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Abstract. The paper addresses the medical challenge of interpreting
histopathological slides through expert-independent automated learning
with implicit feature determination and direct grading establishment.
Deep convolutional neural networks model the image collection and are
able to give a timely and accurate support for pathologists, who are
more than often burdened by large amounts of data to be processed. The
paradigm is however known to be problem-dependent in variable setting,
therefore automatic parametrization is also considered. Due to the large
necessary runtime, this is restricted to kernel size optimization in each
convolutional layer. As processing time still remains considerable for five
variables, a surrogate model is further constructed. Results support the
use of the deep learning methodology for computational assistance in
cancer grading from histopathological images.
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1 Introduction

As with all types of cancer, early detection and correct grading (made possible
by modern medical imaging technologies) increase the chances of cure by allow-
ing timely counteractive treatment measures. Hence, screening interventions are
more and more regular nowadays and the consequent amount of related imag-
ing data is growing vertiginously. With the additional known considerable inter-
and intra-observer variability in interpreting the resulting images, computational
image evaluation for the automated detection of landmarks and determination
of cancer stage is getting a high interest as it can efficiently assist the medical
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decision-making in terms of precision, invariability and time economy. Among
such computational approaches, those that neither need further supervision from
the medical experts, in terms of manual delineation or feature specification, nor
manual parametrization from the computer scientists are obviously preferred in
general, for any diagnosis task in medicine [9–12,21,37].

The current study thus attempts to tackle the medical problem of grad-
ing colorectal cancer from available histopathological slides by convolutional
neural networks (CNN). The technique is recognized for its high-performing and
autonomous learning capability as a result of its special layer types and hierarchi-
cal arrangement. It would thus be indeed supportive in diminishing the routine
work for the medical experts, since it can configure the important features by
itself [36] for the common images and need expert reconfirmation only for the
problematic ones. The CNN is nevertheless problem-dependent with respect to
parametrization and the paper will consequently furthermore investigate an inex-
pensive option in design to allow automatic tuning of CNN sensitive variables.
A surrogate model is thus constructed to streamline the framework as regards
runtime but still maintain accuracy, and an heuristic approach [6,25] is appointed
to search for the optimal parameters. The work is not only important from the
medical perspective, but also from the CNN side, as the trust in its potential
must be also shown on real-world data sets and not only on toy problems [36].

The paper is organized as follows. Section 2 describes the real-world data set
containing histopathological colorectal cancer slides with the earlier models for
this collection and outlines the state of the art in CNN application for medical
image interpretation. The CNN architecture is presented in Sect. 3, together
with its augmentation in terms of automatic tuning with an interest in runtime
efficiency. Experimental findings are given in Sect. 4, while the conclusions are
drawn in Sect. 5.

2 Problem and Prior Medical Computational Diagnosis

The medical data set contains histopathological digitalized slides for colorectal
tissues from the Emergency Hospital of Craiova, Romania, with representatives
of both benign (denoted by G0) and malignant (G1–G3) classes. The collection1

contains 357 images (at resolution 800× 600), where each is assigned to only one
cancer class. There are 62 G0 entries, 96 G1 records, 99 G2 and 100 G3 slides.

2.1 Previous Attempts to Classify the Data

Within the examination of the histopathological slides for the detection of col-
orectal cancer, the medical expert looks for a uniform pattern of glands and
nuclei as a sign of the absence of cancer, while, conversely for a malignant tis-
sue, for a high variation in size, shape and texture. The correct segmentation
of glands and nuclei and the appearance of their features is thus important for

1 IMEDIATREAT Project, https://sites.google.com/site/imediatreat/.

https://sites.google.com/site/imediatreat/
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the recognition of cancer. Earlier attempts on the current problem consequently
started from the segmentation of glands through a watershed algorithm parame-
terized by evolutionary algorithms (EA) [30,34]. A distance transform algorithm
was further employed to additionally find the nuclei. Departing from the discov-
ered landmarks, measurements quantifying the number, area, perimeter, radius
for the glands and nuclei, as well as for corresponding Delaunay triangles and
Voronoi polygons, resulted into 76 numerical extracted features. Support vec-
tor machines (SVM) achieved 79.89% classification accuracy on this numerical
collection [33]. Feature selection was further employed to help the SVM and con-
sidered a consistency-based filter, a correlation mechanism, principal component
analysis and a genetic algorithm (GA). The last led to an accuracy increase of
4 percents and the determination of the more important features [31].

The current work however uses the CNN to allow for direct classification into
G0–G3 with its own implicit inner feature detection. This will therefore be an
alternative “all-in-one”, expert-independent approach to slide interpretation.

2.2 Convolutional Neural Networks for Medical Image Diagnosis

First introduced as “self-organizing” neural networks unaffected by position
shifts in [8], CNN have developed over years into powerful learning models,
trainable with the efficient method of back-propagation. As presented in [20],
convolutional layers present a degree of robustness to translation and distortion,
thus being well-suited for problems where the input presents spatial relations.
The advancement of computing power in recent years made a range of solutions
based on deep-learning with CNN possible, with better results than previous
state-of-the-art methods: CIFAR image classification [18], video classification
[16], action-recognition [14] and others.

Given their high performance on tasks of artificial vision and even prophesied
to be “the most disruptive technology [...] since the advent of digital imaging” [7],
CNN were naturally recently applied for medical image classification and diag-
nosis. [26] implemented a CNN on images obtained with computed tomography
to classify the given input into one of five classes. They used an augmented data
set with 4298 entries to train and test the CNN model, obtaining an accuracy of
94.1% on the test set. A solution for detecting mitosis in breast cancer histology
images with CNN was proposed by [5]. A sliding-window was moved over the full
image in order to capture a context for each pixel. These patches were fed into
the learned model and labeled accordingly. The IEEE Transactions on Medical
Imaging journal even had a dedicated special issue in 2016, i.e. Deep Learning
in Medical Imaging: Overview and Future Promise of an Exciting New Tech-
nique, where CNN was employed for learning from crowds in detecting mitosis
in breast cancer images [2], for lung cancer pattern classification from high res-
olution computed tomography [3] and for brain tumor segmentation from MRI
images [24]. Among them there is also the study of [28], which is specifically for
the colorectal cancer problem at hand and concerns the detection of nuclei (from
images with 20000 annotated nuclei categorized into four classes) by CNN and
subsequent, separate classification by a neighboring assemble predictor.
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In opposition, the present aim is to use the CNN for direct classification of the
histopathological slides into four classes, i.e. normal (G0) and cancer grades G1–
G3, with neither intermediate segmentation nor in tandem with other classifiers.

3 Proposed Convolutional Neural Network Methodology

The task of diagnosing histopathological images can be formulated as a super-
vised learning problem: having a data set of pairs (Xi, ci), where ci represents
the ground-truth class of the image Xi, the aim is to train a model capable of
discriminating between the four possible classes.

3.1 Convolutional Neural Network Architecture

A CNN learning model is proposed to solve this task. It is carefully designed
to avoid overfitting, given the small data set size, while being capable to gen-
eralize well enough in order to provide a competitive accuracy on the final test
suite. The CNN (Fig. 1) receives a volume of 256× 256× 3 (image width× image
height× three color channels) representing a scaled version of the original images
and will output a 4-dimensional vector, interpreted as unnormalized scores for
each class. The volume is transformed through 5 convolutional layers, with
weight-sharing kernels of sizes (lengths) - KS (7, 5, 3, 3, 3) (i.e. filter sizes
of KS × KS), padding (of the volume with zero around the border) chosen
such that the first two dimensions of the input are preserved. The first kernel
depth - KD (number of filters) is 8, and each consecutive depth is multiplied
by 2. Every convolution layer slides each of the KS × KS × KD filters over
all spatial locations of the image by computing dot products between the shared
weight vector within the slice and the image piece. The result of convolving
each filter with the image is an activation map of N × N , where there are N
unique positions to place the KS × KS filter. Large values on the activation
map are assigned to patters that better stimulate the neurons on that filter.

Fig. 1. CNN Architecture: each convolution function (written in green) is followed
by ReLU non-linearity (blue) and a Max-pooling (2× 2) operation (red). Thus, each
consecutive volume doubles in depth and halves its width and height. A dropout layer
cuts a subset of activations from the preceding fully-connected one. The last fully
connected layer outputs the unnormalized scores for each class. (Color figure online)
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The obtained activation maps (whose number is equal to the number of filters)
are stacked in a volume N ×N ×KD to enter the next layer [15]. Convolution is
followed by a ReLU transfer layer (a Rectified Linear Unit to add nonlinearity)
and a Max-Pooling layer (for a downsampling operation of the image following
the maximum value in the window) with window size 2× 2, effectively reducing
the input volume and making the network resistant to spatial shifts.

The learning speed was greatly increased by applying batch-normalization
[13] to the last 4 convolutional layers, achieving the same accuracy within 10%
of the original number of iterations. The convolutional layers are followed by two
fully connected ones. Dropout is also used between the last two fully-connected
layers (where neuron activations are randomly blocked within training) [29].
During hyper-parameter tuning, it was found that a dropout rate of 90% manages
to greatly reduce overfitting, while maintaining the ability of the network to
learn. During training, the KL-Divergence [19] between the ground-truth class
distribution and the network outputs interpreted as probabilities is minimized
through a softmax function.

3.2 Kernel Size Parametrization

Although acknowledged for autonomous classification and implicit feature learn-
ing, parametrization of the network is known to be problem-dependent. To the
best of our knowledge, it is only the recent study of [36] that accomplishes the
tuning of six hyper-parameters through EA with message passing interface to
distribute fitness computation and hence accelerate runtime. The CNN archi-
tecture has three convolutional layers and, for each of those, two parameters
are heuristically determined: the number of filters and the kernel size. Although
known to be flexible, EA are too expensive in runtime and hence the current
study alternatively employs Latin hypercube sampling (LHS, [22]) for kernel size
automatic generation from the five CNN convolutional layers.

3.3 Surrogate Model Design

In order to reduce runtime, the present paper proposes an accompanying sur-
rogate model to the automatic setting of kernel sizes. Such regression options
proved to be efficient before for the same purpose of parametrization [32]. A data
set of input parameter values and the obtained CNN accuracy result on valida-
tion samples is learnt by the regression models that represent the surrogates.
Each such model is next used to estimate the accuracy for new input parame-
ters. A GA [17] is used to search the parameter space for the optimal settings,
with the output estimated by the regression models.

4 Experimental Results

The experimental section is split into two parts. While the aim of the first exper-
iment is to reach significantly better classification accuracy results than in the
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previous attempts on the same data set, the goal of the latter is to better under-
stand the choice for the kernel size parameter. The organization of the two exper-
iments follows the guidelines in [4]. In order to deploy the central architecture,
a Python with Tensorflow [1] framework was used.

4.1 Experiment 1: Manual Tuning

Pre-experimental Planning. From the initial experiments it was noticed
that the runtime is relatively high, which would have restricted the number of
setups to be tried. In search of a balance between accelerating runtime but not
decreasing quality, the pictures were resized to a resolution of 256× 256 pixels,
from the original 800× 600. This ensures a smoother training and also allows
the usage of a low-volume model, as one of the measures implied in preventing
overfitting.

Task. The goal is to test the CNN architecture, with its own implicit inner
feature detection, on the colorectal cancer images and achieve a classification
accuracy superior to that of the previous multi-stage approaches [31,33].

Experimental Setup. The samples are split into training/validation/test sets
with the ratios 0.5, 0.25 and 0.25. This partitioning was chosen for a better
control and measurement of the generalization power for the trained model.
Given the small data set size, an extra step in ensuring that every class has the
same percent of individuals in each set was taken, in order to avoid situations
where a class is poorly represented by the training suite.

For fine-tuning the network in search of a successful set of hyper-parameters,
it is aimed to maximize the accuracy on the validation set. In order to assign
a score to a vector of hyper-parameters, the average accuracy obtained on val-
idation sets of random partitions of the data collection by models trained with
the respective hyper-parameters was used, as given by Eq. (1), where Mh,X is
the model trained with hyper-parameters h and training set X, AccV (M) is the
accuracy of model M computed on the validation set V as #correct

|V | and EX is
the expected value with respect to the distribution of X.

score(h) = EX [AccV (Mh,X)] (1)

After training the model 30 times with random initialization, a mean accu-
racy of 92.5% is obtained on the validation sets, with learning rate 10−3, batch
size 20, kernel sizes (7, 5, 3, 3, 3) and first kernel depth of 16.

Results and Visualization. On the test sets, the model was able to correctly
classify, on average, 90.15% of examples. An example confusion matrix is given
in Table 1. Figure 2a and b depict the activation intensities of the first and second
convolutional layers, given a G0 image.
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Table 1. Example of a confusion matrix on one of the test sets.

G0 G1 G2 G3

G0 0.91 0 0.09 0

G1 0 1 0 0

G2 0 0.2 0.73 0.07

G3 0 0 0 1

Discussion. Overall, the classification results are significantly better than those
obtained in [31,33], as the percentage increase is of over 10%. The confusion
matrix in Table 1 is obtained from a single run on the test set and it reveals that
samples from G1 and G3 categories are classified with no error and 9% of the
normal tissues are classified as grade 2 cancer. This type of errors (from G0 to
G2) also occurred in [31], they are probably due to the manner of obtaining the
G0 slides, as they are cut from larger images that contained borders between
healthy and cancerous tissues and G2 had many instances [33]. The most prob-
lematic category is G2, with an accuracy of only 73%, but the vast majority
of misclassified examples are labelled as G1, and none are considered normal
tissues. Still, the confusion matrix is only computed to have a general overview,
as in other runs the distribution might differ.

As observed in Fig. 2a and b, the network learned filters to recognize gland
interior, shape and nuclei. They represent sections of the volume that passes
through the network. The number of slices on each layer is determined by the
depth of the convolution kernels, i.e. 8 and 16. Highlighted areas correspond to
image regions producing larger values on that layer, in contrast to darker areas.

Fig. 2. Activation maps for a histological slice with normal tissue.
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4.2 Experiment 2: Inspection of the Kernel Size Parameters Space

Pre-experimental Planning. Despite the image resizing, the runtime of the
CNN remains relatively high in order to allow for the investigation of a large
variety of parameter settings. The first attempt was to employ a random walk
procedure to search for a better set of hyper-parameters. However, the search was
still slow, as, in order to reach a relevant score, 10 different models were trained
for every solution and the average on the validation sets was taken into account.
Next, LHS was considered in order to have a better covering of the search space.
All the tried combinations were therefore gathered, as they provided valuable
information regarding the proper choice of the values for the kernel sizes. How-
ever, an optimization procedure (e.g., a GA) that would automatically search
for the best combination of hyper-parameters was still not possible due to the
time-consuming evaluations. Each fitness evaluation would assume the run of the
CNN using the values provided by the GA candidate solutions. Consequently,
the complement solution that was imagined during pre-experimentation was to
build surrogate models. These would learn the correspondence between the input
parameters and the accuracies obtained on the validation sets and would provide
new outputs for novel configurations.

Task. The aim is to investigate the choice of the CNN kernel size hyper-
parameters to improve the classification accuracy on the validation and test
sets.

Experimental Setup. A random walk algorithm that had a budget of 10
evaluations per solution was firstly considered. Each such evaluation attempts
to produce a score for a vector of hyper-parameters, according to Eq. (1). Given
the computational constraints, the average validation score of only 10 models is
taken. The solution with the highest score is taken to the test phase, where the
performance of 30 models with the same hyper-parameters is evaluated.

The total number of tried LHS configurations is 75. The 5 kernel size para-
meters are chosen from the following intervals: [6, 16], [4, 12], [2, 6], [2, 6] and
[2, 6]. As in the case of the random walk procedure, 10 models are considered
and the average on the validation set represents the final outcome.

The random walk and the LHS configurations are next gathered and used by
4 different regression models. These are subsequently used to simulate further
results in points that have not been previously explored with CNN. In order
to search for better parameter settings, a canonical GA is used and the result
provided by the surrogate models for each explored configuration is the value of
the fitness evaluation. The regression models that are tried in the current exper-
iment are: a linear model, a SVM with radial and linear kernels and regression
decision trees. This conducts to 4 versions of the GA, as each one has a different
fitness evaluation function. The population size of the GA is of 50, 150 iterations
are considered as stop condition, while the crossover and mutation probabilities
are of 0.8 and 0.1, respectively. The regression models and the GA are encoded
into R implementations [23,27,35].
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Table 2. The hyper-parameter values as discovered by the GA with the surrogate
models. The associated percentages show the regression model estimations beside the
actual evaluations of the CNN on the validation and test sets.

Regression model Kernel size values Surrogate output CNN validation CNN test

Linear model (6, 11, 2, 5, 5) 93.93% 93.26% 90.91%

SVM radial (12, 11, 4, 5, 5) 93.87% 93.41% 89.05%

SVM linear (6, 11, 2, 5, 5) 93.91% 93.26% 90.91%

Regression trees (10, 6, 3, 2, 5) 94.35% 94.17% 91.44%

Results andVisualization. The best result on the test set as obtained from the
random walk is of 91.06% and is achieved from the parameter values (7, 4, 4, 4, 4).
Table 2 shows the combinations of kernel size parameters given by the GA with the
considered surrogate models and the results obtained for those settings.

Discussion. Generally, Table 2 indicates that there is a good agreement between
the surrogate estimated outputs and the CNN actual results on the validation
set. As concerns the prediction accuracy on the test set, the only weak result
is obtained for the parameters discovered when the GA used the SVM with
a radial kernel as the fitness function. Table 2 indicates that there is a wide
variety of input values for the kernel sizes that achieve good results. As each
surrogate approach models the solution landscape differently, the GA naturally
found various sets of parameters, which generally proved to be successful (except
for SVM radial) when the actual CNN was tested on them. The most appropriate
found solution is the one discovered through the regression decision trees.

5 Conclusions and Future Work

A CNN approach is considered for the automated diagnosis of a set of colorectal
cancer histopathological slides. The method provides significantly better results
as compared to the previous approaches on the same data set. A drawback of
the method is the large training time which does not permit the user to try
a wide-range of CNN hyper-parameters. In this sight, by departing from a set
of parameters and their results on the validation set, several regression models
were employed to explore the regions of a surrogate parameter search landscape.
A GA is used to intensify the search and several sets of parameter values are
suggested. The approximations on the validation set coincide to a high extent
with the actual values obtained by the CNN.

As concerns future work, transfer-learning seems a viable approach to bypass
the generalization limits imposed by the relatively small dataset size. By training
a set of convolutional layers on a similar dataset and using the resulting weights
as a starting point of the main model afterwards, one can possible build a more
robust solution. Also, new images are collected in the IMEDIATREAT project,
so the data collection will expand, profiting even more from the CNN potential.
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