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Abstract. This paper presents a new boundary (shape) matching algo-
rithm for 2D rigid objects without voids. Our new algorithm presents a
new shape representation that uses the outcome from an active contour
(AC) model. An object’s shape is partitioned into a clockwise ordered
sequence of edges, where every edge is a boundary segment enclosed by
reference points. These points are convex hull vertices which lie on bound-
ary corners. Further, the reference points are used to generate angles.
Hence, a boundary shape maps to a sequence of angles, turning the
shape matching problem to alignment of cyclic sequences of angles. The
latter makes our method scaling and rotational invariant. Experiments
validate the theoretical concept, and provide qualitative comparison with
other methods in the field.
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1 Introduction

Shape is an effective discriminator for objects in many domains. Shape match-
ing has been used to classify objects in computer vision [13,16,18,28,29,35], in
medical imaging [2,24,37], in molecular pharmacology [11,22,23]. This study is
part of an on-going project for assessment of threat posed by firearms [4,5].

There are many different shape matching methods based on various repre-
sentation and distance definitions [9,15,19,25,26,28] (e.g. Haussdorff distance in
[19], Inner-Distance in [25]). Some shape matching methods are developed for
rigid objects (e.g. [36]) while some others are for non-rigid objects (e.g. [10]). In
the present paper, we consider rigid objects without voids.

The method we propose in this paper combines an AC model, and a cyclic
sequence alignment method [3,30,32].

A number of methods are published on shape representation and matching
using sequences derived from 2D shapes [12,20,21]. Methods in [12,20] are most
relevant to our work in this paper. They generate sequences by collecting local
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information (based on turning angle) from the points on the boundary of a
given shape. Analogously our method generates sequences from boundary. Unlike
[12,20] it considers concavities, convexities, and line segments. The literature
has works on concavity extraction, and their use in shape representation and
matching [14,31,33].

The basics of the new shape matching method can be found in [3]. Similarly
to [3,5] the present paper partitions object boundary into segments separated by
reference points (convex hull vertices which lie on boundary corners). However,
unlike previous methods it considers each segment and its enclosing reference
points as an edge. The shape is described as a sequence of angles constructed from
edges. Thus the shape matching consists of sequence matching. The resulting
shape matching is more accurate compared to the one in [4,5] which considers
reference points and segments separately. The constructed angles do not change
under shape rotation and scaling. Therefore, they are invariant according to
these plane transformations, and they make the method rotation invariant as
well. Furthermore, the method attains scaling invariance in several steps. First,
it defines a neighborhood based on the relative sizes of shapes, and removes
boundary points in close vicinity. By this way, we aim to have similarly sized
boundary representations (in terms of both number of boundary points and
lengths of the sequences of angles) for compared shapes. A similarity score is
calculated for aligned sequences of angles in two shapes. The total score obtained
is divided by the average of the lengths of the compared sequences. This results
in scores in [0, 1]. The shape similarity score is calculated by using cyclic sequence
alignment at a higher level to handle rotations.

We organize sections with the following purposes: Sect. 2 for the notation;
Sect. 3 for the new shape representation; Sect. 4 for the new shape matching
method; Sect. 5 for experimental evidence; Sect. 6 for concluding remarks.

2 Notations and Basic Definitions

On a given shape without voids, let B = b1b2 . . . bn be a clockwise ordered
sequence of boundary points, bj = (xj , yj) such that bn = b1. Let R =
r1r2 . . . rm ⊆ B be a clockwise ordered sequence of reference points. We call
reference points of a shape the convex hull points which lie on boundary

Fig. 1. (A) Edge ei = ripiri+1; (B, C) Two shapes.
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corners, where the convex hull means the convex hull of the shape. For example,
in Fig. 1(C), the reference points are r21, r

2
2, r

2
3, r

2
4, r

2
5 and r26.

Denote by

pk: a nonempty boundary segment as a sequence bk1bk2 . . . bk|pk| , where
bkj

∈ B denotes the j’th boundary point in segment k;
ek: an edge rkpkrk+1 which is a segment enclosed by two reference points, i.e.

rkbk1bk2 . . . bk|pk|rk+1;
b̃j : angle ∠rkbjrk+1 with a vertex at bj and arms through rk and rk+1;
r̃i: an angle ∠ri−1riri+1 at reference point ri;
p̃k: the sequence of angles b̃k1 b̃k2 . . . b̃k|pk| at the points in segment pk;
s̃k: a sequence of angles r̃kp̃kr̃k+1.

To summarize, for every segment pi, there is a corresponding sequence of
angles p̃i = b̃i1 b̃i2 . . . b̃i|pi| .

Figure 1(A) illustrates an edge ei = ripiri+1 that includes a (concave)
boundary segment. The angles r̃i = ∠ri−1riri+1, r̃i+1 = ∠riri+1ri+2, and
b̃kj

= ∠ribkj
ri+1 are also illustrated. Shape 1 in (B) has 3 reference points,

and 3 edges that include one convex, one concave, and one line segment. Shape
2 in (C) has 6 reference points, and 6 edges that include 3 line segments, one
convex, and two concave segments. No angles are shown in (B) and (C) in Fig. 1,
but they are calculated in a similar way as shown in (A).

3 Shape Representation

We abstract a shape by a clockwise ordered sequence of edges ek obtained from
boundary.

3.1 Boundary Extraction

In the present study we apply a shrinking active contour model (S-ACES) to
extract the boundary of objects of interest. The model is developed in [32],
and uses the following evolution equation to converge S-ACES toward objects’
boundaries:

r(s, t) = Reas−4a2(t0+u∂t)[cos(cas), sin(sas)], (1)

In Eq. 1, s ∈ [0, 2π
ca ] is a space parameter, t is a time parameter, t0 is initial time

moment, a = |∂s|/2, u = 1, 2, . . ., and R is the radius of the initial circle. To
make the initial circle encompass the entire image we select:

u = 0, a2t0 = 0.001, c = 1000. (2)

Denote the image function as f(x(s, t), y(s, t)) = f(r(s, t)). The condition
(BC) that halts the AC in the vicinity of the object’s boundary is:

r(s, t) = r(s, t + ∂t)) which holds if
∂f(r(s,t))

∂t > ε where t = t0 + u∂t such that
2.5 ≥ ta2 ≥ 0.001.

(3)
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Fig. 2. Extracted CH and boundary of (a) a skin lesion; (b) weapons.

To evolve into deep concavities, a curve re-parametrization is conducted [32].
If Ineq. 4 is satisfied the AC point (xi, yi) moves to the right of the AC if a
clockwise direction is considered.

(yi − yi−1)(xi+1 − xi) < (yi+1 − yi)(xi − xi−1). (4)

The AC was validated on the extraction of 162 skin lesion boundaries and
170 weapon and non-weapon images [5]. Sample results are shown in Fig. 2.

3.2 Generating the Shape Sequence

Let (xi−1, yi−1), (xi, yi), (xi+1, yi+1) be any three clockwise ordered points in
a 2D Euclidean plane. Consider the clockwise traversal of (xi−1, yi−1), (xi, yi),
(xi+1, yi+1). If Ineq. 4 is satisfied, we say that (xi, yi) is a concavity point with
respect to (xi−1, yi−1) and (xi+1, yi+1). If the reverse of Ineq. 4 is satisfied,
then we say that (xi, yi) is a convexity point with respect to (xi−1, yi−1) and
(xi+1, yi+1). If Ineq. 4 becomes an equality, then we say that these points are
co-linear.

We define concavity as a sequence of clockwise-ordered boundary points
rkbk1bk2 . . . rk+1 on B such that all bkj

are concavity points with respect to
rk and rk+1. We say that rkbk1bk2 . . . rk+1 is a level-1 concavity if it is a con-
cavity not included in another (larger) concavity (this definition is in parallel
with the definition in [31]). In this paper we consider only level-1 concavities.
Figure 1(A) illustrates a concave boundary segment.

Our method collects a sample of boundary points on the boundary via S-
ACES. We process the initial boundary obtained by S-ACES to eliminate bound-
ary points which are“too close” to each other. For this purpose, we calculate the
minimum-area rectangular bounding box enclosing the object. By dividing the
perimeter of this rectangle by a parameter, we obtain a threshold length. If any
two neighbors are within this threshold (horizontally and vertically) from each
other, only one of them is kept in B and the other one is removed. Our goal
is to obtain similarly sized sequence representation regardless of the size of the
object. We perform a complete clockwise traversal on B starting at an arbitrary
point, and find all level-1 concavities. We do this by considering every visited
point as a potential concavity beginning, and all successors as potential con-
cavity ends. Then we apply Ineq. 4 to check if all the points between the two
potential concavity beginning and end points are concavity points with respect
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to these points. If the current point is not a concavity beginning we move to
the next point. Once a level-1 concavity is found, we mark the found concavity
and advance the traversal to the concavity end point, and continue iterating the
same logic described above. By this way, we find all level-1 concave segments. All
other points on B are labelled as convexity points initially. Additional clockwise
traversals are performed to partition them into line, and other (convex) seg-
ments using Ineq. 4. Concave and convex segments which are almost linear are
replaced by line segments. We merge short line segments into larger ones. This
includes consecutive line segments which are almost linear, too. Similarly, two
consecutive convex segments can be merged into a larger convex segment. We
test if two consecutive segments can be merged by taking the beginning of the
first and the end of the second one, and checking if all the points between them
have the same characteristic (convex or concave) with respect to these reference
points. We continue iterating until there are no such consecutive segments.

We define a shape as a cyclic sequence s̃1s̃2s̃3 . . . s̃|s̃|, where each s̃i is a
sequence of angles obtained from edge ei ordered clockwise. In this sequence, each
angle at a reference point is calculated by using two other reference points (the
predecessor and the successor reference of this point clockwise), and each angle
at boundary point is calculated using the reference points enclosing this point.
We assign a sign to segment types as follows: for any segment pi, sign(pi) = −1
indicates that pi is concave; sign(pi) = 0 indicates that pi is a line; sign(pi) = 1
indicates that pi is convex. Figure 1 includes two example shapes. Shape number
is shown in the superscript. Shape 1 in (B) is represented by s̃11s̃

1
2s̃

1
3, where s̃1i =

r̃1i p̃1i r̃1i+1, for all i, 1 ≤ i ≤ 3, and sign(p11) = 1, sign(p12) = −1, sign(p13) = 0,
and Shape 2 in (C) is represented by s̃21s̃

2
2s̃

2
3s̃

2
4s̃

2
5s̃

2
6, where s̃2i = r̃2i p̃2i r̃2i+1, for

all i, 1 ≤ i ≤ 6, and sign(p26) = sign(p24) = sign(p21) = 0, sign(p22) = 1, and
sign(p25) = sign(p23) = −1.

4 Shape Matching

We convert the differences between angles b̃1i and b̃2j , and r̃1k and r̃2� to similarity
scores in [0, 1]. All angles are represented in radian and as a factor of π. We
convert the difference Δ = |b̃1i − b̃2j | between angles b̃1i and b̃2j , to a similarity
score in [0, 1] using

f(Δ) =

⎧
⎨

⎩

1, if (Δ < β1);
1 − √

Δ, if β1 ≤ Δ < β2;
0, otherwise,

(5)

where in the current implementation we set β1 = 0.02, and β2 = 0.05. Via these
parameters, the differences are either ignored or amplified. The purpose is to
distinguish very close matches from other similarities. When the difference Δ is
within β1, the angles are considered perfectly matching, and the similarity score
f(Δ) is maximum (i.e. 1). When Δ is larger than or equal to β2 the angles are
considered completely different (not similar at all), and f(Δ) is minimum (i.e.
0). In between β1 and β2, as the difference Δ increases the similarity score f(Δ)
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decreases at a faster rate. We note that with β1 = 0.02, and β2 = 0.05, f(Δ) = 0
if Δ > 0.05; f(Δ) = 1 if Δ ≤ 0.02; and f(Δ) is in [0.77, 0.85] for Δ in [0.02, 0.05).
Analogously, the difference Δ = |r̃1k − r̃2� | between angles r̃1k and r̃2� , is converted
to a similarity score in [0, 1] using f(Δ). Based on these, the similarity score for
a pair of boundary segments p1i , and p2j , with the same sign, is the alignment
score scores(p1i , p

2
j ) for the sequences b̃1i1 b̃

1
i2

. . . b̃1i|p1
i

|
, and b̃2j1 b̃

2
j2

. . . b̃2j|p2
j

|
. This can

be computed by a special case of the global sequence alignment algorithm [27] in
which score of insertions, deletions are zeros, and substitutions (matches) have
positive scores. We can also formulate the objective of the optimization as the
following:

scores(p1i , p
2
j ) = max

i′,j′

u∑

m=1

f(|b1i′
m

− b2j′
m

|) (6)

over all index sequences i′, j′ such that i′1, i′2, . . . , i′u is a subsequence of
i1, i2, . . . , i|p1

i |, and j′
1, j

′
2, . . . , j′

u is a subsequence of j1, j2, . . . , j|p2
j |, for some

u ∈ [1, min{|p1i |, |p2j |}]. For p1i and p2j , when one is concave and the other one is
convex then scores(p1i , p

2
j ) = 0; when one is concave or convex, and the other one

is a line segment then the similarity score calculated by using Eq. 6 is halved.
For two sequences of angles s̃1i , s̃2j obtained from edges e1i = r1i p1i r

1
i+1, e2j =

r2j p2jr
2
j+1 with sign(p1i ) = sign(p2j ), wscores(s̃1i , s̃

2
j ) is one fourth of the sum

of the scores between r1i and r2j , and between r1i+1 and r2j+1 plus half of the
alignment score for segments p̃1i and p̃2j divided by average length (|p1i |+ |p2j |)/2.
The resulting score is in [0, 1] and denoted by wscores (s̃1i , s̃

2
j ). More formally,

wscores(s̃1i , s̃
2
j ) =

1
4

(
f(|r1i − r2j |) + f(|r1i+1 − r2j+1|)

)
+

scores(p1i , p
2
j )

|p1i | + |p2j |
(7)

For any two shape sequences s̃1 = s̃11s̃
1
2 . . . s̃1|s̃1| and s̃2 = s̃21s̃

2
2 . . . s̃2|s̃2|

we consider sequence alignment [27] for calculating their similarity score
scoreseq(s̃1, s̃2). Let |s̃1| and |s̃2| denote the number of edges in shapes 1, and 2,
respectively.

The objective function can be described as the following:

scoreseq(s̃1, s̃2) = max
i,j

r∑

m=1

wscores(s̃1im , s̃2jm) (8)

over all index sequences i, j such that i1, i2, . . . , ir is a subsequence of
1, 2, . . . , |s̃1|, and j1, j2, . . . , jr is a subsequence of 1, 2, . . . , |s̃2|, for some r ∈
[1,min{|s̃1|, |s̃2|}].

The dynamic programming formulation of the sequence alignment in this
case is based on deleting s̃1i , inserting s̃2j , and matching s̃1i to s̃2j . We cre-
ate a model with the following similarity score parameters described by the
real score function γ. We set the insert and delete scores to zero. That is,

γ

([ −
s̃2j

])

= γ

([
s̃1i
−

])

= 0. The similarity score for matching s̃1i to s̃2j is
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γ

([
s̃1i
s̃2j

])

= wscores(s̃1i , s̃
2
j ), where wscores(s̃1i , s̃

2
j ) is the alignment score cal-

culated as we described in Eq. 7. Then the alignment score scoreseq (s̃1, s̃2) =
E|s̃1|,|s̃2|, where E is the matrix calculated by the following dynamic program-
ming formula for sequence alignment [27]: For all i, j, i ∈ [0, |s̃1|], j ∈ [0, |s̃2|],
Ei,−1 = E−1,j = −∞, and for all other i, j, if i = j = 0 then E0,0 = 0 else Ei,j

is calculated from Ei,j−1, Ei−1,j−1, and Ei−1,j using the following formula

Ei,j = max

⎧
⎪⎪⎨

⎪⎪⎩

Ei,j−1 + γ

([
s̃1i

])

, Ei,j−1 + γ

([

s̃2j

])

,

Ei−1,j−1 + γ

([
s̃1i
s̃2j

])

⎫
⎪⎪⎬

⎪⎪⎭

(9)

The alignment score scoreseq(s̃1, s̃2) = E|s̃1|,|s̃2| is normalized by dividing it
by an upper bound for a maximal attainable score (|s̃1|+|s̃2|)/2, where n1, n2 are
respectively the number of edges in aligned shapes s̃1, s̃2. The resulting score is in
[0, 1] and denoted by |scoreseq(s̃1, s̃2)|. That is, |scoreseq(s̃1, s̃2)| = scoreseq(s̃

1,s̃2)

(|s̃1|+|s̃2|)/2 .

If s̃1 = s̃2, |scoreseq(s̃1, s̃2)| = 1, otherwise, |scoreseq(s̃1, s̃2)| < 1.
Given s̃2, the cyclic shift of s̃2 by k positions is s̃2,k = s̃2k+1s̃

2
k+2 . . . s̃2|s̃2|s̃

2
1

. . . s̃2k. Therefore we define the shape similarity score for two shapes (cyclic
sequences) s̃1 and s̃2 as

cscore(s̃1, s̃2) = max
0≤k<|s̃2|

|scoreseq(s̃1, s̃2,k)| (10)

If s̃1 = s̃2,k, for some k, then cscore(s̃1, s̃2) = 1, else, cscore(s̃1, s̃2) < 1.
On the bases of above concepts, we develop the following shape match-

ing algorithm: (1) Extract the boundary; (2) Generate shape sequences s̃1 =
s̃11s̃

1
2 . . . s̃1|s̃1| and s̃2 = s̃21s̃

2
2 . . . s̃2|s̃2|; (3) Shape matching is performed as follows:

(3.1) Define T as a two dimensional matrix whose elements are described by the
following:

T [i, j] = wscore(s̃1i , s̃
2
j ), 1 ≤ i ≤ |s̃1|, 1 ≤ j ≤ |s̃2| (11)

The entire matrix T is built by calculating wscore(s̃1i , s̃
2
j ) for all i, j. (3.2)

Sequences of angles from edges (Shapes) s̃1 and s̃2 are cyclically aligned using
matrix T , the optimum score is found by using the dynamic programming for-
mulation given by Eq. 9, and calculating Eq. 10. That is, for k = 0 to |s̃2| − 1,
|scoreseq(s̃1, s̃2,k)| is computed, and an optimal alignment is returned.

Boundary extraction takes O(MN) time, where M×N is the size of the input
images. Boundary sequence generation can be done within the same theoretical
time complexity using convex hull. In our implementation, we only used the
boundary points as described in Sect. 3.2, and it took less than 16 ms to generate
boundary sequences. For different k, the scores of the insertions, deletions, and
substitutions at given positions in the alignment computation for s̃1 and s̃2,k are
different because of the cyclic shifting of symbols in s̃2. Each pair of positions
(i, j + k) (i in s̃1 and j in s̃2,k) in aligning s̃1 and s̃2,k corresponds to (i, j) in
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aligning s̃1 and s̃2. Therefore, matrix T is computed only once, and all necessary
values are available there at different indices. Each pairwise segment alignment
takes time O(|p1i ||p2j |). Let �1 and �2 be the number of boundary points of the
input shapes, Shape 1 and Shape 2, respectively, after reducing close neighbors
as described in Sect. 3.2. That is, �1 = Σ

|s̃1|
k=1|p1k|, and �2 = Σ

|s̃2|
k=1|p2k|. The total

time required for building the table T is O(Σi,j |p1i ||p2j |) = O(|p11|�2 + |p12|�2 +

. . . + |p1|s̃1||�2) = O((Σ|s̃1|
k=1|p1k)�2) = O(�1�2). After constructing the table T ,

each pairwise edge alignment takes time O(|s̃1||s̃2|). The algorithm performs
|s̃2| such alignments. Therefore, the total time spent in this step is O(|s̃1||s̃2|2),
where |s̃1| and |s̃2| are the number of edges (much smaller than the perimeters),
respectively. Hence the total time of our shape matching algorithm is O(�1�2 +
|s̃1||s̃2|2).

5 Experimental Results

An earlier version of the shape representation and matching method was used
in [5]. The results there validated our theoretical concepts on a visual weapon
ontology composed by 153 weapons [5]. A visual hierarchy was designed by
creating clusters such as machine guns, pistols, riffles. Figure 3 includes a cluster
from this hierarchy. The clustering was done based on the algorithm in [17] and
using as the measure of similarity an earlier version of the cyclic shape sequence
alignment score described by the present paper. The ontology was queried by
objects. The results of identifying queried objects were encouraging [5].

In the present paper we tested our method on the dataset of Aslan and Tari
[7], and shown some of our results out of 56 shapes in Fig. 4. In each row we give
a query on the leftmost column, and in the next four columns we present the
nearest matches to the query in descending order of similarity as computed by
our method.

The results in Fig. 4 show the accuracy of 100% of our shape model in finding
identical 2D shapes. When segments -in particular concavities- appear similarly
in two compared shapes, the similarity score is high. For example, turtle looks
similar to human when hands and legs are in similar gesture.

We also want to note an implementation detail. The normalized similarity
scores distinguish the nearest neighbors. The scores are numbers in [0, 1]. We

Fig. 3. A cluster from the visual hierarchy in [5].
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Fig. 4. Select queries and nearest matches in a subset of the database from [7].

note that because of the scoring function for angles in Eq. 5, only very closely
matching angles in edges (at reference points, and at boundary points) contribute
to the total score; others have no contribution. Our observation is that in this
model we discriminate real similarities from other random matches. That is,
the scores we obtain is an effective measure of similarity. However, the resulting
normalized scores are small, even for near matches. Therefore, by taking the
fourth power of the normalized score in [0, 1], we maintain the same ordering for
matches, yet we obtain numbers corresponding 70% or higher percentages for
near matches. These numbers are shown as percentages in our results.

The dataset of Aslan and Tari [7] contains 56 images. The sizes of these
images vary from 190×111 to 222×250 pixels. In [8,34] the same dataset is used
for shape classification. The methods in [8,34] took above 5 min to process all
images. In our method on this dataset, on average per image, the AC extraction
took 400 ms; the sequence generation time, and the total time for alignments
were 16 ms. The total time to process the entire data set with our method and
answer queries with all 56 images is 47 s using a PC with 1.6 GHz clock, 512 MB
RAM. The comparisons show that our method is faster than those in [8,34].

We remark that our shape representation is based on the boundary features
(e.g. concavities). This is different than models based on symmetry axis in [7].
Naturally, a symmetry axis-based model performs very well classifying all human
shapes with different arm and leg positions. Our shape representation and com-
parison method performs very well for objects whose boundaries are rigid such
as firearms. The effectiveness of the seed ideas and initial method were proven
empirically in [5]. The effectiveness in detecting partial matches was illustrated
in identifying partially occluded firearms in [4]. We also note that two dissimilar
objects can have similar axis of symmetry such as a broom and a long gun,
however, boundary features can be the discriminating features in this case. Our
method can differentiate these objects in this example from each other (see [5]).
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To validate our shape matching method on weapons on a simple illustrative
example, we select six weapons from the weapon ontology presented in [5]. For
these weapons, the number of boundary points range from 300 to 998, and the
boundary sequence lengths range from 97 to 129. These weapons come from
three different clusters such that there are two weapons from each cluster. In
Fig. 5, on the very left, enclosed by a dashed rectangle these weapons are shown.
We perform a query with each weapon. In every case, the weapon itself is the
nearest match, and the next nearest match is the other weapon from the same
cluster.

Fig. 5. Select queries and nearest matches in a subset of weapon ontology in [5].

To validate and have an experimental evidence of the scale invariance capa-
bility of our method, we compared a query human figure with its 2×2 and 3×3
enlargements shown in Fig. 6(A). The similarity score remains very high even
there is a significant scaling difference.

Fig. 6. (A) Comparison of a human figure with its 2× and 3× enlargements; (B)
Comparison of a human figure with its rotations.

To validate the rotation invariance capability of our method, we compared
a query human figure with its rotations by 30, 90, and 150◦ angles (clockwise.)
We show the results in Fig. 6(B). The similarity score between the object and
its rotated version remains high. However, the 90◦ angle rotation yields better
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scores compared to 30-degree and 150-degree rotations. We believe the reason
lies with the rectangular bounding box. We bound an object with its minimum
horizontal, and minimum vertical boundary position as the bottom left corner,
and maximum horizontal, and maximum vertical boundary position on the top
right corner. To see this take a vertical line segment of length x with width
1; rotate it at 45◦ angle, the rectangular box that encloses the new object has
a diagonal of length

√
2 x, which has larger perimeter. In 90-degree case, the

perimeter stays the same. However, in 30 and 150-degree cases, the perimeter
increases. As a result, in these cases, shape sequences are longer, the total length
of the compared sequences is larger while the similarity score remains nearly the
same, and the normalized score is lower.

Figure 7 includes a clustering result based on the Gonzalez’ algorithm [17].
For computing the pairwise distances between shapes, our new algorithm is used.
In the figure, instead of distances, the normalized similarity scores are shown as
percentages. This example is another validation of our method’s performance on
clustering/discriminating rigid objects based on their shapes.

Fig. 7. Clusters of some containers.

6 Conclusions

The paper presents an improved shape representation based on convex, line,
and concave edges. These boundary features perform very well as shown in [5]
for rigid objects such as weapons which retain these features. This preservation
makes them very suitable for detecting partial matches [4]. Further, contributions
and advantages of the present study compared to the shape representation and
matching approach in [3,5] are the following:

– Here the shape is represented as a single sequence of angles obtained from
edges. The previous methods created separate convex hull (CH) and boundary
sequences of angles, and aligned them separately and independently. There-
fore, the new method is better applicable for local matches when only parts
of the boundary are visible. The new method aligns sequences of edges main-
taining the original clockwise ordering with respect to each other (in the order
of edges). The AC was reformulated for the tasks.
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– The new shape matching method generates similarly sized sequences and
similar angles even though the object sizes are different, and even though the
objects are rotated. This makes the method not only rotation invariant, but
also, scale invariant, which is a missing property in [3,5].

One shortcoming of the new representation and method is that some unre-
lated objects may look similar in different orientation. For example, with respect
to the new shape model, a human and a turtle can be very similar, and two
human shapes in different posses (e.g. a jumping man in two different poses)
may look very different (see. Fig. 4). The new representation and method apply
better to rigid objects. This is because rigid objects retain their shapes better
and concavities in them could be identifying features.

One disadvantage of the elaborated method is that it uses a number of user-
defined parameters such as a number of thresholds.

An area in which our shape matching method can be applied is the Ribonu-
cleic Acid (RNA) 2D structure analysis. RNA molecule makes interesting 2D
formations. Similar functions and evolutionary relatedness can be analysed via
structural similarities. New representations and algorithms for RNA 2D struc-
tures continue to be popular (e.g. see recent articles [1,6]). RNA 2D structures
have distinguishable boundary features such as bulges and hairpin loops in their
drawings. A linear sequence representation can be developed based on these
boundary features, and partitioning the boundary into segments. This would
yield a cyclic sequence alignment RNA structure comparison algorithm similar
to the one we use in this paper. Such a representation would also be useful for
searching boundary for given segment types. Our method will also be applied to
compare malignant and benign skin lesion boundaries.
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