1 = 1000 φ1,1 = 10 φ1,1 = 5

φ1,1 = 3.5 φ1,1 = 3 φ1,1 = 2

(0,1) (1,0) (0,0) (1,1) (v
1
,v

2
)

Fig. 3. Attractor basins for the energy functions considered in the GQKP example
(Color figure online)

CHNs using different starting points (sampling the Hamming hypercube with
a 400 × 400 array), colored according to the solution that the CHN leads
them to.

The darker basin (blue) represents the optimal solution, [ 01 ]. The points in
the graphs represent the equilibrium points of the CHN: the two solutions [ 01 ]

and [ 10 ], the saddle point
[

v∗
1

v∗
2

]
and the corners [ 00 ] and [ 11 ], where the CHN gets

trapped if used as starting points. Note how the attractor basin for the best
solution gets larger as the value of the free parameter decreases.

Choosing an appropriate value for the free parameter (φ1,1 ≤ 3α) guarantees
that the optimum solution is always obtained independently of the initial point.

In order to measure the impact of the starting point in the CHN in more com-
plex problems such as the TSP, multiple simulations for the TSPLIB [8] problem
CH150 (N = 150 cities, i.e. 225000 neurons) are carried out using different val-
ues for the free parameter. The quality of the solution of the CHN is measured
by computing the performance ratio ρ = tour length/optimum tour length.

Figure 4 shows that better solutions are obtained by lowering the value of
the free parameter, confirming that the basins for the better solutions get larger
as the free parameter decreases.
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Fig. 4. Distribution of CHN solutions for CH150, choosing the starting point: (a)
randomly anywhere in [0, 1]N×N ; (b) randomly inside [v∗ − ε,v∗ + ε], ε > 0

3 Conclusions and Future Research

This paper focuses on the free parameter (“global inhibition”) of the CHN orig-
inally proposed by Hopfield applied to the TSP [6]. Historically, researchers in
the field have used a small value for the free parameter [10] (as better solutions
were obtained) but without explaining the reason behind it. Dealing with sim-
ple optimization problems, as in the GQKP illustrative example of Sect. 2, the
CHN may guarantee to always obtain the optimum solution. This is thanks to
the saddle point being moved outside of the Hamming hypercube given a small
enough value of the free parameter, which allows to leave the entire hypercube
inside the attractor basin of the optimum solution.

Based on the results shown in this paper about the relationship between
the free parameter and the saddle point (Subsect. 2.3), the conjecture of using
starting points close to the saddle point is validated empirically using a CHN
simulator. Indeed, it is verified that in the surroundings of the saddle point the
attractor basins for the best solutions grow as the free parameter decreases.

Whereas for simple GQKP instances the convergence to the optimum solution
of the CHN can be assured, this is far more complicated in problems like the
TSP. However, as shown in Sect. 2.4 and extending the paper of Garćıa et al. [2],
it is expected some computational improvement on the solution of the TSP based
on the relationship between the free parameter and the saddle point of the CHN,
considering it can be found. Research along this line will be continued.
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A Some Technical Results of the Illustrative Example

Recalling the GQKP problem introduced in Sect. 2, a stability analysis of the
valid solutions is carried out, looking for the parameters that guarantee that the
CHN is stable in the feasible solutions. The energy function obtained for the
simple GQKP problem (see Eq. 3) was:

E (v) = α
(
2 v1

2 − v2
2
)

+ 1
2φ1,1 (v1 + v2)

2 − γ1v1 (v1 − 1) − γ2v2 (v2 − 1)
+ β1 (v1 + v2)

Referencing Talaván and Yáñez [12], the stability of any v ∈ H is ensured if:

min
v∈HF

E0(v) ≥ 0 (4)

max
v∈HF

E
1
(v) ≤ 0 (5)

En+k(v) = 0 ∀k ∈ {1, . . . , m1}/vn+k ∈ (0, 1) ∀v ∈ HF (6)

where

Ei(v) ≡ ∂E(v)
∂vi

E0(v) ≡ min
vi=0

Ei(v) E
1
(v) ≡ min

vi=1
Ei(v)

Although analyzing all feasible solutions would be a very difficult task with a
GQKP, this simple example allows rigorous analysis. Thus, the partial derivatives
of the energy function will be of the form:

E1 (v) = 4αv1 + φ1,1v1 + φ1,1v2 − 2γ1v1 + γ1 + β1

E2 (v) = −2αv2 + φ1,1v1 + φ1,1v2 − 2γ2v2 + γ2 + β1

Condition 4 is satisfied if:

E0([ 10 ]) = min{E2([ 10 ])} = φ1,1 + γ2 + β1 ≥ 0
E0([ 01 ]) = min{E1([ 01 ])} = φ1,1 + γ1 + β1 ≥ 0

and Condition 5 is satisfied if:

E
1
([ 10 ]) = max{E1([ 10 ])} = 4α + φ1,1 − γ1 + β1 ≤ 0

E
1
([ 01 ]) = max{E2([ 01 ])} = −2α + φ1,1 − γ2 + β1 ≤ 0

This example does not use Condition 6 as no slack variables are needed.

The instability of any interior point v ∈ H \ HC is guaranteed if:

Ti,i ≥ 0 ∀i ∈ {1, . . . , n}



430 L. Garćıa et al.

and the stability of valid solutions is obtained if Φ is positive semidefinite:

φk,l ≥ 0 ∀k, l ∈ {1, . . . , m}
The instability of any non-feasible corner is obtained by creating a partition

of the set HC \HF and forcing the instability conditions for each of the elements
in the partition:

∨
⎧⎨
⎩

E0(v) ≤ −ε

E
1
(v) ≥ ε

En+k(v) 
= 0 for any vn+k ∈ (0, 1)
with ε > 0

Going forward the partition HC \ HF is created using the direct method
introduced by Talaván [11]. In summary, this partition is created considering
the different cases which may occur when the constraints for HF are violated.
Thus, given v ∈ HC \ HF , the instability will be found from the first unsatisfied
constraint, distinguishing inequalities and equations (which may not be satisfied
by excess or defect):

HC \ HF =
m1⋃
k=1

Wk,0

m⋃
k=1

Wk,1

m⋃
k=1

Wk,2

where

Wk,0 ≡
k−1⋂
l=1

{el(v) = bl} ∩ {ek(v) > bk} ∩ {ek(v) − rk,n+k vn+k ≤ bk}
∀k = 1, . . . , m1

Wk,1 ≡
k−1⋂
l=1

{el(v) = bl} ∩ {ek(v) > bk} ∩ {ek(v) − rk,n+k vn+k > bk}
∀k = 1, . . . , m1

Wk,1 ≡
k−1⋂
l=1

{el(v) = bl} ∩ {ek(v) > bk} ∀k = m1 + 1, . . . ,m

Wk,2 ≡
k−1⋂
l=1

{el(v) = bl} ∩ {ek(v) < bk} ∀k = 1, . . . ,m

For the GQKP problem being studied, the partition gets reduced to:

HC \ HF = W1,1 ∪ W1,2

where

– W1,1 = {e1(v) > 1} = {v1 + v2 > 1}, which is satisfied if v1 = 1 and v2 = 1:{
E1(v) > 4α + 2φ1,1 − γ1 + β1

E2(v) > −2α + 2φ1,1 − γ2 + β1

and the instability is guaranteed if:

∨
{

4α + 2φ1,1 − γ1 + β1 ≥ ε
−2α + 2φ1,1 − γ2 + β1 ≥ ε
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– W1,2 = {e1(v) < 1} = {v1 + v2 < 1}, which is satisfied if v1 = 0 y v2 = 0:
{

E1(v) ≤ γ1 + β1

E2(v) ≤ γ2 + β1

and the instability is guaranteed if:

∨
{

γ1 + β1 ≤ −ε
γ2 + β1 ≤ −ε

Therefore, considering the initial conditions and choosing from the recently
obtained inequalities, the following set of linear inequalities guarantees the sta-
bility of feasible solutions and instability of non-feasible ones:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T1,1 = −4α − φ1,1 + 2γ1 ≥ 0
T2,2 = 2α − φ1,1 + 2γ2 ≥ 0

φ1,1 ≥ 0
W1,1 : 4α + 2φ1,1 − γ1 + β1 ≥ ε

W1,2 : γ2 + β1 ≤ −ε
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Abstract. A few exploratory works studied Restricted Boltzmann
Machines (RBMs) as an approach for network intrusion detection, but
did it in a rather empirical way. It is possible to go one step further
taking advantage from already mature theoretical work in the area. In
this paper, we use RBMs for network intrusion detection showing that
it is capable of learning complex datasets. We also illustrate an inte-
grated and systematic way of learning. We analyze learning procedures
and applications of RBMs and show experimental results for training
RBMs on a standard network intrusion detection dataset.

1 Introduction

Deep neural networks have become increasingly popular due to their success
in machine learning. Their history goes as far back as 1958 when Rosenblatt
published his work on the perceptron concept [18]. Present day forms of deep
learning networks include Hopfield Networks, Self-Organizing Maps, Boltzmann
Machines, Multi-Layer Perceptrons, Autoencoders or Deep Belief networks.

Most of present day machine learning algorithms are not classifiable as deep
since they use at most one layer of hidden variables. Bengio and LeCun [2,3],
have shown that the internal representations learned by such systems are neces-
sarily simple due to their simple internal structure, being incapable of extracting
certain types of complex structure. However this limitation does not apply to
specific types of energy-based learning approaches.

Two important classes of Boltzmann Machine (BMs) are the Restricted
Boltzmann Machine (RBM) described by a complete bipartite graph, and the
Deep RBM that is composed of several layers of RBMs. The BM derived from
Hopfield networks and in its initial form was fully node-connected. The concept
of RBMs came about due to the difficulty of training a fully connected BM
in classification problems. RBMs are designated restricted due to the fact that
there are no connections among the hidden layer nodes or among the visible
layer nodes.

Recently the notion of deep learning gained a lot of attention as a method
to model high-level abstractions by composing multiple non-linear layers [14].
Several deep learning network architectures, like deep belief networks [8], deep
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 432–446, 2017.
DOI: 10.1007/978-3-319-59153-7 38
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BMs [19], convolutional neural networks [14], and deep denoising auto-encoders
[25], have shown their advantages in specific areas.

Despite their interest, these approaches have barely been applied in Network
Intrusion Detection Systems (NIDSs), i.e., for detecting cyber-attacks by inspect-
ing computer network traffic. This paper aims to contribute for closing this gap
by introducing a systematic approach for training RBMs for network intrusion
detection. The approach considers three important aspects: weight initialization,
pre-training, and fine-tuning.

The paper seeks to demonstrate the effectiveness of the approach with an
analysis based on a dataset carefully crafted for this purpose: the UNB ISCX
intrusion detection evaluation dataset [20]. This dataset is reasonably recent but
has been gaining increasing adoption for evaluating NIDSs.

2 The Ising Model

Fig. 1. Illustrating a 2-dimensional inter-
action with only the nearest nodes (Color
figure online)

The RBM formalism, specifically in
terms of synonymous of objective or
loss function, is similar to the Ising
Model formalism, so it is relevant
to address the similarities. Energy-
based models are popular in machine
learning due to the elegance of their
formulation and their relationship
to statistical physics. Among these,
the Restricted Boltzmann Machine
(RBM) is the focus of our work.

The Ising model was defined by
Lenz in 1920 and named after his stu-
dent Ising, who developed the model
in his Ph.D. thesis [13]. Ising solved
the model optimization problem in one dimension. The two-dimensional square
lattice Ising model was given an analytic description much later [17]. Such phys-
ical models, having two alternate states in an array with mutual interactions,
are currently described in physics as spinor Ising models. The mutual interac-
tion among spin units is modeled by an interaction parameter commonly named
coupling. Interactions between particles is small and restricted to their neigh-
bourhood. In this model the states align among themselves spontaneously in a
way that minimizes a global parameter, e.g., the global energy. In 2D the model
topology is usually described as a regular lattice as illustrated in Fig. 1.

3 Restricted Boltzmann Machines

3.1 Energy-Based Models (EBM)

Energy-based models associate an energy figure to each configuration of the state
variables. Energy in this context is synonymous of objective or loss function.
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Learning, again in this context, corresponds to modifying the energy function as
to find minima. In the probabilistic model associated with RBMs the associated
probability distribution is described through an energy type function:

p(x) =
e−E(x)

Z
(1)

The normalizing factor Z is the partition function in the context of physical
systems. The normalization is achieved by summing across all available sates
and divide.

Z =
∑

x

e−E(x) (2)

An energy-based model can be learnt by performing (stochastic) gradient descent
on the empirical negative log-likelihood of the training data. As for logistic
regression, we will first define the log-likelihood and then the loss function as
being he negative log-likelihood.

L(θ,D) =
1
N

∑

x(i)∈D
log p(x(i)) (3)

The stochastic gradient is −∂ log p(x(i))
∂θ where θ are the model parameters.

However, computationally this is not the best option for this type of energy
function (see Sect. 3.4).

3.2 The Concept of Restricted Boltzmann Machine

From the physical analogy, BMs model the data with an Ising model that is in
thermal equilibrium. In this analogy the equivalent to physical spins are called
RBM units or nodes. The set of nodes that encode the observed data and the
output are called the visible units {vi}, whereas the nodes used to model the
latent concept and feature space are called the hidden units {hi}. For the pur-
pose of explanation, we assume that the visible and hidden units are binary.
Alternatives are discussed later.

The RBM concept is similar to the BM concept [1], except that no con-
nections between neurons of the same layer are allowed. Figure 2 depicts the
architecture of a RBM, consisting of two layers: the visible layer {vi} and the
hidden layer {hi}, with Nv and Mh nodes, respectively. Hidden units are used
to capture higher level correlations in the data, and the visible units to mir-
ror the data itself. Connections between nodes are restricted so that there are
no visible-visible and hidden-hidden connections. Hidden-visible connections are
strictly symmetrical. Hence, we have a restricted BM. An RBM is a bi-partite
(visible and hidden) BM with full interactivity between visible and hidden units,
and no interactivity between units of the same type. RBMs are usually described
as energy-based stochastic neural networks composed by two layers of neurons
(visible and hidden), in which the learning phase is conducted in an unsuper-
vised fashion. RBMs are a variant of the BM model [1,7]. Here we consider the
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Hidden
Nodes
hj

Weights
wij

Input
(visible)
Nodes vi

v(1) v(2) v(3) v(4)

Fig. 2. A RBM with 4 inputs and 5 hidden nodes.

case where hj can only take binary values, and σi as the standard deviation for
each input dimension.

Convergence in BMs can be slow, particularly when the number of units
and layers increases. RBMs were introduced to mitigate this issue [22]. The
simplification consists of having only one layer of visible and one layer of hidden
units with links between units on the same layer erased, allowing for parallel
updates of hidden and visible units (Fig. 2).

In Fig. 2, v = (v1, v2 · · · vn) and h = (h1, h2 · · · hm) are the visible and the
hidden vectors, ai and bj are their biases, n and m are the dimension of the visible
layer and the hidden layer, and wij is the connection weight matrix between
the visible layer and the hidden layer. The visible stochastic binary variables
v ∈ {0, 1}N are connected to hidden stochastic binary variables h ∈ {0, 1}M .

For binary RBMs the energy E (v,h), which defines the bipartite structure,
is given by:

E(v,h) = −
∑

i ε visible

aivk −
∑

j ε hidden

bjhj −
∑

i

∑

j

viwi,jhj (4)

or equivalently:
E (v,h) = −vTa − bTh − vTWh (5)

The weight matrix W, the visible bias vector b and the hidden bias vector
c are the parameters of the model.

RBM satisfies a Boltzmann-Gibbs distribution over all its units. The joint
probability of (v,h) is given by a probability distribution function P (v,h), where
Z is the normalization term to obtain a proper probability distribution function:

P (v, h) =
1
Z

e−E(v,h) (6)

By definition the partition function, which sums over all possible visible and
hidden states, is given by:

Z =
∑

v

∑

h

e−E(v,h) (7)
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The normalizing factor Z is called the partition function by analogy with
physical systems. To find p(v), we marginalize over the hidden units. Given a
set of training vectors, V, to train a RBM, one aims to maximize the average
probability, p(v),v ε V , where

p(v) =
1
Z

∑

h

e−E(v,h) (8)

which can also be written as

p(v) =
1
Z

e−F (v) (9)

where F (v) is the logarithm of the energy function summed over h:

F (v) = −log
∑

h

e−E(v,h) (10)

For training efficiency, BMs can be restricted to a bipartite graph with one
set of visible neurons and one set of hidden neurons. As shown in Fig. 2 there are
only visible-hidden and hidden-visible connections (still symmetric). Therefore
hidden units hj only depend on the visible units vj and vice-versa, with bj as
the biases for the visible units and cj for the hidden units:

p(hj = 1|v) = σ(cj +
∑

i

wijvi) (11)

p(vj = 1|h) = σ(bj +
∑

i

wijhi) (12)

3.3 Gibbs Sampling

Gibbs sampling is commonly used for obtaining a sequence of observations which
are approximated from a specified multivariate probability distribution, when
direct sampling is difficult. This sequence can be used to approximate a joint
distribution function, e.g., the joint distribution function expressed in Eq. 6 in
our case.

In its simplest theoretical description this is how Gibbs sampling would work,
with all updates done in parallel, as illustrated in Fig. 3. The most common
algorithm for Gibbs sampling is Contrastive Divergence (CD), used inside a
gradient-descent. A single-step contrastive divergence (CD-1) procedure for a
single training example can be summarized as follows [9]:

1. Sample hidden units h from training example v
2. Sample reconstruction v′ of visible units using h and then resample h′ from

it. (Gibbs sampling step)
3. wij ← wij − ε(<vihj>data − <vihj>sampled)

In the previous equation <.> denotes an average. In practice, waiting till
t → ∞ is not practical. However, an alternative consists in modulating the
number of iterations for a limited number and extract a final sample:
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– After t steps, (h(t), v(t)) is available for sampling
– Sample (h(t), v(t)) assuming a sample accurate enough as an approximation

of P (v, h) as t → ∞.

v(0)

h(0)

v(1)

h(1)

v(2)

h(t)

v(t+1)

h(t+1)

v(t+2)

· · ·

Fig. 3. Gibbs sampling in a RBM

As t → ∞, (v(t), h(t)), vt and ht will be ever more accurate samples drawn
from the RBM’s distribution. Nevertheless, one can further speed up the process
by using the contrastive divergence (CD) algorithm as explained next.

3.4 Contrastive Divergence Algorithm in Detail

It is easy to calculate <vihj>data because there is no direct connections
among the hidden units. However, it is difficult to get an unbiased sample
of <vihj>model. Hinton proposed a faster learning algorithm with contrastive
divergence (CD) learning and the change of learning parameter [10]. The partial
derivative of the log probability of Eq. 8 with respect to a weight is given by:

∂ log p(v)
∂wij

= (<vihj>data − <vihj>model) (13)

where the angle brackets <vihj>data and <vihj>model are used to denote expec-
tations of the distribution specified by the subscript data and model. In the log
probability, a very simple learning rule for performing stochastic steepest ascent
is given by:

Δwij = ε(<vihj>data − <vihj>model) (14)

where ε is a learning rate.
The CD algorithm computes an approximation of the gradient by performing

Gibbs sampling for a finite number of steps. This involves initializing the RBM
with a training example v ε V and running the RBM for k (often with k = 1)
steps. CD-k is a generalization k iterations by repeating the sampling process k
times. CD makes the following simplifications for computing the gradient:

1. Replace the first term (expectation over all input samples) with a single
sample.
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2. For the second term, run the chain for fixed k steps:

Δwij = ε(<vihj>data − <vihj>sampled), (15)

The bias updates for the visible and hidden layers respectively can be defined
by these expressions:

Δai = ε(<vi>data − <vi>sampled), (16)

Δbj = ε(<hj>data − <hj>sampled) (17)

where <vihj>sampled, or reconstructed by means of the CD algorithm can be
computed more efficiently than <vihj>model.

3.5 Applying RBMs to Continuous-Valued Inputs

With the binary units introduced for RBMs in [8], one can handle continuous-
valued inputs by scaling them to the [0, 1] interval and considering each input
as the probability for a binary random variable to take the value 1. Previous
work on continuous-valued input in RBMs include [4], in which noise is added
to sigmoidal units, and the RBM forms a special form of Diffusion Network [15].
The approach followed in this paper starts by acquiring the RBM weights in the
pre-training phase by using Rectified Linear Units (for the hidden units) and
training with Sigmoid units, which has shown to work very well [6], something
that our results confirm.

A continuous RBM (RBM) is a form of RBM that accepts continuous inputs
via a different type of contrastive divergence sampling. This allows the CRBM
to handle things like image pixels or word-count vectors that are normalized to
decimals between zero and one.

4 A Systematic Approach for Training RBMs

This section describes an optimized approach for choosing the training para-
meters of the specific RBMs configured. It takes advantage of Hinton et al.’s
results [6]. An optimization approach is important in the context of RBMs due
to the complexity of assuring the learning process convergence and for avoid-
ing overfitting. In the end we aim at showing the validity of our approach in
the context of network intrusion detection by using a specific dataset. The app-
roach comprehends three major aspects – Weight initialization, Pre-training, and
Fine-Tuning – plus a few other parameter optimization choices (see Table 1 and
Fig. 4).

4.1 The Three Major Aspects

Pre-training. As an alternative or in addition to weight initialization techniques,
layer-wise unsupervised pre-training can be used to initialize the weights for fine-
tuning. For every combination of two adjacent layers, an RBM is trained for a
certain number of epochs, whereas an epoch consists of training the network on
batches of samples.
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Fine-Tuning. After pre-training, the instance is fine-tuned using one of several
fine-tuning functions (more on those in the next section).

Fig. 4. Approach for training RBMs

Choosing the Number of Hidden Nodes. Dimensioning the RBM internals
involves testing a set of dimensioning options and extracting the best option
using the accuracy maximization criteria.

4.2 Using Rectified Linear Units

Hinton et al. have shown that for problems involving real valued data rectified
linear units provide better results [16]. Although their research has been over
image datasets, there is enough numerical similitude to both problems as the
results obtained have been based on a feature based real valued dataset. The
present proposal uses Rectified Linear Units for the hidden layer during pre-
training. A suggestion over the usage of sigmoid units has been put forward by
pre-training the RBM with Rectified Linear Units and fine tuning with Sigmoid
Units. The advantages of this approach come in the type of output produced
belonging to {0, 1} instead of [0, 1].

4.3 Parameter Optimization

As stated previously we do not try to optimize the whole set of RBM parameters
as it would show to be exhaustive, but instead choose a number of parameters
as optimization enablers, based on the literature. The specific values for each
parameter used in the experiment is in Table 1.

Number of Training Epochs. Regularization of neural networks is used to improve
generalization by preventing over-fitting. The most straightforward way of pre-
venting over-fitting is early stopping. One of the options for the regularization
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Table 1. Experimental parameters

Fine tuning
parameters

Value Fine tuning parameters Value

rbm.batchSize 100 DArch.initialMomentum 0.5

rbm.lastLayer True DArch.finalMomentum 0.9

rbm.learnRate 0.001 DArch.momentum
RampLength

0.5

rbm.weightDecay 2e-04 DArch.unitFunction sigmoidUnitRbm

rbm.initial
Momentum

0.5 bp.learnRate 0.001

rbm.final
Momentum

0.9 DArch.dropout 0

rbm.unit
Function

linearUnitRbm DArch.dropout.one
MaskPerEpoch

False

rbm.update
Function

rbmUpdate DArch.isClass True

rbm.numCD 10 DArch.numEpochs 50

rbm.num
Epochs

50 DArch.errorFunction Mean square
error

rbm.momentum
RampLength

0.5 retainData True

DArch.batchSize 100 normalizeWeights True

bootstrap True preProc.params method=“range”

DArch.fine
TuneFunction

backpropagation generateWeights
Function

generateWeights
GlorotUniform

approaches used limits the number of iterations is choosing the number of epochs
for the training phase to 50. In practice this number has been chosen as a limit
value based on empirical criteria since it marked the beginning of an asymptotic
behaviour for the error.

Mini Batches. Updating the weights using small “mini-batches” of 10 to 100
samples in size has shown to allow better results. In the experiment we used a
mini batch size of 100.

Momentum. By choosing a momentum value it is possible to modulate the
speed of learning in RBM training. At the start of learning, the random initial
parameter values may create very large gradients and the system is unlikely to
be at a minimum, so it is usually best to start with a low momentum of 0.5. This
very conservative momentum typically makes the learning more stable than no
momentum at all [6].
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Learning Rate. A good rule of thumb for setting the learning rate ε is to look
at a histogram of the weight updates and a histogram of the weights [26]. The
updates should be about 10−3 times the weights (to within about an order
of magnitude). When a unit has a very large fan-in, the updates should be
smaller since many small changes in the same direction can easily reverse the
sign of the gradient. Conversely, for biases, the updates can be bigger: Δwij =
ε(<vihj>data − <vihj>sampled).

Weight Decay. Weight-decay works by adding an extra term to the normal
gradient. The extra term is the derivative of a function that penalizes large
weights. The simplest penalty function, called L2, is half of the sum of the
squared weights times a coefficient which will be called the weight-cost. For an
RBM, sensible values for the weight-cost coefficient for L2 weight-decay typically
range from 0.01 to 0.00001.

Weight Initialization. Weight initialization values represents the starting value
of the RBM weights that amplify or mute the input signal coming into each node.
Proper weight initialization help training time. In our case a trial has been made
with Glorot uniform weight initialization as described in [24], in the perspective
of achieving faster convergence.

5 Dataset Description

The UNB ISCX Intrusion Detection Evaluation Dataset was developed in order
to provide a quality dataset for network intrusion detection research [20]. The
approach for defining this dataset involved identifying features that would allow
effective detection, while minimizing processing costs. Each record of the dataset
is characterized by features that fall into three categories: basic, content, and
traffic. These features are described in [5,23].

Table 2. Attacks in the UNB ISCX train/test datasets (all attacks from the first exist
also in the second)

Class Train dataset attacks Test dataset only attacks

Probing portsweep, ipsweep, satan,
guesspasswd, spy, nmap

snmpguess, saint, mscan,
xsnoop

DoS back, smurf, neptune, land, pod,
teardrop, buffer overflow,
warezclient, warezmaster

apache2, worm, udpstorm,
xterm

R2L imap, phf, multihop snmpget, httptunnel,
xlock, sendmail, ps

U2R loadmodule, ftp write, rootkit sqlattack, mailbomb,
processtable, perl
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The UNB ISCX dataset is composed of sequences of entries in the form of
records labeled as either normal or attack. Each entry contains a set of charac-
teristics of a flow, i.e., of a sequence of IP packets starting at a time instant and
ending at another, between which data flows between two IP addresses using a
transport-layer protocol (TCP, UDP) and an application-layer protocol (HTTP,
SMTP, SSH, IMAP, POP3, or FTP). The dataset is fairly balanced with prior
class probabilities of 0.466 for the normal class and 0.534 for the anomaly class.

This dataset is composed of two sub-datasets: a train dataset, used for train-
ing a NIDS, and a test dataset, used for testing. Both have the same structure
and contain all four types of attacks. However, the test dataset has more attacks
as shown in Table 2, to allow evaluating the ability of algorithms to generalize.
The train dataset has around 2.2 GB of data; the test dataset has 0.8 GB.

6 The Experiment

We used the Darch R Package package in the experiments [11,12]. This package
allows generating deep architecture networks and training them. All parameters
not explicitly referred took the default values.

In order to make these features suitable inputs for the visible layer of the
RBM, we normalized them to the range [0, 1], and treated them as continuous
values. Cross-validation, sometimes called rotation estimation, is a validation
technique for assessing how the results of a statistical analysis will generalize
to an independent dataset. One round of cross-validation involves partitioning
a sample of data into complementary subsets, performing the analysis on one
subset (the training set), and validating the analysis on the other subset (the val-
idation or testing set). To reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the validation results are averaged
over the rounds.

For the starting RBM hidden nodes dimensioning in the experiment, a tech-
nique similar to the gradual drop-in of nodes (increasing the number of nodes in
each step of the experience) was used with reference values near the �v/2�. The
numbers of nodes used in the experience were 16, 17, 18, 19, 20, plus 25, 30 for
comparison purposes. This has been suggested to be a sufficient approximation
for obtaining good results in training RBMs [27]. The most relevant parameters
for the RBM as used are depicted in Table 1. This thesis has been validated
since the best performance figures are shown to be obtained for an internal node
number of 16.

We performed an empirical study to compare the .632+ bootstrap estimator
with the repeated 10-fold cross-validation. The results for the pre-training and
fine tuning phases were obtained with 125973 samples and 40 predictor variables.
The accuracy was used to select the optimal model using the largest value. Pre-
processing was used to re-scale the features to the range [0, 1]. Bootstrapping
was started with 125973 samples and resulted in 79598 unique training samples
and 46375 validation samples for this run. Training data was shuffled before each
epoch and the final result for each run was taken from the average results of each
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Table 3. Error estimation (averages for 5 trials)

16 17 18 19 20 25 30

Training MSE 0.137 0.120 0.122 0.123 0.109 0.115 0.106

Training classification error 5.55% 5.92% 6.06% 5.79% 5.86% 5.94% 5.75%

Validation MSE 0.137 0.120 0.122 0.123 0.110 0.115 0.107

.632 + MSE 0.137 0.120 0.122 0.123 0.110 0.115 0.107

Validation classification error 5.65% 5.88% 5.99% 5.73% 5.89% 5.94% 5.75%

.632 + classification error 5.61% 5.89% 6.02% 5.75% 5.88% 5.95% 5.75%
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Fig. 5. Experimental results for training and validation classification errors (Table 3)
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Fig. 6. Experimental results for network training and validation errors from Table 3

epoch. The results for the classification and network errors are summarized in
Table 3 and put in contrast in Figs. 5 and 6. By looking at the .632+ statistics
value we can observe that a negligible amount of bias for the error values is
present, since this statistics results similar to the respective values.

In Fig. 5 the training and validation Classification Errors are presented as
a graphical example of the results from Table 3. The classification error is the
error of the classification given by the RBM for a validation and a training set.
In Fig. 6(a) an example of error convergence for the case of an RBM with 16
internal nodes is presented. Similarly, in Fig. 6 the training and validation Mean
Square Errors are presented as a graphical example of the results from Table 3.
The MSE is the average difference between the expected and the actual output,
and it contains both the variance and bias of the estimator. In Fig. 7(b) an
example of MSE convergence for the case of a RBM with 16 internal nodes is
presented.
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Fig. 7. Errors for iterations with 16 internal nodes: (a) classification error; (b) MSE

Figure 7 presents the results for an example with internal node number of 16,
showing good convergence properties (with maximum of 50 epochs).

7 Conclusions

The application of Restricted Boltzmann Machines in the network intrusion
detection field has been gaining momentum. In this work it has been shown
that it is possible to surpass some performance obstacles by means of proper
RBM optimization given a set of optimized choices for the remaining parame-
ters. Among these the most troublesome is the fact that for using RBMs it is
relevant to process real valued features in the [0, 1] range therefore the need for
transforming the original values accordingly for this range. Good results have
been obtained for the Network Training MSE and Network Validation MSE.
In terms of classification the results obtained were also comparable to the best
obtained till now in NIDS using RBMs [5] (Table 4).

Table 4. Performance metrics

Metrics Drop= 0 Drop= 0.1 Drop= 0.5

Accuracy 0.7609 0.7634 0.7549

Kappa 0.5400 0.5414 0.5258

Specificity 0.9666 0.9368 0.9353

Sensitivity 0.6063 0.6331 0.6194

Neg pred value 0.6485 0.6574 0.6487

Pos pred value 0.9603 0.9302 0.9272

Balanced accuracy 0.7865 0.7850 0.7773
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Abstract. This paper is focused on looking for an appropriate coherence
notion which allows us to deal with inconsistent information included in
multi-adjoint normal logic programs. Different definitions closely related
to the inconsistency concept have been studied and an adaptation of
them to our logic programming framework has been included. A detailed
reasoning is presented in order to motivate and justify the suitability of
the chosen coherence notion.

Keywords: Negation operator · Coherence · Multi-adjoint logic
programming

1 Introduction

Multi-adjoint normal logic programming is a logical theory whose semantic struc-
ture is composed by a lattice together with various adjoint pairs and a negation
operator. Logic programs of this framework are characterized by using both
different implications in their rules and general operators on complete lattices
in the bodies of the rules. Recently, the existence of minimal models of multi-
adjoint normal logic programs has been studied in [6], where the stable model
semantics [14] has been considered.

In spite of inconsistent and contradictory information usually appears in real-
life databases, the general tendency of any logical theory consists in either not
considering such information and ignoring all the knowledge coming from it or
try to repair this information. However, adopting this position is not appropri-
ate due to this conflictive information can be reliable and useful. From this fact
arises the importance of handling and measuring the inconsistency [9,17–19].
Madrid and Ojeda-Aciego showed that there are only two possible causes that
can lead to obtain an inconsistent residuated logic program: instability and inco-
herence [20–23]. On the one hand, the instability is associated with the presence
of incompatible rules in a logic program which gives rise to the lack of stable
models. On the other hand, the incoherence is obtained from the existence of
stable models which assign contradictory values to a propositional symbol and to
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its corresponding negation. According to the syntactic structure of multi-adjoint
normal logic programs, all the inconsistency causes mentioned above can appear
in this framework.

If one program has not stable models, then it is unstable. Hence, the determi-
nation of unstable programs is clear, however, when we can say that a program
is incoherent, what do we mean by “contradictory values”?, what is the best
measure in order to obtain this information?

There exist different notions related to the concept of “coherence” [13,23–
25,27]. In this paper, we are interested in choosing a suitable notion of coherence
for multi-adjoint normal logic programs. Hence, first of all we will provide a sur-
vey of the definitions given in the literature which are closely related to the
concept of coherence such as self-contradiction in fuzzy sets [27], x-consistent
interpretation [25], consistency in interlaced bilattices [13] and coherent inter-
pretation [23,24]. Based on these definitions we will analyze the most suitable
definition to be used in the multi-adjoint framework. From this analysis, we
will obtain parallel properties. For example, by means of weak involutive nega-
tions [26], we will show a natural equivalence condition of the coherence inter-
pretation notion given by Madrid and Ojeda-Aciego [23,24], and the relationship
between the definition of coherence interpretation and the notion of intuitionistic
fuzzy set defined on a complete lattice [1] is also introduced.

2 Multi-adjoint Normal Logic Programming

First of all, we will introduce a brief summary with essential notions related to
the syntax and semantics of multi-adjoint normal logic programming framework.

The algebraic structure considered in this environment is the multi-adjoint
normal lattice which is defined as follows.

Definition 1. The tuple (L,�,←1,&1, . . . ,←n,&n,¬) is a multi-adjoint nor-
mal lattice if the following properties are verified:

1. (L,�) is bounded lattice, i.e. it has a bottom (⊥) and a top (�) element;
2. (&i,←i) is an adjoint pair in (L,�), for i ∈ {1, . . . , n};
3. �&i ϑ = ϑ &i � = ϑ, for all ϑ ∈ L and i ∈ {1, . . . , n};
4. ¬ is a negation operator on (L,�), that is, ¬ is a decreasing mapping satis-

fying that ¬(⊥) = � and ¬(�) = ⊥.

In this paper, we are interested in considering a logic program defined on
a multi-adjoint normal lattice (L,�,←1,&1, . . . ,←n,&n,¬) together with an
additional (symbol of) negation ∼. It is important to emphasize that ¬ is called
“default negation” and ∼ is called “strong negation”, which should not be con-
fused with the well-known notion of involutive operator. Specifically, the truth
value of ∼φ can straightforwardly be inferred from the program and the value
of ¬φ is obtained from the truth value of φ.

From the algebraic structure described above, the syntax for multi-adjoint
normal logic programs is defined as a set of weighted rules of a given language.



Selecting the Coherence Notion in Multi-adjoint Normal Logic Programming 449

The elements appearing in these weighted rules, which can be either (positive)
propositional symbols or negated propositional symbols by the strong nega-
tion ∼, will be called literals. The literals included in P will be collected in
a set denoted by LitP, whereas the set of propositional symbols appearing in P

will be denoted by ΠP.

Definition 2. Let (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal lat-
tice and ∼ be a strong negation. A multi-adjoint normal logic program (MANLP)
P is a finite set of weighted rules of the form:

〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉

where i ∈ {1, . . . , n}, @ is an aggregator operator, ϑ is an element of L and
l, l1, . . . , ln literals such that lj 
= lk, for all j, k ∈ {1, . . . , n}, with j 
= k.

The semantics for MANLPs is given by means of the next definitions.

Definition 3. Given a complete lattice (L,�), a mapping I : LitP → L
which assigns to every literal appearing in LitP an element of L is called L-
interpretation. The set of all L-interpretations is denoted by IL.

It is worth mentioning that the ordering relation in (L,�) is extended to the
set of interpretations in the following way:

I1 � I2 if and only if I1(l) � I2(l), for all l ∈ LitP and I1, I2 ∈ IL.

Before presenting the last concepts associated with the semantics of
MANLPs, it is necessary to consider the following notational convention. We
will denote as

.
ω the interpretation of a operator symbol ω under a multi-adjoint

normal lattice. In addition, the evaluation of a formula A under an interpreta-
tion I will be denoted as Î(A). Note that, it will be proceeded inductively as
usual, until all propositional symbols in A are reached and evaluated under I.

Definition 4. Given an interpretation I ∈ IL, we say that:

(1) A weighted rule 〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉 is satisfied by I if
and only if ϑ � Î (〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln]).

(2) An L-interpretation I ∈ IL is a model of a MANLP P if and only if all
weighted rules in P are satisfied by I.

As we mentioned in the introduction, the existence of stable models has been
already studied by the authors in [6]. Now, our goal focuses on studying if the
information provided by such stable models is coherent. In order to reach this
goal, the first task will be to introduce an appropriate notion of coherence for our
logical theory. With this purpose, we will analyze some of the works associated
with this research line.
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3 An Overview on Coherence Notions

To the best of our knowledge, the notions most closely related to the con-
cept of coherence are: self-contradiction in fuzzy sets [27], x-consistent inter-
pretation [25], consistency in interlaced bilattices [13] and coherent interpreta-
tion [23,24]. In order to compare these notions we need to introduce them using
the notation and definitions of the MANLPs framework. Besides this adaptation,
different interesting results and remarks will be presented.

3.1 Self-contradiction in Fuzzy Sets

Trillas et al. [27] introduced the notion of self-contradiction considering fuzzy
sets [31] taking into account a classic principle of propositional logic. A statement
p is considered self-contradictory if p violates the principle of contradiction,
that is, the statement “If p is true, then ¬p is true” has some degree of truth.
Considering an implication operator ← and an involutive negation operator n,
Trillas et al. established that a fuzzy set μ is self-contradictory if and only if
n(μ) ← μ = 1 or, equivalently, μ ≤ n(μ). Three different definitions of self-
contradiction were taken into account in [27], which are rewritten in the multi-
adjoint normal logic programming framework next.

Definition 5. Given an interpretation I ∈ IL, we say that:

(1) I is strongly self-contradictory if I(l) � n(I(l)), for any involutive negation
n and for all l ∈ LitP.

(2) I is weakly self-contradictory if I(l) � n(I(l)), for a given involutive nega-
tion n and for all l ∈ LitP.

(3) I is (n, l)-locally self-contradictory if I(l) � n(I(l)), for a given involutive
negation n and a fixed literal l ∈ LitP.

The importance of considering these notions is due to the amount of works
carried out on self-contradiction in fuzzy sets. For instance, some fuzzy set the-
ories which avoid self-contradiction were given in [27–29]. Moreover, the self-
contradiction notion was also considered in the Atanassov intuitionistic sets
framework, providing models for measuring contradiction between this kind of
sets [5,8]. Also, a more general notion of self-contradiction can be found in [3,4].

All these different approaches show the wide flexibility of the self-
contradiction notion. Thus, it seems reasonable to be considered as a possible
definition of consistency in a multi-adjoint normal logic programming frame-
work.1

1 In order to proceed with the comparison in Sect. 4 we will consider the definition of
weakly self-contradictory.



Selecting the Coherence Notion in Multi-adjoint Normal Logic Programming 451

3.2 x-consistent Notion

The notion of x-consistency was firstly given by Van Nieuwenborgh et al. [25].
The most interesting feature of this definition is that it allows an user to choose,
by means of an aggregator operator, how the individual consistencies of the
propositional symbols and their negations affect the consistency of an interpre-
tation. Now, we introduce the notion of x-consistent interpretation adapted to
the multi-adjoint framework.

Definition 6. Let &: L × L → L be a t-norm, Ac : L × L → L be an aggregator
operator, and interpretation I ∈ IL and x ∈ L. Given the mapping Ic : ΠP → L
defined as Ic(p) = ¬(I(p)& I(∼ p)) for each p ∈ ΠP, we say that I is x-consistent
if and only if x � Ac(ΠP, Ic).

Note that, the use of an aggregator operator allows us to ignore certain
inconsistencies or that certain literals to be more inconsistent than others. It is
also important to mention that, from Definition 6, an user can choose a suitable
lower bound x from which an interpretation stops being consistent. Although the
previously given features in relation to the notion of x-consistent interpretation
are interesting, the following example shows that this definition is not appropiate
for our approach.

Example 1. Let P be a MANLP defined on ([0, 1],�,←1,&1, . . . ,←n,&n,¬)
together with the strong negation ∼. Considering the Gödel t-norm defined as
x &G y = min{x, y}, for all x, y ∈ [0, 1], an interpretation I : LitP → [0, 1] such
that I(l) = 0.5 for each l ∈ LitP, the standard negation ¬x = 1 − x, for all
x ∈ [0, 1] and the aggregator operator defined as A(ΠP, Ic) = min{Ic(p) | p ∈
ΠP}, we will compute the maximum value x from which the interpretation I is
consistent.

For each p ∈ ΠP, we obtain Ic(p) = ¬(I(p)&G I(∼ p)) = 1 − min{0.5, 0.5} =
0.5 and therefore, A(ΠP, Ic) = 0.5. As a consequence, the greatest value x such
that I is x-consistent is x = 0.5. ��

If we pay attention to the simple definition of the interpretation I in the
example above, since the truth value of a propositional p is equal to its negated
and it is 0.5, we expect that I be 1-consistent. However, we have obtained that
I is at most 0.5-consistent. Hence, the notion of x-consistency is not the most
suitable option for the framework we are interested in.

3.3 Consistency in Interlaced Bilattices

This section includes another fundamental definition in this paper. We need to
introduce some previous definitions in order to present the notion of consistency
given by Fitting [13].

Bilattices were proposed by Ginsberg [15,16] as a generalization of the four-
valued logic [2,30]. We are concerned here in a more restricted notion of bilattice,
which is known as interlaced bilattice.
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Definition 7 [13]. The tuple (B,≤k,≤t) composed by a set B together with two
partial orderings ≤k and ≤t is an interlaced bilattice if:

(1) each of ≤k and ≤t gives B the structure of a complete lattice;
(2) the meet and join operations for each partial ordering are monotone with

respect to the other ordering.

Now, we will consider an interlaced bilattice enriched with a special kind of
negation operator called conflation.

Definition 8 [13]. An interlaced bilattice (B,≤k,≤t) has a conflation operator
if there is a mapping − : B → B such that:

(1) if a ≤k b then −a ≤k −b;
(2) if a ≤t b then −b ≤t −a;
(3) − − a = a.

Unlike what one can expect from a negation operator, the conflation oper-
ator of an interlaced bilattice reverses the truth ordering ≤t and preserves the
knowledge ordering ≤k. This fact implies that one knows as much about −a as
one knows about a.

We are interested in the notion of consistency in interlaced bilattices with
conflaction which was introduced in [13] as follows.

Definition 9 [13]. Let (B,≤k,≤t) be an interlaced bilattice with a conflation
operator −. An element a ∈ B is consistent if and only if a ≤k −a.

This definition can be straightforwardly extended to the set of interpreta-
tions, as it is shown below.

Definition 10. Let P be a MANLP defined on the multi-adjoint normal bilattice
(B,≤k,≤t,←1,&1, . . . ,←n,&n,−) where (B,≤k,≤t) is an interlaced bilattice
with a conflation operator −. An interpretation I ∈ IB is consistent if the
inequality I(l) ≤k −I(l) holds, for each l ∈ LitP.

Observe that, Definition 10 is closely related to the notion of weak self-
contradiction interpretation introduced in Sect. 3.1. In fact, the inequality to
be satisfied is the same in both cases. The only difference is the choice of a lat-
tice or an interlaced bilattice as the algebraic structure from which the program
is defined. Consequently, we can ensure that the difference between these two
notions will affect mainly to the syntax of the program and not the semantics.

Moreover, given an interlaced bilattice (B,≤k,≤t) with conflaction −, it is
easy to see that (B,≤k) is a complete lattice and − is an involutive decreas-
ing mapping defined on (B,≤k). Hence, the notion of weak self-contradiction
interpretation can be defined in (B,≤k). As a consequence, the notion of consis-
tent interpretation given in this section can be seen as a particular case of weak
self-contradiction interpretation.
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3.4 Coherence Interpretation in Fuzzy Answer Sets

The last notion associated with the coherence concept which we will take into
account has been recently considered by Madrid and Ojeda-Aciego in [23,24].
This notion is based on the idea of accepting an interpretation contradicting the
next inference rule “If the truth value of a propositional symbol p is ϑ then the
truth value of ¬p is n(ϑ)”, where n is a negation operator. This fact involves a
possible lack of information but not an excess of information.

Definition 11 [23]. Given an interpretation I ∈ IL, we say that I is coherent
if and only if the inequality I(∼p) � ∼̇I(p) holds, for every p ∈ ΠP.

An interesting feature of this notion is that every interpretation lower than
a coherent interpretation is also coherent.

Proposition 1 [23]. Let I and J be two interpretations satisfying I � J . If J
is coherent, then I is coherent as well.

The contrapositive of Proposition 1 ensures that if an interpretation I is not
coherent, then the only possibility is having an excess of information, since every
interpretation J being I � J is also incoherent. This is one of the three main rea-
sons given by Madrid and Ojeda-Aciego [23,24] to guarantee that this coherence
notion is a good generalization of the consistency concept. Another reason is the
easy implementation of the condition of coherence, due to it only depends on the
negation operator. Finally, they emphasize the allowance of lack of information.
For instance, the interpretation I⊥, which represents no information, is always
coherent.

Hence, this definition together with the notion of self-contradiction are the
two more suitable definitions we can consider in order to formalize the meaning
of coherence in the multi-adjoint framework.

4 Selecting a Suitable Coherence Notion for MANLPs

In the previous section, the notions of self-contradiction, x-consistency, consis-
tency in bilattices and coherence interpretation were presented. We have seen
that x-consistency is not suitable in the logic programming framework which we
are interested in. In addition, we have also proven that the notion of consistency
in bilattices is just involved in the notion of self-contradiction. Hence, we have
two possible selections of the definition of consistency interpretation of a multi-
adjoint normal logic program. In this section, we provide two important reasons
in order to choose the most suitable consistency notion between them for the
multi-adjoint normal framework.

4.1 Weak Involutive Negations

The weak involutive negations are a particular case of negation operators, which
have been intensively studied in different papers [10–12,26]. They are interesting
negation operators which, in particular, generalize the residuated negations as
it was shown in [7].
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Definition 12. Let n : L → L be a negation operator. We say that n is a weak
involutive negation if and only if x ≤ n(n(x)) for each x ∈ L.

Hence, a suitable coherence definition in the multi-adjoint framework should
allow the consideration of this kind of negations.

If we analyze the coherence notion given by Madrid and Ojeda-Aciego, we
have that we can use weak involutive negations perfectly. Indeed, this kind of
negations provides an interesting property.

Madrid and Ojeda-Aciego explained in [23] that an alternative definition
to the one given initially by them (I(∼ p) � ∼̇I(p)), is the dual inequality
I(p) � ∼̇I(∼ p). However, they discard this possibility because the negation
operators ∼ satisfying ∼ (∼ x) < x for some x ∈ L does not verify the dual
inequality.

If we consider the useful weak involutive negations, then the coherence con-
dition I(∼ p) � ∼̇I(p) is equivalent to the dual inequality I(p) � ∼̇I(∼ p), as
the following proposition shows.

Proposition 2. Let (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal
lattice, ∼ a strong negation and P a multi-adjoint normal logic program defined
on this lattice. If n is a weak involutive negation such that n = ∼̇, then I ∈ IL

is a coherent interpretation if and only if I(p) ≤ ∼̇I(∼ p) for each p ∈ ΠP.

Therefore, the coherence notion used by Madrid and Ojeda-Aciego works
with the weak involutive negations. Nevertheless, from the notion of (weakly)
self-contradiction a strong condition arises. If we consider the weak involutive
negation n defined as

n(x) =

{
0 if x 
= 0
1 if x = 0

which is the residuated negation associated with the product and Gödel t-norms,
we have not any self-contradictory interpretation which is not a good property.

The main problem is that the definition of self-contradiction does not consider
both literals, the propositional symbol p and its negated ∼ p at the same time.

4.2 Intuitionistic Fuzzy Sets

An interesting discussion about the idea of the coherence notion can be made
from the point of view of intuitionistic fuzzy sets, which were firstly introduced
by Atanassov in [1]. This kind of sets are defined in a complete lattice as follows:

Definition 13. Given a complete lattice (L,�), an involutive negation operator
n : L → L and a non-empty set E. An intuitionistic L-fuzzy set A in E is defined
as the set:

A = {〈x, μA(x), νA(x)〉 | x ∈ E}
where the functions μA : E → L and νA : E → L define the degree of membership
and the degree of non-membership, respectively, to A of the elements x ∈ E, and
for every x ∈ E:

μA(x) � n(νA(x))
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After recalling the notion of intuitionistic L-fuzzy set, we will present the
relationship established between the definition of coherent interpretation given
by Madrid and Ojeda-Aciego and the previous one. In order to get this goal, we
need to consider two mappings μA, νA : ΠP → L defined as follows μA(p) = I(p)
and νA(p) = I(∼ p), for all p ∈ ΠP. Notice that, I(p) represents the degree of
truth and I(∼p) represents the degree of non-truth, for each p ∈ ΠP. Hence, the
definition of the mappings μA and νA is reasonable.

Considering an involutive negation n as the operator corresponding to the
symbol ∼, it can be proved that the inequalities μA(p) � n(νA(p)) and I(∼p) �
∼̇I(p) are equivalent, from which the following result arises.

Proposition 3. Let P be a MANLP defined on a multi-adjoint normal lattice
(L,�,←1,&1, . . . ,←n,&n,¬) and whose strong negation is denoted as ∼. Con-
sider an interpretation I ∈ IL and two mappings μA, νA : ΠP → L defined as
μA(p) = I(p) and νA(p) = I(∼ p), respectively. If the negation operator ∼̇ is
involutive, then the set

A = {〈p, μA(p), νA(p)〉 | p ∈ ΠP}
is an intuitionistic L-fuzzy set if and only if the interpretation I is coherent.

As a consequence, the coherence notion used by Madrid and Ojeda-Aciego
involves the philosophy of the Atanassov intuitionistic fuzzy sets, that is, if an
interpretation can be rewritten as an Atanassov intuitionistic fuzzy set as in
Proposition 3, then it is coherent.

This relationship provides another argument in order to choose the suitable
notion of coherence in the multi-adjoint framework.

The definition of self-contradiction cannot be related in this sense to this
kind of fuzzy sets since it does not consider the propositional symbol p and its
negated ∼ p at the same time. There are studies which associate intuitionistic
fuzzy sets with the definition of self-contradiction [5,8], but they are focused
on another problem and they do not provide any added value to the notion of
self-contradiction interpretation studied in Sect. 3.1.

According to the discussion carried out throughout the paper, we can con-
clude that the best option to model the consistency concept in multi-adjoint
normal logic programming is the one considered by Madrid and Ojeda-Aciego.

5 Conclusions and Future Work

This paper has presented an overview on the most interesting concepts related
to the consistency notion. The definitions corresponding to self-contradiction,
x-consistency, consistency in bilattices and coherence interpretation have been
interpreted in the multi-adjoint normal logic programming framework in order to
choose an appropriate coherence notion for this framework. In order to make this
choice, we have presented a detailed analysis on these notions which has disposed
the winner notion based on its affinity with the Atanassov intuisionistic fuzzy
sets and the weak involutive negations.
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In the future, we will study different operators in order to measure the coher-
ence of multi-adjoint normal logic programs and diverse tools for correcting the
possible noise in that programs.
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Abstract. The Relevance Vector Machine is a bayesian method. This
model represents its decision boundary using a subset of points from
the training set, called relevance vectors. The training algorithm of that
is time consuming. In this paper we propose a technique for initialize
the training process using the points of an opposite map in classifica-
tion problems. This solution approximate the relevance points of the
solutions obtained by Support Vector Machines. In order to assess the
performance of our proposal, we carried out experiments on well-known
datasets against the original RVM and SVM. The GOM-RVM achieved
accuracy equivalent or superior than to SVM and RVM with fewer rele-
vance vectors.

Keywords: Opposite Maps · Support Vector Machines · Relevance
Vector Machine · Support vectors · Relevance vectors

1 Introduction

Machine learning researchers seek increasingly efficient and sparse models
[9,14,18]. Support Vector Machine(SVM) [6] is a popular sparse model that rep-
resents its boundary decision through a subset from the training points, known
as support vectors. This support vectors generally are the closest points to the
boundary decision. Similarly, the Relevance Vector Machine (RVM) [15] also uses
another subset from the training points, known as relevance vectors, to represent
its decision function. However such relevance vectors generally are more disperse
over the training points than the support vectors, achieving an even more sparse
solution.

Two common characteristics between SVM and RVM are: (i) the func-
tional form, although the RVM being a probabilistic model, (ii) and the high
training-cost. In order to overcome the high training-cost in SVM, new training
approaches were proposed, such as the usage of metaheuristics [4], Divide-and-
Conquer solvers [7], and the Opposite Maps [12].

Modifications in the original RVM proposal were performed to modify the
training algorithm that started with all training points at once [13]. In [5] the
RVM marginal likelihood was analyzed in order to reduce the training cost. Then,
c© Springer International Publishing AG 2017
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in [16], another variation of RVM was proposed with an accelerated training
algorithm by starting with an empty set of relevance vectors. Such algorithm
was based in a sequential addition and deletion of candidate basis functions.
Furthermore, other approaches were applied to improve others aspects of RVM,
such as Markov Chain methods [2] and dependent relevance determination [17].

More specifically, the RVM training consists of an iterative process to obtain
the posterior distribution parameters. A critical point in this iterative process
is the computation of a covariance matrix that implies in an inversion of matrix
with order N , where N is the number of training points. The Opposite Maps
(OM) method is a technique that finds the samples located between classes in
a binary classification problem. The OM method was already used to obtain a
reduced-set SVM and Least Squares Support Vector Machine (LSSVM) classi-
fiers [12]. In this paper, an OM approach called Gaussian Opposite Maps (GOM)
is applied to select the training points to initialize the RVM training procedure,
maintaining the efficiency.

The remainder of the paper is organized as follows. In the next section, the
Relevance Vector Machine model for classification is described. Then, in Sect. 3,
our proposal, the Gaussian Opposite Maps Relevance Vector Machine (GOM-
RVM) is presented. Finally the results and discussions are given in Sect. 4.

2 Relevance Vector Machines for Classification

The Relevance Vector Machine (RVM) is a bayesian sparse model. The descrip-
tion for such model for classification is based on the work of [1,15].

The simplest representation of a linear discriminant function is obtained by
taking a linear function of the input vector so that

y(x,w) = wTx + w0, (1)

where w = (w1, ..., wD) is called weight vector and x = (x1, ..., xD)T . This is a
linear function of the input variables xi and this imposes significant limitations
on the model. Thus, extending the class of models considering linear combina-
tions of fixed nonlinear functions from the input variables, it becomes

y(x,w) = w0 +
M−1∑

j=1

wiφj(x), (2)

where φj(x) are known as basis functions.
The parameter w0 is sometimes called of bias parameter. It is often convenient

to define an additional constant basis function value φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wiφj(x) = wTφ(x), (3)

where w = (w0, ..., wM−1)T and φ = (φ0, ..., φM−1)T [1].
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Started that, in a two-class classification context, for a given the input x, it is
desired to predict the posterior probability of membership of one of the classes.
Following the statistical convention and generalize the linear model by applying
the logistic sigmoid link function σ(y) = 1/(1 + e−y) to y(x,w) and using the
Bernoulli distribution for p(t|w). Thus we can write the likelihood as

p(t|w) =
N∏

n=1

σ{y(xn,w)}tn [1 − σ{y(xn,w)}]1−tn , (4)

where, following from the probabilistic specification, the targets tn ∈ {0, 1} [15].
We can not integrate out the weights analytically and so are denied closed-

form expressions for either the weight posterior p(w|t,α) or the marginal like-
lihood p(t|α), with α a vector with N + 1 hyperparameters. For classification
problems, we can apply an approximation procedure based on the method of
Laplace [11]. This procedure seeks the posterior distribution mode to obtain the
weights wMP for the current fixed values of α. Maximize the log-posterior is
equivalent to maximize the posterior, thus the log-posterior is given by

log{p(t|w)p(w|α)} =
N∑

n=1

[tn log(yn) + (1 − tn) log(1 − yn)] − 1
2
wTAw, (5)

where yn = σ{y(xn,w)} and A = diag(α0, α1, ..., αN ). The function (5) is a
logistic log-likelihood function and it requires iterative maximization. Second-
order Newton methods may be applied effectively, since the Hessian of (5) is
explicitly computed.

The method of Laplace is a simple quadratic approximation to the log-
posterior around its mode. In this case the function (5) is differentiated twice to
give:

�w �w log{p(w|t,α)} |wMP
= −(ΦTBΦ + A), (6)

where B = diag(β1, β2, ..., βN ) is a diagonal matrix with βn = σ{y(xn)}[1 −
σ{y(xn)}] and Φ is an N × M matrix, called design matrix, whose elements are
given by Φnj = φ(xn) so that

Φ =

⎛

⎜⎜⎜⎝

φ0(x1) φ1(x1) ... φM−1(x1)
φ0(x2) φ1(x2) ... φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) ... φM−1(xN )

⎞

⎟⎟⎟⎠ . (7)

In order to obtain the covariance matrix Σ for a Gaussian approximation to
the posterior over weights centred at wMP, it is required to negate and invert
the Eq. (6). At the mode of p(w|t,α), using Eq. (6) and knowing the fact that
�w log{p(w|t,α)} |wMP

= 0, the parameters of posterior are denoted by

Σ = (ΦTBΦ + A)−1, (8)

wMP = ΣΦTBt. (9)
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Using the statistics Σ and wMP of the Gaussian approximation, the hyper-
parameters α are optimized using an iterative re-estimation procedure [10]. The
rule for updates the values of α is given by

αnew
i =

γi
μ2
i

(10)

where μi is the i-th posterior mean weight from Eq. (9) and the quantities γi are
given by

γi ≡ 1 − αiΣii, (11)

with Σii the i-th diagonal element of the posterior covariance from Eq. (8), com-
puted with the current α values.

When the hyperparameters are updated, a significant proportion of them go
to infinity and the corresponding weight parameters have posterior distributions
that are concentrated at zero. The basis functions associated with such para-
meters therefore play no role in the predictions made by the model and so are
effectively pruned out, resulting in a sparse model [1].

At the convergence of the hyperparameter estimation procedure, we make
predictions based on the posterior distribution over the weights, conditioned on
the maximizing values αMP and Σ. The predictive distribution for a new data
x∗ is given by

p(t∗|t,αMP,Σ) =
∫

p(t∗|w,Σ)p(w|t,αMP,Σ)dw, (12)

Since both terms in the integrand are Gaussian, this is readily computed, giving:

p(t∗|t,αMP,Σ) = N (t∗|y∗,Σ∗), (13)

with
y∗ = wMP

Tφ(x∗), (14)

Σ∗ = Σ∗ + φ(x∗)TΣφ(x∗). (15)

More details about the formulation of RVMs in [1,15].

3 Gaussian Opposite Maps Relevance Vector Machine

In this section, we describe our proposal that implies in the reduction of the
training points for RVM training algorithm initialization. In the Subsect. 3.1 the
method Gaussian Opposite Maps is presented. This method is used to select the
training points. In the Subsect. 3.2 we show how the RVM training algorithm
was adopted.

3.1 Gaussian Opposite Maps

The Opposite Maps (OM) method is a Self-Organizing Map-based technique
used for obtaining reduced-set SVM and LSSVM classifiers [12]. In this paper,
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the OM method was modified to work with gaussian mixture models instead of
Self-Organizing Maps in the issue of select points.

The OM finds points located at the region between two class in a classification
problem. Thus this method provides the classifiers such as SVM the support
vectors that generally closed to the decision boundary [6].

The procedure used in this paper to find that points is described below:

INIT. Are given the values of λ, that defines the number of points of each class
for reduced set, and δ that is the number of gaussians for the mixture model.

STEP 1. Split the available data set D = {(xi, ti)}ni=1 into two subsets:

D(1) = {(xi, ti)|ti = 1}, i = 1, · · · , n1 (16)
D(2) = {(xi, ti)|ti = 0}, i = 1, · · · , n2 (17)

where n1 and n2 are the cardinalities of the subsets D(1) and D(2),
respectively.

STEP 2. Execute two Gaussian mixture procedure with δ Gaussians in order
to obtain the probability distribution of subsets D(1) and D(2), denoted by
P (D(1)) and P (D(2)), respectively.

STEP 3. At this step the distributions P (D(1)) and P (D(2)) are used to find
the set of opposite map prototypes.
STEP 3.1. For each xi ∈ D(1), evaluate the P (D(2)) to create the vector c(2):

c
(2)
i = P (D(2),xi), i = 1, · · · , n1 (18)

where P (D(2),xi) is the value of probability P (D(2)) at the point xi.
STEP 3.2. For each xi ∈ D(2), evaluate the P (D(1)) to create the vector c(1):

c
(1)
i = P (D(1),xi), i = 1, · · · , n2 (19)

where P (D(1),xi) is the value of probability P (D(1)) at the point xi.
STEP 3.3. Let C(1) = [c(1)1 , c

(1)
2 , · · · , c

(1)
n1 ] a decrescent sorted vector with

values of c(1) and B(1) = [d1, d2, · · · , dn2 ], so that for all di = (xi, ti) ∈
D(2), P (D(1),xi) = c

(1)
i .

STEP 3.4. Let C(2) = [c(2)1 , c
(2)
2 , · · · , c

(2)
n1 ] a decrescent sorted vector with

values of c(2) and B(2) = [d1, d2, · · · , dn2 ], so that for all di = (xi, ti) ∈
D(1), P (D(2),xi) = c

(2)
i .

STEP 4. At this step the reduced set is formed.
STEP 4.1. Let X (1) be the subset of �λn1� first elements in B(1).
STEP 4.2. Let X (2) be the subset of �λn2� first elements in B(2).
STEP 4.3. The reduced set is given by X (rs) = X (1) ∪ X (2).

The points yield by OM in artificial datasets are shown in the Fig. 1. Notice
that the value of parameter λ the quantity of samples selected.



Gaussian Opposite Maps for Reduced-Set Relevance Vector Machines 463

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
at
ur
e
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Feature 1

(a) λ = 0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fe
at
ur
e
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Feature 1

(b) λ = 0.5

Fig. 1. The points selected by OM for the artificial dataset with overlapping. The
gaussian mixture was performed with 5 Gaussians distributions.

3.2 Gaussian Opposite Maps for RVM Training

The training of the RVM consists in an iterative process to obtain the posterior
distribution parameters given by Eqs. (8) and (9). Notice that the Σ value is
obtained through of an matrix inversion of order N because in the original
RVM training algorithm [15] all elements from the training set are used in the
initialization step. However, in each iteration a portion of α values going to
infinity meaning that the training samples represented by such values are pruned
out. But the training using all samples of training set still is time consuming.

The Gaussian Opposite Maps Relevance Vector Machine (GOM-RVM),
replace the complete training set D by X (rs), which is obtained after applying
the Gaussian Opposite Maps procedure described in the Sect. 3.1. That method
is a tentative of obligate that the RVM seek the relevance vectors more closest
of the surface decision like in the SVM.

4 Simulations and Discussion

We carried out some simulations on five datasets and present some results for
GOM-RVM, RVM and SVM in this section. We used some real UCI binary
datasets [8] and an artificial one, called Ripley. All datasets are detailed in Table 1
with its full name, abbreviation, total of patterns (#Patterns), and number of
features (#Features).

In our simulations 80% of the data examples were randomly selected for train-
ing purposes and so the remaining 20% of the examples were used for assessing
the classifiers’ generalization performance. We carried out 30 executions on each
dataset. All experiments were performed with Gaussian kernel for all models and
the parameters C of SVM, kernel width of RVM and GOM-RVM, and the λ of
the GOM-RVM were tuned by applying grid search with 10-fold cross-validation
over the training dataset. We have done this in order to follow the common
strategy use in RVM, GOM-RVM and SVM for parameter tuning.
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Table 1. List of datasets used in this work.

Dataset Abbreviation # Patterns # Features

Breast Cancer Winconsin BCW 683 9

Haberman’s Survival HAB 306 3

Pima Indians Diabets PID 768 8

Ripley RIP 1250 2

Vertebral Column Pathologies VCP 310 6

Table 2. Performance metrics for GOM-RVM, RVM and SVM. The accuracy (avg),
standard deviation (std), number of relevance vectors (#rv), number of support vectors
(#sv) and Friedman test (st), so that (✓) mean equivalent and (✗) mean not equiv-
alent results. The statistical test for RVM and SVM are compared with GOM-RVM
performance. The parameter of GOM-RVM δ = 5 in this simulation.

GOM-RVM RVM SVM

Dataset λ avg std #rv avg std #rv st avg std #sv st

BCW 0.4 0.95 0.01 20.9 0.96 0.00 19.7 ✗ 0.96 0.01 53.8 ✗

0.3 0.95 0.02 19.3 ✓ ✗

0.1 0.93 0.02 14.5 ✓ ✗

HAB 0.4 0.71 0.01 1.0 0.71 0.01 3.0 ✓ 0.69 0.01 211.3 ✗

0.3 0.71 0.01 1.0 ✓ ✗

0.1 0.71 0.01 1.0 ✓ ✗

PID 0.4 0.71 0.02 27.0 0.74 0.03 36.3 ✗ 0.73 0.02 363.1 ✓

0.3 0.73 0.02 19.8 ✓ ✗

0.1 0.63 0.01 16.6 ✓ ✗

RIP 0.4 0.93 0.01 11.9 0.93 0.01 18.0 ✓ 0.92 0.00 228.2 ✗

0.3 0.92 0.01 6.2 ✗ ✗

0.1 0.51 0.07 1.0 ✗ ✗

VCP 0.4 0.84 0.02 10.4 0.86 0.01 8.8 ✗ 0.80 0.03 95.0 ✗

0.3 0.84 0.02 8.5 ✗ ✗

0.1 0.84 0.01 2.9 ✗ ✗

In the Table 2, we report performance metrics in methodology aforementioned
80−20% on testing set averaged over 30 independent runs. We also show results
of applying the Friedman test [3]. As one we see, the number of relevance vectors
in GOM-RVM and RVM are lower than the number of support vectors in SVM.
However, the RVM achieved accuracy greater or equivalent than SVM. By the
statistical test, only with VCP dataset our proposal did not succeed equivalent
values to the RVM, but with λ = 0.1 and around two relevance vectors, our
proposal achieved an accuracy greater than SVM. Another important aspect of
the GOM-RVM is the growing of the accuracy alongside λ in almost all datasets.
Such behavior shows that only the closest points to the decision boundary have
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Table 3. Time results for GOM-RVM, RVM and SVM. These results were obtained
from the mean of 30 independent runs. The results presented are the mean time of
cross-validation (cv), mean time for the model fitting (tr) and the mean time of the
test procedure (te). For the GOM-RVM all results used δ equal to 5.

GOM-RVM RVM SVM

Dataset λ cv tr te cv tr te cv tr te

BCW 0.4 195.5346 0.6285 0.0006 40.9026 0.0189 0.0003 91.4337 0.0031 0.0008

0.3 96.6354 0.0654 0.0004

0.1 151.2689 0.2628 0.0005

HAB 0.4 80.7062 0.0876 0.0003 20.6726 0.0046 0.0002 63.3218 0.0017 0.0010

0.3 49.0774 0.0114 0.0003

0.1 74.6451 0.0710 0.0003

PID 0.4 188.9828 0.4533 0.0007 63.4298 0.0401 0.0004 201.3944 0.0770 0.0015

0.3 89.6275 0.1227 0.0004

0.1 129.5278 0.2336 0.0005

RIP 0.4 182.2381 0.1972 0.0006 101.6293 0.0545 0.0003 259.7003 0.0344 0.0017

0.3 111.1888 0.0373 0.0003

0.1 128.6005 0.1376 0.0004

VCP 0.4 79.0554 0.1385 0.0005 20.8471 0.0126 0.0002 62.5749 0.0024 0.0007

0.3 46.8261 0.0646 0.0003

0.1 65.0809 0.1966 0.0003

not all necessary information to the model fitting. We also notice that the number
of relevance vectors of the GOM-RVM is generally less than RVM.

In the Table 3, we notice that the time of the RVM is substantially less than
the SVM and the GOM-RVM, but the GOM-RVM achieved results similar to
the SVM. We see that the time of the GOM-RVM with λ = 0.1 is greater than
the results with λ = 0.3, an important observation is that for small values of λ,
the convergence of the RVM training algorithm becomes more difficult.

In the Table 4, we analyze the behaviour of the parameter λ in GOM-RVM.
We see that the Gaussian Opposite Maps achieved a reduction in the training
dataset amoung 50% for a λ = 0.4. The value of λ × 100 is equivalent to the
percentual of reduction when we have a balanced dataset.

Figure 2 shows the boundary decision of the GOM-RVM, RVM and SVM.
We see that the relevance vectors found by the GOM-RVM is located at more
closer of the boundary decision than RVM. The number of support vectors to
represent a linear function is substantially greater than the ones in other models.
We see also that the decision boundary of the GOM-RVM is similar to the RVM
decision boundary, although the models use different relevance vectors.

The behaviour of the models is sustained in the non-linear case presented
in the Fig. 3. The GOM-RVM found the same number of relevance vectors that
the RVM mantaining the shape of the decision boundary. The SVM generate a
decision boundary with shape smoothed for the non-linear case, but used more
support vectors.
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Table 4. Reduction rates of the GOM method for the datasets used in this work.

Dataset # Patterns λ # OM # Red

BCW 683 0.1 115.1 83.2%

0.3 229.6 66.4%

0.4 272.5 60.1%

HAB 306 0.1 22.1 92.8%

0.3 70.0 77.1%

0.4 93.0 69.6%

PID 768 0.1 105.6 86.2%

0.3 281.0 63.4%

0.4 356.7 53.6%

RIP 1254 0.1 252.4 79.9%

0.3 611.1 51.3%

0.4 740.2 41.0%

VCP 310 0.1 22.0 92.9%

0.3 63.1 79.7%

0.4 83.8 73.0%
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Fig. 2. Decision boundary of the models GOM-RVM, RVM and SVM. The Fig. 2(a) is
the dataset used for training the classfiers in this simulation.
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Fig. 3. Decision boundary of the models GOM-RVM, RVM and SVM for an artificial
binary dataset with overlapping.

5 Conclusion

In this work, we proposed a Relevance Vector Machine variation using the
Gaussian Opposite Map, called GOM-RVM. The key step in our proposal is
to replace the complete training set to the subset yielded by Gaussian Opposite
Maps. By employing GOM, we intend to obligate RVM to seek the relevance vec-
tors that lie close to the boundary decision just as the support vectors in SVM.

As one can see in the results, the GOM-RVM achieve accuracy equivalent and
in some cases superiors than to SVM and RVM with a less number of relevance
vectors. We conclude that all patterns of the training are important to the obtain
an efficient model fitting. This is justified by the growing of the accuracy together
with the λ value. Small values of λ are a problem for the convergence of the RVM
training algorithm, thus, this affect the time training and cause a falling of the
accuracy. Furthermore The points found by the Gaussian Opposite Maps was
exactly the points in the overlay region like the original proposed Opposite Maps.

Nowadays, we are working to extend the Gaussian Opposite Maps to work in
the kernel space, thus we wish find the opposite map points in a linear problem.
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Abstract. This paper proposes a platform both for parallelism of
self-organizing map (SOM) and the 2-opt algorithm to large scale
2-Dimensional Euclidean traveling salesman problems. This platform
makes these two algorithms working in a massively parallel way on
graphical processing unit (GPU). Advantages of this platform include
its flexibly topology preserving network, its fine parallel granularity and
it allows maximum (N/3) 2-opt optimization moves to be executed with
O(N) complexity within one tour orientation and does not cut the inte-
gral tour. The parallel technique follows data decomposition and decen-
tralized control. We test this optimization method on large TSPLIB
instances, experiments show that the acceleration factor we obtained
makes the proposed method competitive, and allows for further increas-
ing for very large TSP instances along with the quantity increase of
physical cores in GPU systems.

Keywords: Irregular topology · Massive parallel 2-opt · SOM · Doubly
linked network · Local spiral search · TSP

1 Introduction

The Traveling Salesman Problem (TSP) is well-known NP-hard, which indicates
a permutation tour that allows a salesman to travel each city once and return
to his starting city. Kohonen Self-organizing Map [1–5] and 2-opt local search
have been proved before that they can work together to get an intermediate
Euclidean TSP solution considering trade-off between quality and execution time
[6]. Also, for further acceleration, parallel strategies both for SOM [7–13] and
2-opt [14–17] have been separately studied for different applications base on
various multi-threads devices (SP2, GPU) in past two decades. However, it still
exists some problems in these previous works in terms of types of topology, level
of parallelism and memory occupancy.

Considering the general SOM working on predefined topological map, its
computation time can be divided into following three parts: a time required
to determine the closest winner node to the present input; a time required to
c© Springer International Publishing AG 2017
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determine winner node’s neighborhood and a time required for updating weights
(map updating) [8]. Here, the first operation can be accelerated by using mas-
sively parallel local spiral search to simultaneously find the closest winner node
for each input data [13,18]. The second and third operations are influenced by
network architecture of the topological maps that provide access to neighboring
nodes during training process of SOM. Topological maps are usually constructed
with unidirectional link network or buffer grid like those SOM applications in
[6,11,13,18]. However, training processes on the unidirectional network can only
go in one direction. Though algorithms using 2D grid can access arbitrary neigh-
boring node within needed radius centering one winner node, the topological
map is limited to regular topology structures, like these work in [6,21]. Besides,
method to access neighboring nodes on different topological map plays an impor-
tant role for applications that require preservation of initial topological relation-
ship between nodes during training process of SOM.

Previous parallel 2-opt implementations can not be defined as massively par-
allel method for the reason of tour ordering requirement. Like tailored data
parallelism that assigns one thread to treat one partial tour’ optimization [14],
function parallelism that one edge’ optimization is executed in parallel [16,19],
or geometrically parallelism that assigns one thread to search optimization in
divided sub-areas [20].

To solve these problems, in this paper, we propose a platform to implement
training process of SOM on irregular topological maps while preserving topo-
logical relationship between nodes and a modified 2-opt method to make 2-opt
happen in a massive parallel way. We test this platform on GPU taking advan-
tage of its multi-threads’ operation on global memory.

The following paper is organized as this: Sect. 2 presents related work about
parallel SOM and 2-opt; Sect. 3 presents the proposed platform including paral-
lel SOM working on topological maps and modified 2-opt framework with one
concrete implementation. And the last section includes the experiments and
discussion.

2 Related Work

For parallel implementations of SOM, two common parallel techniques of net-
work partitioning and data partitioning have been used both on CPU- and
GPU-based system, which has been discussed and compared in various liter-
atures [7–13]. The main difference between these two techniques is whether the
step of node update (map updating) happens independently in different part of
the network or simultaneously for all the input data after the training step. Net-
work partitioning technique breaks up the map into parts and each part has a
thread to update neurons separately. While using data decomposition technique,
map updating does not occur until all the input data has found its winner node
and trained its neighbor nodes [12]. For TSP applications, map updating step
indicates the relocation of each neuron on Euclidean space.

For parallel SOM specified to TSP applications, Wang et al. [21] proposes
parallel SOM implementations based on GPU cellular matrix model proposed
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by Zhang et al. [18], in which he use buffer grid as neural network structure and
assigns one thread to treat all input data in one cell sequentially. His training
step of SOM works on the integral buffer grid on global memory [21]. Different
from his work, the network in this paper is memorized by doubly linked network
both for SOM and 2-opt instead of intermediately by cellular matrix, the cellular
matrix model is only used for parallel local spiral search operator, and we assign
one thread for one city instead of for one cell.

For parallel 2-opt algorithms, Johnson et al. [15,19] discussed parallel schemes
like “geometric partitioning and tour-based partitioning”. One geometric parti-
tioning scheme proposed by Karp [20] is based on a recursive subdivision of the
overall region containing the cities into rectangles [19]. Verhoeven et al. [14] dis-
tinguished parallel 2-opt algorithms between data and function parallelism [14]
in which he proposed a tour repartitioning scheme that guarantees their algo-
rithm will not halt until it has found a minimum for the complete problem [14].
Van Luong et al. [17] and Rocki and Sudha [16] adopt parallel strategies similar
to “function parallelism” which means one sequential 2-opt is executed in paral-
lel, as Rocki and Sudha [16] distributes the calculation for one edge’s exhaustive
2-opt optimization between threads, but only the first edge’s optimization has
finished, the second edge begins its parallel 2-opt optimization.

3 Proposed Methods

Outline of the proposed parallel platform for SOM and 2-opt to large scale TSP
applications is shown in Algorithm1. It mainly includes three parts, first one for
initialization step, second one for parallel SOM and last one for parallel 2-opt.
Both the two algorithms work base on topological maps constructed by using
doubly linked network shown in Figs. 2(b) and 3. “Doubly linked” means that if
node A connects (buffers) node B, node B should necessarily connect (buffer)
node A, and every node only buffers its directly connected nodes.

Algorithm 1. Outline of the proposed platform.
1: Initialize topological maps, prepare cellualr matrix for local spiral search and data

transmission;
2: for iterations do
3: refresh cellular matrix for local spiral search;
4: kernels <<< ... >>> Parallel SOM processes with one thread for one city;
5: end for
6: kernels <<< ... >>> Project result of SOM to be an initial TSP solution;
7: while TSP tour can be improved do
8: Refresh TSP tour ordering from random starting point;
9: kernels <<< ... >>> Simultaneously check each edge’s 2-opt optimization in

one same tour orientation according to a certain neighborhood edge searching
rule;

10: Serially execute massive non-interacted 2-exchanges;
11: end while
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Fig. 1. Tour ordering plays an important role for 2-opt optimization.

Fig. 2. Comparison of necessary operation after one same 2-exchange using different
TSP tour order representations. (a): The algorithm needs extra temporary memory to
invert tour ordering for each 2-exchange. (b): The algorithm just needs to change links
of the related four cities and can go easily in two opposite directions from current edge
to get possible local optimization.

Fig. 3. Topological maps represented by doubly linked network. (a) doubly linked list.
(b, c, d) Topologies of rhombus, hexagonal and irregular that respect needed topological
properties. They share the same proposed method to access neighboring nodes for one
training step of SOM that preserves topological relationship between nodes.
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3.1 Initialization

The initialization step mainly includes the preparation of SOM maps with ini-
tialized neurons, cellular matrix for local spiral search and necessary data trans-
mission from CPU to GPU side.

The initial SOM maps can be predefined with properties that these topo-
logically close nodes correspond to close pixels in images as shown in Fig. 3 or
without properties, for example, just add two neighboring nodes to each neuron
to be an input TSP solution, as shown in Fig. 2(b). For a TSP instance with N
cities (“trainer”), the artificial doubly linked neural network (“learner”) is ini-
tialized with 2×N neurons [5]. Coordinate of these initial neurons are initialized
according to input cities by setting a small random difference.

One basic building block in this paper is local spiral search operator [22]
on 2-dimension Euclidean space. This operator works on cellular matrix [18,23]
to find the closest neighboring nodes for the proposed methods. The Euclidean
area that contains all the input N points is partitioned into cellular matrix where
each cell has its coordinate and buffers nodes lying on corresponding partitioned
area. For spiral search operator used by SOM, the algorithm should prepare two
cellular matrix for input data (“trainer”) and neurons (“learner”) separately.

After those steps, the input data, topological maps and the two cellular
matrix are copied to GPU side for parallel computing.

3.2 Parallel Self-organizing Map

Our parallel implementation of SOM contains following three steps in one epoch
(iteration, epo), as shown in Fig. 4.

1. Search winner node : spiral search each input point’s closest neuron;
2. Train neighborhood : iteratively access the directly connected neighbor nodes

according to topological distance and apply Kohonen’s learning low;
3. Refresh cellular matrix : refresh position of each neuron on cellular matrix.

The search winner node step mainly indicates massively parallel local spi-
ral search operation working on cellular matrix with one thread for one city.
For each input city, the algorithm gets cell coordinate of the cell where this
city lies on the “trainer’s” cellular matrix, and tries to find this city’s closest
neuron on “learner’s” cellular matrix beginning with the same cell coordinate.
If this cell on “learner’s cellular does not have neurons, the algorithm searches
its neighborhood cells one by one in a spiral manner centering the beginning
cell. Every searching operation stops at radius (lssr + 1) or maximum searching
range in cellular matrix (LSSR), lssr is the searching radius where the operator
encounters the first closest neuron. It has been proved that a single spiral search
operation on a bounded data distribution or a uniformed data distribution only
takes average O(1) complexity for finding the closest point [22].

The train neighborhood step in one epoch follows Kohonen leaning low that
is present in Eq. 1. Considering current epo’ iteration, a winner node p∗ has been



476 W. Qiao and J. Créput

Fig. 4. Kernel functions of the parallel implementation of SOM, we assign one thread
for one node.

found at previous step for one input city p, the Kononen learning low is applied
to p∗ and to neurons within a finite neighborhood of p∗ of topological radius r.
Topological distance from the winner node dG and learning rate α(epo) affect
the learning force of each neuron, p indicates the Euclidean position of input
city, wk(epo) represents Euclidean position of neurons and k indicates different
neighborhood neurons. The proposed method applies this learning low on doubly
linked network instead of 2D grid, as shown in Figs. 3 and 5(b). After training
step of one iteration, the algorithm updates SOM parameters for next iteration
by decreasing learning rate α(epo) and training radius r.

wk(epo + 1) = wk(epo) + α(epo) × exp(−dG(p∗, k)2/r2) × (p − wk(epo)) (1)

Fig. 5. SOM’ training procedure on two different network architectures. A black node
is one input point (a pixel or one city), red node is its winner node. (Color figure online)
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We should emphasize that the train neighborhood operation accesses all
needed neighboring neurons in an iterative manner of one “circle” after another
according to their topological distance from winner node. As shown in Fig. 5(b),
only all green neurons have been trained, the training procedure begins to train
these blue neurons. This iterative operation ensures that neurons with larger
topological distance dG would not move closer to the winner node than neu-
rons with less dG during one training process, which preserves the predefined
topological relationship between nodes.

Apply SOM to TSP. When applying SOM to specifically solve TSP applica-
tions, every initial city should have a chance to be a “trainer” to train the same
network. And it is easy to satisfy this requirement by assigning one thread for
one city. Once SOM has stopped, projecting one city to a non-occupied closest
neuron to generate an initial TSP solution for further optimization. One TSP
solution of SOM is shown in Fig. 6.

Fig. 6. A result of the proposed SOM implementation for lu980.tsp from TSPLIB.

3.3 Massively Parallel 2-opt with Data Decomposition

To optimize the TSP solution produced by SOM, various 2-opt strategies can be
used, while the nature attributes of 2-opt make its massively parallel implemen-
tation become more complex because of tour ordering requirement. Reasons are
following: first, one 2-opt move needs to consider tour ordering to avoid cutting
the tour, as shown in Fig. 1; second, massive correct 2-opt moves simultaneously
found in one same tour orientation may also cut the tour as shown in Fig. 7(b,c).
However, these massively non-interacted 2-exchanges shown in Fig. 7(a) can be
executed in parallel without cutting the tour.

Here, trying to get massively parallel 2-opt optimization while respecting
those nature attributes of 2-opt, one simple choice is to adopt a strategy of mas-
sively parallel 2-opt evaluation with sequential execution, simplified as “parallel
evaluation but sequential execution”. Its principle idea is straightforward: the
algorithm begins with simultaneously searching each edge’s 2-opt optimization
in one same tour orientation according to a certain neighborhood edge search-
ing rule; but only those non-interacted 2-exchanges shown in Fig. 7(a) can be
sequentially detected and executed on CPU side in one iteration.
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Fig. 7. Massively parallel 2-opt framework: parallel evaluation but sequential execution.
(a) Case of multiple 2-exchanges that do not influence with each other. (b, c) Cases of
multiple 2-exchanges interacting with each other: multiple 2-exchanges share one same
edge in (b); execution of the two 2-opt moves in (C) will cut the original integral tour.

Fig. 8. Massively parallel 2-opt framework with a certain edge searching rule.

Overall outline of this massively parallel 2-opt framework is shown in Fig. 8.
The algorithm begins with a TSP solution represented by doubly linked list
where each city Pm(m = 0, 1, 2...N − 1) has its two and only two links that are
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used to compose a TSP tour ring. In one iteration, the first step needs to follow
current tour solution and assign each city a unique increasing tour order. We
use this tour order to detect non-interactive 2-opt moves and indicate current
tour orientation in later operations. After this step of “refresh tour order”, the
algorithm copies necessary data from CPU to GPU side and launches kernel
functions to check each edge’s 2-opt optimization according to a certain neigh-
boring edge searching rule and store each edge’s 2-opt information to this edge’s
starting city according to current tour orientation. At last, the algorithm copies
each edge’s optimizing information from GPU to CPU side to sequentially detect
and execute these massive non-interacted 2-opt exchanges.

Under this straightforward parallel scheme, various concrete implementations
can be applied. For example, the algorithm can simultaneously search 2-opt
optimization for each edge along the integral tour or in a local search range.
Here, we apply a concrete edge searching rule through searching each edge’s
2-opt optimization among its neighborhood edges by using local spiral search
operator, namely 2-opt LSS.

4 Experiments and Analysis

We implement this combinatorial method on GPU taking advantage of GPU’s
parallel read/write operation on global memory with atomic control [24]. For
neighborhood 2-opt optimization using local spiral search (2-opt LSS), its opti-
mization capability compared with traditionally sequentially exhaustive 2-opt
along integral tour (2-opt EAT) is interesting. We test these two strategies base
on same TSP solution of SOM. Both the two optimization methods adopt an
evaluation strategy of “first optimized first accept”. As both these two methods
can not further optimize the TSP tour after fixed number of iterations, we set
a stop criterion to judge whether the tour has been optimized or not in current
iteration.

Parameter setting in Eq. 1 influences result quality and running time of SOM.
we apply same parameters shown in Table 1 for different TSP instances. αini

and αfinal are learning rate at the starting and final epoch; rini and rfinal
are neighborhood topological radius from the winner node at the starting and
final epoch; epo sets the number of iteration; LSSR sets the searching range on
cellular matrix for the spiral search operator.

Table 1. Parameter setting for SOM.

αini αfinal rini rfinal epo LSSR

1 0.01 100 0.5 100 Maximum

Average results of ten tests for each TSP instance are shown in Tables 2 and
3. In each table, 2-opt works based on same results of SOM. For each method
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Table 2. Test results of sequential implementations.

TSP

instances

Optimum SOM (sequential) 2-opt EAT (sequential) 2-opt LSS (sequential)

t(s) %PDM %PDB epo t(s) %PDM %PDB epo t(s) %PDM %PDB

uy734 79114 10.44 16.83 16.83 3.36 0.54 9.02 8.46 104.3 0.48 8.74 8.53

zi929 95345 14.86 17.53 17.53 6 0.83 7.08 6.27 399.7 0.31 7.27 6.87

lu980 11340 13.61 8.15 8.15 2.1 0.98 7.00 6.96 28.4 0.97 6.93 6.85

rw1621 26051 25.14 6.54 6.54 2.1 2.78 6.10 5.99 20.1 2.74 6.25 6.18

nu3496 96132 74.78 13.15 13.15 3.8 13.84 7.51 7.51 33.5 12.86 12.42 11.83

Table 3. Test results of parallel implementations.

TSP

instances

Optimum SOM (parallel) 2-opt EAT (sequential) 2-opt LSS (parallel)

t(s) %PDM %PDB epo t(s) %PDM %PDB epo t(s) %PDM %PDB

uy734 79114 1.21 18.79 11.86 4.4 0.57 8.61 7.17 117.7 0.014 8.65 7.26

zi929 95345 2.74 25.99 21.38 4.7 0.91 10.38 8.64 274.1 0.013 11.31 8.13

lu980 11340 1.58 10.66 8.74 2.5 1.02 7.87 6.77 32.9 0.022 8.05 6.51

rw1621 26051 2.46 10.35 7.68 2.2 2.77 8.26 6.43 25.4 0.039 9.01 6.47

nu3496 96132 5.76 16.99 9.30 3.9 14.15 8.29 7.19 99.1 0.153 10.32 7.65

∗2-opt EAT : Exhaustive 2-opt Along the Tour;

∗2-opt LSS : 2-opt Local Spiral Search.

listed in these two tables, “t(s)” is the average time taken in one test, including
necessary time for generating random data, refreshing TSP tour order and copy-
ing data from GPU to CPU; “%PDM” is the percentage deviation between the
mean solution and the optimum solution; “%PDB” is the percentage deviation
between the best solution and the optimum solution; “epo” indicates the average
quantity of iterations in one test.

Comparing running time of the two tables, acceleration of the proposed par-
allel implementations is obvious. And we think the acceleration factor would be
more obvious for larger TSP instances, as the proposed parallel platform both
for SOM and 2-opt takes O(N) complexity either for the memory size or for GPU
threads.

Comparing solution quality, we should mention that the proposed model deals
with a procedure similar to original standard SOM and we did not try to find the
best parameters to get best performance of SOM. However, maximum number
of iterations, running time and the result quality of the two 2-opt methods are
influenced by initial TSP results of SOM.

Visual results of one test in Table 3 are shown in Fig. 9. Our experiments
work on the laptop with CPU Intel(R) Core(TM) i7-4710HQ, 2.5 GHz and GPU
card GeForce GTX 850M.
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Fig. 9. Visual results of one test in Table 3. Columns from left to right for each TSP
instance: (a) Results of parallel SOM; (b) Results of sequentially exhaustive 2-opt along
tour; (c) Results of massively parallel 2-opt with local spiral search.

5 Conclusion

In this paper, we propose an alternative parallel computing platform both for
SOM and 2-opt. We test the proposed methods with GPU parallel computation
and present the obtained acceleration factor. We believe the acceleration factor
will increase for very large scale instances as capacity of parallel devices is grow-
ing. Further jobs would concentrate on tests for very large size TSP instances
and comparison with more different combinatorial optimization methods.
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21. Wang, H., Zhang, N., Créput, J.-C.: A massive parallel cellular GPU implementa-
tion of neural network to large scale Euclidean TSP. In: Castro, F., Gelbukh, A.,
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Abstract. In order to improve team productivity and the team interac-
tion itself, as well as the willingness of occasional volunteers, it is inter-
esting to study the dynamics underlying collaboration in a repository-
mediated project and their mechanisms, because the mechanisms pro-
ducing those dynamics are not explicit or organized from the top, which
allows self organization to emerge from the collaboration and the way
it is done. This is why finding if self-organization takes place and under
which conditions will yield some insights on this process, and, from this,
we can deduce some hints on how to improve it. In this paper we will
focus on the former, examining repositories where collaborative writing
of scientific papers by our research team is taking place show the charac-
teristics of a critical state, which can be measured by the existence of a
scale-free structure, long-distance correlations and pink noise when ana-
lyzing the size of changes and its time series. This critical state is reached
via self-organization, which is why it is called self-organized criticality.
Our intention is to prove that, although with different characteristics,
most repositories independently of the number of collaborators and their
real nature, self-organize, which implies that it is the nature of the inter-
actions, and not the object of the interaction, which takes the project
to a critical state. This critical state has already been established in a
number of repositories with different types of projects, such as software
or even literary works; we will also find if there is any essential differ-
ence between the macro measures of the states reached by these and the
object of this paper.

1 Introduction

The existence of a self-organized critical state [1] in software repositories has been
well established [6,7,13,22] and attributed to an stigmergy process [20] in which
collaborators interact through the code itself and through messages in other com-
munication media, such as Slack or an IRC chat application, task assignment
systems or mailing lists. In this critical state there are specific dynamic behav-
iors, like small changes provoking avalanches of other changes and long-distance
correlations that make a particular change in the codebase cause further changes
down the line. The dynamics of self-organized criticality is sometimes compared
c© Springer International Publishing AG 2017
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to that of a sand pile [18], in the sense that the actual shape tends to reach a
critical state, represented in the sand pile by a critical slope, and a single grain of
sand creates avalanches unrelated to the frequency of grains falling. This pile of
sand is also a simple model of a self-organized system that captures many of its
main characteristics, but its behavior is connected to the experience of software
developers and paper writers that experience certain periods of stasis followed
by avalanches of work, new code or new paragraphs without an apparent origin.

This anecdotal experience supports that software teams analyzed through
the repositories that support their work might also find themselves in this self-
organized critical state. Furthermore, the case for this critical state is supported
by several macro measures that certify the non-existence of a particular scale in
the size of changes [7,13,22], but in some cases they also exhibit long-range corre-
lations and a pink noise [21] in the power spectral density, with noise or variations
with respect to the normal frequency changing in a way that is inversely propor-
tional to it, higher frequency changes getting a smaller spectral density [13].

The state in which the team is has obviously an influence in its productivity,
with some authors finding this state favors evolvability of the underlying software
system [3], as opposed from the lack of this quality in software created by a top-
down organization process. That is why this quality has been mainly studied in
open source software systems which follow a more open model of development;
however, it might happen that, in the same way it happens in neural systems
[10], the self-organized state might be essential to the software development
process, as long as it is done in an application that allows collaboration such
as a repository managed by a source control system such as git. In fact, some
explanations have been offered via conservation laws [8] and other usual complex
network mechanisms such as preferential attachment [11].

After some initial exploration of the subject and developing the tools needed
to mine repositories in GitHub [15], in this paper we are interested in finding
out whether these mechanisms are exclusive to software teams or if, indeed, self-
organized criticality can be found also in other repositories. In our research team
we are committed to open source and open science, developing all our work in
open repositories hosted in GitHub. The repository is open since the first moment
of writing a paper, and the repository itself hosts also data and, like in the case
of this particular paper, the code used to extract data. We interact throughout
writing the paper via comments in the paper and issues, that is, work orders
where you can comment and that can also be closed once the issue has been
cleared or fixed. Developing a paper using a repository is a good practice that
allows an easy distribution of tasks, attribution, and, combined with the use of
literate programming tools such as Knitr [23], that allow the embedding of code
within the text itself, provide a closer relationship between data and report and,
of course, easier reproductibility.

That is why, after examining and establishing the existence of this state in the
software repository for the Moose Perl library [13] and books written mainly by
a single person [14], in this report we are going to work on a repository for sev-
eral papers in which our research group has been working for different amounts
of time, from a few months to more than a year. In particular, one of the papers,
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which was already the object of a previous report [15] has been chosen since it
has been a work in progress for more than one a year until it was eventually pub-
lished [2]. The other three papers chosen are in one case an evolution of a paper
which was initially published in a conference and that is now a work in progress
[19], another that contains several papers published in diverse venues and that are
evolution of this one [16], and finally a paper that has been in progress for about a
year, but has not been finished yet. These papers have been chosen because they
had a certain length, with more than 50 commits (or changes). Besides, they were
available and we knew their circumstances. Whether they are or not representa-
tive of a larger corpus remains to be seen, and we will try to examine this possibil-
ity in the conclusions. The papers are plain text with LaTeX commands, and, in
some cases, also R commands in those papers using Knitr. The inclusion of lines
and commands written in computer languages would indicate that these papers
are halfway between a book, which is mainly text, and an application or library,
which is mainly code. We will see if this hybrid nature translates to the measures
taken over the repository and its dynamics.

After presenting a brief state of the art next, followed by the methodology,
obtained results will be presented and eventually we will expose our conclusions.

2 State of the Art

As far as we know, there has not been a continuing line of research on self-
organized criticality in teamwork. Researchers have thoroughly proved that soft-
ware repositories seem to be in a SOC state, [7,22], including our own reports
[13–15] where we examine and establish the existence of repositories in a critical
state to which they have arrived via self-organization; the fact that these reposi-
tories have different characteristics in terms of the number of users, age and type
of information they hold implies that self-organization, as should be expected, is
achieved with relative ease. In fact, this state of self-organized criticality quan-
titatively proves what has been already established via qualitative analysis, the
fact that in many successful software projects, developers self-organize [4], which
is the preferred way of working in distributed and volunteer teams [5]. In fact,
this way of organization matches our own experience in development of open
source projects such as [12,17], which are developed mainly by one or a few
coders, helped sporadically by other coders that find an error or adapt the code
to particular situations. In fact, this self-organization has also been observed in
similar projects such as Wikipedia.

This self-organization, eventually, might produce a critical state given the
necessary conditions. However, there has been no work going further and proving
this even in the case that work is done by a few persons and on repositories that
are not devoted to software development.

In this paper we will examine different repositories with the same purpose, all
devoted to the collaborative writing of scientific papers, but each with a different
age, in order to try and find out if self-organization arrives simply with age and,
if so, what seems to be this critical age.
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3 Methodology

In this paper we will work with the size of changes to a particular set of files
in the repository; since repositories include other artifacts such as images or
style files we, via a wildcard, select only the file or files we are interested in. To
extract information about changes to these files in the repositories, we analyze
the repository using a Perl script that runs over the git log and notes the size of
the changes that have been made to all files.

Since changes include both the insertion and deletion of lines within those
files, the largest of these values is taken; in particular, this means that the
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Fig. 1. Lines changed per commit in a log-y scale, with x scale corresponding to commit
number. The four charts correspond, starting with the top right, DCAI, PPSN, book
prediction, volunteer computing at the lower bottom. This order is going to be the
same across all figures from now on. This order has been chosen, as it can be observed,
to follow the size of the log, with the paper with the smaller number of commits first
and the one with the largest number of commits last.
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addition of all changes will not be equal to the sum of the sizes of all files.
A change in two lines will appear in a diff as “2 insertions, 2 deletions”, adding
up to 0; that is why we consider the larger of these two values; the main reason
for doing so is also that in fact, the algorithm that computes changes in the
repository examines similitude in lines and counts changes in two lines as two
insertions and two deletions. There is no way to find out whether there have
been actually two lines added somewhere and two deleted somewhere else, so in
absence of that, we opt for the heuristic of using the largest of these two values
as change size.

The script generates a .csv file with a single column with the sequence of
changes of size in the files of interest in each repository. These files, as well as
the repositories where they have been measured, are available with a free license
in the repository that also hosts this paper. The sequence of changes for the 4
files is shown in Fig. 1.

The x axes for these timelines does not correspond to physical time, but
simply to sequence. In this sense, there is an important difference between our
research methodology, which considers discrete changes, to papers such as [9],
which take into account daily changes. We think that examining discrete changes
does not impose a particular rhythm, namely, daily, on the changes, but lets the
repository expose its own rhythm; it also allows us to examine slow-changing
repositories such as these ones, that can be static for a long time to experience a
burst of changes all of a sudden; precisely these changes can indicate an avalanche
that is a symptom of the underlying self-organized criticality state.

Once the information from the repositories has been extracted, we proceed
to analyze it in the next section.

4 Results

A summary of the statistical characteristics of the size of the commits, in number
of lines, is shown in Table 1. This table shows that, at least from a macro point
of view, median and averages are remarkably similar to the ones found in other
studies [13,14], with the median between 9 and 22 lines and the average between
24 and 54. The fact that the average is so separated from the median is already
a hint that this is a skewed distribution. The book analyzed in [14] had a median

Table 1. Summary of statistical measures for the four papers we have been analyzing
here; SD stands for “Standard Deviation”

Name Mean Median SD

2016-DCAI ALL ALL 51.54167 21.5 110.44531

2016-ea-languages-PPSN ea-languages 24.18800 11.0 41.21518

2015 books ALL 32.05263 9.0 67.89211

modeling-volunteer-computing ALL ALL 54.68810 13.0 193.09572
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of 10 lines, but a mean of 150 lines changed, in a distribution that is different,
much more skewed towards larger sizes, while the software library analyzed in
[13] had a median of 9 and a mean of close to 32, which is remarkably similar
to one of the papers analyzed here. This implies that the concept of session, or
size of changes committed together, might be very similar no matter what is the
thing that is actually written.

The timeline of the commit sizes is represented in a line chart in Fig. 2 with
logarithmic or decimal y scale and smoothing over several commits, either 10
or 20, depending on the color. The x axis is simply the temporal sequence of
commits, while the y axis is the absolute size of the commit in number of lines.
The serrated characteristic is the same, as well as the big changes in scale, with
some periods where small changes happen and other that alternate big with
small changes. A certain rhythm can be observed, which hints at large-scale
correlations, that is influence of changes happening now over changes that occur
several, or many, steps afterwards, in the future.
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Fig. 2. Timeline of changes for the four papers, with lines smoothed over 20 and 10
changes, shown in different colors. (Color figure online)
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Besides, these changes in scale might mean that commit sizes are distributed
along a Pareto distribution. We will examine this next, representing the number
of changes of a particular size in a log-log scale, with linear smoothing to show
the trend in Fig. 3.
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Fig. 3. Number of changes vs size in a log-log scale.

This chart show what seems to be a Zipf distribution, with the commit sizes
ranked in descending order and plotted with a logarithmic y axis. This distri-
bution shows, in all cases, a tail corresponding to big changes. This might be
simply a consequence of different practices by different authors, with some pre-
ferring atomic changes to single lines or paragraphs and others writing down
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whole sections; in some cases, it corresponds also to reuse of common parts of
papers (authors, acknowledgements, description of a method) to create the ini-
tial versions of the paper; finally, in some cases comments are deleted before the
final version is submitted, so these tails are not really unexpected. If you follow
the charts also in the direction of increasing number of commits it can be seen
how the linearity of the distribution becomes more crisp; in the first two papers
there are simply not enough number of commits to actually show this Pareto
distribution, but in the last case there is a very clear log-log distribution.

These distributions can, in fact, be linearly fit to a log-log distribution with
coefficients shown in Table 2. These values are also similar to those found in [13],
where the intercept was 6.02, above the table, and the slope −0.001, a very mild
slope that hints at a big number of changes and might in fact indicate that,
as would be expected, the intercept increases and the slope decreases with the
number of changes. The shape of the line in [13] in fact might be more similar
to a broken stick; this is a matter that deserves further investigation. In the case
of [14] values are somewhere in the middle, 5.7 and −0.96. The slope is quite
similar indeed, and the intercept might point to the fact that size changes are
larger when fiction is being written, which also matches the macro averages and
medians observed above.

Table 2. Summary of coefficients of the linear models adjusting the number of lines
and size.

Name Coefficient Intercept

2016-DCAI ALL ALL 4.009659 −1.873740

2016-ea-languages-PPSN ea-languages 4.225859 −0.926569

2015 books ALL 4.803154 −1.088837

modeling-volunteer-computing ALL ALL 4.922665 −1.065027

The scale free nature of the work in the repository can be more properly
observed by looking at the changes in some other way, ranking them by size and
representing them in a chart with a logarithmic y axis, as well as in the form of
an histogram. This is done in Fig. 4.

The Zipf exponents and intercepts for these models are shown in Table 3,
and are of the same order, but different range, of the one found in [14], where
it hovers around 6 for the intercept and −0.01 for the slope. The evolution in
the nature of the distribution can be observed, from a more or less straight line
in the first cases, to something more similar to a broken stick model in the last
one, although it can still be linearly fit to a log scale and there is a regime of
size changes that is still logarithmic in scale. Whatever the actual distribution,
there is no doubt that changes do not organize themselves along a central value
and that there is scale-free nature in them, which is, besides, independent of the
age or total number of changes of the paper, as has been shown above.
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Fig. 4. Changes, ordered by size, and represented in a logarithmic y axis. Side by side,
the histogram and Zipf chart for the four papers analyzed.

Table 3. Summary of Zipf coefficients of the linear models adjusting the number of
lines and size.

Name Coefficient Intercept

2016-DCAI ALL ALL 5.502401 −0.0700053

2016-ea-languages-PPSN ea-languages 4.605605 −0.0177415

2015 books ALL 4.906922 −0.0141869

modeling-volunteer-computing ALL ALL 5.122338 −0.0123126

Finally, these scale distributions hints at the possibility of long-scale correla-
tions, but in order to find this out, we will have to plot the partial autocorrelation
of the sequence, that is, the relationship between the size of a change and the
rest of the changes in the sequence. This is computed and plotted in Fig. 5.
Autocorrelation is significant only if the lines go over the average plotted as a
dashed line. The long distance correlations, already found in [13], are present
here. In that case, there was positive autocorrelation in the 21 commit period;
in this case, it appears at 25 and 15. It shows, anyway, that the size of a commit
has a clear influence further down writing history, with high autocorrelations
around 20 commits. In these repositories of increasing age, we find that actual
long-distance autocorrelation only happens when they age, with no long-distance
significant autocorrelation in the first two repositories, and a significant one in
the two bottom repositories. In both cases, correlation happens at the distance
of 13–25 commits, exactly as it happened before. However, autocorrelation seems
to disappear in the older repositories, at least for that long distances. This might
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Fig. 5. Autocorrelation plot. The order of the papers is the same as in the rest of the
figures, from top left to bottom right, DCAI, PPSN, book prediction and volunteer
computing.

indicate significant differences for other types of work, but it will need further
research to find out, in a more precise way, the ranges of distances where auto-
correlation is significant.

Once two of the three features of self-organized criticality have been proved,
at least in some of the repositories, we will focus on the third, the presence of
pink noise, as measured by the power spectral density. This is shown in Fig. 6,
where the power spectral density is shown for the four papers. A pink noise would
be characterized by a spectrum with a negative slope, with decreasing power the
higher the frequency.
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Fig. 6. Spectral density of changes. The repos are in the same order as above.

In this case, we see that this trend appears with more or less clarity in
two of the four papers, the two on the right, although the lower-left paper
(book-prediction) also exhibits it to a certain point. In fact, it is much clearer
in the second paper, PPSN, which, on the other hand, does not exhibit long-scale
autocorrelation.

Once the three main features of systems in self-organized state have been
measured for the papers under study, we will present in the next Section our
conclusions.
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5 Conclusions

In this paper we were interesting in finding traces of self-organized criticality
in the repositories of scientific papers by looking for certain features that are
peculiar to the critical state: scale-free behavior, long-distance correlations and
pink we.

The methodology that we have used counts size of commits as a discrete
measure, not dailies or other time measure, since development often stops for
several days more clearly in the case of this paper, where nothing was done for
months, and nothing between submission and the first revision. We think that
commits, and not actual time measures, will show a much clearer picture of the
state of the repository, since they correspond to units of work done and are also
related to discrete tasks in the ticketing system.

After analyzing the software repositories that hold the papers, we can con-
clude that, in fact, all repositories analyzed show some of the features, specially
freedom of a particular scale in the size of the changes; however, we could con-
clude from the measures taken above that there is a certain amount of interaction
needed before the critical state settles. From the limited amount of repositories
we have studied, we could put this number at around 100 changes, but of course
there is further studies to be made in this subject. In particular, this would indi-
cate that the only condition needed for the critical state to arise is the age of the
repository, or maybe its size. Since the four papers were developed by different
number and authors, the presence of absence of other artifacts might also play
a role. However, we do not think that is the case.

In line with our open science policy, you can draw your own conclusions
on your own repos by running the Perl script hosted in http://github.com/JJ/
literaturame. This repository holds also the data used in this study, as well as
the source of this paper.

As future line of work, we will first try to gather data from more reposito-
ries, specially in the boundary where we think self-organization arises, around
100 commits, and these with other type of repositories, and see if there are some
outstanding and statistically significant differences, which would be attributed
rather than the substrate itself, to different types of collaboration. We would
also like to make more precise models of the ranked change sizes, as well as the
relation between number of changes and its size. A study of particular circum-
stances of every repository will also help us to understand what self-organization
means and, finally, as was our initial objective, if this fact can be used to create
methodologies that improve productivity in work teams.

Acknowledgements. This work has been supported in part by: de Ministe-
rio español de Economı́a y Competitividad under project TIN2014-56494-C4-3-P
(UGR-EPHEMECH).
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Abstract. The modularity and hierarchical structures in associative
networks can replicate parallel pattern retrieval and multitasking abilities
found in complex neural systems. These properties can be exhibited in an
ensemble of diluted Attractor Neural Networks for pattern retrieval. It
has been shown in a previous work that this modular structure increases
the single attractor storage capacity using a divide-and-conquer approach
of subnetwork diluted modules. Each diluted module in the ensemble
learns disjoint subsets of unbiased binary patterns. The present article
deals with an ensemble of diluted Attractor Neural Networks which is
studied for different values of the global number of network units, and
their performance is compared with a single fully connected network
keeping the same cost (total number of connections). The ensemble sys-
tem more than doubles the maximal capacity of the single network with
the same wiring cost. The presented approach can be useful for engineer-
ing applications to limited memory systems such as embedded systems
or smartphones.

Keywords: Hopfield network · Ensembled learning · Storage capacity ·
Network size · Divide-and-conquer approach · Diluted connectivity

1 Introduction

One of the main trends of research in Machine Learning, along with “deep learn-
ing”, is the study of “networks of networks”. One central question of interest is
comparing a net of nets with overall N neurons and K degree with only one
single net with the same size (constant N × K) and check their different per-
formances in terms of storage/load, computational complexity, etc. In this sense
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recent literature has focused on how the modularity and hierarchical structures
in associative networks allow to replicate parallel pattern retrieval and multi-
tasking abilities exhibited by complex neural and immune systems as well as the
proposal for both theoretical and practical applications [1–4,17].

In this way, the motivation of this work is to increase the information process-
ing (storage and retrieval) capacities using an ensemble Attractor Neural Net-
work (ANN) with modular diluted components. These diluted modules have the
advantage of increasing the storage capacity per connection [6], as well as to
decrease the wiring/computational cost of the network.

In a recent work [14], a proposed Ensemble of Attractor Neural Network
increases the maximal capacity when compared to a single Attractor Network
of same cost given by the total number of connections (N × K), which was kept
constant for both the ensemble and the single network systems. Following this
finding we compare different ensembles for different number of Network units N ,
keeping the network dilution γ = N/K, constant. The ensemble and single net-
work systems are studied for non-pathological dilution levels. Diluted networks
on different connectivity topologies have been extensively studied [7–9,11], and
they proved to overcome both wiring and computational costs. Thus, an ensem-
ble of Attractor Neural Networks (ANN) diluted modules is used in order to
improve the processing (storage and retrieval) of unbiased binary random pat-
terns. The main idea is to use a divide-and-conquer approach. A single fully
connected ANN is divided into diluted subnetworks, each of which being spe-
cialized in learning a disjoint pattern subset. By adding all the ANN components,
the storage capacity of the ensemble is increased. It is shown that the modular-
ized ANN model shows an improved patterns’ storage capacity, compared to a
single ANN model, at similar computational and wiring costs.

In González et al. [14], we have studied the ensemble system keeping the
number of units N constant, and comparing the performance of the systems
for different values of modules number n and modules dilution γ. In the afore-
mentioned work we used a fixed value of N as larger as possible for comparison
purpose with the statistical mechanics literature. Now we are interested in study-
ing the ensemble systems for different values of network units N . The motivation
behind the analysis of the network size in terms of number of units is that for
small ANN systems (low N), the storage of P patterns is limited by the upper
value of P = αc × N,αc ∼ 0.14 for the fully connected network [16], and by
P = αc × N,αc ∼ 0.64 for extremely diluted networks [5]. For large N the net-
work manage to store a reasonable number of patterns. However, this is an issue
for small values of N . Using an ensemble of ANN the storage of the system is
increased [14], which can be useful for system with small number of units N .
Real world data can be found where the number of patterns is of the order of
the number of features O(P ) = N , in such cases the proposed ensemble can be
valuable to deal with the problem.

In the following Sect. 2 we describe the neural and network model. In Sect. 3
the modularized system is described. In Sect. 4 we present the main results and
finally, Sect. 5 concludes the paper discussing the implications of our findings.
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2 Neural and Network Model

In this section the proposed ANN ensemble model is rigorously described, start-
ing with the neural coding, the network topology, and both learning and retrieval
dynamics. A schematic representation of the modularized ANN system is illus-
trated. Finally, the information measures of the network and ensemble system
are defined.

2.1 Coding, Topology and Dynamics

At any given time t, the network state is defined by a set of binary neurons
σt = {σt

i ∈ {−1,+1}, i = 1, . . . , N}. The purpose of the network is to recover
a set of independent patterns {ξµ, μ = 1, . . . , P} that have been stored by a
learning process. Each pattern, ξµ = {ξµi ∈ {−1,+1}, i = 1, . . . , N}, is a set of
site-independent unbiased binary random variables, p(ξµi = {−1,+1}) = 1/2.

The synaptic couplings between the neurons i and j are given by the adja-
cency matrix Jij ≡ CijWij , where the topology matrix C = {Cij} describes the
connection structure of the neural network and in W = {Wij} are the learning
weights. The topology matrix is built by random links connecting each neuron
to K others uniformly distributed in the network [10]. The network topology is
then characterized by the connectivity ratio defined by γ = K/N . An extremely
diluted network is obtained as γ → 0, and the storage cost of this network is
‖J‖ = N ×K if the matrix J is implemented as an adjacency list of K neighbors.
The matrix J is considered to be symmetrical, i.e. Jij = Jji.

The task of the network is to retrieve a pattern, ξ ≡ ξµ, starting from
a neuron state σ0 which is close to it. This is achieved through the neuron
dynamics

σt+1
i = sign(ht

i), (1)

ht
i ≡ 1

K

∑

j

Jijσ
t
j , i = 1, . . . , N, (2)

where ht
i denotes the local field of neuron i at time t.

The learning algorithm updates the weight matrix W according to the Hebb’s
rule,

Wµ
ij = Wµ−1

ij + ξµi ξµj . (3)

Weights start at W 0
ij = 0 and after P learning steps, they reach the value

Wij =
∑P

µ ξµi ξµj . The learning stage displays slow dynamics, being stationary
within the time scale of the faster retrieval stage in Eq. (1).

2.2 Retrieval Overlap Measures

In order to evaluate the network retrieval performance, two measures are consid-
ered: the global overlap and the load ratio. The overlap is used as a measure of
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information, which is adequate to describe instantaneously the network’s ability
to retrieve each pattern. In this case, the overlap mµ between the stationary
neural state σ∗ and the corresponding pattern ξµ is:

mµ ≡ 1
N

N∑

i

ξµi σ∗
i , (4)

which is the normalized statistical correlation between the learned pattern ξµ

and the stationary neural state σ∗ after a sufficient enough long time.
One lets the network evolve according to Eqs. (1) and (2), and measures the

overlap between the network states and the patterns. When the overlap between
a given pattern and the corresponding neural states of the network is m = 1,
the network has retrieved the pattern without noise. When the global overlap
m = 0, the network carries no macroscopic order. In this case, the corresponding
pattern cannot be retrieved. For intermediate values of m, where 0 < m < 1,
the pattern has been recovered with a given level of noise (1 − m).

One is also interested in the load ratio α ≡ P/K, that accounts for the
storage capacity of the network. When the number of stored patterns increases,
the noise due to interference between patterns also increases and the network is
not able to retrieve them. Thus, the overlap m goes to zero. A good trade-off
between a negligible noise (i.e. 1 − m ∼ 0) and the storage of a large pattern set
(i.e. a high value of α) is desirable for any practical purpose model.

3 Modular Set of Diluted Attractor Neural Network

A schematic representation of the single ANN is presented in Fig. 1-left. The
connectivity ratio γ is diluted with K < N . A set of P patterns ξ is presented to
the network in a learning phase, represented with the red dashed arrow. Then,
this set of patterns is presented in a retrieval phase in order to test the recall
abilities of the network in terms of the retrieved patterns load α, and the quality
of the retrieval m. This is represented with the solid black arrow.

In Fig. 1-right, a schematic representation of an ensemble of ANN modules
with a number of n components is presented. The connectivity in each ANNb

module b is highly diluted with Kb � N , b ∈ {1, . . . , n}. Note that, in order
to keep the computational cost of the single ANN and the ANN ensemble
the same, one uses K = Kb × n. The set of patterns is divided into disjoint
subsets of uniform size Pb = P/n, and each pattern subset is learned by its
corresponding ANNb module as represented with the red dashed arrows. E.g.
{ξµ, μ = 1, . . . , P/n} for the first module ANNb, b = 1, as shown in Fig. 1-right.
The solid black arrows in Fig. 1-right, represent the retrieval stage, in which all
the pattern subsets are presented to all ANN modules in order to test the dis-
crimination among them. The target patterns are considered as retrieved by the
ANN module with the higher overlap value over the retrieval threshold θr, i.e.
max(mµ

b ) > θr. For comparison purpose, θr is assumed to take the same value
for each component in the ensemble, as well as, for the single ANN system.
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Fig. 1. Schematic representation of a single ANN (left) vs. an ANN ensemble (right)
with n components. Red dashed lines represent the learning patterns set flow, black
solid lines represent the retrieval patterns sets flow. Overall connectivity in both cases
is the same with K = n × Kb, Kb � N . Retrieval threshold θr is the same for both
cases. Color online.

3.1 Retrieval Measures of the ANN Ensemble

In order to evaluate the ensemble performance, one may define the retrieval
efficiency R, as the number of learned patterns that are successfully retrieved
R = Pr

Pl
, where Pr is the overall number of retrieved patterns that satisfy

mµ > θr, and Pl is the overall number of patterns presented to the network
during the learning phase. One has that Pl ≥ Pr. When the super-index b is
used, P b

r , P b
l refer to the ANNb module b in the ensemble. Here θr is the retrieval

threshold. The mean retrieval overlap M is calculated as the mean retrieval over-
lap over all patterns subset μ ∈ 1, 2, . . . , Pl, M = 〈mµ〉 = 1/Pl

∑Pl

µ=1 mµ. It is
worth noting that in the case of the ANN ensemble, the retrieval pattern load
is calculated as αR = Pr

Kb×n , where n is the number of subnetworks. Thus, we
use Kb × n = K constant for all network ensembles studied, where K is the
connectivity of the single “dense” network. Also, it is of worth to define the
pattern gain G of the ANN ensemble by taking the single ANN system retrieval
performance in terms of recovered patterns (P s

r ) as baseline, and it is given by
G = P e

r /P s
r . Here P e

r stands for the number of total recovered patterns by the
ANN ensemble and P s

r stands for the patterns recovered by the single network
at the maximum retrieval pattern load max(αR).

For a highly diluted connectivity the pattern storage is moderate. Although,
if one combines several ANN modules in an ensemble learning process, one can
increase the overall number of retrieved patterns. The statement of this work
is that one can increase the stored number of patterns α, with a good quality
of retrieval m using an ensemble of ANN modules, with similar computational
costs, when compared with a single less-diluted ANN.
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In order to measure the performance for comparison purpose, both the ANN
ensemble and the single ANN, should have comparable computational costs. This
is detailed in the following subsection.

4 Simulation Results

The single and ensemble components are studied for different values of N network
units, namely N = {1, 2, 3, 4, 5} × 103. The threshold is kept constant at the
value θR = 0.5 for all systems. Note that the wiring cost of the system N ×K ×n
is the same for all systems under study for the sake of comparison. That is we
use n = {20, 10, 1} for γ = {0.05, 0.1, 1.0} respectively.

4.1 Ensemble System vs Single Network

In Fig. 2 is shown the performance of three single systems vs. six ensembles
systems. In the top panels of Fig. 2 are shown single (n = 1) module systems of
fully connected networks γ = 1.0 with N = 5000, 3000, 1000. One can appreciate
that the larger system manages to store a larger number of patterns Pr. For
N = K = 1000, the network manages to recover Pr = 135, for N = K = 3000
it recovers Pr = 395 and N = K = 5000 the recovered patterns are Pr = 675.
This is expected as the critical load for a fully connected network is αc ∼ 0.139
and the recovered patterns are Pr = αcK.

In Fig. 2 middle panels can be appreciated that the performance of ensemble
systems with n = 10, γ = 0.1 with same wiring cost (N × K × n) as the fully
connected systems in top panels. The ensemble system modules have degrees
K = 500, 300, 100 for the left, center and right panels respectively. The corre-
sponding recovered are Pr = 1300, 780, 260 for each of these systems. This is
equivalent to a pattern gain G = P e

r /P s
r = 1.92, that is the ensemble systems

almost double the performance of the single network systems with the same
wiring cost. Again the larger the system in terms of network units N , the larger
the recovered patterns Pr.

Figure 2 bottom panels show the performance of ensemble systems with
n = 20, γ = 0.05. The modules in each ensemble system have degree K =
250, 150, 50 for the left, center and right panels respectively. The corresponding
recovered are Pr = 1600, 900, 300 for each of this systems. For the larger system
N = 5000, K = 250, n = 20, the ensemble pattern gain is G ∼ 2.4. Note again
that all systems in Fig. 2 have same wiring cost. The ensemble systems outper-
forms the single system managing to recover more than the double of patterns
as presented in Fig. 2. As expected, the fully connected single systems transi-
tion from retrieval to non-retrieval is discontinuous for the order parameters M
and R, while the transition is continuous for the ensemble systems with diluted
modules.

A review of this findings is presented in Fig. 3 for the different systems under
study. The curves in the figure are built for the values of Pr at the maximum
retrieval pattern load αR(max) depicted in Fig. 2.
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Fig. 2. Performance of the systems in terms of the Retrieval efficiency R, Mean retrieval
overlap M and the Retrieved pattern load αR. Top panels: Single fully connected
networks γ = 1, with N = 5000, 3000, 1000 in left, center and right panels respectively.
Number of modules n = 1. Middle panels: Ensemble systems with γ = 0.1, K =
500, 300, 100 in left, center and right panels respectively. Number of modules n =
10.Bottom panels: Ensemble systems with γ = 0.05, K = 250, 150, 50 in left, center
and right panels respectively. Number of modules n = 20. Color online.

4.2 Ensemble Systems Phase Diagrams

Figure 3 summarizes the results for the different performance measures of the
ANN ensemble system. In Fig. 3 shows the behavior of the systems under study
depicting their performance in terms of Pr for the fully connected single networks
γ = 1, n = 1, the ensemble systems with γ = 0.1, n = 10 modules. and the
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Fig. 3. Learned pattern retrieval (Pr) in terms of the number of node units N , for the
fully connected single systems γ = 1.0 (black circle-symbol) vs. ensemble systems with
γ = 0.1 (blue x-symbol) and γ = 0.05 (red square-symbol). Color online.

ensemble systems with γ = 0.05, n = 20 modules. The systems are built for
different values of network units N = {1, 2, 3, 4, 5} × 103.

A similar behavior occurs for all systems according to the value of network
units N . The larger the value of N the larger the number of recovered patters
Pr. However, when the number of modules is increased for each of these systems
(i.e. each module is more diluted) the number of recovered patterns Pr increases,
as can be clearly appreciated for the systems with γ = 0.1, n = 10 modules and
γ = 0.05, n = 20 modules. This is not a trivial increment, as can be appreciated
in Fig. 3 for larger N . Although the retrieval increment proportion is almost
constant, the lines are not parallel, indicating a better performance for larger
systems (larger N). The reader should note that the fully connected network
(black-circled curve) manages to retrieve Pr = 675 patterns, that is a load of
αc = 0.13 as expected. The ensemble systems with γ = 0.05, n = 20 manages to
recover Pr = 1600 for the same wiring cost N × K × n.

As fair remark, one can appreciate that the ensemble systems will approach
a boundary on their retrieval capacities, given that the increase with the dilu-
tion will reach a practical limit where increasing the number of modules in the
ensemble will not yield a larger pattern retrieval.

5 Conclusions

We have studied ANN ensemble systems with diluted modules for different val-
ues of network units N and compared their performances with a with a single
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attractor network with the same wiring cost. All systems increase the num-
ber of stored patterns with the increase of network units N , but the ensemble
systems achieve a gain over the single systems managing to store more than
the double of patterns. Keeping same wiring cost for the ensemble systems
one can increase the number of stored patterns using the proposed divide-and-
conquer approach. For the systems presented in this paper the increment gain
for N = 5000, γ = 0.05, n = 20 is as large as G = 2.4 the number patterns
when compared with a similar single network system. The larger the system in
terms of N , the larger the number of ensemble modules n we can use at non
pathological dilution. Our system with n = 20, is constrained for comparison
purpose by the smaller system N = 1000, for which a dilution of γ = 0.05, gives
a degree of N ×γ = 50. For N = 5000 we have a degree of N ×γ = 250, we could
dilute more each module and get more subnetworks. A more detailed study on
this issue warrants further investigation.

As commented before, real world applications of ANN face the issue that
in order to recover a reasonable number of patterns the number of network
units must be larger than the number of patterns N � P . This issue can be
overcome using an ensemble system as the one studied here for different values
of N . Using this approach would allow the ANN ensemble to deal with real-
world data where information is structured and correlated such as fingerprint
recognition problems [12,15]. Also, through the divide-and-conquer parallelizing
approach one can apply the modularized ANN to computational costly problems
such as video traffic analysis [13].
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Abstract. Fuzzy ARTMAP (FAM) aims to solve the stability-plasticity
dilemma by the adaptive resonance theory (ART). Despite this advan-
tage, category proliferation is an important drawback in Fuzzy ARTMAP
due mostly to the overlapping region (noise) between classes. In such a
region, the match tracking mechanism is often triggered by raising the
vigilance parameter value to avoid future learning errors. In order to
overcome this drawback, we propose a Fuzzy ARTMAP-based architec-
ture robust to noise, named OnARTMAP. Our proposal has a two-stage
learning process. The first stage requires two new modules, the overlap-
ping region detection module (ORDM) and another one very similar to
ARTa, called ARTc. The ORDM finds the overlapping region between
categories and the second one (ARTc) computes and stores special cate-
gories for overlapping areas (overlapping categories). In the second stage,
the weights for conventional categories are estimated from data out-
side the overlapping area. Consequently, by not considering noise data,
the number of categories drops considerably. We can infer from achieve-
ments that our proposal in general outperformed Fuzzy ARTMAP, ART-
EMAP, μARTMAP, and BARTMAP and achieved good data general-
ization with fewer categories and robustness on noise.

Keywords: Neural networks · Adaptive Resonance Theory · Fuzzy
ARTMAP · Category proliferation

1 Introduction

The Adaptive Resonance Theory develop by Grossberg [13–15] has inspired new
architectures of artificial neural networks [3,6,9–11]. As examples, we can high-
light ART 1 [4], ART 2 [5] and the well-known Fuzzy ART [8] for unsupervised
learning tasks. In a nutshell, ART 1 deals only with binary data, while ART
2 handles both binary and analog data. On the other hand, Fuzzy ART is an
architecture that relies on fuzzy set operators for analog data. The supervised
learning approach based on Grossberg’s theory was introduced in the ARTMAP
architecture [7]. To do so, the ARTMAP uses two ART modules: the A-side mod-
ule (ARTa) and the B-side module (ARTb) for binary data. As an improvement,
Fuzzy ARTMAP was proposed to analog data [6].

c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 507–519, 2017.
DOI: 10.1007/978-3-319-59153-7 44
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The Fuzzy ARTMAP can map an arbitrary multidimensional dataset by
creating hyperboxes for both input pattern, in the A-side module (ARTa), and
input label, in the B-side module (ARTb). Some Fuzzy ARTMAP advantages are
remarkable, such as fast and stable learning, the need of few epochs to achieve
stability, the ability to learn quickly and stably new data without catastrophi-
cally forgetting past data, and so on. Despite such advantages, Fuzzy ARTMAP
is very sensitive to input pattern presentation order as well as to noise data.
This is an important drawback concerning the learning process known as cate-
gory proliferation, since a large number of categories should be included in the
module ARTa to represent the input space and its relations to the output space.

The main reason for the category proliferation is the correction of predictive
error (in the module ARTb) performed by the match tracking mechanism. Due to
this correction process, smaller categories should be created inside larger ones.
As a result, the learning process of Fuzzy ARTMAP should create too many
small and specialized categories. In fact, the larger the overlapping area between
classes in a classification task, the larger is the number of small categories within
this region. Therefore, one can see that the category proliferation problem is
intensified with the degree of class overlapping.

Several works can be found in the literature to handle the category prolifera-
tion problem in Fuzzy ARTMAP. Such works are mainly based on changing the
Fuzzy ARTMAP architecture [12,16,19] or even on changing the geometry by not
using hyperrectangles [1,2,17,18]. The models that changes the Fuzzy ARTMAP
architecture includes the Boosted ARTMAP [16], which allows non-zero train-
ing error in order to improve overall generalization; and μARTMAP [12], which
uses a probabilistic setting to optimize the categories sizes. The models that
changes the category geometry includes the Gaussian ARTMAP [18], a synthe-
sis between a gaussian classifier and the Adaptive Resonance Theory; Ellipsoid
ARTMAP [2], which uses hyperellipsoids for data generalization; and Polytope
ARTMAP [1], which categories are irregular polytopes.

Taking a closer look at the previous attempts to solve the category prolifera-
tion problem, we have not find one that aims, at first, to achieve the overlapping
area between classes under the ART framework. In this context, this work focuses
on solving the category proliferation problem by detecting the overlapping area
(noise) and then creating categories placed far from the noise data. To do so,
we propose a novel Fuzzy ARTMAP-based architecture that can identify the
overlapping region between classes, if there exists, and exclude this noise data
from the training data set for preventing the creation of unnecessary categories.
This is accomplished by the addition of a new Fuzzy ARTMAP module for over-
lapping region detection henceforth called overlapping region detection module
(ORDM). Our proposal is named opposite-to-noise ARTMAP (OnARTMAP),
since it is able to learn the data outside the noisy region.

Our paper is organized as follows. In the next section, Fuzzy ART and Fuzzy
ARTMAP architectures are briefly described. In Sect. 3, our proposal is presented
in detail. After that, Sect. 4 presents the simulation achievements carried out for
OnARTMAP as well as for other Fuzzy ARTMAP models found in the literature.
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In this section, results for artificial and real problems are also included. At last,
Sect. 5 presents the conclusions and future works.

2 Fuzzy ARTMAP

The Fuzzy ARTMAP architecture has two Fuzzy ART modules, and an addi-
tional module to link them, named inter-ART. The Fuzzy ART modules are
described below.

2.1 Fuzzy ART

The Fuzzy ART module comprises three layers: F0, F1, and F2. The layer F0

stands for the current input vector; the layer F1, that receives both bottom-up
input from F0 (i.e., the output of F0) and the top-down input from F2. The
layer F2 represents the active category. The activation (output) for F0 is the
current input vector I ∈ R

M described by I = (a) = (a1, . . . , ai, . . . , aM ), so
that ai ∈ [0, 1] and the norm |I|= ∑M

i=1|ai|. An alternative representation for
the input vector I ∈ R

2M is given by the complement coding I = (a,ac), where
ac = 1 − a. Note that the norm

|I|=|(a,ac)|=
M∑

i=1

ai + (M −
M∑

i=1

ai) = M. (1)

The outputs for F1 and F2 are x = (x1, . . . , xM ) and y = (y1, . . . , yN ),
respectively. Moreover, the j-th node of F2 with an adaptive weight vector wj =
(w1, . . . , wi, . . . , wM ) is a category representing a training patterns subset. For
input vectors with complement coding, the weight vectors wj = (uj ,vc

j) are
2M-dimensional. At the beginning of the training process, each component wi

equals one and, during the process, is monotonically nonincreasing, which let the
learning be stable. As for parameters, the Fuzzy ART has the vigilance parameter
ρ ∈ [0, 1], the choice parameter α > 0, and the learning rate β ∈ [0, 1].

For a certain input vector I, the choice function is defined by

Tj(I) = Tj =
|I ∧ wj |
α+|wj | , (2)

where the fuzzy operator AND (∧) is defined by x ∧ y = min(xi, yi). Indeed,
the category choice is given by

TJ = max{Tj}Nj=1. (3)

where J is the index of the chosen category. If more than one Tj is maximal, then
the j-th category with the lowest index is chosen. In such a situation, yJ = 1
and yj = 0, whenever j �= J .
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Resonance occurs if the match function, |I ∧ wJ |/|I|, of the choice category
J meets the vigilance criterion

|I ∧ wJ |
|I| ≥ ρ. (4)

In this context, if the vigilance criterion complies with Eq. (4), the choice
category wJ matches and the updating rule must be performed, according to

wnew
J = β(I ∧ wold

J ) + (1 − β)wold
J . (5)

However, if Eq. (4) is not satisfied then category J is no more selected (at least
for the current input vector). In this situation, a new category is (i) obtained
by Eq. (3) and (ii) evaluated in terms of the vigilance criterion by Eq. (4). The
steps (i) and (ii) are performed until the vigilance criterion is satisfied or a new
category is created.

2.2 Fuzzy ARTMAP Modules

The input vectors of ARTa and ARTb modules are I = (a,ac) for attributes
and Ib = (b,bc) for labels, respectively. Besides that, for the module ARTa,
xa = (xa

1 , . . . , x
a
2Ma

) stands for the layer F a
1 , ya = (ya

1 , . . . , ya
Na

) for the layer
F a
2 , as well as wa

j = (wa
j1, . . . , w

a
j2Ma

) are the categories (nodes) in the layer F a
2 .

Similarly, for the module ARTb, the xb = (xb
1, . . . , x

b
2Mb

) describes the output
of the layer F b

1 , yb = (yb
1, . . . , y

b
Nb

) the output for the layer F b
2 , and wb

k =
(wb

k1, . . . , w
b
k2Mb

) the nodes. Moreover, the set Wa = {wa
j : ∀ j} and Wb =

{wb
k : ∀ k}.
As stated before, Fuzzy ARTMAP has a map field in a linking module

between ARTa and ARTb, called inter-ART. Such a module has a layer F ab whose
output is denoted by xab = (xab

1 , . . . , xab
Nb

) and the categories in the layer F ab are
denoted by wab

j = (wab
j1 , . . . , w

ab
jNb

), where j = 1, . . . , Na. The following vectors
xa, ya, xb, yb and xab are set to zero between different input presentations.

The map field activation is computed as follows.

xab =

⎧
⎪⎪⎨

⎪⎪⎩

yb ∧ wab
J if the Jth F a

2 node is active and F b
2 is active,

wab
J if the Jth F a

2 node is active and F b
2 is inactive,

yb if F a
2 is inactive and F b

2 is active, and
0 if F a

2 is inactive and F b
2 is inactive.

(6)

As one can see that F ab is activated by either or both F a
2 and F b

2 category fields
and xab = 0 if the prediction wab

j is unconfirmed by yb, see Eq. (6). In case
of such a mismatch, the match tracking mechanism is triggered to search for a
better category.

We highlight that at each input vector presentation, the vigilance parameter
ρa for ARTa equals a baseline vigilance ρa that was set up before starting the
training process. Moreover, if |xab| < ρab|yb|, so that ρab is the map field vigilance
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parameter, then ρa is temporarily raised to |Ia ∧ wa
J |/|Ia|+ε, where 0 < ε < 1.

This is accomplished to have an other active node J in the layer F a
2 , so that

|Ia ∧ wa
J |≥ ρa|Ia|. This process is performed until a node from F a

2 correctly
predicts the activation of the layer F b

2 ; otherwise, a new node is committed in
ARTa.

Concerning the map field learning, we initially have wab
jk(0) = 1, ∀j =

1, . . . , Na,∀k = 1, . . . , Nb. When resonance occurs, in which the J-th node in
F a
2 becomes active, wab

J approaches the map field vector xab. Considering a fast
learning approach (i.e., with β = 1), wab

J learns to predict the ARTb category K
(i.e., label).

3 The Opposite-to-Noise ARTMAP (Proposal)

In this section, our proposal to handle the category proliferation problem is pre-
sented. The architecture for the Opposite-to-noise ARTMAP (OnARTMAP) has
two additional modules when compared with the conventional Fuzzy ARTMAP.
The first module, henceforth named ORDM (Overlapping Region Detection
Module), was designed to obtain the overlapping area between classes and the
second one (ARTc) to store specialized categories (overlapping categories) con-
cerning such an overlapping region. The main idea is to detect, in the first stage
of learning, the overlapping area by the ORDM and then to exclude the training
patterns inside this categories from the training set. In this stage, the informa-
tion about the overlapping categories is stored in the module ARTc. As expected,
the module ARTc is very similar to its counterparts ARTa and ARTb. In the
second stage, the conventional categories are placed far from this critical zone
as usual.

3.1 Overlapping Region Detection Module (ORDM)

The ORDM plays an important role in the first stage by detecting the over-
lapping region and in the second one by checking if there exists an intersec-
tion between categories. In the first stage, ORDM receives as input the outputs
ya and yb (in fact, the categories J and K) from ARTa and ARTb, respec-
tively; and obtains the class associated with the category J ; i.e., wb

K . After that,
ORDM finds the categories wa

j that not belong to the class wb
K . This can also

be expressed as finding wab
j �= wab

J . Thus, we can describe the weight subset
formally as

W̃a = {wa
j′ : wab

j �= wab
J , ∀ j �= J}. (7)

After having the categories of interest, the ORDM checks the existence of an
intersection between the category wa

J and the elements wa
j′ of the set W̃a. Let us

consider the weight wa
J in a geometric point of view as an hyper-rectangle, such

that wa
J = (uJ ,vc

J). The actual geometric representation for wa
J is denoted by

wa∗
J = (uJ , (vc

J )c) = (uJ ,vJ). Similarly, each category as actual hyper-rectangle
is wa

j′ in W̃a and, thus, wa∗
j′ = (uj′ , (vc

j′)c) = (uj′ ,vj′).
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To compute the existence of an intersection between hyper-rectangles, we
can assume that there is no intersection (Ψ = 0) and then checking if there
is an intersection at each dimension m = 1, . . . ,Ma. We can perform that by
initially supposing that θ = 0 (an auxiliary variable) and assessing the following
conditions

if uJm ≤ uj′m ≤ vJm ≤ vj′m or

uj′m ≤ uJm ≤ vj′m ≤ vJm or

uJm ≤ uj′m ≤ vj′m ≤ vJm or

uj′m ≤ uJm ≤ vJm ≤ vj′m then

θ = θ + 1

(8)

By doing so, if at the end of previous assessment the value of θ = Ma then the
hyper-rectangle wa∗

J and wa∗
j′ intersect each other (i.e., Ψ = 1). Otherwise, there

is no intersection (Ψ = 0). If there is an intersection between wa∗
J and wa∗

j′ , one
can compute the intersection between hyper-rectangles by

qh = wa
j′ ∨ wa

J , (9)

where the fuzzy set operator OR (∨) is denoted by x ∨ y ≡ max(xi, yi).
The ORDM output is a set C of Ma-dimensional points c when intersections

occur. As expected, such a set is empty when no intersection occurs. Consider the
obtained intersections qh and its hyper-rectangle representation q∗

h = (uh,vh),
in which the lower point (uh) and upper point (vh) are described by c1h = uh

and c2h = vh.
In our proposal, each qh has as result two samples c1h and c2h. The pattern

c1h is given as input to the module ARTc and then the pattern c2h. Nevertheless,
note that each sample ch (i.e., the general term for either c1h or c2h) is in a
complement coding representation described by Ic = (ch, 1 − ch).

3.2 The ARTc Module

ARTc is a conventional Fuzzy ART module and, as stated, its input is the Ic

obtained through the ORDM. The overlapping categories wc
l are stored in the

layer F c
2 , such that the weight vector wc

l is 2Ma-dimensional. Initially, wc
l = 1

and for a certain input Ic, (i) the choice function is computed by Eq. (2) and
the maximal activation T c

L is selected by Eq. (3); (ii) the vigilance parameter ρc
is used to perform the vigilance criterion described in Eq. (4); and (iii) if the
vigilance criterion is satisfied, then the weight vector wc

L is updated as described
in Eq. (5). As a result, at the end of the first stage, the nodes in the layer F c

2 are
the overlapping categories.

3.3 Learning Process Overview for OnARTMAP

In this subsection, the two-stage learning for OnARTMAP is detailed. The first
stage aims to find and store the overlapping categories, and the second one aims
to learn the conventional categories weights. In the first stage, the ARTa module
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uses a distinct vigilance parameter ρo, while in the second stage the vigilance
parameter is the usual ρa. In the first stage, the match tracking mechanism is
disabled, which means not to raise the vigilance parameter ρo when a predictive
error occurs. The duration of the first stage is only an epoch long (i.e., each
training pattern is presented once). By disabling the match tracking mechanism,
the OnARTMAP is able to find the overlapping categories fast and easier.

We present in the Fig. 1 the learning process overview for our proposal.
The pictures presented in the Fig. 1(a) would represent an application of
OnARTMAP when ρo = 0 (i.e., ρa = 0 in firt stage) and ρc = 0. One can
note that, at the end of the first learning stage, the OnARTMAP categories
should look like as depicted in the Fig. 1(b), where the blue category is the
resulting overlapping category. To do so, when a category wa

J achieves the res-
onance state, the OnARTMAP triggers both ORDM and ARTc modules. The
ORDM is in charge of finding the overlapping area between the category wa

J

and categories wa
j′ not related to the class wb

K by the inter-ART module. The
module ARTc is responsible for computing these overlapping categories.

When the first learning stage is complete, the stored categories in the layer
F a
2 are dropped (see Fig. 1(c)) and the patterns inside the overlapping categories

are no more used for training (see Fig. 1(d)). A certain pattern is removed and

Fig. 1. An overview for OnARTMAP: (a) a two classes noise data distribution; (b)
OnARTMAP with ρo = 0 and ρc = 0 after the first learning stage (in blue, the
overlapping category); (c) the categories created in the first stage are dropped; (d) the
patterns inside the overlapping category are not used in the second learning stage; (e)
no categories are created over the overlapping region; (f) the resulting categories wa

j .
(Color figure online)
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not used in the second stage if at least one category wc
l contains the input Iai .

We can check if the l-th category contains the i-th pattern Iai by

|Iai ∧ wc
l |

|wc
l |

= 1. (10)

In the second stage, the OnARTMAP then proceeds to learn the resulting
training patterns. As one can note, the OnARTMAP does not allow the creation
of categories over the overlapping area (see Fig. 1(e)).

For this purpose, the ORDM is called after updating the category wa
J to verify

if the new weight vector for the category wa
J intersects any overlapping category

wc
l (see Eq. (8)). If there is an intersection then the weight updating is undone. It

is worth noticing that, in the second stage, patterns are no more removed. After
the second stage, few nodes are generated since categories are forbidden from
being created in the overlapping area. An example for conventional categories
wa

j is depicted in the Fig. 1(f).
Finally, we highlight that the OnARTMAP prediction is performed as the

conventional Fuzzy ARTMAP. Thus, for a unseen pattern Ia, we find the cate-
gory wa

J and then the category wb
K (label) by the inter-ART association.

4 Simulations and Discussion

In this section, we present results for the simulations we carried out. We have
results for both synthetic and real data sets. For synthetic and real data sets, we
compared OnARTMAP with Fuzzy ARTMAP, ART-EMAP [11] with Q-max
rule, BARTMAP and μARTMAP. We highlight that for ART-EMAP, the Q
value for all experiments was determined through rule-of-thumb, which obeys
Q = min

{
C
2L , 30

}
, where C is the number of committed nodes in F a

2 and L is
the number of classes [9].

The synthetic data set consists of a well known data distribution in the Fuzzy
ARTMAP literature: the overlapping Gaussian problem (OG problem). This
data set is composed by two overlapped Gaussian distributions with different
degrees of overlapping. Such a problem is interesting since we can observe how
the neural networks stability is affected by the additive noise.

For the OG problem experiment, we employed a conservative limit (α =
0.00001). For the real data sets, we used the voting strategy and the choice
parameter was set to α = 0.1. For both synthetic and real data sets, we employed
fast learning (β = 1) and the learning process was performed until achieving
stability for the categories (i.e., until the weights are unchangeable, even with
another training epoch).

4.1 Artificial Datasets

As stated, overlapping area between classes is the leading cause of the cate-
gory proliferation problem in Fuzzy ARTMAP since the match tracking mech-
anism is often triggered to fix learning mistakes. Thus, our experiments are
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used to demonstrate the performance of the OnARTMAP as the overlap degree
increases. We generated three artificial data sets comprised of 2-dimensional
Gaussian data. Each data set has two different classes with means μ = (0.3, 0.3)
and μ = (0.7, 0.7), both with prior probability 1/2. For the first data set (OG1),
we set σ = (0.1, 0.1). For the second data set (OG2), we set σ = (0.2, 0.2);
and finally, for the third data set (OG3), we set σ = (0.3, 0.3). We generated
1000 training points and 10000 test points for each dataset. In these experi-
ments, we used ρa = 0 for FAM, ART-EMAP, BARTMAP and OnARTMAP.
For OnARTMAP, we used ρo = 0, ρc = 0. The μARTMAP parameters hmax and
Hmax, and the BARTMAP parameter εd were relaxed as the Gaussian overlap
degree was increased. We show the results for the aforementioned neural net-
works (NN) in Table 1, which has the accuracy, standard deviation, number of
created categories (Nodes) and number of overlapping categories (OC).

Table 1. Accuracy, conventional and overlapping categories for the OG Problem.

Dataset NN Accuracy (%) Nodes OC

OG1 FAM 99.38± 0.16 5.0 -

ART-EMAP 99.38± 0.16 5.0 -

μARTMAP 99.39± 0.14 2.8 -

BARTMAP 99.15± 0.27 2.0 -

OnARTMAP 99.57± 0.34 3.0 1

OG2 FAM 86.68± 1.12 67.2 -

ART-EMAP 87.36± 3.07 67.2 -

μARTMAP 88.54± 2.62 13.0 -

BARTMAP 87.12± 1.57 21.1 -

OnARTMAP 90.62± 1.85 2.9 1

OG3 FAM 73.67± 0.82 139.0 -

ART-EMAP 76.60± 4.82 139.0 -

μARTMAP 77.48± 3.73 13.5 -

BARTMAP 77.33± 1.17 47.5 -

OnARTMAP 81.10± 1.23 2.9 1

By analyzing the Table 1, one can infer that the OnARTMAP classification
outperforms the other classifiers in all degrees of noise concerning the accuracy.
Moreover, the number of OnARTMAP categories created is stable as the overlap
degree increases, while the number of categories for Fuzzy ARTMAP, μARTMAP
and BARTMAP increases as the overlap degree increases. The OnARTMAP
stability, concerning the number of categories created, is because of its ability to
detect and eliminate overlapping data. As we used ρo = 0 and ρc = 0, only one
overlapping category was found in all experiments, and this one corresponds to
the entire overlapping region in each learning data set.
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Figure 2 shows how the OnARTMAP categories copes on the OG problem
as the noise degree increases (see the blue rectangle; i.e., the overlapping cate-
gory). In such a situation, by excluding the complete overlapping information,
the OnARTMAP will handle a new problem (in fact, a linear one). By doing
so, OnARTMAP will generalize by creating categories, which lay in regions out-
side (opposite) the overlapping region, preventing over-fitting and improve its
generalization capability.

Fig. 2. OnARTMAP categories for (a) OG1; (b) OG2; and (c) OG3 problems. (Color
figure online)

4.2 Real Datasets

In these experiments, we used five benchmark data sets for medical diagno-
sis from the UCI Machine Learning Repository: Vertebral Column Pathology
(VCP), Breast Cancer Winsconsin (BCW), Heart Disease (HDE), Pima Indian
Diabetes (PID), and Hepatitis (HEP). The information about the data sets
(number of data samples, number of classes and number of features) can be
seen in Table 2. In our simulations, 80% and 20% of patterns were selected from
the entire data set, in each realization, for training and testing purposes, respec-
tively. We carried out 30 realizations of this splitting process for computing the
performance metrics.

The Fuzzy ARTMAP neural network and its variation are very sensitive con-
cerning the pattern presentation order, and in some cases, its performance is very

Table 2. Real benchmarks used in this work.

NN Number of data samples Number of input features Number of classes

VCP 310 6 2

BCW 688 9 2

HDE 270 13 2

PID 768 8 2

HEP 80 19 2
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Table 3. Results for FAM, ART-EMAP, μARTMAP, BARTMAP and OnARTMAP
on real data sets with voting strategy (T = 5).

Dataset NN Parameters Epochs Acc. (%) Nodes OC

VCP FAM - 6.5 80.38 20.01 -

ART-EMAP Q = 5.37 6.5 81.61 20.01 -

μARTMAP hmax = 0.15, Hmax = 0.30 43.92 81.83 38.01 -

BARTMAP ε = 0.1 8.94 80.32 17.55 -

OnARTMAP ρc = 0.95, ρo = 0.95 3.47 83.55 11.41 7.26

BCW FAM - 4.7 96.52 13.55 -

ART-EMAP Q = 3.8 4.7 97.08 13.55 -

μARTMAP hmax = 0, Hmax = 0.15 15.32 92.78 4.87 -

BARTMAP ε = 0.1 4.07 94.76 5.46 -

OnARTMAP ρc = 0.85, ρo = 0.00 4.79 96.38 13.59 3.75

HDE FAM - 5.5 65.93 23.7 -

ART-EMAP Q = 6.3 5.5 68.46 23.7 -

μARTMAP hmax = 0.25, Hmax = 0.50 23.35 67.10 55.02 -

BARTMAP ε = 0.1 8.17 66.67 22.05 -

OnARTMAP ρc = 0.95, ρo = 0.00 2.8 72.90 8.45 2.91

HEP FAM - 2.9 63.54 9.45 -

ART-EMAP Q = 2.72 2.9 57.08 9.45 -

μARTMAP hmax = 0.25, Hmax = 0.50 13.08 62.92 16.65 -

BARTMAP ε = 0.1 3.39 61.04 8.85 -

OnARTMAP ρc = 0.0, ρo = 0.0 1.73 64.17 6.15 0.6

PID FAM - 7.9 69.78 71.03 -

ART-EMAP Q = 18.12 7.9 70.00 71.03 -

μARTMAP hmax = 0.25, Hmax = 0.50 99.01 73.31 117.99 -

BARTMAP ε = 0.1 16.85 70.65 65.29 -

OnARTMAP ρc = 0.95, ρo = 0.00 7.48 69.72 58.54 3.89

degraded. In a view to achieve the better approximation about the real perfor-
mance of the Fuzzy ARTMAP over some data distribution, we employed a voting
strategy. Basically, the voting strategy is achieved through a voting committee
of size T , where each committee member is a trained Fuzzy ARTMAP neural
network, and each member is trained with different orders of input presentation.

We compared our proposal OnARTMAP with Fuzzy ARTMAP, ART-EMAP
with Q-max rule, μARTMAP and BARTMAP. The vigilance parameter value
was set to ρa = 0 for all neural networks to achieve max compression in data.

The results by applying the voting strategy in the training stage are described
in Table 3. In this table, we have the parameters (Parameters) for each neural
network, the number of epochs needed to reach stability (Epochs), the prediction
accuracy (Acc.), the mean number of categories created by the T members of
the voting committee (Nodes), and the number of overlapping categories (OC)
for the OnARTMAP.



518 A. Matias et al.

In Table 3, the accuracy for OnARTMAP was at least 1.72% higher than
the other classifiers on data set VCP and, indeed, the number of needed cate-
gories was the smallest. Moreover, the μARTMAP achieved the second place
in terms of accuracy. As for BCW data set, Fuzzy ARTMAP, ART-EMAP
and OnARTMAP achieved equivalent accuracies (96–97%); but μARTMAP and
BARTMAP achieved accuracies between 92.78% and 94.76%. Concerning the
HDE data set, the accuracy for OnARTMAP was about 4–7% higher than the
other neural networks, as well as created few categories.

We can also infer on the basis of the Table 3 that the OnARTMAP and
Fuzzy ARTMAP performances are similar (in fact, slightly higher) to each other
with respect to the data set HEP. Finally, for PDI data set, the accuracy for
OnARTMAP is very close to the accuracies for Fuzzy ARTMAP, ART-EMAP
and BARTMAP.

5 Conclusion

A novel Fuzzy ARTMAP-based architecture called OnARTMAP has been intro-
duced. It implements a new learning approach that avoids to learn the overlap-
ping data. By avoiding the overlapping data, we can prevent over-fitting and
improve the accuracy. This can be possible because of its main contribution:
the ORDM, responsible for finding the overlapping information, and the ARTc

module, responsible for storing the overlapping information. In problems with
any similarity with the overlapping Gaussians problem treated is this paper, the
OnARTMAP can maintain its stability concerning the number of created cat-
egories. Indeed, it preserves its generalization capabilities. This is because that
the ρo and ρc parameters can be easily set, once the data distribution is known.
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Abstract. Although it is not a novel topic, pattern recognition has
become very popular and relevant in the last years. Different classifi-
cation systems like neural networks, support vector machines or even
complex statistical methods have been used for this purpose. Several
works have used these systems to classify animal behavior, mainly in an
offline way. Their main problem is usually the data pre-processing step,
because the better input data are, the higher may be the accuracy of the
classification system. In previous papers by the authors an embedded
implementation of a neural network was deployed on a portable device
that was placed on animals. This approach allows the classification to
be done online and in real time. This is one of the aims of the research
project MINERVA, which is focused on monitoring wildlife in Doñana
National Park using low power devices. Many difficulties were faced when
pre-processing methods quality needed to be evaluated. In this work, a
novel pre-processing evaluation system based on self-organizing maps
(SOM) to measure the quality of the neural network training dataset is
presented. The paper is focused on a three different horse gaits classifi-
cation study. Preliminary results show that a better SOM output map
matches with the embedded ANN classification hit improvement.

Keywords: Self-organizing map · Artificial neural network · Feedfor-
ward neural network · Pattern recognition · Locomotion gaits

1 The MINERVA Project

In the last years, the monitoring of wildlife has become a very relevant topic
thanks to concepts like the Internet of Things (IoT) and technologies like wire-
less sensor networks (WSN). Several studies have focused on investigating the
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best way to gather information about animal patterns using embedded devices
that are placed on animals [1–5]. This task is very important when it comes to
understand things like the interaction between animals, their survival or even
their nutrition habits. Changes in weather, flora or the introduction of non-native
species could also affect these activities, making the monitoring of animal motion
patterns a very interesting task.

A 2.4-GHz ZigBee-based mobile ad hoc wireless sensor network is presented
in [6] to collect motion information from sheep and send it to a base station,
which will later be classified into five different behaviors (grazing, lying down,
walking, standing and others) using a multilayer perceptron (MLP) artificial
neural network (ANN). The accuracy rate of the network is 76.2% without any
applied preprocessing method.

MINERVA is a research project whose aim is to study and classify wildlife
behavior inside Doñana National Park. The tracking and classification systems
that are being used nowadays in the park obtain positional information between
two and five times a day (to reduce power consumption) using a GPS and trans-
mit it via GSM. However, biologists need more information to be able to recog-
nize animal patterns. In previous work by the authors, this problem is solved
by doing the classification step inside of the collar that is placed on the animals
using an embedded implementation of an Artificial Neural Network (ANN) [4]
instead of sending the raw sensor information to the database that is later stud-
ied by the biologists. This way, several sensors monitoring are carried out, but
only the classification result is sent to a base station which later uploads it to
a remote database. Hence, less transmissions are needed, which is the activity
that consumes most battery power (more than 80% as presented in [7]). Previous
studies have used this approach to classify between three horse gaits (standing,
walking and trotting) [8], which used different preprocessing techniques applied
to the raw data to obtain a better classification result in the embedded ANN.
In [4,5] Kalman filter is applied to the input data, obtaining a 81.01% accuracy
result. Moreover, in [3], Overall Dynamic Body Acceleration (ODBA) and vari-
ance is applied to the same data using different window lengths, achieving up to
a 90.3% accuracy. However, to test which preprocessing would have a better
accuracy result of the ANN, the whole trial and error method needs to be done.
In our case, this task is hard and expensive (in time), so a tool or mechanism to
test how good are the preprocessing methods is needed.

In this work, the authors present a novel NN-based mechanism to test the
quality of the preprocessed information before having to test it using it as input
to the classifier. Self-organizing Maps (SOM), which are a type of ANN, are
used to visually show how good the input data is, and how the sensor data
differs between each of the classes that want to be classified. This way, if the
preprocessing is able to properly sparse the data between each of the classes,
the ANN would then have it easier to classify the input information, achieving
a better accuracy result. SOMs are usually used for classifying samples which
have a features set with different values. The result is a map where samples with
similar values are close, and samples with different values are separated, thus
appearing sample clusters. The most popular example using SOM is the Fisher’s
Iris data set [9] problem, where three species of Iris flower have to be classified
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taking into account some features like sepal length, sepal width, petal length and
petal width. In [10], authors using the SOM for processing the characterization
of movement patterns of athletes, taking several training session parameters.
And in [11], an unsupervised acoustic classification of bird species was done
extracting first some features by spectral analysis and using them to classify the
species using a SOM. In both cases, several parameters had been extracted in
order to be used as SOM input applying complex preprocessing methods. The
rest of the paper is structured as follows: Sect. 2 describes the collar device used
to gather information from animals, and how this data is obtained. Then, Sect. 3
presents different preprocessing techniques to improve the information that can
be extracted from the sensors. Section 4 describes the experiments that have
been carried out in this work, as well as the results obtained. At the end, Sect. 5
presents the conclusions of this work.

2 Collecting Sensory Information Using a Portable Collar
Device

The collar (Fig. 1) collects information from the animal that carries it by using
different sensors. It has a MinIMU9V2 inertial measurement unit (IMU), which
consists of an LSM303DLHC 3-axis accelerometer, an L3GD20 3-axis gyroscope
and a 3-axis magnetometer. Each of these sensors have 12-bits resolution for a
more precise data acquisition. Along with the IMU, a GPS is also used, which
provides location and time information. The collar has a 2.4 GHz ZigBee-based
radio module, which is an open global standard of the IEEE 802.15.4 MAC/PHY
[12], to send the obtained information. The collar carries a MicroSD card to store
the sensor’s information when the animal is outside of the coverage range of the
WSN.

The data that is used on this article has been collected from semi-wild horses
and different seasons. A total of 30000 samples were obtained during visits to
Doñana’s National Park from different horses. This data corresponds to three
gaits: standing, walking and trotting. Several methods have been used in the lit-
erature to classify this kind of locomotion information: Convolutional Neural
Networks, Support Vector Machines, statistical methods, etc. High accuracy
results have been achieved, as it was presented in Sect. 1. However, these kind
of algorithms have a high computational cost, which leads to a high power con-
sumption.

The main aim of the collar is to classify the animal behavior (between three
different gait patterns in this work) using the information obtained from the IMU
as an input to a feed-forward Artificial Neural Network (ANN) implemented on
the collar’s microcontroller unit (MCU). To implement an ANN in the collar
an open source neural network library called Fast Artificial Neural Network
(FANN) [13] has been used. This library allows to implement multilayer ANNs
in C programming language in an easy and quick way.

As in MINERVA project the application needs to be focused on low-power
consumption devices (capturing an animal to replace its collar is very expensive
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Fig. 1. Collar device prototype. Several sensors are necessary to monitor the activity
and position of the animal. The XBee module allows to send the collected information
to the base station that is placed on the park.

and difficult), an MCU with no Floating Point Unit (FPU) is used. Hence, for this
purpose, the FANN library was modified to use fixed point numbers. Processing
the sensor’s information in the collar allow us to only send the classification result
to the base station instead of all the raw data gathered from them, reducing the
number of transmissions (as it was studied in [14], transmissions have a very
high power consumption compared to the ANN operations) and the length of
the packets transmitted, and letting us to know the animal behavior in real
time [4].

3 Collected Information Processing and Analysis

Processing the sensor information after it has been collected is a common task.
This way, the noise that data may have can be reduced, obtaining a better signal,
or even extracting information that could be hidden in the raw data.

Data signals provided by the accelerometer vary between –2g and 2g in this
case. The horse gaits information is included in these signals, and the main chal-
lenge is to get these features by performing some math operations to transform
the samples, in order to provide a better input to the ANN implemented in the
collar.
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For this purpose, the authors have carried out several experiments in which
different data processing methods were applied. Kalman filter, variance, among
others, were calculated and tested using them as an input to a feedforward ANN.
However, we did not have any parameter or index that showed us how good the
preprocessing step was. Until now, the quality of the processing performed to
the input dataset (understanding quality as how good this data is) is evaluated
by analyzing the output of the ANN and checking the confusion matrix to see
how good the accuracy result is. In this work, we considered that it would be
interesting to have a tool which helped us in this task, giving information about
the quality of the preprocessing and the input dataset before testing it on the
ANN.

Self-Organizing Maps (SOM) [15] is a type of ANN used to cluster input data
into groups of similar patterns. Input patterns are compared to each cluster, and
associated with the cluster it matches the best. The comparison is usually based
on the square of the minimum Euclidean distance. When the best match is
found, the associated cluster gets its weights and its neighboring units updated.
Preprocessing methods used and carried out tests using SOM will be explained
in detail in order to clarify our use of SOM.

3.1 Information Preprocessing

While the collar is working, it is continuously collecting data from the IMU
sensors. This raw data generally has a lot of noise, but sometimes it can be used
as it is, without any previous processing. The fact is that ANNs achieve a better
classification result for a specific category when the information from it is distant
from the input information of the rest of the classes. In this case, the problem was
that, in our dataset, sensor values from different gaits are overlapped because
of the accelerometer’s range and the nature of the animal movement, as we can
see in Fig. 2. So, even though the ANN output was acceptable (around 80.0%),
the device needs to have more accuracy, since it will be active only a few hours
a day to reduce power consumption. The first solution taken by authors was to
implement the Kalman filter [16] in the collar. This method is commonly used
by planes and drones, which provides information about the orientation of an
object in a 3-dimensional space. Kalman filter uses raw data as input and returns
three values: roll, pitch and yaw. Using this parameters a 95.0% of accuracy
was achieved by the ANN, but power consumption was increased considerably,
reducing the battery life of the collar. In addition, floating point operations
(which require a FPU module) are needed to perform these calculations and,
as it was presented in previous sections, low power consumption MCUs without
FPU are needed in this project, making it a not viable solution.

In search of a simple solution, after several methods were studied, the vari-
ance of the raw data was calculated. In this case, since the device has to work in
real time, this operation was performed using temporal windows of 1.3 s approxi-
mately (40 samples, having a 30.3 Hz sample frequency). When the buffer is full,
the variance is calculated and used as input to the ANN. This way the MCU
collects data during the enough amount of time to let us know the gait that the
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Fig. 2. Raw data subset from Y-axis of accelerometer. Three gaits are showed consec-
utively using different colors (5000 samples per gait). Most samples are located in the
same range of values. (Color figure online)

horse is performing. Around 90.0% accuracy was achieved when calculating the
variance of the input sensor information [3].

When variance data was shown against time (Fig. 3), it could be seen that
some peaks from different gaits were overlapped between them. Therefore, in
these cases, the ANN could probably give a wrong result when trying to classify
the information. In order to avoid this situation, a window-length-based hull
of maximum values was performed. This operation consists on detecting the
maximum value of the samples contained in the window and maintaining that
value until a greater peak is found or until the end of the window. This way, the
ANN input data will be always the peaks of the signal, which are the best ones
that represent the gait performed by the horse, except some cases in which an
isolated peak is produced by an unusual movement of the horse.

3.2 Data Analysis Using Self-Organizing Maps

As it was presented previously, data from different gaits is frequently overlapped.
This situation could lead the ANN to a wrong classification. Hence, it would
be good to analyze the input dataset and know how the spacial distribution
of samples is, to check if it is possible to differentiate the three gaits. In the
optimum case, the information of each gait should be well separated in three
different clusters. But the real case is that these signals are usually closer to each
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reduced due to window-based preprocessing method. (Color figure online)

other, even overlapped (due to the transitions between gaits and the nature of
the horse movement).

For this reason, SOMs were used to analyze the dataset, since they are able
to show how good the samples are distributed and point out the existing data
clusters, which in this case they will correspond to the gaits performed by horse.
Thus, the better differentiated the data is, the better the SOM will be able to
represent a map where the three gaits are perfectly distinguished. However, a
bad SOM’s output does not implies a bad result of the ANN, but it means that
samples from a specific category are not well separated from the rest of them.

In addition, a SOM may help us understand the results obtained when using
a classification system like a feed-forward neural network, statistical methods
with thresholds, etc. The aim is to perform an appropriate sample processing
in order to obtain a good SOM’s output, and thus, a good accuracy on the
classification with the ANN.

4 Offline Tests and Results

Several tests were performed using SOMs and applying the different preprocess-
ing methods that were presented in previous sections. These tests were carried
out offline, due to the fact that it makes no sense to implement a SOM in the
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collar’s MCU and use it in real time. MATLAB has several toolboxes that allow
to train and test different kinds of ANNs. Among them, Neural Network Clus-
tering and Neural Network Pattern Recognition are mostly used to work with
SOMs and feedforward neural networks, respectively.

For the Neural Network Clustering Toolbox, the input vector length was
different on each case of study, depending on the dataset used (9-samples input
vector for the raw data or 3-samples input vector for the variance and the hull).
A two-dimensional map with size 8 (i.e. 8× 8 neurons) was trained using this
application. The default values of training parameters, like number of epochs and
training algorithm, were used. The ANN architecture used to test the dataset
consists of a hidden layer with 30 neurons and an output layer with 3 neurons
(one per gait). The activation functions used were the sigmoid transfer function
in the hidden layer and the softmax transfer function in the output layer. The
NN was trained using the backpropagation algorithm, and it was used the same
architecture for all performed tests.

Three different tests were carried out, using three datasets (raw, variance and
hull) in which the data was processed using the methods explained in previous
sections. Both confusion matrix and SOM’s output show the results obtained in
each test, which can be seen below:

4.1 Raw Data

The raw data has the information from the 3 axes of the accelerometer, gyroscope
and magnetometer. Therefore, nine neurons are needed in the input layer of the
NN and the input vector of the SOM. Much noise is found in the signals, so it
is hard to recognize patterns with a high accuracy.

Fig. 4. SOM’s output (left) and confusion matrix (right) using raw data. Target classes
are corresponded with: 1-walking, 2-standing, 3-trotting.
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Figure 4 left shows the SOM’s output, where lighter colors respresents neu-
rons with similar values and darker colors represent neurons with different values.
In the other hand, right side of the picture shows the confusion matrix, where
bottom row and right columns are the average per clases and botom-right cell
is the hit averate. The hit average obtained by the ANN is 77.6.

4.2 Variance

To calculate the variance, only the three axes of the accelerometer were taken
into account, because it is the sensor which provides more information about the
animal locomotion patterns [5]. The variance was calculated using a 1.3 s length
(40 samples) window size, which is approximately the time that the horse takes
to perform a full period of any of the gaits studied in this work.

Fig. 5. SOM’s output and confusion matrix using the variance data calculated from
raw samples. Target classes are corresponded with: 1-walking, 2-standing, 3-trotting.

After the samples were processed, the data obtained seems to be clearer
than raw data since the SOM’s output (Fig. 5) shows two well differentiated
areas, which could correspond to trotting and standing/walking because those
last two gaits are hard to classify, as can be seen in Fig. 2 in Sect. 3.1. In the
area corresponding to standing and walking gaits, the difference is not easy to
be distinguished. This situation does not happen with trotting, because samples
have higher values and transitions to or from this gait are more sudden than the
others, so they are well separated from the rest.

This improvement seen in the SOM’s output is reflected in an increase of
the hit average achieved by the ANN, where a 90.9% of accuracy was obtained
using this process. Furthermore, an improvement in the hit average between
both standing and walking was obtained.
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4.3 Hull

Using this approach, the authors tried to avoid the problem of samples similarity.
The input data was the same variance values that were calculated previously,
which have now been processed with a hull algorithm using a slice of 20 samples.

Fig. 6. SOM’s output and confusion matrix using the hull data calculated from variance
values. Target classes are corresponded with: 1-walking, 2-standing, 3-trotting.

Now, the output from the SOM shows three different areas clearly, although
there is an area that is not perfectly differentiated as the others (Fig. 6). This
situation corresponds to standing and walking gaits, since the movement of the
horse’s head (where the collar is placed) is almost the same in both cases. The
improvement showed in the SOM’s output was directly confirmed when the ANN
was tested using the calculated values. The hit accuracy obtained with the ANN
was 94.1%.

The hull algorithm can be done in real time, due to the fact that the com-
putational cost needed to calculate it is very low. This solution increases the
previous one by a 3%, taking only the maximum value in each time slice.

An improvement in walking prediction is a hard task, since more complex
operations are needed to extract more information from the samples. However,
with this preprocessing technique, we can consider that the collar device is reli-
able enough to provide information about animal gaits.

5 Conclusions

In this paper, the authors have presented a novel mechanism based on SOMs to
measure the quality of the input dataset before training and feeding a NN with
it. This way, the user is able to know how good the information from the different
classes that are contained in the dataset is, and how much they differ from each
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other. The more separated the information from different classes is, the better
accuracy will be achieved by the ANN when classifying samples. Hence, SOM
is a useful tool for predicting how good the classification results will be before
testing the ANN, to the fact that this process is hard and very expensive in
terms of time and money.

In this context, three different experiments have been carried out where three
horse gaits were studied, comparing the SOM output with the accuracy result
achieved with a feedforward ANN. Both architectures have been trained and
tested using MATLAB Neural Network Toolbox. The first experiment consisted
on testing the ANN with the raw data obtained from IMU sensor. A 77.9%
was achieved with this system; however, the SOM was not able to cluster the
information in the three different classes. On the other hand, when the dataset
was preprocessed using the hull algorithm, three different areas (clusters) could
be seen or distinguished in the obtained map, which was not possible with the
previous preprocessing methods. Using this processed dataset as input to the
ANN improved the classification, achieving a 94.1% accuracy. Hence, this SOM
application became useful for the authors. The hull method can be deployed into
the collar to improve the accuracy of the horse gait classification system using
the embedded ANN, which is able to obtain the same performance of MATLAB
Neural Network Pattern Recognition toolbox [4].
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Abstract. In this paper we evaluate how seminal biophysical Hodgkin
Huxley model and hardware-efficient TrueNorth model of spiking neu-
rons can be used to perform computations on spike rates in frequency
domain. This side-by-side evaluation allows us to draw connections how
fundamental arithmetic operations can be realized by means of spiking
neurons and what assumptions should be made on input to guarantee the
correctness of the computed result. We validated our approach in sim-
ulation and consider this work as a first step towards FPGA hardware
implementation of neuromorphic accelerators based on spiking models.

Keywords: TrueNorth model · Hodgkin-Huxley model · Rate encoding ·
Arithmetic operations · Simulations

1 Introduction

Neuroscience and computer engineering are fundamentally different: while, in
general, the purpose of a neuroscientist is to understand a nervous system and
to develop models capable of explaining its function (from the physical world to
models), the purpose of a computer engineer to realize a hardware system that
would satisfy initial requirements (from models to the physical world). Despite
the differences, from the papers of McCulloch and Pitts [1] neural networks
are influencing the development of computer hardware, which result in dedi-
cated chip architectures [2–4]. To design efficient computing systems it is vital
to understand the brain and employ principles from nature in hardware design.

We believe that neuromorphic hardware accelerators [5] that co-exist together
with the traditional CPU infrastructure will allow to extend the functional-
ity of hardware systems, add flexibility to existing designs, retain established
design flow, and reduce overall costs when implemented on a custom-of-the-shelf
(COTS) general purpose hardware. Our goal is to develop an open-source imple-
mentation of neural models capable of performing computations on FPGAs, to
allow inherently parallel, reconfigurable, and easily accessible on the market
solutions, which leverage existing design tools.

c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 535–547, 2017.
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To achieve our goal and build efficient hardware implementation, it is essen-
tial to understand how to perform fundamental arithmetic operations, as those
set the basis for the higher-level complex processing. In order to analyze the
similarities and fundamental differences of computing in biological and hard-
ware systems we study two spiking neural models: biophysically-accurate yet
computationally plausible Hodgkin and Huxley [6] neural model, extended with
the synapse model from [7], and hardware-efficient digital TrueNorth [4] model.
Apart from traditional models of artificial neurons (e.g. perceptron with sigmoid
activation function) the two models studied use a spike as a main mechanism to
communicate between neurons.

The contributions of the paper can be summarized as follows:

– we formally define the problem of computing a function over spike rates in a
neural network;

– we discuss how arithmetic operations can be implemented both using bio-
physical and digital neural models;

– we elaborate on the role of assumptions on inputs to obtain the correct com-
putation results for both models.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work, and Sect. 3 provides a short description of the spiking models under
study. Section 4 formalizes the task of computing a function with neural mod-
els. Section 5 elaborates on performing computations with Hodgkin-Huxley and
TrueNorth neural models. Section 6 offers outlook and our concluding remarks.

2 Related Work

Modelling a neuron at a biophysical level is a challenging task: each neuron has
on the order of 104 of synapses [8]; state-of-the art models account about 20
ionic channels, 150 state variables and 500 parameters [9]. Moreover, since the
synapses are structurally and functionally plastic devices, the dendritic spines
of the neuron [10] and the efficacy of synapses change during the operation (e.g.
spike-time dependent plasticity [11]). We are aware that taking into account geo-
metrical topology allows to increase the expressiveness and e.g. perform orien-
tation selectivity in the dendritic inputs [12], though to remain computationally
efficient we consider only the single-compartment neural models [13].

In the seminal paper [6] Hodgkin and Huxley presented a conductance-based
spiking neural model that describes the dynamics of generating an action poten-
tial, the role and function of sodium and potassium ionic channels. The model
of Hodgkin and Huxley is biophysically accurate [14], and has been refined with
other type of ionic channels [9]. A neuron is modelled as an active RC-circuit, in
which the opening of ion channels follows in response to influx of external current
stimulus. The membrane potential, inward (sodium), and outward (potassium)
currents are modelled as a set of differential equations. Although numerous soft-
ware and hardware implementations (e.g. [15,16] and [17–20] respectively) of the
Hodgkin and Huxley model are available, to the best of our knowledge we are
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not aware of the works that study computations with spike rates and explicitly
compare the biophysical model with hardware-optimized spiking models.

Cassidy et al. [4,21,22] in a series of papers introduced the TrueNorth hard-
ware architecture, which is based on a versatile spiking neuron model. The
TrueNorth model [4] is digital with all the parameters being either integers
or boolean values, since floating point computations are expensive in hard-
ware. At each time step the digital neuron performs three computational steps:
(1) synaptic integration, (2) leak integration, (3) threshold-fire-reset. Although
the authors implemented the architecture on the dedicated hardware chip, it is
not available on the market. We aim, on the contrary, to develop neuromorphic
hardware accelerators on FPGAs and ZYNQ architecture in particular, which
are widely available, have an established design flow, and allow AXI-style com-
munication between the processing system and the programmable logic. In this
work we implemented a python open-source simulation of both biophysical and
digital models and consider this as a first step towards target hardware imple-
mentation of neuromorphic accelerators on a ZYNQ FPGA processing system.

In our previous paper [23] we showed how to use the TrueNorth model to
monitor MTL specifications on FPGA over discrete time. Although at every time
step the neural circuit computed the verdict of a temporal logic specification ϕ,
the result of this computation is a all-or-none boolean output. In this work we
interpret the spike-rate as an integer number, hence allowing both qualitative
and quantitative analysis within the framework.

3 Neuron and Synapse Modeling

In this section we succinctly recap neural and synapse models that we study.

3.1 Modeling Neurons

The Hodgkin-Huxley Neuron model qualitatively describes the dynamics
of the membrane potential as a function of activation and deactivation of ionic
channels such as sodium and potassium together with the leak channel [6]. The
model comprises a set of four ordinary differential equations (ODE)s describing
the properties of an excitable neuron as follows:

Cm
dVm

dt
= −(ḡKn4(Vm − EK) + ḡNam3h(Vm − ENa) + ḡl(Vm − El)) + Iin, (1)

where Cm and Vm are the membrane capacitance and potential; ḡK , ḡNa and ḡl

are the conductances of the potassium, sodium and leak channels, respectively;
EK , ENa and El represent the reversal potential of the channels; n, m and
h are voltage-dependent gating variables for the potassium channel activation,
sodium channel activation and sodium channel inactivation, respectively. For the
detailed description the reader is referred to [6].
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The TrueNorth Neuron Model is proposed by IBM [4] and extends leaky-
integrate-and-fire model. We review the deterministic part of the TrueNorth
model below. For an extended explanation, the reader is referred to [4].

Synaptic Integration is the first computational step where every neuron sums up
the products of its inputs Ai(t) and weights sij . Every input is enabled by a flag
wij . The result is added to its previous membrane potential Vj(t − 1). Although
in the original model the maximum number of inputs bounded by 255, we drop
this restriction and assume that every neuron has a configurable N ∈ N number
of inputs (the original assumption comes from the chip restrictions):

Vj(t) = Vj(t − 1) +
N∑

i=0

Ai(t)wij sij (2)

Leak Integration accounts for energy dissipation, self-stimulation, and conver-
gence to an equilibrium in the absence of input. A TrueNorth neuron nj can
exhibit negative, zero or positive leak λj . To express divergent and convergent
leak behaviors the leak reverse flag εj can be set: in this case the leak changes
its sign with the membrane potential’s sign (i.e., when the signs are different,
the leak forces Vj converge to zero).

Ωj = (1 − εj) + εjsgn(Vj(t)) (3)

Vj(t) = Vj(t) + Ωjλj (4)

Threshold, Fire, Reset is computed at each time step to generate the binary “all-
or-none” output (spike or no spike). A neuron nj possesses a positive threshold
αj and a negative threshold βj . When the membrane potential Vj exceeds αj , the
spike is generated, and the membrane potential is reset. The TrueNorth model
is extended with three reset modes γj : (0) normal, (1) linear, or (2) non-reset.
When Vj falls below the negative threshold βj , no spike is generated, although
the membrane potential is updated depending on the reset mode γj and the
saturation flag κj .

if Vj(t) ≥ αj (5)
Spike (6)
γj = 0 : Vj(t) = Rj

γj = 1 : Vj(t) = Vj(t) − αj

γj = 2 : Vj(t) = Vj(t) (7)
elseif Vj(t) < −βj (8)

if κj = 1
Vj(t) = −βj

else
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γj = 0 : Vj(t) = −Rj

γj = 1 : Vj(t) = Vj(t) + βj

γj = 2 : Vj(t) = Vj(t) (9)

3.2 Modeling Synapses

In order to model the current flow between neurons in the Hodgkin-Huxley model
(as it accounts for external current stimulus), we implemented three models of
synaptic conductance gsyn from [7] and assume that Isyn ∝ gsyn. The first model
(exponential decay) assumes that ionic channels open instantaneously upon an
arrival of a presynaptic action potential and then gsyn decays exponentially:

gsyn(t) = ḡsyne−(t−t0)/τ . (10)

The alpha function [24] takes into account that the opening of ionic channels
is not instantaneous without introducing additional parameters into the model:

gsyn(t) = ḡsyn
t − t0

τ
e1−(t−t0)/τ . (11)

A more comprehensive representation of the dynamics of synaptic conduc-
tance can be modeled by the difference of exponentials where the rise and decay
times are explicitly introduced [7]:

gsyn(t) = ḡsyn(e−(t−t0)/τdecay − e−(t−t0)/τrise). (12)

We implement the above models of synaptic conductance (Eqs. 10–12) and
employ them in the design of arithmetic operations using the Hodgkin-Huxley
model. Figure 1 depicts the normalized excitatory post-synaptic current (EPSC)
for synapse models in response to the presynaptic action potential; Table 1 lists
the parameters of the models studied in this work.

Table 1. Parameters of neuron and synapse model

Model Parameters

Hodgking-Huxley model Cm, ḡK , ḡNa, ḡl, EK , ENa, El, α{K,Na}, β{K,Na}
TrueNorth model Aj , wj , sj , λj , εj , γj , αj , βj , κj

Exponential Decay ḡsyn, τ

Alpha function

Double-exp Synapse ḡmax
s , τrise, τdecay
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Fig. 1. Normalized EPSC in response to pre-synaptic action potentials (Vpre)

4 Problem Formulation

As we study computation for both biophysical and digital neural models, we
assume that: (i) biophysical model operates over real time and real-value domain
(it is simulated with a pre-defined rational-value integration step Δt = q

r , where
q, r ∈ N), (ii) to be efficiently hardware-realizable, the digital neural model
operates over discrete time and finite-value domain. A trial is an execution of a
neural circuit for a time interval [0, T ]. Each neuron ni = (M, paramsi, Vi, si, li)
is characterised by (i) an underlying model M, (ii) a set of parameters paramsi,
(iii) its membrane potential Vi, (iv) a binary spike output si, and (v) a label
li ∈ {in, interm, out} of a neuron. For a neural network N = {n1, · · · , nm} of
m neurons we define its computation C over a time interval in the following way:
C : [0, T ] �→ V m ∪ Sm, where V m = {V1, · · · , Vm} and Sm = {s1, · · · , sm} are
membrane potentials and spikes of neurons in the network N respectively.

A spiking activity of a neuron ni over a trial is defined as a mapping [0, T ] �→
si. We assume that a neuron ni encodes numbers in a spike-count rate [25], and
measure spiking activity over a time window w ⊆ [0, T ] of the length ‖w‖:

ri =
∑

t∈w si[t]
‖w‖ . (13)

The task of computing a function f in a neural network N then can be
formulated as follows: for a given neural model M find number of neurons
with labels interm, out and their corresponding parameters params such that
r{out1,···outn} = f(r{in1,··· ,inm}).

5 Computations with Neural Models

In this section we describe computations with the Hodgkin-Huxley and the
TrueNorth neural models. The circuit topology for the two-argument operations
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Fig. 2. Neural models for computations on spike rates: the TrueNorth model (left)
assumes that neurons are connected with discrete weights. For Hodgkin & Huxley
model (right) we introduce the synaptic connections between neurons. (Color figure
online)

is shown in Fig. 2. Input neurons (blue and green) provide spikes with rates r1

and r2 to the computing neuron n3, which outputs the result f(r1, r2).

5.1 Computing Addition

Addition using the TrueNorth model is realized as follows: we configure
the output neuron n3 in the linear reset mode (γ = 1), the input weights and
the positive threshold are set to one. This allows to: (i) generate a spike in
the out neuron whenever an action potential is generated by the in neurons;
(ii) memorize in the membrane V3 if two spikes happened at the same time
instant, and temporally separate output spikes over the adjacent time steps.

Without any assumptions on input, if the membrane potential is empty at the
end of the trial, then the result of addition is correct. If, however, the both inputs
arrive at the end of the trial, the output neuron may not be able to generate
the correct result when the number of the remaining time steps in the trial is
less the value of the membrane potential. This can be mitigated by extending
the length of the trial for the output neuron, which we aim to avoid to keep the
hierarchical composition simple. In this work we assume random arrival of input,
which is implemented in the TrueNorth model as the “rate-store” function [4];
Fig. 3 shows the corresponding simulation results.

Addition using the Hodgkin-Huxley model crucially depends on the
underlying synapse model. Unlike the TrueNorth, the biophysical Hodgkin-
Huxley model is not able to memorize the occurrences of two simultaneous
spikes from both inputs in the membrane potential Vm. Furthermore, one needs
to account for the refractory period, in which no action potential can be initi-
ated. To obtain correct results it is vital to distribute the synaptic current over
the time, such that after the refractory period the output neuron still receives
enough stimulation. The alpha function and the difference of two exponential can
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Fig. 3. Addition in the spike rates with TrueNorth model: blue + green = red (n1 –
blue; n2 – green; n3 – red). We performed 1000 simulation trails for 1000 time steps
each. The leftmost plot shows the dependence between input and output spike rates
for all the trials. Subsequent 1000 × 1000 plots present the spiking activity of input
and output neurons over time during all the trials: a black pixel with coordinates (i, j)
denotes a spike in trial i (horizontal axes) at a time step j (vertical axes). (Color figure
online)

be used to perform the addition with Hodgkin-Huxley model. Figure 4 shows the
simulation result of a trial, where the synapse are modelled as the alpha function.

The fact that at the end of the trial the membrane potential Vm stabilizes
at the resting value for a time Tstable ∼ 10 ms is necessary but not sufficient
requirement for producing the correct results.

5.2 Computing Constant Multiplication

Constant multiplication using the TrueNorth model is implemented as
follows: for each occurrence of the input spike, the output neuron generates C
spikes, hence the strength of the connection (i.e. its weight) is proportional to
C. The output neuron n3 is set to the non-reset mode (i.e. γ = 2) to be able to
store all the spikes seen so far. The negative leak λ and the saturate flag κ ensure
that the membrane potential will converge to zero in the absence of input. In the
case of constant factor division, we need to output one spike for each C spikes
seen so far. To do so, we set a positive threshold α proportional to C and weight
s0 to one. We also set the leak to zero and linear reset mode (γ = 2); see Fig. 5
for the simulation results.

Constant multiplication using the Hodgkin-Huxley model can only be
performed if the synaptic current and the input spike rate satisfy the following
requirements: (i) the length of the synaptic current pulse must be proportional
to the multiplication constant C; (ii) the input arrival rate is low enough to
allow synaptic current attenuate to its resting value before the arrival of the
next spike from the pre-synaptic neuron. To satisfy the first requirement it is
necessary to control both the amplitude and the width of the synaptic current,
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Fig. 4. Addition of spike rates with the Hodgkin-Huxley model: the profile of the pre-
synaptic voltage profile for the input neurons (blue and cyan), the superposed synaptic
current (green), the post-synaptic voltage profile (red) (Color figure online)
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Fig. 5. Constant multiplication and division of the spike rates with the TrueNorth
model: 2 · blue = green, 1

3
· blue = red (n1 – blue; n2 – green; n3 – red). Refer to the

caption of Fig. 3 for interpretation of the spike activity (Color figure onine)

as the “difference of two exponentials” allows to adjust both rise and decay times
of the synaptic current, this model shows the best results. Figure 6 shows the
simulation trial of performing the multiplication of the input rate by four.

5.3 Computing Subtraction

Subtraction using the TrueNorth model is realized analogously to addi-
tion: the subtrahend though receives the weight of −1. Such implementation
is inherently sensitive to the input timing: if the spikes from the subtrahend
neuron happen before the spikes of the minuend neuron, the circuit computes
max(0, r1 − r2), i.e. if the actual difference is negative, no spikes are outputted.
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Fig. 6. Constant multiplication of the spike rates with the Hodgkin-Huxley model:
the profile of the pre- and post-synaptic membrane potentials (magenta and green,
respectively), and the total synaptic current (red) (Color figure online)

Conversely, if at a time step ti the output neuron receives the spike from the
minuend, it needs to compute the running result and the correct way would be
also to generate an action potential, although a spike from the subtrahend after
an arbitrary silence interval would make the running result incorrect until the
next spike from the minuend. The necessary and sufficient condition to ensure
the correctness of the result is V = 0 at the end of the trial. Figure 7 shows the
simulation results for the randomized input.
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Fig. 7. Subtraction in the spike rates with the TrueNorth model: blue − green = red
(n1 – blue; n2 – green; n3 – red). Refer to the caption of Fig. 3 for interpretation of
the spike activity (Color figure online)

Subtraction using the Hodgkin-Huxley model can only be performed
when the following assumptions on the inputs are met: since the model does not
have a mechanism to memorize the occurrences of spikes from the input neurons,
all action potentials of the subtrahend neuron should coincide (up to the small
time difference) with the action potential of the minuend neuron.
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Minimum/Maximum using the TrueNorth model is based on the fact,
that the subtraction actually computes max(0, r1 − r2). We now can construct
the minimum and maximum operators compositionally as follows: min(r1, r2) =
r1 −max(0, r1 − r2), and max(r1, r2) = r2 + max(0, r1 − r2). Figure 8 shows the
simulation results of performing these computations.
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Fig. 8. Computing min/max using the TrueNorth model: r4 = max(r1, r2) + r3, and
r5 = min(r1, r2) − r3. The neuron n3, which generates an offset of 200 spikes per trial
on average, is added to separate the results from the inputs.

6 Conclusion and Outlooks

In this paper we showed how inherently different models of spiking neurons that
come from neuroscience and computer engineering can be configured to perform
the computations on the spike rates. This work steps towards our ultimate goal
of developing a unified framework for operating both qualitatively and quanti-
tatively on signals using spiking neurons.

The correctness of the computational results for both models depends on
the operation being performed and the spike profile of the inputs. According
to the results, the assumption on inputs for obtaining the correct computa-
tion results with the TrueNorth model are less restrictive then for the Hodgkin-
Huxley model. The model of the synaptic transmission is crucial to perform the
computation and obtain correct results using the biophysical neural model.
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Abstract. In this paper, we present the numerical results of the imple-
mentation of a Spiking Central Pattern Generator (SCPG) on a SpiN-
Naker board. The SCPG is a network of current-based leaky integrate-
and-fire (LIF) neurons, which generates periodic spike trains that cor-
respond to different locomotion gaits (i.e. walk, trot, run). To generate
such patterns, the SCPG has been configured with different topologies,
and its parameters have been experimentally estimated. To validate our
designs, we have implemented them on the SpiNNaker board using PyNN
and we have embedded it on a hexapod robot. The system includes a
Dynamic Vision Sensor system able to command a pattern to the robot
depending on the frequency of the events fired. The more activity the
DVS produces, the faster that the pattern that is commanded will be.

Keywords: SCPGs · Legged robots locomotion · SpiNNaker · Spiking
neurons · Hardware based implementations

1 Introduction

Robotic locomotion is a highly active research field in artificial intelligence.
Nowadays, several methods have been proposed to achieve locomotion in a vari-
ety of robots (i.e. wheeled robots, legged robots, swimming robots, flying robots,
etc.); particularly for non-wheeled robots, bioinspired locomotion systems may
be implemented [1]. These systems, commonly known as Central Pattern Gen-
erators (CPGs) imitate behaviors of biological neural mechanisms and they are
capable of endogenously produce periodically rhythmic patterns to contribute in
locomotion of living beings among other rhythmic activities such as digestion,
swallowing, etc. [2]. However, they do not work isolatedly, since they interact
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 548–559, 2017.
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with other parts of the central nervous system [3] and afferent sensory informa-
tion may shape the CPG’s outputs [4].

CPG-based locomotion systems have several advantages over non-bioinspired
ones, such as: rhytmicity, stability, adaptability and variety (see [5] for a detailed
explanation of these features). These systems have been designed and imple-
mented for biped [6,7], quadruped [8] and hexapod, [9,10] among other kinds of
non-wheeled robots (see [1,2,5] for comprehensive reviews). The implementation
of CPGs for either software or hardware applications involves previous phases of
modeling, analysis and modulation, which comprises the kind of neuron model
to use, the coupling and the structure of the connections in a network. The last
deals with parameter tunning and gait transitions [5].

As mentioned before, an important aspect on the implementation of CPGs is
the selection of a neuron model. In this regard, there are several neuron models
with different degrees of plausibility. To date, spiking neurons are considered as
the most plausible neuron models, they form Spiking Neural Networks (SNNs)
which are considered the third generation of Artificial Neural Networks [11];
CPGs built as SNNs are known as Spiking Central Pattern Generators (SCPGs).

In this paper a fully CPG-based locomotion system for the locomotion of
a hexapod robot is proposed. Our proposal covers all phases suggested in [5]:
modeling and analysis, modulation and implementation. The CPG-based loco-
motion system is conceptually based on works published in [8–10]; however we
have changed the spiking neuron model and implementation platform by a more
plausible one and a brain-like hardware platform respectively, i.e., the current-
based integrate-and-fire model and a SpiNNaker board. Three different gaits
are generated by the locomotion system, and simulated and implemented on the
SpiNNaker board and validated on a real hexapod robot. Moreover, our proposal
incorporates gait transitions according to the activity sensed by a DVS camera.

The rest of the paper is organized as follows: Sect. 2.1 provides information
concerning the theoretical background around Spiking Central Pattern Gener-
ators. Section 2.2 provides information about the hardware used in this work,
specifically on the SpiNNaker board. In Sect. 3, the design, implementation
and validation of the system is explained in detail. Section 4 presents numer-
ical results of the simulation. In Sect. 5, we present a perspective of the work
and we conclude in Sect. 6.

2 Materials and Methods

2.1 Spiking Central Pattern Generators

SCPGs are a variation of the well-known and widely studied CPGs, which are
specialized neural networks capable of endogenously produce rhythmic patterns.
The CPGs contribute to living beings to perform actions without consent-effort
such as walking among others [2,6]. Also, they have served as the basis of loco-
motion systems for non-wheeled robots with remarkable advantages over non-
bioinspired locomotion systems [5].
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SCPGs naturally handle spatiotemporal information as locomotion requires
[10], which means that they receive and send information over time. In [8–10] are
developed, implemented and tested SCPGs based on a biological study of insect
locomotion [12] for legged robots by means of BMS neuron models [13]. The
locomotion of legged robots is achieved in these works by means of spike-time-
activity where each servo-motor receives a spike train; the presence or absence
of spikes indicates the state of a servo-motor at the current time.

The SCPGs use the current-based leaky integrate-and-fire neuron model [14]
as processing unit. Such model is one of the standard models in PyNN [15].
Equation (1) shows the equation of the model with fixed threshold and decaying-
exponential post-synaptic current, excitatory injection in Eq. (2) and inhibitory
injection given by Eq. (3).

dv

dt
=

ie + ii + i offset + i inj

c m
+

v rest− v

tau m
(1)

die

dt
= − ie

tau syn E
(2)

dii

dt
= − ii

tau syn I
(3)

where v stands for the current of membrane potential. The excitatory and
inhibitory current injections are expressed by ie and ii respectively. i offset rep-
resents a base input current added each timestep. i inj is an external current
injection but in this case it is equal to zero. c m is the capacitance of the leaky
integrate-and-fire neuron in nano-Farads. v reset is the voltage to set the neuron
at immediately after a spike. tau m means the time-constant of the RC circuit,
in milliseconds. tau syn E and tau syn I are the excitatory and inhibitory input
current decay time constant respectively. The neuron model uses a tau refrac
value for representing the refractory period, in milliseconds and finally, v thresh
stands for the threshold voltage at which the neuron will spike.

In PyNN the model is described as if curr exp and the code reads:

eqs = brian.Equations(′′′

dv/dt = (ie + ii + ioffset + iinj)/cm + (vrest− v)/taum : mV
die/dt = −ie/tausynE : nA
dii/dt = −ii/tausynI : nA
tausynE : ms
tausynI : ms
taum : ms
cm : nF
vrest : mV
ioffset : nA
iinj : nA
′′′

)
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2.2 Spiking Neural Network Architecture (SpiNNaker)

To implement and validate our SCPGs we used a SpiNNaker board [16]. SpiN-
Naker is a massively-parallel multicore computing system designed for modeling
very large spiking neural networks in real time. Both the system architecture and
the design of the SpiNNaker chip have been developed by the Advanced Proces-
sor Technologies Research Group (APT) [17], which is based on the School of
Computer Science at the University of Manchester. Each SpiNNaker chip con-
sists of 18,200 MHz general-purpose ARM968 cores. The communication between
them is done via packets carried by a custom interconnect fabric. The transmis-
sion of these packets is brokered entirely by hardware, giving the overall engine
and extremely high bisection bandwidth.

In this work, a SpiNNaker 102 machine is used. This board comprises 4
SpiNNaker chips and, hence, it has 72 ARM processor cores deployed as 4 mon-
itor processors, 64 application cores and 4 spare cores. A 100 Mbps Ethernet
connection is used as control and I/O interface between the computer and the
SpiNNaker board. 5V-1A supply is required for this machine. This platform has
been used in previous works by the authors [18,19], proving its robustness and
versatility (Fig. 1).

Fig. 1. SpiNNaker 102 machine.

2.3 Dynamic Vision Sensor

The AER DVS128 retina chip (silicon retina) [20] consists of an array of
autonomous pixels that respond to relative changes in light intensity in real-
time by placing the address of that specific pixel in an arbitrary asynchronous
bus. Only pixels that are stimulated by any change of lightning transmit their
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addresses (events are produced). Hence, scenarios with no motion do not gener-
ate output events. These addresses are called Address Event (AE) and contains
the x and y coordinates of the pixel that produced the event.

In this work, an AER DVS128 sensor was used to switch among the three
different gaits, which has an array of 128 × 128 pixels. 7 bits are needed to
encode each dimension of the array of pixels in this case. This Dynamic Vision
Sensor also generates a polarity bit that represents the contrast change, where
positive means a light increment and, negative, a light decrement. The DVS128
sensor is placed on the PAER interface that allows parallel AER through the
CAVIAR connector [21].

3 Design, Implementation and Validation

3.1 Design

Three Spiking Central Pattern Generators (SCPGs) have been implemented into
SpiNNaker. Each of them represents a different locomotion gait of the hexapod:
walk, trot and run. These SCPGs were deployed in the machine using the PyNN
library, which allows to easily create populations of neurons, connect them and
assign weights to the connections.

SCPGs need an initial potential stimulus to start running. In this case,
the resting potential and the threshold of the neurons are set to −65 mV and
−50 mV, respectively. Hence, an initial potential of −49 mV is set on the first
population to make the SCPG start running at the beginning of the simulation.
With this stimulus, the SCPG is able to run infinitely while providing the same
output spike pattern.

The current-based Leaky Integrate and Fire neuron model defined in Eq. (1)
has been used in this work, and its configuration parameters are presented in
Table 1.

Table 1. Configuration parameters of the current-based LIF neuron model

Parameter Value

cm 0.25

tau m 20.0

tau refrac 2.0

v reset −68.0

v rest −65.0

v thresh −50.0

tau syn E 5.0

tau syn I 5.0

i offset 0.0
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The SNN used to design each of the three locomotion sequences has basi-
cally the same architecture. The difference between them are the number of
populations used, weights and delays for each of the sequences. It is necessary
to mention that each of these sequences is implemented as a different SCPG.

In Fig. 2, we show the spiking neural network topology. Here, red neurons
represent the direct stimulus towards the servomotors of the hexapod robot,
and the neurons in blue and yellow are used to balance the generation of the
correct patterns in each case. As can be seen in the figure, blue connections
represent excitatory activity and, on the other hand, yellow connections represent
inhibitory activity.

Fig. 2. SCPGs neural network architecture. (Color figure online)

To create the complete design of a SCPG it was necessary to find the weight
and delay values for each of the connections between populations of neurons.
This was carried out using a exhaustive search method.

At the end of the design of the SCPGs, a matrix is obtained, where each
element of a column represents a servomotor and each row is an instant of time.
Then, the absence or existence of a spike in this matrix will be translated to
the movement of a specific servomotor on the hexapod robot. Figure 3 shows
the spike trains (SCPG’s output) representing the three different locomotion
patterns that will perform the hexapod robot.

3.2 Implementation

The implementation of the SCPG in SpiNNaker was done using the PyNN tool-
chain. The results are the three types of spike patterns required for the locomo-
tion. These sequences are shown in Fig. 3. In each figure, X-axis represents the
simulation time and Y-axis shows the twelve neurons required for the locomotion
of a hexapod robot; one for each servo-motor. The neural activity of each neu-
ron is transduced into electrical signals for moving its associated servo-motor.
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Specifically, locomotion corresponds to horizontal (coxa) and vertical (femur)
movements, thus six neurons controls the horizontal movement and the other
six the vertical one.

The results were corroborated with the state of the art [9]. After verifying that
the results were correct in simulation, we proceeded to implement a complete
system to validate the implementation of the SCPGs, which is described in the
following subsection.

Fig. 3. Spike output patterns for each locomotion gait of the hexapod.
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3.3 Validation

In Fig. 4, a block diagram of our complete validation system can be observed.
It consists of a DVS camera, which receives events according to a change of
intensity either positive or negative. The information is sent as an Address-
Event-Representation (AER) format to an FPGA, which is used to synchronize
and encode the incoming information in the specific format used by SpiNNaker
(40 bits). The SpiNNaker is connected via Ethernet to a PC. For the mechanical
validation of the SCPGs for this last, a hexapod robot was used, which consists
of 12 servomotors: 6 to give movement to the extremities horizontally and 6
vertically. Each of the servomotors was connected to a PWM provided by an
Arduino Mega board.

Fig. 4. Block diagram of the complete validation system.

The experiment consisted in connecting the complete system and, according
to the frequency of events produced by the DVS, a specific locomotion sequence is
executed. Different thresholds of event frequencies were set for this purpose. For
example, if the DVS produces a few events, the robot would not perform any gait.
However, if the DVS produces a moderate event frequency the hexapod would
start walking, and so with trotting and running with higher event frequencies.
All locomotion sequences were included in the same PyNN script. This scenario
corroborates the operation of the complete system including both software and
hardware.

4 Numerical Results

In Fig. 5, we show the whole system running a locomotion pattern in real time.
In such figure, we can easily identify the main elements of the system: a SpiN-
Naker board configured with a SCPG performing the trot pattern, which can
be observed on the oscilloscope. Due to the fact that our oscilloscope can only
register four analog signals simultaneously, we decided to register three signals
at the same time, i.e. three for each of the movements: horizontal (coxa) and
vertical (femur), making thus a total of 12 signals registered for each gait.

To show the effectiveness on replicating locomotion patterns such as those
found in vertebrates we performed numerical simulations for the three different
(walk, trot and run) gaits using the SpiNNaker board and they are presented in
Fig. 6. In such figure, the gaits are presented as follows: in the left side we can
find the signals corresponding to the horizontal movements and in the right side
for the vertical movements, both for the right legs performing the three gaits.
The hexapod robot has a symmetric design. For this reason we only present the
results for one of the hexapod sides (the legs on the right).
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Fig. 5. System configuration

Fig. 6. Real time simulation

5 Stand-Alone Cognitive Locomotion System

The work presented in this paper is part of a more ambitious project in which
the non-wheeled locomotion robot is commanded by a SNN in real-time using
neuromorphic sensors and cognition to react to different stimulus. For example,
to make the robot to follow an object that produces higher event activity on the
DVS sensor it can easily be discriminated not only the frequency of the events,
but also by the position on the visual field (left, center or right) to command a
pattern that makes the robot turn left or right [22].

The hexapod robot used in the previous section will host an FPGA-based
platform that will command the actuators of the robot according to SpiNNaker
output stream of events. The circuit on the FPGA will be collecting AER events
from the DVS, converting them to 40-bit format in one part. Furthermore, it



A SpiNNaker Application: Design, Implementation and Validation of SCPGs 557

will host a second circuit that receives 40-bit output from SpiNNaker and it will
convert them into the according duty-cycles for the 12 Servo-motors of the hexa-
pod to reproduce the right pattern. By the use of both hardware reconfigurable
systems (FPGA and SpiNNaker) in the same robotic platform in a stand-alone
capability, any research work could be implemented by properly dividing the
functionality between both of them. DVS postprocessing [23] can be done in the
FPGA in order to make lighter the algorithms running in SpiNNaker.

6 Conclusions

In this work, the authors have presented the design, implementation and valida-
tion of Spiking Central Pattern Generators for three locomotion gaits (walk, trot
and run). The design was carried out in PyNN by using the current-based Leaky
Integrate-and-Fire neuron model. Both implementation and validation were per-
formed on a SpiNNaker board, which controls the locomotion of a real hexapod
robot (See Fig. 5) through the generation of periodic spike trains (gaits) sent to
the servomotors of the robot. Also, a DVS sensor can be incorporated to provide
of sensory feedback and motor response through the locomotion of the hexapod
robot. The results obtained are satisfactory comparing it with previous works,
due to the fact that the implementation was done in a massively-parallel multi-
core computing system, improving power consumption and temporal efficiency.

This opens the way to consider future work such as including the complete
system within an hexapod, quadruped or bipedal robot, where the robot is com-
pletely stand-alone based on the perceptions obtained through neuromorphic
sensors (e.g. DVS and Neuromorphic Cochlea) and processing this information
in real-time.
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Abstract. During last years a lot of attention have been focused to the
hardware implementation of Artificial Neural Networks (ANN) to effi-
ciently exploit the inherent parallelism associated to these systems. From
the different types of ANN, the Spiking Neural Networks (SNN) arise as a
promising bio-inspired model that is able to emulate the expected neural
behavior with a high confidence. Many works are centered in using ana-
log circuitry to reproduce SNN with a high degree of precision, while
minimizing the area and the energy costs. Nevertheless, the reliability
and flexibility of these systems is lower if compared with digital imple-
mentations. In this paper we present a new, low-cost bio-inspired digital
neural model for SNN along with an auxiliary Computer Aided Design
(CAD) tool for the efficient implementation of high-volume SNN.

Keywords: Neuromorphic hardware · Spiking Neural Network · FPGA

1 Introduction

Artificial Neural Networks (ANNs) is an emerging research line of high impact
in computational intelligence application. The traditional Von Neumann com-
putational architecture is very efficient in deterministic tasks like calculus, data
bases management, file storage and so on.

However, it is really awkward at tasks such as pattern recognition [16] or
time series prediction [11]. ANNs are usually implemented on this widely spread
old architecture whose main drawback is its sequential nature, which prevents
us from exploiting the inherent parallelism of ANNs. For the last years the ANN
hardware implementation has been attracting attention because these ones can
really exploit the ANNs’ intrinsic parallelism [7,11,13]. There are lots of different
ANNs such as Feed-Froward Networks, Reservoir Computing systems [11] or
Convolutional Neural Networks (CNNs) that can be implemented using different
neural models as the classical perceptron neuron or the more bioinspired Spiking
Neural models [2,9]. Spiking Neural Netwoks (SNNs), which are considered to
be the third generation of artificial neural networks [14], is able to reproduce the
real neural behavior with high confidence. Its hardware implementation can be
coped with two different point of views: analogical or digital. The former is quite
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 560–568, 2017.
DOI: 10.1007/978-3-319-59153-7 48



Smart Hardware Implementation of Spiking Neural Networks 561

often employed because it gives a high level of precision and minimizes the area
and energy required for its functionality. Nevertheless, the latter gives the user
more control and is more flexible when it comes to make minor modifications.
Digital neural models can be configured in Field Programmable Gate Arrays
(FPGAs) that has been widely employed to implement digital neural models with
really encouraging results [2,8,10–13]. In this paper a new bio-inspired low-cost
digital neuron model is presented which will allow us to efficiently implement a
high-volume SNN. For the implementation of huge networks we have set up an
auxiliary Computer Aided Design (CAD) tool for its automatic generation.

2 Materials and Methods

Biological neurons normally present an unpredictable spike pattern [15] with
a clear stochastic or random nature. This fact can suggest that information is
mainly codified through the spike firing rate [6], which supports the idea of using
a probabilistic codification when building ANNs [4]. A fact that could explain
the stochastic nature of spike trains is the synaptic transmission’s mechanism,
since there exist a probability for transmitters to be released from the presy-
naptic terminal every time an action potential is transferred through the axon.
This apparent lack of neural reliability can be understood as a clever way of
implementing a weight for each connection.

In recent works, stochastic mechanisms have been introduced to the SNN
models leading to Stochastic Spiking Neural models (SSNNs) [11,12]. This kind
of networks combines the firing rate of spike trains and also the degree of correla-
tion between neurons [6,8,12]. In the SSNN model, the neurons are correlated or
uncorrelated through the use of the threshold voltage of the membrane potential
so that two neurons are correlated if they share the same threshold (otherwise,
they will be uncorrelated). Depending on this relationship, the network func-
tionality can change drastically. Making use of this probabilistic coding (through
the firing rate and correlation), high-speed pattern recognition systems can be
implemented [12]. This is in contrast to neural networks using only a firing rate
coding that are unable to provide a high-speed information processing. Proba-
bilistic encoding is much more simpler than any other timing codes such as rank
order coding [14,16] or spike-time coding [1,9] and provide evident advantages
in the learning process due to its simplicity.

For clarity, in the figures depicted in this work all the correlated neurons are
drawn sharing the same color. The stochastic behavior of the neuron synapsis is
emulated through the entry layer (see Fig. 4) and a variable threshold voltage.

When using probabilistic encoding, the network functionality depends on the
correlation between signals [12]. Apart from that, the exact time at which signals
fire is not so important due to the fact that information will be only coded on
the firing rate and spike correlation (and not on the shape of the spikes). For
simplicity and an energy-efficient digital implementation the spike signals are
modeled by boolean signals that only can be settled to either at a high or a low
value during the smallest time step tmin. This time can be understood as the
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response time of the fastest neuron within the network. The boolean value of
the neuron output (xk) is on the high state when there is a spike between ti and
ti + tmin, otherwise xk is in the low state (see Fig. 1). Note that the use of this
binary representation does not reduce the information contents of signals.

T ime

tmax

Fig. 1. Boolean representation of neural spikes

2.1 LIF Digital Neuron Model

The implementation of ANN on FPGAs is a widely extended practice due to
the simplicity and short design cycle of the FPGA configuration [2–4,13]. In this
paper, we propose a new neuron model which is more efficient in terms of area
and energy than a previously-published SSNN neuron model [12] (see Fig. 2).
For this purpose we reproduce a Leaky integrate and Fire (LIF) model for the
spiking process [5]. Such model is characterized by the fact that the neuron’s
membrane potential (NMP) decays exponentially to the resting value and by the
fact that it remembers how many spikes have taken place in the near past, see
Fig. 3. With respect the SSNN model presented in [12], we have implemented two
improvements: The exponential decay and a more realistic closed-loop model. As
it can be seen in Fig. 4 the former is implemented, on our brand-new design, by
a N-bit shift register storing the membrane potential and which is divided by 2
every clock cycle. The latter is implemented by adding a feedback reset from the
output signal to the membrane register. As in the previously published neuron
model [8,12] there must be also an entry layer which acts as synapses and gives
a high or low signal state (where a high state implies the presence of a spike) for
every single clock step. The neuron includes a binary comparator to limit the
membrane potential to a threshold value provided by a pseudo-random number
generator (see Fig. 3).

It can also be seen in Fig. 4 that every neuron has N excitatory entries xi and
M inhibitory entries x′

i. Then all these incoming signals are added using an OR
or a NOR gate respectively (performing the union function to the input pulses)
and joined with an AND gate (performing the intersection function between
signals). The final effect is that excitatory signals, xi, activate the neuron by
adding a fixed quantity (E) to the membrane potential register contents (see
Fig. 4), whereas the inhibitory ones x′

i inhibit such excitatory effect.
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2.2 The Computer Aided Design (CAD) Tool

In order to speed up the generation of the VHDL code, we have built a CAD tool
written in C++. As can be seen in Fig. 5, few data values must be entered in the
tool such as the number of neurons, the connectivity among neurons and how
they are correlated. Then the tool builds an VHDL file than can be compiled by
any synthesis tool to configure an FPGA chip.

Input
-Number of neurons

-connectivity
- correlation

C++ tool

VHDL

Quartus II

FPGA

Fig. 5. CAD’s flux diagram

In Fig. 6 we can see a typical configuration provided by the tool. The network
has M + N N-bits inputs that are converted to a Poisson-distributed sequence
of spikes by means of M converters. This gives birth to the input boolean vector
u(ti) = (u1(ti), u2(ti), . . . , uM (ti)). Those signals are the entry values for the
neurons. Simultaneously, the output of the neurons (which are also boolean sig-
nals (xk)), can also act as inputs for other neurons, these outputs compose the
network state vector x(ti) = (x1(ti), x2(ti), . . . , xL(ti)), where L is the total num-
ber of neurons. The user must enter three different matrix which would contain
the information associated to the connectivity, the correlation between neurons
and the identity of the output neurons y(ti) = (y1(ti), y2(ti), . . . , yK(ti)), where
K is the number of outputs. Finally the boolean outputs are converted to binary
signals by using digital counters. The threshold value for the membrane potential
is generated by means of a Linear Feedback Shift Register (LFSR).

2.3 Synchronization Among Neurons

Lets put some light on why the correlation between signals is so important.
Depending on the correlation the neuron’s functionality can be substantially
different [12]. For instance, let us take the results of two input signals with
switching activity “p” and “q” respectively, which have been processed trough
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Fig. 6. Example of a neural network generated by the CAD tool.

an AND gate of the input circuitry (see Fig. 4). In case the signals are com-
pletely correlated, which is denoted here as p ‖ q the AND gate is providing
the minimum of both signals as shown in Fig. 7a. Otherwise, if they are com-
pletely uncorrelated, (that we denoted as p ⊥ q), the AND gate is performing
the product between the inputs (Fig. 7b).

Fig. 7. Two schemes to show the importance of the correlation between signals

Other than that, signals can also be neither completely correlated nor uncor-
related but a mix of both states. The output activity r when two signals, p and
q, are evaluated using an OR (or an AND) gate can be obtained from the union
(or the intersection for the AND case), which is written as r = p∪q (or r = p∩q).
Thus, we can define the independence factor between two signals as [8]:

I(p, q) ≡ p ∪ q − max(p, q)
min(p, q) − pq

(1)

Therefore when p and q are completely correlated (uncorrelated at all) I(p, q)
will be 0 (1).

It must be noted that the output signals from synchronized (desynchronized)
neurons are correlated (uncorrelated).
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When two signals are joined or collided by an OR or an AND gate the output
signals would follow these expressions:

p ∪ q = max(p, q) + (min(p, q) − pq)I(p, q) (2)
p ∩ q = min(p, q) − (min(p, q) − pq)I(p, q) (3)

In order to calculate Eq. 3, it has been taken into account the fact that
p ∩ q = p + q − p ∪ q

3 Results

In order to test the behavior of the new neuron we have designed a network
which reproduces the output of a specific mathematical function. The function
used is f(x) = (1 − |x − a|)C−1, where a is a constant and C is an integer.

Fig. 8. Network’s scheme to reproduce function (1 − |x− a|)C , where C = 11, a = 0.5
and N = 8bits (Color figure online)

An scheme for the network that reproduces such function can be seen on
Fig. 8, where the neurons which share the same threshold are indicated using
the same color.

As any other network built by our CAD tool, has their entries of N-bits
which, are translated into boolean stochastic pulses and then plugged into the
network.

The basic unit is composed by five neurons, the first layer’s (neurons 1 and 3)
duty is synchronizing the two incoming signals, a and x. A second layer (neurons
2 and 4) evaluates in parallel both a − x and x − a, whose output is connected
to a third layer (neuron 5) which performs (a − x) ∪ (x − a). Following Eq. 2
such union yields min(a− x, x− a), which is the absolute value function indeed.
This basic unit is replied C-1 times, whose output inhibits the last neuron which
forms the fourth layer, L. Apart from that, a bias signal, b, is connected to the
output neuron as an excitatory input, which is set to 1 for the sake of simplicity.
Therefore its output is implementing the next expression:

y = b · (1 − |x − a|) · (1 − |x − a|) · · · = (1 − |x − a|)C−1 (4)
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This final output is then converted from the boolean switching signal to a
binary number which yields, in fact, the desired function. Such output is shown
in Fig. 9, where we can observe that the open-loop and the closed loop neuron
behave mostly the same. In addition, by making use of the Quartus II synthesis
software it has been checked that the proposed model is more efficient in terms
of gate count. This proposed model requires nearly the half number of logical
elements to be programmed on the FPGA than the number required when using
the previously published open-loop neuron model. However, not only does the
new model require less area but it also presents a faster response time than the
previous model (10 times faster). The simple network shown in Fig. 9 can be
used as a neural comparator where the network is active when both “x” and “a”
signals are similar.
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(1
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|x
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a
|)C
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Fig. 9. Comparison between the results obtained using a previously published neuron
model and the proposed in this paper.

4 Conclusion

Software solutions are the main way of implementing Artificial Neural Networks,
providing impressive results during the last years. However, hardware implemen-
tations arises as an efficient way to further improve the performance of these
systems. In this paper we propose an efficient digital circuitry for the implemen-
tation of spiking neural networks using a probabilistic coding. Compared to a
previously published model [8,11,12], the proposal is up to 100% more efficient
in terms of logic elements and is up to 10 times faster in terms of response time
with a very faithful functionality.
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Abstract. This paper presents two methods of using the dynamic momentum
and learning rate adaption, to improve learning performance in spiking neural
networks where neurons are modelled as spiking multiple times. The optimum
value for the momentum factor is obtained from the mean square error with
respect to the gradient of synaptic weights in the proposed algorithm. The
delta-bar-delta rule is employed as the learning rate adaptation method.
The XOR and Wisconsin breast cancer (WBC) classification tasks are used to
validate the proposed algorithms. Results demonstrate no error and a minimal
error of 0.08 are achieved for the XOR and WBC classification tasks respec-
tively, which are better than the original Booij’s algorithm. The minimum
number of epochs for XOR and Wisconsin breast cancer tasks are 35 and 26
respectively, which are also faster than the original Booij’s algorithm – i.e.
135 (for XOR) and 97 (for WBC). Compared with the original algorithm with
static momentum and learning rate, the proposed dynamic algorithms can
control the convergence rate and learning performance more effectively.

Keywords: Spiking neural networks � Learning rate � Momentum �
Self-adaptation

1 Introduction

Recently, the third generation of neural networks, namely spiking neural networks
(SNNs), was proposed in the approach of [1], where neurons communicate with each
other via spikes [2]. In SNNs, the learning algorithm can transfer the information in the
timing of spikes and adjust the synapse weights for connected neurons. A supervised
learning algorithm, namely SpikeProp, was proposed in the approach of [3], which is
based on the back propagation method of the sigmoidal artificial neural networks. It is
designed for the SNNs with multiple delayed synapses. To improve the performance of
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SpikeProp, various training algorithms, e.g. back propagation with momentum [4],
QuickProp [5] and heuristic rules [6], have been developed to ensure that the SNN
training process can converge to a global minimum. In the approach of [7] researchers
tried to speed up SNNs by extending the SpikeProp algorithm, where the delay and the
time constant of every connection, and the threshold of the neurons can be trained.
Another back-propagating learning model in [8] is a modified version of SpikeProp. It
can train SNNs and the neurons can fire multiple times. This type of algorithm is more
efficient at learning and has more advantages of the temporal information processing
capability of SNNs. It successfully built a lip-reading system, solved Exclusive-OR
problem and learned the Parity-n function. However, this algorithm is not fast enough
to solve problems. For instance, this algorithm needs more than 100 iterators to solve
XOR problem. In addition, the sum of the squared differences easily converge to a local
minimum instead of a global minimum. To speed up the algorithm for spiking neurons
that emit multiple spikes, a fast learning algorithm via momentum and learning rate
self-adaptation is proposed in this paper. The improved algorithm not only can speed
up the learning rate but also can prevent the mean squared error from converging to a
local minimum.

This paper is organized as follows. Section 2 discusses the spike neuron models
and network architectures briefly. The learning rule is derived in Sect. 3. Section 4
presents the proposed self-adaptation method for the momentum factor. Moreover, a
dynamic self-adaptation for the learning rate is also introduced. The performance and
test results are given Sect. 5 and Sect. 6 concludes the paper.

2 The Neuron Model and SNNs Architectures

The neuron model is an important component of SNN. Due to learning algorithms based
on gradient descent require computation of partial derivatives, the spike response model
(SRM), whose internal state can be expressed intuitively, is widely used in research.

In the framework of the SRM, the state of an output neuron j is described by a
single variable uj. When the potential uj reaches a threshold #, the neuron j fires a spike
at time tj. The spike-times of neuron j are described as:

Fj ¼ tðf Þj ; 1� f � n
n o

¼ tjuj tð Þ ¼ #
� � ð1Þ

where n denotes the number of spikes and the spike-train Fj is chronologically ordered.

If 1� f\g� n, then tðf Þj \ tðgÞi . The set of presynaptic neuron i 2 Cj is described as:

Cj ¼ iji is presynaptic to jf g ð2Þ

After the presynaptic neuron fires, the evolution of uj is given by:

ujðtÞ ¼
X

tðf Þj 2Cj
g t � t fð Þ

j

� �
þ

X
i2Cj

X
tðgÞi 2Fi

Xl

k¼1
wk
jieðt � t gð Þ

i � dkÞ ð3Þ
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where wk
ji is the weight of the synapse from input neuron i to output neuron j with a

delay of dk. The postsynaptic potential (PSP) induced by one spike is determined by
the spike response function eðsÞ, which is expressed as:

eðsÞ ¼ s
s
expð1� s

s
ÞHðsÞ ð4Þ

where s is a time constant, H(s) is the Heavy-side step function, and H sð Þ ¼ 0 if s� 0
and H sð Þ ¼ 1 if s[ 0. The refractoriness function g sð Þ expresses the internal to depict
the relative refractory period, which is expressed as:

g sð Þ ¼ �#expð� s
sr
ÞHðsÞ ð5Þ

where sr is the time decay constant, which can influence the shape of refractoriness
function. The SRM is widely used in many approaches of SNN research [9–12].
The SRM model can give a good approximation of synapse response of a neuron,
therefore it is used as the target neuron model for the investigation of fast learning
algorithm in this paper.

The SNN is more realistic than traditional artificial neural networks as it emulates
internal neuron behavior via firing spikes [13]. As shown in Fig. 1, in general the
network architecture consists of a feed forward network of spiking neurons with
multiple delayed synaptic terminals, and every neuron in each layer is connected to all
the neurons in the next layer; then the network is defined as ‘fully connected’. The
same neuron network architecture in Fig. 1 is used in this paper.

3 Error Back Propagation Algorithm

An algorithm based on error back propagation and a fully connected feed forward
neural network is derived in this approach. The algorithm can cope with neurons that
spike multiple times.

Input-layer Hidden-layer Output-layer

Fig. 1. Feed forward spiking neural network [8, 14, 15]
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In order to train the network to produce firing times at the output neurons from a set
of firing times at the input neurons, the measure function is determined by the differ-
ence between the desired output and the actual output for all output neurons. Assume
that tdj is desired firing time at output neuron j and taj is actual firing time at output
neuron j. The sum of the squared differences can be described by:

E ¼ 1
2

X
j2J taj � tdj

� �2
ð6Þ

The mean squared error (E), with respect to one output spike, can be derived by:

@E
@taj

¼ taj � tdj ð7Þ

To minimize the squared differences E, the weight wk
ih between each separate

connection k of the synaptic terminal should be calculated using:

Dwk
ih ¼ �g

@E
@wk

ih

ð8Þ

where g is the learning rate of the network. As neuron i can fire multiple times and all
these firing times depend on the weight, this equation can be expended with regard to
these spikes:

Dwk
ih ¼ �g

X
t fi 2Fi

@E

@t fi

@t fi
@wk

ih

ð9Þ

The derivation on the right-hand part of (8) can be expanded to:

@E
@wk

ih

¼ @E

@t fi

@t fi
@wk

ih

ð10Þ

The second term on the right-hand part of (10) can be calculated by:

@t fi
@wk

ih

¼ @uiðt fi Þ
@wk

ih

�1

@uiðt fi Þ=@t fi
ð11Þ

The partial derivative of the potential during a spike t fi with respect to the weight
(@uiðt fi Þ=@wk

ih) can be derived by:

@uiðt fi Þ
@wk

ih

¼ �
X

tgi 2Fi
g

0
t fi � tgi

� � @tgi
@wk

ih

þ
X

tlh2Fh
eðt fi � tlh � dkihÞ ð12Þ
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second term on the right-hand part of (11) (i.e. @uiðt fi Þ=@t fi ) can be calculated by:

@uiðt fi Þ
@t fi

¼ �
X

tgi 2Fi
g

0
t fi � tgi

� �
þ

X
h2Ci

X
tlh2Fh

X
k
wk
ihe

0 ðt fi � tlh � dkihÞ ð13Þ

The first term on the right-hand side of (10) can be derived by:

@E

@t fi
¼

X
j2Ci

X
tgi 2Fi

@E
@tgj

@tgj
@t fi

ð14Þ

where tgj is the firing time of a postsynaptic spike and t fi is the firing time of a
presynaptic spike. The derivative of a postsynaptic spike with respect to a presynaptic
can be described as:

@tgj
@t fi

¼ @uiðtgj Þ
@t fi

�1
@ujðtgj Þ=@tgj

ð15Þ

The first term on the right-hand side of (15) can be derived by:

@ujðtgj Þ
@t fi

¼ �
X

tlj2Fi
g

0
tgj � tlj

� � @tlj
@t fi

�
X

k
wk
ije

0 ðtgj � t fi � dkijÞ ð16Þ

The weight adaptation rule is derived by combining the Eqs. (14), (11) and (8). The
derived algorithm can be applied to networks with more than one hidden layer.

4 Momentum and Learning Rate Adaptation

In this section, the methods of adaptation of momentum and learning rate are consid-
ered. As the original Booij’s algorithm [8] can experience local minima in some opti-
mization problem, a momentum factor is added to the weight update procedure to make
the algorithm more robust. In addition, convergence speed is related to the learning rate.
The original Booij’s algorithm is slow to deal with large datasets, thus the learning rate
is needed to be a big value. However, a large learning rate usually lead to low accuracy.
Therefore an adaptive learning rate method is proposed to address this problem.

4.1 Momentum Adaptation

To enhance the training speed of the SNN, a momentum is added to the weight update
procedure as follows:

wkþ 1
ih ¼ wk

ih þ g
@E
@wk

ih

þ aDwk�1
ih ð17Þ
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where a is the momentum coefficient and the Dwk�1
ih is the weight correction in the

previous iteration. In the approach of [4], a is a static value. The disadvantage is that it
cannot guarantee to obtain an optimal value, and the momentum factor is difficult to be
tuned. If the momentum is given with small value for the convergence, the improved
changes in convergence time would not be expected to be comparable to the time
before applying the momentum. In the meantime a large momentum can cause over
learning. Thus, as static momentum is equally applied in the entire training, it does not
become an effective proposal for choices in reducing the convergence time and
improving performance [16]. In the approach of [17], a mod � DS� ga rule was
proposed to improve the performance. However, this method is restricted to select one
of three momentum values. In our proposed algorithm, the optimum value for
momentum factor is obtained from the gradient of the error function with respect to the
synaptic weight. The weight-change with momentum adaptation is described by:

wkþ 1
ih ¼ wk

ih þ g
@E
@wk

ih

þ e
�d� @E

@wk
ih

����
����
Dwk�1

ih ð18Þ

where d is a constant to control the momentum factor. The value of d is: 0\d\1.

4.2 Adaptive Learning Rate Algorithm

The learning rate that has the least validation error, is chosen as the optimum learning
rate [18]. The optimum learning rate can guarantee the stable convergence of SNN and
improve the convergence speed. If the learning rate is set too high, the convergence
speed of the network is fast, but may lead to the network instability, or even the
network cannot be operated. If the learning rate is set to a small value, the network
convergence speed is slow and consumes long computing time; and in the worst case it
probably cannot meet the requirements of practical applications.

To improve the performance of convergence, the momentum can be used in com-
bining with adaptive learning rate [19]. The weight-updating formula can be calculated by:

wkþ 1
ih ¼ wk

ih þ gkþ 1
ih

@E
@wk

ih

þ e
�d� @E

@wk
ih

����
����
Dwk�1

ih ð19Þ

where gkþ 1
ih is adaptive learning rate. The dynamic self-adaptation method of learning

rate [17, 20] can improve the dynamic properties of the standard algorithm. The DS� g
learning rule first assigns an initial value to g, then in each iteration, g1 and g2 are
computed by:

g1 ¼ g=q ð20Þ

g2 ¼ g � q ð21Þ
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where g is the learning rate in the previous iteration, and q is greater than 1.0. When
q[ 1:0, the network can normally work well; but q has an optimum value of 1.839 for
the network [20]. The disadvantage of this method is that how to select these rates
(g1 and g2). Hence, this method is restricted to select one of these two values [17]. In
this paper, the delta-bar-delta rule is used to adjust the learning rate adaptively which
was proposed in [6]. The delta-bar-delta rule can be calculated by:

Dgkih ¼
a; Sk�1

ih Dk
ih [ 0

�bgkih; Sk�1
ih Dk

ih [ 0
0; other

8<
: ð22Þ

Dk
ih ¼

@E
@wk

ih

ð23Þ

Skih ¼ ð1� cÞDk
ih þ cSk�1

ih ð24Þ

where a, b, and c are all parameters. The typical values are: 10�4 � a� 0:1,
0:1� b� 0:5, and 0:1� c� 0:7. The delta-bar-delta method increases learning rate
linearly and decreases them exponentially.

5 Experimental Results

In order to test the performance of the proposed algorithms, the XOR task and Wis-
consin Breast Cancer classification task were selected as exemplar applications. A fully
connected feedforward network with multiple delays per connection is employed. Each
connection consists of a fixed number of 16 synaptic terminals. These connections have
a delay interval of 15 ms and therefore the available synaptic delays are from 1 to
16 ms.

5.1 XOR Task

A simple way to encode the XOR dataset by spike times was proposed in [3]. The
inputs and outputs for XOR task are binary, and the binary 0’s and 1’s are directly
encoded into firing times of input and the desired firing times of output. For the input
variables, an input spike at 1 ms represents logic 0 while a spike at 7 ms represents
logic 1. For the output, a spike at 16 ms represents logic 0 while a spike at 10 ms
represents logic 1. Such a coding scheme is given by [3]. Therefore the XOR task has
four training patterns, including input patterns (1, 1), (1, 7), (7, 1), and (7, 7) with
corresponding output patterns 16, 10, 10, and 16 (unit: ms). The network architecture is
consisted of three input neurons (two coding neurons and one reference neuron), five
hidden neurons and a single output neuron. The parameters d and s are set to 0.01 and
7, respectively. The static learning rate g is set to 1.
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Figure 2 and Table 1 show the relationships between epochs and error under dif-
ferent conditions. (a) refers to original Booij’s algorithm proposed in [8], it carries out
135 epochs and the error is 1.4. (b) refers to the algorithm with a static momentum, it
carries out 42 epochs and the error is 1.7. (c) refers to the algorithm with dynamic
momentum, it carries out 35 epochs and the error is 1.2. (d) refers to the algorithm with
dynamic momentum and adaptive learning rate, it carries out 51 epochs and the error is
0.7. It can be seen that the adaptive learning method learns within 51 epochs which is
much faster than original 135 epochs. And the error is 0.7 in this work, it is 2 times less
than original Booij’s algorithm. The methods of static momentum factor learns within
42 epochs and adaptive learning rate with static momentum factor learns within 35
epochs. However, the errors of these two methods are higher than the method of
adaptation of momentum factor and learning rate.
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Fig. 2. Results of XOR task using different algorithms. (a) refers to original Booij’s algorithm
[8]. (b), (c), and (d) give the results of the static momentum and learning rate, adaptive
momentum and static learning rate, adaptive momentum and adaptive learning rate, respectively.

Table 1. The XOR task of different algorithms

Algorithms Epochs Desired output
[ms]

Actual output
[ms]

Absolute
error

Original Booij’s algorithm [8] 135 16 14.6 1.4
Static a, η = 1 42 16 17.7 1.7
Dynamic a, η = 1 35 16 17.2 1.2
This work - Adaptive a and η 51 16 15.3 0.7
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5.2 Wisconsin Breast Cancer Classfication Task

The Wisconsin Breast Cancer (WBC) dataset is used for this testing. It uses breast
cytology gained by fine needle aspirations in the University of Wisconsin Hospital and
classifies the results into benign or malignant cancer tumors [21]. WBC classification
task is a binary classification problem which consists of 669 samples. Each sample
consists of 9 attributes and has to be classified as a benign or malignant case of breast
cancer. 300 samples are selected to verify the algorithm and they are divided into two
groups. One group includes 200 samples for training and another comprises of 100
samples for testing. The 9 attributes in each sample which measure different features of
the cytology. And each value can be mapped directly to a linear spike train in the range
1 to 10.

For the input variables, each value can be mapped directly to a linear spike train in
range of 1 to 10 ms. For the output variables, the benign and malignant tumours can be
coded as an output spike at time 16 ms and 17 ms respectively. Similar to the XOR
task, the parameters d and s are set to 0.01 and 3, respectively. The static learning rate g
is set to 1. The relationships between epochs and error under different algorithms is
shown in Fig. 3 and Table 2. Figure 3(a) refers to original Booij’s algorithm, it carries
out 97 epochs and the accuracy rate is 79%; (b) refers to the algorithm with a static
momentum, it carries out 36 epochs and the accuracy rate is 81%; (c) refers to the
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Fig. 3. Results of WBC task using different algorithms. (a) refers to original Booij’s algorithm
[8]. (b), (c), and (d) give the results of the static momentum and learning rate, adaptive
momentum and static learning rate, adaptive momentum and adaptive learning rate, respectively.
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algorithm with dynamic momentum, it carries out 54 epochs and the accuracy rate is
84%; (d) refers to the algorithm with dynamic momentum and adaptive learning rate, it
carries out 26 epochs and the accuracy rate is 92%. These experimental results
demonstrate that the adaptive learning algorithm with momentum factor and learning
rate can learn within 26 epochs and the accuracy is 92%. For most of the iterations
sampled, the correct classification results are much higher for the adaptive case than the
non-adaptive one. In addition the adaptive learning algorithm learns faster than
non-adaptive one. In summary, the error of the proposed algorithm is the smallest and it
uses less epochs for the task competition.

6 Conclusions

In this paper, the learning algorithm using the adaptive momentum factor and learning
rate adaptation method are proposed to improve the convergence speed of a spiking
neural network. The experiment of XOR task and WBC classification task are used to
verify performance of the proposed learning algorithms. The experiment results
showed that the proposed learning algorithms improve the learning rate and conver-
gence speed, and achieve a better performance than original Booij’s algorithm.
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Abstract. Resistive random access memory ReRAM has attracted great atten-
tion due to its potential for flash memory replacement in next generation non-
volatile memory applications. Among the main characteristics of this type of
memory, we have: low energy consumption, high-speed switching, durability,
scalability and friendly manufacturing process. This device is based on resistive
switching phenomenon for operation, which is reversible and can be played back
repeatedly. In this work, eight different devices are developed and fabrication is
made as follows: thin films are obtained by dip coating technique. The dip coating
apparatus basically consists of a clampwhich holds the substrate is dipped in a GO
solution (graphene oxide) which containing dopant (cupper, iron or silver) or CuO
(copper oxide). ITO (indium tin oxide) and aluminum contacts were evaporated.
The devices were developed with purpose: intention is record and read infor-
mation dynamically with appropriate algorithm. There is even the possibility of
storing images. With these functions, it would be promising to enter the neuro-
morphic computing area that is one of the resistive memory applications. ReRAM
technology advent represents a paradigm shift for artificial neural networks, being
the best candidate for emulation of synaptic plasticity and learning mode.

Keywords: Resistive memory � ReRAM � Graphene oxide

1 Introduction

Resistive random access memories (ReRAMs) are a class of devices emerging from
the new generation of non-volatile memories. Many researchers have made great
efforts to understand and develop these new memories because they have simple
metal-insulator-metal (MIM) structure [1, 2], ease of recording/reading, high storage
density and low power consumption. Resistive switching (RS) is the basic phenomenon
for the operation of these memories, in which when a specific electrical voltage is
applied in the MIM device, it can undergo switching from its initial insulator resistance
state (HRS - high resistance state) to a low resistance state (LRS).

RS has already been observed in several materials such as TiO2, ZnO, NiO, per-
ovskites and some electrolytic solids [1–5], in which two typical behaviors were per-
ceived: unipolar and bipolar. In the unipolar behavior the switching is independent of
the polarity applied, whereas in bipolar behavior there is this dependence [4].

© Springer International Publishing AG 2017
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Among the main characteristics of this type of memory, we have: low energy
consumption, high-speed switching, durability, scalability and friendly manufacturing
process [1].

There is a strong relationship between the materials used in the composition of
these devices and their characteristics. Depending on the composition of the insulator,
the voltage and current where the LRS and HRS states will occur can vary greatly; The
response time for switching from one state to another or latency is affected and the
power consumption for which SET and RESET occur are also influenced. The unipolar
or bipolar behavior will depend on the type of material chosen. Contacts also have
influence on the phenomenon of resistive switching and filament formation, and may
interfere with the mode of memory operation. The geometry of the device is another
element that causes impact. This makes it necessary to choose an optimized archi-
tecture because of the scalability issue.

Graphene is currently one of the most promising nanomaterials in the world, due to
its excellent electrical, thermal and optical properties. Graphene is considered to be the
basis of the whole family of carbon materials, with the exception of diamond [6–9]. For
its production several methods have been researched [10], exemplified by exfoliation,
deposition by CVD (Chemical Vapour Deposition) technique, among others.

Thinking in terms of obtaining the devices, process and waste disposal, we have an
optimization, since the process of obtaining the memories is simple, low cost and there
is no generation of toxic waste. If we think about the production of materials, some
techniques are expensive (such as MBE or molecular beam epitaxy) and others end up
generating toxic materials (such as the production of silicon oxide that sometimes uses
silane gas). Graphene oxide would be a “green” material which does not pollute and is
still derived from carbon.

The production process is simple, efficient and inexpensive. It can be done with
low-cost equipment that can be build by the researcher. Moreover, due to the sim-
plicity, the reproducibility of the devices can be made on a large scale.

What is the advantage of using a dopant in material? When the material is doped, in
case graphene oxide (GO), its electrical, optical, magnetic and structural characteristics
are modified. They can be improved or only directed towards a particular purpose. If
we are to think in terms of resistive memories, it is necessary to obtain characteristics
that allow a greater miniaturization of the devices, since the flash technology reached
its lower limit because the minimum thickness of 15 nm has been reached. In addition,
it is expected that there will be a minimum energy consumption with respect to
the operation of a ReRAM, with SET and RESET voltage values occurring at low
voltages.

Heat dissipation must be considered due to the Joule Effect, so it is important to
have control over how the memory will operate in unipolar or bipolar mode. If the
ReRAM is unipolar, its SET and RESET will occur for the same polarity; being
unipolar, we have that there will be no influence of the electric current, thus avoiding
the heating of the device with Joule Effect. In Yoo et al. research [13] devices were
developed using pure graphene oxide. Memories presented bipolar behavior and the
voltage for both RESET and SET are low, besides the variation in the current values are
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perceptible. When the GO is doped with some transition metal such as iron, copper or
silver, the behavior is changed to unipolar and the SET and RESET occur for smaller
voltages, saving energy.

The emergence of portable electronics such as cell phones, MP3 s, digital cameras
and netbooks over the last 20 years has led to unbridled demand for better technologies
for non-volatile flash memory because of its small cell size and low power con-
sumption. However, scaling of flash memory beyond 15-nm technology is highly
problematic due to fundamental limit of cell structure. The cell of a flash memory unit
is very similar to the conventional field-effect metal-oxide-semiconductor transistor
(MOSFET), except for the additional floating port for storing electrical charges.

Research on non-volatile memories to replace the flash has been very active.
Among the most recent and as an alternative that has generated promising results, there
is resistive memory (ReRAM) that is based on the resistive switching phenomenon
(RS). Basically, non-volatile resistive RAM stores data by creating a resistor in a circuit
instead of trapping electrons inside a cell. As a result, while the usual memory read-out
latency is hundreds of microseconds, ReRAM reaches 50 ns, a delay time that can
fit between main memory and cache memory levels in terms of speed, but at a lower
cost.

Resistive Switching refers to the physical phenomena through which the resistance
of a dielectric undergoes changes in response to a strong external electric field. It differs
from degradation phenomena in dielectrics, which result in a permanent reduction in
the resistance so that the change back to the original state is no longer possible [11, 12].

RS process is reversible and can be reproduced countless times. Typically, the
change in resistance is non-volatile. Note that these phenomena occur in numerous
insulating materials, including oxides, nitrides, chalcogen, organic semiconductor
materials. However, the RS phenomenon has been studied more extensively in oxides.
ReRAM are based on this phenomenon for operation [13–15].

Basically, memristor is an extremely small (nanometer) component that combines
two terminals; when a current flows between them, its resistance increases; when the
opposite path is made, the resistance decreases. What is important to consider here is
that when current is cut off, the last recorded resistance level is maintained and
depending on its value, we can assign a logic level 0 or 1.

RS mechanism is still not very well understood and therefore there are some
proposals to explain this process. Predominantly more accepted model in oxide
structures is the “conductive filament” model. A conductive path is created inside the
insulator when certain electrical voltage is applied, the so-called “forming process” or
SET. This creation occurs due to ionic migrations inside the insulator. RESET would
be the destruction of this filament. The formation/destruction of filament can occur in
two ways: one of these migrations is anionic, in which oxygen atoms migrate towards
the anode, leaving behind a path of cations. Another ionic migration that occurs inside
the insulator is cationic one, in which one of the electrodes is electrochemically active
(such as Ag) and the other being an inert material (Pt, for example), and in addition, the
insulator must be conductor of cations.
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2 Experimental

Copper oxide (CuO) was synthesized using copper (II) acetate as described by Yoo
et al. [13]. A colloidal solution of copper acetate in ethanol was used as precursor. 0.3 g
copper acetate monohydrate added to 30 mL ethanol was suffered sonication for 1 h.
To make CuO thin films, dip coating was used.

Deposition is made as follows: thin films are obtained by dip coating technique.
The dip coating apparatus basically consists of a clamp which holds the substrate is
dipped in a GO solution (graphene oxide) which containing dopant (cupper, iron or
silver) or CuO. ITO (indium tin oxide) and aluminum contacts were evaporated.

The current and voltage relation can be measured by tracer IxV model HP 4140B.
A curve is generated by varying the voltage. For the device to be considered a ReRAM
resistive memory, the graph of the current in a voltage rising curve must have a format
different from the curve obtained for the curve in a downward tension. An important
memory device mechanism is the transition from the high resistance state (HRS) to the
low resistance state (LRS) under applied voltage variation. It may be more useful for
the device to have a fast switching response in the critical voltage where the transition
occurs HRS to LRS.

Eight different devices were fabricated:

– ITO/CuO/GO+%1Fe/CuO/Al
– ITO/GO+%1Ag Al
– ITO/GO+%1Cu/Al
– Al/CuO/GO+%1Ag/CuO/Al
– ITO/GO+%0,1Ag/Al
– ITO/CuO/GO+%0,1Ag/CuO/Al
– ITO/CuO/GO+%1Cu/CuO/Al
– ITO/CuO/GO+%1Ag/CuO/Al

3 Results

For the eight devices produced there were combinations of aluminum and ITO contacts
and graphene oxide (GO) doped with a transition metal (iron, copper or silver) with or
without copper oxide (CuO) layer. In Fig. 1 electrical characterization of the resistive
memories is observed. HP 4140B was used for current as a function of voltage
(IxV) measurements.

It is observed that no memory had a similar behavior. The most interesting and
common fact to notice in almost all devices is that there is an abrupt transition fromLRS to
HRS and in the sequence there is an abrupt transition from HRS to LRS forming a sort of
“thorn”. It can be noted that there is an abrupt change in current in some tensions, in which
Zhang et al. [16], in their work with ITO/ZnO/PCMO/ITO-based RERAMs, associated
mobile traps (oxygen vacancies) that were occupied by electrons forming a conducting
path, the so-called filament conductor. However, in these voltages where there is
occurrence of the “thorn”, the weakest point of the conducting filament is destroyed, and
according to the authors of this research, results in an electronic properties change.
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In graphs below, some comparisons between similar devices were made. The
results were grouped for devices with similar structures.

For Fig. 2a, a three layer structure is shown and for Fig. 2b, a five layer structure
interspersed with copper oxide. In the graphs of Figs. 2a and b it is possible to observe
that devices have unipolar memory behavior since the SET and RESET occur in the
same polarity. For Fig. 2b, it is noted that the SET (HRS for LRS) occurs in values
around ±0.7 V to ±0.8 V and RESET occurs between ±0.2 V to ±0.3 V, for the
same polarity. Being unipolar, there is no influence of the electric current, thus
avoiding the joule effect with heating of device. In addition, the SET and RESET occur
in a range less than 0.9 V, which implies a lower power consumption for it to operate.
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Fig. 1. Current as a function of voltage (IxV) measurements.

-2 -1 0 1 2

-0,0030

-0,0015

0,0000

0,0015

0,0030  ITO / GO + 1% Ag / Al
 ITO / GO + 1% Cu / Al
 ITO / GO + 0,1% Ag / Al

C
ur

re
nt

 (A
)

Voltage (V)

a

-0,8 -0,4 0,0 0,4 0,8

-0,006

-0,003

0,000

0,003

0,006  ITO/CuO/GO+ 1% Fe/CuO/Al
 ITO / CuO / GO+ 1% Cu / CuO / Al
 ITO / CuO / GO+ 1% Ag / CuO / Al

C
ur

re
nt

 (A
)

Voltage (V)

b

Fig. 2. (a) Three layer structure and (b) Five layer structure interspersed with copper oxide.
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It can be seen that copper interferes in the behavior of devices with respect to the
current as a function of the voltage. Such transition metal interferes with the “thorns”
formation. When copper (as GO dopant or oxide form) is added in the ReRAM struc-
ture, the tendency is for abrupt change in the resistance state to be more difficult to occur.
This element probably mitigates effect that possible oxygen vacancies may cause.

In the case of these devices, as they are formed by GO doped with transition metal
(iron or copper or silver), filament will be formed as a function of this metal. Eventually
mobile traps will be formed, destroying the filament fragile section and resulting in
abrupt changes of resistance state (“thorn”). The behavior of filament is seen in Fig. 3.

An interesting fact to note is that the used contacts influence the formation of the
filament as well. If the graph for the ReRAM based on the Al/CuO/GO+1%Ag/CuO/Al
structure is observed, its behavior diverges from the other devices (Fig. 1).

After the individual characterizations of the devices have been completed, mem-
ories with structures in 8 � 8 matrix format will be fabricated.

Structures will be fabricated in this way (Fig. 4) in order to develop a circuit whose
memory stores 64 bits. The high resistance state HRS will correspond to the low level
or 0 and the low resistance state LRS will be the high level or 1.

The algorithm for writing will be based on the code for LED matrix operation,
which will be associated with the code to obtain resistance at each position of matrix. In
this way, a write/read memory array code will be obtained. The program will be
uploaded to the Arduino microcontroller which will manage the operations performed
by ReRAMs (Fig. 5).

This memory array will be able to save data. It is possible to record and read
information dynamically with appropriate algorithm. There is even the possibility of
storing images (referring to original idea of LEDs matrix forming images). With these
functions, it would be promising to enter the neuromorphic computing area that is one
of the ReRAM applications.

Fig. 3. Behavior of filament.
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The basic idea in most ReRAM-based neuromorphic approaches is to consider
ReRAM devices, or small ReRAM-based circuits, as artificial synapses. According to
Indiveri et al. [17], the idea of using ReRAMs as neural simulators comes from
Likharev who introduced the “Crossnets” concept, where memory devices serve as
interconnectors corresponding to binary synapses.

Human memory is often associated with ability to retain and use information or
acquired knowledge, but there is an important function of being related to learning
process. In DeSalvo et al. research [18], she mentions that ReRAM technology advent
represents a paradigm shift for artificial neural networks, being the best candidate for
emulation of synaptic plasticity and learning mode. Thanks to its non-volatility, high
switching behavior and reliability, resistive memories can make the operation of

Fig. 4. Memories with structures in 8 � 8 matrix format.

Fig. 5. Arduino microcontroller and ReRAMs.
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machines close to human brain functioning, including mental processes such as visual
recognition and problem solving. It would be a great advance if these devices work
with genetic algorithms, which would allow a constant evolution.

4 Conclusion

Eight different devices were fabricated. It is observed that no memory had a similar
behavior. The most interesting and common fact to notice in almost all devices is that
there is an abrupt transition from LRS to HRS and in the sequence there is an abrupt
transition from HRS to LRS forming a sort of “thorn”. This behavior can be associated
with mobile traps. Copper interferes in the behavior of devices with respect to the
current as a function of the voltage. Such transition metal interferes with the “thorns”
formation. When copper (as GO dopant or oxide form) is added in the ReRAM
structure, the tendency is for abrupt change in the resistance state to be more difficult to
occur. This element probably mitigates effect that possible oxygen vacancies may
cause.

This memories will be able to save data. It is possible to record and read infor-
mation dynamically with appropriate algorithm. There is even the possibility of storing
images (referring to original idea of LEDs matrix forming images). With these func-
tions, it would be promising to enter the neuromorphic computing area that is one of
the ReRAM applications.
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Abstract. The problem of medical data classification involves an optimization
phase that may be solved through metaheuristic approaches. In this work, we
evaluate the performance in diagnosis of diabetes disease, using Particle Swarm
Optimization (PSO), Firefly (FF) and Homogeneity-Based Algorithm (HBA)
metaheuristics in conjunction with fuzzy system. Here, the fitness function in the
optimization process is the total misclassification cost that is in term of false
positive, false negative and unclassifiable rates. The results prove that HBA
approach achieves better results than the other metaheuristics. With execution
time, FF was faster than the PSO and HBA methods.

Keywords: Metaheuristic � PSO � Firefly � HBA � Fuzzy system � PIMA
dataset

1 Introduction

Diabetes is a complex and chronic disease, which is characterized as an illness that may
occur when the pancreas is unable to produce insulin or when this hormone is not
effectively used by the human body. Diabetes includes two major classes: type 1, which
results in lack of insulin, due to beta-cells destroyment by the human immune system,
while type 2 diabetes, results from insulin resistance. Nowadays, diabetes has become a
worldwide epidemic that affects a big number of people [14].

Diabetes recognition is an important and difficult task that requires a reliable
algorithm in order to reduce the probability of classification error. Recently, there has
been several works, interested in the development of automatic tools for healthcare
provision. Most of these researches have investigated the development of CAD
(Computer Aided-Diagnosis) that provides a second opinion for physicians and helps
them in their diagnosis tasks.

Thus, in order to identify the diabetes diagnosis of patient, in this work, we propose
the employment of three well-known population-based metaheuristics, namely: PSO
(Particle Swarm Optimization), FF (Firefly) and HBA (Homogeneity-Based Algo-
rithm), in conjunction with FIS (Fuzzy Inference System), to evaluate their effective-
ness. Note that, in this study, the main goal is to minimize the fitness function value,
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that represents the total misclassification cost of FIS model, which is in term of FP
(false positive), FN (false negative), UC (unclassifiable) errors. The experiments are
made on the PIMA diabetes data set, taken from the UCI repository [10]. In the medical
field, a (Uc) case means a patient that cannot be diagnosed by the prediction system.
This is because of scanty and inadequate information about the patient. In the medical
applications, the Uc error is very required, because it may lead to additional exami-
nations that help doctors to make the right diagnosis.

The reminder of this paper is organized as follows: Sect. 2 presents some related
works on diabetes diagnosis. In Sect. 3, the PSO, FF and HBA metaheuristics and the
FIS model are defined. In Sect. 4, we describe our proposed methodology and we
discuss the obtained results, based on PIMA diabetes data set. Finally, in Sect. 5, we
conclude the paper.

2 Related Works

In the literature, several metaheuristic approaches have been successfully applied in
medical diagnosis, such as the PIMA diabetes dataset. In [1], authors developed a
Homogeneity-base Algorithm (HBA), for the classification of PIMA diabetes dataset.
Authors introduced the concept of Homogeneity Degree (HD), to achieve a simulta-
neously balance between the fitting and the generalization of the inferred classification
models. The HD value calculates the density of learning points in a given homogenous
hypersphere. The proposed HBA, compared to standalone data mining approaches such
as SVM (Support Vector Machine) and DT (Decision Tree), presented high perfor-
mance accuracy, but less efficiency due to the HBA’s computational time.

In another study [2], Pham and Triantaphyllou proposed a Convexity-Based
Algorithm (CBA) approach. In this work, a new concept of convex density (CD) was
introduced to optimize the total misclassification cost value, based on defragmenting
convex regions. The obtained results, tested on PIMA dataset, present significant
improvement compared to other well-known data mining techniques.

Beloufa and Chikh [3] presented a novel approach based on ABC (Artificial Bee
Colony) metaheuristic for automatic recognition of diabetes dataset from the UCI
repository. In this work, authors modify the original ABC approach by adding a
blended genetic operator for better intensification and diversification of the search
space. This operator serves mainly to automatically update the Fuzzy Inference System
membership functions and rules. Experimental results prove that the proposed ABC
metaheuristic, found minimal number of rules, while improving the final classification
performance.

Al-Muhaideb and Menai [4] introduced a two-stage metaheuristic optimization
method, called HColonies (Hybrid ant-bee colonies), which is a hybrid system between
ACO (Ant Colony Optimization) and ABC (Artificial Bee Colony) approaches. The
main idea of HColonies is to use ACO approach to create initial population solutions
for the ABC metaheuristic. This is done to accelerate the search and obtain good
performance results. In the first stage, the Ant-Miner+ is adopted to generate a pop-
ulation of food sources. In the second stage, a modified ABC method, based on new
operators is employed, to fit the appropriate problem. Results obtained by the

592 F. Bekaddour et al.



HColonies method on the PIMA diabetes, illustrate the effectiveness and robustness of
the proposed metaheuristic, toward change in its parameters.

3 Overview of FIS and the Used Metaheuristics

3.1 Particle Swarm Optimization

The first metaheuristic used in this work, is a population-based metaheuristic, called
PSO: particle swarm optimization (Kennedy and Eberhart in 1995) [5]. PSO mimics
the cooperative behavior concepts of natural organisms such as birds and fish. The PSO
algorithm starts with a random swarm that constitutes a set of particles. Each particle ‘i’
is characterized by its corresponding velocity Vi and its position Xi. Then, at each
iteration, particles modify their velocity and their position using formulas (1) and (2).

XiðtÞ ¼ Xiðt � 1ÞþViðtÞ ð1Þ

Vi tð Þ ¼ Vi t� 1ð Þþ c1r1 Pbesti t� 1ð ÞþXi t� 1ð Þð Þþ c2r2 Gbesti t� 1ð ÞþXi t� 1ð Þð Þ
ð2Þ

where (c1, c2)are two factors that represent the cognitive attraction and the social
attraction respectively. (r1, r2) are two random numbers uniformly distributed between
[0, 1]. (Pbesti, Gbesti) define the best position obtained by a given particle i and the best
position ever found in the entire swarm respectively. The different steps of the PSO
algorithm are given in Algorithm 1 as follows:

Algorithm 1: Particle Swarm Optimization
- Particles initialization.
- While (stopping criteria not met){

-Evaluate f (Xi):fitness function of each particle i 
-For all particles i do { 

- Compute Velocities Vi using formula(2).
- Compute the new position Xi using formula(1).

- If ( f (Xi) < f (Pbesti)) Then Pbesti = Xi.
- If ( f (Xi) < f (Gbesti)) Then Gbesti = Xi.
- Update (Xi, Vi).

} 
} 

3.2 Firefly Metaheuristic

The second used metaheuristic is Firefly (FF) algorithm [6]. FF is a nature inspired
population based swarm method, that imitates the flashing behaviors of fireflies. Each
firefly is considered as a candidate solution in the search space. There are three fun-
damental key issues, regarding the FF metaheuristic:
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• rij: that denote the distance between fireflies i and j.
• Attractiveness (b(rij)): calculated by the backdrop of the fitness function as follows:

bðrijÞ ¼ b0 e
�cr2ij ð3Þ

Where b0 means the attractiveness at r = 0, and c is the absorption coefficient.
• Movement: is determined by the Eq. (4):

Xi ¼ Xiþ b0 e
�crij2 Xj� Xið Þþ a rand� 1=2ð Þ ð4Þ

Where a is a random number, uniformly distributed between [0, 1].

The main steps of FF metaheuristic are summarized in Algorithm 2.

Algorithm 2: Firefly metaheuristic
- Fireflies initialization.
- Define the light intensity I.
- Define the absorption coefficient γ. 
- Define f(x): fitness function of x=(x1,x2,..,xd). 
- While (Max-generations not met){

- For each firefly i do{ 
- For (j=1 to i) do { 

- If ( I (j) >  I (i)) Then {
Move firefly i toward firefly j using eq(4)

} 
-Attractiveness varies with distance r via e-γr2

-Compute new solutions.
-Update I(i). 

 } 
} 

- Rank fireflies and find the best one.
} 

3.3 Homogeneity-Based Algorithm

In [8], Pham and Triantaphyllou introduced a new metaheuristic called
Homogeneity-based Algorithm (HBA). The main objective of HBA metaheuristic, is to
achieve a simultaneously balance between the fitting and the generalization, using the
concept of homogenous set and homogeneity degree (HD) [1, 7–9]. HBA approach
may be applied in conjunction with data mining techniques such as SVM (Support
Vector Machine), to minimize the fitness function formula (5):

TC ¼ min CFP � RateFPþCFN � RateFNþCUC � RateUCð Þ ð5Þ
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Where: CFP, CFN, CUC are the unit penalty cost for the false positive, false negative
and unclassifiable rates respectively. TC represents the total misclassification cost
value. From the two inferred models, obtained using a data mining approach, HBA
breaks each set into hyperspheres, covering decision regions. Next the Homogeneity
Degree (HD) value, corresponding to each hypersphere is calculated, using the Eq. (6):

HD Sð Þ ¼ ln nsð Þ=h ð6Þ

Where S is a given homogenous set, ns is the number of samples in S and h is the
minimal most frequent distance in a set S [1, 8, 9]. After that, HBA adopts four
thresholds: (b−, b+, a−, a+), to expand or break down each homogenous set, using
their corresponding HD values. Please note that, (a−, a+) are used to expand the
negative and the positive homogenous sets respectively. On the other hand, (b−, b+) are
used to fragment the negative and the positive homogenous sets respectively [8].
The HBA metaheuristic iterates until all the homogenous sets are processed. Within the
scope of HBA, the GA approach is employed, to adjust the (b−, b+, a−, a+) factors
values.

3.4 Fuzzy Inference System

Fuzzy Inference System (FIS) [15] is a well-known artificial intelligence approach, that
is based on the theory of fuzzy sets and fuzzy logic to extend the classical crisp sets
theory. In the literature, the FIS model has been widely employed in the medical field
[16–19].

The basic architecture of the FIS model as shown in Fig. 1, consists of three main
phases:

• Fuzzification: transform the crisp input into linguistic variables (fuzzy input).
• Inference Engine (IE): uses the fuzzy input and the rules defined in the knowledge

base module, to derive fuzzy sets for each variables.
• Defuzzification: transform the obtained fuzzy output by the IE into crisp output

The FIS model used in this paper is the Takagi-Sugeno fuzzy model.

Fuzzification Defuzzification Inference EngineCrisp 

Input
Crisp 

Output

  Knowledge base

Fig. 1. The main structure of the FIS model
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4 Computational Results

4.1 Description of Data

In this study, we employ the PIMA diabetes dataset, obtained from the UCI repository
[10]. The main description of PIMA dataset is depicted in Table 1. The PIMA dataset
is composed of 768 instances, where 268 samples belong to the positive class, and 500
samples belong to the negative class.

4.2 Experimental Design

In this work, the procedure of conducting the experiments is based on the fuzzy
inference system (FIS) [15] and metaheuristics techniques (PSO, FF, HBA). The
individual system was designed and developed with their default parameters values.
We developed the FIS approach, using the concept of membership functions and rules,
that denote the relationship between input (xi) and output (oi). The use of FIS, permit to
increase the transparency of the classifier. The main architecture of the proposed
F-Metaheuristic is depicted in Fig. 2.

For the development of (PSO, FF, HBA) methods, the objective was to minimize
the fitness function values that define the total misclassification cost (TC) of FIS
approach. In this work, we propose three different configurations of TC formulas,
depicted in Fig. 3.

Table 1. PIMA diabetes dataset description

Attribute Description

Npreg Number of times pregnants
Glu Plasma glucose concentration
Bp Diastolic blood pressure
Skin Triceps skin fold thickness
Insulin 2-Hour serum insulin
BMI Body mass index
PED Diabetes pedigree function
Age Age of the patient

Training  
Dataset    

FIS
Classifier

Model
 Metaheuristic 
(PSO,FF, HBA)

Fuzzy-
Metaheuristic

Fig. 2. Architecture of the proposed F-Metaheuristic approach

596 F. Bekaddour et al.



In the first consideration, we assume that unclassifiable (UC) cost is equal to 0,
while FN and FP penalty costs are set to (1, 1) respectively. This is the case on the
majority of works in the literature. Therefore, TC can be defined as:

TC ¼ min 1 � RateFPþ 1 � RateFNð Þ ð7Þ

In the second consideration, we suppose that UC is taken into account, while the
FN rate is penalized more than (UC, FP) and the UC is penalized more than the FP rate.
Thus, TC is defined as follows:

TC ¼ min 1 � RateFPþ 30 � RateFNþ 3 � RateUCð Þ ð8Þ

In the last consideration, we assume the case where the FN rate is penalized much
more than the (FP, UC) costs, while UC still penalized more than FP rate. Therefore,
the TC value is described as follows:

TC ¼ min 1 � RateFPþ 100 � RateFNþ 6 � RateUCð Þ ð9Þ

It is surprised that despite the various works reported in the literature, on the PIMA
dataset, the majority of researchers still neglects the evaluation of UC cases. It is to be
emphasized that the UC error is very essential in medical diagnosis problem. This is
because, this may help the physician to make the right decision, based on more
examinations. In this work, we compute the UC rates that represent the number of
patients which cannot be diagnosed by the classifier. A reason for that is that the
information gathered about the patient are scanty or inadequate. The defaults param-
eters of the three used metaheuristics are given in Table 2.

4.3 Measure for Performance Evaluation

In order to conduct a valid experiment, in this work, we propose the use of three
different scenarios for the fitness function (TC), as it is described in Sect. 4.2. Please
note that TC is in term of three type of errors (FP, FN, UC) that measure mistakes made
by the FIS or the F-metaheuristic, during the validation phase. The sensitivity (Se), and
the specificity (Sp) are two other well-known metrics that are used in this study. (Se,
Sp) measure the true positive and the true negative rates respectively, defined as
follows:

TC=min(FP+FN) TC=min(FP+30FN+3UC) TC=min(FP+100FN+6UC) 

Consideration I Consideration II Consideration III

Fig. 3. The proposed three scenarios of TC
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Se ¼ TP=TPþ FN ð10Þ

Sp ¼ TN=TNþ FP ð11Þ

Where (TP, TN) are the true positive and the true negative numbers respectively,
while (FP, FN) are false positive and false negative numbers respectively. In this study,
we also calculate two other metrics that are:

• Solicitation degree (SD) of each rule, generated by the FIS (F-metaheuristic)
approach. SD defines the rules activation degree between 50% and 100%.

• Accuracy: that defines the correct classification rate.

4.4 Results and Discussion

We conducted different experiments to juxtapose the three used metaheuristics (PSO,
FF, HBA), for the given default parameters, depicted in Table 2. As discussed in
Sect. 4.1, we adopt the PIMA diabetes dataset. The experimental methodology ran as
presented in Sect. 4.2. The experiments were made in Matlab, version 2012a. As this
work presents a comparative study of metaheuristics, the comparative results related to
the fitness function value, are presented in Table 3. This table presents the (FP, FN, UC)
rates and the obtained TC values. Note that F-PSO means: the FIS system is used in
conjunction with PSO metaheuristic. Same definitions are valid for F-FF and F-HBA.
The improvement column defines the improvement rate of the FIS-metaheuristic
compared to the FIS approach.

Table 2. Summary of default parameters used in the implementation of the model

Approach Parameters values

Fuzzy Membership number: 2 for each attribute
Membership type: Generalized Bell
FIS type: Takagi-Sugeno
Rules number: 256

PSO Swarm size: 40
Generations number: 10–50
Cognitive attraction (c1) = 0.5
Social attraction (c2) = 1.25

FF Population size: 25
Generations number: 10–100
Light absorption coefficient = 1
b0 = 2

HBA Initial (b−, b+, a−, a+): 0
Final (b−, b+, a−, a+): updated using Genetic Algorithm
Iterations number: 10–50
c = 0.01, is a parameter, used to judge whether a region is homogenous or not
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According to Table 3, the average value of TC on PIMA dataset were 28.3%, under
the first consideration. This value of TC was less than the TC average value by about
67.35%. In the second consideration, the TC values are equal to (791, 628, 415) for
(F-PSO, F-FF, F-HBA) respectively. This value of TC was not optimal than the FIS TC
value. The average value of TC is equal to 612%, on the PIMA dataset. The obtained
results for the last consideration are also summarized in Table 3. In this case, the
obtained average TC value is equal to 1843. The (F-PSO, F-FF, F-HBA) have not
yielded optimal TC on the PIMA dataset, compared to the FIS TC value. In addition,
the obtained computational results presented in this table, confirm that the three
(CFP, CFN, CUC) values affect the final TC values.

To make the results clearer, we plotted the (Accuracy, Se, Sp) in Fig. 4. This figure
presents also the average improvement of the FIS-metaheuristics, compared to the
standards FIS. The experiments illustrate that F-HBA metaheuristic achieved better
results in term of (Accuracy, Se, Sp), which were successful for small number of
generations. FF was slightly worse than PSO metaheuristic. It clearly appears that the
HBA metaheuristic achieves minimal TC error value and better accuracy for small
generations number. Also, (a+, a−, b+, b−) values, played a great role in method
performance. However, the F-HBA computational time is higher than (F-PSO, F-FF,
Fuzzy) approaches. This is due to the compute of homogenous sets and homogeneity
degree. F-FF was slightly faster the F-PSO metaheuristic in term of execution time.

Tables 4 and 5 present the solicitation degree (SD) of some rules, obtained by the
F-HBA model, for the TN and UC cases. Rules cited in those tables are:

R97: if (Npreg is sm)& (Glu is bg)& (Bp is bg)& (Skin is sm)& (Insulin is sm)&
(BMI is sm)& (PED is sm)& (Age is sm) then Class 97

R101: if (Npreg is sm)& (Glu is bg)& (Bp is bg)& (Skin is sm)& (Insulin is sm)&
(BMI is bg)& (PED is sm)& (Age is sm) then Class101

R109: if (Npreg is sm)& (Glu is bg)& (Bp is bg)& (Skin is sm)& (Insulin is bg)&
(BMI is bg)& (PED is sm)& (Age is sm) then Class109

Table 3. Results obtained under the three proposed considerations

Nbr. consideration Approach FP (%) FN (%) UC (%) TC (%) Improvement (%)

Consideration I FIS 67.18 0.0 32.18 67.18
F-PSO 21.35 19.8 58.85 41.15 67.18
F-FF 16.14 19.27 11.45 35.41 47.29
F-HBA 0.0 8.33 55.2 8.33 87.60

Consideration II FIS 67.18 0.0 32.18 163.72
F-PSO 21.35 19.8 58.85 791.9 No.improv
F-FF 16.14 19.27 11.45 628.6 No.improv
F-HBA 0.0 8.33 55.2 415.5 No.improv

Consideration III FIS 67.18 0.0 32.18 260.26
F-PSO 21.35 19.8 58.85 2354 No.improv
F-FF 16.14 19.27 11.45 2011 No.improv
F-HBA 0.0 8.33 55.2 1164 No.improv
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As described in Table 2, we choose two membership functions for each descriptor
(sm: small, bg: big). Figure 5 presents a TN case that activates R97 with SD = 78.22.
This example has been misclassified by the FIS, while correctly classified by F-HBA.

For the UC cases, Table 5 illustrates the SD of rules 101 and 97. According to this
table, R101 presents the higher SD value. The example depicted in Fig. 6 presents a
patient that was correctly classified by the F-HBA approach, while misclassified by the

Table 4. SD of some rules for TN case

Rule Solicitation degree

[101] 0.008
[97] 0.02

Parameter Value
Npreg 6.77
Glu 18.84
BP 16.58

Skin 0 
Insulin 0
BMI 9.32
Ped 8.99
Age 8.61
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Fig. 5. Example of TN case
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Fig. 4. Accuracy, Se, Sp comparisons for PIMA dataset
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FIS. In fact, this patient has a Glu value greater than 1.4 g/l and a body mass index
greater than 40 kg/m2, which indicates a morbid obesity.

This example has activated R109 with SD equal to 74.45. Experiments proves that
the HBA metaheuristic can be of great interest for diabetes disease diagnosis.

5 Conclusion

This study investigates the problem of medical data classification that involves an
optimization phase, and so the employment of metaheuristics approaches is very rec-
ommended. Various works dedicated in the diagnosis of diabetes have been carried out
over the last decades. In the present work, three metaheuristic algorithms were
developed to identify whether a patient is a subject of diabetes or not. The performance
of PSO (Particle Swarm Optimization), FF (Firefly), HBA (Homogeneity-Based
Algorithm) has been compared for the minimization of FP (False Positive), FN (False
Negative), UC (Unclassifiable) rates of the FIS (Fuzzy Inference System) model.
Computational experiments based on PIMA dataset from the UCI repository, illustrate
that the HBA metaheuristic obtained better performance among the other used meth-
ods. In the near future, we aim to pay more attention to employ other metaheuristics
such as Krill Herd [11], Dragonfly [12] and Whale [13] metaheuristics.

Table 5. SD of some rules for UC case

Rule Solicitation degree

[97] 0.008
[101] 0.06
[109] 0.008

Parameter Value
Npreg 0
Glu 17.77
BP 16.95

Skin 20.92
Insulin 110.96
BMI 21.28
Ped 11.78
Age 9.00
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Fig. 6. Example of UC case
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Abstract. In this paper, randomized single-hidden layer feedforward
networks (SLFNs) are extended to handle outliers sequentially in online
system identification tasks involving large-scale datasets. Starting from
the description of the original batch learning algorithms of the evaluated
randomized SLFNs, we discuss how these neural architectures can be
easily adapted to cope with sequential data by means of the famed least
mean squares (LMS). In addition, a robust variant of this rule, known
as the least mean M-estimate (LMM) rule, is used to cope with outliers.
Comprehensive performance comparison on benchmarking datasets are
carried out in order to assess the validity of the proposed methodology.

Keywords: Randomized SLFNs · Online system identification · NARX
model · Outliers

1 Introduction

A novel class of supervised single-layer feedforward network (SLFN) architec-
tures, generically called Randomized SLFNs, is attracting a great deal of atten-
tion from the computational intelligence community in recent years. A few exam-
ples of such architectures are the Random Vector Functional Link (RVFL) [15],
the Extreme Learning Machine (ELM) [3], and the No-Prop network [14]. All this
interest seems to be primarily motivated by the very fast way they are trained,
without resorting to a long learning process across several training epochs, as
required by the backpropagation algorithm. Even being a valid argument, many
real-world applications present challenging features that demand adaptations in
the learning algorithms of the aforementioned randomized SLFNs. One of such
applications is online dynamical system identification from large scale datasets
in the presence of outliers.

c© Springer International Publishing AG 2017
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Dynamical system identification is a regression-like problem where the input
and output observations come from time series data [1]. In other words, infor-
mation about the dynamics (i.e. temporal behavior) of the system of interest
must be learned from time series data. Despite the rapidly growing number of
successful applications of randomized SLFNs in pattern recognition and regres-
sion, their use for nonlinear dynamical system identification has not been fully
explored yet, with just a few works available [5,9,12]. In [5,12], for example,
the proposed ELM-like models use batch learning algorithms based on the ordi-
nary least-squares (OLS) estimation method, which cannot be applied to large
scale datasets because it requires a costly matrix inversion and storage of huge
data matrices. In [9], a recursive estimation algorithm is proposed aiming at
online system identification problems, but despite alleviating the memory stor-
age requirements by using chunks of data samples instead of the whole dataset,
the proposed method is still too costly to be applied for large scale datasets.

In what concerns the robustness to outliers, it is widely known that the
OLS method is very sensitive to their presence in the estimation data [4]. As a
consequence, any randomized SLFN using the OLS method, such as the standard
RVFL and ELM networks, will also present a severe degradation in performance
when trained with outlier-contaminated data. For online learning in outlier-
free scenarios, the No-Prop network [14] becomes a suitable alternative to the
standard RVFL and ELM networks because it uses the least mean squares (LMS)
rule instead of the OLS method for estimating the output weights. However, like
the batch OLS, the adaptive LMS rule is also very sensitive to outliers, an issue
that can be resolved by means of an outlier-robust version of it, named the
least-mean M -estimate (LMM) algorithm [17].

From the exposed, due to the requirements of the applications we are inter-
ested in, we pursue randomized nonlinear models capable of fast online learning
in large scale datasets AND in the presence of outliers. For this purpose, we incor-
porate into the aforementioned randomized SLFNs, the robust online learning
ability of the LMM rule. This strategy is comprehensively evaluated on datasets
generated by several benchmarking dynamical systems and shown to be effec-
tive. For the sake of completeness, we also introduce the LMM learning rule into
the standard backpropagation algorithm in order to carry out a fair performance
comparison.

The remainder of the paper are organized as follows. In Sect. 2 we describe all
models to be evaluated in this paper, emphasizing the need for adaptive learning
rules, such as the LMS rule, for online system identification. In Sect. 3 we show
how to replace the original LMS rule with a robust variant by means of concepts
from the M -estimation framework. A comprehensive performance comparison is
presented in Sect. 4. The paper is concluded in Sect. 5.

2 Evaluated Models

Let us assume that we have already collected N data pairs {(xn, dn)}N
n=1 for

building and evaluating the model, where xn ∈ R
p is the n-th p-dimensional
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input pattern and dn ∈ R is the corresponding target value. Then, let us ran-
domly select N1 (N1 < N) training input-output pairs from the available data
pool and arrange the input vectors along the columns of the matrix X (p×N1),
while the target values are stacked into the column-vector d (N1 × 1):

X = [x1 | x2 | · · · | xN1 ] and d = [d1 d2 · · · dN1 ]
T , (1)

where the superscript T denotes the transpose of a vector/matrix.

2.1 The Random Vector Functional Link Network (RVFL)

The RVFL [15,16] is a randomized SLFN with two pathways for processing
information from input units to output neurons. These pathways are then added
to form the network’s output. The first pathway is a linear one, which directly
connects the input units to the output neuron. Mathematically, we get

y(1)
n = wT

1 xn, (2)

where w1 ∈ R
p is the corresponding weight vector1. The second pathway

processes the input vectors through a hidden layer of q (q ≥ 1) nonlinear neurons;
that is,

y(2)
n = wT

2 hn, (3)

where w2 ∈ R
q is the corresponding weight vector and hn ∈ R

q is the hidden
activation vector, i.e. the vector containing the outputs of the hidden neurons in
response to the current input vector xn. The vector hn is computed as

hn = φ(Mxn) = [φ(mT
1 xn + b1), . . . , φ(mT

q xn + bq)]T , (4)

where φ(·) is a nonlinear (e.g. sigmoidal) activation function operating at each
component of its argument vector, M is a q×p weight matrix, and bj , j = 1, . . . , q,
denotes the bias of the j-th hidden neuron. It should be noted that the weight
vectors w1 and w2 are estimated from data, while the entries of the matrix
M and the biases bj are randomly sampled either from a uniform or a normal
distribution.

If we add the outputs of both pathways, we get

yn = y(1)
n + y(2)

n = wT
1 xn + wT

2 hn = [wT
1 | wT

2 ]

⎡
⎣
xn

−
hn

⎤
⎦ = wT zn, (5)

where w = [wT
1 | wT

2 ]T is the (p+ q)×1 vector obtained from the concatenation
of the weight vectors w1 and w2. By the same token, zn is the (p+ q)× 1 vector
formed from the concatenation of the current input vector xn and the current
hidden activation vector hn.

1 We assume that all vectors are column-vectors, unless stated otherwise.
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The weight vector w can be readily estimated via the ordinary least squares
(OLS) method by means of the following expression:

w = (ZZT )−1Zd, (6)

where Z = [z1 | z2 | · · · | zN1 ] is a (p + q) × N1 matrix whose N1 columns are the
augmented vectors zn = [xT

n | hT
n ]T ∈ R

p+q, n = 1, . . . , N1, where N1 is the
number of available training input patterns. The vector d is defined in Eq. (1).
To avoid numerical problems, a regularized version of Eq. (6) is commonly used,
which is given by

w = (ZZT + λI)−1Zd, (7)

where the constant λ > 0 is the regularization parameter.

2.2 The Extreme Learning Machine (ELM)

The ELM network is a recent randomized SLFN introduced by Huang et al. [3],
whose weights from the inputs to the hidden neurons are randomly chosen, while
only the weights from the hidden neurons to the output are analytically deter-
mined. Consequently, ELM offers significant advantages such as fast learning
speed, ease of implementation, and less human intervention when compared to
more traditional SLFNs, such as the Multilayer Perceptrons (MLP) and RBF
networks.

From an architectural point of view, the ELM network can be understood
as a simplified version of the RVFL in which the direct linear path is removed.
Thus, the equations of the ELM are easily obtained as follows:

Output Computation: From Eq. (5), once we remove the direct linear path-
way, we get

yn = y(2)
n = wT

2 hn, (8)

where hn is defined as in Eq. (4).

Estimation of w2: In this case, the expression of the OLS estimate in Eq. (6)
reduces to

w2 = (HHT )−1Hd, (9)

where H = [h1 |h2 | · · · |hN1 ] be a q × N1 matrix whose N1 columns are the
hidden activation vectors hn ∈ R

q, n = 1, . . . , N1, where N1 is the number of
available training input patterns.

2.3 Sequential Learning Rules for RVFL and ELM

In some applications, such as adaptive channel equalization and online system
identification, adaptive learning rules are a better option, where the weight vector
w is updated following the arrival of each input pattern. The input pattern
is then discarded after being used for updating the parameters. One of such



Performance Evaluation of Randomized NNs in System Identification 607

sequential learning rules is the well-known least mean squares (LMS) algorithm,
also known as the Widrow-Hoff or Delta rule, which was used recently by Widrow
et al. [14] to introduce a randomized SLFN architecture, named No-Propagation
(No-Prop) network. Basically, the No-Prop network is like an ELM network with
output weights computed by means of a sequential learning rule.

In order to allow the RVFL network to process sequential data, we replace
the standard OLS equation with the LMS rule. For this purpose, let us consider
first the instantaneous cost function associated with the output neuron at the
presentation of the n-th input vector:

J (wn) =
1
2
e2n =

1
2
(dn − yn)2 =

1
2

(
dn − wT

nhn

)2
, (10)

where wn ∈ R
p+q is the weight vector of the output neuron at iteration n, and

en = dn − yn is the instantaneous error of that neuron at iteration n. Then, in
order to derive the LMS learning rule, we resort to a stochastic gradient descent
recursive formula given by

wn+1 = wn − η
∂J (wn)

∂wn
= wn + ηenhn = wn + η(dn − yn)hn, (11)

where 0 < η � 1 is the learning rate. A widely used variant of the LMS rule,
known as the normalized LMS (NLMS) algorithm [2], is given by

wn+1 = wn +
η

ε + ‖hn‖2 enhn = wn +
η

ε + hT
nhn

enhn, (12)

where ε is a very small positive constant needed to avoid division by zero. The
strong points of the LMS and NLMS algorithms are ease of implementation
and optimal performance under important practical conditions [13]. For these
reasons, the LMS algorithm has enjoyed very widespread application in adaptive
filtering and signal processing applications. For instance, it is used in almost
every modem for channel equalization and echo canceling.

3 A Robust Learning Rule for RVFL and ELM

An important feature of both OLS and LMS rules is that they are derived from
cost functions that assign the same importance to all error samples, i.e. all errors
contribute the same way to the final solution. Hence, outliers tend to produce
large errors and then degrade the parameter estimation process.

Bearing this in mind, a robust variant of the LMS rule, named the Least
Mean M -Estimate (LMM) algorithm [17], has been introduced for the purpose
of better dealing with outliers. The theory behind the LMM rule is provided
by an elegant and principled estimation framework, known as M -estimation,
introduced by Huber and Ronchetti [4]. The letter M stands for “maximum
likelihood” type, where robustness is achieved by minimizing a function distinct
from the sum of the squared errors.
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Based on Huber’s theory, the instantaneous cost function to be minimized
by the output neuron is now given by

J (wn) = ρ(en) = ρ(dn − yn) = ρ
(
dn − wT

nhn

)
, (13)

where wn ∈ R
p+q is the weight vector of the output neuron at iteration n, and

en = dn−yn is the instantaneous error of that neuron at iteration n. The function
ρ(·) should possess the following properties: (i) ρ(en) ≥ 0; (ii) ρ(0) = 0; (iii)
ρ(en) = ρ(−en); and, (iv) ρ(en) ≥ ρ(en′), for |en| > |en′ |. For ρ(en) = e2n/2, we
get the instantaneous cost function of the standard LMS rule shown in Eq. (10).

Thus, we develop a robust learning rule for the RVFL network as follows:

wn+1 = wn − η
∂J (wn)

∂wn
= wn − η

∂ρ(en)
∂wn

= wn − η
∂ρ(en)
∂en

∂en

∂wn

= wn − η
∂ρ(en)
∂en

(−hn) = wn + ηq(en)enhn, (14)

where q(en) = 1
en

∂ρ(en)
∂en

is called the weighting function. The normalized version
of the LMM rule is then written as

wn+1 = wn +
η

ε + hT
nhn

q(en)enhn, (15)

where ε has the same meaning as in Eq. (12). Note that if ρ(en) = e2n/2, then
q(en) = 1, and Eq. (14) reduces to Eq. (11)

In this work, Hampel’s three-part function [8] will be used, being defined as

ρ(en) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e2n/2, 0 ≤ |en| < ξ
ξ|en| − ξ2/2, ξ ≤ |en| < Δ1
ξ
2 (Δ1 + Δ2) − ξ2

2 + ξ
2
(|en|−Δ2)

2

Δ1−Δ2
, Δ1 ≤ |en| < Δ2

ξ
2 (Δ1 + Δ2) − ξ2

2 , Δ2 ≤ |en|

, (16)

q(en) =

⎧
⎪⎪⎨
⎪⎪⎩

1, 0 ≤ |en| < ξ
ξ

en
sign(en), ξ ≤ |en| < Δ1

ξ
en

sign(en) |en|−Δ2
Δ1−Δ2

, Δ1 ≤ |en| < Δ2

0, Δ2 ≤ |en|

, (17)

where ξ,Δ1,Δ2 are user-defined thresholds which avoid the influence of inputs
with large errors. As in [17], we use ξ = 1.96σ̂n, Δ1 = 2.24σ̂n and Δ2 = 2.576σ̂n,
where σ̂n is the standard deviation of the output, estimated recursively.

4 Simulation and Results

In this section we report the results of the evaluation of four randomized SLFNs,
namely: two variants of the RVFL network, named the RVFL-NLMS and the
RVFL-NLMM, and two variants of the ELM network, named the ELM-NLMS
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and ELM-NLMM2. We also evaluate the performances of two variants of a single-
hidden-layered MLP network trained with the backprop algorithm, using the
tanh activation function for the hidden neurons and a linear activation function
for the output neuron. The variants of the MLP network differ in the way the
weights of the output neuron are adjusted, with one using the LMS rule (MLP-
LMS) and the other using the LMM rule (MLP-LMM).

The dynamics of the systems of interest are assumed to be described by a
nonlinear autoregressive model with exogenous inputs (NARX) [1]:

dn = f(dn−1, · · · dn−Ly
, un−1, · · · , un−Lu

), (18)

where Lu and Ly denote the input and output memory orders, respectively. The
target function f(·) : RLy+Lu → R is unknown and assumed to be nonlinear.
Observed data, in the form of an input times series {un} and an output time
series {dn}N

n=1, are used to build an approximating model f̂(·) for f(·).
Experiments were performed with an artificial and a real-world dataset. The

Artificial dataset is generated by simulating the following dynamical system [7]:

dn =
dn−1

1 + d2n−1

+ u3
n−1, (19)

where the training input time series is generated by sampling from an uniform
distribution between −2 and 2 (i.e. un ∼ U(−2, 2)), n = 1, . . . , 10000, and the
test input time series is given by un = sin(2πi/25)+sin(2πi/10), n = 1, . . . , 100.
To the resulting output time series {dn}, we add zero-mean Gaussian noise with
variance equal to 0.65. We use Ly = 1 and Lu = 1.

The real-world dataset, named Silver box [6,10], is an electronic nonlinear
feedback laboratory experiment, which simulates a second order mechanical sys-
tem with a nonlinear spring constant, acting as mass-spring-damper structure.
The control input in the mechanical system is the force applied to the mass and
its displacement is the output. The electrical circuit is excited with ten different
realizations of odd random phase multisine, resulting in 91072 training samples.
The test set contains 40000 samples generated with a filtered Gaussian sequence
with increasing variance. The regressors’ lags are fixed as Ly = 10 and Lu = 10.

For all the following experiments, time series data are normalized to zero
mean and unit variance. All neural models were implemented from scratch using
the R software, version 3.3.2, running on Ubuntu 16.04, installed in an Acer
notebook, Core i7, 2.40 GHz, 16 GB RAM. We perform experiments with sce-
narios containing 0%, 5%, 10%, 15%, 20%, 25% and 30% of outliers. The outliers
were sampled from σ(d) × T (0, 2), where σ(d) is the standard deviation of the
original training set and T (0, 2) is a Student-t distribution with zero mean and
2 degrees of freedom.

The models are trained in an online way, where the training samples are
presented as they are made available, one after another, within a single full pass

2 The second term in the name of the evaluated randomized SLFN denotes the online
learning rule used to estimate the output weights.
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of the training data. The figure of merit of the evaluation is the root mean
square error (RMSE) values for both one-step ahead (OSA) prediction, where
predictions are made using the actual output samples in the regressors:

yn = d̂n = f̂(dn−1, · · · dn−Ly
, un−1, · · · , un−Lu

), (20)

and free simulation, where predicted output values are fed back in order to build
the output regressor:

yn = d̂n = f̂(yn−1, · · · yn−Ly
, un−1, · · · , un−Lu

),

= f̂(d̂n−1, · · · d̂n−Ly
, un−1, · · · , un−Lu

), (21)

where the “hat” symbol ∧ denotes the predicted values.
For each model the number of hidden units and the learning rate were opti-

mized via Bayesian optimization [11] using the mean prediction RMSE within
the 10-fold cross-validation performed in the outlier-free training data. We apply
a linearly decaying learning rate, i.e., the rate for the n-th iteration is given by
αn = α1 + (αN1 − α1) n−1

N1−1 , where N1 is the number of training samples. Only
the final learning rate αN1 is optimized, while its initial value α1 was fixed after
preliminary experiments. In Table 1 we summarize the hyperparameters selected
for each model. We emphasize that the hyperparameters selection step was exe-
cuted only once per dataset using outlier-free data, but the adjustment of the
models’ parameters was performed separately in each contaminated scenario.

Table 1. Hyperparameters selected for each evaluated model: the number of hidden
units q, the initial learning rate α1 and the final learning rate αN1 . α1 was fixed after
preliminary experiments. The other hyperparameters were determined via Bayesian
optimization of the 10-fold cross-validation error in the outlier-free data.

Artificial Silver box

q α1 αN1 q α1 αN1

ELM-NLMS 967 1 2.52e−02 981 1 3.14e−05

ELM-NLMM 946 1 3.30e−02 997 1 7.20e−03

RVFL-NLMS 101 1 2.19e−03 708 1 3.91e−04

RVFL-NLMM 319 1 1.60e−03 672 1 2.84e−02

MLP-LMS 35 0.1 3.09e−03 31 0.01 9.98e−03

MLP-LMM 41 0.1 2.11e−03 43 0.01 9.88e−03

From this table, one can easily note that the RVFL variants require much
smaller numbers of hidden neurons than the ELM variants. A possible explana-
tion could rely on the direct linear pathway (y(1)

n ), which by capturing the linear
part of the system dynamics let only the nonlinear (and more difficult) part of
the dynamics to the nonlinear pathway (y(2)

n ).
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a) Standard models - OSA prediction. b) Standard models - free simulation.

c) Robust models - OSA prediction. d) Robust models - free simulation.

Fig. 1. Results for the Artificial dataset.

The obtained RMSE values and the corresponding variances for the models
using the Artificial dataset are shown in Fig. 1. Figure 1a stems for the standard
algorithms in OSA predictions while Fig. 1b shows mutiple-step-ahead predic-
tions (free simulation). The performances of the robust versions of the algo-
rithms are shown in Figs. 1c (OSA) and d (free simulations). For both kinds
of prediction, results are rather consistent and show that no matter the % of
contamination by outliers robust algorithms achieve better performances and
are rather insensitive to the % of contamination. This is not the case for the
standard algorithms that exhibit a certain degree of sensitivity to the % of out-
liers. In both kinds of prediction MLP-LMS show great variance for some of
the % of contamination by outliers and in both cases the introduction of the
corresponding robust algorithm greatly reduces these poor performances. In the
case of robust algorithms, ELM-NLMM exhibits the best performance followed
by RVFL-NLMM and MLP-LMM. There are no great differences in the cor-
responding performances of standard and robust algorithms depending on the
kind of prediction (OSA or free simulation), except for the case of MLP-LMS.

Things are different for the Silver box dataset results shown in Fig. 2. In this
case robust algorithms (Figs. 2c and d) do not exhibit clear better performances
than the standard algorithms as it is the case for the Artificial dataset (Fig. 1).
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a) Standard models - OSA prediction. b) Standard models - free simulation.

c) Robust models - OSA prediction. d) Robust models - free simulation.

Fig. 2. Results for the Silver box dataset.

A slight reduction of the obtained RMSE and a more consistent and important
reduction of the variances are the advantages shown by the robust algorithms.
This is more evident in the case of MLP. The RMSE obtained for all models
increased significantly when the contamination also increased, specially in the
case of OSA predictions. Even robust models are not as insensitive to the % of
outliers as in the case shown in Fig. 1.

An additional Wilcoxon signed-rank test for the residuals obtained in the
best free simulation with 30% of outliers was performed. Results are reported
in Table 2 for the Artificial dataset and in Table 3 for the Silver box dataset.
It can be seen that for the Silver box dataset all models perform significantly
different from each other and this is due to the small variance they exhibit.
This is not the case for the Artificial dataset, where some models perform not
significantly different from others. This is the case for ELM models which exhibit
no significant difference from the MLP-LMS model. RVFL models also exhibit
no significative difference with MLP-LMM model.

As a final remark it can be said that even though results are not equally
clearly interpretable for both datasets, the robust algorithms achieved consis-
tently better performances. From the point of view of a reduced RMSE and
variance for the Artificial dataset and from the point of view of a reduced
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Table 2. p-values computed via Wilcoxon signed-rank test for the residuals obtained
in the best free simulation on the Artificial dataset with 30% of outliers. Red indicates
statistically similar results.

ELM-NLMM RVFL-NLMS RVFL-NLMM MLP-LMS MLP-LMM

ELM-NLMS 4.608945e−04 1.423818e−11 2.789759e−06 0.3039999415 1.054542e-06

ELM-NLMM 3.127407e−09 1.738496e−16 0.2769369016 1.007799e−10

RVFL-NLMS 1.314366e−02 0.0001062009 6.663213e−02

RVFL-NLMM 0.0086282427 7.283775e−01

MLP-LMS 3.664618e−03

Table 3. p-values computed via Wilcoxon signed-rank test for the residuals obtained
in the best free simulation on the Silver box dataset with 30% of outliers. All the results
were statistically different.

ELM-NLMM RVFL-NLMS RVFL-NLMM MLP-LMS MLP-LMM

ELM-NLMS 5.370802e−67 7.093561e−75 8.371801e−09 1.122239e−159 8.294698e−86

ELM-NLMM 1.036182e−03 9.285395e−100 1.466633e−41 3.493612e−11

RVFL-NLMS 2.397354e−68 1.904553e−30 9.663732e−02

RVFL-NLMM 9.958828e−160 3.048651e−115

MLP-LMS 4.956787e−63

variance in the case of the experiments performed with the Silver box dataset.
In which concerns the % of outliers, the behavior of the robust algorithms was
clearly insensitive to the increment of the contamination rate for the Artificial
dataset, although that was not the case for the Silver box dataset. Overall, robust
versions of ELM and RVFL consistently achieved the best performances.

5 Conclusions and Further Work

In this paper we tackled the task of online nonlinear system identification in
the presence of outliers with randomized SLFNs. For that purpose, we decided
to replace the original batch OLS-based learning rules of the RVFL and ELM
networks with adaptive LMS-based ones, enabling recursive learning and training
from larger datasets. Seeking resilience to outliers, a robust version of the LMS
rule, known as LMM rule, was also considered as a learning algorithm.

We performed computational experiments with both an artificial and a
real-world datasets using incremental levels of contamination by outliers. The
achieved results are promising, with the evaluated robust randomized SLFNs
being capable of fast learning of the system dynamics in an online fashion, i.e.,
without the need of multiple epochs, even in the presence of outliers.

However, despite the appealing results of our evaluation, further experiments
are still needed in order to have a clear picture of the pros and cons of the
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proposed approach. For instance, hyperparameter optimization (i.e. number of
hidden units and learning rates) remains an open issue, since it requires costly
rounds of cross-validation. Furthermore, we were not able to obtain a strong
resilience to outliers in the Silver box dataset, when compared to the good results
we presented for the Artificial dataset.

In this regard, we continue to evaluate the proposed methodology in other
benchmarking system identification datasets, as well as experimenting with other
adaptive learning rules based, for instance, on the recursive least-squares (RLS)
algorithm.
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6. Marconato, A., Sjöberg, J., Suykens, J., Schoukens, J.: Identification of the sil-
verbox benchmark using nonlinear state-space models. IFAC Proc. Vol. 45(16),
632–637 (2012)

7. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems
using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

8. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley,
Hoboken (1987)

9. Salih, D.M., Noor, S.B.M., Merhaban, M.H., Kamil, R.M.: Wavelet network: online
sequential extreme learning machine for nonlinear dynamic systems identification.
Adv. Artif. Intell. 2015(184318), 1–10 (2015)

10. Schoukens, J., Nemeth, J.G., Crama, P., Rolain, Y., Pintelon, R.: Fast approximate
identification of nonlinear systems. Automatica 39(7), 1267–1274 (2003)

11. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

12. Tang, Y., Li, Z., Guan, X.: Identification of nonlinear system using extreme learning
machine based Hammerstein model. Commun. Nonlinear Sci. Numer. Simul. 19(9),
3171–3183 (2014)

13. Widrow, B.: Thinking about thinking: the discovery of the LMS algorithm. IEEE
Sig. Process. Mag. 22(1), 100–106 (2005)

14. Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The No-Prop algorithm: a new
learning algorithm for multilayer neural networks. Neural Netw. 37, 182–188 (2013)



Performance Evaluation of Randomized NNs in System Identification 615

15. Pao, Y.-H.: Learning and generalization characteristics of the random vector
functional-link net. Neurocomputing 6, 163–180 (1994)

16. Zhang, L., Suganthan, P.N.: A comprehensive evaluation of random vector func-
tional link networks. Inf. Sci. 367–368, 1094–1105 (2016)

17. Zou, Y., Chan, S.C., Ng, T.S.: Least mean M -estimate algorithms for robust adap-
tive filtering in impulsive noise. IEEE Trans. Circ. Syst. II 47(12), 1564–1569
(2000)



Neural Network Overtopping Predictor
Proof of Concept

Alberto Alvarellos1(B), Enrique Peña2, Andrés Figuero2, José Sande2,
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Abstract. Wave overtopping is a dangerous phenomenon. When it
occurs in a commercial port environment, the best case scenario will
be the disruption of activities and even this best case scenario has a neg-
ative financial repercussion.

Being in disposal of a system that predicts overtopping events would
provide valuable information, allowing the minimization of the impact of
overtopping: the financial impact, the property damage or even physical
harm to port workers.

We designed an overtopping predictor and implemented a proof of
concept based on neural networks. To carry out the proof of concept of
the system, we created a series of tests in a scaled breakwater physical
model, placed on a wave basin. We used a multidirectional wavemaker
and video cameras to identify the overtopping events. Using all of the
collected data we trained a neural network model that predicts an over-
topping based on the simulated sea state.

Once the validity of this approach is determined, we propose the real
system design and the resources needed for its implementation.

Keywords: Wave overtopping · Overtopping Prediction · Neural
Network · Civil Engineering

1 Introduction

Spain has an 8000 km coastline, making it the European Union country with
the longest coastline. It is also the closest European country to the axis of one
of the world’s major maritime routes. Its geographical location positions it as a
strategic element in international shipping and a logistics platform in southern
Europe.

The Spanish Port System includes 46 ports of general interest. The impor-
tance of ports, as links in the logistics and transport chains, is supported by the
following figures [1]:
c© Springer International Publishing AG 2017
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– They handle nearly 60% of exports and 85% of imports. This accounts for
53% of Spanish foreign trade with the European Union and 96% with third
countries

– The State port system’s activity contributes with nearly 20% of the transport
sector’s GDP. This accounts for 1.1% of the Spanish GDP

– It employs more than 35000 workers directly and around 110000 indirectly

There are several weather and sea conditions that can affect the regular activities
in a port. One highly disruptive event of port activities is the wave overtopping
of the port breakwater.

1.1 Wave Overtopping

Wave overtopping is the event that takes place when waves meet a submerged
reef or structure. It also happens when waves meet an emerged reef or structure
lower than the approximate wave height. The later case is the one that affects a
port’s breakwater and the one we want to measure.

During an overtopping, two processes, important to the coastal processes,
take place: wave transmission and the passing of water over the structure. We
studied the passing of water over the structure.

The overtopping phenomenon can occur in three different ways, either inde-
pendent of each other or combined:

– Green Water, which is defined as the solid step of certain volume above the
crown wall of the breakwater due to the rise of the wave (run-up) above the
exposed surface of said breakwater

– White Water, that occurs when the wave breaks against the seaside slope.
This creates so much turbulence that air is entrained into the water body,
forming a bubbly or aerated and unstable current and water springs that
reaches the protected area of the structure either by its own impulse or as a
result of the wind

– Overtopping as a result of the aerosol generated by the wind passing by the
crest of the waves near the breakwater. This is not an especially meaningful
even in the case of storms. This case is the less dangerous, its impact on the
normal development of port activities is negligible

1.2 Overtopping System Goal

The goal of this study was to design an overtopping predictor based on Neural
Networks and implement the proof of concept of the design, in order to demon-
strate its feasibility and hence its practical potential.

The proof of concept was carried out in the port and coasts laboratory,
located in the Center for Technological Innovation in Construction and Civil
Engineering (CITEEC [2]).

Once we assert the feasibility of the concept, we design the system that would
be needed in a real environment and propose its implementation.
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2 Experiment Design

As we stated before, the proof of concept was performed in port and coasts
laboratory of CITEEC. This laboratory has a hydrodynamic experimentation
wave basin with a multidirectional wavemaker (see Fig. 1). The hydrodynamic
experimentation wave basin is 32 × 34m2 and has a depth of 1.1 m. In this
basin one can built a reduced-scale model of a breakwater. With this kind of
installation we can perform: large scale structural tests on the effects of extreme
waves on the model, study the behaviour of dikes, docks and beaches, and test
inlets, estuaries, large ports and coastal forms.

Fig. 1. Hydrodynamic experimentation wave basin with the scaled port model. Wave-
maker in the background

The wave generation system allows the complete control of the generated
waves. This wavemaker has an active absorption system. The purpose of the
active absorption system is to avoid the reflected waves from structures in the
basin to be re-reflected at the paddles and become incident waves. Active absorp-
tion is very important for accurate wave generation, especially when testing
highly reflective structures occupying a large part of the width of the facility.

Without active absorption re-reflected waves will contaminate the desired
incident waves. We want precise control over the test variables, so active absorp-
tion is important in our case.

In order to measure the actual incident wave height generated during the
tests, and its evolution along the basin, we used several water level probes.

In summary, we have control over the water depth, wave direction and wave
height in our test. The variables we can control, available from the wavemaker
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software and the probes software, are the following (we express them in terms
of the simulated real world conditions):

H0 : Sea level, with respect to the zero of the port [3]
Hs : Significant wave height. Hs is the mean of the highest third of the waves

in a time-series of waves representing a certain sea state
Tp : The peak wave period is the wave period with the highest energy. The

analysis of the distribution of the wave energy as a function of wave fre-
quency for a time-series of individual waves is referred to as a spectral
analysis. The peak wave period is extracted from the spectra [4]

θm : Mean wave propagation direction. θm is defined as the mean of all the
individual wave directions in a time-series representing a certain sea state

2.1 Measuring the Overtopping

The final goal of this proof of concept is to design a sensible system that can
predict said event with enough time to take safety measures in a real environ-
ment.

In order to identify the overtopping events we installed two video cameras
that enabled us to monitor the model breakwater and detect the overtopping
events (see Fig. 2).

Fig. 2. Frame of an overtopping event as visualized from one of the cameras

The quantification of the volume of water that was overtopping the crown
wall of the breakwater in each event using images is a difficult task.

A system that could predict the water volume that is going to surpass the
crown wall could enable a more informed decision. This could serve to act dif-
ferently depending on the severity of the overtopping event, and even minimize
its impact.

The goal of this work was to carry out the proof of concept of the system,
so we chose not to estimate the volume. One thing we are certain of after the
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overtopping classification process: an overtopping has occurred. We train the
system to predict whether an overtopping event is going to happen or not (del-
egating the decision of whether to act or not to the operator of the system).

2.2 Test Variables

To develop our proof of concept we took measures during stability tests carried
out in a scaled physical model of a breakwater (with a 1:55 scale). Those tests
reproduced real world sea conditions, ranged from normal to extreme condi-
tions. We tested our system in the end spectrum of the normal conditions and in
the extreme conditions of those tests. The overtopping phenomenon is known to
happen almost always in this range of conditions, i.e. the sea conditions that pro-
duce an overtopping are a subset of this range except some unidentified normal
condition. The wind is believed to have an important role in this unidentified,
but we cannot introduce it in our model due to infrastructure limitations.

The main goal of the present work is to carry out a proof of concept. As such,
it is not complete in its test variables (we did not test all possible values). The
range of values tested for each variable are the following (we give the real values
simulated, taking the scale into account):

H0 : From 0.5 m to 4.1 m
Hs : From 3 m to 10 m
Tp : From 10 s to �20 s
θm : From 290◦ to 340◦

3 Predictor Training

We chose a Neural Network as the model for our prediction system. We used the
Caret R package [5] to do all the data splitting, model training and validation,
and predictions error calculations.

The chosen model is the nnet package’s Neural Network implementation [6]:
this package allows to train feed-forward neural networks with a single hidden
layer, and multinomial log-linear models. As we are carrying out a proof of
concept, this model is enough for our purpose.

The model training process consisted in the following steps:

1. Load data, clean and join data.
2. Model training:

(a) choose predictors: calculate predictors correlations
(b) data slicing (train/test)
(c) “center” and “scale” the predictors in the train data and store the trans-

formations
(d) train model on train data

3. estimate model accuracy:
(a) predict model error on test data
(b) plot errors and model
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We comment the following on some of the steps:

– To split all available data (378 observations) in train and test sets we used
the function createDataPartition, that allows the creation of balanced splits
of the data: if the y argument to this function is a factor, the random sam-
pling occurs within each class and preserves the overall class distribution of
the data. We used the observation class (a factor) as this argument (isOver-
topping=“Y”|“N”). We used the 75% of data for training and 25% for testing.

– In step 2.a we calculated the correlation among the available predictors, in
order to discard the highly correlated ones. We can observe (Table 1) that
there is no high correlation between any of them, so we used all of them to
train the model

– In step 3.a we predict the model error on the test data using the stored
transformation for the train data

Table 1. Predictors correlation

H0 Hs Tp θm

H0 1 0.1478 −0.0415 −0.0117

Hs 0.1478 1 0.0955 0.2689

Tp −0.0415 0.0955 1 −0.0070

θm −0.0117 0.2689 −0.0070 1

The training process consists of several steps (see Algorithm 1). The first step
is to specify the sets of model parameter values to evaluate. The nnet model
requires at least 2 parameters:

size: number of units in the hidden layer
decay: parameter for weight decay. After each update, the weights are multiplied

by this parameter. This prevents the weights from growing too large. It can
be seen as a gradient descent on a quadratic regularization term

We used a parameters set with 1020 pairs of values of size and decay (known as
the parameter grid). This set was created from all the combinations of size from
1 and 20 and decay between 0 and 0.05 in steps of 0.0001.

The second step is to resample the data. We used 10-fold Cross-validation
for the resampling. This resampling is used to choose among the models that all
parameters grid create (each pair size-decay creates one model).

We also set a limit of 10000 iterations for the fitting process (step 3) (instead
of the nnet package default 100).

4 Results

The final model (the one with optimal parameters) has 2 neurons in the hidden
layer (see Fig. 3).
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Algorithm 1. Training process algorithm
Define sets of model parameter values to evaluate

for each parameter set do

for each resampling iteration do

Hold-out specific samples

Fit the model on the remainder

Predict the hold-out samples

end

Calculate the average performance across hold-out predictions

end

Determine the optimal parameter set

Fit the final model to all the training data using the optimal parameter

Fig. 3. Final Neural Network architecture. The output O1 indicates “Y”|“N” when it
predicts that there is going to be an overtopping or not

The following values we present are the result of using the final model to
predict over the test set.

In the Table 2 we can see the confusion matrix using a threshold of 0.5 for
the classification of samples in the test set (i.e. we choose to say that there is
going to be an overtopping if p > 0.5, where p is the probability of a prediction
being of class “Y”).

Using this threshold we obtain an accuracy of 0.9362 with (0.8662, 0.9762) as
the 95% confidence interval. The balanced accuracy is 0.8741 (our test set has
14 positive classes out of 94).

One important value is the model sensitivity, because we want to correctly
classify all the positive cases, i.e. we don’t want to miss an overtopping. With a
0.5 threshold we obtain a sensitivity of 0.7857.

Our ideal predictor would be one that predicts all overtopping events, i.e. it
should have a high sensitivity. Not predicting an overtopping due to the danger
of not predicting an event, i.e. a false negative could result in physical harm
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Table 2. Final model confusion matrix for a 0.5 threshold

Prediction

Y N

Truth Y 77 3

N 3 11

to a worker. Lowering the threshold we could achieve a sensitivity of 1. The
predictor should preferably also have a low false positive rate (low probability
of false alarm). A false positive could only cause financial loss, but not physical
harm.

The threshold moves these values when we change them, so there is going
to be a trade-off between safety and financial loss in choosing the threshold. To
test the model performance for different thresholds (instead of just 0.5) we use
the ROC curve [7]. The result can be seen in Fig. 4. We can observe that with
this predictor we could achieve a sensitivity of 1 changing the threshold, but the
probability of false alarm could not be lower than �0.12 in such case.

We obtain an AUROC of 0.966, for which we can conclude that our proof
of concept resulted in a fairly good model, and that it’s worth building a real
system and field testing it.
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5 Real System Proposal

The ideal Overtopping Prediction System would be one that uses a forecast for
the weather and sea state to predict if there is going to be an overtopping event
several days in advance. Using a forecast would allow to take the corresponding
measures in order to minimize the overtopping impact in time, such as clos-
ing access to specific port areas, secure certain infrastructure, remove working
material, etc.

In a real environment the wind is known to have an impact on the sea state, so
it is going to affect the occurrence of an overtopping event. A real system should
use the wind speed and direction as predictors in order to be more accurate.

Taking all of this into account, we propose a system, for a Spanish port, that
uses the Spanish Port Wave Forecast System [8]. This forecast system predicts
the sea state 72 h in advance. The model would be trained with the historical
real data stored in the same system (see Fig. 5). Thus, we would be able to use
the same variables we used in the proof of concept, plus wind measures.

Fig. 5. Proposed system, to be trained with real data, that will predict an overtopping
with a 72 h window
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Abstract. The problem of the estimation of mean flow stress within
a hot rolling mill plant for flat steel products is faced, as the correct
estimation of this measure can improve the quality of the final product.
Various approaches, from standard empirical methods to advanced archi-
tectures based on neural networks, have been tested on industrial data.
The results of these tests put into evidence the limit of empirical tech-
niques and the big advantages deriving from the application of neural
networks, which are able to efficiently combine process knowledge and
data driven models tuning. The best performing approaches reduce the
estimation error to one third with respect to standard techniques.

1 Introduction

In the steel–making practice, the Hot Rolling (HR) is a process in which the slabs
previously produced during the continuous casting process are passed through
a sequence of rolls couples (called stands), whose aim is the reduction of the
thickness of the final product. More in detail, the slabs are heated in a furnace
up to a temperature suitable for rolling and subsequently rolled, firstly through
the so–called roughing mill and afterwards through the finishing mill, in order
to obtainthe desired width and thickness for the product. In this phases the
forces applied by the different gauges strongly affect not only the final shape but
also the micro–structure of the steel sheet and, as a consequence, its mechanical
properties, whose control is of utmost importance for the final product quality.
It is thus fundamental to suitably manage the forces applied by the whole set
of rolls pairs of the HR Mill (HRM), in order to fulfil the demands for product
reliability and efficient rolling. To this aim a quantity named Mean Flow Stress
(MFS) must be estimated with good accuracy, since it is the predominant factor
of the roll force model [1]. The MFS is the mean value of stress required at
each gage in order to allow a continuous plastic deformation of the material. In
the framework of the HR process, once a reliable estimate of MFS is provided,
suitable application of the forces in the roughing and finishing mill can be pur-
sued. This necessity led, in the last years, to a proficient development of various
techniques for the estimation of MFS in modern HRMs.
c© Springer International Publishing AG 2017
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In this paper different approaches are used in order to design a model for
the estimation of MFS in the context of an Italian HRM. These approaches
include standard methods, Artificial Intelligence (AI)–based methods and a set
of approaches based on the use of Artificial Neural Networks (ANN). These
techniques are compared in order to put into evidence the benefits gained by the
use of advanced ANN–based models that lead to an extremely accurate predic-
tion of MFS. This paper is organized as follows: Sect. 2 presents a review of the
standard techniques commonly employed in the industrial plants for the MFS
prediction. In Sect. 3 the industrial problem is described and the performance of
standard approaches for MFS estimation are shown. In Sect. 4 the ANN-based
techniques developed to overcome the criticalities encountered by standard mod-
els are described, their performance are evaluated and the main achievements
are discussed. Finally, Sect. 5 presents some conclusions and outlines the future
perspectives of the proposed approaches.

2 Techniques for Mean Flow Stress Prediction

In literature a number of works can be found concerning the modelling of the
HR process [2] and the estimation of MFS. An exhaustive analysis of these
approaches can be found in [3], where the authors present the main categories
of mathematical models based on the exploitation of theoretical knowledge and
empirical data and put into evidence the advantages and drawbacks of each of
them. The main families of models can be summarized as follows:

Physical. These models are based on the actual simulation of the physical
processes that occur within the semi–product during the HR. Computational
Fluid Dynamics (CFD) and Finite Element Modelling (FEM) techniques are
commonly exploited within this category of models, which require a deep
and precise knowledge of plant and steel characteristics as well as a consid-
erable computational burden and the use of ad–hoc software tools. Despite
the noticeable complexity, the predictive performance of these models is often
limited, since they cannot perfectly describe all the physical phenomena due
to their complexity and to the influence of some non measurable factors, such
as friction, yield stress, and system disturbances [4].

Empirical. This is the most widely used class of models in the industrial frame-
work. It is able to combine in a straightforward manner the theoretical knowl-
edge of the interaction between input and output variables with the exploita-
tion of real plant data. The most noticeable works correlate the MFS at each
rolling stand to the steel chemical composition and the main process para-
meters, e.g. temperature, strains and strain rates during the rolling. These
approaches are often based on statistical analysis and include both simple
regressions and more sophisticated methods devoted to the construction of
the model [5]. Empirical approaches can embed - at different levels of com-
plexity - theoretical models tuned by means of empirical data. The main
advantage of these approaches is their ease of use and adaptability. On the
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other hand, their generalization capabilities may be affected by the charac-
teristics of the data employed for their tuning (i.e. distribution, presence of
noise or outliers). Successful equation–based models for MFS prediction have
been proposed independently by Misaka (Eq. 1), Siciliano (Eq. 2) and Poliak
(Eq. 3) that embeds and extends Misaka formula [5].

MFS = e(0.126−1.75[C]+0.594[C]2+
2851+2968[C]−1120[C]2

T ) · εα · εβ (1)

MFS = e
2704+3345[Nb]+220[Mn]

T · εα · εβ (2)

MSF = MFSMisaka · (1.09 + 0.056[Mn]
+ γ[Nb] + δ[Ti] + 0.056[Al] + 0.1[Mo]) (3)

These formulae calculate MFS at HR gages (in kgf/mm2) given the steel
content of the main chemical elements, such as Carbon and microalloying
elements (in wt%), the temperature T (in Kelvin), the applied strain ε and the
strain rate εs. The additional parameters included in the introduced formulae
are empirically determined.

Although in Eqs. 1, 2 and 3 the parameters of the formulae are fixed and
determined on the basis of the experimental data available to the authors,
in [9] it is shown how these parameters can be efficiently tuned on specific
plant experimental data through Genetic Algorithms (GA), in order to obtain
customized models with improved predictive performance.

Heuristic. This family includes many AI–based models that are now gaining
large acceptance within the steel industry. The main advantage of these mod-
els is that, in many cases, a very limited mathematical representation of the
physical processes is required, since the output is calculated according to the
processing of a series of previous data. ANN–based models are included into
this class. Although ANNs are not yet widely used in the context of HRM, an
example of exploitation of a simple two–layers Feed Forward Neural Networks
(FFNN) can be found in [7,8], where an ANN is used for the prediction of
the gages rolling forces achieving satisfactory results.

3 Assessment of Standard Approaches on Industrial Data

This work is focused on the practical problem of MFS estimation faced on a
Italian HR mill that provided a set of data for model tuning and assessment.
These data are related to the rolling of about 5000 coils in the HR mill outlined
in Fig. 1 that is composed (from left to right) by four reheating furnaces, a press
for the sizing of the slabs (SP), a vertical scale breaker that removes the oxide
at the exit of the furnaces (VSB), six stands of the roughing mill (R1–R6),
seven stands of the finishing (F1–F7), the run-out-table (ROT), and, finally, the
three coilers (C1–C3). The mill is equipped with a complete set of sensors that,
together with the plant informative system stored and made available for this
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Fig. 1. A scheme of the rolling plant handled within this work.

study information concerning the steel chemical composition, the mechanical
properties of the product and the rolling parameters for both the roughing and
finishing mill.

This work concerns the prediction of MFS for the 7 stages of the finishing
mill of this plant by means of approaches of different nature on the basis of
the collected data. More in detail, among all the available data the slabs chem-
ical composition and a set of process measures recorded at each of the 7 gages
including strains and strain rates are exploited for the tuning of the models
introduced in Sect. 1 and their performances are assessed in comparison to the
MFS measured on the plant. Models are trained and tested on different datasets
in order to fairly evaluate their predictive capabilities on data which have not
been previously used for their training, according to the well known 10–fold
cross validation technique. The performance is evaluated at each HRM gage in
terms of average percent error e%MFS on the prediction of MFS through the
different samples and cross validation tests. The first tested approach is based
on the straightforward application of the original version of the empirical models
described by Eqs. 1, 2 and 3 whose performances are depicted in Table 1.

Table 1. Performance of empirical models (e%MFS). Each row refers to a gage. In the
last row the stand–wise average error is reported.

Stand Misaka Siciliano Poliak

1 27.2 8.4 30.6

2 42.1 11.9 40.2

3 39.8 7.2 26.5

4 18.2 10.2 20.1

5 15.9 11.2 15.1

6 12.0 17.0 14.5

7 11.3 23.9 12.0

Ave. 23.8 12.8 22.7
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The results achieved by the original versions of the empirical models are
not satisfactory, probably due to their empirical nature, which, despite of a
theoretically driven selection of the involved variables, include a set of coefficients
that are calculated in order to minimize the prediction error with respect to the
data used for their development. This latter identification step is sensitive to
over–fitting problems and over–fitted models are not able to generalize when
coping with different data, achieving a worse performance than expected.

In order to overcome this issue the basic empirical models have been improved
by means of the re–tuning of formulae coefficients by means of GAs as in [9].
This method for the tuning of empirical models parameters is widely used in the
industrial field and was proven to be efficient [6]. This optimization involved for
the three models all the coefficients associated to the chemical elements and those
(α and β) associated to strain and strain rate. The GAs search domain for these
parameters is in a range between −30% and +30% with respect to their original
values in order to preserve the original meaning and input/output relations of
the standard formulae. The GAs optimization process is set to minimize the
average percent error in the MFS prediction through the 7 mill stands.

The results achieved by the improved models are summarized in Table 2 and
highlight the great benefit gained through the GAs–driven optimization of the
formulae for which the average estimation error is strongly reduced in all the
cases. The results put into evidence that the empirical models, despite their
high specificity that may limit their performance, can be used in order to obtain
optimized versions able to successfully fit different experimental data.

Table 2. Performance of empirical models improved by means of GAs (e%MFS).

Stand Misaka–GA Siciliano–GA Poliak–GA

1 15.6 12.2 11.5

2 18.3 8.8 9.2

3 11.2 10.0 9.5

4 8.3 5.1 5.1

5 5.0 4.5 4.1

6 8.1 6.0 6.5

7 13.3 12.9 11.2

Ave. 11.4 8.5 8.2

4 ANNs for Mean Flow Stress Prediction

The noticeable improvement in terms of performance shown by the optimized
empirical models encouraged further studies involving more complex and pow-
erful tools, like ANNs, in order to exploit their well acknowledged capabilities of
reproducing highly non–linear relationships between inputs and outputs among
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the data collected on an arbitrary phenomenon. In this section different ANN–
based approaches - from the simplest to more complex - are described and tested
for the prediction of MFS.

4.1 Basic ANN–Based Models

The first approach based on the use of ANNs consists in the straightforward
employ of a set of 7 independent Multi–Layer Perceptron (MLP) networks, each
one associate to one gage of the finishing mill. Each network has two layers, a
number of input neurons equal to the number of input variables and an output
neuron. Different values of the number of neurons in the hidden layer nh have
been tested in order to identify the best performing network architecture. In
addition, for each network, two variants of the back propagation algorithm have
been used as training algorithms: the Levenberg–Marquardt (LM) algorithm and
the Bayesian regularization (BR) method.

The set of input variables fed to each network (the same for all the 7 ANNs)
has been determined taking into consideration both the experts knowledge and
literature survey. The variables mostly influencing MFS according to experts
and all those included in Eqs. 1, 2 and 3 have been selected. The final list of
variables is composed by: [C], [Mn], [Mo], [Nb], [Ti], T, strain, strain rate. The
output for all the networks is the predicted MFS for the associate gage.

A selection of the best results achieved by all the tested network configura-
tions is reported in Table 3, where each column refers to a different configuration
of ANN. In header nh and training method are reported. According to this table,
the use of independent ANNs, analogous from the point of view of the input vari-
ables included and nh value, further enhanced the accuracy of MFS prediction,
proving its capability to catch the non linear relations among the considered
input–output variables.

Table 3. Performance (e%MFS) of the set of independent MLP networks.

Stand nh = 8, LM nh = 10, LM nh = 10 BR

1 6.5 5.6 5.2

2 5.4 4.6 4.4

3 3.3 4.0 4.1

4 3.5 3.1 3.6

5 3.8 3.9 4.0

6 5.4 5.3 5.7

7 9.2 9.5 9.2

Ave. 5.3 5.1 5.2
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4.2 ANNs Operating on SOM–Clustered Data

Given the interesting performance achieved, the approach described in Sect. 4.1
based on the use of a set of independent ANNs, each one devoted to the esti-
mation of MFS for a particular stand of the mill has been further investigated
and enhanced. The idea is to maintain an independent estimator for each stand
but, within each of them, to be able to build different ANNs for the different
operating conditions of the plant. The main advantage of this approach is the
creation of specific models for representing the relation among input and output
variables according to various operating conditions that affect such relationship.

For this purpose the available data are clustered by means of the use of a
Self Organizing Map (SOM) in order to put into evidence, through the obtained
clusters, a set of representative operating conditions. The dataset used for the
SOM training includes all the variables related to process conditions (i.e. tem-
peratures, strain and strain rates). Moreover, for the clustering of data, a SOM
has been preferred with respect to other methods (i.e. k–means algorithm) in
order to obtain a set of clusters that preserves the original data topology and
distribution. Once the SOM is trained and data partitions have been created,
for each HR mill gage and for each single partition an ANN for MFS prediction
for that specific partition and stand is trained. The architecture and the set of
input variables are the same as those adopted by the ANNs described in Sect. 4.1.
When a new pattern is presented to the estimator, the SOM firstly determines
which cluster it belongs to and then activates, for each stand, the corresponding
ANN that returns the corresponding estimated MFS. This approach has been
tested by varying the number of clusters for data partition nc and the vale of
nh for the ANNs. The results achieved are summarized, for the best performing
configurations, in Table 4, where each column refers to a different configuration
of the proposed architecture, described in header, where nc and nh for the ANN
corresponding to each cluster are reported.

Table 4. Performance (e%MFS) of the set of independent MLP networks operating on
clustered data

Stand nc = 3 Hid: 4, 4, 5 nc = 4 Hid: 3, 3, 3 nc = 6 Hid: 3, 3, 2

1 6.1 5.8 6.2

2 5.5 5.1 4.7

3 3.2 4.2 4.0

4 3.0 3.1 3.5

5 4.2 3.2 3.2

6 5.0 4.2 4.1

7 7.1 6.8 7.4

Ave. 4.9 4.6 4.7
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Results show that the use of different ANNs in order to estimate the MFS
at different gages for various mill operating conditions is fruitful in terms of
improvement of estimation accuracy. The percent error reduction is about 0.5%.
The adopted data partitioning limited the number of data available for the train-
ing of each network and, by consequence, their dimensions in terms of nh. The
availability of larger quantities of data will favour the exploitation of more com-
plex structures leading, possibly, to even better performance.

4.3 Sequential ANN Predictor

In [10] the authors introduced the use of the so–called sequential MFS predictor
in order to improve the estimator accuracy by designing a system able to exploit
in an on–line manner the information provided by the HR mill sensor through
the different phases of the rolling. In [10] in facts it is put into evidence the high
correlation between the MFS measured on contiguous stands. In other words the
MFS measured for an arbitrary kth stand (MFSk) of the mill is strongly related
to the MFS measured at previous and subsequent ones (MFSk−1 and MFSk+1

respectively). The rolling process is sequential, thus, when the product is going
to pass through kth stand, all information concerning the processing at k − 1th

stand are available and usable for the prediction of MFSk.
This concept led to the design of a system directly connected to the HR

mill informative system composed by a set of 7 MLP-based ANNs where all
networks share the input variables concerning the product properties and general
process parameters (the same mentioned in Sect. 4.1) but each arbitrary network
NNk includes also as input MFSk−1, the MFS measured at previous stand and
provided directly by the HR mill control system. In this context, the network
devoted to the prediction of first gage MFS does not exploit this latter input
variable. The architecture of the sequential model is shown in Fig. 2.

The training of this ANNs set takes places off-line, by using data already
available and by adding the respective measured MFS at previous stand to the
input variables when training the NN associated to an arbitrary stand. Also in
this case different networks configurations in terms of nh and training algorithms
were tested. Table 5 shows the performance of this approach through a selection
of the best achieved results. Each column refers to a different configuration of
ANN, described in column header, where nh and training method are reported.

The sequential predictor further lowers the average discrepancy between mea-
sured and estimated MFS with respect to the basic predictor composed by 7
independent ANNs. This improvement - apart from the practical advantage of
a more reliable estimation of the measure that allows the design of a better mill
control - proves the convenience of exploiting the information acquired during the
rolling for modelling of the subsequent phases of the process. In this case, among
the tested configurations of the system, no one seems to clearly outperform the
other ones.
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Fig. 2. A scheme of the on-line sequential predictor based on ANNs.

Table 5. Performance (e%MFS) of the sequential ANN based predictor.

Stand nh = 7, LM nh = 8 BR nh = 10 BR

1 4.3 4.3 4.8

2 4.3 4.2 3.8

3 3.5 3.5 3.7

4 3.1 3.1 3.5

5 3.2 3.0 3.6

6 4.0 4.2 5.1

7 8.5 8.2 8.0

Ave. 4.4 4.4 4.6

4.4 Hybrid Ensemble of ANNs

The problem of MFS estimation has been faced also by means of a novel ensemble
approach called Hybrid Ensemble Method (HyEM) and proposed in [11]. HyEM
is a bagging–inspired ensemble that couples the use of a strong learner (SL) to a
set of Weak Learners (WLs). In this work both the SL and all the WLs are two
layers MLP networks where nh is automatically computed on the basis of the
available training data. The SL is trained by exploiting all the available training
dataset whilst each single WL uses only a subset belonging to a specific region
of the input domain determined by means of a SOM–based clustering.
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Each learner within the HyEM is coupled to an additional ANN devoted to
the estimation of the reliability R(p) of the associated learner when predicting
the output for an arbitrary input pattern p. The ANN for reliability estimation
was introduced and described in detail in [12]. When a new pattern is provided
to HyEM, this design enables each learner to provide a candidate output and
a measure of its reliability (in terms of error forecast) on its own estimation.
In the simulation phase, when a new pattern p is fed, the output of SL and of
the WL associated to the domain region the sample belongs to are collected and
the HyEM output is aggregated on the basis of the relative reliability of the two
learners. In [11] the HyEM technique was proven to be extremely efficient on sev-
eral literature and industrial problems, due to its capability of suitably mixing -
through the estimated reliabilities - the robustness of the SL to the specificity of
the selected WL, that is able to represent the peculiarities of the input–output
relation in the different regions of the domain. In Fig. 3 the simulation proce-
dure of HyEM is graphically depicted. The ANNs devoted to MFS estimation
are referred as MainSL and MainWLi, while the associated reliability networks
as RelSL and RelWLi. In an analogous manner, their outputs O and R (reliabil-
ities) are specified. All the details on the design of HyEM can be found in [11].

Fig. 3. Flow-chart depicting the data flow related to the simulation of the HyEM
system when a new pattern P is provided.

In Table 6 the performance of HyEM on MFS prediction are reported. Each
column of the table refers to a different architecture of the system characterized
by the number of employed WL NWL. NWL was varied within the performed
tests from a minimum of 4 to a maximum of 42 and Table 6 reports the perfor-
mance achieved by the best performing ones.

The HyEM approach achieved results comparable to those of the sequential
ANNs method. One advantage of HyEM is that, for NWL = 16 it was able to keep
the accuracy comparable throughout the 7 stands of the finishing mill, which was
not achieved by the other approaches due to the criticalities encountered in the
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Table 6. Performance (e%MFS) of the best performing HyEM configurations.

Stand NWL = 4 NWL = 16

1 4.9 5.0

2 4.2 4.7

3 3.8 3.9

4 3.3 3.7

5 3.9 3.7

6 4.4 4.4

7 7.5 5.1

Ave. 4.6 4.4

estimation of last stand MFS. Moreover, due to the limited number of samples
composing the training dataset, it was not possible to achieve good results from
configurations including higher values of NWL that may have further improved
the performance.

5 Conclusions and Future Work

In this paper the problem of MFS prediction in a HR mill was faced. The correct
estimation of this measure can improve both the process conditions and the
final product quality. Through a dataset containing the information related to
the production of an Italian plant, the limits of standard empirical approaches
were put into evidence and the beneficial effects of the use of artificial intelligence
based techniques were shown. The use of ANNs–based methods in particular was
analysed by testing several approaches that were able to exploit the available
theoretical knowledge on the process and the empirical data in order to simulate
efficiently the highly non–linear relationship between input variables and the
MFS at the different stands of the HR mill. In this framework noticeable results
in terms of accuracy were achieved by the HyEM method that relies on the
concept of learners reliability and by the sequential ANNs approach that is
directly connected to the HR mill operation and exploits in an on–line manner
the data provided by the process itself.

In the future the availability of larger quantity of data will allow a clearer
assessment of some of the tested methods. Furthermore, when more plants will
be involved in this study, the availability of data coming from different mills will
allow the evaluation of the robustness and portability of these approaches.
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Abstract. One major problem of energy storages is degradation. Degra-
dation leads to a loss of capacity and a higher series resistance. One pos-
sibility to determine the state of health is the electrochemical impedance
spectroscopy. The ac resistance is therefore measured for a set of differ-
ent frequencies. Previous approaches match the measured impedances
with a nonlinear equivalent circuit, which needs a lot of time to solve a
nonlinear least squares problem. This paper combines the electrochemi-
cal impedance spectroscopy with neural networks to directly model the
state of health in order to speed up the estimation. Zinc air batteries are
exemplary used as energy storage, as other problems exists, that can be
solved by impedance measurements. Optimizing a cost function is used
to determine the fastest combination of examined frequencies.

1 Introduction

The zinc air battery has a high potential to become one of the leading storage
technologies for electrical energy [1]. A big advantage and the main reason of
the high energy density is the fact that a zinc air battery only needs one active
element in the battery housing (zinc) [2]. The second active element (oxygen)
is taken from the ambient air. In addition to the high energy density, zinc air
technology has further advantages. For example the low costs. Zinc is the 24th
most frequent element. There is more zinc available than copper, plumb and
lithium [3]. Furthermore a zinc air battery contains no toxic materials. On the
other hand, there are also some disadvantages. Currently the efficiency is about
60% compared to 95% of Li Ion batteries [4]. Another technological disadvantage:
zinc air cells can only be used in areas with oxygen.

Two important parameters that need to be known, when a battery is used
in a system, are the state of charge and the state of health of the battery. While
the state of charge (SoC) represents the remaining capacity of a battery [5], the
state of health (SoH) provides information about the degradation of a battery.
One method, to measure the state of health is the electrochemical impedance
spectroscopy [6]. The ac resistance is therefore measured for a spectrum of dif-
ferent frequencies. Among other things the resulting impedance characteristics
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 641–647, 2017.
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differs depending on the grade of aging. This paper combines the electrochemi-
cal impedance spectroscopy with a neural network to directly estimate the state
of health.

2 Problem

There are already publications analyzing the impedance spectra of zinc air bat-
teries. For example Arai et al. examined the impedance spectra of the cathodic
part of zinc air batteries by matching the parameter values of an equivalent
circuit. This circuit, shown in Fig. 1, contains 2 nonlinear nernst diffusion com-
ponents, which depend on two parameters diffusion resistance Rd and diffusion
factor K. The results of the sequence are shown in Table 1. Here an anodic treat-
ment of 6 h correspond to an SoH of 0%. As one can see the values correlate with
the state of health.

Rel

Rct

N

Nernstian diffusion 1

N

Nernstian diffusion 2

Cd

Fig. 1. Equivalent circuit of zinc-air cathode

Table 1. Parameters depending on SoH

SoH[%] Rel[Ω] Cd[mF] Rct[Ω] Rd1[Ω] K1[s
−1] Rd2[Ω] K2[s

−1]

100 0.15 2.0 0.02 0.14 20 0.25 98

50 0.20 1.8 0.02 0.22 30 0.29 110

0 0.25 1.5 0.03 0.25 9.1 0.55 140

Examining the time needed for an estimation of the SoH, there are multiple
factors to consider. On the one hand there is the measuring time, which does
not depend on the evaluation algorithm, but on the chosen frequencies. Lower
frequencies have a longer period and need more time to measure.

On the other hand there are factors, that depend on the method. Typically
measured impedances are used to calculate the parameters of an equivalent cir-
cuit. Because of the nonlinear nernst diffusion components, the parameter values
cannot be calculated by solving a linear system of equations, but through a non-
linear least squares algorithm. A Newton-Raphson-like algorithm has to be used
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in order to fit the values iteratively. This step is obligatory for each evaluation
of a new measurement and takes a lot of time and computing capacity. Further-
more this way of evaluation needs to measure at least as much frequencies as
existing parameters [9]. This might increases the measuring time, if it would be
possible to estimate the SoH with fewer measurements.

There is another step necessary after identifying the parameters. A function,
that relate the parameters to the state of health, has to be found.

3 Setup

Both parts, the nonlinear least square algorithm and the evaluation of the cor-
relation function results in a long evaluation time that can be solved by using
neural networks. While the training of the network still takes some time, the
evaluation is fast. Moreover the network can directly model the state of health
without calculating the equivalent circuit. In order to check, whether one fre-
quency is enough to determine the SoH, a simple one layer feed forward network
ios used. The network is trained by a Levenberg-Marquardt backpropagation
algorithm. The equivalent circuit is used as a source for generating training
data. As one can see in Table 1, only 3 measurements were taken. In order to get
enough training samples, we used a linear interpolation to approximate values
in between. This results in the plot of Fig. 2. The figure shows the parameter
values, normalized to its starting values. While the resistance of the resistors
increases with further degradation, the diffusion capacity sinks.
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K2,norm

Fig. 2. Normalized parameter values depending on SoH

The impedance spectra is calculated for each per mill of aging. Figure 3 shows
some sample characteristics in a nyquist plot. Higher degradation results in semi-
circles with a bigger radius and a light displacement to the right. The datapoints



644 A. Loechte et al.

used for the analysis are chosen by its frequencies using 2 values per decade from
100 mHz to 500 Hz. They are combined with normal distributed noise and shown
as circles.
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SoH=100%

SoH=50%

SoH=0%

Fig. 3. Nyquist plot of impedance depending on SoH

4 Analysis

Reasons for using neural networks to estimate the SoH of an zinc air battery
are a fast evaluation and a small error. Both targets depend on the choice of
frequencies ω, that are measured and used for the estimation. Regarding the
evaluation time, fewer measurements are positive, because each measurement
takes a time tinit needed for initiating and calculating the real an imaginary
part of the impedance. On the other hand, the chosen frequencies itself are
also an important factor, as smaller frequencies do need more measuring time
tmeasure, due to the fact that at least one period has to be measured. In order
to determine the SoH as fast as possible a cost function, which depends on the
chosen frequencies ω and the number of measured frequencies n is defined and
optimized:

t = tinit(n) + tmeasure(ω, n).

A set-up and evaluation time of 120 ms is used for tinit:

tinit(ω) = 120 ms · n
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Fig. 4. Pareto frontier combining measuring time and error of estimation. (Color figure
online)

Table 2. Frequency combinations of Pareto front

f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] t [s] λerror [%]

1000 - - - - - - 0.133 2.26

129 359 - - - - - 0.372 0.14

129 1000 - - - - - 0.35 0.69

359 1000 - - - - - 0.288 0.99

46 129 359 1000 - - - 0.896 0.12

17 46 359 1000 - - - 1.55 0.08

17 46 129 1000 - - - 1.61 0.075

6 46 129 1000 - - - 2.96 0.05

0.77 129 359 1000 - - - 16.8 0.0051

17 46 129 359 1000 - - 1.77 0.07

6 46 129 359 1000 - - 3.11 0.037

6 16 46 359 1000 - - 3.77 0.017

0.1 0.77 17 129 359 - - 143.4 0.0016

0.77 6 17 46 129 1000 - 20.2 0.0034

0.1 6 17 46 129 1000 - 129.6 0.0018

0.1 0.77 17 129 359 1000 - 143.5 0.0014

0.77 6 17 46 129 359 1000 20.3 0.0026

0.1 0.77 6 17 46 129 1000 146 0.00088
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This is an empirical value and depends on the impedance spectroscope, that
is used to measure the impedance. tmeasure is the accumulated time for data
acquisition. Supposed that 2 periods are used for one measurement tmeasure

results in

tmeasure(ω) = 2 ·
n∑

i=1

2π

ωi
= 4π

n∑

i=1

1
ωi

.

Another aim of the SoH estimation is a small error. Therefore another function
λerror is used to evaluate the error of the estimation:

λerror(y) = max(abs(y − t))

For each combination of frequency both the needed time and the error are cal-
culated. The results are plotted in Fig. 4. As there are two targets to minimize,
a compromise has to be used. Combinations that can not improve one property
without downgrading the other property are called pareto front and shown in
a different color [10]. In order to find a good compromises these pareto optimal
combinations are presented in Table 2.

As one can see, using all the frequencies results in the best accuracy, but needs
the longest measurement time of all (146 s). The fastest results can be received by
using only the highest frequency, which is 1 kHz. The resulting accuracy is 2.26 %.
The fastest way to estimate the SoH with a error of 1%, is to use a combination
of the frequencies 359 Hz and 1 kHz. This results in a total estimation time of
288 ms.

5 Conclusion

This paper showed that a simple neural network is a precise way to determine
the state of health of a zinc air battery. There are fewer impedance measure-
ments necessary in contrast of matching parameters of an equivalent circuit
which results in a quicker measurement time. The optimization of a cost func-
tion leads an optimal combination of frequencies to measure. Further speed up
is reached for evaluating the measurements, because instead of a slow nonlinear
least squares problem, only a neural network has to be processed.

The combination of electrochemical impedance spectroscopy and neural net-
works might be used for other problems, too. As the voltage curve of zinc air
batteries is very flat, one major problem is to determine the state of charge [2].
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Abstract. In the last years, Bayesian optimization (BO) has emerged
as a practical tool for high-quality parameter selection in prediction sys-
tems. BO methods are useful for optimizing black-box objective func-
tions that either lack an analytical expression, or are very expensive to
evaluate. In this paper we show how BO can be used to obtain optimal
parameters of a prediction system for a problem of wave energy flux pre-
diction. Specifically, we propose the Bayesian optimization of a hybrid
Grouping Genetic Algorithm with an Extreme Learning Machine (GGA-
ELM) approach. The system uses data from neighbor stations (usually
buoys) in order to predict the wave energy at a goal marine energy facil-
ity. The proposed BO methodology has been tested in a real problem
involving buoys data in the Western coast of the USA, improving the
performance of the GGA-ELM without a BO approach.

Keywords: Sea waves energy · Prediction system · Bayesian
optimization

1 Introduction

Marine Energy is currently one of the most promising sources of renewable
energy, due to the huge energy potential of oceans [1], and the well-known
benefits of renewable energy resources, such as very low CO2 generation and
reduction of oil imports and dependence. However this, the use of marine energy
sources is nowadays still minor at a global level, playing only a major role in
several offshore islands [2].

There are different technologies within marine energy resources, including
ocean wave, tidal and ocean thermal. In this work we focus on wave energy, that
uses Wave Energy Converters (WECs) to convert ocean energy into electricity
[3]. WECs transform the kinetic energy of wind-generated waves into electricity,
by means of either the vertical oscillation of waves or the linear motion of waves,
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 648–660, 2017.
DOI: 10.1007/978-3-319-59153-7 56
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and exhibit some important advantages when compared to alternatives based
on tidal converters [4]. On the other hand, wave energy is more difficult to
characterize than tidal or ocean thermal, since waves have a highly stochastic
nature. As a consequence of this, prediction systems must be used to obtain a
proper characterization of waves to mitigate the negative effects of stochastic
generation inherent to this technology. In marine wave energy, the two most
important wave parameters to be predicted are the significant wave height (Hm0)
and the wave energy flux (P ), which characterize the wave energy production
from WECs facilities.

The research work on wave energy prediction systems has been intense in
the last years, with special incidence in machine learning approaches. One of
the first works on this topic was the direct prediction of Hm0 using artificial
neural networks in [5]. Neural networks have also been applied to other prob-
lems of Hm0 and P prediction, such as [6], where Hm0 and P are inferred from
observed wave records using time series neural networks. In [7] a neural network
is applied to estimate the wave energy resource in the northern coast of Spain.
In [8] a hybrid genetic algorithm-adaptive network-based fuzzy inference sys-
tem model was developed to forecast Hm0 and the peak spectral period at Lake
Michigan. In [9,10] different hybrid algorithms mixed with an Extreme Learning
Machine neural network were proposed for the estimation of Hm0 and P , in the
context of marine energy applications. Support Vector regression (SVR) has also
been applied to marine energy related problems such as in [11]. Similarly, [12,13]
proposed to feed SVR approaches with information from radar sources in order
to obtain an accurate prediction of Hm0 . Classification approaches have been
applied in [14] to analyze and predict Hm0 and P ranges in buoys for marine
energy applications. In [15], use of genetic programming for Hm0 reconstruc-
tion problems was proposed. Finally, in [16] fuzzy logic-based approaches were
introduced for Hm0 prediction problems.

In this paper we test a BO methodology to improve the performance of a
hybrid prediction system for wave energy flux prediction. Specifically, the pre-
diction system was previously presented in [10], and it is formed by a Grouping
Genetic Algorithm for feature selection, and an Extreme Learning Machine for
carrying out the final energy flux prediction. This hybrid prediction system has
a number of parameters that may affect its final performance, and need to be
previously specified by the practitioner. Traditionally, these parameters have
been manually tuned by a human expert, with experience in both the algorithm
and the problem domain. However, it is possible to obtain better results by an
automatic fine tuning of the prediction system’s parameters. In this case, the
parameters of GGA-ELM approach include the probability of mutation in the
GGA or the number of neurons in the ELM hidden layer, among others. We
propose then to use a Bayesian Optimization (BO) approach to automatically
optimize the parameters of the whole prediction system (GGA-ELM), with the
aim of improving its performance in wave energy prediction problems. BO has
been shown to obtain good results in the task of obtaining good parameter values
for prediction systems [22]. In the paper we detail the basic prediction system
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considered and the BO methodology implemented, along with the improvements
obtained in a real problem of wave energy flux prediction in the Western coast
of the USA.

2 The Hybrid Prediction System Considered

In this paper we will optimize a hybrid prediction system for marine energy
applications described in [13]. In this section we describe the main characteristics
of this approach, in order to better explain later on the Bayesian optimization
carried out on it. The prediction system is a hybrid wrapper approach, formed
by a Grouping Genetic Algorithm for feature selection, and an Extreme Learning
Machine to carry out the final prediction of Hm0 or P from a set of input data.

2.1 The Grouping Genetic Algorithm

The grouping genetic algorithm (GGA) is a class of evolutionary algorithm espe-
cially modified to tackle grouping problems, i.e., problems in which a number
of items must be assigned to a set of predefined groups. It was first proposed
by Falkenauer [18]. In the proposed GGA, the encoding, crossover and mutation
operators of traditional GAs have been modified to improve the performance of
the algorithm in grouping problems. The GGA initially proposed by Falkenauer
is a variable-length genetic algorithm. The encoding is carried out by separat-
ing each individual in the algorithm into two different parts: the first one is an
assignment part, which associates each item to a given group. The second one
is a group part, which defines the number of groups into which the items must
be shared. In problems where the number of groups is not previously defined, it
is easy to see that the group part varies from one individual to another, so it
leads to a variable-length encoding. In the considered hybrid approach for Hm0

or P prediction, the GGA’s objective is the selection of the best set of features
in terms of prediction accuracy. Thus, an individual in the GGA (c) has the
form c = [a|g]. An example of an individual in the proposed GGA for a feature
selection problem, with 20 features and 4 groups, is the following:

1 1 2 3 1 4 1 4 3 4 4 1 2 4 4 2 3 1 3 2 | 1 2 3 4
where the group 1 includes features {1, 2, 5, 7, 12, 18}, group 2 features
{3, 13, 16, 20}, group 3 features {4,9,17,19} and finally group 4 includes features
{6, 8, 10, 11, 14, 15}. The dynamics of the algorithm consists of a initialization of
the population, at random, and the application of specially tailored operators
to come up with the encoding previously described. Specifically, the crossover
operator is modified from the standard genetic algorithm (see [13] for details),
as follows:

1. Choose two parents from the current population, at random.
2. Randomly select two points for the crossover, from the “Groups” part of

parent 1. Then, all the groups between the two cross-points are selected.
3. Insert the selected section of the “Groups” part into the second parent.
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4. Modify the “Groups” part of the offspring individual with their corresponding
number. Modify also the assignment part accordingly.

5. Remove any empty groups in the offspring individual. In the example con-
sidered, it is found that groups 1, 2, 3, and 6 are empty, so we can eliminate
these groups’ identification number and rearrange the rest. The final offspring
is then obtained.

Regarding mutation operator, note that standard mutation usually calls for
an alteration of a small percentage of randomly selected parts of the individuals.
This type of mutation may be too disruptive in the case of a grouping problem.
In our case, a swapping mutation in which two items are interchanged (swapping
this way the assignment of features to different groups), is taken into account.
This procedure is carried out with a very low probability (Pm = 0.01), to avoid
increasing of the random search in the process. Finally, a classical tournament
selection [19] is applied in order to keep the best individuals in the population as
parents of the next generation. This selection mechanism is carried out in terms
of a given objective function (fitness value), which in this case is the prediction
accuracy obtained by an Extreme Learning Machine neural network.

2.2 Fitness Function: The Extreme Learning Machine

An ELM [20] is a fast learning method based on the structure of MLPs with a
novel way of training feed-forward neural networks. One of the most important
characteristics of the ELM training is the randomness in the process where the
network weights are set, obtaining, in this way, a pseudo-inverse of the hidden-
layer output matrix. The simplicity of this technique makes the training algo-
rithm extremely fast. Moreover, it must be remarkable its outstanding perfor-
mance when it is compared to other learning methods, usually better than other
established approaches such as classical MLPs or SVRs.

The ELM algorithm can be explained as follows: given a training set

T = (xi,W i)|xi ∈ R
n,W i ∈ R, i = 1, · · · , l,

an activation function g(x) and number of hidden nodes (Ñ),

1. Randomly assign inputs weights wi and bias bi, i = 1, · · · , Ñ .
2. Calculate the hidden layer output matrix H, defined as

H =

⎡
⎢⎣

g(w1x1 + b1) · · · g(wÑx1 + bÑ )
... · · · ...

g(w1xl + b1) · · · g(wÑxN + bÑ )

⎤
⎥⎦
l×Ñ

(1)

3. Calculate the output weight vector β as

β = H†T, (2)
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where H† stands for the Moore-Penrose inverse of matrix H [20], and T is
the training output vector, T = [W 1, · · · ,W l]T .

The number of hidden nodes (Ñ) is a free parameter of the ELM training,
and it can be fixed initially, or in a best convenient way, it must be estimated
for obtaining good results as a part of a validation set in the learning process.
Hence, scanning a range of Ñ values is the solution for this problem.

The Matlab ELM implementation by G.B. Huang, freely available in the
Internet [21] has been used in this paper.

3 Bayesian Optimization of the Prediction System

Most prediction systems are governed by a set of parameters that control their
behavior. For example, in an ELM the number of units in the hidden layer has
to be chosen before training; in a SVR system the kernel length-scale and the
width of the epsilon insensitive band need to be specified; and in the genetic
algorithm described in Sect. 2.1, the probability of mutation and the number of
epochs must be chosen initially. Moreover, the final performance of the system
may strongly depend on the parameters chosen. Parameter tuning has typically
been addressed by human experts, or by a grid search that aims at minimizing
the prediction error on a validation set. These solutions have the disadvantage
that they may suffer from human bias, and that they do not scale well with
dimensionality of the parameter space, respectively.

Bayesian optimization (BO) has emerged as practical tool for parameter
selection in prediction systems [22]. More precisely, BO methods are very useful
for optimizing black-box objective functions that lack an analytical expression
(which means no gradient information), are very expensive to evaluate, and in
which the evaluations are potentially noisy [23–25]. The performance of a pre-
diction system on a randomly chosen validation set, when seen as a function of
the chosen parameters, has all these characteristics.

Consider a black-box objective f(·) with noisy evaluations of the form
yi = f(xi) + εi, with εi some noise term. BO methods are very successful at
reducing the number of evaluations of the objective function needed to solve
the optimization problem. At each iteration t = 1, 2, 3, . . . of the optimization
process these methods fit a probabilistic model, typically a Gaussian process
(GP) [26], to the observations of objective function {yi}t−1

i=1 collected so far. The
uncertainty about the objective function provided by the GP is then used to
generate an acquisition function α(·), whose value at each input location indi-
cates the expected utility of evaluating f(·) there. The next point xt at which
to evaluate the objective f(·) is the one that maximizes α(·). This process is
repeated until enough data about the objective has been collected. When this is
the case, the GP predictive mean for f(·) can be optimized to find the solution
of the optimization problem. This process is described in Algorithm 1.
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for t = 1, 2, 3, . . . ,max steps do
1: Find the next point to evaluate by optimizing the acquisition
function: xt = arg max

x
α(x|D1:t−1).

2: Evaluate the black-box objective f(·) at xt: yt = f(xt) + εt.
3: Augment the observed data D1:t = D1:t−1

⋃{xt, yt}.
4: Update the Gaussian process model using D1:t.

end
Result: Optimize the mean of the Gaussian process to find the solution.

Algorithm 1. Bayesian optimization of a black-box objective function.

The key for BO success is that evaluating the acquisition function α(·) is
very cheap compared to the evaluation of the actual objective f(·), which in
our case requires the re-training of the prediction system. This is so because the
acquisition function only depends on the GP predictive distribution for f(·) at a
candidate point x. This distribution is a Gaussian characterized by a mean μ(x)
and a variance σ2(x). The GP model provides closed form expressions for these
values given the observed data Di = {(xi, yi)}t−1

i=1. Thus, the acquisition function
can be maximized with little cost. The consequence is that BO methods can
employ the acquisition function α(·) to make intelligent decisions about where
to evaluate next the objective f(·) with the aim of finding its optimum as quickly
as possible. When the actual objective is very expensive, the approach described
can save a lot of computational time. Three steps of the BO optimization process
are illustrated graphically in Fig. 1 for a toy minimization problem.

An example of an acquisition function is expected improvement (EI) [27]. EI
is obtained as the expected value under the GP predictive distribution for yi,
of the utility function u(yi) = max(0, ν − yi), where ν = min({yi}t−1

i=1) is the
best value observed so far. That is, EI measures on average how much we will
improve on the current best solution by evaluating the objective at each candi-
date point. An advantage of EI is that the corresponding acquisition function α(·)
can be computed analytically: α(x) = σ(x)(γ(x)Φ(γ(x)+φ(γ(x)), where γ(x) =
(ν − μ(x))/σ(x) and Φ(·) and φ(·) are respectively the c.d.f. and p.d.f. of a
standard Gaussian. EI is the acquisition function displayed in Fig. 1.

BO has been recently applied with success in different prediction systems
for finding good parameter values. For example, it has been used to find the
parameters of topic models based on latent Dirichlet allocation, support vec-
tor machines, or deep convolutional neural networks [22]. Finally, BO has been
implemented in different software packages. An implementation in python is
called Spearmint and is available at https://github.com/HIPS/Spearmint.

4 Experiments and Results

This section presents the experiments carried out in order to show the improve-
ment of performance in the system when it is optimized with the Bayesian tech-
niques shown above. We consider a real problem of wave energy flux prediction

https://github.com/HIPS/Spearmint
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Fig. 1. An example of BO on a toy 1D noiseless problem. The figures show a GP
estimation of the objective f(·) over three iterations. The acquisition function is shown
in the lower part of the plot. The acquisition is high where the GP predicts a low
objective and where the uncertainty is high. Those regions in which it is unlikely to
find the global minimum of f(·) have low acquisition values and will not be explored.

(P = 0.49 · H2
s · Te kW/m, [17]) from marine buoys. Figure 2 shows the three

buoys considered in this study at the Western coast of the USA, whose data
bases are obtained from [28]. The objective of the problem is to carry out the
reconstruction of buoy 46069 from a number of predictive variables from the
other two buoys. Thus, 10 predictive variables measured at each neighbor buoy
are considered (a total of 20 predictive variables to carry out the reconstruc-
tion). Table 1 shows details of the predictive variables for this problem. Data for
two complete years (1st January 2009 to 31st December 2010) are used, since
complete data (without missing values in predictive and objective P ) are avail-
able for that period in the three buoys. These data are divided into training set
(year 2009) and test set (year 2010) to evaluate the performance of the proposed
algorithm.
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46069
46025

46042

Fig. 2. Western USA Buoys considered in this study. In red buoy where the P predic-
tion is carried out from data at blue ones.

Table 1. Predictive variables used in the experiments.

Acronym Predictive variable units

WDIR Wind direction [degrees]

WSPD Wind speed [m/s]

GST Gust speed [m/s]

WVHT Significant wave height [m]

DPD Dominant wave period [sec]

APD Average period [sec]

MWD Direction DPD [degrees]

PRES Atmospheric pressure [hPa]

ATMP Air temperature [Celsius]

WTMP water temperature [Celsius]

We have divided this experimental section into two different subsections.
First, we show the performance of the BO techniques proposed in the optimiza-
tion of the specific GGA-ELM prediction algorithm. Second, we will show how
the prediction performance is improved when the system is run with the para-
meters obtained by the BO techniques, i.e. by comparing the performance of the
system before and after tuning the parameters with BO.

4.1 Bayesian Optimization of the Wave Energy Prediction System
Parameters

We evaluate the utility of the BO techniques described in Sect. 3 for finding good
parameters for the prediction system described in Sect. 2. More precisely, we try
to find the parameters that minimize the RMSE of the best individual found
by the GGA on a validation set that contains 33% of the total data available.
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The parameters of the GGA that are adjusted are the probability of mutation
p ∈ [0, 0.3], the percentage of confrontation in the tournament q ∈ [0.5, 1.0], and
the number of epochs e ∈ [50, 200]. On the other hand, the parameters of the
ELM that is used to evaluate the fitness in the GGA are also adjusted. These
parameters are the number of hidden units n ∈ [50, 150] and the logarithm of the
regularization constant of a ridge regression estimator, that is used to find the
weights of the output layer γ ∈ [−15,−3]. Note that a ridge regression estimator
for the output layer weights allows for a more flexible model than the standard
ELM, as the standard ELM is retrieved when γ is negative and large [29].

We compare the BO method with two techniques. The first technique is
a random exploration of the space of parameters. The second technique is a
configuration specified by a human expert. Namely, p = 0.02, q = 0.8, e = 200,
n = 150 and γ = −10. These are reasonable values that are expected to perform
well in the specific application tackled. We set our computational budget to 50
different parameter evaluations for both the BO and the random exploration
strategy. After each evaluation, we report the performance of the best solution
found. The experiments are repeated for 50 different random seeds and we report
average results. All BO experiments are carried out using the acquisition function
EI and the software for BO Spearmint.

Figure 3 shows the average results obtained and the corresponding error bars.
This figure shows the average RMSE of each method (BO and random explo-
ration) on the validation set as a function of the number of configurations eval-
uated. The performance of the configuration specified by a human expert is also
shown. We observe that the BO strategy performs best. After a few evaluations,
it is able to outperform the results of the human expert and it provides results
that are similar or better than the ones obtained by the random exploration
strategy with a smaller number of evaluations.
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Fig. 3. Average results obtained after evaluating the performance of 50 different
parameters for the BO technique and a random exploration of the parameter space.
The performance of the configuration specified by a human expert is also shown for
comparison.



Bayesian Optimization of a Hybrid Prediction System 657

4.2 Estimation of the Generalization Performance

In a second round of experiments, we show the performance of the proposed pre-
diction system after its optimization with the BO methodology. Note that after
the feature selection process with the GGA-ELM approach, we apply a ELM or a
SVR [30,31] to obtain a final prediction of the wave energy flux P . Table 2 shows
the results obtained for the experiments carried out. We can observe the com-
parison between ELM and SVR approaches in different scenarios: the prediction
obtained with all the features, the prediction obtained with the hybrid algorithm
GGA-ELM (without BO methodology), and finally the prediction acquired after
the application of the BO process in the GGA-ELM approach. As Table 2 sum-
marizes, we can see how the hybrid GGA-ELM algorithm improves the results
obtained by the ELM and SVR approaches (without feature selection). In fact,

Table 2. Comparative results of the P estimation by the ELM and SVR approaches
after the feature selection by the GGA-ELM in 2010.

Experiments RMSE MAE r2

All features-ELM 3.4183 kW/m 2.4265 kW/m 0.6243

All features-SVR 4.4419 kW/m 2.8993 kW/m 0.3129

GGA-ELM-ELM 2.8739 kW/m 1.8715 kW/m 0.7101

GGA-ELM-SVR 2.6626 kW/m 1.6941 kW/m 0.7548

BO-GGA-ELM-ELM 2.5672 kW/m 1.7596 kW/m 0.7722

BO-GGA-ELM-SVR 2.4892 kW/m 1.6589 kW/m 0.7823

0 500 1000 1500 2000 2500 3000 3500

Test sample

0

10

20

30

40

50

60

]
m/

Wk[
P

P (theorical)

P (predicted)

(a)

0 500 1000 1500 2000 2500 3000 3500

Test sample

0

10

20

30

40

50

60

]
m/

Wk[
P

P (theorical)

P (predicted)

(b)

0 500 1000 1500 2000 2500 3000 3500

Test sample

0

10

20

30

40

50

60

]
m/

Wk[
P

P (theorical)

P (predicted)

(c)

0 500 1000 1500 2000 2500 3000 3500

Test sample

0

10

20

30

40

50

60

]
m/

Wk[
P

P (theorical)

P (predicted)

(d)

Fig. 4. P prediction after the feature selection process with the GGA-ELM approach;
(a) ELM; (b) SVR; (c) ELM with Bayesian optimization; (d) SVR with Bayesian
optimization.
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the SVR algorithm improves the most the values of the Pearson’s Correlation
Coefficient (r2) around 75% in the case of the feature selection method, against
the poor 31% when all features are used. Moreover, these results are improved
by means of the BO methodology, using ELM and SVR approaches after the
GGA-ELM. In the case of the ELM, we get values of the r2 around 77% against
the 71% achieved with the GGA-ELM algorithm without the BO improvement.
The same behaviour is obtained for the SVR algorithm: we have values around
78% with the application of the BO methodology against the 75% obtained for
the GGA-ELM approach when the parameters are fixed by the programmer.

The results of the previous tables can be better visualized in the follow-
ing graphics. In Fig. 4 the temporary predictions carried out by the ELM and
SVR approaches are shown. We can see how the cases (c) and (d) improve the
approximation to the real values against the cases (a) and (b) where the BO
methodology is not applied.

5 Conclusions

In this paper we have shown how a hybrid prediction system for wave energy
prediction can be improved by means of Bayesian Optimization (BO) methodol-
ogy. The prediction system is formed by a grouping genetic algorithm for feature
selection, and an Extreme Learning Machine for effective prediction of the target
variable, the wave energy flux in this case. After this feature selection process,
the final prediction of the wave energy flux is obtained by means of an ELM
or a SVR approach. The paper describes in detail the BO methodology, and its
specific application in the optimization of the GGA-ELM for a real problem of
wave energy flux prediction from buoys data in Western California USA. The
results show that the BO methodology is able to improve the performance of
the systems, i.e., the prediction of the optimized systems is significantly better
than that of the system without the BO methodology applied.

Acknowledgements. This work has been partially supported by Comunidad de
Madrid, under projects number S2013/ICE-2933 and S2013/ICE-2845, and by National
projects TIN2014-54583-C2-2-R, TIN2013-42351-P and TIN2016-76406-P of the
Spanish Ministerial Commission of Science and Technology (MICYT). We acknowl-
edge support by DAMA network TIN2015-70308-REDT. We acknowledge the use of
the facilities of Centro de Computación Cient́ıfica de la UAM.

References

1. Arinaga, R.A., Cheung, K.F.: Atlas of global wave energy from 10 years of reanaly-
sis and hindcast data. Renew. Energy 39, 49–64 (2012)

2. Fadaeenejad, M., Shamsipour, R., Rokni, S.D., Gomes, C.: New approaches in
harnessing wave energy: with special attention to small Islands. Renew. Sustain.
Energy Rev. 29, 345–354 (2014)

3. Hong, Y., Waters, R., Boström, C., Eriksson, M., Engström, J., et al.: Review on
electrical control strategies for wave energy converting systems. Renew. Sustain.
Energy Rev. 31, 329–342 (2014)



Bayesian Optimization of a Hybrid Prediction System 659

4. Cuadra, L., Salcedo-Sanz, S., Nieto-Borge, J.C., Alexandre, E., Rodŕıguez, G.:
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Abstract. After the electricity liberalization in Europe, the electricity
market moved to a more competitive supply market with higher effi-
ciency in power production. As a result of this competitiveness, accurate
models for forecasting long-term power consumption become essential
for electric utilities as they help operating and planning of the utility’s
facilities including Transmission and Distribution (T&D) equipments.
In this paper, we develop a multi-step statistical analysis approach to
interpret the correlation between power consumption of residential as
well as industrial buildings and its main potential driving factors using
the dataset of the Irish Commission for Energy Regulation (CER). In
addition we design a hybrid model for forecasting long-term daily power
consumption on the scale of portfolio of buildings using the models of
conditional inference trees and linear regression. Based on an extensive
evaluation study, our model outperforms two robust machine learning
algorithms, namely random forests (RF) and conditional inference tree
(ctree) algorithms in terms of time efficiency and prediction accuracy for
individual buildings as well as for a portfolio of buildings. The proposed
model reveals that dividing buildings in homogeneous groups, based on
their characteristics and inhabitants demographics, can increase the pre-
diction accuracy and improve the time efficiency.

Keywords: Smart grid · Multiple linear regression · Time series
models · Random forests · Conditional inference trees

1 Introduction

Load forecasting can be defined as the process of estimating the power consump-
tion needs of a specific geographical area in a certain point in time. It plays an
essential role in planning the facilities of electric utilities including Transmission
and Distribution (T&D) equipments in the demand side management, and in the
energy purchases by utilities as well. The accuracy and reliability of forecasting
models have a significant impact on electric utilities. On one hand, insufficient
power supply due to the underestimation of electricity demand may cause the
system to operate in a critical region where a total collapse of the system is
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 661–672, 2017.
DOI: 10.1007/978-3-319-59153-7 57
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possible. On the other hand, the excess power supply due to the overestimation
of power consumption leads to high costs for operating too many power supply
units and as a result a drop in the investment due to extra energy purchases.

Previously, power utilities could predict the future consumption using statis-
tical metrics regarding economic growth such as the industrial growth index and
population statistics such as the growth index of residential buildings. Nowadays,
multiple power utilities can operate in the same area in which the customers have
different power suppliers to subscribe to and not only one supplier. This makes it
difficult for the power utilities to rely on the previously mentioned statistics such
as the economic and population growth indexes to predict future consumption.

To assist the future investments of power utilities, we need to provide an
estimation of the mean power consumption of current and new constructions
based on the historical consumption data and the different factors that affect
that consumption. A real-time measurements of residential power consumption
can be provided by the installation of smart meters in residential buildings. How-
ever, Germany for example will not follow the European Commission program
for 80% deployment of smart meters by 2020. Instead, it will adopt a phased
approach that will address its specific requirements around energy efficiency and
renewable energy integration. This fact triggers the need to design new models
which are capable of leveraging the smart metering technology and cope up with
the difficulties of integrating smart meters in nowadays networks.

In this work, we propose a new approach to overcome these issues by installing
smart meters in a representative subset of the population in a region. This subset
should cover the variety of domestic and small and medium enterprises (SME)
buildings. Then, by modelling the consumption pattern of the participants in
this trial, we can generalize the solution to predict the population’s future power
consumption. To estimate the long-term power consumption of a population, we
integrate the effect of time-independent factors such as building characteristics
and demographic features of inhabitants and time-dependent factors such as
weather conditions, workdays and holidays.

The paper is organized as follows: Sect. 2 gives an overview of related work in
the domain of power consumption forecasting. In Sect. 3, we introduce our con-
cept for the long-term forecasting of power consumption. Sections 4 and 5 focus
on the long-term prediction model design while Sect. 6 presents the comparative
analysis and evaluation of the proposed model against RF and ctree. Finally,
Sect. 7 summarizes the paper and discusses future work.

2 Related Work

The problem of modelling and forecasting electrical consumption has been inten-
sively studied in the past decades. Long-term and medium-term forecasting of
power consumption are used by the utilities mainly for future planning and main-
tenance purposes. A wide variety of models have been proposed for the purpose
of power consumption forecasting. They can be classified into five categories,
namely averaging models [10], regression models [2,5–7,9], time series models
[13,17], artificial intelligence models [11,12,16,20], and hybrid models [15,18].
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Averaging models are characterized by their simplicity as they make their
prediction based on averaging the power consumption of similar points of time
horizon such as day, month, and year. They only require the historical consump-
tion information. Aman et al. presented in [1] an empirical comparison between
several prediction methodologies for short-term forecasting of power consump-
tion. In their first scenario, they have evaluated the Time of the Week (ToW)
averaging model using the 15-min interval load demand in a week calculated as
the average over all weeks. This simple model can be used to predict the power
consumption in a granularity of 15-min as the kWh value for that interval.

More complex than averaging models, regression tree (RT ) models build a
decision tree to represent the non-linear relationship between the predictors and
the response variable. Aman et al. proposed a prediction model based on regres-
sion trees to forecast the short-term power consumption of campus micro-grids
using indirect indicators [2]. In this work, the authors classify power consump-
tion indicators into direct and indirect. Direct indicators include the histori-
cal weather information and the power consumption data from smart meters.
Indirect indicators include seasonal patterns such as day of the week, semester
and holidays, and academic calendar as well as static knowledge of the build-
ing characteristics such as surface area. They provide prediction models at the
building and campus levels for daily and 15-min intervals by training a CART
regression tree based on the direct and indirect indicators. Also Time series
(TS) models try to predict future power consumption based on previous his-
torical observations. The commonly used approaches include Moving Average
(MA), Auto-Regressive Integrated Moving Average (ARIMA) and the Pattern
Sequence-based Forecasting (PSF ) [14].

Artificial intelligence techniques such as neural networks, support vector
machines, and pattern matching techniques show promising capabilities in fore-
casting and modelling power consumption. An overview of different AI tech-
niques is provided in [11]. Among all AI-based methods, the technique of arti-
ficial neural networks (ANNs) has received substantial attention in forecasting
power consumption due to its flexibility in learning load series and modelling
the non-linearity between power consumption and the exogenous variables influ-
encing it as well as providing fairly acceptable results. Wan et al. developed
an artificial neural network model for modelling the electricity load of campus
buildings in [19]. The input data of the network includes building consumption
history and the time-depended climate variables such as dew point, rainfall rate,
pressure, wind speed, humidity and temperature.

The majority of previous research works for power consumption forecast-
ing focus on homogeneous buildings such as residential or industrial buildings
regardless of their differences i.e. demographic data, and building characteristics.
Moreover, they consider the prediction of future demand growth of current net-
works without taking into consideration new or planned constructions. Another
limitation of the current research conducted in this field is that it did not take in
consideration the difficulties of integrating smart meters in today’s networks as
well as the geographical structure of the network where each area is monitored
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independently. In this work, we try to tackle these issues by investigating the
possibilities of estimating the long-term daily power consumption for a popula-
tion out of a representative sample.

3 Concept and Dataset

In this work, we follow a multi-step statistical analysis methodology as shown in
Fig. 1 in which we use time-dependent predictors such as temperature, business
days, and holidays combined with time-independent predictors such as demo-
graphic data, and building characteristics to estimate the power consumption
of existing and future planned buildings on different scales. In the first step,
we build the Building-Performance regression model that correlates the power
consumption with time-independent factors by following a stepwise approach for
the selection of predictors. This model provides good insights into the average
monthly power consumption of individual buildings. Furthermore, it assists the
process of excluding the data which belongs to buildings with consumption pat-
terns not representative of the population, in order to reduce the errors in next
modelling steps.

In the second step, we investigate the possibility of building a hybrid model
which uses conditional inference trees [8] to divide buildings into homogeneous
groups using the time-independent factors and then create a multi-linear regres-
sion model for each group to estimate the daily power consumption using time-
dependent predictors, demographic data, building characteristics and number of
available appliances. Later, this model is adapted for the prediction of future
power consumption of new buildings by removing the predictors related to
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Fig. 1. Workflow for long-term daily power consumption forecasting model.
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available appliances and part of demographic data. The model will be capable
of predicting the daily long-term power consumption for the whole population.

The used dataset in this work is provided by the Commission of Energy Reg-
ulation (CER) in Ireland. CER has started a project to collect measurements
about power consumption of individual buildings using smart metering tech-
nologies. The trials took place over a period of eighteen months during 2009
and 2010. Raw data representing the 30-min power consumption readings in
kWh of individual buildings was collected. More than 5000 smart meters were
installed in Irish homes and businesses in eight urban areas and three villages [4].
Pre-trial and post-trial surveys were conducted for both residential and business
participants. Residential participants, which are considered for the evaluation,
provided information about the following aspects in the survey:

– Demographic features of residents such as number of people living in the
house, age groups, household income and employment status.

– Physical characteristics of the house such as floor size, house type, number of
bedrooms, heating type and insulation.

– Type and number of available electrical appliances in the house.
– Behavioral features of residents such as their usage patterns of electrical appli-

ances as well as their awareness degree of the power each appliance consumes.

4 Building-Performance Multiple Regression Model

The building-performance multiple regression model can serve as a reference
model for the power usage of the general population by interpreting the effect
of different predictors on the average power consumption. The set of predictor
variables consists of demographic data, building characteristics, heating sources
as well as the number of available appliances. The multiple linear regression
model can be expressed in the form:

yi = β1xi1 + β2xi2 + .... + βpxip + ei (1)

where yi is the response variable representing the total power consumption of
building i during the trial. x1, .., xp refer to the predictor variables where p is
the number of predictors. ei is the estimation error for building i and β1, .., βp

are the regression coefficients.
The Multicollinearity due to a potential inter-correlation between different

predictors may negatively affect the interpretation of partial regression coeffi-
cients and make it difficult to recognize relative importance levels. To avoid any
negative effect of multicollinearity, a backward stepwise regression approach is
used to select the best model, where iteratively in each iteration a subset of
predictors that match best model performance is selected.

This model should represent the performance of the population buildings.
Therefore buildings with abnormal power consumption are considered as out-
liers and their related power measurements are excluded from the dataset and
then the model is fitted again. Based on the assumption of normal distribution
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of the total power consumption, a data point is considered as an outlier if its
absolute value of the standardized residual is larger than 2 [9]. By defining the
predicted power consumption as ŷi, the standardized residual can take the form:

ẑi =
yi − ŷi

σ̂
(2)

where σ̂ is the standard error.

5 Hybrid Model for Long-Term Forecasting of Power
Consumption

The idea behind developing a hybrid model is to get the benefits of several
rigorous modelling techniques in order to achieve a high prediction accuracy. On
one hand, modelling the effect of time-independent variables contributes to the
prediction of mean power consumption. On the other hand, modelling the effect
of time-dependent variables contributes to the modelling of the random error
generated by seasonal patterns and temperature changes.

We utilize conditional inference trees (ctree) to group the heterogeneous set
of buildings into several homogeneous groups based on time-independent vari-
ables, namely building characteristics, demographic data, heating source, and
the number of different available appliances. Ctree is a non-parametric class of
regression trees embedding tree-structured regression models into a well defined
theory of conditional inference procedures [8]. Ctree recursively performs uni-
variate splits of a dataset based on two stages. The first stage is the recursive
binary partitioning which proceeds as follows:

1. Using significance test of the global null hypothesis of independence between
the predictors and the response variable, the algorithm selects the predictor
with the highest association with the response variable based on the p-value
corresponding to significance test.

2. Select two subsets of the selected variable to split the observations into two
disjoint groups. The splitting point is selected based on another statistical
test.

3. Recursively repeat steps 1 and 2.

In the second stage, it fits a constant model in each leaf node of the gener-
ated tree. It is important to mention the differences between Ctree and other
popular regression tree algorithms such as CART and C4.5. Both CART and
C4.5 examine all the possible splits and select the covariate that maximizes the
cell purity. Both methods suffer from overfitting and bias towards partitioning
based on covariates with multiple splits. The overfitting can be overcome by
tree pruning. However, there is no statistical significance analysis that can prove
whether there is a significant improvement due to the split or not. On the con-
trary, Ctree algorithm is statistically more valid, it recursive applies a split based
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Fig. 2. The hybrid model design. Ctree model is used based on time-independent pre-
dictors for grouping the buildings into several homogeneous groups. Afterwards, an
individual linear regression model is fitted for each group based on building character-
istics and time-dependent factors.

on the theory of permutation tests in which partitioning is stopped when there
is no significant association between the predictors and the response variable.

After dividing the buildings into several homogeneous groups, a multiple lin-
ear regression model is applied on each homogeneous group to model the daily
power consumption of that group using time-dependent predictors, namely tem-
perature, holidays, business days, and weekends. Moreover, a subset of time-
independent variables including floor size, number of bedrooms, people descrip-
tion, built year and home description is used for the purpose of predicting the
base power consumption of different buildings in the same group as shown in
Fig. 2. The advantage of using ctree is that the split process tends to apply split
on a subset only if a significant improvement can be achieved rather than group-
ing buildings based on heuristics such as the information gain as is the case in
CART algorithm.

6 Evaluation

In this section we evaluated the predictive performance of our proposed hybrid
model. As a first step, we cleaned the dataset from outliers which are buildings
with abnormal power consumption when compared to the majority of build-
ings with same characteristics. For detecting outliers, we utilized the Building-
Performance model explained in Sect. 4. Table 1 shows the main factors con-
tributing to the power consumption of residential buildings. This set mainly
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Table 1. The Building-performance final model coefficients. Std. error is the standard
deviation of the sampling distribution of the estimates of the coefficients under the
standard regression assumption. t-statistic is used to test whether the corresponding
regression coefficient is different from 0 and Pr(> |t|) is the p-value of the corresponding
t-statistics. Intercept is the mean of the response variable when all predictors values
equal 0.

Coefficient Estimate Std. error t-value Pr(> |t|)
(Intercept) −2.995e+03 3.775e+02 −7.934 8.48e-15

People description 6.079e+02 8.455e+01 7.189 1.69e-12

Floor size 2.836e-01 7.365e-02 3.851 0.000128

Bedrooms 4.378e+02 7.111e+01 6.157 1.25e-09

Water central heating system −2.323e+02 1.479e+02 −1.571 0.116663

Water electric(immersion) 3.509e+02 9.609e+01 3.652 0.000280

Water heating (Gas) −5.435e+02 1.423e+02 −3.819 0.000146

Water heating (Oil) −2.729e+02 1.200e+02 −2.274 0.023293

Water heating (Other) −1.628e+03 8.723e+02 −1.866 0.062394

Cook −2.634e+02 7.533e+01 −3.497 0.000501

Tumble dryer 4.529e+02 1.174e+02 3.857 0.000125

Dishwasher 4.296e+02 1.281e+02 3.355 0.000837

Electric heater plug in 1.622e+02 6.928e+01 2.341 0.019511

Stand alone freezer 3.134e+02 8.788e+01 3.566 0.000388

TV greater 21 1.972e+02 5.469e+01 3.605 0.000334

Desktop computers 5.562e+02 8.141e+01 6.832 1.83e-11

Laptop computers 3.146e+02 5.755e+01 5.467 6.39e-08

Games consoles 2.612e+02 6.441e+01 4.056 5.56e-05

included the description of people i.e. retired and all over 15 years old, the
building characteristics, the number of different appliances, the cooker type, and
the water heating source. Thereafter, buildings with abnormal power consump-
tion were excluded from the evaluation. As mentioned before, the iterations of
the stepwise regression approach stop when no more improvement of the model
accuracy can be achieved and the main features will be fixed then.

After the removal of outliers, we got 892 residential buildings out of 930
used in the Building-Performance model, while the remaining 38 were excluded
through the backward stepwise regression approach. Then, we divided the
dataset into a training set of 753 residential buildings and another 139 buildings
for out of sample accuracy evaluation of the model. This step was done statis-
tically, by classifying the buildings using ctree and selecting 80% of each group
for training and the rest for testing. Dividing the buildings into homogeneous
insured that the testing sample covers the existing variety in power consumption
based on the buildings and the residents characteristics.
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After getting a representative sample by excluding buildings with abnormal
consumption, we classified the buildings using ctree model into homogeneous
groups based on the listed time-independent predictors in Sect. 5. Therefore,
ctree model should be configured to produce groups in which buildings are as
homogeneous as possible. Ctree uses the argument mincriterion as the value
1 - P-value corresponding to a significance test of dependency between a singe
predictor and the response variable. This value must be exceeded in order to
implement a split. In this work we set mincriterion to 0.90. The argument
minbucket defines the minimum sum of weights in a terminal node which, in
the default configuration, is equal to the number of data points that belong to
a terminal node. These weights of individual buildings can be changed to give
different importance levels to different data-points. For our evaluation purposes,
we kept the default weights and set minbucket to 75, so we have no less than 75
data points for building the multiple linear regression model. After that a sep-
arate multi-regression model was designed for each group using time-dependent
predictors, and a subset of time-independent predictors Sect. 5.

Figure 3 shows the prediction performance of our hybrid model with ctree’s
mincriterion = 0.90 and minbucket = 75. This figure shows the actual aggre-
gated daily power consumption of all buildings compared to the prediction
results. The predicted daily total consumption was calculated by predicting the
daily power consumption of each individual building for six months in advance
using our hybrid model. Thereafter, prediction results of all buildings were aggre-
gated and compared to the sum of actual daily power consumption of all build-
ings in the dataset.

Fig. 3. Prediction accuracy of the proposed hybrid model with mincriterion = 0.90 and
minbucket = 75.
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In order to generalize the proposed model to be capable of predicting the
power consumption of new constructions, we removed the factors related to
inhabitants such as the number of different appliances as well as how they cook
and the demographic data related to the number of people in different age groups.

We compared the performance of our hybrid model against two robust
machine learning algorithms, namely conditional inference tree and random
forests [3] with the same used datasets for training and testing. For the random
forests model, we set the number of bootstrapped trees to grow to ntree = 500.
This number should not be too small to insure that each record in the dataset
is predicted at least few times. While ctree was used with same configurations
as in our model mincriterion = 0.90 and minbucket = 75.

Table 2 demonstrates a relative comparison between our proposed hybrid
model, ctree, random forests and the generalized version of our model in terms
of model accuracy and time efficiency. For the accuracy evaluation, the Mean
Absolute Percentage Error(MAPE) and the Mean Absolute Error (MAE) were
used. MAPE is preferable for reporting since it presents the results as a percent-
age which makes it more interpretable, while MAE is less sensitive to very large
errors in prediction compared to other measures.

MAE =
1
N

N∑

h=1

|xh − x̂h| (3)

MAPE =
100%

N

N∑

h=1

∣∣∣∣
xh − x̂h

xh

∣∣∣∣ (4)

where x̂h is the predicted value, xh is the actual value and N is the number of
predicted samples.

Table 2. MAPE, MAE and execution time for individuals and portfolio of buildings.

Model Individual buildings Portfolio of buildings Time

MAPE MAE MAPE MAE

Ctree 58.65% 10.51 4.84% 176.44 5min

Random forest 52.34% 9.65 5.38% 215.63 10 days

Proposed model 49.01% 8.82 2.43% 89.41 1min

Generalized model 50.67% 9.00 3.43% 123.11 1min

The results in Table 2 show that the proposed approach outperformed ctree
and random forests in terms of prediction accuracy and time efficiency. The
hybrid model required around one minute for generating the model. Ctree needed
5 min which is still feasible and 10 days were required by the random forests for
the modelling step which can be justified by the high number of trees used by
the random forests in order to achieve high accuracy. Moreover, the lowest values
of MAPE for individual buildings and portfolio of buildings were also achieved
using the proposed hybrid model.
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7 Discussion and Future Work

In this work, we designed a hybrid model for daily long-term power consump-
tion forecasting on the scale of portfolio of buildings using conditional inference
tree and linear regression models. The hybrid model outperformed two robust
machine learning algorithms in terms of time efficiency and prediction accuracy.
The proposed model showed that, clustering individual buildings into homoge-
neous groups, based on building’s characteristics and their inhabitants demo-
graphics, can improve the prediction accuracy and increase time efficiency by
reducing the search space. In future work, other modelling techniques will be
used instead of the linear regression model to predict individual groups con-
sumption in the hybrid model. Also we are interested in extending this work by
designing an ensemble forecasting model by applying multiple modelling tech-
niques on each group of the Ctree leaves. The ensemble model could be a fusion of
the predicted values from different models in an equation with different weights
for each model.
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28805 Alcalá de Henares, Madrid, Spain
sancho.salcedo@uah.es

Abstract. Time series segmentation can be approached using meta-
heuristics procedures such as genetic algorithms (GAs) methods, with
the purpose of automatically finding segments and determine similari-
ties in the time series with the lowest possible clustering error. In this
way, segments belonging to the same cluster must have similar properties,
and the dissimilarity between segments of different clusters should be the
highest possible. In this paper we tackle a specific problem of significant
wave height time series segmentation, with application in coastal and
ocean engineering. The basic idea in this case is that similarity between
segments can be used to characterise those segments with high signifi-
cant wave heights, and then being able to predict them. A recently meta-
heuristic, the Coral Reef Optimization (CRO) algorithm is proposed for
this task, and we analyze its performance by comparing it with that of a
GA in three wave height time series collected in three real buoys (two of
them in the Gulf of Alaska and another one in Puerto Rico). The results
show that the CRO performance is better than the GA in this problem
of time series segmentation, due to the better exploration of the search
space obtained with the CRO.

Keywords: Time series segmentation · Coral reef optimization ·
Genetic algorithms · Significant wave height time series

1 Introduction

The effective utilization and management of offshore and coastal resources
requires information on ocean waves probability distribution and related events
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[1,2]. Specifically, in order to design effective operational activities and prevent
accidents in marine structures, the determination of subsequences of wave height
time series (where we could find Extreme Significant Wave Heights (ESWH) val-
ues) is a powerful tool. The Significant Wave Height (SWH) is defined as the
average (on meters) of the highest one-third of all the wave heights during a
20-minute sampling period [3], and it has been widely researched. Recently,
a more specific field, the determination and prediction of Extreme SWHs
(ESWHs), has become interesting for many researchers in coastal engineering,
marine structures and marine energy facilities. In general, previously proposed
methods are based on considering the probability distributions of the Extreme
Values (EVs) of SWHs [4]. For example, the work of Muraleedharan et al. [5]
proposes the use of quantile regression to model the ESWH distribution, as
an alternative to fitting EV distributions based on the tails of data samples.
Another popular methodology is the Peaks Over Threshold (POT) [6] (i.e. con-
sidering only those values of the time series higher than a predefined threshold),
which has been used as a standard approach for ESWH predictions [7]. Neural
computation has been recently applied to the prediction of ESWH events [8].

In this paper, we propose an alternative approach to determine ESWHs,
considering the corresponding temporal segment where an ESWH is found. This
proposal simplifies the time series by a segmentation method, alleviating the diffi-
culty of processing, analysing or mining the series, given their continuous nature.
We evaluate two different metaheuristics for this task: a classical genetic algo-
rithm (GA) [9] and a more recent proposal, the coral reef optimization (CRO)
[10,11] method. The algorithms autonomously find a set of segments, which are
grouped into a clustering step to discover whether one or two of the clusters are
representing the extreme event (i.e. they work by grouping ESWH segments).
These detection consists on finding segments of the time series that present sim-
ilar behaviour (similar characteristics) with the objective to determine a cluster
which specifically groups the ESWHs in a time series. The segmented time series
is then transformed into a sequence of labels (corresponding to each segment),
where, ideally, one or two of the labels are related to ESWH segments. This
allows determining the nature of ESWHs, and paves the way towards a first
prediction approach for this type of extreme events.

Evolutionary computation has been widely used in recent years for segmen-
tation of time series. In this way, segmentation problems are converted into opti-
mization ones, and GAs have proven to be very suitable for solving them [12].
For example, Tseng et al. [13] proposed a GA-based time-series segmentation
approach to automatically find appropriate segments and patterns from a time
series. Chung et al. [14] proposed a GA-based approach to segment time series,
where the user has to specify a set of desired patterns. The CRO is an evolution-
ary bio-inspired approach, based on the simulation of the processes in a coral
reef, such as coral reproduction, growing, fighting for space in the reef or depre-
dation [10]. The CRO simulates the behaviour of a specific natural ecosystem
(coral reefs) to tackle optimization problems. In GA and CRO metaheuristics,
a random population of individuals is generated, the fitness of these solutions
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(in our case, segmented time series) is evaluated, and then parents are selected
from these individuals. These parents produce offsprings by considering the dif-
ferent exploration processes, specific for each metaheuristic. This process contin-
ues until a number of generations is reached or other stop condition if fulfilled.
The best individual in the resulting offspring at the end of evolution is returned
as the solution of the problem. However, as will be analysed in this paper, there
are several important differences between GA and CRO, that produces impor-
tant differences in performance when facing time-series segmentation problems.

To the best of our knowledge, this is the first work where the CRO is applied
to time series segmentation. We compare the results obtained by the CRO and a
GA, in different wave height time series. Specifically, the time series considered
are collected by two buoys situated in the Gulf of Alaska and in Puerto Rico,
respectively, where ESWH are detected every year. The results obtained by the
CRO are promising, outperforming the GA in this problem (finding better fitness
and segmented time series than the ones obtained by the GA).

The rest of the paper is organized as follows. Section 2 analyzes the problem
of time series segmentation and the two methods compared (GA and CRO).
Section 3 presents the wave height time series, the experimentation and the
results obtained. Finally, Sect. 4 concludes the paper with some concluding
remarks.

2 Methods

This section describes the most important characteristics of the metaheuristics
considered in this paper, the GA and the CRO approaches. Previously, we sum-
marize the problem to be tackled by the proposed algorithms, which is important
to fix an encoding of the problem into the algorithms.

2.1 Summary of the Problem

Given a time series Y = {yn}Nn=1, the main objective in segmentation is to
divide the N values of the series into m segments, which should present similar
characteristics (see next sections). In this way, the time indexes, denoted by
n = 1, . . . , N , need to be split into consecutive segments, i.e. s1 = {y1, . . . , yt1},
s2 = {yt1 , . . . , yt2}, . . . , sm = {ytm−1 , . . . , yN}, where ts are the cut points in
ascending order. Note that cut points are the only points which belong to the
previous and the next segments, while the rest of the points only belong to one
specific segment. The number of segments m and the values of the cut points
t have to be discovered by the segmentation algorithm. After segmentation, a
clustering process can be applied to the segments for discovering groups of them
with similar characteristics. Specifically, in this paper, we consider Significant
Wave Height time series, so that we can determine clusters of segments which
group extreme wave heights events.

According to this description, each solution/chromosome (c) will be repre-
sented by an array of binary values, where each position cti stores a binary value
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(a) GA main steps. (b) CRO  main steps.

Fig. 1. Flowchart comparison of GA and CRO algorithms; (a) GA algorithm; (b) CRO
algorithm.

indicating whether the time index ti of the time series is a cut point of the eval-
uated solution. The length of the chromosome is the same than the length of the
time series (N).

In the following sections, we describe the specific elements of the GA and
CRO, and also the their common parts. The main steps of the GA are sum-
marised in Fig. 1(a), while Fig. 1(b) shows the main steps of the CRO algorithm.
Each of these steps will be further described in the following subsections.

2.2 Genetic Algorithm

This section describes those elements which are specific for the GA algorithm
(see Fig. 1(a)).

Initialization. The population in the GA is a set P chromosomes (binary
arrays, as we previously defined), where initially the cut points (1s) have been
randomly established with a uniform distribution. Two consecutive points are
separated by a number of positions in the interval (smin, smax), which are the
minimum and maximum segment sizes, respectively. It is important to mention
that, in this algorithm, the number of elements in the population will be kept
constant, being the choice of this parameter very decisive.

Parents and Reproduction. In the GA, for the sake of diversity, all chromo-
somes are selected as parents to perform reproduction (crossover and mutation).
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Crossover. For each parent, the crossover operator is applied with a given
probability, pc. The operator randomly selects the other parent to perform a
crossover process. The specific implementation of the crossover operator will be
later described, in Sect. 2.4.

Mutation. After applying the crossover operator, each individual (crossed or
not) is mutated with a given probability, pm. In this paper, we use four different
mutation operators (see Sect. 2.4).

Offspring and Replacement. The new offspring population, generated by the
previous operators, is evaluated by the fitness function (see Sect. 2.4). Parent and
offspring populations are then merged, and the replacement process is applied
with an elitist roulette wheel selection procedure. It selects P −1 individuals for
the next generation, each one being represented by a region in a roulette wheel
that proportionally corresponds to its fitness function. By repeatedly spinning
the roulette wheel, individuals are chosen using stochastic sampling to complete
the next population. Finally, to have a population of P individuals, the best
solution of the parent population is added to the new population (elitist strat-
egy).

2.3 The Coral Reef Optimization Algorithm

This section presents the steps of CRO which are specific for this algorithm
(see Fig. 1(b)).

Initialization. In this case, the population is also initialised as a set of chromo-
somes (corals) where 1s are chosen with a uniform distribution U(smin, smax).
The difference with respect to the GA is that the population has a size of P
minus a number of free positions Free, predefined by the user. Furthermore,
the population size can change during the evolution. This simulates a coral reef,
where it is possible to have free locations and occupied positions, and each occu-
pied position represents a coral (solution).

Asexual Reproduction. A percentage (Fa) of the best individuals (in terms of
fitness function) in the coral reef are selected. Then, random individual (slightly
mutated) from this group is chosen to be introduced in a pool of possible solu-
tions.

Sexual Reproduction. A percentage (Fb) of the entire population is selected
to perform the external reproduction (broadcast spawning and brooding). In
this case the broadcast spawning procedure consists in selecting pairs of parents
to perform the crossover operator (see Sect. 2.4), though alternative exploration
procedures are also possible at this stage. The rest of individuals (1 − Fb) pass
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to the brooding procedure, i.e. they are mutated using the different operators
considered in this paper (see Sect. 2.4). Note that, if an individual is selected
to reproduce by broadcast spawning then it will not be reselected for brooding,
and vice versa. Note that in the GA previously presented, the same individual
can be crossed and then mutated.

Pool and Settlement in the Reef. All solutions generated by the asexual and
sexual reproductions form a pool of possible solutions. These solutions need to
be evaluated by the fitness function (see Sect. 2.4). This pool can be considered
as new larvae which will fall over the coral reef. The natural process of the
settlement consists on situating the different larvae (possible solutions) into the
coral reef. In the CRO, for each solution in the pool, the algorithm chooses a
random position in the coral reef. If the location is empty, the new solution is
situated in this position. However, if the location is occupied, the new solution
will replace the solution in the coral reef only if its fitness function is better.
On the contrary, the process is repeated a number of attempts (Natt) before
discarding the solution (considering it as depredated).

Depredation. Once the new coral reef is created in each generation, a percent-
age (Fd) of the worst solutions is selected to be depredated. This means that
these solutions will be removed from the reef with a pd probability.

2.4 Common Parts of GA and CRO Algorithms

In this section we describe those steps which are shared by both the GA and
CRO considered in this paper (see Fig. 1). They are mainly the exploration
operators such as crossover and mutation, and also of course the fitness function
calculation. Note that the fact that exploration operators are the same for both
GA and CRO allows a direct comparison between both algorithms in terms of
their searching capability due to the algorithm’s structure.

Crossover Operator. The crossover operator is applied to two parents. The
operator randomly chooses a time index, and then it consists in interchanging
the left and right parts of the selected chromosomes, with respect to this time
index. In general this type of crossover is known as 1-point crossover operator.

Mutation Operator. If an individual is selected to perform the mutation
operator, the algorithm chooses, with the same probability (0.25), one of the
following four operations: add a number of cut points, remove some cut points,
move some cut points to the left, or move some cut points to the right.

Fitness Evaluation. A fitness function is needed in order to evaluate whether
the cut points are able to lead to compact groups of segments in the time series.
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To do this, three steps are sequentially applied in the fitness function calculation:
extraction of characteristics, clustering of segments, and final evaluation of the
clustering.

1. Extraction of characteristics: when we have to compare two segments for clus-
tering, their lengths can be different. Consequently, we cannot apply a direct
comparison of their values. One way of solving this problem is to map the seg-
ments into the same dimensional space. In our case, we use a 5-dimensional
space, so that each segment si = {yti−1 , . . . , yti} is mapped by using the
function f : R(1+ti−ti−1) → R

5, where f(si) =
(
S2
i , γ1i, γ2i, ai, ACi

)
and the

characteristics are defined by:
– Variance: S2

i = 1
1+ti−ti−1

∑ti
n=ti−1

(yn − yi)
2, where yn values of the

segment, and yi is the average for the i-th segment.

– Skewness: γ1i =
1

1+ti−ti−1

∑ti
n=ti−1

(yn−yi)
3

S3
i

, where Si is the standard
deviation of the i-th segment.

– Kurtosis: γ2i =
1

1+ti−ti−1

∑ti
n=ti−1

(yn−yi)
4

S4
i

− 3.
– Slope of a linear regression applied to the values of the segment:

ai = Syt
i

(St
i)

2 , where S2
t = 1

1+ti−ti−1

∑ti
n=ti−1

(
n − ti

)2, and Syt
i = 1

1+ti−ti−1
∑ti

n=ti−1
(n − ti) · (yn − yi).

– Autocorrelation coefficient: ACi =
∑ti

n=ti−1
(yn−yi)·(yn+1−yi)

S2
i

.

2. Clustering of segments: after the previous step, the algorithm receives as input
a set of mapped segments with five characteristics. A deterministic k-means is
used then for clustering, where the same clustering should be obtained when
the same cut points are evaluated. This means that the centroids have to be
initialized always in a deterministic way. The first centroid is chosen as that
data point which has the maximum value in the characteristic corresponding
to the maximum standard deviation, the second will be the farthest with
respect to the first one, the third, the farthest from both, and so on. Note
that a scaling in a range [0, 1] is necessary for this clustering procedure.

3. Evaluation of the clustering: the last step is the evaluation of the cluster-
ing quality. A fitness function which allows determining compact and well
separated clusters is the Caliński and Harabasz index, defined as follows:

CH =
Tr(SB) · (m − k)
Tr(SW ) · (k − 1)

, (1)

where m is the number of patterns (mapped segments in our case), and Tr(SB)
and Tr(SW ) are the trace of the between and within-class scatter matrices,
respectively:

Tr(SB) =
k∑

i=1

ni||c̄i − s̄||2, (2)

Tr(SW ) =
k∑

i=1

∑

s∈ci

||s − c̄i||2. (3)
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where s represents the 5-dimensional mapping of a segment, ni is the number
of segments of cluster i, c̄i is the centroid of cluster i, s̄ is the overall mean
of all mapped segments, and ||a−b||2 is the Euclidean distance between two
vectors a and b. Note that the value of k is fixed in the algorithm.

3 Experimental Results and Discussion

This section includes a description of the time series used, the experiments per-
formed and the results obtained, together with the discussion of these experi-
ments and results.

3.1 Significant Wave Height Time Series Analyzed

In this paper, the Significant Wave Height time series considered are collected
from buoys belonging to the National Buoy Data Center of the USA [3]. Specifi-
cally, two buoys situated in the Gulf of Alaska have been chosen, with registration
numbers are 46001 and 46075, respectively. The last buoy is located in Puerto
Rico with registration number 41043. The resolution of the data correspond to
six hours, and data from 1st January 2008 to 31st December 2013 are considered
from the buoy 46001, while data from 1st January 2011 to 31st December 2015
are considered for buoys 46075 and 41043. This means a total of 8767, 7303 and
7303 observations, respectively. The complete three wave height time series are
shown in Fig. 2.

3.2 Experimental Setting

The experimental setting for the time series under study is presented in this
subsection. For the GA, the population size is established to P = 200; crossover
probability is set to pc = 0.8, while the mutation one is pm = 0.2; a 20% of the
current number of cut points is modified if a individual is selected to be mutated;
the number of generations of the algorithm is g = 100. For the CRO algorithm,
the reef size is established in P = 200, with initial free positions Free = 20.
The number of generations is also g = 100, to test both algorithms in the same
conditions. The percentage of asexual reproduction, external reproduction and
depredation are established to Fa = 0.1, Fb = 0.8 and Fd = 0.2, respectively. The
probability of depredation is set to pd = 0.1. Finally, the number of attempts to
replace a solution is Natt = 2.

For the configuration of the common parts of both algorithms we consider the
following parameters: the k-means clustering process is allowed a maximum of 20
iterations, the initial minimum and maximum size of the segments are smin = 20
and smax = 120, respectively; the number of clusters or groups is k = 4 for the
buoy of Puerto Rico and k = 5 for the buoys of Gulf of Alaska. Finally, given
the stochastic nature of the GA and CRO processes, the algorithms were run 30
times with different seeds.
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Fig. 2. Wave height time series of buoys id 46001 and 46075 in the Gulf of Alaska and
buoy id 41043 in Puerto Rico.

3.3 Discussion

Table 1 includes the results obtained using CH as the fitness function, both for
the GA and the CRO. The results show the mean and the standard deviation
of the 30 runs. Furthermore, we include the best solution obtained by each
algorithm.

First of all, we compare the performance of both algorithms in terms of the
fitness function. As can be seen, the CRO approach obtains the best results in
average. For buoy 46001, the CRO improves the GA by a 140.70% of fitness.
The same occurs with the rest of the buoys with improvements of 135.16% for
buoy 46075 and 131% for buoy 41043. With these results, we can assume that
the CRO makes a better exploration in the difficult search space of this problem.

Analyzing the best value obtained by GA and CRO in the 30 repetitions, the
results obtained by the CRO for the buoys of the Gulf of Alaska are better than
that of the GA, with improvements of 137.39% and 136.09%, respectively. How-
ever, for the case of the buoy situated in Puerto Rico (41043), the best solution
obtained by the GA is better than the one obtained by the CRO. Nevertheless,
if we observe the mean values of the buoy of Alaska (41043), CRO is clearly
better, so we can conclude that the best solution obtained by GA is only due to
randomness inherent to the algorithm.
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Table 1. Mean and standard deviation (SD) of the fitness values (CH metric) for the
30 runs of the different algorithms and the best run for each algorithm.

Buoy id GA (Mean ± SD) CRO (Mean ± SD)

46001 3724.46 ± 421.81 5240.24 ± 563.00

46075 2852.74 ± 270.99 3855.83 ± 407.10

41043 4185.06 ± 713.43 5483.88 ± 785.03

Buoy id GA (Best Solution) CRO (Best solution)

46001 4405.15 6052.28

46075 3413.07 4645.01

41043 7025.12 6622.19

Buoy id Time GA (s) (Mean ± SD) Time CRO (s) (Mean ± SD)

46001 2008.87 ± 148.17 2168.87 ± 169.12

46075 2051.47 ± 137.01 2271.40 ± 157.13

41043 1690.70 ± 60.65 1835.63 ± 44.96

Graphically, the segmented time series of the best solution obtained by each
algorithm for each buoy are shown in Fig. 3. With respect to buoy 46001 and the
GA (a), the clustering of ESWHs may be confused, because we cannot detectany
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Fig. 3. Segmented Wave Height time series of the buoys 46001, 46075 and 41043, for
both algorithms (Online version in colour).
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colour corresponding with this type of event. However, CRO (b) obtains a seg-
mentation where ESWHs seem to correspond to the red cluster and maybe the
pink one. In the case of buoy 46075, it is difficult to detect which cluster groups
ESWHs in both the GA and CRO. The GA only detects two wave heights which
correspond with the dark blue colour. However, CRO is able to identify extreme
wave heights when considering green and pink colours. Finally, for buoy 41043,
no ESWH seems to be well separated when using the GA. However, CRO groups
ESWHs in the dark blue cluster in combination with the green one.

Finally, another comparison against other four algorithms has been per-
formed. These algorithms correspond to the hybridization of the two algo-
rithms presented (following the same strategy than in [15]): NH and BH are
the hybridizations of the GA assuming that data are sampled from a normal
or a beta distribution, respectively, while NHCRO and BHCRO are the same
for the CRO algorithm. The results, presented in Table 2, show that the hybrid
versions are worse than the standard versions, except in the case of the NH with
the buoy 46001, which improves the fitness with a value of 5305.51.

Table 2. Mean and standard deviation (SD) of the fitness values (CH metric) for the
hybrid algorithms.

Buoy id NH BH NHCRO BHCRO

46001 4709.15 ± 1194.82 4729.64 ± 646.88 5305.51 ± 596.43 4891.06 ± 672.21

46075 3320.25 ± 812.62 3330.65 ± 504.72 3370.08 ± 791.53 3560.81 ± 639.87

41043 3952.11 ± 943.57 3375.55 ± 850.00 4052.52 ± 1193.55 3711.37 ± 1163.01

4 Conclusions

This paper presents the application of a novel coral reef optimization (CRO)
algorithm to time series segmentation, for the detection of extreme values of
wave height time series. The algorithm is compared with a standard genetic
algorithm (GA), showing their main differences along the generations, and the
way to optimize the fitness function. The algorithm is tested on three real wave
height time series, two of them are collected from buoys situated at the Gulf
of Alaska and the other one from a buoy of Puerto Rico. Experiments show
that CRO obtains better results than the GA in the problem. Specifically, the
fitness function CH is significantly better in the case of CRO, and the segmented
time series show that the clustering of extreme values is also more consistent.
Finally, results agree that these algorithms perform a better search than the
hybridization assuming normal and beta distribution of the data. We plan to
extend this work in different directions: (a) Using more time series for validating
better the conclusions obtained; (b) Predicting the occurrence of EWHS events
based on the labelled sequences obtained by the CRO segmentation algorithm;
and (c) Improving the quality of the segmentation by considering a penalty cost
function for guiding the segmentation in a better way.
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Abstract. In this work we will study the use of satellite-measured irra-
diances as well as clear sky radiance estimates as features for the now-
casting of photovoltaic energy productions over Peninsular Spain. We
will work with three Machine Learning models (Lasso and linear and
Gaussian Support Vector Regression-SVR) plus a simple persistence
model. We consider prediction horizons of up to three hours, for which
Gaussian SVR is the clear winner, with a quite good performance and
whose errors increase slowly with time. Possible ways to further improve
these results are also proposed.

Keywords: Photovoltaic energy · Nowcasting · EUMETSAT · Support
Vector Regression · Lasso · Clear Sky models

1 Introduction

Solar energy is possibly the fastest growing renewable energy nowadays and,
together with wind, the fastest growing energy source overall. As it is the case
with wind, solar energy can come from large, utility-scale photovoltaic (PV) and
thermosolar plants, with installed power in the tens of megawatts (mW), but
unlike wind and thermosolar, PV energy is also growing in small installations,
such as rooftop solar, with much lower capacities (about 20 kilowatts may be
typical for a home) but with a much larger number of installations. Moreover,
when coupled with the very fast developments in battery storage, solar residential
PV energy has an enormous potential grow path, provided that the current trend
of fast decreasing prices of solar panels and home batteries keeps going on.

While this accelerated growth offers obvious clean energy advantages, it also
has other important side effects, such as the so called “duck curve”, present in
places with large installed solar energy such as California, which measures the
difference between the total load curve and its solar-based component. This curve
has its lower values around mid-day, when solar energy reaches its daily peak,
but grows markedly at the evening (the neck of the duck) when solar energy
drops and other sources have to come on line. While utility-scale solar energy
has the greatest effect on the duck curve, large rooftop solar installed power
in places like Hawaii causes another effect, the Nessie curve, so called because
residential rooftop PV energy production substracts from the energy load, which
c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 685–697, 2017.
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becomes then markedly lower around noon than earlier or later in the day and,
thus, vaguely resembles the shape of the hypothetical Loch Ness monster.

The overall solar energy growth and side effects such as the duck and Nessie
curves make it clear that good solar energy forecasting will be increasingly cru-
cial for the management of the electricity grid. In the last years there has been
a large research effort on various aspects of solar, and specifically PV, energy
prediction; see for instance [2,9,16] for general recent overviews of the area.
From a methodological perspective, there are several possibilities to organize
and classify different approaches to PV energy forecasting. One often used is to
consider the mathematical modeling techniques to be applied, such as standard
or exogenous time series methods, machine learning algorithms, physical or engi-
neering approaches or hybrid combinations of all these. Another is to consider
the explanatory variables other than, of course, PV energy readings, to be used
in models, such as Numerical Weather Prediction (NWP) inputs, sky camera
images or either ground- or satellite-based measurements. Finally, there is the
desired forecasting horizon: very short (up to one hour), short (up a few hours
within the same day) or medium-long (from one to several days ahead).

Each forecasting horizon has its own main goals. For instance, when dealing
with day-ahead (or longer) time horizons, one is mostly concerned with energy
generation planning in accordance with predicted demand, or with plant mainte-
nance. The main goal in the very short and short horizons is usually to maintain
the grid stability. Of course, the concrete forecasting problem to be tackled limits
and makes precise the above choices: the very localized point of view of a plant
operator will be different from that of a large scale producer or a Transmission
System Operator (TSO), most likely to be concerned with energy aggregations
over relatively large areas, or from that of a electricity market agent that has to
carry out energy purchases or meet delivery contracts.

Our interest here is in short term, same-day PV forecasting over a wide area,
namely, that of Peninsular Spain. While this deals with a concrete region in
terms of geography and extension, it may have several common aspects with
PV forecasting in other areas such as, say, California or Texas in the U.S. or
the Mediterranean countries. Besides the time horizon, our problem also largely
determines the methods to be used. Physical or engineering approaches are best
suited to local PV prediction and a purely time series approach is likely to fail to
capture the influence of the overall atmospheric conditions; we are thus basically
left with ML-based methods. Moreover, our problem choice also determines the
variables to use. Since ground measurements or sky cameras cannot adequately
cover the area under study, we are left with PV production readings, NWP
forecasts, either as such or transformed to PV energy predictions, and satellite
based measurements. We review next these input variable sources.

The most widely used information for day-ahead forecasts comes from NWP
systems, such as those of the European Center for Medium Weather Forecasts
(ECMWF) or the US Global Forecasting System (GFS). Two main forecasts
are run every day starting at UTC 00 and 12 h and are widely available about
6 h later, say at UTC 06 and 18 h. It is clear that only one of these forecasts
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will be useful for solar energy. For instance, in places like Spain, the NWP
run starting at 00 h will be useful for same-day solar energy forecasts, while
the 12 h run will not. Many NWP providers offer intermediate runs starting at
UTC 06 and 18 h and available again about 6 h later. In such a scenario, the
06 h update would be used for Spain in the afternoon and early evening while
morning solar energy forecasts would be derived from the 00 h run. In any case,
only two NWP updates will happen daily, which are not enough for short time
solar energy forecast updates; other sources are thus needed, among which the
most obviously useful is satellite-derived information.

Possibly the best known procedure to estimate solar irradiance from satellite
readings is the HELIOSAT method [6]. HELIOSAT is a physical model that
relies on the high resolution visible channel satellite measurements to analyze
and track cloud behavior and its influence on irradiance values. At an hour H
HELIOSAT estimates actual global irradiance by scaling down a model-derived
clear-sky irradiance estimate using a dimensionless cloud index derived from
the visible channel satellite images at that hour; the model goal is to capture
the effects on irradiance of atmospheric transmittance. Irradiance forecasts for
hours H + 1,H + 2, . . ., are then obtained in the same way from estimates of
future cloud positions derived via a Motion Vector Field model. HELIOSAT was
initially proposed for irradiance forecasting but it has been also used to derive
short term PV energy forecasts at individual plants and also its aggregation at
a regional level (see [10,17]).

In [3] we departed from this use of visible channel satellite images to derive
cloud structure and then PV energy estimates to follow a purely Machine Learn-
ing (ML) approach in which PV energy is the learning target and the inputs were
a subset of the 11 spectral bands in EUMETSAT’s Meteosat satellites. These
bands range from visible to long-wavelength infrared ones and we selected those
having the largest correlation with PV energy. Notice that satellites measure
reflected radiance and not the actual incoming irradiance that is transformed
into PV energy. However, these reflected radiances were taken as a proxy for
incoming irradiation and used to predict PV energy at hour H from channel
readings at hours H − K, 0 ≤ K ≤ 3, which was done using sparse linear Lasso
and Gaussian kernel Support Vector Regression (SVR) models. The present con-
tribution maintains the overall approach in [3] but extending and substantially
improving its results, with our main new contributions being:

1. We replace our previous single hourly readings with the more precise averages
of the four 15’ satellite readings available each hour.

2. We will incorporate into our forecasting variables a clear sky (CS) Global
Horizontal Irradiance estimate at each Meteosat grid point, which will result
in much better PV forecasts.

3. We build a global CS model of Peninsular Spain by averaging these CS values
which, in turn, makes it possible to define a very simple PV energy persistence
model that we use as a benchmark.
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4. We greatly simplify the H −K models in [3] working with just a single model
instead of the three morning, afternoon and evening models used there.

5. We substantially improve the short term forecasts in [3], giving rather accu-
rate nowcasting predictions up to the three hours in advance that we report
here but possibly even longer.

The paper is organized as follows. In Sect. 2 we will briefly review the
EUMETSAT satellite data system, the satellite readings most relevant to PV
energy measures and the concrete reading choices we make for PV nowcasting;
we will also discuss in this section the CS estimates we will incorporate to our
models. In Sect. 3 we will briefly describe the ML models we will use; besides
the Lasso and Gaussian Support Vector Regression (SVR) models considered
in [3] we also have used the LIBLINEAR [5] implementation of a linear SVR
model. As it is the case with Lasso, this is in principle justified by the very
high dimensionality of the independent variables, although the performance of
both linear models clearly lags behind that of the Gaussian SVR. We will also
describe in Sect. 3 a simple, CS-based persistence model that we use as a bench-
mark; while such an H − K model is not competitive for K ≥ 3, it may be
hard to beat for K = 1 and even K = 2, particularly near noon. Numerical
results for the PV prediction of Peninsular Spain are given in Sect. 4; we find the
results for Gaussian SVR quite remarkable. Finally, in Sect. 5 we briefly recap
our contributions and discuss further ways to improve on them.

2 Satellite Data and Clear Sky Models

2.1 EUMETSAT Satellite Data

The geostationary Meteosat satellites operated by the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT) cover Europe,
Africa and the Atlantic Ocean. The current Meteosat Second Generation (MSG)
satellites are equipped with the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) technology. They work at different wavelengths and spatial resolutions.
Over Europe and parts of Africa, the visible channel measures reflected radiance
on the 0.6–0.9µm visible wavelength range at the finest 1 × 1 km resolution. A
slightly coarser resolution of about 3×3 km is used for the remaining 11 channels,
with wavelengths that go from 0.6µm at Channel 1 to the long infrared 13.4µm
at Channel 11. Some of these channels target specific physical variables such as
absorption of water-vapor (Channel 5), ozone (Channel 8) or CO2 (Channel 11).
Their measures are provided in near real-time every 15 min.

We will use 15’ Meteosat readings at UTC hours 0 to 23 for the years 2013,
2014 and 2015 that we have downloaded from the EUMETSAT Data Centre.
Global PV readings for Peninsular Spain are kindly provided by Red Eléctrica
de España (REE). Given our global PV target and large area, we downsample
Meteosat’s resolution to that of a 0.125◦. As in [3] we will only consider grid
locations over Peninsular Spain, which results in 3,391 points. PV energy read-
ings at hour H correspond to the energy produced during the entire hour ending

http://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
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at H. Because of this we will average the four 15’ readings up to hour H as
a proxy of radiances over that hour. We will use the 2013 year for train, 2014
for hyperparameter validation and 2015 for test. We will only consider daylight
hours, dropping satellite readings outside the UTC 08 to 20 h range. Notice that
for most of the year there will be PV energy in Spain before 08 UTC; we are
interested, however, in predicting PV energy up to 3 h ahead and that is the
reason we will not consider earlier hours. After dropping the non selected hours
we are finally left with 4,638 hours per year, due to some missing data.

As mentioned we will not consider the high resolution visible channel. In the
remaining 11 channels a reflectance value is computed as the fraction of their
radiance to the maximum solar irradiance. Moreover, radiances are converted
into equivalent brightness temperatures through an empirical formula [15] and
we have thus a total of 22 measures per grid point. In [3] we computed the
correlations between PV energy and the averages of each measure over the grid
points considered and selected the radiances of the IR016, IR039 and VIS008
channels plus the brightness temperature of channel IR039 as the ones most
relevant. We have repeated this analysis using now the averaged 15’ readings
and the same correlations are observed, so we use the same variable subset.

2.2 Clear Sky Model

Clear Sky (CS) models usually estimate the Direct Normal Irradiance (DNI) and
Global Horizontal Irradiance (GHI) at a certain point, taking into account its
height as well as a number of physical parameters, such as atmospheric pressure,
temperature, air turbidity and others. In order to provide good local modeling
they usually require the careful calibration of these parameters at the concrete
sites where they are to be used. There have been many proposals in the literature;
here we will work with the one introduced by [8] which is implemented in the
Python library pvlib [13] We have run this model for each of our 3,391 grid
points in Peninsular Spain over the 3 years considered; we derive their altitudes
from their geopotentials in the ECMWF’s orographical model for Spain with the
same 0.125◦ resolution and leave the other parameters at their pvlib defaults.

When building the H − K models that forecast PV energy at hour H from
satellite readings at hour H − K, we will add the CS GHI estimates at hours H
and H−K as extra variables at each point. For obvious reasons, only the CS value
at hour H is used in the same hour H models. Our goal for this is to introduce
a time context into the models which enables us to work with a single model
over the entire day, avoiding the three separate morning, afternoon and evening
intra-day models used in [3]. They were used there to avoid “model confusion”
by distinguishing possibly similar PV target readings at morning and evening
hours which, however, correspond to very different satellite readings. This was
however somewhat cumbersome and the time context that the CS values provide
not only simplifies model building but also gives better results. After adding the
CS values for each of the grid points, we end up with a yearly data matrix of
dimensions 4,638 × 16,956 for the H model and 4,638 × 20,347 for the rest.
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3 Machine Learning Models

As mentioned, we will use three well established ML models, Lasso and linear and
Gaussian kernel Support Vector Regression (SVR); some of them have already
been recently used in literature [11]. Additionally, we will consider a CS-based
persistence model as a baseline benchmark for the others. We briefly describe
them next.

3.1 Persistence

Our baseline CS model simply predicts PV energy at hour H as a scaling of
the energy at hour H − K, where the scaling factor is given as a ratio of the
corresponding averages of CS values over the grid points. Its formulation for an
H − K model with a horizon forecast of K hours is thus

̂PV H =
CSH

CSH−K
PVH−K (1)

where PV H , ̂PV H denote the real and predicted PV energy at an hour H and
CSH the averaged value of the clear sky radiances over the area under consider-
ation. While very simple, the baseline CS models will give in general reasonable
values and particularly good, hard to beat ones around noon, specially in the
mid-year, mostly sunny, months.

3.2 The Lasso Model

Given an N pattern sample {(x1, y1), . . . , (xN , yN )} with p-dimensional inputs
Xp and 1-dimensional targets y, the Lasso solution [7] b∗,w∗ minimizes the �1
regularized loss

�L(w, b) =
1
2
‖y − wTX − b‖2 + λ‖w‖1. (2)

The sparsity introduced by the �1 regularization helps to avoid possible sin-
gularities in the sample covariance matrix, particularly in cases such as ours
where sample sizes of ≈4,500 are much smaller than the features dimension
of ≈20,000. This is achieved because the �1 penalty drives many coefficients
towards zero; in turn, this allows automatic (i.e., wrapper-based) feature selec-
tion and makes possible model interpretation in terms of the specific grid posi-
tions of the non-zero coefficients.

3.3 Linear and Gaussian Support Vector Regression

The large dimension of our problem motivates our choice for the Linear SVR
model, which is reportedly good in problems of high dimensionality [5]. Using the
previous notation, the Linear Support Vector Regression (SVR) cost function is

�S(w, b) =
∑

p

[yp − w · xp − b]ε +
1
C

‖w‖22 (3)
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where we use �2 regularization and the ε-insensitive loss �(y, ŷ) = [y − ŷ]ε =
max{|y − ŷ| − ε, 0}, that defines an ε-wide, penalty-free “error tube” around the
model. Notice that this loss-regularization combination is one of the different
possibilities in the LIBLINEAR implementation in Scikit-learn [12].

The initial and more standard way to find the optimal w∗, b∗ in a SVR
model is to rewrite (3) as a constrained minimization problem which is then
transformed using Lagrangian theory into a much simpler dual problem, the one
actually being solved; see [14]. The optimal w∗, b∗ are then obtained from the
dual solution through the KKT equations. It turns out that the dual problem
only involves patterns through their dot products and a natural extension to
improve on a purely linear model is to apply the kernel trick [14]. It replaces the
initial dot products x · x′ with the values k(x, x′) of a positive definite kernel k
that can be written as k(x, x′) = φ(x) · φ(x′), where the x are mapped through
φ(x) into a larger, possibly infinite, dimensional Hilbert space H. We thus arrive
to a non linear model f(x) = W · φ(x) + b for which the optimal W ∗ ∈ H can
be written as W ∗ =

∑

α∗
pφ(xp). We thus have

f(x) = b∗ + W ∗ · φ(x) = b∗ +
∑

α∗
pφ(xp) · φ(x) = b∗ +

∑

α∗
p>0

α∗
pk(xp, x), (4)

where the xp for which |α∗
p| > 0 are the Support Vectors (SVs); the standard

kernel choice is the Gaussian one e−γ‖x−x′‖2
. Notice that in our case, the SVs

lend themselves to a temporal interpretation as the most relevant day-hour pairs,
given that their radiances define the centers of the model different Gaussians.

3.4 Hyper-parameter Tuning

We will work with the Lasso and the LIBLINEAR and LIBSVM implementa-
tions of SVR in [12]. All these models require a careful hyper-parameter tuning
to find the optimal λ for Lasso, C, ε for Linear SVR and C, ε, γ for Gaussian
SVR. We used for this the Python library optunity [4] and its default option
Particle Swarm algorithm for hyper-parameter search. Given the natural tem-
poral ordering of the data, we will use for this 2013 as a training set and 2014
as a validation set. Table 1 shows the optimal hyper-parameters for our models.

Table 1. Hyper-parameters of the Lasso and Linear SVR models.

Model Parameter K

0 1 2 3

Lasso λ 0.020 0.017 0.012 0.016

Linear SVR C
(×103

)
9.410 17.742 6.349 13.511

ε 1.690 1.670 2.800 3.000

Gaussian SVR C
(×103

)
6.820 18.389 2.559 10.229

ε 0.011 0.022 0.018 0.036

γ
(×10−3

)
0.241 0.238 0.231 0.244
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4 Results

We recall that our goal is to predict PV energy production at hour H from
satellite readings at hour H − K, i.e., to work with a K prediction horizon. We
will consider the K = 1, 2, 3 horizons as well as the K = 0 case and denote
the resulting models as m0, m1, m2 and m3; while not useful from an operative
point of view, the m0 model offers a “best possible” baseline with which we
can compare the others. For the Lasso and Linear SVR models we normalize
features to 0 mean and 1 standard deviation; for the Gaussian SVR we scale
them into a [−1, 1] range to better control the Gaussian kernel behavior when
dealing with largely different pattern pairs. For a more homogeneous comparison
we will report errors within the time range between 08 and 20 UTC hours. PV
energy production after hour 20 is negligible and it is obvious that the results
before 08 UTC of, say, the m2 and, more so, the m3 models won’t be good, as
they have to predict substantial PV energy at 08 UTC from very small readings
at 06 UTC and 05 UTC respectively.

After hyper-parameterization, the models were trained over both the 2013
and 2014 years. Table 2 shows a summary of the overall hourly average test errors
over 2015 for each model and prediction horizon (we omit the H persistence
model for obvious reasons); its rightmost column gives the daily error averages.
As it can be seen, the Gaussian (G) SVR results are clearly better than those of
Lasso and linear (L) SVR essentially across all hours. Moreover, its errors degrade
much more slowly as the prediction horizon increases; in fact, the average error
of the Gaussian H − 3 model is comparable with those of the H − 1 Lasso and

Table 2. Average hourly Lasso, Linear SVR, Gaussian SVR and CS Persistence test
errors.

K Models Hour Av.

8 9 10 11 12 13 14 15 16 17 18 19 20

0 Lasso 2.32 2.53 2.69 2.71 2.58 2.77 2.78 2.46 2.39 2.15 0.98 0.64 0.40 2.11

L SVR 1.50 2.19 2.63 2.57 2.86 3.05 2.96 2.73 2.30 1.69 1.10 0.61 0.27 2.03

G SVR 1.02 1.77 1.94 1.94 1.91 1.90 1.81 1.88 1.72 1.43 0.82 0.46 0.17 1.44

1 CS 18.25 3.99 3.09 3.04 2.26 1.34 1.84 2.66 2.66 1.74 0.54 0.23 0.04 3.21

Lasso 2.46 3.19 3.64 3.43 3.29 2.85 2.59 2.44 2.34 2.70 1.81 0.82 0.21 2.44

L SVR 1.83 2.51 2.78 3.01 3.18 3.34 3.07 2.96 3.15 2.55 1.74 1.00 0.35 2.42

G SVR 1.25 1.80 2.04 1.85 1.92 1.82 1.86 1.86 1.67 1.45 1.10 0.54 0.24 1.49

2 CS 47.86 24.71 8.91 6.14 5.49 3.31 2.56 4.01 4.31 2.93 1.01 0.30 0.05 8.58

Lasso 3.93 4.27 4.63 4.23 4.02 3.60 3.25 2.99 3.15 3.87 2.49 1.21 0.38 3.23

L SVR 2.77 3.25 3.64 3.62 4.05 4.40 4.97 4.94 4.85 4.50 2.76 1.59 0.78 3.55

G SVR 1.98 2.60 2.78 2.59 2.40 2.21 2.05 2.20 2.08 1.71 1.23 0.59 0.36 1.91

3 CS 69.06 45.09 24.72 12.42 8.43 6.39 3.45 4.38 5.13 3.69 1.41 0.35 0.05 14.20

Lasso 4.66 4.63 5.66 5.36 5.04 4.87 4.21 3.86 3.66 4.37 2.95 1.51 0.62 3.95

L SVR 3.10 3.77 4.06 4.42 4.85 5.37 6.14 6.53 6.34 5.79 3.71 2.10 1.13 4.41

G SVR 2.75 3.27 3.69 3.29 3.19 2.80 2.61 2.49 2.37 1.87 1.30 0.65 0.30 2.35
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Table 3. Gaussian SVR test errors of the m0 models per hour and month.

Month Hour Av.

8 9 10 11 12 13 14 15 16 17 18 19 20

January 0.37 1.37 1.96 1.70 1.74 1.53 1.47 1.25 1.28 0.73 0.21 0.00 0.00 1.05

February 0.70 1.72 2.08 1.92 2.12 2.43 2.26 2.17 1.49 1.46 0.42 0.19 0.00 1.46

March 1.07 2.82 2.58 2.56 2.27 2.21 2.11 2.05 1.86 1.54 1.05 0.35 0.00 1.73

April 1.24 1.57 1.35 1.39 1.59 1.42 1.15 1.47 1.83 1.74 1.21 0.49 0.23 1.28

May 1.04 1.06 1.99 1.45 1.31 1.31 1.35 1.48 1.16 1.22 1.04 0.86 0.18 1.19

June 1.13 1.48 1.62 1.33 1.36 1.44 1.91 1.87 1.76 2.17 1.67 1.33 0.60 1.51

July 1.41 2.18 2.22 2.07 1.53 1.19 1.44 2.05 2.34 2.68 1.28 0.76 0.44 1.66

August 1.66 2.16 2.33 2.81 2.67 2.52 2.61 2.72 2.47 1.91 1.52 0.99 0.59 2.07

September 1.02 1.47 1.49 1.65 2.05 1.86 1.88 1.59 1.39 1.49 0.73 0.55 0.01 1.32

October 1.34 1.61 1.66 2.29 2.24 2.50 1.82 2.04 1.81 1.06 0.42 0.00 0.00 1.45

November 0.80 1.73 1.39 1.44 1.71 2.17 1.71 1.61 1.52 0.58 0.22 0.01 0.01 1.15

December 0.47 2.05 2.67 2.64 2.28 2.22 1.98 2.34 1.76 0.53 0.01 0.00 0.00 1.46

Average 1.02 1.77 1.94 1.94 1.91 1.90 1.81 1.88 1.72 1.43 0.82 0.46 0.17 1.44

Table 4. Gaussian SVR test errors of the m1 models per hour and month.

Month Hour Av.

8 9 10 11 12 13 14 15 16 17 18 19 20

January 0.61 1.58 2.26 1.66 1.91 1.59 1.53 1.60 1.22 0.83 0.50 0.00 0.00 1.18

February 0.99 2.51 2.38 1.82 1.89 1.86 2.37 2.16 1.92 1.41 0.67 0.14 0.00 1.55

March 1.61 1.90 3.31 2.26 2.45 2.29 2.08 2.29 1.64 1.42 1.14 0.34 0.00 1.75

April 1.73 1.28 1.71 1.56 1.41 1.77 1.66 1.50 1.39 1.33 1.34 1.01 0.36 1.39

May 1.42 1.15 1.83 1.36 1.42 1.19 1.46 1.42 1.39 1.40 1.00 0.77 0.45 1.25

June 1.32 1.70 1.85 1.54 1.08 1.19 1.33 1.67 1.85 2.39 2.49 1.20 0.65 1.56

July 1.38 1.98 1.96 1.65 1.17 0.94 0.94 1.27 1.82 2.40 1.99 1.05 0.76 1.49

August 1.36 2.06 2.09 2.20 2.55 2.49 2.34 2.52 2.44 2.05 1.59 1.35 0.67 1.98

September 1.43 1.72 1.48 1.77 1.81 1.66 1.71 1.72 1.42 1.49 1.26 0.64 0.01 1.39

October 1.76 2.32 1.75 1.95 2.47 2.09 2.26 1.56 1.43 1.28 0.80 0.00 0.00 1.51

November 0.88 1.69 1.72 1.83 1.55 1.61 1.75 1.85 1.49 0.84 0.34 0.01 0.01 1.20

December 0.54 1.74 2.11 2.56 3.36 3.12 2.92 2.80 2.07 0.63 0.01 0.00 0.00 1.68

Average 1.25 1.80 2.04 1.85 1.92 1.82 1.86 1.86 1.67 1.45 1.10 0.54 0.24 1.49

linear SVR models and quite close to their H models errors. The behavior of
the CS persistence model is also remarkable. Its average errors are much larger
but this is due to the expectedly bad behavior of the H − K models at the
beginning of the day, where they shouldn’t be used. On the other hand, its
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Table 5. Gaussian SVR test errors of the m2 models per hour and month.

Month Hour Av.

8 9 10 11 12 13 14 15 16 17 18 19 20

January 0.94 1.77 3.37 2.86 2.30 2.03 1.53 1.75 1.69 0.88 0.36 0.00 0.00 1.50

February 1.06 4.22 4.50 3.43 3.04 2.85 2.53 2.85 2.49 1.86 1.22 0.11 0.00 2.32

March 2.61 3.26 2.98 4.27 3.71 2.92 2.62 2.55 2.17 1.79 1.07 0.36 0.00 2.33

April 2.64 2.47 1.94 2.47 1.95 1.97 2.31 2.15 1.90 1.79 1.53 0.92 0.60 1.89

May 2.86 2.11 2.13 1.22 1.60 1.44 1.28 1.66 1.33 1.71 1.38 0.73 0.45 1.53

June 2.22 2.33 2.53 2.09 1.49 1.16 1.27 1.36 2.01 2.34 2.46 1.74 0.85 1.84

July 2.14 2.29 2.25 2.07 1.61 1.31 1.18 1.32 1.73 2.45 2.44 1.38 1.05 1.78

August 2.16 2.22 2.19 2.39 2.07 2.64 2.37 2.69 2.95 2.95 2.05 1.13 1.31 2.24

September 2.24 2.26 2.49 2.26 2.33 1.91 2.05 2.42 2.41 1.71 1.33 0.64 0.01 1.85

October 2.60 3.33 3.32 2.66 3.01 2.59 2.24 2.37 2.09 1.40 0.61 0.00 0.00 2.02

November 1.33 2.57 2.53 2.58 2.44 1.91 1.66 1.75 1.47 0.72 0.23 0.01 0.01 1.48

December 0.98 2.43 3.12 2.72 3.28 3.73 3.53 3.54 2.73 0.91 0.01 0.00 0.00 2.08

Average 1.98 2.60 2.78 2.59 2.40 2.21 2.05 2.20 2.08 1.71 1.23 0.59 0.36 1.91

Table 6. Gaussian SVR test errors of m3 models per hour and month.

Month Hour Av.

8 9 10 11 12 13 14 15 16 17 18 19 20

January 1.26 2.39 3.57 4.14 4.24 3.02 2.24 2.06 1.81 1.07 0.34 0.00 0.00 2.01

February 1.86 4.52 6.11 4.85 4.02 3.95 3.43 2.87 3.20 2.26 1.19 0.47 0.00 2.98

March 2.23 4.59 4.47 4.02 5.25 4.84 3.77 3.47 2.80 2.11 1.27 0.40 0.00 3.02

April 4.45 2.87 3.23 3.24 3.30 2.53 2.85 2.88 2.66 2.16 1.47 0.79 0.70 2.55

May 4.19 3.08 3.52 2.03 1.71 1.95 1.82 1.68 1.84 1.78 1.48 0.79 0.46 2.03

June 3.11 2.59 3.11 2.51 1.90 1.55 1.48 1.50 1.81 2.27 2.41 1.71 0.98 2.07

July 3.18 2.70 2.23 1.82 1.61 1.42 1.55 1.55 1.68 2.14 2.35 1.53 0.70 1.88

August 3.75 2.54 2.75 2.52 2.60 2.86 2.82 2.87 3.07 3.45 2.60 1.17 0.68 2.59

September 3.77 3.17 3.32 3.50 3.11 2.58 2.51 2.74 2.62 1.78 1.38 0.90 0.01 2.41

October 2.80 4.80 3.97 3.68 3.61 3.11 2.99 2.69 2.28 1.52 0.72 0.00 0.00 2.48

November 1.44 3.10 3.63 2.96 3.29 2.38 2.05 1.79 1.66 0.96 0.41 0.01 0.01 1.82

December 1.01 2.89 4.40 4.26 3.64 3.45 3.82 3.80 2.97 0.99 0.01 0.00 0.00 2.40

Average 2.75 3.27 3.69 3.29 3.19 2.80 2.61 2.49 2.37 1.87 1.30 0.65 0.30 2.35

evening errors tend to be the best ones and its afternoon errors are comparable
and sometimes better than those of Lasso and linear SVR. A plausible reason
is the many near-clear sky days of the Iberian Peninsula, particularly in areas
with large PV productions.
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The clearly best average behavior of the G SVR model also holds when we
consider its hourly errors on a monthly basis. They are given in Tables 3, 4, 5 and
6 and, as it can be seen, hourly errors also increase quite moderately with the
prediction horizons for all months. Moreover monthly average errors are quite
stable; the worst months seem to be February and March, most likely because
of the atmospheric instability to be expected in them. August also shows large
errors, the reason being here its high PV energy production, much larger than the
one from, say, November to February. Summing things up, satellite information
combined with Gaussian SVR can be used to set up a PV energy nowcasting
procedure with a quite good performance.

5 Conclusions and Further Work

Satellite-based information has been widely used to nowcast solar irradiance val-
ues and PV energy productions, usually from an atmospheric physics perspective.
Here we propose the direct exploitation of these readings by feeding them into
ML models to nowcast the PV energy production of Peninsular Spain, predict-
ing the energy at hour H from Meteosat satellite data at hour H − K, where
K = 1, 2, 3 for nowcasting purposes and K = 0 for model benchmarking and
control. We have worked with the radiances of the IR016, IR039 and VIS008
channels and the brightness temperature of channel IR039, which we downsam-
ple from Meteosat’s initial finer resolution to a coarser 0.125◦ one. Moreover we
have added at each point of the resulting grid a theoretical estimation of its Clear
Sky (CS) irradiance value and considered three well known ML models, Lasso
and linear and Gaussian SVR, plus a simple CS-based persistence approach.

Our results here greatly simplify and improve previous results in [3]; in par-
ticular, Gaussian SVR over satellite and CS features gives remarkable results,
with rather low mean absolute errors that degrade slowly when the prediction
horizon K increases. While also good, the performance of Lasso and linear SVR
is clearly below that of Gaussian SVRs. On the other hand, the performance
of the CS-based persistence is rather good around noon and at the evenings,
although markedly worse, as it was to be expected, in the morning. Another
advantage of using CS features is that they allow adding time effects into the
models and make possible to use a single model across all day hours instead of
the morning, afternoon and evening models used in [3].

The results here are given for hourly energy prediction updates but this can
be easily extended to 15’ updates, given that satellite readings are available
at that frequency. Besides this improvement, there are other areas for further
work. A clear one is to consider longer prediction horizons. The large varia-
tions of PV energy across long horizons makes this a difficult problem but, on
the other hand, the slow increase of the Gaussian SVR errors also points to
a possibly solid behavior when applied beyond the K = 3 horizon considered
here. Another improvement is the addition of other features. A clear option is
using day-ahead NWP radiance predictions, that should also particularly help
when longer horizons are considered. On the other hand, this will make pattern
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dimensions even greater than they are now and some form of feature reduction
is likely to help. Lasso does precisely that, but as our results show, it doesn’t
provide by itself the best forecasts. This suggests to explore Lasso models as a
kind of feature selectors that are then further exploited by Gaussian SVRs. In
this line, and given the natural grouping of features by grid points, it may also
be interesting to use for this group versions of Lasso, as those proposed in [1].
Finally, it is also important to consider nowcasting at reduced areas, such as
individual plants or islands, which may be isolated form larger grids and where
PV energy fluctuations are harder to manage. We are currently studying these
issues.
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Abstract. This work deals with wind energy prediction using meteo-
rological variables estimated by a Numerical Weather Prediction model
in a grid around the wind farm of interest. Two machine learning tech-
niques have been tested, Support Vector Machine and Gradient Boost-
ing Regression, in order to study their performance and compare the
results. The use of meteorological variables estimated in a grid generally
implies a large number of inputs to the models and the performance
of models might decrease. Hence, in this context, the use of feature
selection algorithms might be interesting in order to improve the gen-
eralization capability of models and/or reduce the number of attributes.
We have compared three feature selection techniques based on differ-
ent paradigms: Principal Components Analysis, ReliefF, and Sequential
Forward Selection. Energy production data has been obtained from the
Sotavento experimental wind farm. Meteorological variables have been
obtained from European Centre for Medium-Range Weather Forecasts,
for a 5× 5 grid around Sotavento.

Keywords: Wind power prediction · Numerical weather prediction ·
Support Vector Machine · Gradient Boosting · Feature selection

1 Introduction

The prediction of wind energy is becoming an important issue in the context of
renewable energy sources. However, its uncertainty makes it difficult to integrate
in the electricity grid. Machine learning techniques can be used to improve the
quality of wind energy prediction. There is a predominance of articles that use
Artificial Neural Networks (ANN) to make predictions using historical data [1,2].
Damousis et al. [3] use fuzzy logic and genetic algorithms to predict wind power
using as inputs the wind direction and speed. There are also several articles
that use Support Vector Machines (SVM) to make predictions for wind energy.
For example, Mohandes et al. [4] predict wind speed using historical wind speed
data and later, it is compared with an ANN. Heinermann and Kramer [5], on the
other hand, use SVM to predict wind power using wind speed as input. There
are other articles that use Numerical Weather Prediction (NWP) to estimate
wind power energy. Alonso et al. [6] use Random Forests and Gradient Boosting
c© Springer International Publishing AG 2017
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with 8 meteorological variables for predicting wind energy at Sotavento. In a
similar way Mart́ın et al. [7] use meteorological variables to make solar energy
predictions in the state of Oklahoma.

In this article, we address the problem of wind energy prediction from meteo-
rological variables estimated by a Numerical Weather Prediction (NWP) model.
Two machine learning algorithms have been used to train the model: Support
Vector Machines (SVM) [8,9] and Gradient Tree Boosting (GTB) [10]. The afore-
mentioned comparison of models has been tested on the Sotavento experimental
wind farm, from which electricity production data has been obtained. The inputs
to the models are 22 meteorological variables obtained from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), for a 5× 5 grid around
Sotavento.

The use of a grid implies a large number of input features for the machine
learning models. Given that not all variables at all locations might be relevant,
and that many of them might contain redundant information, in this article we
explore the application of feature selection algorithms. Feature selection is an
important task when datasets have a large number of variables. Reducing the
number of variables can sometimes improve the performance of models. The aim
is to study whether the number of features can be reduced, while maintaining
or improving the generalization ability of the model. Attribute selection meth-
ods may be grouped as filter and wrapper techniques [11]. Filter approaches use
general characteristics of data to evaluate and select attribute subsets, while
wrapper approaches select attributes according to the evaluation provided by a
specific regression algorithm [12]. In this work, we have tried three feature selec-
tion algorithms, based on different paradigms: Principal Component Analysis
(PCA), ReliefF, and Sequential Forward Selection (SFS) [11]. PCA is a widely
used unsupervised method for dimensionality reduction and very useful when
redundant variables are present. ReliefF is a filter method, that ranks attributes
according to their relevance, but it is prone to select redundant attributes. SFS is
a wrapper method that greedily adds the most relevant features for a particular
classifier.

The rest of the paper is organized as follows. In Sect. 2 it is explained the
data source and how it is preprocessed. Section 3 presents techniques that are
used in the present work. Results are presented in Sect. 4. Finally, in Sect. 5 some
conclusions are drawn and further work is presented.

2 Data

The Sotavento experimental wind farm is located in “A Serra da Loba”, con-
cretely at coordinates N: 43.354377 W. 7.8812133. From the website of Sotavento
it is possible to download historical: “wind speed” given in m/s, “direction” given
in degrees and “energy” given in kWh. For the experiment, years from 2005 to
2010 are selected with 10 min measurement interval.

The European Centre for Medium-Range Weather Forecasts, ECMWF, is
an independent intergovernmental organization. It operates one of the largest
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supercomputer complexes in Europe and the world’s largest archive of numeri-
cal weather prediction data. On their website there is a large number of numer-
ical weather prediction models and reanalysis made based on predictions. In
this work, to extract input variables the model chosen is ERA-20C because it
has a high number of variables and the measurements dates coincide with the
Sotavento data. Although some variables are clearly more related to wind than
others, we have preferred to include a large amount of variables and let the mod-
els combine them in an optimal way, or the feature selection algorithms choose
the most relevant ones. The 22 variables selected are shown in Table 1.

Table 1. List of variables used.

Variables

2 m temperature (K) 10m U wind component (ms−1)

10 m V wind component (ms−1) 100m U wind component (ms−1)

100 m V wind component
(ms−1)

Convective available potential
energy (Jkg−1)

Forecast logarithm of surface
roughness for heat

Forecast surface roughness (m)

Instantaneous eastward
turbulent surface stress (Nm−2)

Instantaneous northward turbulent
surface stress (Nm−2)

Leaf area index, high vegetation
(m2m−2)

Leaf area index, low vegetation
(m2m−2)

Neutral wind at 10 m
u-component (ms−1)

Neutral wind at 10m v-component
(ms−1)

Soil temperature level 1 (K) Soil temperature level 2 (K)

Soil temperature level 3 (K) Soil temperature level 4 (K)

Surface pressure (Pa) Vertical integral of temperature
(Kkgm−2)

Vertical integral of divergence of
kinetic energy flux (Jm−2)

Vertical integral of water vapor
(kgm−2)

Those variables are obtained in a 5× 5 grid around Sotavento as shown in
Fig. 1 (Sotavento itself is marked with letter A). The distance between the coor-
dinates of the grid is 0.125◦.

The years ranging from 2005 to 2010 are selected, both included, as they are
the same as in Sotavento data. Although Sotavento provides energy generation
data every 10 min, ERA-20C provides complete records only every six hours,
therefore the latter is the time period used in this article. The data set has 22
variables and each variable has 25 coordinate measurement per instant of time,
that is, 550 columns with input data. For each day, there are 4 predictions.
As there are 6 years and one of them is a leap year, there are 8764 instances.
Instances where one (or several) of the variables contain NAs (Not Available



A Study on Feature Selection Methods for Wind Energy Prediction 701

Fig. 1. Grid centered at Sotavento

data), are removed from the dataset. Only full instances are kept, resulting in
5778 instances. Table 2 shows the number of instances broken down by year.

Table 2. Number of instances by year.

Year Instances

2005 1246

2006 1268

2007 1117

2008 178

2009 913

2010 1056

3 Techniques

In this section, techniques that are going to be used in this paper will be briefly
explained: the two regression techniques (SVM and GTB) and the three feature
selection techniques (PCA, ReliefF, and SFS).

Performance of methods has been evaluated using the Mean Absolute Error
(MAE), given by:

MAE =
1
n

n∑

t=1

|et| (1)

where n is the number of patterns and |et| is the absolute error for each pattern.



702 R. Mart́ın-Vázquez et al.

3.1 Regression Techniques

Gradient Tree Boosting (GTB) is a boosting technique for building both classi-
fication and regression models [10]. As a boosting technique, it ensembles weak
prediction models to improve performance. In this particular case, GTB uses
regression trees as members of the ensemble. It sequentially adds trees that
focus on the mistakes made by the previous ensemble members, according to the
boosting concept. In the case of regression, new trees try to learn the pseudo-
residuals, that is, the difference between the outputs of the ensemble so far, and
the actual outputs.

In this work, the implementation of GTB used is the R package XGBoost cre-
ated by Chen et al. [13]. The properties of the model trained by Xgboost depend
on several hyper-parameters whose values have to be set in advance. Among
these hyper-parameters, in this work we have used the number of iterations in
the training phase, the maximum depth for each tree, the subsample ratio of
columns when constructing each tree and the minimum number of instances in
a node before creating a new child.

Support vector machines (SVM) is a set of algorithms used for classification
and regression [8]. SVM use quadratic optimization to find linear classification
boundaries that maximize the margin between the two classes. Large margins
give better generalization capabilities. The non linear case is reduced to the
linear one by projecting data into larger dimensionality spaces. This projection
is done implicitly by means of kernel functions. SVM can also be used for general
regression prediction. In this case, it searches for a function that has a smaller
error than a value given as a hyper-parameter and, at the same time, a function
as flat as possible.

In this work, the implementation of SVM used is from the R package e1071
created by Meyer et al. [14]. A gaussian kernel is chosen, and the hyper-
parameters used in this algorithm are the cost parameter (C) to adjust the
error tolerance and gamma to adjust the variance of the model.

3.2 Feature Selection Algorithms

Principal Component Analysis (PCA) is a linear transformation of the input
attributes of the original dataset into a set of components that try to keep as
much variance as possible while reducing linear correlation between attributes.
PCA ranks attributes according to the explained variance and can be used for
dimensionality reduction [15].

The ReliefF algorithm [16,17] is a robust method to feature interactions.
It estimates the quality of attributes according to how well their values distin-
guish between instances that are near to each other. It evaluates an attribute by
repeatedly sampling an instance and considering the value of the given attribute
for the nearest instance of the same and different class. ReliefF can also be
used in regression problems. In our work, we have used the implementation of
CORElearn provided for the R language [18].
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Sequential Forward Selection (SFS) is the simplest greedy search algorithm
but it is also very effective [11]. The SFS algorithm starts with an empty feature
set X. Then, repeatedly, it adds the most significant feature with respect to X.
A feature is considered significant with respect to X if a model trained with X
and the feature obtains the minimum error, compared to the rest of features.
The algorithm stops when no feature improves the result from the last iteration.
SFS is a wrapper technique because it uses a machine learning model in order
to determine the degree of relevance of a subset of attributes.

4 Experimental Results

In order to evaluate the techniques, 6-fold crossvalidation has been used, where
each of the folds is a complete year (2005, 2006, 2007, 2008, 2009, and 2010).
First, models using the 22 meteorological variables in the 5× 5 grid (550 input
features) are trained with XGBoost and SVM. In order to achieve optimal results,
their parameters need to be tuned. For this purpose, we have used grid search,
a systematic procedure that evaluates all possible combinations of parameter
values and selects the best performing one. For XGBoost, the parameters tuned
and their explored ranges are: nrounds = {50, 100, 200, 300, 400, 500, 1000},
max depth = {1, 2, 3, 4, 5}, colsample bytree = {0, 0.2, 0.4, 0.6, 0.8, 1}, and
min child weight = {1, 2, 3}. For SVM, two parameters have been adjusted:
Gamma = {0, 0.01, 0.1, 0.25, 0.5, 0.75, 1}, and C = {0.1, 1, 10, 100, 500}. Para-
meter tuning is carried out for each fold. For instance, if 2005 is the test fold,
years from 2006 to 2010 are used for grid search. In the case of SVM, grid search
yields the same parameter values for all folds: C = 1 and Gamma = 0.01. In the
case of XGBoost, parameter values change only slightly depending on the fold.
Table 3 show the best parameters for each.

Table 3. Best XGBoost parameter values.

Year Nrounds MaxDepth Colsample bytree Child weight

2006 50 3 0.6 1

2007 100 3 0.8 1

2008 100 3 0.6 1

2009 100 3 0.6 1

2010 150 2 0.6 1

Table 4 displays the test Mean Absolute Error (MAE) (Eq. 1) for SVM and
XGboost for every fold. The last two rows shows the average MAE and the
standard deviation. Results show that SVM performs better than XGboost on
average and also for most of the folds. Since SVM reports the best results, the
feature selection algorithms will be carried out only for SVM.
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Table 4. SVM and XGBoost test MAE broken down by fold.

Test year SVM XGBoost

2005 267.63 281.78

2006 240.33 257.62

2007 277.17 272.67

2008 261.75 270.78

2009 275.44 291.19

2010 286.04 289.25

Average 268.06 277.22

Std 15.94 12.71

Feature selection algorithms have been applied by means of the following
methodology. For each fold, the train partition is decomposed into a train and
validation sets by choosing, every three days, the first two days for training and
the last one for validation. Then, each feature selection algorithm is applied on
the training set, returning a ranking of the attributes. Finally, the subset of
n attributes that minimizes the error on the validation set is selected. This is
done by training a model with the n first attributes (according to each method’s
ranking) and evaluating it on the validation set, for n from 1 to the total number
of attributes. Once the optimal n is known, the train and validation sets are
joined, and a final model is trained with n features, and then tested on the
test set. This strategy is similar to the one used in the Caret R package [19,20]
for parameter tuning.1 It allows using a larger data partition for training the
final model, and also, it uses the same partition for training than the all-features
model (results shown in Table 4). Hence, the comparison is more fair. In any case,
it is important to remark that all models are finally evaluated on a completely
independent partition (the test set).

Table 5 shows the results of the three selection methods with SVM. It can be
seen that although PCA is the method whose reduction in number of features
is largest, the test MAE is always worse than the rest of methods. Also, PCA
MAE is much larger than the error obtained with the complete set of initial
features (287.33 vs. 268.06). SFS is also able to drastically reduce the number of
features (from 550 to 26), while returning an error only slightly worse than the
original one (270.49 vs. 268.06). Finally, ReliefF manages to improve the error
(263.24 vs. 268.06) while also reducing the number of features, but not to a large
extent as the previous techniques (from 550 to 455.83, on average). If results are
analyzed per fold, comparing Tables 4 and 5, it can be seen that PCA obtains
worse MAEs for all folds, SFS improves MAE in two folds, and ReliefF improves
four folds and the other two are very similar.

1 https://topepo.github.io/caret/model-training-and-tuning.html.

https://topepo.github.io/caret/model-training-and-tuning.html
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Table 5. Test MAE for different feature selection algorithms and number of features,
broken down by fold.

Test year PCA ReliefF SFS

MAE N. Features MAE N. Features MAE N. Features

2005 285.42 17 268.31 550 264.70 28

2006 259.11 17 237.27 479 249.00 25

2007 292.71 19 265.26 343 278.21 27

2008 290.60 27 249.49 360 264.08 45

2009 280.96 17 273.86 550 273.95 15

2010 315.16 16 285.22 453 293.01 16

Average 287.33 18.83 263.24 455.83 270.49 26

Std 18.19 4.12 17.26 89.66 14.94 10.84

5 Conclusions

In this article three feature selection methods have been compared for wind
energy prediction at the Sotavento experimental farm from ECMWF meteoro-
logical variables, estimated for a 5× 5 grid. 22 ECMWF variables have been
chosen, resulting in 550 input features, which might contain redundant informa-
tion. Experimental results have been carried out using data for six years. The
cross-validation methodology has been used, using each year as a test fold, in
order to validate the methods more extensively and avoid biases from individual
years.

Experimental results show that the number of input features can be reduced,
while maintaining the generalization capability of models. The reduction of fea-
tures depends on the feature selection algorithm. In this study, the three fea-
ture selection techniques behave differently with respect to error and number of
selected features. ReliefF obtains the best performance in terms of error (in fact,
ReliefF is able to improve the error over the initial model with all the features).
But ReliefF does not reduce the number of features as drastically as the others.
SFS has a good balance between error and number of features selected: the error
is only slightly worse than the all-features model and it reduces the 550 original
features to only 26. PCA provides the worse performance because its associated
error is comparatively worse than the original model. This can be due to PCA
being an unsupervised method, while both ReliefF and SFS are supervised. The
large difference between ReliefF and SFS in the number of selected features
might be explained because ReliefF ranks attributes according to relevance, but
it does not discard redundant attributes. That is, if several attributes are rele-
vant but correlated, they will all be selected. With SFS, the attribute that add
the most information to the current set is included, and therefore, relevant but
redundant attributes will be likely ranked last.

As future work, it could be interesting to study the influence of using past
values of wind energy as input to machine learning models, together with the
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most relevant features (meteorological variables and locations in the grid) found
in this work. We expect that this information could improve the performance
of models. We also intend to study the performance of wind energy forecasting
models at different lead times.

Acknowledgements. The authors acknowledge financial support granted by the
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Abstract. Wind power ramp events (WPREs) are strong increases or
decreases of wind speed in a short period of time. Predicting WPREs is
of vital importance given that they can damage the turbines in a wind
farm. In contrast to previous binary approaches (ramp versus non-ramp),
a three-class prediction is proposed in this paper by considering: negative
ramp, non-ramp and positive ramp, where the natural order of the events
is clear. The independent variables used for prediction include past ramp
function values and meteorological data obtained from physical models
(reanalysis data). The proposed methodology is based on reservoir com-
puting and an over-sampling process for alleviating the high degree of
unbalance of the dataset (non-ramp events are much more frequent than
ramps). The reservoir computing model is a modified echo state network
composed by: a recurrent neural network layer, a nonlinear kernel map-
ping and an ordinal logistic regression, in such a way that the order of
the classes can be exploited. The standard synthetic minority oversam-
pling technique (SMOTE) is applied to the reservoir activations, given
that the direct application over the input variables would damage its
temporal structure. The performance of this proposal is compared to the
original dataset (without over-sampling) and to nominal logistic regres-
sion, and the results obtained with the oversampled dataset and ordinal
logistic regression are found to be more robust.
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1 Introduction

Wind power ramp events (WPREs) are one of the most dangerous weather events
for wind farms, because they can potentially damage the wind turbines if they
are not managed properly [10,23], increasing this way the maintenance cost of
wind farms. Thus, the prediction of WPREs is extremely important for energy
companies [6,9] because it reduces maintenance costs and optimises the power
generation of wind farms. These WPREs are originated from complex meteo-
rological processes, such as crossing fronts [11]. The ERA-Interim database (a
global atmospheric reanalysis database) is an interesting source of information to
predict WPREs [3,11], allowing high quality predictive variables in any location
at global level, with a high resolution and accuracy.

Moreover, WPRE prediction can be tackled as a multi-class classification
problem, considering three classes of events: negative ramp, non-ramp and pos-
itive ramp. The main problem associated with this kind of prediction via multi-
class classification is that the number of non-ramps is significantly higher than
that of ramp events, and the pattern distribution is even more skewed than for
the binary case. In this paper, we approach three-class WRPE prediction as an
ordinal regression problem (given that the categories show a clear order) and
combine an Echo State Network (ESN) with an over-sampling pre-processing
step to tackle the imbalanced nature of the data. The proposed method is
an extension of the reservoir computing (RC) architecture presented in [7] for
WPRE prediction, which exploits the temporal information of wind power func-
tion and includes the reanalysis data in the time instant to be predicted. We
modify it by using an ordinal regression classifier and over-sampling the ESN
hidden activations.

Ordinal regression refers to those classification problems where there exist a
natural ordering among the categories, thresholds models being one of the most
widely used and successful techniques [13]. Moreover, many real life problems
related with renewable energies have been approached by ordinal regression tech-
niques [12]. RC is a branch of recurrent neural networks (RNNs), which focuses
on tackling well-known RNN training difficulties, such as the gradient vanish-
ing, which makes the optimization algorithm convergence very difficult, or the
slow transition of inputs through the network, because of the existing cycles
among neurons. RC models have also been tested in several renewable energy-
related problems [5,17,20], showing good performance. The ESN [16] is one of
the possibilities for RC. It is based on the following characteristics: (1) ESNs are
randomly created and not modified during the training process. (2) They keep
a dynamical memory with non-linear transformations of the inputs. This part
of the model is known as reservoir in the literature. (3) The network output is
calculated as a linear combination of the outputs of the reservoir. In our case,
we will apply a nonlinear kernel mapping [24] together with an ordinal thresh-
old model [25]. The training approach for these networks is based on randomly
creating the reservoir and adjusting then the rest of network parameters, in a
similar way to ELMs [15].
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There are several ways of handling imbalanced classification problems [18],
such as cost-sensitive learning, over-sampling the minority patterns [4] or under-
sampling majority ones [21]. It has been proved that cost-sensitive learning leads
to over-fitting [14], while under-sampling leads to poor results because important
information is discarded, so that over-sampling is usually preferred, where the
synthetic minority over-sampling technique (SMOTE) [4] algorithm is the most
popular method. SMOTE is based on the interpolation of randomly selected
minority patterns. Directly over-sampling the original time series (in our case,
the ramp power function) would destroy the temporal structure of the series.
However, given that the temporal structure is only exploited by the first layer
of the ESN [26], we propose to feed the reservoir and oversample its activations
(outputs), interpolating then the temporal relations of the data. Three differ-
ent wind farms distributed in the Spanish geography are used in this paper
to validate the model and the over-sampling methodology proposed for WPRE
prediction, and the results show that the combined use of an ESN, a nonlin-
ear ordinal regression method and a over-sampling procedure leads to better
performance than other alternative approaches.

The remainder of the paper is structured in the following way: next section
describes the databases considered, which come from three different wind farms
in Spain. Section 3 presents the main characteristics of the proposed model archi-
tecture. The over-sampling methodology used is described in Sect. 4, whereas
Sect. 5 evaluates the performance of the proposed RC system. Finally, Sect. 6
gives some conclusions about the work carried out.

2 Database

In this section, we explain the characteristics of the information sources consid-
ered in this problem of WPRE prediction, the transformations carried out, and
how the data was merged. The first source of information corresponds to wind
data, hourly obtained from three wind farms distributed on the Spanish geog-
raphy, as shown in Fig. 1. We will calculate the WPREs as objective values to
be forecast using different predictive variables. The second source of information
to obtain the predictive variables is the ERA-Interim project [8], which stores
weather data every 6 hours. These data are computed using physical models,
not recorded by sensors, so that future estimations can be obtained and used for
predicting posterior WPREs.

2.1 Wind Farms Data

Let St : R
k → R be a ramp function evaluated to decide whether there is a

WPRE or not. There are several definitions of St [10], all them involving power
production (Pt) criteria at the wind farm or wind turbine. In this paper, we have
used the following one:

St = Pt − Pt−Δtr , (1)
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Fig. 1. Location of the three wind farms and the reanalysis nodes considered in the
study.

where Δtr is the time interval considered (6 h in our case).
Using St, the classification problem can be stated by defining a threshold

value S0, in the following way:

yt =

⎧
⎪⎨

⎪⎩

CNR, if St ≤ −S0,

CNoR, if − S0 < St < S0,

CPR, if St ≥ S0.

(2)

where {CNR, CNoR, CPR} are the different categories of events to be detected, i.e.
negative ramps (NRs), non-ramps (NoRs) and positive ramps (PRs).

In this case, we have considered S0 as a percentage of the wind farm rated
power (specifically, 50% of the wind farm rated power [10]). The WPRE predic-
tion problem also involves a vector of predictive variables. In our case, we will use
meteorological data from reanalysis as input data (z) (which are defined in the
next section), together with the past values of the ramp function (St−1, St−2, . . .),
considering t with 6-hour resolution.

2.2 Reanalysis Data

For each of the three wind farms, we have 40 predictors, corresponding to 10
variables per reanalysis node (4 reanalysis node are considered in each wind
farm). These variables are computed each 0.75 km all around the globe through
a physical model and contain wind speed, pressure and temperature measures at
different heights. In order to avoid dealing with so many variables, which in many
cases can be highly correlated and introduce noise in the model, we perform a
weighted average depending on the distance from each reanalysis node to the



712 M. Dorado-Moreno et al.

wind farm centre. This reduces the total number of reanalysis variables at each
wind farm to 10, without losing the relative information from each node. First,
the distance from each reanalysis node to the wind farm is calculated as follows:

d(p0, pj) = arccos(sin(lat0) · sin(latj) · cos(lon0 − lonj) + cos(lat0) · cos(latj)), (3)

where p0 is the wind farm geographical position, pj stands for the location of
each reanalysis node, and lat and lon are the latitude and longitude of the
points, respectively. Once the distance from each of the four reanalysis nodes
(the four black points surrounding the wind farm, see Fig. 1) to the wind farm
is calculated, these distances are inverted and normalized, considering that the
shorter the distance, the larger the weight that reanalysis node should have:

wi =

∑4
j=0 d(p0, pj)
d(p0, pi)

, i = 1, . . . , 4. (4)

After calculating these weights, they are applied to obtain a weighted average
for each of the 10 variables.

3 Reservoir Computing Proposal

In this paper we propose a model based on the standard ESN architecture,
replacing the regression of the output layer with a combination of a nonlinear
kernel mapping and an ordinal logistic regression model.

3.1 Architecture and Training Algorithm

We now describe the proposed ESN architecture which solves the WPRE pre-
diction including past ramp function values and ERA-Interim reanalysis data.
Figure 2 shows the structure proposed, where some symbols must be explained:
St and zt+1, in the input layer, are the input vectors (ramp function and 10
reanalysis variables in time t and t+1, respectively). The use of zt+1 in the input
layer for predicting yt+1 is plausible, as mentioned in Sect. 2, because it is given
by meteorological models which can produce reliable estimations for 6 h ahead.
In the hidden layer, the reservoir has M neurons randomly interconnected, and
the weights from the inputs to the reservoir are also random. Finally, we have a
kernel mapping layer which applies an approximated RBF feature map, and an
output layer that will predict the class of the different events.

The standard Ordinal Logistic Regression (OLR) [22] is a linear model divid-
ing the patterns into categories by using a set of thresholds. However, the linear
nature of the model limits its performance, as shown in previous studies [13].
That is the reason why we consider a kernel mapping applied to the activations of
the reservoir and the reanalysis data. Specifically, we use approximated explicit
feature maps, given that the standard kernel trick can be very costly. A Random
Kitchen Sinks [24] map is considered, which approximates the feature map of a
radial basis function (RBF) kernel by Monte Carlo approximation of its Fourier
transform.



Combining RC and Over-Sampling for Ordinal WPR Prediction 713

Fig. 2. Proposed ESN architecture

The methodology proposed to train the previously presented architecture is
the following:

1. Create a reservoir of size M , randomly interconnecting the neurons and gen-
erating the weights W by a Gaussian probability distribution. The weights
of the connections that link the inputs with the reservoir neurons (Win) are
generated using the same distribution. The bias of the reservoir neurons are
randomly adjusted using a uniform distribution.

2. Harvest the reservoir states, feeding the reservoir inputs from time t = 1 to
t = M , so that all the network connections would have received a signal,
allowing to obtain the full vector xt.

3. Combine xt and zt+1 and apply the kernel mapping.
4. Compute the output weights by training an ordinal logistic regression model,

linearly projecting the patterns and establishing thresholds to differentiate
each of the three classes (CNR, CNoR and CPR).

Once the network is trained, it can be used for real-time prediction of ramps,
discarding the pattern corresponding to t = 0, since there would be no informa-
tion from an earlier instant.
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4 Over-Sampling Ramp Events

Over-sampling is a widely used technique for imbalanced classification databases
[2,19], where, at least, one of the classes has a number of patterns significantly
lower or higher than the rest, resulting in low performance for the minority
classes. However, standard over-sampling methods cannot be directly applied
to time series data, because the time structure would be destroyed. Instead of
applying the over-sampling technique to the input variable (yt), the proposal
of this paper is to feed the ESN reservoir with yt and, then, oversample the
activations of the reservoir (outputs). The reservoir, due to the cycles found in
its internal neurons, presents a temporal memory [26], which is able to maintain
the information of a maximum of N previous inputs, being N the number of
neurons in the reservoir. Taking that into account, all the outputs of the reser-
voir maintain the time structure. Consequently, over-sampling can be applied to
interpolate this information and increase the number of patterns of the minority
class, without losing the temporal relation of the time series.

Specifically, we apply the SMOTE over-sampling algorithm [4]. For each pat-
tern corresponding to the minority class, SMOTE introduces synthetic sam-
ples along the segments joining it with its k nearest minority neighbours. Each
synthetic pattern is derived by obtaining the difference between both patterns
and multiplying this difference by a random number between 0 and 1 (random
interpolation).

5 Experiments

This section describes the experiments considered for validating the proposal
presented in Sect. 3.

5.1 Evaluation Metrics

Several measures can be used for evaluating ordinal classifiers. The most common
ones in machine learning are the Mean Absolute Error (MAE) and the Mean
Zero-one Error (MZE) [13], being MZE = 1−Acc, where Acc is the accuracy or
correct classification rate. However, these measures may not be the best option,
for example, when measuring performance in the presence of class imbalance [1],
and/or when the costs of different errors vary markedly. In this way, in order
to take into account different aspects of the classifier, six different metrics have
been considered:

– The correct classification rate, (CCR) is defined by:

CCR =
1
N

N∑

i=1

(I(y∗
i = yi)), (5)

where I(·) is the zero-one loss function, yi is the desired output for pattern xi,
y∗

i is the prediction of the model, and N is the total number of patterns in the
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dataset. CCR values vary from 0 to 1, and it represents global performance
in the classification task. It does not take the category order into account,
and it is not recommended for imbalanced datasets.

– The sensitivities of each class (SNR, SNoR and SPR), which represent the
model ability to correctly predict each type of event:

SNR =
CCNR

NNR
, SNoR =

CCNoR

NNoR
, SPR =

CCPR

NPR
, (6)

where CCNR, CCNoR and CCPR are the number of correctly classified NR,
NoR and PR events, and NNR, NNoR and NPR (NNR + NNoR + NPR = N)
are the total number of NR, NoR and PR events.

– The geometric mean of the sensitivities (GMS) of each class is a geo-
metric average of the correct classification percentages per class:

GMS = 3
√

SNR · SNoR · SPR. (7)

We include this measure because the prediction problem is highly imbalanced,
so that trivial classifiers, which ignore one of the classes, can be easily recog-
nized by GMS = 0.

– The average mean absolute error (AMAE) [1] is the mean of MAE clas-
sification errors throughout the classes, where MAE is the average absolute
deviation of the predicted class from the true class (in number of categories
of the ordinal scale). It is able to mitigate the effect of imbalanced class
distributions. It is defined by:

AMAE =
1
J

J∑

j=1

MAEj ,with MAEj =
1

Nj

Nj∑

i=1

|O(yi) − O(y∗
i )|, (8)

where 1 ≤ j ≤ J , O(CNR) = 1,O(CNoR) = 2,O(CPR) = 3. MAE values range
from 0 to J − 1, as do those of AMAE.

5.2 Experimental Design

The three wind farms of Fig. 1 have been used in the experimental validation
of this proposal. To evaluate the results, the three datasets have been split in
the same way: the last 365 days will be used as the test set, and the rest of the
database as the training set (the specific dates for each wind farm are shown in
Table 1).

The model presented in Sect. 3 (which will be referred to as kernel ordinal
logistic regression, KOLR) has been compared against different alternatives: (1)
We compare nominal and ordinal versions of the logistic regression model. The
idea is to evaluate whether the order of categories can be exploited to obtain
more robust models. In this way, the OLR model presented in Sect. 3 is compared
against a nominal logistic regression (LR), i.e. a standard multinomial logistic
regression model, where the softmax transformation is used for decomposing
the multiclass problem. (2) We study if the use of a nonlinear kernel mapping
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Table 1. Characteristics of the different datasets considered in the experimentation,
including the periods used for training and test and the number of WPREs

Farm #NR #NoR #PR Train interval Test interval

A 602 13852 706 11/1/2002–29/10/2011 30/10/2011–29/10/2012

B 1077 12463 1074 1/1/2002–17/2/2012 18/2/2012–17/2/1013

C 617 13857 649 2/3/2002–30/6/2012 11/7/2012–30/6/2013

improves the performance of the models, by comparing the results against the
alternative of directly connecting the reservoir to the logistic regression classifier.
Consequently, four methods will be compared: ordinal logistic regression with or
without kernel mapping (OLR and KOLR, respectively) and nominal logistic
regression also with or without kernel (LR and KLR, respectively).

For kernel alternatives (KLR and KOLR), the RBF kernel width (γ) has
been adjusting by using a nested 5-fold cross-validation over the training set,
with the following range of values: γ ∈ {2−12, 2−11, ..., 2−8}. For the four logistic
regression models, we need to adjust the regularization parameter (α) which
encourages parsimony in the model coefficients. In this case, the range is α ∈
{2−5, 2−4, ..., 2−1}. In both cases, model selection is based on maximising the
minimum sensitivity, i.e. MS = min{SNR, SNoR, SPR}.

The parameters of the reservoir have been configured as follows: the number
of neurons in the reservoir is M = 50, assuming this is a sufficient number of
neurons to address the problem, and it does not represent a high computational
cost. All the reservoir weights are in the range [−1, 1].

Finally, the SMOTE over-sampling method was applied with k = 5 nearest
neighbours, as proposed in [4]. For each minority class (CNR and CPR), we gener-
ate as many synthetic patterns as needed so that the number of patterns of the
class is a 70% of the number of patterns of the majority class (CNoR). Synthetic
patterns are only considered during the training phase and never used for the
test set.

5.3 Results

This section discusses the results of the different algorithms, which are shown
in Table 2, where the four algorithms previously discussed (KOLR, OLR, KLR
and LR) are compared when using the two versions of the datasets (the original
and the one oversampled using SMOTE). The GMS metric is the one better
reflecting the balance of good classification considering the different classes, given
that it highly penalises sensitivities close to 0. We can observe how the KOLR
algorithm always obtains the best GMS score for two of the wind farms, and
the second one for the other.

Although some algorithms lead to high CCR values (e.g., the original versions
of the datasets, before applying over-sampling), this is because the classifiers
obtained are trivial, classifying all patterns as non-ramp events (SNR ≈ 0 and
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SPR ≈ 0). Clearly, the over-sampling process is needed to obtain models able to
correctly recognise ramps.

Table 2. Results of the different methods evaluated for wind farms A, B and C.

Wind farm Version Algorithm GMS CCR AMAE SNR SNoR SPR

A Original KOLR 0.0000 0.9021 0.6667 0.0000 1.0000 0.0000

OLR 0.0000 0 .9008 0.6623 0.0153 0 .9978 0.0000

KLR 0.0000 0.9021 0.6667 0.0000 1.0000 0.0000

LR 0.0000 0.9021 0.6667 0.0000 1.0000 0.0000

Oversampled KOLR 0.6451 0.6316 0.3745 0.7692 0.6297 0.5542

OLR 0.6054 0.5923 0.4041 0.6461 0.5938 0 .5783

KLR 0.5784 0.6567 0.4496 0 .6769 0.6708 0.4096

LR 0 .6170 0.6157 0 .3928 0.6461 0.6158 0.5903

B Original KOLR 0.0000 0.8655 0.6667 0.0000 1.0000 0.0000

OLR 0.0000 0 .8648 0.6637 0.0103 0 .9984 0.0000

KLR 0.0000 0.8655 0.6667 0.0000 1.0000 0.0000

LR 0.0000 0.8655 0.6667 0.0000 1.0000 0.0000

Oversampled KOLR 0 .5525 0.5404 0 .4636 0 .5979 0.5372 0 .5252

OLR 0.5483 0.5370 0.4613 0.5876 0.5340 0 .5252

KLR 0.4743 0.5651 0.5355 0.5154 0.5855 0.3535

LR 0.5612 0.5061 0.4754 0.6597 0.4912 0.5454

C Original KOLR 0.0000 0.9151 0.6667 0.0000 1.0000 0.0000

OLR 0.0000 0.9151 0.6667 0.0000 1.0000 0.0000

KLR 0.0000 0.9151 0.6667 0.0000 1.0000 0.0000

LR 0.0000 0.9151 0.6667 0.0000 1.0000 0.0000

Oversampled KOLR 0.5593 0.5182 0 .4699 0 .6250 0.5119 0.5468

OLR 0 .5511 0.5752 0.4430 0.6875 0.5771 0.4218

KLR 0.4452 0 .6633 0.5569 0.5468 0 .6886 0.2343

LR 0.5389 0.5202 0.4995 0 .6250 0.5170 0 .4843

The best result for each wind farm is in bold face and the second one in italics.

The AMAE values can be used to check how the classifiers are behaving with
respect to the order of the different categories (i.e., low AMAE values mean that
the classifiers do not usually confuse PR events with NR events, and vice-versa).
Checking these results in Table 2, ordinal models (OLR and KOLR) generally
lead to lower AMAE than nominal ones (LR and KLR), the best AMAE results
being obtained by OLR in 2 of the wind farms, and KOLR in the other one. The
differences of AMAE between OLR and KOLR are very low, thus, the other
metrics have to be analysed to decide which is the best performing one.
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The analysis of the individual sensitivities must be cautious, given that a
good result in one class usually leads to poor performance in the others. KOLR
is the only algorithm able to simultaneously obtain a sensitivity higher than 0.5
for all classes and the three wind farms, also obtaining some of the best results
for GMS and AMAE.

6 Conclusions

This paper proposes and evaluates a modification of an ESN architecture for
predicting WPREs in an ordinal scale (negative ramps, non-ramp events and
positive ramps, where CNR < CNoR < CPR), also considering the high degree of
imbalance of the database. The architecture is based on combining past values of
the ramp function and reanalysis data. Given that we consider a linear ordinal
regression method, a kernel mapping is applied to the input of the classifier, and
an over-sampling procedure is considered to avoid trivial predictors. Three wind
farms in Spain are used for evaluating the performance of the proposal. The
results obtained show that over-sampling is necessary to obtain an acceptable
performance for minority classes in this problem, and that the combination of
an ordinal classifier with the kernel mapping leads to the best performance. An
interesting extension of this work could be considering more than three classes,
so that more fine-grain information could be extracted from the predictions.
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11. Gallego-Castillo, C., Garćıa-Bustamante, E., Cuerva-Tejero, A., Navarro, J.: Iden-
tifying wind power ramp causes from multivariate datasets: a methodological pro-
posal and its application to reanalysis data. IET Renew. Power Gener. 9(8), 867–
875 (2015)

12. Gutiérrez, P.A., Salcedo-Sanz, S., Hervás-Mart́ınez, C., Prieto, L.: Ordinal and
nominal classification of wind speed from synoptic pressure patterns. Eng. Appl.
Artif. Intell. 26(3), 1008–1015 (2012)
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Abstract. Utility companies rely on solar radiation forecasting models
to control the supply and demand of energy as well as the operability
of the grid. They use these predictive models to schedule power plan
operations, negotiate prices in the electricity market and improve the
performance of solar technologies in general. This paper proposes a novel
method for global horizontal irradiance forecasting. The method is based
on an ensemble approach, in which individual competing models are
arbitrated by a metalearning layer. The goal of arbitrating individual
forecasters is to dynamically combine them according to their aptitude
in the input data. We validate our proposed model for solar radiation
forecasting using data collected by a real-world provider. The results from
empirical experiments show that the proposed method is competitive
with other methods, including current state-of-the-art methods used for
time series forecasting tasks.

Keywords: Solar radiation forecasting · Renewable energy · Ensemble
methods · Metalearning · Time series

1 Introduction

The sun is a fundamental source of energy to our planet. Over the years many
technologies have been developed to take advantage of the solar energy. We
use this energy to produce electricity, heating water and buildings, lighting and
destroying toxic waste.

In this paper we present a novel method for solar radiation forecasting. Specif-
ically, we focus on daily predictions of Global Horizontal Irradiance (GHI). Util-
ity companies use solar radiation forecasting systems to support decision making
process in several ways. They use them to predict if the energy produced by a
given solar technology can meet the daily electricity demand, to balance elec-
tricity market prices and schedule power plant operations. Engineers leverage
solar radiation forecasting systems to improve the performance and economics
of solar radiation technologies, for example photovoltaic devices. Moreover, solar
radiation forecasts enable a dynamic configuration of air-conditioning systems
within buildings to optimise their efficiency. In sum, a data-driven solar radia-
tion forecasting system can provide a way to maximise the performance of solar
c© Springer International Publishing AG 2017
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technologies while reducing operating costs. This paper presents an novel time
series model for GHI forecasting. The proposed method leverages the predictive
power of ensemble methods, combining individual learning models with differ-
ent inductive bias using a metalearning strategy. We explore ways of combining
the predictions of forecasters in a dynamic – online – fashion. In time evolving
environments the process causing the underlying data is prone to change over
time and the combined model should adapt accordingly.

We use metalearning (e.g. [4]) to analyse the expertise of each individual
forecaster across the time series of solar radiation. We can then use this meta
knowledge to dynamically weight the predictions of base learners according to
their competence in a given observation. If we expect a given forecaster to per-
form poorly in some subset of the data we render it a low weight in the combi-
nation rule. On the other hand, if we are optimistic about some learner in our
ensemble we augment its weight with respect to the other learners.

The intuition behind our approach is that different learning models may have
different areas of expertise across the input space. That is, in a given test obser-
vation, some individual learner may be better than the combined model and
different individual learners will be better on different cases. In effect, we can
learn about the learning process of each base-learner. In fact, we hypothesise
that the underlying process causing the series of solar radiation follows a recur-
ring pattern due to seasonal factors [7]. Consequently, we hypothesise that the
metalearning layer enables the combined model to better detect changes between
different regimes and quickly adapt itself to the environment.

Our metalearning strategy follows an Arbitrating scheme [13,22], in which
we build a meta-learner for each base-learner comprising the ensemble. Each
meta-learner is specifically designed to assess how apt its base counterpart is to
make a prediction in a given observation. This is accomplished by analysing how
the error incurred by a given learning model relates to the characteristics of the
data. At test time, the base-learners are weighted according to their degree of
competence in the input observation, estimated by the predictions of the meta-
learners.

Our goal is to predict the next value of the series of solar radiation. We use
regression models as our base-learners by transforming the solar radiation time
series into an Euclidean space using time delay embedding [29]. Furthermore, in
order to augment the information about the data we also use external predictors
such as weather reports. In summary, the contributions of this paper are the
following:

– An arbitrated ensemble for GHI forecasting. The ensemble includes a meta-
learning layer based on an arbitrating scheme, used to dynamically combine
individual models;

– We use the Arbitrating strategy to dynamically weight individual models,
whereas typical applications select the most reliable model at each test query.

We start by outlining the related work in Sect. 2. The methodology is
addressed in Sect. 3, where we formalise and explain our contributions. The
Case Study is briefly described in Sect. 4, along with the pre-processing steps
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and descriptive statistics. The experiments and respective results are presented
and discussed in Sect. 5. Finally, the conclusions are produced in Sect. 6, along
with some remarks about future work and reproducibility of the proposed
methods.

2 Related Work

In this paper we focus on ensembles with self-adapting mechanisms to predict
solar radiation, which is a time series with a numerical outcome. Ensemble meth-
ods for numerical predictions problems have a vast literature. We refer to the
survey written in [19] for a complete overview on ensemble approaches for these
tasks.

Building adaptable models is important in dynamic real-world environments
in which data is constantly changing over time due to several factors, for exam-
ple, seasonality. Our proposed method is motivated by the core concepts behind
Arbitrating classifiers [13,22]. Arbitrating is an ensemble method used to com-
bine classifiers according to their expertise on the input data. The expertise of
a base-learner is learnt with a corresponding meta-model, which learns the loss
of its base counterpart according to a set of meta-features. At test time, the
classifier with greatest confidence in the input data-point is selected to make a
prediction. The authors reason that each meta-model holds information about
which part of the data its base counterpart works best and considers when it
can make a reliable prediction.

Other forms for dynamically combining models for time series forecasting
with numerical outcome were proposed in the literature. In [26], the authors
use Zoomed Ranking [28] approach to rank and select time series forecasting
models. MetaStream is proposed in [25]. The authors summarise the dynamics
of the recent and upcoming observations in a data stream to either select or
combine regression models. In [15,32] presented other two approaches that use
the characteristics of time series in a meta-level to improve the combination of
individual forecasters. They use these characteristics to induce several rules to
weight or select between different models.

Our approach is different from the existing literature in the sense that we
apply an arbitrating scheme to meta-learn and weight the individual base-
learners. To the best of our knowledge, this is the first application of an Arbi-
trating scheme for time series prediction with numerical outcome, particularly
solar radiation forecasting.

2.1 Solar Radiation Forecasting

Several solar radiation forecasting models have been proposed in the literature.
The most typical approaches rely on regression and time series analysis models
(e.g. [3,8,23]). The connectionist approach of Artificial Neural Networks is also
of common use, for example in [11,18] or [27]. In our paper we focus on daily
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forecasts, but the temporal granularity typically ranges from hourly to weekly
forecasts.

Many approaches also incorporate external features in their methodology,
such as [16] or [1]. These typically include weather information.

3 Global Horizontal Irradiance Forecasting

A given solar technological device collects solar radiation in two ways: direct
radiation and diffuse radiation. In this paper we aim at predicting the Global
Horizontal Irradiance (GHI), which can be derived by summing direct radiation
with diffuse radiation and accounting for the sun’s position.

GHI forecasting is a particular instance of time series forecasting tasks. We
start addressing the methodology by presenting the main notation employed
throughout this section:

Time Series: A time series is a temporal sequence of values Y = {y1, y2,
. . . , yn}, where yi is the value of Y at time i and n is the length of Y ;

Embedded Time Series: Y K denotes the embedded time series with embed-
ding dimension K. We use time delay embedding to represent Y in an Euclid-
ean space with embedding dimension K, according to [29]. In effect, we gen-
erate the following matrix:

Y K =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 y2 . . . yK−1 yK
...

...
...

...
...

yi−K+1 yi−K+2 . . . yi−1 yi
...

...
...

...
...

yn−K+1 yn−K+2 . . . yn−1 yn

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Each row denotes an embedding vector vr, ∀ r ∈ {1, . . . , n−K +1}. Our goal
is to predict the next point in the series, represented by the last column in
Matrix 1;

External Predictors: Y ext denotes the set of external predictors computed
for each embedding vector v ∈ V . These include external information (e.g.
weather data) which helps to model the target concept;

Base-Learners: We denote as M the set of m base-learners comprising the
ensemble S;

Meta-Learners: M
j

is a meta-learner for M j , with j ∈ {1, . . . ,m};
Base-Learners Loss: eji represents the absolute loss of M j in the observation yi;
Base-Learners weights: wj

i denotes the weights assigned to M j for predicting
the value of yi.

Our methodology for GHI forecasting settles on the three main steps: An
offline (i) training step of M and the online iterative steps: (ii) Meta-learning of
M and (iii) prediction of yt+1 using M which is dynamically weighted according
to M .
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3.1 Learning M

In the first step we train the learning models M which are then combined to
make a prediction. Concretely, each M j ,∀ j ∈ {1, . . . , m} is individually trained
using the available Y K

tr , the embedded time series combined with the external
predictors Y ext. M is composed of individual regression models with different
inductive bias. Different models (e.g. Gaussian Processes and Neural Networks)
hold different assumptions regarding the underlying data. This divergence across
base-learners comprising S encourages diversity in the ensemble – a fundamental
ingredient in the ensemble recipe [5].

3.2 Metalearning M

The metalearning step of our methodology is an online process run at test time.
Our objective in applying this metalearning strategy is to extract the information
about the expertise of each individual model in M across the series of water
consumption.

We use a metalearning layer for arbitrating among competing individual
learners. However, instead of selecting the most reliable model (as in [13,22]), we
use the meta-knowledge to weight the base learners according to their expertise
in the input signal.

Formally, each meta-learner M
j
,∀ j ∈ {1, . . . , m}, is trained to build a model

for ej = f(X), where f denotes the regression function. X represent the meta-
features, i.e., the set of features used in the meta-level by the meta-learners
in M . X is composed by the primitive features used by M along with some
summary statistics. These statistics are computed for each embedding vector
and characterise the recent dynamics of the series as well as its structure.

We conduct this meta regression analysis to understand how the loss of a
given base-learner relates to the different dynamics of the series. In effect, we
can explore forms of capitalising from these relationships. Specifically, we use
the information from e to dynamically weight the base-learners M .

3.3 Predicting yt+1

When a new observation yt+1 arrives for prediction we combine the predictions
of M with the meta information from M . The arbitrating layer composed by
M is able to predict how well each base learner in M will perform with respect
to each other. If M

j
predicts that its counterpart M j will make a large error

(êjt+1) relative to the other base learners (êlt+1,∀ l ∈ {1, . . . , m}\{j}) then M j

will be assigned a small relative weight in the final prediction. Conversely, if êjt+1

is predicted to be small (also with respect to the loss of other base learners),
M j will be important for the upcoming prediction. Even though the learning
models comprising M are trained in a batch way, the models in M are updated
after every test observation. Moreover, the predictions by M are produced for
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each test observation, rendering an online nature to our method. Formally, we
measure the weights of each base-learner using the following equation:

wj
t+1 =

erfc(êjt+1)∑
i∈M erfc(êjt+1)

(2)

where êjt+1 is the prediction made by M
j

for the absolute loss that M j will incur
in yt+1. The function erfc denotes the complementary Gaussian error function
which is formalised as follows:

erfc(x) =
4√
π

∫ ∞

x

e−t2dt (3)

The final prediction is a weighted average of the predictions made by the
base-learners ŷj

t+1 with respect to wj
t+1 computed according to Eq. 4:

ŷt+1 =
m∑
j=1

ŷj
t+1 × wj

t+1 (4)

The proposed methodology is summarised in Algorithm 1.

4 Case Study

Our study was conducted using data collected by the Oak Ridge National Lab-
oratory [17], in Tennessee, USA. The solar radiation data includes global hor-
izontal radiation, direct radiation and diffuse horizontal radiation. These were
harvested using a rotating shadow-band radiometer, a low-cost equipment for
measuring solar radiation.

The data is collected in an hourly basis. Our sample ranged from 19-01-
2009 to 19-01-2017, totalling 70151 observations. Additionally, other external
variables were collected: the average air temperature, relative humidity, aver-
age wind speed and precipitation levels. These follow the same granularity and
temporal scope as the solar radiation data.

4.1 Pre-processing

We focused our work on daily forecasts so we aggregated the data by day, reach-
ing a total of 2922 observations across the above-mentioned time-span. The units
of the solar radiation levels are in watts per square meter (W/m2).

Direct radiation and diffuse radiation levels are used as predictor variables
in our model. Concretely, we use the information of these attributes from the
previous day as well as the mean of the last K days. To augment the informa-
tion of solar radiation levels we also include the mean and standard deviation
of the embedding vectors described in Matrix 1 as predictors. Moreover, from
the hourly average air temperature we design two features: max and mean air
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Algorithm 1: Arbitrated Ensemble for Solar Radiation Forecasting
Input:
– Global Horizontal Irradiance time series Y ;
– External predictors Y ext;
– embedding dimension K.
/* Learning Step */

Embed Y and attach Y ext → Y K
tr

foreach M j ∈ M do
train M j using Y K

tr

end
—————————————————————————————–

/* Metalearning Step */

for all available test observations Yts do
Embed Yts and attach Y ext → Y K

ts

X ← Extract Metafeatures from Y K
ts

foreach M
j ∈ M do

train M
j
to model: ej = f(X)

end

end
—————————————————————————————–

/* Predicting new observations */

foreach upcoming observation yt+1 do
Embed yt+1 along with the K − 1 most recent observations and attach yext

t+1

Compute predictions êjt+1 from models M
j ∈ M

Compute weights wj
t+1

Compute predictions ŷj
t+1 from models M j ∈ M

Compute final prediction ŷt+1 =
∑m

j=1 ŷ
j
t+1 · wj

t+1

Add yt+1 to Yts and return to metalearning step
end

temperature of a given day. From the precipitation levels we create a logical
variable that describes if it did or did not rain in a given day.

In Figs. 1 and 2 we present a view to the solar radiation dynamics. Figure 1
shows the mean and respective deviation of solar radiation levels per day of the
year. As expected, solar radiation is higher in the warmer seasons of the year.
Nonetheless, it also presents a complex structure with several peaks across the
days. Figure 2 illustrates the solar radiation per mean temperature, grouped by
days that had and had not any rainfall. It also contains LOESS curves that indi-
cate a positive correlation between temperature and solar radiation. Moreover,
days without rainfall have considerably higher solar radiation than rainy ones.
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Fig. 1. Mean and standard deviation of solar radiation per day of the year (in W/m2)
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Fig. 2. Solar radiation by mean temperature, grouped by days that had rainfall and
days that had not any rainfall

5 Empirical Experiments

In this section we present the empirical experiments carried out to validate the
proposed method for solar radiation forecasting. These address the following
research questions:

Q1: Is it beneficial to weight individual forecasters according to an Arbitrating
scheme for solar radiation forecasting tasks?;

Q2: How does the performance of the proposed method relates to the perfor-
mance of the state-of-the-art methods for solar radiation forecasting tasks?

The experiments were carried out using performance Estimation [30] R pack-
age. The methods used in the experiments were evaluated using the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE) using a Monte
Carlo procedure with 10 repetitions. For each repetition, a random point is
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picked from the time series. The previous window comprising 40% of t is used
for training and the following window of 20% of t is used for testing.

The metafeatures used by M are the primitive ones, described previously
in the Sect. 4.1, together with the following characteristics computed at each
embedding vector: (i) kurtosis, which is a measure of flatness of the data distri-
bution with respect to a Gaussian distribution; (ii) skewness, which measures
the symmetry of the distribution; (iii) series trend, calculated according to the
ratio between the standard deviation of the series and the standard deviation of
the differenced series; (iv) serial correlation, estimated using a Box-Pierce test
statistic; and (v) long-range dependence, using a Hurst exponent estimation
with a wavelet transform. These statistics summarise the overall structure of
the time series of water consumption. For a comprehensive description of each
statistic see [32].

We estimate the optimal embedding dimension (K) using the method of
False Nearest Neighbours [12]. This method analyses the behaviour of the nearest
neighbours as we increase K. According to the authors from [12], with a low sub-
optimal K many of the nearest neighbours will be false. Then, as we increase K
and approach an optimal embedding dimension those false neighbours disappear.
K is set to 6 in our experiments.

The base-learners M comprising the ensemble are the following: MARS [20],
Generalized Linear Models [6], Random Forest [34], SVM [10], Rule-based regres-
sion [14], Generalized Boosted Regression [24], Gaussian Processes [10] and Feed
Forward Neural Networks [31]. Each of the individual learners is composed of 6
different parameter settings adding up to 48 learning models. We use a Random
Forest as a meta-learner model.

We compare the proposed method to the following four baselines:

ARIMA: The state-of-the-art ARIMA model, using the function auto.arima
from the forecast R package [9]. This function automatically tunes ARIMA
to an optimal parameter setting;

ARIMAX: Similar to the one above, but augmented with the external features
outlined in the case study section;

NN: A feed forward neural network with a single hidden layer. The neural
network was optimized using a grid search procedure using a total of 56
parameter combinations. The final parameter setting was 7 hidden units and
a weight decay of 0.2;

BT: Bagged Trees from [21]. This bagging approach is specifically designed for
time series forecasting tasks;

S: This is a variant of the proposed method, but stripped of the metalearn-
ing layer. That is, M is trained in advance and their predictions are simply
averaged at run-time using the arithmetic mean;

Blending: We use a metalearning technique called Blending to combine the
individual learning models. Blending was introduced in [2] in their win-
ning solution for the well known Netflix prize. In practice, it is a variant
of Stacking [33] in which out-of-bag predictions are produced with a holdout
strategy.
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The results from the Monte Carlo experiments are reported in Table 1.
Besides the baselines described above, AE denotes the proposed method for
GHI forecasting tasks.

Relative to S, our approach is able to overcome its performance, with similar
deviance across Monte Carlo repetitions, both in terms of RMSE and MAE.
Overall we conclude that indeed our metalearning approach is beneficial for
solar radiation forecasting tasks (Q1).

The performance of the proposed method are slightly better than the ARI-
MAX approach, which shows the competitiveness of our method. Other state-of-
the-art baselines such as NN and ARIMA (without external features) perform
clearly worse than our method. In effect, we also conclude that our hypothesis
Q2 is valid. Our method was also able to overcome the Blending approach to
model combination, which is a widely used technique.

In summary, our experiments validate our hypothesis that our proposed
method is able to model the different dynamics of solar radiation with a com-
petitive performance relative to state-of-the-art methods.

Table 1. Average results from the methods using RMSE and MAE

Method RMSE MAE

ARIMA 1407.561± 88.06 1129.49± 76.32

ARIMAX 728.43± 35.46 579.18± 29.03

BT 1068.96± 52.90 856.57± 44.85

NN 1232.26± 610.20 1000.47± 533.57

Blending 731.49± 40.67 566.80± 32.93

S 808.82± 46.99 649.36± 39.12

AE 721.31±41.47 566.22±35.49

6 Conclusions

In this paper we presented a new method for GHI forecasting tasks. We argued
that the planning of operations related to solar radiation is an important topic
with economical and social impact. Our proposed method settles on a met-
alearning scheme called Arbitrating, introduced before by [13,22]. We extend
their ideas to GHI forecasting tasks.

We leverage the Arbitrating strategy to dynamically weight individual models
in an ensemble. We reasoned that the series of water consumption follows a
recurring pattern with different regimes. In effect, our approach allows a fast
detection and adaptation to the different regimes causing the data.

Results from numerical experiments suggest that our metalearning is worth-
while. Moreover, we empirically demonstrate that the proposed method is com-
petitive with other state-of-the-art techniques for GHI forecasting tasks, such as
Neural Networks and the classical time series model ARIMA.
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Future work includes: (i) generalise the proposed methodology for other
time series forecasting tasks; (ii) Compare the proposed method against a
time-dependent combining heuristic (e.g. recent performance of individual
learners).

In the interest of reproducible research our methods are publicly available as
an R package called tsensembler1.
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Abstract. Research in renewable energies is a global trend. One remark-
able area is the biomass transformation into biotehanol, a fuel that can
replace fossil fuels. A key step in this process is the pretreatment stage,
where several variables are involved. The experimentation for determin-
ing the optimal values of these variables is expensive, therefore it is neces-
sary to model this process. This paper focus on modeling the production
of biotehanol from olive tree biomass by data mining methods. Notably,
the authors present Reg-CO2RBFN, an adaptation of a cooperative-
competitive designing method for radial basis function networks. One
of the main drawbacks in this modeling is the low number of instances
in the data sets. To compare the results obtained by Reg-CO2RBFN,
other well-known data mining regression methods are used to model the
transformation process.

Keywords: Regression models · Data mining · Enzymatic hydrolisis ·
Olive tree biomass

1 Introduction

Nowadays, the interest for renewable energy is increasing [1]. Olive tree biomass
(OTB) is an abundant organic residual in Mediterranean countries that can be
converted in bioethanol. Due to the benefits of olive oil, olive tree cultivation
is expanding worldwide. In these places olive trees are periodically pruned to
rejuvenate them, as well as to prevent propagation of diseases. The process for
obtaining bioethanol from OTB has the following advantages: large availability of
OTB, low cost, CO2 emissions reduction when this fuel is used, and a decreasing
of dependency on energy imports.

The basic steps in the production of bioethanol from OTB are pretreatment,
enzymatic hydrolysis and fermentation. One of the main steps is the pretreat-
ment stage [2], whose performance can be affected by several factors such as
processing time, temperature and the use of different salts. Therefore, for the
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experts involved in the field it is important to adequately model or characterize
this process. A key challenge in this modeling is the low number of data samples
(instances) available in the experimentation, due to the high costs involved in
obtaining them.

Data mining methods have been successfully used for regression tasks [3]
even in the renewable energy field [4–7]. Together with Multilayer Perceptron
(MLPs) [8], Radial Basis Function Networks (RBFNs) are one the best well-
known and important Artificial Neural Network (ANN). The efficacy of RBFNs
has been proved in many areas, including regression [9]. The authors have devel-
oped CO2RBFN, a cooperative-competitive evolutionary RBFN design method
[10] that has been successfully used for regression in the modeling of concentrated
photovoltaic modules [5].

In this paper Reg-CO2RBFN, an adaptation of CO2RBFN, is applied to the
problem of modeling the bioethanol conversion process from OTB. The main
objective of this adaptation is facing the training with a low number of instances
per data set. With this aim, a supervised clustering algorithm is introduced in the
initialization step of the algorithm. Other recognized data mining methods, such
as a MLP trained with the backpropagation technique and a Suppport Vector
Machine, have been also used to model the same process. The performance of
Reg-CO2RBFN and these other methods will be compared.

This paper is organized as follows: Sect. 2 depicts the bioethanol produc-
tion process. The Reg-CO2RBFN method is described in Sect. 3. In Sect. 4 the
experimental framework is outlined and the results obtained are presented. The
results produced by the proposed method are compared with that obtained by
other data mining models, as explained in this section. Finally, the conclusions
appear in Sect. 5.

2 Bioethanol Production from Olive Tree Biomass

OTB is a lignocellulose material and it is considered a promising candidate to
be transformed into renewable fuels, therefore substituting the well-known fossil
fuels [1] at some extent. The pruning of olive trees generates a huge amount of
biomass that is dismissed or must be eliminated, for example by burning it. Tak-
ing into account environmental considerations, the transformation of OTB into
bioethanol implies several advantages. It is a clean way of eliminating organic
residuals, and implies a net reduction of CO2 emissions when this fuel is used.
In addition, it reduces the dependency from fuel imports.

The process of converting a lignocellulose material into bioethanol includes
three steps: pretreatment, enzymatic hydrolysis and fermentation. Pretreatment
is a key step in the whole process and has a direct influence over the hydroly-
sis step [2]. The objective of this first step is to achieve maximal fermentation
yields and rates. The use of FeCl3, a metal salt, has demonstrated its efficacy
in the pretreatment phase. This salt concentration, along with the settings for
temperature and time, define the input variables of the pretreatment. From the
pretreatment experiments, liquids and pretreated solids are obtained and sepa-
rated by filtration. At this time, the content of glucose and hemicellulosic sugars
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in both fractions can be determined. Then, the pretreated solids are further
submitted to enzymatic hydrolysis under standard conditions, and the enzy-
matic hydrolysis yield for each experiment (grams of glucose in the hydrolysate
per gram of glucose in the pretreated material or in the original material) is
evaluated.

This research was carried out in Jaén (Spain), collecting the OTB from its
olive tree fields. Due to the costs involved in performing empirical pretreatment
analysis, only twenty experiments were conducted. The Box-Behnken method-
ology was used to equally distribute the values of experiments (instances). For
a further explanation see [11].

In summary, the objective is to model the process of transforming a lignocel-
lulose material into bioethanol. In this model the input variables are: duration of
the pretreatment (Time), its temperature (Temp) and the molar concentration
of FeCl3 (FeCl3). The output variables are the Enzymatic Hydrolysis Yields in
Raw Material (EHYRM) and Enzymatic Hydrolysis Yields in Pretreated Mater-
ial (EHYPM). The low number of the conducted experiments implies a challenge
for most learning methods.

3 Reg-CO2RBFN: Adaptation of CO2RBFN for
Regression Tasks

In this paper a hybrid evolutionary cooperative-competitive model for designing
RBFNs is proposed. This section starts providing a brief introduction to this
type of neural networks, in Sect. 3.1. Then, in Sect. 3.2, the detailed description
of the proposed model, Reg-CO2RBFN, is addressed.

3.1 Radial Basis Function Networks

RBFNs are an artificial neural network paradigm [12] with remarkable character-
istics, such as simple topological structure and universal approximation ability
[9]. The topology of an RBFN is composed by three feed-forward connected lay-
ers: an input layer with n nodes, a hidden layer with m neurons or RBFs, and
an output layer with one node for regression problems.

The neurons in the hidden layer present a radially-symmetric basis activation
function, φi : Rn → R, which can be defined with several shapes, being the
Gaussian function (1) the most widely used.

φi(x ) = e−(‖x−ci‖/di)
2

(1)

where ci ∈ Rn is the center of the basis function φi, di ∈ R is the width (radius),
and ‖‖ is typically the Euclidean norm on Rn. This expression is the one used
in this paper as RBF.

The output neuron implements the weighted sum of RBF outputs in the
hidden layer, as can be seen in Eq. 2, where wi are the weights. Each one of
them represents the contribution of one RBF to the output node.
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f(x ) =
m∑

i=1

wiφi(x ) (2)

The main goal in the RBFN design process consists in determining the centers
and widths of the neurons (RBFs) in the hidden layer, as well as the linear output
weights connecting the RBFs to the output neuron.

An important paradigm for designing RBFNs is Evolutionary Computation
(EC) [13–15]. EC uses natural evolution and stochastic searching to design opti-
mization algorithms. Concretely, EC evolves a population of individuals accord-
ing to operators as mutation, recombination or selection, and each individual
in the population receives a measure proportional to its quality, called fitness.
Reviews on EC applied to RBFN design can be found in [16,17].

3.2 The Proposed Method, Reg-CO2RBFN

As mentioned, the presented method is a cooperative-competitive evolutionary
proposal for designing RBFNs. In this methodology each individual of the popu-
lation corresponds to one RBF, and the entire population implements the whole
solution. The individuals cooperate towards a definitive solution, but they must
also compete for survival.

In this environment, in which the solution depends on the behavior of many
components, the fitness of each individual is known as credit assignment. In
order to measure the credit assignment of an individual three factors have been
proposed: the RBF contribution to the network output, the error in the basis
function radius and the degree of overlapping among RBFs.

The application of the operators is determined by a Fuzzy Rule-Based Sys-
tem (FRBS). The inputs of the FRBS are the three parameters used for credit
assignment, and the outputs are the operators’ application probability.

Algorithm 1. CO2RBFN algorithm main steps.
1: Initialize RBFN

2: while(Stop condition is not met) � Training loop

3: Evaluate RBFs
4: Apply operators to RBFs
5: Substitute the eliminated RBFs
6: Select the best RBFs

In the adapted version presented in this work, the network initialization
step has been changed. The new initialization is based on supervised clustering
[18]. Taking into account the low number of instances, the aim is introducing a
previous analysis of the data, before the evolutionary phase, that reinforces the
learning process. The main steps of Reg-CO2RBFN, detailed below, are shown
in Algorithm 1 in pseudocode.
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RBFN Initialization. To initialize the RBFN, an adapted version of the k-
means algorithm [19] is used. K-means is a clustering that aims to partition
the data set into k clusters. Each pattern belongs to a cluster and the cluster
prototype is the mean of the patterns that belongs to this cluster. Thus, each
RBF center, ci , is assigned to a previously calculated cluster. According to [18]
the modification carried out consists in taking into account the input and the
output features of the data set during the cluster determination process. The
RBF widths, di, will be set to the average distance between the centers. Finally,
the RBF weights, wij , are set to zero.

RBFN Training. To adjust the RBF weights the Singular Value Decompo-
sition (SVD) algorithm [20] is used. SVD is a deterministic technique typically
used in matrix resolution.

RBF Evaluation. In order to evaluate the fitness or credit assignment of each
RBF φi in the cooperative-competitive environment, three parameters, ai, ei, oi
are defined:

– The contribution, ai, of the RBF φi, i = 1 . . . m, is determined by considering
its maximum weight. An RBF with a low weight will have a low contribution
and so on.

– The error measure, ei, for each RBF φi, is obtained by calculating the Root
Mean Square Error (RMSE) (3) inside its width:

ei =

√√√√√

n∑

t=1

(ft − yt)2

n
(3)

where ft is the output of the model (2) for a point inside the width of RBF
φi, yt is the real output at the same point, and n is the number of points
inside the RBF φi.

– The overlapping of the RBF φi and the other RBFs is quantified by using
the parameter oi. This parameter is computed by taking into account the
fitness sharing methodology [21], whose aim is to maintain the diversity in the
population. This factor is expressed as indicated in Eq. 4, where oij measures
the overlapping of the RBFs φi and φj , j = 1 . . . m.

oi =
m∑

j=1

oij (4)

oij =

⎧
⎨

⎩

(1 − ‖φi − φj‖/di) if ‖φi − φj‖ < di

0 otherwise
(5)
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Applying Operators to RBFs. Four operators are defined in order to be
applied to the RBFs:

– Operator Remove: eliminates an RBF.
– Operator Random Mutation: the number of coordinates to modify of the

selected RBF is randomly generated between 1 and 25% of the total number
of coordinates. The chosen coordinates are modified in a percentage between
5% and 25% of the old width. The width is adjusted in a similar way to the
coordinates.

– Operator Biased Mutation: modifies the width and some coordinates of the
center, between 1 and 25% of the total number of coordinates, using local
information of the RBF environment. Concretely, the patterns inside the RBF
width are determined and the new coordinates are allocated in the average of
the corresponding patterns coordinates. This technique follows the clustering
methodology [19]. The width is obtained by changing its old values to a
random number (between 5% and 25%).

– Operator Null: in this case any operator is applied.

The probability of applying an operator to a given RBF is determined by
means of a Mandani-type FRBS [22] which represents expert knowledge in order
to obtain a simple and accurate RBFN.

The inputs of this system are the parameters used to define the credit assign-
ment of the RBF, and the outputs represent the probability of applying Remove,
Random Mutation, Biased Mutation and Null operators, respectively. Table 1
shows the rule base used to relate the described antecedents and consequents.

Table 1. Fuzzy rule base representing expert knowledge in the design of RBFN

Antecedents Consequents Antecedents Consequents

va ve vo premove prm pbm pnull va ve vo premove prm pbm pnull

R1 L M-H M-H L L R6 H M-H M-H L L

R2 M M-L M-H M-L M-L R7 L L M-H M-H M-H

R3 H L M-H M-H M-H R8 M M-L M-H M-L M-L

R4 L L M-H M-H M-H R9 H M-H M-H L L

R5 M M-L M-H M-L M-L

For example, the FRBS promotes that an RBF with a poor credit assignment,
low contribution, high error and high overlapping is eliminated. Otherwise the
RBF is maintained.

Introduction of New RBFs. In this step, the removed RBFs are substituted
by new ones. Each new RBF is located at the center of the area with maximum
error. Its width is set to the average of the RBFs. Finally, the weights are set to
zero.
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Replacement Strategy. In this step the newly generated RBFs are compared
with the original ones, and those with the best behavior are incorporated into
the new population.

4 Experimentation and Results

As mentioned, applying the Box-Behnken methodology twenty chemical pre-
treatment experiments have been conducted to equally space the values of
the data samples (instances) [11], obtaining twenty different data patterns.
These make up the working data set, used to carry out the following model-
ing experimentation.

4.1 Experimental Framework

The input variables used to train the models are the following:

– Duration of the pretreatment (Time), measured in minutes and with values
that oscillates between 0 and 30.

– Temperature of the pretreatment (Temp), which values go from 120 to 180
centigrade degrees.

– Molar concentration of FeCl3 (FeCl3), whose values are in the range 0.050 to
0.275 M.

The considered output variables are the Enzymatic Hydrolysis Yields in Raw
Material (EHYRM) and Enzymatic Hydrolysis Yields in Pretreated Material
(EHYPM). All the values are summarized in Table 2.

As the number of available patterns is small (only 20), consequently the leave
one out validation is applied. This implies that 20 models haven been developed,
each one of them using 19 patterns for training and the remainder one for testing.

Two evaluation metrics have been computed to assess the methods perfor-
mance: RMSE (Root Mean Square Error) and the coefficient of determination,
R2. RMSE is defined in Eq. 6, where n is the number of instances, ft is the
output of the model and yt is the real output for the t-th instance, respectively.

RMSE =

√√√√√

n∑

t=1

(ft − yt)2

n
(6)

The quality of the calculated model from the training data is also evaluated
with R2, that obtains the fit between the predicted and the real data (7).

R2 = (
cov(f, y)

σfσy
)2 (7)

where cov(f, y) represents the covariance between the model output and the real
output, and σf and σy are the standard deviations for the model output and the
real output, respectively.
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Table 2. Values from the OTB pretreatment experiments

Input variables Output variables

n Time Temp FeCl3 EHYRM EHYPM

1 30 120 0.125 10.14 19.71

2 0 140 0.050 12.23 19.92

3 15 160 0.050 19.57 34.61

4 0 140 0.200 11.66 19.43

5 30 140 0.200 19.67 39.94

6 15 140 0.125 14.62 23.17

7 15 140 0.125 15.10 27.34

8 30 160 0.125 28.07 55.80

9 15 120 0.050 11.85 18.85

10 30 140 0.050 11.08 19.81

11 15 120 0.200 8.76 14.63

12 0 160 0.125 18.80 33.69

13 15 140 0.125 14.10 25.70

14 15 160 0.200 36.50 75.54

15 0 120 0.125 12.62 20.07

16 0 180 0.200 25.58 93.16

17 0 160 0.275 28.73 66.87

18 30 180 0.200 20.17 93.55

19 30 160 0.275 38.85 88.71

20 30 180 0.275 11.36 96.15

In order to compare the results obtained for the proposed method, other two
data mining methods are used: MLP-BR and NU-SVR. The methods’ names and
their implementation has been obtained from KEEL [23]. A brief description of
this methods follows:

– MLP-BR. This algorithm is a implementation of the well known MLP [8],
one of the most popular ANN methods. An MLP consists of multiple layers
of interconnected hidden nodes. The hidden nodes receive the inputs from
the input layer and calculate outputs which depend on the input and their
activation function. The output calculated by the hidden nodes is forwarded
to the next layer and so on up to reach the network output layer. As learning
technique the model uses back-propagation, the value predicted by the model
is compared with the real one, and the committed error is used to adjust
the weights connecting the units in each layer. This process continues until a
small error is obtained.
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MLP-BR [24], the algorithm used in our experiments, is essentially a multi-
layer perceptron designed to produce a continuous output as prediction, so it
is adapted to regression tasks.

– NU-SVR. This implementation follows the Support Vectorial Machine (SVM)
[25] technique. The training of SVMs consists on solving a quadratic optimiza-
tion problem to find the maximum separation margin between pattern cate-
gories. And adaptation of the basic algorithm, named NU-SVM [26], changes
the C parameter by other called NU which is easier to adjust.

In [27], SVMs can be seen as an universal tool for solving many task such
as regression problems. The implementation used in this experimentation,
NU-SVR [28], is a regression SVM based on the SMO (Sequential Minimal
Optimization) [29] algorithm. This algorithm reduces the training process and
therefore is more efficient than the traditional learning model.

The values of the configuration parameters for each method are set to the
default ones proposed by the respective authors. The number of executions is
established to three, as these are non-deterministic methods. The main parame-
ters used for the algorithms are shown in Table 3.

Table 3. Parameter specification for the algorithms employed in the experimentation.

Algorithm Parameter Value

Reg-CO2RBFN Generations of the main loop 100

Number of RBFs 8

MLP-BP Hidden layer 1

Hidden nodes 8

Transfer Htan

Eta 0.15

Alpha 0.10

Lambda 0.0

NU-SVM KERNELtype RBF

C 100.0

Eps 0.001

Degree 1

Gamma 0.01

Coef0 0.0

4.2 Results and Analysis

For each output variable of the hydrolysis process, one model is determined
by each data mining method. The provided performance indicators are average
values from these 20 runs. The results obtained with the training data sets
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Table 4. Results obtained from training data sets

Variable Reg-CO2RBFN MLP-BP NU-SVM

R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓
EHYRM 0.8846 2.8440 0.6807 5.4435 0.6622 6.6978

EHYPM 0.9919 2.5868 0.9072 10.7019 0.8532 18.2879

are shown in Table 4. For each method, the RMSE and the R2 coefficient are
calculated. The best results are highlighted in bold. For RMSE lower values are
better, whereas for R2 higher values are better.

In summary, that the Reg-CO2RBFN method outperforms the remaining
methods, both in RMSE error and R2 coefficient for all output variables, can
be concluded from Table 4. By observing the RMSE metric, that MLP-BP and
NU-SVM are clearly outperformed by Reg-CO2RBFN for both variables can
be seen, since MLP-BP and NU-SVM perform quite bad. These results can be
explained by the low number of instances in the training data sets. Regarding
the R2 coefficient, Reg-CO2RBFN obtain remarkable values, specially for the
EHYPM variable.

The RMSE obtained by the models from the tests data sets are shown in
Table 5. As before, best results are highlighted in bold.

Table 5. Results obtained from test data sets

Variable Reg-CO2RBFN MLP-BP NU-SVM

EHYRM 6.5544 7.1525 7.8550

EHYPM 7.1723 9.8838 22.5404

For the test data sets, it must be noticed that Reg-CO2RBFN outperforms
the other methods, both for the EHYRM and specially for the EHYPM vari-
able, whereas Nu-SVM achieve very bad results, possibly attributable to the low
number of instances available in the data sets as noted before.

5 Conclusions

The chemical research described in this work, carried out in Jaén, has allowed
to obtain bioethanol from olive tree biomass. This study represents another
contribution inside the renewable energy field. There are various parameters
or variables involved in the process of obtaining bioethanol. In addition, the
experimentation is expensive and also time consuming. For this reasons, it is
important to automatically obtain a model able to explain the process.

In this paper three data mining methods have been used to modeling
the process: Reg-CO2RBFN, an RBFN designing technique developed by the
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authors, an MLP and an SVM. The main problem for the data mining meth-
ods is the low number of experiments (instances) available due to the high cost
previously mentioned.

The data mining methods have been trained and have produced a model
for each output variable. The results obtained show that Reg-CO2RBFN has a
good behavior in spite of the low training data available, and outperforms the
remaining data mining methods for the output variables in the study.

As future work a multi-target regression version of Reg-CO2RBFN will be
studied.
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Science and Technology under project TIN2015-68454-R.
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Abstract. In this work, a hybrid system for wind power ramps events
prediction in wind farms is proposed. The system is based on mod-
elling the prediction problem as a binary classification problem from
atmospheric reanalysis data inputs. On the other hand, a hybrid neuro-
evolutive algorithm is proposed, which combines Artificial Neuronal Net-
works such as Extreme Learning Machines, with evolutionary algorithms
to optimize the trained models. The phenomenon under study occurs
with a very low probability, for this reason the problem is so unbalanced,
and it is necessary to resort to techniques focused on obtain good results
by means of a reduction of the samples from the majority class, as the
SMOTE approach. A feature selection is performed by the evolutionary
algorithm in order to choose the best trained model. Finally, this model
is evaluated by a test set and its accuracy performance is given. The
accuracy obtained in the results is quite good in terms of classification
performance.

Keywords: Evolutionary algorithms · Extreme Learning Machine ·
SMOTE · Wind power ramp events

1 Introduction

Currently, wind energy is the most important sustainable energy source in the
world, in terms of annual growing, penetration in the power system and economic
impact [1]. One of the problems of wind energy is that it exhibits intermittent
generation (depending on the weather conditions) [2], which makes difficult its
integration in the system. Wind power generation forecasting is therefore a key
factor to improve this integration [3–7]. Among the different issues in wind power
forecasting, one of the most significant is the existence of wind power ramp events
(WPREs) in wind farms [8,9]. WPREs consist of large fluctuations of wind power
in a short period of time, leading to a significant increasing or decreasing of the
power produced in the wind farm. The accurate prediction of WPREs has been
reported as an effective method to mitigate the economic impact of these events
in wind generation power plants [8,10].
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Following [10], the prediction of WPREs has been tackled with two major
families of techniques: statistical approaches and physical models. Statistical
approaches include different methodologies such as autorregressive moving aver-
age (ARMA) algorithms, dynamic programming, neural computation techniques
or kernel methods, etc. In [11] a hybrid ARMA – Hidden Markov Model approach
is proposed to short-term wind speed prediction, including wind ramp events.
Experiments in two locations of the USA (one in Pacific Northwest and one in
southern Wisconsin) show a good performance of the methodology proposed,
using surface wind speed and direction time series to estimate future values of
the wind speed. In [12], a neural network approach for switching between three
different regimes of WPREs (ramp-up, ramp-down and no-ramp) is proposed.
Depending on the WPRE type (evaluated using a gradient time series of the
wind speed), a different neural network is trained, with specific structure and
training process. Results of the application of this approach in data from Spanish
wind farms are reported.

Regarding physical models applied to WPREs detection and prediction, there
are a good amount of techniques proposed in the literature. For example, in
[13] the evaluation of a conventional wind power forecasting methodology based
on the combination of two Numerical Weather Models (NWMs) is carried out.
Recently, in [14] data from Global Circulation Models (reanalysis data) are used
to identify possible meteorological caused of WPREs. A methodology based on
wavelets and PCA is applied to estimate the best set of features (predictive
variables) to estimate WPREs.

In spite of this huge previous research both on statistical approaches and
physical models, there have been very few works that consider both WPRE pre-
diction paradigms together. In [15] the possibility of using statistical techniques
to carry out a down-scaling process with application in WPRE detection is sug-
gested. A similar approach was first proposed in [16] for short-term wind speed
prediction, but without direct application to WPREs prediction.

This paper presents a novel hybrid WPRE classification framework that
merges parts of physical models with state-of-the-art statistical approaches.
Moreover, the problem is so unbalanced, for this reason we have to apply another
technique, the SMOTE approach, to improve the results in the classification
process. Specifically, the work presents a hybrid system for WPRE classification
based on Extreme Learning Machine (ELM) combined with evolutionary algo-
rithms, plus the SMOTE technique, in which predictive variables are obtained
from the ERA-Interim reanalysis data. It is proposed the use of direct reanalysis
data as predictive variables of machine learning classification technique, (ELM).
Results in data from a wind farm in Spain will show the performance of the
proposed system.

The remainder of the paper is structured in the following way: next section
presents the problem definition that is tackled in this paper, in which the WPRE
prediction is formulated as a regression task. Section 3 presents the data and
predictive variables involved in the paper. In Sect. 4 the main techniques that
are tested to solve the WPRE regression problem are described. In turn, Sect. 5
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shows the experimental part of the work, where the results are obtained in three
WPRE prediction problems located at wind farm in Spain. Section 6 closes the
paper by giving some final concluding remarks on the work carried out.

2 Problem Definition

Following [8], a WPRE can be characterized by the following parameters:

– Magnitude (ΔPr): defined as the variation in power produced in the wind
farm or wind turbine during the ramp event.

– Duration (Δtr): time period during which the ramp event is produced.
– Ramp rate (ΔPr/Δtr): defined as the ramp intensity.
– Timing (t0): a time instance related to the ramp occurrence, which can be

defined as the starting point or the central point of the wind ramp event.

Let St : Rk → R be the so-called ramp function, which evaluates if a WPRE
occur or not. On the other hand, St can be defined by several forms, but the
power (Pt) produced in the wind farm or wind turbine is included in all of them.
The most common ones are:

S1
t = Pt+Δtr − Pt (1)

S2
t = max([Pt, Pt+Δtr ]) − min([Pt, Pt+Δtr ]) (2)

Using any of the previous definitions of St, and setting a threshold called S0,
a binary label for each ramp event can be defined:

It =
{

1 if St ≥ S0

0 otherwise
(3)

Regarding the set of predictive variables, we propose to take into account the
meteorological processes in the wind farms, because they are the physical precur-
sors of WPREs. These meteorological variables can be obtained from different
meteorological prediction systems, including reanalysis data [14], which will be
detailed in the next section. The problem tackled can be defined as follows: Let
Xt = {xt1, . . . , xtN}, t = 1, . . . , T be a time series of N predictive variables, and
considering T associated values of the ramp function It, the problem consist of
training a model M in a subset of (Xt, St)T (training set), for the purpose of
that model M be applied to a test set (Xt, St)R, where a classification error (e)
is minimized.

3 Data and Predictive Variables

For the development of this work, we use a reanalysis data set, which will training
our classification model. A reanalysis project consists on combining meteorolog-
ical observations in the past with current forecast models, in order to obtain
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numerical weather forecasts in a regular grid that covers the entire planet. Cur-
rently, a reanalysis project extend from 1979 to nowadays, offering us the state
of the Earth system through twice-daily global numerical weather forecasts, air
quality analysis, atmospheric composition monitoring, climate monitoring, ocean
circulation analysis, hydrological prediction, etc. Maybe the most important one
is the ERA-Interim reanalysis project, which is the latest global atmospheric
reanalysis produced by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) [17]. ERA-Interim is a global atmospheric reanalysis from 1979,
continuously updated in real time. The data assimilation system used to produce
ERA-Interim is based on a 2006 release that includes a 4-dimensional variational
analysis (4D-Var) with a 12-h analysis window. The spatial resolution of the data
set is approximately 15 km, on 60 vertical levels from the surface up to 0.1 hPa.
ERA-Interim provides 6-hourly atmospheric fields on model levels, pressure lev-
els, potential temperature and potential vorticity, and 3-hourly surface fields.
At this time, a new project is being developed, ERA-5, which will present more
resolution in respect of the covered area and the number of pressure levels, and
it will present 1-hourly atmospheric fields also.

In order to solve the WPRE prediction problem in this paper, we consider
wind and temperature-related predictive variables from ERA-Interim at 4 spe-
cific points in the neighborhood of the area under study, as Fig. 1 shows. The
variables considered as predictors (Table 1) are taken at different pressure levels
(surface, 850 hPa and 500 hPa). A total of 12 predictive variables per ERA-
Interim node are considered at time t, i.e. in this problem Xt is formed by
N = 48 predictive variables. The ERA-Interim time resolution for the predictive
variables (6 h) sets in this case the ramp duration taken into account (Δtr = 6).
These predictive variables are obtained for a wind farm located in the southern
of Spain as Fig. 1 shows. Moreover, we have samples of the wind speed in that
area with which the power P will be calculated.

Fig. 1. Wind farm considered for the experiments. The four closest nodes from the
Era-Interim reanalysis (predictive variables) are also displayed in the picture.

Then, the ramps functions can be written as follows:

S1
t = Pt+6 − Pt (4)
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Table 1. Predictive variables considered at each node from the ERA-Interim reanalysis.

Variable name ERA-Interim variable

skt Surface temperature

sp Surface pression

u10 Zonal wind component (u) at 10m

v10 Meridional wind component (v) at 10m

temp1 Temperature at 500 hPa

up1 Zonal wind component (u) at 500 hPa

vp1 Meridional wind component (v) 500 hPa

wp1 Vertical wind component (ω) at 500 hPa

temp2 Temperature at 850 hPa

up2 Zonal wind component (u) at 850 hPa

vp2 Meridional wind component (v) at 850 hPa

wp2 Vertical wind component (ω) at 850 hPa

S2
t = max([Pt, Pt+6]) − min([Pt, Pt+6]) (5)

Thus, each model (M) analyzed in this paper must be trained with the data
(Xt, S

1
t )T or (Xt, S

2
t )T, where S1

t and S2
t are computed using Eqs. (4) and (5),

respectively.
We can see more information about the wind farm data used in Table 2.

Table 2. Details of the data set obtained from ERA-Interim

Wind farm A

Number of samples 15435

Number of ramp samples 727

% of ramp samples 4.71%

Years of samples 2002:2013

4 Computational Methods

A hybrid binary classification system is proposed in this paper, in such a way
that an evolutionary algorithm looks for the best set of features for an Extreme
Learning Machine. In this section we also describe how to manage the unbalance
characteristics of the data base.

4.1 Unbalanced Data Processing

The classification of unbalanced data is a very common problem in our days.
A data set is unbalanced when its classes are not represented in a equitable way,
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i.e., the number of samples belonging to a class is much higher than the others.
Frequently, the cost of a wrong classification of an unusual sample is higher
than in the opposite case. When we want evaluate the performance in a machine
learning algorithm, its prediction’s accuracy is verified. However, this procedure
is not appropriate when the data set is unbalanced, because we can obtain a high
percentage of accuracy at the expense of always predict the majority class. For
this reason it is necessary to apply alternative techniques in order to evaluate the
algorithm used. In this paper we use the main diagonal of the confusion matrix.
Our classification system is binary, hence we have only two classes: ramp and
not ramp. The confusion matrix’s size will be 2 × 2 as Table 3 shows.

Table 3. Confusion matrix.

Not ramp Ramp

Not ramp True Negatives (TN) False Positives (FP)

Ramp False Negatives (FN) True Positives (TP)

The positive ones (ramp) are the minority class, and the first measure of the
main diagonal of the confusion matrix will be: (TN + TP )/2.

4.2 Synthetic Minority Over-Sampling Technique (SMOTE)

Several studies have demonstrated that the treatment of the unbalanced data
set’s samples improve the results obtained by the classifier’s training. In fact, [18]
minimized the number of samples of the majority class maintaining the popula-
tion of the minority class in order to improve the results in the training process.
[19] treated the problem as a combination of the over-sampling of the minority
class and the sub-sampling of the majority class. In one of their experiments it
was demonstrated that, reducing the number of samples of the majority class,
the best results was obtained when the classes was represented equitably. The
combination of both techniques provided us major improvements in our results.
Synthetic Minority Over-sampling Technique (SMOTE) [20] is an useful over-
sampling tool for dealing with unbalanced classification problems. The objective
is to increase the number of samples of the minority class by means of the forma-
tion of synthetic samples, working on the characteristics space. An over-sampling
is applied to the minority class by means of the selection of every sample in this
class and introducing synthetic samples as of its the nearest K-neighbors (KNN)
of the same class. Depending on the over-sampling applied, neighbors will be
selected randomly from their KNN. In our case, a implementation k = 5 is used.
Let X = [x1, ..., xn] be a vector of characteristics and n the number of features,
for which its KNNs are calculated, and let Y be one of the its KNN with the same
size. The synthetic sample, Z, is defined as: Z = X +(X −Y )×rand(0, 1), where
rand(0, 1) causes the selection of an aleatory point in the segment between two
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particular features. This approach makes that the decision region of the minor-
ity class become most general. Finally, the technique SMOTE is merged with
an aleatory reduction of the samples from the majority class. This combination
makes that the classifier’s preference for the majority class is inverted for the
minority class.

4.3 Proposed Hybrid Approach

Our system is formed by ELM as classifier approach which also provides the fit-
ness function of the evolutionary algorithm, whereas the evolutionary algorithm
is focused in the feature selection process. With these tools, the experiments car-
ried out in the wind farm located in Spain will be developed in an independently
way. The system proposed consists of two phases: the validation phase, and the
training and test phase. The most important one is the validation step, because
in this part the main features will be selected for the following phases. Moreover,
each phase uses a determined set of characteristics. In our case the split for the
different phases is: 20% for the validation set, 60% for the training set and the
remaining 20% for the test set. Figure 2 outlines the described method.

Fig. 2. Diagram of the classification system

Evolutionary Algorithm. An evolutionary algorithm is a search method that
uses the Darwin’s Theory in order to solve optimization problems. It is based
on a population of solutions which are evolved through successive generations
in which a number of genetic operators are applied: selection, crossover and
mutation. Selection is the process whereby individuals of the population are
selected by means of a ranking process, where only the individuals with the best
fitness are kept for the next iterations. The fitness function used in this problem
is a measure of the confusion matrix’s main diagonal. It is a good measure
to evaluate the performance of the classifier proposed, hence the objective will
be to maximize the value returned for the fitness function calculation, which
is obtained from the output of the ELM algorithm. Once the individuals are
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selected, the crossover operator is applied. Firstly, the binary strings are coupled
at random. Secondly, for each pair of strings, an integer position along the string
is selected uniformly at random. Two new strings are composed by swapping all
bits between the selected position. Finally the mutation is applied with a very
low probability and the offspring is obtained [21]. In this work the evolutionary
algorithm play a part in the validation process.

With this procedure the best set of features are selected in order to improve
the classification procedure in the following steps: training and test phases.

Extreme Learning Machine. A brief explanation of the Extreme Learn-
ing Machine (ELM) is going to carried out in this Section. The use of this
method is currently widespread around the world due to the advantages presents
in the algorithm. Specifically, an ELM [22] is a fast learning method based on
the structure of MLPs with a novel way of training feed-forward neural net-
works. One of the most important characteristics of the ELM training is the
randomness in the process where the network weights are set, obtaining, in
this way, a pseudo-inverse of the hidden-layer output matrix. The simplicity of
this technique makes the training algorithm extremely fast. Moreover, it must
be remarkable its outstanding performance when is compared to other learn-
ing methods, usually better than other established approaches such as classical
MLPs or SVRs. Furthermore, the universal approximation capability presents
in the ELM network, as well as its classification capability, have been already
proven [23].

The ELM algorithm can be explain as follows: given a training set

T = (xi,W i)|xi ∈ R
n,W i ∈ R, i = 1, · · · , l,

an activation function g(x) and number of hidden nodes (Ñ),

1. Randomly assign inputs weights wi and bias bi, i = 1, · · · , Ñ .
2. Calculate the hidden layer output matrix H, defined as

H =

⎡
⎢⎣

g(w1x1 + b1) · · · g(wÑx1 + bÑ )
... · · · ...

g(w1xl + b1) · · · g(wÑxN + bÑ )

⎤
⎥⎦

l×Ñ

(6)

3. Calculate the output weight vector β as

β = H†T, (7)

where H† stands for the Moore-Penrose inverse of matrix H [22], and T is
the training output vector, T = [W 1, · · · ,W l]T .

The number of hidden nodes (Ñ) is a free parameter of the ELM training,
and it can be fixed initially, or in a best convenient way, it must be estimated
for obtaining good results as a part of a validation set in the learning process.
Hence, scanning a range of Ñ values is the solution for this problem.

The Matlab ELM implementation by Huang, freely available in the Internet
[24] has been used in this paper.
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5 Experimental Part

This section presents the experimental evaluation of the hybrid classification
method proposed in this paper for a real problem of WPREs prediction. Specif-
ically, a wind farm in Spain is considered, which location is shown in Fig. 1.
Note that the wind farm selected covers the South of Spain, characterized by
a determined wind regime. The data available for this wind farm ranges from
02/03/2002 to 30/06/2013. A pre-processing step to remove missing and cor-
rupted data was carried out. Note that it is only kept data every 6 h (00 h, 06 h,
12 h and 18 h), to match the predictive variables from the ERA-Interim to the
objective variables.

Due to our classification data sets are unbalanced, when a model is trained,
whether it is the validation, training or test phase, a SMOTE method is applied
to the data set with combinations of over-sampling (os) of the 0%, 50%, 100%
and 200%, and reduction of the majority class, under-sampling, (us) of the 0%,
25%, 50% and 75%, with a total of 16 combinations. Note that the first iteration
(os = 0%, us = 0%) is the case without SMOTE technique.

The following part starts with the validation phase. This process is carried
out by means of the evolutionary algorithm. It consists of 10 iterations and a
binary codification is used. The population is initialized with 50 individuals,
each of one has a total of 48 features. Subsequently, the fitness of the population
is estimated by means of the ELM algorithm. As 16 combinations of SMOTE
are used, it is necessary to train 16 ELM’s and calculating its confusion matrix’s
averages. The best result and also its corresponding combination of the os and
us achieved are saved. The best accuracy is (average diagonal of the confusion
matrix) around 95.61% as Table 4 shows.

Table 4. Best validation results of the wind farm A

Number of hidden neurons 20 40 60 80 100 150 200 300

Over-sampling/under-

sampling

50/75 200/50 100/75 200/75 200/50 200/75 200/50 200/50

Precision 91.58% 90.51% 90.57% 92.32% 90.34% 92.64% 95.27% 94.23%

Average diagonal of the

confusion matrix

90.48% 91.97% 93.36% 93.26% 94.26% 94.45% 95.14% 95.61%

With respect to the training and test part, several experiments with different
numbers of hidden neurons have been carried out. In this case, this data set is not
altered with SMOTE technique because it represents the final samples that have
to be classified. Hence, 16 models are trained for each of the numbers of hidden
neurons and the best one is selected. Table 5 summarize the results obtained in
this part. As in the validation case, it is remarkable the good results obtained
for the wind farm A. This is a very unbalanced data set with a 4.71% of samples
in the ramp class. Despite of, it is a wind farm with a very low number of ramp
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samples, it presents high hits of the ramp class, with a value of the average
diagonal of the confusion matrix around 89% to the different numbers of hidden
neurons (Table 6).

Table 5. Best test results of the wind farm A

Number of hidden neurons 40 60 80 100 150 200 300 500

Over-sampling/

under-sampling

200/75 0/50 200/50 200/0 100/25 50/50 100/0 0/25

Precision 86.03% 90.37% 90.05% 87.40% 91.22% 86.49% 88.62% 86.29%

Average diagonal

of the confusion matrix

87.75% 88.39% 89.53% 89.45% 88.83% 88.65% 90.10% 86.58%

Table 6. Confusion matrix of the wind farm A

No ramp Ramp

No ramp 88.47% 11.52%

Ramp 8.27% 91.72%

6 Conclusions

This paper proposes a hybrid classifier system of WPREs in wind farms. The
proposed system is formed by an Evolutionary algorithm for feature selection,
together with an ELM for providing the final WPRE classification. An SMOTE
algorithm is also considered in order to deal with the unbalanced characteristics
of the WPRE data. Results in real data from a wind farm located at the south
of Spain have show a high accuracy of the system, over 90% in detecting WPRE
from reanalysis data.
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