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Abstract. The role performed by a protein is directly connected to its
physico-chemical structure. How the latter affects the behaviour of these
molecules is still an open research topic. In this paper we consider a sub-
set of the Escherichia Coli proteome where each protein is represented
through the spectral characteristics of its residue contact network and its
physiological function is encoded by a suitable class label. By casting this
problem as a machine learning task, we aim at assessing whether a rela-
tion exists between such spectral properties and the protein’s function.
To this end we adopted a set of supervised learning techniques, possi-
bly optimised by means of genetic algorithms. First results are promis-
ing and they show that such high-level spectral representation contains
enough information in order to discriminate among functional classes.
Our experiments pave the way for further research and analysis.

Keywords: Pattern recognition + Supervised learning - Support Vector
Machines + Protein contact networks - Normalised Laplacian matrix

1 Introduction

A protein is a biological macromolecule that is at the basis of every biological
process, e.g. enzyme catalysis, DNA replication, response to stimuli, molecules
transport, cell structures, and the like. A protein is composed by one or more long
chains of amino-acids residues linked in a chain by peptide bonds. There are 20
different kinds of amino-acid residues and the particular sequence of amino-acids
that composes a protein is called primary structure.

When in solution, protein molecules assume their specific 3D structure by
a process called protein folding. The particular 3D shape of a protein is at the
basis of its physiological role, moreover this configuration undergoes (slight but
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crucial) changes to adapt to its micro-environment. Indeed, the deformation
affects the interaction potentials between the protein’s atoms and the external
environment, allowing it to carry out a specific function. In this regard, a protein
can be conceived as a nano-machine equipped with sensors and actuators, and
engineered—i.e. evolved—to be, from a chemical point of view, as stable as
possible.

There is a deep relation between the function and the structure of a protein,
and investigating the latter is a fundamental step in understanding the former.
A thorough comprehension of how a protein works is in turn of great significance
for a variety of practical settings, like drug design and the diagnosis of diseases.
In this work we approach this problem from a topological point of view by a
minimalist representation of the protein structure, called protein contact network
(PCN) [1].

The main objective of this work is to investigate how the structure of a protein
is related to its function by exploiting supervised machine learning techniques,
building upon the spectral properties of the relative PCN. It is worth noting until
now that there has been no consistent effort in relating functional and structural
properties of proteins in a systematic way. This work takes into account a set
of proteins of the Escherichia Coli proteome [2] represented as PCNs. Within
this set we consider two classes, i.e. the subset of enzymes and its complement,
non-enzymes, where each element of the first class is associated with an Enzyme
Commission number [3], that describes the chemical reactions it catalyses, as
the ground-truth class label.

This problem is then reformulated as a classification task. Specifically, the
target of the classification task is to predict the particular class of each pro-
tein starting from a spectral representation of the corresponding protein contact
network.

The remainder of this paper is structured as follows: in Sect. 2 we will discuss
some essential concepts and definitions regarding graphs and their properties,
along with PCNs and their graph-based representation; in Sect. 3 we will present
the set of algorithms we used for our analysis, along with the pre-processing stage
in order to map PCNs in suitable real-valued features vectors; in Sect. 4 we will
show the obtained results and, finally, in Sect.5 we will draw some conclusions,
along with interesting extensions and future works.

2 Definitions

2.1 Fundamentals of Graph Theory and Graph Spectra

Graphs are objects capable of describing data and structures both under a topo-
logical and semantic point of view, often used to represent conveniently a set of
objects and their relations in many data science fields and applications.

Formally, a graph G = (V, E) is composed by a set of nodes (or vertices) V' and
a set of edges (or links) E, where |V| = N and |E| = M with N not necessarily
equal to M; an edge e = (v;,v;) € E is a link between nodes v; and v;.
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A graph can be described by means of the adjacency matrix A, a binary
matrix defined as:

1 if (v;,v; E
A — if (v vj) € (1)
’ 0 otherwise

and if the graph is undirected (that is, if e = (v;,v;) € E, then e = (v;,v;) € E),
such matrix is symmetric by definition. The degree D of node ¢ is defined as the
number of nodes connected to it:

Di)=> A;; (2)

Starting from (2), the degree matrix D has the form

Di £
D;; = @ it g (3)
’ 0 otherwise

which is diagonal by definition. Given D and A, the Laplacian matrix L of a
graph is defined as
L=D-A (4)

and its normalised version has the form
L=D:LD 2 (5)

The normalised graph Laplacian matrix has an interesting property [4] in case
of unweighted and undirected graphs, which will turn useful for our analysis:

Property. The set of eigenvalues of £ (i.e. its spectrum) S = {\;}; lies in
range [0; 2], independently of the number of eigenvalues of L.

2.2 Protein Contact Networks and Kernel Density Estimator

A protein can effectively be described as a 3D object defined by the location (i.e.
3D coordinates) of the amino-acids which compose the protein itself [1]. Amino-
acids, being the monomers of the protein (polymer) are also called residues. Inter-
residue interactions determine the unique spatial arrangement of the protein and
therefore a graph is a convenient representation for such a configuration, where
residues are the nodes of the graph and edges indicate spatial proximity between
different residues.

Specifically, if the distance between two nodes is below a given threshold
(typically 8A), the two nodes can be considered adjacent. However, some authors
(e.g. [5,6]) consider two nodes as adjacent if their distance in the 3D space is
between 4 and 8 A. The lower threshold is set in order to ignore first-neighbour
contacts on the protein’s linear chain, since they are expected in every protein
and provide no additional information on its spatial organisation. In this work,
we adopt this convention.
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Since proteins can be described as graphs, we can evaluate PCNs adjacency
matrices and spectra as in Sect. 2.1. Notice that in this unlabelled graph repre-
sentation, the different chemical properties of amino-acids have been deliberately
neglected.

The property stated in Sect. 2.1 provides the following, precious, insight: since
the aforementioned [0; 2] range in which eigenvalues lie is independent from N,
one can think of processing graphs (e.g. evaluating dissimilarity) having different
number of nodes. However, the number of eigenvalues is still function of N and
in order to overcome this problem, we estimate [6] the graph spectral density
p(z) by means of a Kernel Density Estimator (KDE) [7]. Amongst the several
kernel functions available, the Gaussian kernel is one of the mostly used:

1 Y 1 —(z — /\i)2
o)=Y == 27 ©)

where o is the kernel bandwidth. We define the distance between two graphs (G
and G3) as the squared difference between their corresponding spectral densities
(p1(z) and pa(x), respectively) all over the [0; 2] range:

4G, Ga) — / (p1(2) — pa(a))’de (7)

2.3 Enzyme Commission Number

The Enzyme Commission number (hereinafter EC) is a numerical coding scheme
utilised for classifying the physiological role of enzymes. In particular, the EC
number of an enzyme encodes the chemical reaction it catalyses. An EC number
is a sequence of four digits, separated by dots, in which the first digit (1-6)
indicates one of the six major groups' and the latter three digits represent a
progressively finer functional classification of the enzyme. As we will deal with
supervised machine learning algorithms (Sect. 3.2), it is easy to map each protein
in our dataset with its group which will serve as the label. However, not all
proteins are enzymes and therefore for some of them the EC number might not
exist: in this case, such proteins will have label 7, which means not-enzyme.

3 Proposed Approach

3.1 Preprocessing

We start considering our proteins as a set of plain text files, each of which
describes a given graph. All graphs are undirected and we do not consider weights
on edges between amino-acids. In order to feed this dataset to our algorithms
(which take as input Np-dimensional real-valued vectors, Sect. 3.2, where N is
the number of features) a mandatory pre-processing stage is performed on the
basis of Sect. 2. Indeed, for each graph:

L EC 1: Oxidoreductases; EC 2: Transferases; EC 3: Hydrolases; EC 4: Lyases; EC 5:
Isomerases; EC 6: Ligases.
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1. the adjacency matrix is evaluated according to (1)

the degree matrix is evaluated according to (3)

3. Laplacian and normalised Laplacian matrices are evaluated according to (4)
and (5), respectively

4. normalised Laplacian matrix eigenvalues are evaluated

N

The set of eigenvalues represents our pattern which, to this stage, is a vector in
RY where the number of nodes N might be different from protein to protein.

3.2 Supervised Algorithms

Support Vector Machines. Amongst the chosen algorithms, the first com-
petitor will be a One-Against-All non-linear Support Vector Machines (SVMs)
[10] ensemble with Gaussian Radial Basis Function (GRBF') kernel.

GRBF(a,b) = ¢ 74 (ab) (8)

where d?(-) is the squared Euclidean distance.

The two main parameters, namely the regularisation term C' and the kernel
shape ~, will be tuned according to a grid search (log,C' = [—20;20] X logay =
[—20; +20]) with cross-validation.

K-Nearest Neighbours. Conversely to SVMs, K-Nearest Neighbours (K-NN)
is an instance-based algorithm [9] and therefore it does not require any training
phase. The only parameter to be tuned is K, the number of neighbours to be
considered in the classification stage. As our dataset does not have prohibitive
dimensions (in terms of number of patterns), we will gather the optimal K using
a bruteforce approach; that is, trying every K from 1 up to the number of
patterns in the Training Set and select the best K as the value that leads to the
minimum error rate on the Validation Set.

CURE Support Vector Machines. The CURE? Support Vector Machines
is an optimised and extended version of the plain Support Vector Machines
described above. Specifically:

(a) albeit the Gaussian kernel (6) is widely used, it might not be the most suit-
able choice for the problem at hand and how to select the right bandwidth
o deserves some attention

(b) the very same SVMs parameter (C' and ) can be tuned in a smarter way,
if compared to a grid-search approach

(c) some features (i.e. KDE samples, Sect.4.1) might be more important than
others, thus the dissimilarity measure can be tuned according to a weights
vector

2 Choose yoUR own Estimator.
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The CURE Support Vector Machines overcome these problems thanks to an
optimisation/tuning procedure orchestrated by a genetic algorithm (GA) [8] in
which the genetic code which identifies the generic individual from a given pop-
ulation has the form:

[Cyw KT o] (9)

where w is the weights vector which tunes the dissimilarity measure in the GRBF
kernel function (8). The latter can therefore be restated as

wGRBF(a,b) = e~V dw(ab,w) (10)

where in turn

d (a,b,w) Zwl a; —b;) (11)

Moreover, in (9), KT is an integer in range [1;4] which indicates the kernel type
(1 = Gaussian, 2 = Epanechnikov, 3 = rectangular box, 4 = triangular) and o
is the bandwidth used by kernel KT

Each SVM will be trained and optimised independently in order to separate
a given class (marked as positive) from all other classes (marked as negatives).
To do so, each individual from the genetic population will train such SVM on
the Training Set by using the set of parameters written in its genetic code: C will
regularise the penalty value in the SVMs convex optimisation problem, v and w
will tune the dissimilarity /kernel function (10)—(11), KT and o will select the
KDE and its bandwidth in order to extract the set of samples which represent
a given PCN.

However, separate tuning of such SVMs, due to heavy labels unbalancing
(Table 1), might lead the GA towards apparently good solutions, if the error rate
is selected as (part of) the linear convex combination?®, i.e. the fitness function.
In order to overcome this problem, the fitness function (to be minimised) has
been re-stated as well as the linear convex combination between the complement
of the F-score* and the percentage of patterns elected as Support Vectors®.

4 Experimental Results

4.1 Dataset Description

In order to validate our algorithms, we used the 454-patterns Escherichia Coli
dataset introduced in [11,12], named DS-G-454. Such dataset has been introduced

3 E.g. let us suppose we have 100 patterns in our Validation Set, equally distributed
amongst 10 different classes; thus, 10 patterns will have positive labels and 90 pat-
terns will have negative labels. If our SVM predicts all patterns as negatives, we will
have a 10% error rate - a rather good value - which might lead the genetic algorithm
to believe this is a good solution whereas, obviously, it is not.

4 Defined as the harmonic mean between precision and recall.

5 In order to avoid overfitting.
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in [2], where the Authors collected the whole Escherichia Coli proteome. How-
ever, of the 3173 proteins collected, only 454 have their 3D structure available
from [13], starting from which we were able to build their respective graphs.
Moreover, we processed such graphs according to Sect.3.1 with the following
caveats:

1. we generated a first dataset (hereinafter SCOTT454) by evaluating the
Gaussian KDE (6) with bandwidth (i.e. parameter o) according to the Scott’s
rule® [14]

2. we generated a second dataset (hereinafter HSCOTT454) by setting o as half
the Scott’s rule

Finally, Nz = 100 samples linearly spaced in [0; 2] have been extracted from the
density function evaluated with Eq. (6). Such final 100 samples unambiguously
identify our pattern which, to this stage, is a vector in R'%? and in turn the dis-
similarity measure between patterns, formerly (7), collapses into the Euclidean
distance.

However, both HSCOTT454 and SCOTT454 will not substitute in any case the
original dataset in which each record is the set of eigenvalues for a given protein
since the CURE SVMs will be free to evaluate different KDEs; indeed, such
SVMs will basically repeat the above steps of evaluating the KDE with a given
bandwidth and extracting 100 samples, where the KDE does not necessarily has
to be Gaussian and the bandwidth does not necessarily has to be (a function of)
the Scott’s rule.

We split the 454-patterns dataset into three non-overlapping sets, namely
Training Set, Validation Set and Test Set. Roughly, the Training Set contains
50% of the total number of patterns (229 patterns), whereas the Validation and
Test Sets contain 25% of the remaining patterns (111 and 114 patterns, respec-
tively) and such split has been done in a stratified fashion; that is, preserving
proportions amongst labels. For the sake of completeness, Table1 summarises
labels distribution in the aforementioned three splits:

4.2 Test Results

Coherently with the CURE SVMs approach and in order to ensure a fair com-
parison, each of the algorithms described in Sect. 3.2 has been restated in a
One-Against-All fashion; that is, there will be as many classifiers as there are
labels and the i*" classifier will be trained in order to separate the " class
(marked as positive) from all other classes (marked as negatives).

The set of parameters considered for comparison are:

TP +TN
TP+TN+FP+FN

1. accuracy =

5 The Scott’s rule has been selected as a starting point from our analysis, as it is
the optimal bandwidth value in case of normal distributions which, however, is a
condition not properly respected by our PCNs.
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Table 1. Labels distribution in Training, Validation and Test Sets. In brackets, the
respective percentage value.

Class ID | Training set | Validation set | Test set
1 22 (10%) | 10 (9%) 11 (9%)
2 49 (21%) | 24 (21%) 24 (21%)
3 36 (16%) | 18 (16%) 18 (16%)
4 18 (8%) 8 (7%) 9 (8%)
5 10 (4%) 4 (4%) 5 (4%)
6 8 (3%) 4 (4%) 4 (4%)
7 86 (38%) | 43 (39%) 43 (38%)
Total | 229 (100%) | 111 (100%) | 114 (100%)
2. sensitivity (or recall) = TP1—1|—7PFN
3. specificity = TN+ FP
4. negative predictive value = ﬂ
TN+ FN
5. positive predictive value (or precision) = _Ir
TP+ FP

where TP, TN, FP and F'N are the true positives, true negatives, false positives
and false negatives, respectively.

Tables 2 and 3 summarise the K-NN and SVM performances on HSCOTT454,
respectively. In such Tables, the i*" row corresponds to the i*" classifier which,
recall, has been trained to recognise the i*" class as positive. Also values marked
as “NaN” are the outcome of a 0-by-0 division.

Table 2. K-Nearest Neighbours results on HSCOTT454

Classifier | Accuracy | Sensitivity | Specificity | NPV | PPV
1 89% 0% 98% 90% | 0%

2 81% 13% 99% 81% | 75%

3 84% 0% 100% 84% | NaN
4 92% 0% 100% 92% | NaN
5 95% 0% 99% 96% | 0%

6 96% 0% 100% 96% | NaN
7 73% 37% 94% 1% | 80%

In a similar way, Tables 4 and 5 summarise the K-NN and SVM performances
on SCOTT454, respectively.
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Table 3. Support Vector Machines results on HSCOTT454

Classifier | Accuracy | Sensitivity | Specificity | NPV | PPV
1 90% 0% 100% 90% | NaN
2 81% 8% 100% 80% | 100%
3 84% 0% 100% 84% | NaN
4 92% 0% 100% 92% | NaN
5 96% 0% 100% 96% | NaN
6 96% 0% 100% 96% | NaN
7 75% 42% 94% 73% | 82%

Table 4. K-Nearest Neighbours results on SCOTT454

Classifier | Accuracy | Sensitivity | Specificity | NPV | PPV
1 90% 0% 100% 90% | NaN

2 76% 4% 96% 79% |20%

3 85% 6% 100% 85% | 100%
4 92% 33% 97% 94% | 50%

5 96% 0% 100% 96% | NaN
6 96% 0% 100% 96% | NaN
7 1% 28% 97% 69% | 86%

Table 5. Support Vector Machines results on SCOTT454
Classifier | Accuracy | Sensitivity | Specificity | NPV | PPV
1 90% 9% 99% 91% | 50%

2 79% 0% 100% 79% | NaN
3 84% 0% 100% 84% | NaN
4 92% 0% 100% 92% | NaN
5 96% 0% 100% 96% | NaN
6 96% 0% 100% 96% | NaN
7 73% 51% 86% 74% | 69%

293

From Tables 2, 3, 4 and 5 it is clear that both algorithms, in both cases, tend
to predict all patterns as negatives, as shown by NaNs in positive predictive
value” (PPV) and very high negative predictive value (NPV) and specificity.
Interestingly, the 7" classifier (for both algorithms in both cases) does not return

such results and recalling that the

7th

classifier is in charge of separating enzymes

from not-enzymes, indicates an approximate spectrum/EC number mapping,
encoded by the data-driven classifier function. This in turn suggests the existence

" A clear sign that no patterns have been predicted as positive, either true or false.
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of a relation between protein structure and function, that is preserved by the
spectral representation employed in this work.

Let us further investigate by showing the CURE SVMs results in Table6.
Given the randomness in GAs, such results have been obtained by averaging five
GA runs.

Table 6. The CURE Support Vector Machines results

Classifier | Accuracy | Sensitivity | Specificity | NPV | PPV | Kernel type
1 54% 82% 51% 96% | 15% |4
2 46% 75% 39% 85% |25% |4
3 54% 82% 51% 96% | 15% |2
4 70% 33% 73% 93% |10% |2
5 70% 60% 1% 97% | 9% |1
6 94% 0% 97% 9%6% | 0% |1
7 78% 53% 93% % | 82% |1

As first observation, the SVMs are much more robust with respect to positive
predictions, this as the result of choosing (a function of the) F-score as the fitness
value in the GA; indeed, the F-score by considering both precision and recall
intrinsically considers also false positives and false negatives, “stretching” the
confusion matrix to be as much diagonal as possible. Second, the 7t SVM over-
performs the other 7t" classifiers, thanks to the optimisation procedure. Third,
the (sub)-optimal kernel type as returned by the GA is the Gaussian kernel,
which proves our first assumption in introducing (see (6)) and using such type
of kernel for our first experiments.

5 Conclusions and Future Works

The classification task we face in this work is highly challenging and (at least
to our knowledge) has never been faced in a systematic manner. It is worth
noting that proteins are nano-machines whose basic structure has not a unique
“optimisation target”, such as performing a specific physiological function (like
the catalysis of a given chemical reaction). Conversely, protein molecules must
at the same time accommodate many chemico-physical constraints, the most
demanding one being probably to be soluble in water [15].

One of the many constraints the particular 3D configuration of a functional
protein molecule must obey is the efficient transmission of allosteric signals
through the structure [16]. Allostery is the mechanism that allows the protein to
sense its micro-environment and to transmit a relevant message, sensed by a dif-
ferent part of the molecule (allosteric site) through the entire structure, to reach
the “active site” (in the case of an enzyme the part of the structure devoted
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to the catalytic work). This mechanism allows the molecule to modify active
site configuration so to adapt the reaction kinetics according to the particular
physiological needs. Network formalisation, while surely extremely minimalistic,
is highly effective as for signal transmission efficiency description, being able to
get rid of many aspects of allosteric mechanism [17].

In our opinion, the largely unexpected success of functional prediction from
PCN, stems from the focus on signal transmission of the PCN formalisation.
This is evident when considering the statistics of the dichotomic separation of
non-enzymes (class 7) from all the other classes. This is a somewhat “semanti-
cally asymmetric” case, like the Alice in Wonderland not-birthdays, since there
are many modes to be a not-enzyme (structural proteins, motor proteins, mem-
brane pores, ...). This is why (see Table6) we are not disturbed by the low
sensitivity of the class 7 prediction task (sensitivity = 53%), but at the same
time, the specificity is extremely high (93%). This means that the correspond-
ing synthesised SVM (see Table 6) was pretty sure of 'what-is-not-a-not-enzyme’
and, in more plain terms, the system is very effective in classifying a protein as
an enzyme. While, at least in principle, all the proteins must sense their micro-
environment and adapt to it [18], the allosteric properties are expected to be
more prominent for enzymes than for non-enzymatic molecules. This is in line
with the behaviour of the 7" CURE SVM prediction that recognises very well
the enzymatic/non-enzymatic character of patterns.

Finer details (the recognition of specific ECs) of the proposed struc-
ture/function recognition are still difficult to interpret and need to enlarge the
dataset, but the obtained results seem to go along a biophysically motivated
avenue.

We will further study this machine learning-based way of predicting func-
tional behaviour starting from proteins topological information and some further
analyses can be carried out. Indeed, it is possible to check how the classifiers per-
formances change as the aforementioned [4; 8]A (Sect. 2.2) range changes. More-
over, several variants of the CURE SVMs can be applied, by considering linear
classification or other different KDEs or different (dis)similarity measures in the
Gaussian RBF kernel. Finally, a hierarchical classifier can be applied in order to
improve between-enzymes classification.
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