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Abstract. This paper presents different scalable methods to predict
time series of very long length such as time series with a high sampling
frequency. The Apache Spark framework for distributed computing is
proposed in order to achieve the scalability of the methods. Namely, the
existing MLlib machine learning library from Spark has been used. Since
MLlib does not support multivariate regression, the forecasting problem
has been split into h forecasting subproblems, where h is the number
of future values to predict. Then, representative forecasting methods of
different nature have been chosen such as models based on trees, two
ensembles techniques (gradient-boosted trees and random forests), and
a linear regression as a reference method. Finally, the methodology has
been tested on a real-world dataset from the Spanish electricity load data
with a ten-minute frequency.
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1 Introduction

It is known that advances in technology have meant that the amount of data
being generated and stored is increasing to the point that 90% of the data in
the world have been generated in the last years. The need to process this huge
amount of data has become essential for the evolution of the data mining tools
giving rise to the term big data. On the other hand, an essential component in
the nature of the big data is that they are commonly indexed over time, called
here big time series, and its prediction in future time periods can be extremely
important in diverse areas such as energy, traffic, pollution and so forth.

Nowadays, the main existing frameworks for processing big time series have
been developed by over the top tech companies like Google or Yahoo. Google devel-
oped the MapReduce technology [5], which divides input data for processing in
blocks and then integrates the output information of each block in a single solution.
Later, Yahoo developed Hadoop technology [22], an open code implementation
of the MapReduce paradigm, currently integrated with the Apache foundation.
The limitations of MapReduce in the implementation of algorithms, which iterate
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over the data, have required the creation of new tools, such as Spark [9], devel-
oped by the University of Berkeley and also today in the Apache Foundation.
Spark installed on a Hadoop distributed file system (HDFS) allows in-memory
parallel data processing, achieving a much higher processing speed than Hadoop.
Apache Spark is also an open source software project that allows the multi-
pass computations, provides high-level operators, uses diverse languages (Java,
Python, R) in addition to its own language called Scala, and finally, offers the
machine learning library MLlib [8].

In this work, a collection of scalable algorithms are proposed in order to
forecast big data time series. In particular, representative prediction methods of
different nature have been chosen such as models based on trees, linear regression
and two ensembles techniques (gradient-boosted trees and random forests). The
algorithms have been developed in the framework Apache Spark under the Scala
programming language by using the library MLlib. All the methods have been
tested on a real-world big time series related to energy consumption.

The rest of the paper is structured as follows. Section 2 reviews of the existing
literature related to the machine learning algorithms for big data. In Sect. 3 the
proposed methodology to forecast big data time series is introduced. Section 4
presents the experimental results corresponding to the prediction of the energy
consumption. Finally, Sect. 5 closes the paper giving some final conclusions.

2 Related Work

The prediction of future events has always fascinated humankind. Not in vain,
many of these efforts can be seen in everyday activities, such as weather fore-
casting, the prediction of exchange rate fluctuations or of pollution.

The methods for time series forecasting can be roughly classified as follows:
classical Box and Jenkins-based methods such as ARMA, ARIMA, ARCH or
GARCH [1] and data mining techniques (the reader is referred to [12] for a
taxonomy of these techniques applied to energy time series forecasting). However,
the majority of the data mining techniques cannot be applied when big data have
to be processed due to the high computational cost. Therefore, big data mining
techniques [21,24] are being developed for distributed computing in order to
solve typical tasks as clustering, classification or regression. A brief description
of the main advances is made below.

Increased attention has been paid to big data clustering in recent years
[11,15]. A survey on this topic can be found in [7]. Specifically, several approaches
have been recently proposed to apply clustering to big data time series. Namely,
in [6] the authors propose a new clustering algorithm based on a previous clus-
tering of a sample of the input data. The dynamic time warping was tested to
measure the similarity between big time series in [16]. In [23] a data processing
based on MapReduce was used to obtain clusters. A distributed method for the
initialization of the k-means is proposed in [3].

Regarding classification tasks, several MapReduce-based approaches in big
data scenarios have been recently provided. A MapReduce-based framework



Scalable Forecasting Techniques Applied to Big Electricity Time Series 167

focused on several instance reduction methods is proposed in [20] to reduce the
computational cost and storage requirements of the k Nearest Neighbors (kNN)
classification algorithm. Also, several parallel implementations of the kNN algo-
rithm based on Spark have been proposed in the literature [17,19]. Support
vector machines (SVM) were recently adapted to the field of high performance
computing giving rise to parallel SVMs [4].

In the regression field, there is still much research to be conducted, especially
considering that very few works have been published. For instance, the ensemble
techniques based on trees have been the most studied topic in the literature due
to its easy adaptation to a distributed computing framework. Random forests
have been applied to some particular problems showing a good performance for
high-dimensional data [10]. On the other hand, regression trees have been built
by parallel learning based on MapReduce on computer clusters in [14]. However,
these methods based on a distributed computing have not used for big time
series forecasting in to the best of authors’ knowledge, and therefore, this work
aims at filling this gap.

3 Methodology

This section describes the methodology proposed in order to forecast big data
time series by using the MLlib library.

Given a time series recorded in the past up to the time t, [x1,...,xt], the prob-
lem consists in predicting the h next values for the time series from a historical
windows composed of w-values (h is known as the prediction horizon). This can
be formulated as:

[xt+1, xt+2, . . . , xt+h] = f(xt, xt−1, . . . , xt−(w−1)) (1)

where f is the model to be found by the forecasting method in the training
phase.

Nevertheless, the existing regression techniques in MLlib do not support the
multivariate regression, that is, the multi-step forecasting. Therefore, the first
stage splits the problem into h forecasting subproblems as follows:

xt+1 = f1(xt, xt−1, . . . , xt−(w−1))
xt+2 = f2(xt, xt−1, . . . , xt−(w−1))

...

xt+h = fh(xt, xt−1, . . . , xt−(w−1)) (2)

The existing possible relations between the h consecutive values xt+1, ..., xt+h

are missed with this formulation. However, if the prediction of previous values
is used to predict the next values a greater error is obtained, as the errors are
accumulated in the last time stamps of the prediction horizon. Additionally, to
obtain h models f1, ..., fh to predict h values has a greater computational cost
than the building of a just model f to predict all the values.
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The next stage consists in solving each forecasting subproblem in the Spark
distributed computing framework by using the regression methods of the MLlib
library. The main variable in Apache Spark is the Resilient Distributed Dataset
(RDD), which is an immutable and partitioned collection of elements that can
be operated in a distributed way. Thus, every RDD created is split in blocks of
the same size approximately across the nodes that integrate the cluster, as it is
shown in Fig. 1.

dataSetFile RDD: dataSet

Executor1

rdd_1

Executor2

rdd_2

Executor3

rdd_3

RDD
CLUSTER

Fig. 1. A RDD variable in a spark cluster.

Once the dataset has been distributed, the MLlib algorithms firstly obtain a
model from each worker node, and later, aggregate the predictions obtained for
each model in a stage called reducer. It is important to highlight that RDD vari-
ables do not preserve the order, and therefore, all instances have to be indexed
to deal with time series by using MLlib. An illustration of the methodology is
presented in Fig. 2.

Fig. 2. Illustration of the proposed methodology.
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Regression methods from MLlib have been selected according to cover dif-
ferent paradigms such as linear models, models based on trees and, finally, tech-
niques ensembles.

The models based on trees have been mainly proposed because interpretable
results are always desirable for the end-user. Furthermore, the ensemble tech-
niques usually improve the results obtained by a single regressor in addition to
obtain very good results for many real applications. Finally, a linear model has
been selected as a state-of-the-art reference method. A brief description of the
methods used for each paradigm is made below.

Within the models based on trees, a greedy algorithm [18] that performs a
recursive binary partitioning of the feature space in order to build a decision tree
has been used. The tree predicts the same value for all instances that reach the
same leaf node. The root nodes are selected from a set of possible splits, but no
from all attributes, by maximizing the information gain. In this approach, the
possible split candidates are a quantile over the block of the data, which is being
processed by a certain worker machine in the cluster. Moreover, once the splits
are ordered, a maximum number of bins is allowed.

Two ensemble of decision trees have been considered: random forests [2] and
the gradient-boosted trees (GBTs) [13]. Both algorithms learn ensembles of trees,
but the training processes are very different. GBTs train one tree at a time,
being the longer training than random forests, which can train multiple trees in
parallel. Random forests improves the performance when the number of trees
increases, however, GBTs can present overfitting if the number of trees grows
too large.

Random forests is an ensemble of decision trees trained separately in the
same way as detailed above for individual decision trees. The trees generated
are different because of different training sets from a bootstrap subsampling and
different random subsets of features to split on at each tree node are used. To
make a prediction on a new instance, a random forest makes the average of the
predictions from its set of decision trees.

GBTs iteratively train a sequence of decision trees. On each iteration, the
algorithm uses the current ensemble to predict the label of each training instance
and then compares the prediction with the true label by computing the mean
square error. The training instances with poor predictions are re-labeled, and
therefore, in the next iteration, the decision tree will help correct for previous
mistakes.

Finally, a linear regression has been selected as linear model. The well-known
stochastic gradient descent method has been used to minimize the mean square
error for the training set in order to obtain the model.

4 Results

This section presents the results obtained from the application of the proposed
methodology to electricity consumption big data time series to predict the 24
next values, that is, the forecast horizon set to h = 24 (4 h). Hence, Sect. 4.1



170 A. Galicia et al.

describes the used dataset. The experimental setup carried out is detailed in
Sect. 4.2. Finally, the results are discussed in Sect. 4.3.

4.1 Datasets Description

The time series used is related to the electrical energy consumption, which ranges
from January 1st 2007 at 00:00 am to June 21st 2016 at 23:40 am. The consump-
tion is measured every ten minutes during this period. This makes a time series
with a total length of 497832 measurements, which have been split into 298608
samples for the training set corresponding to the period from January 1st, 2007
at 00:00 am to September 8th 2012 at 10:30 am and 199080 samples for the test
set corresponding to the period from September 8th 2012 at 10:40 am to June
21st 2016 at 11:40 pm.

4.2 Design of Experiments

The experimental setting of the algorithms is as follows:

1. The number of past values used to predict the 24 next values has been set to
144 (window w = 144), which represents all the values for a whole day.

2. In the linear regression, the stochastic gradient descent method requires an
adequate number of iterations and rate of learning in order to guarantee the
convergence of the optimization technique. In this work, values of 1.0E − 10
for the rate and 100 for the iterations have shown to be suitable.

3. The number of trees and the maximum depth are the main inputs for random
forests and GBTs. Different depth levels have been tested for both ensembles,
namely, four and eight. A number of five trees has been set for GBTs and
values of 50, 75, 100, 125 and 150 trees for random forests.

The experimentation has been launched on a cluster, which is composed of
three nodes: the master and two slaves nodes. Each node has two Intel Xeon
E7-5820K processors at 3.3 GHz, 15 MB cache, 6 cores per processor and 16 GB
of main memory working under Linux Ubuntu. The cluster works with Apache
Spark 2.0.2 and Hadoop 2.6.

Finally, the well-known mean relative error (MRE) measure has been selected
to assess the accuracy of the predictions. Its formula is:

MRE =
1
N

N∑

i=1

|x̂i − xi|
xi

(3)

where x̂i stands for the predicted values and xi for the actual consumption
values.
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4.3 Electricity Consumption Big Data Time Series Forecasting

Table 1 summarizes the MRE obtained by all methods based on trees when
predicting the test set. A study of how the number of trees has an influence
on the error is made for the random forests ensemble. In addition, the depth of
the trees used for all methods has been analyzed. It can be seen that a greater
accuracy is provided when the depth of the trees increases due to trees more
specific are obtained. By contrast, it seems that the number of trees to be used
by the random forest has not a high impact over the error, and therefore, fifty
trees was a sufficient number to obtain a good performance of the method.

Table 1. MRE for different depth levels and number of trees.

Decision tree Random forests GBTs

Number of trees 1 50 75 100 125 150 5

Depth 4 5.1516 4.2823 4.2583 4.2415 4.2415 4.2427 4.3402

Depth 8 2.8783 2.2005 2.1853 2.1842 2.1810 2.1773 2.7190

Table 2 shows the MRE for the methods based on trees when a depth of 8 and
a number of 50 trees for random forests has been used. Additionally, it shows the
MRE obtained by means of a linear regression as baseline method to establish
a benchmarking. All non linear methods based on trees achieved better errors
than the linear regression, namely a difference of 5% approximately. Although
the best results are obtained by the random forests ensemble technique, it can
be concluded that the decision tree is the more adequate method in terms of
accuracy and CPU time to predict big data time series.

Table 2. MRE for the test set and CPU time for training.

MRE (%) Time (seconds)

Linear regression 7.3395 553

Decision tree 2.8783 81

Random forests 2.2005 277

GBTs 2.7190 417

Figures 3 and 4 present the predicted values along with the actual values for
the random forest algorithm for the two days from the test set leading to the
largest and smallest errors, respectively. The worst prediction corresponds to an
error of 9.12% associated to the period from December 24th 2013 at 10:50 am to
December 25th 2013 at 10:40 am and the error of the best prediction is 0.67%
corresponding to the day from September 20th 2012 at 10:40 am to September
21st 2012 at 10:30 am. It can be noted that the worst day is a special day,
namely, Christmas Eve.
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Fig. 3. The day corresponding to the worst prediction when using random forests.
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Fig. 4. The day corresponding to the best prediction when using random forests.

Finally, the training time versus the length of the time series for all algorithms
proposed here are shown in the Fig. 5. The execution time has been obtained
with time series of two, four, eight, sixteen and thirty and two times the length
of the original time series. It is necessary to highlight the building of the dataset
from the time series for each subproblem is not included in the training time as
that is not made in a distributed way, but in an iterative way. From this figure,
it can be observed that the most scalable method is the decision tree.



Scalable Forecasting Techniques Applied to Big Electricity Time Series 173

23x61x8x4x2x1

Length of the time series

0

2000

4000

6000

8000

10000

12000
E

xe
cu

tio
n 

tim
e 

(s
ec

on
ds

)

Linear regression
Decision tree
Random forests
GBTs

Fig. 5. Runtime and scalability for all algorithms.

5 Conclusions

In this work, a new formulation has been proposed for multi-step forecasting
problems in order to be able to use the MLlib library from Apache Spark frame-
work. The use of this library guarantees that the methods applied to predict
the energy consumption for the next twenty four values are scalable, and there-
fore, they can be used for big data time series. A pool of linear and non linear
methods have been selected, e.g., methods based on trees, ensemble techniques
based on trees and a linear regression. Results for the Spanish electricity demand
time series have been reported, showing the good performance of the methods
proposed here and the grade of scalability for each of them.

Future work is directed towards solving the forecasting subproblems in a
distributed way by using technology based on multithreads.
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