
A Time-Efficient Optimisation Framework
for Parameters of Optical Flow Methods

Michael Stoll(B), Sebastian Volz, Daniel Maurer, and Andrés Bruhn

Institute for Visualization and Interactive Systems,
University of Stuttgart, Stuttgart, Germany

{stoll,volz,maurer,bruhn}@vis.uni-stuttgart.de

Abstract. Due to the increase of optical flow benchmark data, con-
cerning both amount and resolution, learning parameters from training
sequences with ground truth has become significantly more challenging
in recent years. Moreover, optical flow methods are much more complex
than a few years ago resulting in a larger amount of model parameters
and a noticeably increased runtime. As a consequence, even optimising
a small set of suitable parameters may take hours or even days which
makes hand tuning infeasible. Hence, time-efficient strategies for auto-
matic parameter optimisation become more and more important. In this
context, our work addresses three important aspects. First, we provide
an overview of different optimisation strategies and juxtapose them in
the context of different optical flow methods and different evaluation
benchmarks. Second, we focus on choosing a suitable subset of the train-
ing data to speed up the computation while still obtaining meaningful
results. Finally, we also consider different strategies for distributing the
evaluation on hardware infrastructures which allows to further reduce
the run time. Experiments show that the proposed methodology allows
to obtain good results while keeping the overall effort reasonably low.

Keywords: Performance evaluation · Parameter optimisation · Distrib-
uted optimisation · Adaptive scheduling · Optical flow

1 Introduction

Among the variety of computer vision tasks, optical flow estimation sticks out
in some important aspects. First of all, it is applied to sequences of images, in
contrast to single images. Secondly, it covers a 2D search space (in contrast to
e.g. 1D stereo problems). Additionally, there is already a variety of benchmarks
which allow for a comparison of different methods.

Evaluating an optical flow method is usually done by comparing its per-
formance quantitatively to other methods. Recent benchmarks provide training
datasets containing image sequences with ground truth data and testing datasets
containing only image sequences. The estimation results are evaluated against
the given ground truth by computing error measures. Depending on the bench-
mark, different error measures such as the average angular error (AAE), the
c© Springer International Publishing AG 2017
P. Sharma and F.M. Bianchi (Eds.): SCIA 2017, Part I, LNCS 10269, pp. 41–53, 2017.
DOI: 10.1007/978-3-319-59126-1 4



42 M. Stoll et al.

average endpoint error (AEE) or the average bad pixel (BP3, using a 3 pixel
threshold) are chosen for comparison. Hence, the typical optimisation task comes
down to choosing a benchmark and the corresponding error measure and finding
the parameters that minimise the overall error value.

In the early days of quantitative evaluation, there was a single artificial image
sequence with ground truth, the Yosemite sequence [2] having a resolution of
316 × 252 pixels. In 2007, the Middlebury benchmark was presented providing
8 training and 8 testing datasets with resolutions from 316 × 252 to 640 × 480
pixels [1]. Most of these image sequences have been created synthetically, not
providing realworld challenges such as significant illumination changes, consider-
able out-of-plane motion or disturbances in data such as lens flares, under- and
oversaturations or noise. These types of challenges are provided by the KITTI
Vision benchmark which was proposed in 2012 [10]. It contains 194 training and
195 testing datasets covering resolutions from 1226×370 to 1238×374 (training
data) and 1242 × 375 pixels (testing data), respectively. In the same year, 2012,
also the MPI Sintel Flow dataset was proposed, which contains artificial data
on the one hand, but provides tough challenges by creating specular reflections,
motion blur, defocus blur and atmospheric effects [6]. There are 1064 training
and 564 testing image datasets at a resolution of 1024 × 436 pixels. The Mid-
dlebury benchmark provides two important rankings, one w.r.t. the AAE and
another w.r.t. the AEE. The MPI Sintel benchmark makes use of the AEE while
the KITTI benchmark ranks methods according to their average BP3 error.

There is an increasing amount of data – provided by publicly available bench-
marks – and there are optical flow methods with increasing complexity (e.g.
[23–26]) – developed by researchers. But to the best of our knowledge there is
no easy-to-use publicly available framework that connects data and methods by
finding suitable parameters in a reasonable amount of time. An open-source vari-
ant that provides a basis of common parameter optimisation algorithms which
can be extended through contributions by experienced researchers could be valu-
able for the whole community.

Contributions. We present such a framework which does not require any spe-
cific properties of the underlying objective function (such as e.g. its derivatives)
and by design can be generalised to other computer vision tasks comprising
a scalar error measure. In this context our contributions are fourfold: First,
we briefly introduce different classes of derivative-free algorithms for parameter
optimisation which are juxtaposed later in the evaluation. Second, we reduce
the computational burden by applying a selection strategy in order to determine
suitable subsets of the datasets for evaluation. Third, we argue how all the indi-
vidual sampling steps can be distributed efficiently among different computers
within the typical hardware infrastructure of a research institute. Finally, we pro-
vide an open-source framework for both, single-machine- as well as distributed
parameter optimisation with easy adaptability and extendibility regarding both
the interfaces to the optical flow methods and the implementation of derivative-
free algorithms for parameter optimisation. The framework is publicly available
at http://go.visus.uni-stuttgart.de/cvis-optimizer/.

http://go.visus.uni-stuttgart.de/cvis-optimizer/


Time-Efficient Parameter Optimisation 43

Related Work. While there are a few methods that estimate their parameters
jointly with the optical flow [12,17], most of the current algorithms rely on some
kind of a-priori parameter selection based on training data; see e.g. [5,9,15,22,26].
Surprisingly, most of these approaches do not comment on the underlying optimi-
sation strategy. The few exceptions can essentially be divided into two classes: On
the one hand, there are derivative-based approaches that rely on gradient descent
or Newton-like techniques to estimate the optimal parameters as minimiser of a
cost functional that relates the obtained results to ground truth data [15,22,26].
However, since the underlying optical flow models are rather complex – in contrast
to parameter estimation for image restoration [14,21] – the functional gradient is
typically not computed analytically but approximated stochastically [15,22,26].
On the other hand, there are derivative-free techniques that are solely based on
multiple evaluation runs for different parameter settings. Although some of those
methods implicitly look for the downhill direction, they can also be applied in those
cases where no analytic or stochastic gradient is available. Typical representatives
for this class of method are the multidimensional sampling [8] as well as the Down-
hill Simplex method [9,16]. Moreover, also evolutionary algorithms such as the
Covariance Matrix Adaptation Evolution Strategy [11,20] or nature inspired algo-
rithms [18] belong to this class.

The only related work regarding the comparison of parameter optimisation
methods for optical flow estimation is given by [18]. However, the current paper
improves upon this work by addressing significantly more aspects. In particular,
it considers three different classes of derivative free methods (fixed sampling,
geometric sampling, stochastic sampling), it evaluates the performance for two
optical flow algorithms, it considers all major benchmarks, it investigates the
usage of suitable subsets of image sequences and it elaborates on the distribution
of evaluation runs on homogeneous and heterogeneous hardware infrastructures.

There is also a lot of work in the context of auto-tuning of image processing
and computer vision algorithms like e.g. [7,13,19] which are helpful to split up
an image processing algorithm into parallelisable pieces and schedule them on a
multicore system. Our goal, however, is not to split up an algorithm and schedule
its parts in the context of parallelization. We rather want to distribute multiple,
independent executions of an algorithm (i.e. optical flow estimations) among the
available hardware, measured by the number of CPU cores in one or more com-
puting systems. Regarding distributed optimisation, [3] provides domain decom-
position schemes for general optimisation problems, discusses such examples in
statistics and machine learning and gives hints on the implementation of general
distributed optimisation. It does, however, not focus on the scheduling of the
distributed tasks. [4] gives an overview of different scheduling heuristics to map
independent tasks on heterogeneous distributed computing systems.

Organisation. Section 2 reviews different derivative-free strategies for parame-
ter optimisation. Moreover, it discusses how to speed up the computation by
selecting a suitable subset of the training sequences. Section 3 then sketches the
distributed computation, while Sect. 4 presents an evaluation of the different
strategies. Section 5 concludes with a summary.



44 M. Stoll et al.

2 The Optimisation Process

For an optimisation problem with objective function f(x), the goal is to find the
parameters xmin ∈ R

P that minimise f where P is the number of parameters. In
case of optical flow, this objective function depends on the optical flow method,
its parameters x, the training data with ground truth and the respective error
measure d, e.g. AEE, AAE or BP(3). Please note that the objective function is
often nonconvex w.r.t. the parameters such that one typically relaxes the task
to finding a suitable local minimum. In the following, the whole optimisation
process consists of many optimisation runs, each evaluating f on the whole
dataset with a different parameter set x. Each optimisation run, in turn, consists
of several evaluation tasks, each evaluating d on a single element i of the dataset
yielding the deviation di(x). The value of the objective function is then given
by f(x) = avgi di(x), which we call the error value of the optimisation run.

2.1 Continuous Parameters

In order to find optimal parameters that can be sampled from a continuous
space, different derivative-free parameter optimisation methods are known that
solely rely on the values of the objective function f(x) at specific sampling
points xi. These methods can be further classified according to the heuristics
they use. Examples for methods without a heuristic are equidistant (cascadic)
sampling or logarithmic cascadic sampling [8]. Given a sampling interval, they
compute sample points and determine the best result. In the cascadic case, they
repeat this procedure with a smaller interval around the best sampling point
so far. An example for a method with a geometric heuristic is the so-called
Downhill Simplex method, a.k.a. Nelder-Mead method [16], which constructs an
initial simplex of sampling points in R

P and moves this simplex in a downhill
manner towards a minimum by different geometrically inspired steps which are
called reflection, expansion, contraction and reduction. The Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [11] is an example for a method with
a stochastic heuristic. It belongs to the class of evolutionary algorithms, i.e. is
based on populations of parameter sets and consists of two iterated main steps:
mutation and recombination.

We will use these methods exemplarily in the evaluation. However, any other
derivative-free method is also implementable in our system.

2.2 Discrete Parameters

Besides the continuous parameters like e.g. the weights of different assumptions
in a model, there can also be discrete parameters like booleans or enumera-
tions which can only take a finite, a priori known set of values. These discrete
parameters are separated from the continuous ones, all possible combinations
are computed and for each set of discrete parameters the remaining continuous
parameters are optimised using one of the strategies from above.



Time-Efficient Parameter Optimisation 45

2.3 Reducing the Amount of Evaluations

Instead of using all datasets from provided image and ground truth data, it
may be sufficient to use a subset of them for the parameter optimisation. The
question then arises which datasets to keep.

As the total error value is the average error of each dataset w.r.t. the chosen
error measure, a promising approach is to take a look at those datasets that have
the highest variance among the error values for an initial set of optimisation
runs, thus being sensitive to parameter variations and influencing the variations
of the average error the most. Hence, we evaluate an initial set of optimisation
runs (i.e. the first level of a cascade, the first simplex or the first population)
on all given datasets, determine the range ri of error values for each dataset i
and - given a percentage value q as a parameter - we select those q percent of
datasets with the highest ri and re-compute the average error values using only
the selected datasets. After the parameter optimisation strategy has terminated,
we compute the errors for the ignored datasets using the estimated parameters
and re-compute the average error using all datasets in order to obtain an average
error for the complete given dataset.

3 Distributed Computation of Evaluation Tasks

After each step of the chosen parameter optimisation algorithm there is a set
of evaluation tasks to be performed. Each of these tasks can be computed inde-
pendently from the others and thus may be distributed to a separate thread.
These threads can either run on the same computer or in a distributed fashion
on different computers. Taking into account only one computer means that each
thread of a thread pool can simply fetch a task, evaluate it and fetch the next
one as long as there are evaluation tasks left.

Using more computers, however, makes things more complicated. On the one
hand, one needs a central instance managing the optimisation process and clients
that take care of the evaluations as well as a communication layer between them.
On the other hand, different computers may show different performance. Hence,
the question arises how to distribute the tasks such that they are computed as
fast as possible. In case each client is allowed to evaluate tasks as long as there
are any left - named as Opportunistic Load Balancing (OLB) [4] - it may happen
that the slowest client fetches the last task while faster clients stay unemployed.
For an optimisation run, this leads to a longer computation time than necessary.

3.1 Minimal Completion Time Algorithm

The Minimal Completion Time (MCT) algorithm [4] is a heuristic that uses an
estimation of the run time for a task in order to assign it to the client which is
assumed to have the smallest time until it completes all computations. As the
highest completion time (CT) among all clients coincides with the completion



46 M. Stoll et al.

of the current bunch of evaluation tasks, achieving a minimal CT avoids unnec-
essary waiting for the tasks to be finished. To this end, we need to keep track of
the performance of all clients, measured by the average run time tavg.

The algorithm is a greedy algorithm. It iterates through all available tasks
and assigns each task to the client whose estimated CT - including the task it
is currently computing - would be the smallest one. The CT of the client is the
maximum CT among all its threads. For the computation of the CT, the current
task is virtually assigned to the thread with the smallest CT as we expect this
thread to first acquire the next task. This way, a small amount of (remaining)
tasks is assigned to fast clients instead of slow clients.

Timing Statistics. The central quantity is the average evaluation time tavg of
each client. Upon the first acquisition of a task by the client, it is initialised with
a small value bigger than zero in order to get a reasonable first distribution of
the tasks. Otherwise, tasks would probably be assigned to only the first client or
the one with tavg = 0. On the first submission of an evaluation result, tavg is set
to the evaluation time tcurr of the submitted task. In subsequent submissions,
we update tavg with a weighted averaging:

tavg =
(

1 − 1
q

)
· tavg +

1
q

· tcurr (1)

We set q = 6 in order to make the estimation of tavg robust against outliers.
If the run times are not expected to be rather equal for all datasets (e.g.

due to a different resolution of the data), a so-called run time factor can be
assigned to those datasets that lead to a significantly different evaluation effort.
The evaluation time tcurr is then normalised before the computation of tavg.

The performance of a client may undergo variations, e.g. due to workload,
thermal issues etc. In particular, it might become significantly slower than esti-
mated. In order to be robust against this, we also keep track of the time since
the last task acquisition or submission, respectively, which we call tsilence. In the
worst case, a client evaluates only tasks with the maximal run time factor and
may thus be expected to be busy for tbusy = max(R) · tavg (if R denotes the
set of all run time factors). In case, it is not interacting for a longer time (i.e.
tsilence > tbusy) we assume a decrease in performance, thus replacing tavg by an
effective average evaluation time teff = tsilence

max(R) .
If there are multiple optimisations at the same time, they can involve dif-

ferent methods and/or different data leading to different average run times.
Computing only a single, joint average run time tavg could lead to strong over-
or underestimations of the run times of different evaluation tasks, thus leading
to inappropriate task distributions to the available clients. Hence, the average
run time tavg is measured for each optimisation separately.

4 Evaluation

In order to perform an evaluation of our optimiser, we applied it to the publicly
available methods of Brox and Malik (LDOF) [5] and Weinzaepfel et al. (DF)



Time-Efficient Parameter Optimisation 47

[26]. The datasets are the eight sequences of the Middlebury training dataset
(MB) [1], a subset of 20 sequences of the KITTI training dataset (seq. 0–19) [10]
and a subset of 69 sequences of the Sintel training dataset [6] (final version, using
the middle image pair as well as the pairs five frames before and five frames after
the middle of each scene). The restriction to these subsets of KITTI and Sintel,
which we expect to be representative, had to be performed in order to make the
evaluation, which incorporates a large amount of optimisation processes, feasi-
ble. Otherwise, each single optimisation process on KITTI or Sintel would have
already taken several days of run time. Please note, that we only evaluate on
these subsets and they thus serve as starting point for the proposed selection
of even smaller subsets in Sect. 4.2. Furthermore, we restrict the optimisation
to those parameters that define weights for different terms in the functional (3
parameters for LDOF, 4 parameters for DF). The initial search interval for all
parameters was [0, 200] (or they were initialised with 100 for CMA-ES which con-
stitutes the centre of the interval [0, 200]) except for the matching term weights
which take the discrete values 200, 300 or 400. Both equidistant cascadic sam-
pling and logarithmic cascadic sampling use five samples per parameter and four
cascade levels.

4.1 Comparison of the Parameter Optimisation Methods

In our first experiment, we compare the different combinations of optical flow
methods, optimisation methods and benchmarks in terms of both the achieved
error and the required number of optimisation runs. Table 1 shows both values
where the number of optimisation runs can be found in brackets. As one can
see, CMA-ES performs best for DeepFlow (DF) but it gets trapped in a local
minimum for LDOF. In contrast, the logarithmic cascadic approach avoids this
minimum and provides the best result for this optical flow method. Regarding
the number of optimisation runs, all parameter optimisation strategies stay in
the same order of magnitude for LDOF (3 parameters) while things change
for DeepFlow (4 parameters). Here, the equidistant and logarithmic sampling
strategies need one order of magnitude more runs than Downhill Simplex (DS).
In all cases CMA-ES requires a medium amount of runs. Regarding both error
and number of optimisation runs DS is the favourable method: It does not achieve
the absolute best results but stays within a range of less than 1% from the
top results while only requiring at most 25% of the number of runs compared
to CMA-ES. Moreover, its results are superior to the baseline that has been
computed using the specified parameters in the paper. The only slight exception
is DeepFlow on the Middlebury dataset but the baseline parameters ignore the -
in this setting - inappropriate matching term which we however keep active.

For the DeepFlow algorithm on the KITTI training subset, Fig. 1 displays
how the individual algorithms converge to their final error value while the num-
ber of runs is growing. Please note, that we only show a single instance of each
algorithm, i.e. for the best discrete choice of the matching weight (being either
200, 300 or 400). We can observe that logarithmic cascadic sampling passes a



48 M. Stoll et al.

Table 1. Error values and number of optimisation runs for different methods and
benchmarks.

Equid. (C) Log. (C) DS CMA-ES Baseline

LDOF (MB, AAE) 4.349 (240) 3.976 (300) 3.993 (106) 4.318 (763) 4.100

DF (MB, AEE) 0.252 (1344) 0.251 (1500) 0.252 (138) 0.251 (552) 0.250

DF (KITTI, BP) 8.340 (1341) 8.335 (1500) 8.296 (201) 8.292 (880) 9.303

DF (Sintel, AEE) 8.732 (1341) 8.743 (1500) 8.739 (144) 8.720 (848) 11.026

Fig. 1. Convergence of the parameter optimisation strategies. From left to right:
equidistant cascadic sampling, logarithmic cascadic sampling, CMA-ES, DS.

large variety of error values indicating that it tests many different orders of mag-
nitude of ratios of the different weighting parameters. In contrast, equidistant
cascadic sampling only covers a small range of error values despite some single
peaks. CMA-ES already starts at a low error level and successively oszillates to
the minimum while DS already converges after a few optimisation runs.

4.2 Influence of Using Subsets

Our second experiment evaluates the effect of reducing the amount of evalua-
tion tasks per optimisation run by selecting a suitable subset of the dataset for
evaluation. To this end, we automatically choose this subset according to the
highest variance (cf. Sect. 2.3) and consider both, the resulting errors and the
corresponding number of evaluations. Table 2 shows that using around 10% of all
datasets leads to only a moderate degradation. In this context, the loss in qual-
ity is considerably higher if either the baseline dataset is already small (only 20
KITTI sequences) or the method does not perform many optimisation runs like
DS, i.e. if the total number of evaluations has already been small. In the other
cases, the loss in quality is not that significant. When using around 20% of the
baseline dataset for evaluation, there is hardly any degradation - in particular
for CMA-ES or Sintel. It is worth noting that the amount of optimisation runs
can change depending on the subset due to different adaptions of the respective
algorithm to the intermediate errors. In some cases, using less sequences may
even lead to more evaluations (cf. Table 2, KITTI (DS), last two rows).



Time-Efficient Parameter Optimisation 49

Table 2. Using the sequences with the highest variances of the error values for opti-
misation. The entries have the format error (#runs, #evaluations).

KITTI (CMA-ES) KITTI (DS) Sintel (CMA-ES) Sintel (DS)

100% 8.292 (880, 17600) 8.296 (201, 4020) 8.720 (848, 58512) 8.739 (144, 9936)

50% 8.311 (960, 9690) 8.429 (198, 2030) 8.722 (864, 29691) 8.737 (159, 5581)

20% 8.322 (920, 3824) 8.920 (138, 632) 8.760 (832, 11320) 8.737 (129, 1957)

10% 8.734 (936, 2034) 9.031 (189, 652) 8.777 (840, 5607) 8.931 (165, 1305)

4.3 Task Distribution Strategies

In our final experiment, we compare the average optimisation times for DeepFlow
with the Downhill Simplex method for different levels of parallelism. To this end,
we compute the times of an optimisation process on a typical office computer (4
cores), a workstation (24 cores) and a combination of a workstation and some
office PCs (9 additional cores). The latter is evaluated using both, opportunistic
load balancing (OLB) and load balancing using the minimal completion time
algorithm (MCT). We investigate the two cases: First, having less evaluation
tasks than CPU cores which are evaluated in parallel (using the 20 sequences of
the KITTI subset) and second, having more evaluation tasks than CPU cores
(using the 69 sequences of the Sintel subset). The DS algorithm is - besides its
fast convergence - an interesting algorithm for investigation because it is mostly
sequential in terms of optimisation runs. Hence, a bad distribution of evaluation
tasks leads to unnecessary waiting times at almost each optimisation run which
sum up in the total optimisation time.

Table 3. Optimisation times (given in hours) for DS on DeepFlow w.r.t. different
distribution strategies in a heterogeneous infrastructure. 1 and 2 indicate different sets
of additional computers (each giving 9 additional cores, i.e. 33 cores in total).

4 cores 12 cores 24 cores OLB1 MCT1 OLB2 MCT2

KITTI (20 seq.) 08:43 03:54 02:55 02:56 02:43 02:33 02:32

Sintel (69 seq.) - - 06:38 05:04 05:04 05:01 04:49

From Table 3, we can see that using more cores on a single machine is of
course beneficial, but the gain in performance might not always be as high as
expected. One reason is the sequential nature of DS regarding the optimisation
runs. But there is another important reason: the behaviour of some modern
many-core CPUs. When using only a small subset of all cores, these cores run
at a higher frequency compared to the case when all cores are busy. In the latter
case, an individual task is evaluated more slowly. Hence, even when the single
machine with 24 cores is not working to capacity, using more cores on different



50 M. Stoll et al.

machines and distributing the workload among those is beneficial despite of the
overhead due to communication and synchronisation.

When comparing the different distribution strategies, the benefit of the MCT
heuristic becomes evident. Either it is better than OLB or at least they show sim-
ilar performance. The latter can be explained by the already mentioned behav-
iour of some modern CPUs. For them, the estimation of a task’s expected run
time - which is the basis for the MCT heuristic - is nontrivial. If these CPUs
are assigned many tasks, they become slow. As a consequence, they are assigned
only a few tasks afterwards, making them faster again. Using an estimation that
respects this behaviour is future work and may improve the outcome of the MCT
heuristic. Nevertheless, MCT can already reduce the run time by up to 8%.

Fig. 2. Run times for subsequent optimisation runs. Red stands for the OLB heuristic,
green for the MCT heuristic. From left to right: The sets 1 and 2 of additional
computers according to Table 3. From top to bottom: KITTI, Sintel. (Color figure
online)

In this context, we also compared the run times of the individual, subsequent
optimisation runs by the example of DS. To this end, we considered only those
steps of DS that led to an evaluation of only a single optimisation run (i.e.
reflection, expansion and contraction steps) in order to have comparable time
values. The graphs in Fig. 2 confirm the tendency of the total optimisation times
in Table 3. These graphs show that the findings that hold for the total run
time are also valid for the individual run times of the optimisation runs. When
comparing the graphs for OLB (red) and MCT (green), one can see that the MCT
heuristic leads to smaller run times for configuration 1 of additional computers
on the KITTI dataset and for configuration 2 on the Sintel dataset. In the other
two cases, both graphs indicate similar run times. The sparse peaks in all graphs
are related to peripheral effects which do not depend on the heuristic.



Time-Efficient Parameter Optimisation 51

5 Conclusion

In this work, we investigated three important aspects of time-efficient parameter
optimisation for optical flow. To this end, we first compared different optimisa-
tion methods w.r.t. quality and workload. In this context, the Downhill Simplex
method showed up to be a favourable compromise as it achieves good results
using only a small amount of optimisation runs. Furthermore, we proposed a
variance based strategy to reduce the number of training datasets (thus reduc-
ing the number of evaluation tasks per optimisation run) while retaining a good
level of quality - in particular for large baseline datasets. Finally, we adopted a
promising heuristic for distributing the evaluation tasks among different com-
puters which allowed us to further reduce the overall optimisation time. To
encourage the use of our entire optimisation framework, we provide a publicly
available implementation as open source.

Acknowledgements. We thank the German Research Foundation (DFG) for finan-
cial support within project B04 of SFB/Transregio 161.

References

1. Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J.P., Szeliski, R.: A database
and evaluation methodology for optical flow. In: Proceedings of IEEE International
Conference on Computer Vision (ICCV). IEEE Computer Society Press (2007)

2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–77 (1994)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

4. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)

5. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in varia-
tional motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513
(2011)

6. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33783-3 44

7. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 4:1–4:12. IEEE Press (2008)

8. Demetz, O.: Feature Invariance versus Change Estimation in Variational Motion
Estimation. Ph.D. Thesis, Faculty of Mathematics and Computer Science, Saarland
University (2015)

9. Drayer, B., Brox,T.: Combinatorial regularization of descriptor matching for opti-
cal flow estimation. In: British Machine Vision Conference (BMVC). BMVA Press
(2015)

http://dx.doi.org/10.1007/978-3-642-33783-3_44


52 M. Stoll et al.

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE Computer Society
Press (2012)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

12. Krajsek, K., Mester, R.: A maximum likelihood estimator for choosing the reg-
ularization parameters in global optical flow methods. In: Proceedings of IEEE
International Conference on Image Processing (ICIP), pp. 1081–1084. IEEE Com-
puter Society (2006)

13. Kulkarni, T., Kohli, P., Tenenbaum, J.B., Mansinghka, V.: Picture: a probabilistic
programming language for scene perception. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4390–4399. IEEE Com-
puter Society Press (2015)

14. Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in
variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)

15. Li, Y., Huttenlocher, D.P.: Learning for optical flow using stochastic optimization.
In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp.
379–391. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4 28

16. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7(4), 308–313 (1965)

17. Memin, E., Heas, P., Herzet, C.: Bayesian inference of models and hyper-
parameters for robust optic-flow estimation. IEEE Trans. Image Process. 21(4),
1437–1451 (2012)

18. Perreira, D.R., Delpiano, J., Papa, J.P.: On the optical flow model selection through
metaheuristics. EURASIP J. Image Video Process. 2015, 11 (2015)

19. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 519–530.
ACM (2013)

20. Salmen, J., Caup, L., Igel, C.: Real-time estimation of optical flow based on opti-
mized haar wavelet features. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco,
S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 448–461. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19893-9 31

21. Samuel, K.G.G., Tappen, M.F.: Learning optimized map estimates in continuously-
valued MRF models. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 477–484. IEEE Computer Society Press (2009)

22. Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning optical flow. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 83–97. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88690-7 7

23. Sun, D., Sudderth, E.B., Black, M.J.: Layered segmentation and optical flow esti-
mation over time. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1768–1775. IEEE Computer Society Press (2012)

24. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in opti-
cal flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2),
115–137 (2013)

http://dx.doi.org/10.1007/978-3-540-88688-4_28
http://dx.doi.org/10.1007/978-3-642-19893-9_31
http://dx.doi.org/10.1007/978-3-540-88690-7_7


Time-Efficient Parameter Optimisation 53

25. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for
optical flow. In: Proceedings of IEEE International Conference on Computer Vision
(ICCV), pp. 1116–1123. IEEE Computer Society Press (2011)

26. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displace-
ment optical flow with deep matching. In: Proceedings of IEEE International Con-
ference on Computer Vision (ICCV), pp. 1385–1392. IEEE Computer Society Press
(2013)


	A Time-Efficient Optimisation Framework for Parameters of Optical Flow Methods
	1 Introduction
	2 The Optimisation Process
	2.1 Continuous Parameters
	2.2 Discrete Parameters
	2.3 Reducing the Amount of Evaluations

	3 Distributed Computation of Evaluation Tasks
	3.1 Minimal Completion Time Algorithm

	4 Evaluation
	4.1 Comparison of the Parameter Optimisation Methods
	4.2 Influence of Using Subsets
	4.3 Task Distribution Strategies

	5 Conclusion
	References


