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Abstract. The work on mutation testing has attracted a lot of atten-
tion during the last decades. Mutation testing is a powerful mechanism
to improve the quality of test suites based on the injection of syntac-
tic changes into the code of the original program. Several studies have
focused on reducing the high computational cost of applying this tech-
nique and increasing its efficiency. Only some of them have tried to do
it through the application of genetic algorithms. Genetic algorithms can
guide through the generation of a reduced subset of mutants without
significant loss of information. In this paper, we analyse recent advances
in mutation testing that contribute to reduce the cost associated to this
technique and propose to apply them for addressing current drawbacks in
Evolutionary Mutation Testing (EMT), a genetic algorithm based tech-
nique with promising experimental results so far.
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1 Introduction

Mutation testing [20] is an effective technique to help improve the fault detection
capability of a test suite. In order to estimate this capability, we measure the
extent to which the developed test suite is able to detect different faults injected
into the program. These faults are introduced by means of mutation operators
that generate mutants. Detecting a mutation means that the test suite can dis-
tinguish the behaviour of the mutant and the original program. In this case, the
mutant is said to be killed. Otherwise, when the outputs of the original and the
mutant are equal, we say that the mutant is alive. However, some alive mutants
are equivalent to the original program and cannot be killed by any test case.
Mutation testing is a powerful testing technique but it has a high computational
cost due to the potentially large number of mutants that can be generated, in
particular, when the program requires a high compilation and test execution
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time. Therefore, it is required to propose approaches that, on the one hand,
reduce the size of the set of mutants and, on the other hand, provide a high level
of fault detection. As a result, several methods have been proposed to alleviate
as much as possible this problem [19], including search-based techniques.

In this paper we focus on the application of the approaches proposed in
mutation testing to Evolutionary Mutation Testing, a technique for the selection
of a reduced set of mutants based on a genetic algorithm [8]. It will allow us to
improve the promising results reported by this methodology to date for WS-
BPEL compositions [6] and C++ object-oriented systems [3]. We propose to
integrate the following approaches:

– Selective mutation based on the quality metric [7], which aims at
identifying mutants that could be excluded without losing effectiveness of
the test suite. We can choose either to discard a subset of mutation opera-
tors (operator-based selective mutation) or give preference to the selection of
mutants from the most valuable operators (rank-based mutant selection).

– A multi-objective approach that drives the search towards finding, not
only undetected mutants, but also mutants with a great coverage impact [14]
and well spread through the code [18].

– Trivial Compiler Equivalence [15], a mechanism to detect equivalent
mutants when they have identical machine code as the original program.

The rest of the paper is organized as follows: Sect. 2 surveys the use of genetic
algorithms in mutation testing, and more specifically in EMT. Then, we explain
the proposals based on each of these findings and comment the benefits of their
application in Sects. 3, 4 and 5. Finally, we present the conclusions derived from
this paper.

2 Genetic Algorithms in Mutation Testing

Genetic algorithms have been applied to software testing since many years
ago [21]. With regard to mutation testing, genetic algorithms have been suc-
cessfully investigated and incorporated into different systems for the generation
of test cases [16]. However, they have also shown to be useful in mutant genera-
tion to increase the efficiency of mutation testing. We can remark the following
advances:

– The evolution in parallel of the population of mutants and test cases using
different genetic operators [1,12].

– Several studies have shown that genetic algorithms can provide better results
than other search-based techniques [10,13] in finding interesting higher order
mutants.

– Genetic algorithms have been used to select a subset of mutants [18] and also
a subset of mutation operators [2] with the goal of minimising the loss of
information.
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Evolutionary Mutation Testing [6] was proposed to select a subset of mutants
with the help of an evolutionary algorithm. Specifically, a genetic algorithm was
implemented in the GAmera tool [5] to search for strong mutants that can help
derive new test cases. Strong mutants fall in one of these categories:

– Potentially equivalent mutants: mutants that are not detected by the test
suite.

– Difficult to kill mutants: mutants that are only killed by a specific test case
that does not kill any other mutants.

The fitness function gives the highest value to those mutants killed by few
test cases and those test cases killing few other mutants at the same time. In this
way, strong mutants are the best valued by the fitness function. The mutants in
the new generations are then:

– Derived from those mutants with a high fitness thanks to reproductive oper-
ators (mutation and crossover). This should lead to the generation of strong
mutants in new generations.

– Produced by a random algorithm.

The studies originally conducted on EMT [6] reported that this technique
is able to find all strong mutants generating 15% less mutants than random
selection for WS-BPEL compositions. Recently, the experiments performed with
C++ systems and class-level mutation operators [3] supported that EMT is, in
fact, more effective than random mutant selection, though the difference was
not as significant as in the experiments with WS-BPEL. This fact might be
motivated by the way that strong mutants are distributed over the search space,
and reveals that further research is required to enhance the effectiveness of EMT.

3 Quality Metric for Selective Mutation

3.1 Background

Some mutants have greater potential than others to improve the quality of the
test suite. They can guide the tester through the definition of high-quality test
cases [4], that is, test cases that are able to find non-trivial faults. Regarding
mutation operators, those ones that generate mutants that can be killed, mostly,
by a default “happy path” test case, are not useful. These considerations are
embodied in the quality metric devised in [7]. The formula of the quality metric
of a mutant Qm is defined as follows:

Qm =

⎧
⎪⎨

⎪⎩

0, m ∈ E

1 − 1
(|M | − |E|) · |T |

∑

t∈Km

|Ct| , m ∈ D (1)
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where:

– M is the set of valid mutants.
– E is the set of equivalent mutants.
– D is the set of killed mutants.
– T is an adequate and minimal test suite, i.e., a test suite of the minimal size

that kills all non-equivalent mutants.
– Km is the set of test cases that kill the mutant m.
– Ct is the set of mutants killed by the test case t.

This quality metric punishes the existence of equivalent mutants as well as
takes into account a twofold criteria regarding killed mutants:

– The number of test cases that kill a mutant: the fewer test cases kill the
mutant, the better.

– The number of mutants that a particular test case kill: the fewer the mutants
killed by a test case, the better. This property is valuable because we only have
a reduced subset of mutants that can induce the generation of that test case.

Next, we find the definition of the quality of a mutation operator Qo as the
mean of the quality of the set of mutants generated by the operator o (Mo):

Qo =
1

|Mo|
∑

m∈Mo

Qm (2)

Recently, this metric has been used to determine the capacity of mutation
operators to help the tester enhance the fault detection power of the test suite
with high-quality test cases. The mutation operators were sorted in a ranking
according to their quality. Then, two different selective strategies were applied
taking into account the ranking:

– Operator-based selective mutation: this strategy selected mutants gen-
erated by a subset of mutation operators.

– Rank-based mutant selection: this strategy favoured the selection of the
mutants generated by the top ranked operators. The results of the rank-based
strategy showed that this method for the selection of mutants offers a better
outcome than the random selection of mutants.

Both strategies were evaluated by measuring the percentage of test cases
that would not be generated due to the dismissed mutants. This approach was
successful in reducing the number of mutants without a meaningful loss of effec-
tiveness.

3.2 Improvements Applying Selective Mutation Based on Quality
Metrics

Selective mutation following operator rankings improves the test suite through
the selection of a subset of all the mutants. Initially, we use it to analyse and
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determine which are the best and the worst-valued operators in order to incorpo-
rate the gained knowledge into the mutation tool. Then, EMT can take advan-
tage of this information to reduce the set of operators to be applied and, there-
fore, the cost. As a result, the combination of both techniques can be used to
further reduce the cost. These results can be used in two different ways:

– First proposal : Instead of generating mutants from all mutation operators,
EMT only generates mutants from the best-valued operators following the
ranking based on the quality metric. This proposal requires to determine if a
mutation operator should be discarded (based on previous studies with the
set of mutation operators applied).

– Second proposal: Instead of generating mutants with the same probability,
the mutants are selected in a rank-based manner: the probability of selecting
mutants from the best-valued operators is higher. This criterium is applied to
the subset of mutants randomly produced in each generation of the genetic
algorithm.

Mutant-based selective mutation and operator-based selective mutation have
shown to be useful to reduce the cost of mutation testing while retaining effec-
tiveness. However, in the experiments presented in [4], mutant-based selection
yielded better results than operator-based selection when applied to mutation
operators at the class-level in C++. However, the analysis of traditional opera-
tors has usually revealed great redundancy among operators and, consequently,
a subset of operators could subsume the rest. As a consequence, it is unclear
which strategy shows a better performance, so the proposal should be selected
depending on the nature of the set of mutation operators based on previous
empirical results.

3.3 Benefits

Both proposals modify the performance of EMT in the following ways:

– First proposal : By removing the operators at the bottom of the classifica-
tion, the efficiency of EMT is improved because it will avoid that the genetic
algorithm produces low-quality mutants. Since the quality metric punishes
equivalent mutants, which decreases the value of a mutation operator, we will
be also preventing the selection of equivalent mutants. In general, the genetic
algorithm finds quicker those mutants that can lead to the enhancement of
the test suite. These mutants can be labelled as resistant mutants.
The reason that non-equivalent mutants remain alive is either (a) the test
suite does not cover the mutant or (b) the test suite covers the mutant but it
is not able to reveal its mutation. Since the quality metric is devoted to the
generation of high-quality test cases, the refinement is achieved with a large
proportion of mutants that fall in the case (b), which are the most interesting
because they are not easy to design.
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– Second proposal: The first proposal involves the risk of eliminating the possi-
bility that some mutants of a high quality derived from low-quality operators
are generated. The application of the rank-based strategy removes that risk,
especially in those cases when it is not easy to find a sufficient set of mutation
operators. The same benefits mentioned for the first proposal hold, but there
is a higher probability that some low-quality mutants are generated.

4 Multi-objective Evolutionary Mutation Testing

4.1 Background

One of the major drawbacks of mutation testing is the presence of equivalent
mutants. They cannot be completely discarded in general because this is an
undecidable problem. Therefore, they have to be detected when the alive mutants
are analysed, which is a time-consuming task. Several researchers have proposed
different techniques to identify and remove equivalent mutants [9,11]. Recently,
several works have studied the impact that mutations have on the code cover-
age in order to mitigate the effects of the equivalence [14,17]. Intuitively, those
mutations which cause a great impact on the coverage of the test suite execu-
tion are less likely to produce an equivalent mutant. In addition, there should
not be parts of the code without mutations, because it would avoid that those
fragments are analysed with mutation testing [18].

The results obtained when applying an operator-based and a mutant-based
selective strategy have been compared [23]. Namely, two different mutant-based
strategies are applied: One-round random selection (mutants selected with the
same probability) and Two-round random selection (the operator that gener-
ates the mutant is selected with the same probability). Given that Two-round
random selection yielded better results than One-round random selection, it is
plausible to think that each mutation operator is useful to address a different
feature. Similar results were reported in other experiments using class-level muta-
tion operators [4]. The experiments reported in [22] also suggest that sampling
mutants from each method of the program and from each mutation operator
performs better than One-round random selection.

4.2 New Objectives

Based on the aforementioned studies and their results, EMT should follow a
multi-objective approach. We have detected three aspects that should be con-
sidered in the fitness function of the genetic algorithm:

1. Maximise the coverage impact. EMT currently assigns the highest fitness
to potentially equivalent mutants, but it cannot distinguish between equiv-
alent mutants and resistant mutants. Analysing the coverage impact of the
mutants will help during the selection of non-equivalent mutants with the
highest probability.
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2. Maximise the scattering in the code. The genetic algorithm currently
selects mutations without taking care of the location in which it is injected.
As a consequence, the reduced subset of mutants might not be dealing with
some parts of the code appropriately. Therefore, it is preferable spreading
mutations all over the code so that all code items are covered [18,22].

3. Maximise the scattering in the set of operators. We foster the gen-
eration of mutants from all mutation operators, favouring the selection of
mutants from operators barely applied so far. This aspect is not currently
taken into account by the genetic algorithm. This objective aligns with recent
findings in the mutation testing literature [4,22,23].

4.3 Benefits

Next, we present the benefits of incorporating each of these aspects into EMT:

1. Coverage impact : Penalisation of those mutants with the highest probability
of resulting in equivalent mutants prevents from selecting equivalent mutants
for reproduction and new equivalent mutants being generated.

2. Scattering in the code: A program can be divided into different classes, which
count with different methods comprised of multiple statements. Furthermore,
in an object-oriented program, some methods or even blocks are directly asso-
ciated to specific object-oriented features, such as constructors or exceptions.
Therefore, a fitness function aware of the coverage will avoid that the subset
of selected mutants concentrates in the same area of the code.

3. Scattering in the set of operators : Each of the operators affects to different
features, especially in the case of class-level operators. Consequently, strong
mutants might be generated by a large subset of mutation operators. As
a result of this improvement, the gap between the percentage of mutants
generated by each of the operators is less significant.

It is worth noting that the weight of the application of each of aspects can be
parametrised in order to prioritise the most convenient for the specific context.

5 Trivial Compiler Equivalence

5.1 Background

As aforementioned, the existence of equivalent mutants is one of the main prob-
lems in mutation testing. Recently, a new technique, called Trivial Compiler
Equivalence (TCE), has been proposed to detect some equivalent mutants auto-
matically [15]. This technique has shown the ability to reduce an average of 30%
the set of equivalent mutants in programs coded in C.

TCE combines the use of the compiler gcc and the utility diff : gcc is used
to compile the code and generate an optimised executable, and diff allows to
compare these executables to search for equivalences between different versions
of the program. This mechanism is able to detect two types of mutants:
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– A subset of equivalent mutants: a mutant is identified as equivalent when
there is no difference between the binary file of the original program and a
mutant.

– A subset of duplicated mutants: a mutant is identified as duplicated when
the binary file derived from the mutant is equal to the the binary file derived
from another mutant.

The experimental results showed that the application of this technique is
affordable in terms of execution time. However, the most expensive task in TCE
is the compilation time, which increases with the level of optimisation selected.
The detection of equivalent and duplicated mutants is not significant when com-
pared to the compilation time.

5.2 Improvements Applying TCE

The genetic algorithm in EMT searches for potentially equivalent mutants, which
have not been detected by the current test suite. Hopefully, this type of mutants
will help derive new test cases. However, potentially equivalent mutants can also
turn out to be equivalent, being unable to distinguish them from those that lead
us to improve the test suite. Therefore, some of those equivalent mutants can
be automatically detected when EMT is combined with TCE. Given that TCE
is based on the compiler gcc, the technique is available for those mutation tools
that apply to programming languages within the collection of compilers in gcc,
like GiGAn for C++ [3].

We propose two different options for applying EMT in conjunction with TCE:

– First proposal : Applying TCE before the execution of EMT. In this case, all
mutants are compiled to create an executable and TCE compares them with
the executable of the original program. Those mutants detected by TCE
as equivalent are then marked to avoid that they can be used during the
execution of EMT.

– Second proposal : Applying TCE during the execution of EMT. In this case,
the mutants selected in each generation are analysed using TCE. Those
mutants identified as equivalent are penalised by means of the fitness value
assigned to them.

The detection of duplicated mutants could also be beneficial to avoid the
selection of mutants that can lead to the generation of the same test case. How-
ever, for the manual generation of test cases, it might be useful sometimes to
count with redundant mutants: a tester may find difficult to kill a mutant but
may find more feasible to produce a test case for another mutant which kills
both mutants.
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5.3 Benefits

The benefits of implementing these strategies are:

– First proposal : Applying TCE to all mutants from the beginning, we avoid
that EMT selects equivalent mutants that can be detected by TCE. However,
we are wasting time trying to detect equivalent mutants which might never
be selected by EMT, so this proposal is not recommended for programs with
a high compilation time. On the contrary, it is very convenient when there is
evidence that TCE is able to detect a high percentage of equivalent mutants
for the set of mutation operators applied.

– Second proposal : In this case, we only apply TCE when finding a poten-
tially equivalent mutant during the execution of EMT. Although this pro-
posal decreases the computational cost of applying TCE, it does not avoid
selecting equivalent mutants occasionally.

Nevertheless, we have to take into account the restrictions imposed by TCE:

– TCE has only been applied to C programs. Thus, it is not clear that, if it is
applied to other languages or other type of mutation operators, we will obtain
the same detection power.

– Under the premise that an equivalent mutant and a resistant mutant are
slightly different, it is possible that some equivalent mutants can guide the
genetic algorithm on the selection of resistant mutants in new generations.
Therefore, removing or penalising equivalent mutants can impact the search
for potentially equivalent mutants.

6 Conclusions

In this paper, we have analysed the current operation mode of the technique
called Evolutionary Mutation Testing. Despite evidence of its usefulness, based
on the empirical results obtained from its application to programs in different
languages, from a review of the mutation literature it becomes clear that further
improvements can be made. In particular, EMT does not solve the hardest task
of mutation testing: the detection of equivalent mutants. With the goal of over-
coming this drawback, we propose to consider the use of additional information
in the calculation of the fitness function and the application of TCE, a technique
for the automated detection of some equivalent mutants. The new fitness func-
tion also promotes the generation of mutants from all mutation operators and
covering all the code.

We also propose the generation of mutants following an operator-based
and/or a rank-based selective approach, which also penalises the generation of
mutants from operators usually producing many equivalent mutants. However,
the application of these two selective strategies should be explored further with
different sets of mutation operators to know the extent to which mutant-based
selection is superior to operator-based selection, as previous studies suggest.
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Rank-based selective mutation is based on the rank selection method used in
genetic algorithms; it would also be interesting to compare its results with dif-
ferent mutant-based selection techniques, such as roulette wheel selection, tour-
nament selection or stochastic universal sampling.

In spite of proposing several improvements for EMT, there is still room for
other ones. For instance, we should try to find a way to avoid that all test cases
are executed to calculate the fitness function, especially in those cases when the
test execution time is high.
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