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Abstract. Segmentation of various structures from the chest radiograph is often
performed as an initial step in computer-aided diagnosis/detection (CAD) sys-
tems. In this study, we implemented a multi-task fully convolutional network
(FCN) to simultaneously segment multiple anatomical structures, namely the
lung fields, the heart, and the clavicles, in standard posterior-anterior chest
radiographs. This is done by adding multiple fully connected output nodes on
top of a single FCN and using different objective functions for different struc-
tures, rather than training multiple FCNs or using a single FCN with a combined
objective function for multiple classes. In our preliminary experiments, we
found that the proposed multi-task FCN can not only reduce the training and
running time compared to treating the multi-structure segmentation problems
separately, but also help the deep neural network to converge faster and deliver
better segmentation results on some challenging structures, like the clavicle. The
proposed method was tested on a public database of 247 posterior–anterior chest
radiograph and achieved comparable or higher accuracy on most of the struc-
tures when compared with the state-of-the-art segmentation methods.
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1 Introduction

Chest radiography is one of the most common medical imaging procedures for screening
and diagnosis of pulmonary diseases thanks to its low radiation and cost. Although the
interpretation of chest radiography is deemed as a basic skill of a certified radiologist,
the inter- and intra-observer performance is highly variable due to the subjective nature
of the reviewing process [1]. To assist in the diagnosis of chest radiography, a number of
computer-aided diagnosis/detection (CAD) systems have been developed to provide a
second opinion on a selective set of possible pathological changes, such as lung nodules
[1] or tuberculosis [2]. In such a system, segmentation of various structures from the
chest radiograph is often performed as an initial step. The accuracy of the segmentation
often has a strong influence on the performance of the following steps such as lung
nodule detection, or cardiothoracic ratio quantification, therefore a robust and accurate
lung filed and heart segmentation method is essential for these systems. A number of
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dedicated segmentation methods have been proposed to target some specific organs,
most commonly the lungs in chest radiographs [3–6]. However, the segmentation
problem is still a great challenge, even for human observers, due to large variation of
anatomical shape and appearance, inadequate boundary contrast and inconsistent
overlapping between multiple organs (e.g. the relative positions between bones, muscles
and mediastinum) which are hard to be modeled with the common statistical models. In
[7, 8], we proposed a hierarchical-shape-model guided multi-organ segmentation
method for CT images, that outperformed some dedicated single organ segmentation
methods. This gave some support to the hypothesis that solving multiple organ seg-
mentation simultaneously may be better than solving a single organ segmentation
problem as the algorithm gets more context information. In this study, we extended the
same philosophy to the chest radiography segmentation with a totally different seg-
mentation framework, based on convolutional neural networks (CNN).

CNN, or deep neural networks in general, has gained popularity in recent years due
to the outstanding performance on a number of challenging image analysis problems,
such as image classification, object detection and semantic segmentation [9], as well as
a variety of medical applications [10]. In contrast to conventional machine learning
approaches that use handcrafted features designed by a human observer, CNNs auto-
matically adjust the weights of convolutional kernels to create data-driven features that
optimize the learning objectives at the end of the neural network. Recently, an
increasing number of reports have suggested that adding multiple objectives or com-
bining features trained for different objectives, so-called multi-task CNNs, can deliver
better results than the single-task models [11, 12]. In this study, we implemented a
multi-task fully convolutional network (FCN) to simultaneously segment multiple
anatomical structures, namely the lung fields, the heart, and the clavicles, in standard
posterior-anterior chest radiographs. When tested on a public database of chest x-ray
images, the proposed method achieved comparable or higher accuracy on most of the
structures than the state-of-the-art segmentation methods.

2 Method

2.1 Fully Convolutional Network

In general, a CNN consists of a number of convolutional layers followed by a number
of fully connected layers. This setup requires the input images/image patches to share
the same size. When used for image segmentation, it requires the input image to be
converted to a series of largely overlapping patches around each pixel. This makes the
computation very inefficient. FCN can be seen as an extension of the classical CNN,
where the fully connected layers are removed or replaced by convolutional layers [9].
This allows FCNs to be applied to images of any size and output label maps propor-
tional to the input image. Combined with “skips” and up-sampling or deconvolution
layers [9], the output map can have the same size as the input image. This design
eliminates redundant computation on overlapping patches and makes both the training
and testing processes more efficient than the patch-based CNN approaches. In this
study, we implemented a variation of FCN, called U-Net, which was proposed by
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Ronneberger et al. [13]. The overall architecture of the U-Net used in this study is
illustrated in Fig. 1. The left arm of the “U” shape consists of four repeating steps of
convolution and max pooling. In the convolution steps, we used two consecutive 3 � 3
convolutional kernels. The exact number of features at each layer is given in the figure.
At each max pooling step, the feature maps are reduced to half the size. The right arm
of the “U” shape consists of four repeating steps of up-sampling and convolution,
which allows the network to output a segmentation mask of the same size as the input
image. Right after each up-sampling, the feature maps from the corresponding layers
on the left arm are merged with the up-sampled feature maps before the following
convolution operations. This allows the network to combine the context information

Fig. 1. The U-Net architecture used in this study. Black lines represent the images and feature
maps (The height and width of the lines symbolize the size of the maps and the number of
features at each step respectively, numbers on the side indicate the exact dimension of the
features maps). Blue arrows represent convolutional operations. Dashed green arrows represent
the ‘skips’ (Color figure online)
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from the coarse layer and the detailed image features at the finer scale. The final
segmentation masks are usually generated with a convolution layer with kernel size of
1 � 1 that combines the multiple feature maps with a softmax or sigmoid activation
function. Compared with the original FCN method reported in [9], U-Net does not
required the up-sampling layers to be trained from coarse to fine in multiple stages, but
to train all layers in a single round, therefore it is easier to use in practice.

2.2 Multiple Single-Class FCN Vs. Multi-class FCN Vs. Multi-task FCN

In this study we try to segment the lungs, heart and clavicles from a chest x-ray image
(cf. Fig. 2). There are a number of options to achieve multiple-class segmentation with
FCN. One of the most trivial approaches is to treat the multi-structures separately and
train multiple FCNs to segment different structures one after another. Another relatively
straightforward method is to simply treat the structure labels as multi-classes and train a
single FCN that outputs multiple probability maps with a single objective function.
However, as shown in Fig. 2, the segmentation labels of the clavicles overlap largely
with the lung fields. The softmax activation function that is commonly used to output
multi-class predictions requires the samples to exclusively belong to a single class, and
therefore cannot be directly used in this task. Multi-task FCN is another option which
can generate multiple segmentation masks through a shared base FCN. The general
principle of a multi-task deep neural network is to hybrid multiple output paths with
different objective functions on top of a common base network (e.g. Fig. 1). It can also
be interpreted as multiple output paths sharing the same feature pool that can be used
for multiple tasks. While training a network that optimizes two tasks, such as landmark
detection and segmentation, the feature pool may eventually contain two sets of fea-
tures that complement each other. In the FCN setup, low-resolution layers are also
thought of as context information for the finer output layers. In multi-task FCN, the
context information is also enriched. In this study, we added 5 output nodes to the
U-Net output layer that are expected to generate segmentation masks for 5 different
structures. Each node is associated with its own loss function. In this study, we used the
negative Dice coefficient as the loss function for each individual region, which elim-
inates the need of tuning the class weighting factors in situations where there is a strong
imbalance between the number of foreground and background voxels [14], like the
clavicles. The weighting factors for different objective functions were all set to 1.0, i.e.
all structures are equally important.

2.3 Post-processing

As shown in Fig. 2, the output from FCN sometimes developed holes inside the
targeted structure or islands outside. To remove these artifacts, we applied a fast level
set method [15] that first shrinks from the border of the image with a relatively high
curvature force (curvature weighting set to 0.7) and then expands with a low curvature
force (curvature weighting set to 0.3). Because the output from U-Net is a probability
map that is in a range from 0 to 1, we simply used 0.5 as the threshold to generate the
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speed-map for the level set method. The shrinking and expanding are similar to
mathematical morphology opening and closing operations, but we have found the level
set method to be more robust against large holes caused by unexpected objects in the
images such as pacemakers or central venous access devices.

3 Experiments and Results

To validate the proposed method, we tested the proposed multi-task FCN approach on
the public JSRT dataset of 247 chest radiographs with the segmentation masks from
[3]. The original image size was 2048 � 2048, but was down-sampled through linear

Fig. 2. Four representative cases. Columns from left to right are: input images, segmentation of
lungs, segmentation of the clavicle and segmentation of the heart. Green contours represent the
ground truth, blue contours represent the segmentation results from the single-task FCN, and red
contours represent the segmentation results from the multi-task FCN (Color figure online)
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interpolation to 256 � 256 as suggested in [3]. Our implementation was based on the
Keras framework with Theano backend (http://keras.io). The Adam optimizer with a
learning rate of 0.0001 was used. The optimization was stopped at 50 epochs. A sin-
gle-class FCN and a multi-class FCN were also implemented for comparison. For
single-class FCN, five different FCNs were trained for five different structures with the
negative Dice coefficient as the loss function. The same optimizer and learning rates
were used for the lung segmentation network, but for training the clavicle and heart
segmentation networks, a lower learning rate (1 � 10−5) was needed to make the loss
function to decrease and the number epoch was manually determined while monitoring
the loss function (around 150 epochs for the heart and 300 epochs for the clavicles).
For multi-class FCN, we used a sigmoid function as the activation function, and
categorical cross entropy as the objective function. Similar optimizer settings as the
multi-task FCN were used. Fivefold cross validation was used to generate the overlap
measurements (Jaccard index). In each fold around 200 images were used for training.
Using data augmentation technique, we generated 2000 random rotated and scaled
image and mask pairs for the actual training. Table 1 compares the segmentation
accuracy of three different methods without the post-processing step. In Table 2, the
final results from the proposed method after post-processing are shown and compared
with state-of-art results found in literature. In addition to the overlap measurement, the
average distance (AD) between the manual contour and the segmentation result is also
given for comparison.

Table 1. Multiple structure segmentation results using different FCN architectures

Structure
name

Jaccard index of
single-class FCN

Jaccard index of
multi-class FCN

Jaccard index of
multi-task FCN

P-value*

Left lung 0.957 ± 0.027 0.951 ± 0.041 0.955 ± 0.026 0.486
Right lung 0.963 ± 0.017 0.957 ± 0.046 0.962 ± 0.015 0.250
Left clavicle 0.845 ± 0.062 0.491 ± 0.171 0.863 ± 0.057 0.001
Right
clavicle

0.838 ± 0.061 0.532 ± 0.156 0.862 ± 0.055 <0.001

Heart 0.899 ± 0.044 0.855 ± 0.093 0.898 ± 0.046 0.789

*: P value of student t-test between single-class FCN and multi-task FCN

Table 2. Quantitative comparison of the segmentation accuracy of the proposed method with
other state-of-art methods reported on the same dataset

Methods Lung field Heart Clavicle

Jaccard AD (mm) Jaccard AD (mm) Jaccard AD (mm)

Observer [3] 0.946 ± 0.044 1.64 ± 0.69 0.878 ± 0.054 3.78 ± 1.82 0.896 ± 0.037 0.68 ± 0.26

Ginneken et al. [3] 0.949 ± 0.020 1.62 ± 0.66 0.860 ± 0.056 4.24 ± 1.87 0.736 ± 0.106 1.88 ± 0.93

Shao et al. [4] 0.946 ± 0.018 1.70 ± 0.76 – – – –

Ibragimov et al. [5] 0.953 ± 0.020 1.43 ± 0.85 – – – –

Hogeweg et al. [6] – – – – 0.860 ± 0.100* 1.09 ± 1.57*

Multi-task FCN 0.959 ± 0.017 1.29 ± 0.80 0.899 ± 0.044 3.12 ± 1.80 0.863 ± 0.045 0.98 ± 0.58

*: The results were reported on a different dataset.
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4 Discussion and Conclusion

Chest radiograph segmentation is relative challenging for most conventional methods
that are based on handcrafted features, mostly due to its complicated texture pattern.
CNNs or FCNs, on the other hand, can cope with the complicate pattern more easily
through the data-driven feature composition. As shown in Table 1, for the larger
structures, such as the lungs and heart, both single-task and multi-task FCN delivered
very promising results that outperform most existing methods summarized in Table 2.
The results suggest that the segmentation variability of FCNs is even smaller than the
inter-observer variability. However, the segmentation of the clavicles proved to be
more challenging due to its size and complex surrounding structures (clavicles overlap
with the lung, rib cage, vertebral column and sternum, as well as the soft tissue in the
mediastinum). In our experiments, we found that multi-task FCN that segments mul-
tiple structures simultaneously, not only reduces the training and running time, but also
helps the deep neural network to converge faster and deliver better segmentation results
on the clavicles than the single-class FCN trained on single structure masks. One
possible explanation is that the context information of the lungs helped the network to
determine the boundary of the clavicles. Also the image features that are learned for
lung segmentation can be used for the clavicle segmentation, which allows us to use a
higher learning rate (10 times higher) when training the multi-task FCN than training a
single-class FCN on clavicle alone. These findings are in line with the finding of some
other multi-organ segmentation studies [7, 8] and multi-task CNNs studies [11, 12].

It is important to point out that the clavicle segmentation masks used in this study
contain only those parts superimposed on the lungs and the rib cage have been indi-
cated as shown in Fig. 2. The reason for this, as explained in [3], is that the peripheral
parts of the clavicles are not always visible on a chest radiograph. Due to the over-
lapping between the clavicle and lung masks, the conventional softmax activation
function is inapplicable in this case. In our experiments, we found that a sigmoid
activation function combined with the categorical cross entropy objective function
gives the best results on all five structures in the multi-class FCN setup. Other objective
functions, including negative Dice score, were also tested, but failed to deliver better
results. As shown in Table 1, the segmentation accuracy of the multi-class FCN on the
clavicles is much worse than the other two methods.

In [10], the author also adapted a multi-task CNN framework for medical image
seg-mentation. However, in their work, they trained a network to segment different
structure from different image modalities. No comparison of segmentation accuracy
between single organ and multi-organ segmentation was made.

In conclusion, we found that FCN-based image segmentation outperformed most
conventional methods on lung field, heart and clavicle segmentation in chest radio-
graph. Multi-task FCN seems to be able to deliver better results on the more chal-
lenging structures. Our future works include to test the proposed method on a large
dataset and extend it to handle 3D structure segmentation in CT or MRI volumes.
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