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Abstract. In this paper, we propose an obstacle avoidance system for UAVs
using a monocular camera. For detecting obstacles, the system compares the
image obtained in real-time from the UAV with a database of obstacles that
must be avoided. In our proposal, we include the feature point detector Speeded
Up Robust Features (SURF) for fast obstacle detection and a control law, with a
defined obstacle as target. The system was tested in real-time on a micro aerial
vehicle (MAV), to detect and avoid obstacles on unknown environment, and
compared with related works.
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1 Introduction

Unmanned Aerial Vehicles (UAV) are applied on several applications like mapping,
journalism, transport, rescue military applications and environments where a human
cannot access [1]. Kendoul [2] classified UAVs into five categories according to the
size and payload: Full-scale, Medium-scale, Small-scale, Mini, and Micro air vehicles
(MAVs).

Most of the commercial MAVs depend on the skill of the pilot, the robustness of
the communication system and sensors on board the vehicle. Sometimes there is dif-
ficult to handle the device due to loss of visibility or because the global position system
(GPS) is not available. Autonomous system is an alternative for solving this issue. The
autonomous systems include motion planning [3, 4], path tracking, obstacle avoidance,
target detection and other areas [5, 6]. These systems require sensing, state estimation,
perception, and knowledge of the situation. The perception is used to detect and avoid
obstacles in real time, recognize and tracking objects and environmental mapping [7].
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Our system works in a low-cost UAV with a monocular camera, uses a perception
method based on feature points for obstacle detection and proportional control for
obstacle avoidance, and no depends on other sensors.

2 Related Works

Research groups on robotics have proposed different techniques for obstacle avoidance,
based on sensors like LIDAR [8–10] and Kinect [11, 12] that show robustness to
identify obstacles, but these sensors involves an additional cost for the any UAV. There
are several vision systems based on optical flow like [13], where authors propose a
system for controlling an ultra-light airplanes with translatory optic flow that avoid
obstacles and keep distance from ground and ceiling. Others approach are autonomous
collision avoidance systems for navigation within houses or indoor environments using
optical flow, micro-sensors and neural networks [14, 15]. A simulation of a navigation
system with optical flow for rotary-wing UAV to avoid lateral and frontal collisions for
a 3D urban environment is presented in [16]. Some of Optical flow problems is that the
method cannot detect frontal obstacles [17].

In spite of the use of Scale Invariant Feature Transform (SIFT), to recognize
collisions by analyzing the change in scale and location between two images [18, 19],
is stable for some works but is not recommended due to the low speed. We use
Speeded-Up Robust Features (SURF) to detect obstacles. There are several application
of SURF like face detection [20], target tracking [21, 22], simple visual navigation
[23], and some works with UAVs. One of these is [24] that uses a bang-bang control.
Our work propose a real time known obstacle detection algorithm based on feature
points, and an offline modeling of the MAV for designing a controller for fixed obstacle
avoidance in unknown environment.

3 Our Approach

3.1 Obstacle Detection

We use two images, one is located in a database that contains obstacles and other is
captured with the onboard camera. In order to find correspondence between these
images, feature point detection, description and matching are used. Additionally we
calculate the obstacle area and mass center to be used as target in the controller.

Feature Point
For feature point detection, there are several works in the literature [25, 26, 27], but
Oriented FAST and Rotated BRIEF (ORB) [28], Fast Retina Keypoint (FREAK) [29],
Binary Robust Invariant Scalable Keypoints (BRISK) [30], Scale Invariant Feature
Transform [31], and Speeded Up Robust Feature (SURF) [32], are widely used algo-
rithms [33, 34, 35, 36]. In our proposal, we use SURF because its the computational
cost is lower without reducing robustness [37].
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The algorithm SURF uses a basic Hessian matrix approximation that has a high
performance regarding the accuracy [38] and integral images for reducing computa-
tional time [39]. The scale-space function uses an image pyramid smoothing with a
Gaussian Filter for finding edges and blobs on different scales, and sub-sampling to
obtain the next higher level of the pyramid. The feature point location is estimated with
a combination of hessian matrix and scale-space function. SURF descriptor determines
the distribution of the pixel intensity within a neighbour region for each detected
feature point. The method used a Haar wavelet to decrease the computation time and
increase the robustness, Haar wavelets are simple filters that determine the gradient at
image, these filters are considerate how block based methods to calculate a directional
derivatives of the image intensity [40].

There is necessary to find correspondence between the image from the database and
the image captured with the UAV. We compare the feature points with the same type of
contrast, achieving a lower computational cost without reducing the descriptor per-
formance. Random Sample Consensus (RANSAC) [41, 42] discards the set of the pairs
points out of the model, Fig. 1.

Obstacle area and mass center
The obstacle area is inversely proportional to the distance between the obstacle and the
UAV, however the camera perspective warps the obstacle geometry. There is required
to compensate the perspective warping of the obstacle using a geometry transform. The
affine transformation is widely used for motion compensation in [43–45]. This trans-
formation is mathematically expressed as:

H ¼
s cos /ð Þ �s sin /ð Þ ty
s sin /ð Þ s cos /ð Þ tx

0 0 1

2
4

3
5 ð1Þ

where / is rotation roll, s is the scale, tx and ty are the translation in x and y between the
current and the last frame. We use the affine transformation to compensate the warping

Fig. 1. Matching between image from database and real-time image at UAV
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H. Additionally, we calculate the area defined by the compensated vertex of the image
from UAV. The fact that the rectangle is a regular figure, we estimate the mass center
by the average value of the x and y coordinates of each vertex.

3.2 Obstacle Avoidance

The platform used in the experimentation is the Bebop Drone 1. The control system of
the MAV manipulates four different control action: pitch, roll, yaw, and altitude. In our
model we use control actions as input (Fig. 2a) and velocities as outputs (Fig. 2b). We
proposed two motions in the plane x and y for the avoid system, in the x-axis the
motion is uniform, i.e. the linear speed x is constant. The motion in the y-axis depends
of the obstacle location, so the control law will be applied on this axis.

Based on the low level control system of Bebop and the acquired dataset, we have
considered that the mathematical relation between angles and motion in axis and can be
represented by a static non linear model combined with a dynamic linear model. The
models for each motion axis can be decoupled and define by the correlations: the
motion in y-axis can be controlled by roll, and the motion in x-axis can be controlled by
pitch. There is necessary to estimate the mathematical model between roll control and
the linear speed in the y-axis. The non linear part of the model can be estimated as a
polynomial regression for the angular inputs of angles and the stationary speed values
in the axis. Nevertheless, these speed values trends to saturation levels. We estimated
the motion model in y-axis that depends only on the roll input the mathematical short
model:

G sð Þ ¼ K
Ts þ 1

ð2Þ

(a)                                                         (b)

Fig. 2. System behavior to different input values (a) Speed input, (b) speed-output in x-axis,
y-axis and z-axis
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Controller design
Our consideration of controller design is which after detecting the obstacle the UAV
should recovery the path. Also, we must define if the obstacle is on the trajectory, the
position error, and the area of the obstacle. For bebop drone we capture 640 � 480
pixels for each image of visual field, where the obstacles are defined by the mass center
as Mc y; zð Þ in the visual field image. The position error e tð Þ is the difference between
the obstacle mass center and the center C y; zð Þ of the image (visual field):
e tð Þ ¼ C y; zð Þ �Mc y; zð Þ.

If e tð Þ the obstacle is located in the right site of the drone otherwise the obstacle is
in the left side. Maximum and minimum values of error are −320 and 320 for y-axis.

The obtained area is proportional to the distance between the onboard camera and
the obstacle. In the Fig. 3 there is graphically explained the relation between the image
plane and the obstacle length: L1

IP1
¼ L1

IP1
and L2

IP2
¼ L2

IP2
.

If LP2 [ LP1, the image plane IP2 increase otherwise IP2 decrease. The relation
between image plane and the distance between UAV and obstacle is IP1

IP1
¼ d1

d2
.

Most of control systems are focused on reducing to zero the error between the
output and set point. However, for the avoidance system, the controller increases the
difference between the obstacle mass center and the visual field center. If the position
error is low, i.e. the obstacle is close to the path center, the control system must send a
higher speed signal to the motor controllers in order to keep distance respect to
obstacles. In the other hand, when the position error is high, the vehicle is far from the
path center reducing the collision probability. The control law depends on the location
of the obstacle, is positive when the error is e tð Þ\0 and negative when e tð Þ[ 0. This
means that the controller output u tð Þ is inversely proportional to the error e tð Þ. We
obtained a control law with a proportional gain Kp and a bias P defined as:

u tð Þ ¼ Kp � e tð ÞþP ð3Þ

Fig. 3. Relation between the area and distance.
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Our algorithm starts when the obstacle area is greater than limit area, this means
that the vehicle is closer to the obstacle. The limit area value is experimentally obtained
defining the dimensions of obstacles in pixels at a specific distance. The output of the
control law moves the vehicle away from the center of the obstacle avoiding it. If the
error is greater than zero, the UAV moves to the left side, otherwise, the vehicle moves
to the right side. The average speed obtained from the control signal is used for
recovering the original path.

4 Results and Discussion

We performed an experimental comparison between our autonomous algorithm, the
algorithm proposed by [24], and the tele-operation of two persons with different
experience levels, using the same UAV.

The metrics of evaluation are: time to complete the path, maximum speed, mini-
mum speed, average speed, distance and battery.

Table 1 presents the average values of the successfully flights for one fixed and two
mobile obstacles, and the Table 2 a resume of them. The normalized values were
obtained from the official Android App of Parrot.

Experimental results showed that the autonomous system has lower ratio of battery
usage and travelled distance, due to the system has not high variations of speed. The
tele-operators used the less time to complete the path, for the ease of avoiding one
obstacle, but if we compared with bang-bang system the time is similar.

Based on the experimental results, our proposal has a better performance than
others controllers because the travelled distance and the time are lower, and addi-
tionally the stable speed allows successfully flights. In spite of that use of battery and
the average time required to complete the path is lower for teleoperators, the number of
unsuccessful flights ratio is higher. When the number of obstacles is higher the per-
formance of human tele-operators decrease, as consequence of fatigue, in the other
hand our proposal keeps this performance. Unlike the Bang-Bang controller, our
proposal includes a path recovery system in order to return to the original trajectory.

Table 1. Results of one fixed and two mobile obstacles

Control Max
speed
[m/s]

Min
speed
[m/s]

Ave.
speed
[m/s]

Distance
[m]

Time
[s]

Battery
[%]

Autonomous
algorithm

0,760 0,104 0,235 11,759 48,271 13,888

Bang-Bang 0,942 0,108 0,304 16,997 51,800 13,184
Tele-operator
with experience

2,189 0,118 0,915 15,859 20,490 11,390

Tele-operator
without
experience

2,910 0,103 0,767 22,040 34,038 12,419
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The importance of the path recovery system is evident when increases the number of
obstacles, for example: for two or more obstacles, the bang- bang controller avoids the
first obstacle and loses the path for the next obstacles, ending in other location. Our
approach finishes in the correct goal.

5 Conclusions and Future Work

On this paper, we experimentally tested the optimal and robust performance of our
system including obstacle detection and avoidance. Flexibility and energy efficiency
are important features for autonomous navigation of UAVs. In our approach, flexibility
is given by the effectiveness responding to unspecified number of fixed and mobile
obstacles in unknown positions. SURF obtains matching between the image from the
database and captured frame without incrementing the computational cost. Our pro-
portional controller for obstacle avoidance between the start and goal point is optimal,
faster and with higher performance than a bang-bang controller, human controllers with
and without experience.
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Dr. Wilbert G. Aguilar.

References

1. Barrientos, A., del Cerro, J., Gutierrez, P., San Martin, R., Martinez, A., Rossi, C.: Vehiculos
aereos no tripulados para uso civil. tecnologia y aplicaciones. Universidad politecnica de
Madrid, Madrid (2007)

2. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft
systems. J. Field Robot. 29(2), 315–378 (2012)

3. Aguilar, W.G., Morales, S.: 3D environment mapping using the Kinect V2 and path
planning based on RRT algorithms. Electronics 5(4), 70 (2016)

4. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the
virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)

Table 2. Results of flights with different controls

Control Number of
flights

Successful
flights

Unsuccessful
flights

Ratio
[%]

Autonomous algorithm 20 16 4 80
Bang-Bang 20 12 8 60
Tele-operator with
experience

20 13 7 65

Tele-operator without
experience

20 11 9 55

Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles 581



5. Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para
seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí,
Ecuador (2014)

6. Ortega, D.V., Bueno, J.A.G.-C., Merino, R.V., Sanz, S.B., Correas, A.H., Campo, D.R.:
Pilotos de dron (RPAS). Ediciones Paraninfo, SA (2005)

7. Beyeler, A., Zufferey, J.-C., Floreano, D.: Vision-based control of near-obstacle flight.
Auton. Robots 27(3), 201–219 (2009)

8. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles:
methodology and experiments. Int. J. Robot. Res. 27(5), 549–574 (2008)

9. Wurm, K.M., Kummerle, R., Stachniss, C., Burgard, W.: Improving robot navigation in
structured outdoor environments by identifying vegetation from laser data. In: 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2009)

10. Merz, T., Kendoul, F.: Beyond visual range obstacle avoidance and infrastructure inspection
by an autonomous helicopter. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, pp. 4953–4960 (2011)

11. Bachrach, A., Prentice, S., He, R., Roy, N.: Range–robust autonomous navigation in
GPS-denied environments. J. Field Robot. 28(5), 644–666 (2011)

12. Lange, S., Sünderhauf, N., Neubert, P., Drews, S., Protzel, P.: Autonomous corridor flight of
a UAV using a low-cost and light-weight RGB-D camera. In: Rückert, U., Joaquin, S.,
Felix, W. (eds.) Advances in Autonomous Mini Robots, pp. 183–192. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-27482-4_19

13. Beyeler, A., Zufferey, J.-C., Floreano, D.: 3D vision-based navigation for indoor microflyers.
In: Proceedings 2007 IEEE International Conference on Robotics and Automation,
pp. 1336–1341. IEEE (2007)

14. Oh, P.Y., Green, W.E., Barrows, G.: Neural nets and optic flow for autonomous
micro-air-vehicle navigation. In: ASME 2004 International Mechanical Engineering
Congress and Exposition. American Society of Mechanical Engineers (2004)

15. Zufferey, J.-C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft.
IEEE Trans. Robot. 22(1), 137–146 (2006)

16. Muratet, L., Doncieux, S., Meyer, J.-A.: A biomimetic reactive navigation system using the
optical flow for a rotary-wing UAV in urban environment. In: Proceedings of the
International Session on Robotics (2004)

17. Merrell, P.C., Lee, D.-J., Beard, R.W.: Obstacle avoidance for unmanned air vehicles using
optical flow probability distributions. In: Optics East. International Society for Optics and
Photonics, pp. 13–22 (2004)

18. Alenya, G., Negre, A., Crowley, J.L.: A comparison of three methods for measure of time to
contact. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4565–4570. IEEE (2009)

19. Chavez, A., Gustafson, D.: Vision-based obstacle avoidance using SIFT features. In: Bebis,
G., et al. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 550–557. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10520-3_52

20. Kim, D., Dahyot, R.: Face components detection using SURF descriptors and SVMS. In:
International Machine Vision and Image Processing Conference, IMVIP 2008, pp. 51–56.
IEEE (2008)

21. Chu, D.M., Smeulders, A.W.M.: Color invariant SURF in discriminative object tracking. In:
Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 62–75. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-35740-4_6

22. He, W., Yamashita, T., Lu, H., Lao, S.: Surf tracking. In: 2009 IEEE 12th International
Conference on Computer Vision, pp. 1586–1592. IEEE (2009)

582 W.G. Aguilar et al.

http://dx.doi.org/10.1007/978-3-642-27482-4_19
http://dx.doi.org/10.1007/978-3-642-10520-3_52
http://dx.doi.org/10.1007/978-3-642-35740-4_6


23. Krajnık, T., Nitsche, M., Pedre, S., Preucil, L., Mejail, M.E.: A simple visual navigation
system for an UAV. In: 2012 9th International Multi-Conference on Systems, Signals and
Devices (SSD), pp. 1–6. IEEE (2012)

24. Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a
monocular camera for micro unmanned aerial vehicles. In: 2013 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1750–1757. IEEE (2013)

25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 6, 679–698 (1986)

26. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision
Conference, vol. 15, p. 50. Citeseer (1988)

27. Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature
matching. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2681–
2684. IEEE (2012)

28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or
SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

29. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: 2012 IEEE
conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)

30. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable
keypoints. In: 2011 International Conference on Computer Vision. IEEE (2011)

31. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of
the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157.
IEEE (1999)

32. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput.
Vis. Image Underst. 110(3), 346–359 (2008)

33. Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su
aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE,
Sangolquí, Ecuador (2014)

34. Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de
gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)

35. Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen
durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control,
Barcelona, Spain (2012)

36. Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el
control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología
ESPE, Sangolquí, Ecuador (2012)

37. Juan, L., Gwun, O.: A comparison of SIFT, PCA-sift and SURF. Int. J. Image Process. (IJIP)
3(4), 143–152 (2009)

38. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2001, vol. 1, pp. 511–518. IEEE (2001)

39. Huang, D.-S., Jo, K.-H., Hussain, A.: Intelligent Computing Theories and Methodologies:
11th International Conference, ICIC 2015, Fuzhou, China, 20–23 August 2015, vol. 9226.
Springer, Heidelberg (2015)

40. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating
image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

41. Derpanis, K.G.: Overview of the RANSAC algorithm. Image Rochester N. Y. 4(1), 2–3
(2010)

42. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981)

Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles 583



43. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial
vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

44. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for
micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

45. Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for
low-cost micro aerial vehicles. In: 11th International Multi-conference on Systems, Signals
& Devices (SSD), Barcelona, Spain (2014)

584 W.G. Aguilar et al.


	Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles
	Abstract
	1 Introduction
	2 Related Works
	3 Our Approach
	3.1 Obstacle Detection
	3.2 Obstacle Avoidance

	4 Results and Discussion
	5 Conclusions and Future Work
	Acknowledgement
	References


