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Abstract. In this work a robust clustering algorithm for stationary time
series is proposed. The algorithm is based on the use of estimated spectral
densities, which are considered as functional data, as the basic character-
istic of stationary time series for clustering purposes. A robust algorithm
for functional data is then applied to the set of spectral densities. Trim-
ming techniques and restrictions on the scatter within groups reduce the
effect of noise in the data and help to prevent the identification of spu-
rious clusters. The procedure is tested in a simulation study, and is also
applied to a real data set.
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1 Introduction

Time series clustering has become a very active research area, with applica-
tions in many different fields. However, most methods developed so far do not
take into account the possible presence of contamination by outliers or spurious
information. In this work, we propose a clustering algorithm for stationary time
series that is based on considering the estimated spectral density functions as
functional data. This procedure has robust features that mitigate the effect of
noise in the data and help to prevent the identification of spurious clusters.

Comprehensive revisions of the area can be found in [1,8,19]. [21] present a
package in R for time series clustering with a wide range of alternative methods.
According to Liao [19], there are three approaches to clustering of time series:
methods that depend on the comparison of the raw data, methods based on
models fitted to the data and, methods based on features derived from the time
series. Our proposal falls within the third approach and the spectral density is
the characteristic used to gauge the similarity between time series in the sample.

Spectral characteristics have been previously considered as the main tool for
time series clustering. Caiado et al. [6,7] use the periodogram and normalized
periodogram ordinates for clustering time series. Maharaj and D’Urso [20] pro-
pose a fuzzy clustering algorithm based on the estimated cepstrum, which is the
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spectrum of the logarithm of the spectral density. Alvarez-Esteban et al. [3] and
Euán et al. [13] consider the use of the total variation distance on normalized
estimates of the spectral density as a similarity measure for clustering. A brief
description of the last two algorithms will be given in Sect. 2.

Other works have focused on developing robust clustering algorithms for time
series. D’Urso et al. [11] use a fuzzy approach to propose a robust clustering
model based on autoregressive models. D’Urso et al. [12] present robust fuzzy
clustering schemes for heteroskedastic time series based on parametric models,
Bahadori et al. [4] propose a clustering framework for functional data, which can
be applied to time series with warped alignments.

Our proposal is based on the use of spectral densities, considered as functional
data, and the application of the clustering algorithm recently developed in [24],
which will described in Sect. 3. Several clustering methods for functional data
have been proposed in the literature as, for instance, [5,17,18] but these methods
are not aimed at dealing with outlying curves. Trimming techniques for robust
clustering have been applied in [9,15].

The rest of the paper is organized as follows: Sect. 2 describes the idea behind
our proposal for time series clustering. Section 3 gives a brief description of the
robust clustering procedure for functional data that supports the time series
clustering algorithm. Section 4 presents a simulation study that compares the
performance of the algorithm with existing alternatives and Sect. 5 gives an
application to a real data set. The paper ends with a discussion of the results.

2 Time Series Clustering

Consider a collection of n stationary time series X1,t,X2,t, . . . , Xn,t with 1 ≤
t ≤ T . For ease of notation we take all series to have the same length, but
this is not a requirement of the procedure. The spectral density of each time
series is estimated by one of the many procedures available. Previous clustering
methods based on the use of spectral densities relied on similarity measures
for discriminating between them. In this work, the spectra are considered as
functional data to which the robust clustering procedure developed in [24] is
applied. The resulting clusters correspond to time series whose spectral densities
have similar shapes, and hence similar oscillatory behavior. The procedure is able
to detect outliers among the spectral densities, which correspond to time series
having atypical oscillatory characteristics.

Two methods based on estimated spectral densities are presented in [3,13].
We describe them in more detail since they will be used later for comparison pur-
poses. We refer to them as “TVDClust” and “HSMClust”, respectively. In both
cases the total variation distance (TVD) is used to measure similarity between
spectral densities. TVD is a frequently-used distance between probability mea-
sures that, in the case of probability distributions having a density, measures the
complement of the common area below the density curves. Thus, the more alike
the densities are, the larger this common area and the smaller the TV distance.
To use this distance to compare spectral densities, they need to be normalized so
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that the total area below the curve is equal to 1, which is equivalent to normaliz-
ing the original time series so that it has unit variance. Thus, it is the oscillatory
behavior of the series, and not the magnitude of the oscillations that is taken
into account in these clustering algorithms.

For “TDVClust”, a dissimilarity matrix is built up by measuring the TVD
distance between all pairs of normalized estimated spectral densities. This matrix
is then fed to a hierarchical agglomerative algorithm with the complete or average
linkage functions. The result is a dendrogram which can be cut to obtain the
desired number of groups. To decide on the number of clusters an external criteria
such as the Silhouette or Dunn’s index is used. More details can be found in [3].

The second method, “HSMClust”, is a modification in which every time two
clusters are joined together, all the information in them is used to obtain a
representative spectrum for the new cluster. There are two ways to do this,
either all the spectral densities are averaged, which is the average option in
the algorithm, or else all the time series in the two groups are concatenated
and a new spectral density is estimated, which corresponds to the single option.
Under the assumption that the series in the same cluster have common oscillatory
characteristics, either of this procedures will give a more accurate estimation of
the common spectral density for the whole group. This algorithm is known as
the Hierarchical Spectral Merger (HSM) algorithm, and its implementation in R
is available at http://ucispacetime.wix.com/spacetime#!project-a/cxl2.

Every time two clusters are merged, the dissimilarity matrix reduces its size.
In “TVDClust”, this matrix remains the same throughout the procedure and
the distances between clusters are calculated using linear combinations of the
distances of the individual points in each cluster. The linear combination used is
determined by the linkage function employed. More details can be found in [3].

3 Robust Clustering for Functional Data

We now give a brief description of the algorithm proposed in [24], where more
details can be found. Let X be a random variable taking values in the Hilbert
space L2([0, T ]) of square integrable functions defined in the interval [0, T ], with
inner product given by 〈f, g〉 =

∫
f(t)g(t) dt. If μ(t) = E{X(t)} and Γ (s, t) =

cov{X(s),X(t)}, then it is usual to represent X through its Karhunen-Loève
expansion X(t) = μ(t) +

∑∞
j=1 Cj(X)ψj(t). In that expansion, the ψj are an

orthonormal system of functions obtained as eigenfunctions of the covariance
operator Γ , i.e. 〈Γ (·, t), ψj〉 = λjψj(t), and the eigenvalues λj are taken in
decreasing order and assumed to satisfy

∑∞
j=1 λj < ∞. The principal component

scores Cj(X) = 〈X − μ, ψj〉 are uncorrelated univariate random variables with
zero mean and variance equal to λj . Delaigle and Hall [10] show that log P (||X −
x|| ≤ h) can be approximated by

∑p
j=1 log fCj

(cj(x)), for any x ∈ L2([0, T ]) and
small h, where fCj

corresponds to the probability density function of Cj(X)
and cj(x) = 〈x, ψj〉. This approximation entails a kind of “small-ball pseudo-
density” approach for Functional Data Analysis by taking into account that
probability density functions in the finite dimensional case can be seen as the

http://ucispacetime.wix.com/spacetime#!project-a/cxl2
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limit of P (||X − x|| ≤ h)/h when h → 0. In the particular case of X being
a Gaussian process, the Cj(X) are independent normally distributed random
variables with mean equal to 0 and variance equal to λj .

With these ideas in mind, Jacques and Preda [17] proposed a “model-based”
approach for clustering of functional data, where a finite number of indepen-
dent normally distributed principal component scores are assumed and different
variances are also allowed for each cluster. Previously, Bouveyron and Jacques
[5] had already considered a different approach, where a certain fraction of the
smallest variances are constrained to be equal for each cluster.

In Rivera-Garćıa et al. [24], starting from Bouveyron and Jacques [5] and
Jaques and Preda [17], a robust functional clustering procedure is proposed
where a proportion α of curves are allowed to be trimmed and constraints on
the variances are considered. If {x1, ..., xn} is a set of curves in L2([0, T ]), we
consider the maximization of a trimmed mixture-loglikelihood defined as

n∑

i=1

η(xi) log
( K∑

g=1

πg

[ qg∏

j=1

1
√

2πajg

exp
(−c2ijg

2ajg

) p∏

j=qg+1

1
√

2πbg

exp
(−c2ijg

2bg

)])

(1)

where cijg = cjg(xi) is the j-th principal component score of curve xi in group
g, g = 1, ...,K, and, η(·) is an indicator function with η(xi) = 0 if the xi curve
is trimmed and 1 if it is not and πg, g = 1, ...,K are mixing weights that add
up to 1. A proportion α of curves is trimmed, so that

∑n
i=1 η(xi) = [n(1 − α)].

The main variance contributions in the g-th cluster are assumed to be a1g,...,
aqgg, for the first qg components, while we assume that each of the remaining
p − qg components contribute with the same bg variance. Notice that we take
an equal number of principal components p in every cluster but the number of
main components qg may vary across clusters. Finally, to prevent the detection
of spurious clusters, two constants d1 ≥ 1 and d2 ≥ 1 were fixed such that the
maximization of (1) is done under the constraints:

maxg=1,...,K;j=1,...,qj ajg

ming=1,...,K;j=1,...,qj ajg
≤ d1 and

maxg=1,...,K bg

ming=1,...,K bg
≤ d2. (2)

A feasible algorithm for performing the constrained maximization, detailed
in [24], is a modification of the traditional EM algorithm used in model-based
clustering where a “trimming” step (T-step) is added. In the T-step, those curves
with smallest contributions to the trimmed likelihood are temporarily not taken
into account in each iteration of the algorithm. The trimming step is similar to
that applied in the “concentration” steps applied when performing the fast-MCD
algorithm [25]. To enforce the required constraints on the variances, optimally
truncated variances as done in [14] are adopted if needed. For the estimation
of the dimension qg in each cluster, a Bayesian Information Criterion (BIC)
approach was proposed in [24].
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4 Simulation Study

To evaluate the performance of the proposed Robust Functional Clustering
(RFC) methodology, a simulation study was carried out. We now describe the
different scenarios and contamination types. As in [13], the simulations are based
on combinations of autoregressive processes of order 2, AR(2), which are defined
as Xt = u1Xt−1 + u2Xt−2 + εt where εt is a white noise process. The associated
characteristic polynomial is h(y) = 1 − u1y − u2y

2 and its roots, denoted by y1
and y2, are related to the spectrum of the time series. If the roots are complex-
valued, they must be conjugate, i.e. y1 = y2 and their polar representation is
|y1| = |y2| = M and arg(yi) = 2πν/ws where ws is the sampling frequency in
Hertz; M is the magnitude of the root (M > 1 for causality) and ν the frequency
index, ν ∈ (0, ws/2). The spectrum will have modal frequency in ν, which will
be broader as M → ∞ and narrower as M → 1+. Then, given (ν,M,ws) and
with ω0 = 2πν

ws
we have u1 = 2M−1 cos ω0 and u2 = −M−2.

Two groups of 50 time series each were simulated, with parameters ν1 = 0.21,
ν2 = 0.22, M1 = M2 = 1.15, ws = 1 and length T = 1000. From the simulated
time series, the spectral densities were estimated using a smoothed lag-window
estimator with a Parzen window and bandwidth 100/T. The estimated spectral
densities are shown in Fig. 1(a). The functional form of the estimated spectral
densities was recovered using a B-Spline basis of degree 3 with 14 equispaced
nodes and smoothing parameter λ = 0.000003 (see e.g. [22], Chap. 3) We want to
test the performance of the different algorithms in recovering these two groups,
even in the presence of contaminating data. In the absence of contamination we
have 100 observations divided into two groups.

We introduce the mixtures of AR(2) processes that will be used in the con-
tamination schemes. Let Y i

t , i = 1, 2 be two AR(2) processes with parameters
Mi and νi, i = 1, 2. Their mixture is given by Xt = a1Y

1
t + a2Y

2
t + εt where

ai, i = 1, 2 are the weights and εt is a white noise process. This mixture creates
a signal that combines the oscillatory behavior of the processes Y i

t , i = 1, 2.
Starting from the two groups of 50 AR(2) time series described previously,

which are considered as the clean data, we added another 11 time series (around
10% contamination level), generated according to the following schemes:

(i) AR(2) processes with parameters νi chosen randomly with uniform distri-
bution in the interval (.20, .25), denoted U(.20, .25), M = 1.2 and ws = 1.
The contaminating series have smaller variance than the series in the clus-
ters. See Fig. 1(b).

(ii) A mixture of two AR(2) processes having parameters νi = .20 and .25;
Mi = 1.05, 1.1, i = 1, 2 y ws = 1. See Fig. 1(c).

(iiii) A mixture of two AR(2) processes with random parameters ν1 = U(.19, .22)
y ν2 = U(.24, .26); Mi = 1.05, 1.1, i = 1, 2 and ws = 1, See Fig. 1(d).

Figure 1(b), (c) and (d) show the spectral densities for the simulated time
series with the three contamination schemes described.

In order to test the performance of the RFC methodology, the simulated
process and their estimated spectral densities were used to compare with the
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Fig. 1. Spectral density of the simulated time series: (a) No contamination, (b) Con-
tamination type (i), (c) Contamination type (ii) and (d) Contamination type (iii)

results obtained when using the “Funclust” algorithm [17] and hierarchical meth-
ods using the total variation distance: “HSMClust” [13] and “TVDClust” [2,3].

It is important to recall that we assume the qg dimensions in the RFC proce-
dure to be unknown parameters and that the BIC criterion is used to estimate
them when applying this algorithm. The results in [24] already show the impor-
tance of trimming. Trimming levels α = 0 and α = 0.1 are used. As regards
the constraints, we are assuming d1 = d2 = d to simplify the simulation study.
Values of d = 3, 10 and 1010 (i.e., almost unconstrained in this last case) were
used. We always return the best solution in terms of the highest BIC value for
each combination of all those fixed values of trimming level and constraints. We
use 100 random initializations with 20 iterations.

For the “Funclust” method we used the library Funclustering [26] in R
where the EM algorithm has been initialized with the best solutions out of
20 “short” EM algorithms with only 20 iterations and threshold values of
ε = 0.001, 0.05, 0.1 in the Cattell test. For the agglomerative methods we use
the library HSMClust in R for “HSMClust” and “TVDClust” by means of the
algorithm described in [2,3].

Figure 2 shows the results for the simulation study. It is composed of a matrix
of graphs, where the rows correspond to the different contamination schemes
(uncontaminated in the first row) while the columns correspond to the method-
ologies tested. The first column corresponds to “Funclust”, the second to “HSM-
Clust”, the third shows the results for the RFC procedure with trimming levels
α = 0 (untrimmed) and α = 0.1 and three constraint levels d = 3, 10 and 1010

(i.e., almost unconstrained in this last case). The fourth column shows the results
corresponding to “TVDClust”. The x-axis corresponds to the threshold applied
in the Cattell test for “Funclust”, the procedure in “HSMClust”, the constraint
level for RFC and the linkage function for the agglomerative method “TVD-
Clust”, while the y-axis corresponds to the correct classification rate (CCR).

Results show that the hierarchical methods, “HSMClust” and “TVDClust”
are better in the absence of contamination, giving very consistent results. How-
ever, their performance degrades sharply in the presence of noise. This is not sur-
prising since these procedures were not designed to handle contamination in the
sample. The joint use of trimming and constraints in RFC improve the results
(CCR) substantially. Results are very good for moderate (d = 10) and small
(d = 3) values of the constraint constants, while for high values the results are
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Fig. 2. classification rate (CCR) for the four methods considered, represented in dif-
ferent columns. Rows correspond to the different contamination schemes, starting with
no contamination in the first row and following with schemes (i), (ii) and (iii) described
in the text. Constraint levels d1 = d2 = 3, 10 and 1010, trimming levels α = 0 and 0.1
were used for the RFC method. Threshold values ε = 0.001, 0.05 and 0.1 were used
for the “Cattell” procedure in “Funclust”. Single and average versions were used for
“HSMClust” while average and complete linkage functions were used for “TVDClust”.

poor. Very high values for these constants are equivalent to having unconstrained
parameters. Trimming turns out to be very useful in all the contaminated cases
while the results are not affected by trimming in the uncontaminated case.

In the presence of contamination, the results for “Funclust”, “HSMClust”
and “TVDClust” fall below those of RFC when applying the α = 0.1 trimming
and small/moderate values d1 and d2 for the variance parameters.

5 Analysis of Real Data

We now consider wave-height data measured by a buoy located in Waimea Bay,
Hawaii, at a water depth of approximately 200 m. This buoy is identified as
number 106 (51201 for the National Data Buoy Centre). The data, which cor-
responds to 72.5 h divided into 30-minute intervals, was collected in June 2004
and has previously been analyzed by [2] where more details can be found.



Robust Clustering for Time Series Using Spectral Densities 149

In [2] the spectrum for each 30-minute interval was estimated and normalized
The TV distance between all spectral densities was used to build a dissimilarity
matrix, that was fed into a hierarchical agglomerative clustering algorithm. For
more details see [3]. The 145 normalized densities are shown in Fig. 3(a).

Fig. 3. Spectral densities for the sea wave data after normalization. (a) Original data.
(b) Original data plus 22 additional densities in black, considered as noise.

The RFC method was applied to this data set in order to obtain an alternative
clustering. The functional form of the data was recovered using B-splines of
order 3 with 31 equispaced nodes. We use 100 initializations with 20 iterations
each. The constraint level considered was d1 = d2 = 3, and the trimming level
α = 0.13. In [2] two different clusterings were obtained, depending on the linkage
function used: 4 clusters for the complete linkage and 3 for average. We will only
consider the clustering into 4 groups for comparison purposes in what follows.

To compare the two results, the Adjusted Rand Index (ARI) [16] was used.
This is an improvement of the original Rand Index [23] and measures the simi-
larity between two partitions of the same set, having value 1 when there is exact
coincidence and close to 0 when considering a completely “random” clustering
of the data.

One can see that the effect of trimming and constraints is not harmful, even
in the absence of contamination. For instance, we can see that the ARI of RFC
with d1 = d2 = 3 and α = 0.13 is equal to 0.513 with respect to the “reference”
partition, which is obtained when applying [2] with 4 groups. To compute this
ARI index we assign all the time series (trimmed and non-trimmed) to clusters
by using posterior probabilities from the fitted mixture model that was described
in Sect. 3. The two rows in Fig. 4 show the clusters found when using the TVD
and RFC, respectively. Even though the groups have differences in membership
and size, it is possible to see from the figures that the shape of the functions
in the corresponding clusters are very similar and the mean functions are close.
The variations are probably due to the different clustering techniques employed,
but the similarity in the groups obtained point to consistent results for both
methods. Observe that the trimmed curves for the RFC method are different
from the rest of the functions in their cluster. For “HMSClust” both versions
gave a value of 0.723 for the ARI, higher than that obtained with RFC, while
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Fig. 4. (Top) Clusters found using the TV distance using the complete linkage function.
(Bottom) Clusters found using the RFC method for K = 4 with constrains d1 = d2 = 3
and trimming α = 0.13. Each panel corresponds to spectral densities in each cluster,
grey lines represent the means and black lines represent the trimmed observations.

for “Funclust”, values were lower, with a maximum of 0.315 with a threshold
value of 0.01 or 0.1 in the “Cattell” test.

In order to test the performance of the different methods with real data and
in the presence of contamination, 22 time series were added to the sample. These
measurements were recorded at the same location and during the same month,
but during different days. The corresponding estimated spectral densities are
shown in black in Fig. 3(b). Some of these densities are bimodal while others are
unimodal but have lower modal frequency than those in the original sample.

The four clustering procedures considered were applied to this contaminated
sample and the results were compared using again as “reference” the clustering
obtained in [2] with 4 groups applied to the clean data (i.e., before adding the
contaminating curves). The ARI was computed by taking only into account
the classification of the original (non-contaminating) densities. In the case of
the RFC methodology, the assignments based on “posterior” probabilities were
considered for the wrongly trimmed observations.

The ARI for the RFC method with K = 4 and d1 = d2 = 3 are equal
to 0.167, 0.723 and 0.599 when trimming levels α = 0, α = 0.13 and α = 0.2,
respectively, are used. The associated ARI when using Funclust are always below
0.21 for all three Cattell thresholds tested (0.002, 0.05 and 0.1) as this method is
not designed to cope with outlying curves. The other methods tested, “average
TVD” and “average HMSClust”, have even worse results in this contaminated
case reaching ARI values equal to 0 in both cases. Therefore, the best results
overall were obtained using RFC with a α = 0.13 while the other methods show
poor results in the presence of contaminating data.

To reinforce previous claims, Fig. 5 shows in the first row, the partition
obtained in [2] with four clusters before adding the contaminating time series, in
the second, the results when using RFC with four clusters, d1 = d2 = 3 and trim-
ming level α = 13% to the “contaminated” data set. In the third row the results
obtained with “TDVClust”, then “HMSClust” and “Funclust”, also in case that
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Fig. 5. Clusters found with the different procedures when K = 4. Each panel corre-
sponds to a cluster of spectral densities. Gray lines represent the means and black lines
represent the trimmed observations. First row: Original clusters for the TV distance
using the complete link before adding contaminating time series. Second row: Clusters
for the RFC method for K = 4 with constrains d1 = d2 = 3 and trimming α = 0.13.
Third row: Clusters for the “TVDClust” method with complete linkage. Fourth row:
Clusters for “HSMClust” method. Fifth row: Clusters for “Funclust”

the contaminating time series were added. Once again, the clusters obtained with
RFC differ slightly from those obtained in [2] but, in spite of the presence of con-
tamination, the shape of the spectral densities in the corresponding clusters are
very similar and the average densities are very close. The trimmed functions when
using level α = 13% are shown in black in the second row. The last three rows show
the poor results obtained with the other three methods. For instance, in the third
row, corresponding to “TVDClust”, the original sample is clustered together in a
single group in the leftmost panel, while the other three groups only contain con-
taminating functions that were added as noise. Since α = 0.13, 19 curves were
trimmed with the RFC procedure, most of which come from the contaminating
series that were added. Finally, it is also important to point out that trimming
and clustering are performed simultaneously in the RFC approach.
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6 Conclusions

A feasible methodology of robust clustering for stationary time series has been
proposed and illustrated. The key idea behind the algorithm presented is the
use of estimated spectral densities of the time series, that are considered as
functional data. A robust model-based algorithm together with the simultaneous
use of trimming and constraints is then used to cluster the original time series.

The use of trimming protects the estimation of the parameters against the
effect of outlying curves, while the constraints avoid the presence of spurious
clusters and improve the performance of the algorithms. Simulations show that
the joint use of constraints and trimming tools improves results in the presence
of outliers, in comparison to some other procedures for time series and functional
data clustering, not designed to work with contamination. The real data example
shows that the proposed RFC method for time series clustering has a good
performance, with or without the presence of outlying curves. In the presence of
contamination, RFC is able to detected almost all the outliers in the data. The
trimmed curves often correspond to curves with different characteristics to the
rest. We conclude that the proposed robust methodology can be a useful tool to
detect contamination and groups in a time series data set simultaneously.

However, this methodology has some limitations. The choice of trimming
level α and the choice of the scatter constraints constants d1 and d2, can be
subjective and sometimes depend on the final purpose of the cluster analysis.
For this reason, we always recommend the use of different values of trimming
and constraint, monitoring the effect in the clustering partition of these choices.
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