
Polynomial Time Algorithm for Inferring
Subclasses of Parallel Internal Column

Contextual Array Languages

Abhisek Midya1(B), D.G. Thomas2, Alok Kumar Pani3, Saleem Malik1,
and Shaleen Bhatnagar1

1 Information Technology, Alliance University, Bangalore 562106, India
abhisekmidyacse@gmail.com, baronsaleem@gmail.com,

shaleenbhatnagar@gmail.com
2 Department of Mathematics, Madras Christian College, Chennai 600059, India

dgthomasmcc@yahoo.com
3 Computer Science and Engineering, Christ University Faculty of Engineering,

Bangalore 560074, India
alok.kumar@christuniversity.in

Abstract. In [2,16] a new method of description of pictures of digitized
rectangular arrays is introduced based on contextual grammars, called
parallel internal contextual array grammars. In this paper, we pay our
attention on parallel internal column contextual array grammars and
observe that the languages generated by these grammars are not infer-
able from positive data only. We define two subclasses of parallel internal
column contextual array languages, namely, k-uniform and strictly par-
allel internal column contextual languages which are incomparable and
not disjoint classes and provide identification algorithms to learn these
classes.

Keywords: Parallel internal column contextual array grammars · k-
uniform · Identification in the limit from positive data

1 Introduction

In theoretical computer science, formal language theory is one of the fundamental
areas. This study has its origin in Chomskian grammars. Contextual grammars
which are different from Chomskian grammars, have been studied in [3,13] by
formal language theorists, as they provide novel insight into a number of issues
central to formal language theory. In a total contextual grammar, a context
is adjoined depending on the whole current string. Two special cases of total
contextual grammars, namely internal and external are very natural and have
been extensively investigated. (External) Contextual grammars are introduced
by S. Marcus in 1969 [13] with a linguistic motivation in mind. An external
contextual grammar generates a language starting from a finite set of strings
(the base) and iteratively adjoining to its contexts outside the current string.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 156–169, 2017.
DOI: 10.1007/978-3-319-59108-7 13

PTA - PICCAL 157

In other families of contextual grammars, such as internal contextual grammars
[13], the contexts are adjoined inside the current string.

There has been a great interest in adapting the techniques of formal string
language theory for developing methods to study the problem of picture gen-
eration and description, where pictures are considered as connected, digitized
finite arrays in the two-dimensional plane [15]. Recently, extensions of string
contextual grammars to array structures and hyper graphs have been made in
[1,2,6–8,11,12,14,16].

On the other hand, Grammatical Inference refers to the method of inferring
a grammar (and possibly a target language) from data. Data can be text or
informant. The difference between text and informant is that a text gives only
positive examples (all strings do belong to the same language) where informant
is both positive and negative examples. A learning procedure is an algorithm
which is executed on a never-ending stream of inputs. The inputs are grammat-
ical strings/arrays, taken from a target language which is in a known class of
languages. The task is to identify a grammar that generates the target language.
At each point in the process, any string is given as an input to the algorithm.
After each input the algorithm produces a guess at the grammar which is eventu-
ally correct and could be unaltered when additional inputs are given. This model
of learning is Gold’s model of identification in the limit from positive data [5].
It is proved that no super finite language(it contains all finite languages and at
least one infinite language) can be learn-able in the limit from positive examples.
Hence, regular, context free, context sensitive grammars are not learn-able in the
limit from positive examples only.

In this paper, we have introduced two subclasses of parallel internal col-
umn contextual array grammar, called, strictly parallel internal column contex-
tual array grammar (SPICCAG), k-uniform parallel internal column contextual
array grammar (k-UPICCAG) in order to find out identification algorithms. Our
learning strategy is based on Gold’s model.

2 Definition and Examples

If V is a finite alphabet, then V ∗ is the set of all strings including the empty
string λ. An image or a picture over V is a rectangular m × n array of elements
of V or in short [aij]m×n, the set of all images including the empty array Λ is
denoted by V ∗∗. A picture language or two dimensional language over V is a
subset of V ∗∗. In this paper Λ denotes any empty array. The notion of column
concatenation is as follows: if X and Y are two arrays where

X =
[a1,j ... a1,k

a2,j ... a2,k
...

al,j ... al,k

]
, Y =

[
b1,m ... b1,n

b2,m ... b2,n
...

bl,m ... bl,n

]
then,XΦY =

[
a1,j ... a1,k b1,m ... b1,n

a2,j ... a2,k b2,m ... b2,n
...

al,j ... al,k bl,m ... bl,n

]

If L1, L2 are two picture languages over an alphabet Σ, the column concatenation
L1ΦL2 of L1, L2 is defined by L1ΦL2 = {XΦY | X ∈ L1, Y ∈ L2}. If X is an
array, the set of all subarrays of X is denoted by sub(X). We now recall the
notion of column array context [2,16].

158 A. Midya et al.

Definition 1. Let V be an alphabet. A column array context c over V is of the
form

c = [u1
u2] ψ [v1

v2]

∈ V ∗∗ψV ∗∗where u1, u2 are arrays of sizes 1×p, and v1, v2 are arrays of sizes
1 × q, for some p, q ≥ 1 and ψ is a special symbol not in V .

The next definition deals with parallel internal column contextual operation.

Definition 2. Let V be an alphabet, C be a finite subset of V ∗∗ψV ∗∗ whose
elements are the column array contexts and ϕ : V ∗∗ → 2C be mapping, called
choice mapping.

For an array X =
[a1,j ... a1,k

a2,j ... a2,k
...

al,j ... al,k

]
,

j ≤ k, aij ∈ V , we define ϕ̂ : V ∗∗ → 2V ∗∗ψV ∗∗
such that LψR ∈ ϕ̂[X], where

L =

⎡
⎣

u1
u2

...
ul

⎤
⎦ , R =

⎡
⎣

v1
v2

...
vl

⎤
⎦ ,

and
ci = [ui

ui+1] ψ [vi
vi+1] ∈ ϕ

[ai,j ...ai,k
ai+1,j ...ai+1,k

]
,

with ci ∈ C, (1 ≤ i ≤ l − 1), not all need to be distinct.
Given an array X = [aij] of size m × n, aij ∈ V,X = X1ΦX2ΦX3 where

X1 =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦ ,X2 =

⎡
⎣

a1,p ... a1,q
a2,p ... a2,q

...
...

...
am,p ... am,q

⎤
⎦ ,X3 =

⎡
⎣

a1,q+1 ... a1,n
a2,q+1 ... a2,n

...
...

...
am,q+1 ... am,n

⎤
⎦

and 1 ≤ p ≤ q ≤ n, we write X ⇒ Y if Y = X1ΦLΦX2ΦRΦX3 such that
LψR ∈ ϕ̂[X2]. Here L and R are called left and right contexts respectively. We
say that Y is obtained from X by parallel internal column contextual operation
(⇒in).

Now we consider the notion of parallel internal column contextual array
grammar [2,16].

Definition 3. A parallel internal column contextual array grammar is an
ordered system G = (V,A,C, ϕ) where V is an alphabet, A is a finite subset
of V ∗∗ called the axiom set, C is a finite subset of V ∗∗ψV ∗∗ called column array
contexts, ϕ : V ∗∗ → 2C is the choice mapping which performs the parallel inter-
nal column contextual operation. When ϕ is omitted we call G as a parallel
internal contextual array grammar without choice.

For any X,Y ∈ V ∗∗,X ⇒ Y if and only if X = X1ΦX2ΦX3, Y =
X1ΦLΦX2ΦRΦX3 with LψR ∈ ϕ̂[X2]. We denote by ⇒∗ the reflexive transi-
tive closure of ⇒in. Then the parallel internal column contextual array language
generated by the parallel internal column contextual array grammar G is defined
as the set Lin(G) = {Y ∈ V ∗∗/∃X ∈ A such that X ⇒∗ Y }.

PTA - PICCAL 159

3 Subclasses of Parallel Internal Column Contextual
Array Grammars

In this paper our main focus is on designing an identification algorithm to infer
parallel internal column contextual array grammar. According to Gold model [5],
no superfinite class of languages is inferable from positive data only. A class of
languages that consists of all finite languages and atleast one infinite language,
is called a super finite class of languages.

Proposition 1. The class of parallel internal column contextual array languages
(PICCAL), is not inferable from positive data only.

Proof. In the case of string languages, the class of internal contextual languages,
is not inferable from positive data only [4]. From this fact, we can conclude
Theorem 1.

As we know that the class (PICCAL) is not inferable from positive data only,
it is natural to look for subclasses of these languages which can be identified in
the limit from positive data only. We now define strictly parallel internal column
contextual array grammar (SPICCAG) and k-uniform parallel internal column
contextual array grammar (k − UPICCAG).

Definition 4. A strictly parallel internal column contextual array grammar
(SPICCAG) is a 6 tuple G = (V,X,C, ϕ, P,A) where

– V is the alphabet.
– X is a finite subset of V ∗∗, called selector set and C is a finite subset of

V ∗∗ψV ∗∗, called context set.
– ϕ : V ∗∗ → 2C is a choice mapping.
– P is a finite set of parallel internal column contextual rules of the form, ϕ[xi] =

LiψRi where Li, Ri ∈ C are the ith left and right context of ith selector xi ∈ X,
Li, Ri have same number of rows.

– first[Li] �= first[Ri] where first[W] denotes the first column of W and Li is
not a subarray of Ri and vice versa.

– A is a finite subset of V ∗∗, called the axiom set.
– for each selector, there is exactly one rule.

The language generated by strictly parallel internal column contextual array
grammar (SPICCAG) is called a strictly parallel internal column contextual
array language (SPICCAL) which is Lsin(G) = {Y ∈ V ∗∗ | Q ⇒∗ Y,Q ∈ A}.

3.1 Example

Let G = (V,X,C, ϕ, P,A) be a strictly parallel internal column contextual array
grammar (SPICCAG) where V = {a, b},

X =
{[

a b
b a

]
,
[

a b
a b

]
,
[

b a
b a

]}
, C =

{
[a

b] ψ [b
a] , [a

a] ψ
[

b
b

]
,
[

b
b

]
ψ [a

a]
}

160 A. Midya et al.

ϕ is a choice mapping

P =
{
ϕ

[
a b
b a

]
= [a

b] ψ [b
a] , ϕ

[
a b
a b

]
= [a

a] ψ
[

b
b

]
, ϕ

[
b a
b a

]
=

[
b
b

]
ψ [a

a]
}

,

A =
{

Q =
[

a a b b
a a b b
b b a a
b b a a

]}

Here for each rule ϕ[xi] = LiψRi, first(Li) �= first(Ri), i ≥ 1, so it does satisfy
Definition 4. Clearly, Lsin(G) =

{[
(an bn)m

(bn an)m

]
| n ≥ 2,m = 2

}
Here an = aaa...a

(n times) and am =
a
...
a

, m rows are there. A simple derivation of a member of

Lsin(G) is as follows,

Q =
[

a a b b
a a b b
b b a a
b b a a

]
⇒

[
a a a b b b
a a a b b b
b b b a a a
b b b a a a

]
=

[
(a3 b3)2
(b3 a3)2

]
∈ Lsin(G).

Definition 5. A k-uniform parallel internal column contextual array grammar
is a 6-tuple (k − UPICCAG), k ≥ 1, G = (V,X,C, ϕ, P,A) where

– V is the alphabet.
– X is a finite subset of V ∗∗, called selector set and C is a subset of V ∗∗ψV ∗∗,

called context set.
– ϕ : V ∗∗ → 2C is a choice mapping.
– P is a finite set of parallel internal column contextual array rules of the fol-

lowing form, ϕ[xi] = LiψRi where Li, Ri ∈ C are the ith left and right context
of ith selector xi ∈ X, Li, Ri have same number of rows.

– A is the finite subset of V ∗∗, called axiom set. Each member of A is an axiom
which contains mk number of columns, for some m ≥ 1 and we put the fol-
lowing restrictions.

If the rule is ϕ[x] = LψR then,

– |x| = |L| = |R| = k, where |W | denotes the number of columns in an array
W .

– for each selector, there is exactly one rule.

The language generated by k−UPICCAG is called a k-uniform parallel internal
column contextual array language(k-UPICCAL) which is Lk−uin(G) = {Y ∈
V ∗∗ | Q ⇒∗ Y,Q ∈ A}.

3.2 Example of 2-UPICCAG

G = (V,X,C, ϕ, P,A) is a 2-UPICCAG where V = {a, b},

X =
{[

a b
b b

]
,
[

b b
a b

]}
, C =

{[
a b
b a

]
ψ

[
a b
b a

]
,
[

b a
a b

]
ψ

[
b a
a b

]}
,

ϕ is a choice mapping,

P =
{
ϕ

[
a b
b b

]
=

[
a b
b a

]
ψ

[
a b
b a

]
, ϕ

[
b b
a b

]
=

[
b a
a b

]
ψ

[
b a
a b

]}
,

PTA - PICCAL 161

A =
{

Q =
[

a b a b
b b b b
a b a b

]}
. Here, |x| = |L| = |R| = 2,m = 2, number of columns in

A = mk = 4. So it satisfies Definition 5. Clearly

Lk−uin(G) =

{
A,

[
(ab)n−1 ab (ab)n−1 ab

(ba)n−1 bb (ba)n−1 bb

(ab)n−1 ab (ab)n−1 ab

]
| n ≥ 2

}

For instance,
[

a b a b
b b b b
a b a b

]
⇒

[
a b a b a b a b
b a b b b a b b
a b a b a b a b

]
∈ Lk−uin(G).

Now, if we consider a = black box and b = white box, we get a nice rectangular
picture.

Theorem 1. LSPICCAG is incomparable with LK−UPICCAG and not disjoint.

Proof. We prove this theorem using following lemmas whose proofs are
omitted. 	

Lemma 1. LSPICCAG − LK−UPICCAG �= φ

Lemma 2. LK−UPICCAG − LSPICCAG �= φ

Lemma 3. LK−UPICCAG ∩ LSPICCAG �= φ

4 Identification of Subclasses of Parallel Internal
Column Contextual Array Languages

In this section, we propose an algorithm to infer SPICCAG from positive data
only. We recall the notion of an insertion rule. The insertion operation is first
considered by Haussler in [9] and based on the operation, insertion systems are
introduced by L. Kari in [10]. Informally, if a string α is inserted between two
parts w1 and w2 of a string w1w2 to get w1αw2, we call the operation as insertion.

This algorithm takes finite sequences of positive examples in the different
time interval or all together. Our goal is to find out SPICCAG G, such that
IP ⊆ L(G) where IP is the input set of arrays. The algorithm works in the
following way. After receiving the first set of arrays as an input, based on the
size(actually based on number of columns), firstly the algorithm determines the
axiom, then it defines 2D insertion rules in order to find out context and selector
from input example. After that, insertion rules are converted into 1-sided1 con-
textual rules which will be a guess about the unknown grammar. Then we will
convert 1-sided contextual rule into 2-sided contextual rule to take care of over
generalization. Then updates with new contextual rules if the next input array
cannot be generated by the existing contextual rules. All the guessing will be
done in a flexible way in the sense that the correction is done at every instance.
Finally we will find the parallel internal column contextual rules according to
Definition 2.

In this paper we consider single axiom A and finite selector set. Now, we
present our algorithm with a description for better understanding.
1 In an 1-sided contextual rule either left context is Λ or right context is Λ.

162 A. Midya et al.

5 Pseudocode of Our Algorithm

1: axiom ← Find − Smallest(IPS)
2: inser ← Generate − Inser(axiom, IPi)
3: 1 − Sided − Contextual − Rule ← {}
4: 1 − Sided − Correct − Rule ← {}
5: 2 − Sided − Correct − Rule ← {}
6: Parallel − Rule ← {}
7: Table ← �
8: 1− Sided − Contextual − Rule.push[Convert − into − Contextual − Rule(inser)]
9: IPS ← Remove(IPS, IPi)
10: for (1 − Sided − Contextual − Rulei ∈ {1 − Sided − Contextual − Rule}) do
11: for (IPi ∈ {IPS}) do
12: S ← Check − Contextual − Rule(1 − Sided − Contextual − Rulei, IPi)
13: if S = 1 then
14: 1 − Sided − Correct − Rule.push[1 − Sided − Contextual − Rulei]

15: if S = 0 then
16: 1 − Sided − Correct − Rule.push[Correction − Contextual − Rule(1 −

Sided − Contextual − Rulei, IPi)]

17: for (1 − Sided − Correct − Rulei ∈ {1 − Sided − Correct − Rule}) do
18: for (IPi ∈ {IPS}) do
19: Table.insert[Find − Nof − App − of − EachRule − in − EachMember(1−

Sided − Correct − Rulei, IPi)]

20: if TableRowi = TableRowj then
21: 2−Sided−Correct−Rule.push[Merge(1−Sided−Correct−Rulei, 1−Sided−

Correct − Rulej)]

22: for (2 − Sided − Correct − RULEi ∈ {2 − Sided − Correct − Rule}) do
23: Parallel − Rule.push(2 − Sided − Correct − Rulei)

In the next few subsections we will explain all the steps of our pseudocode
in detail.

5.1 Finding Axiom - Pseudocode-Step: 1

axiom ← Find – Smallest(IPS): It finds the smallest array from the IPS
(input set). The output of the function will be considered as an axiom.

In order to find out the axiom, the number of columns of each array is
evaluated, the array with the smallest number of columns, will be considered as
the axiom. Also a new input array will be compared with the existing axiom
based on the number of columns, and the smaller one will be considered as an
axiom and Let the single axiom be denoted by A.

PTA - PICCAL 163

5.2 Defining Insertion Rule and Converting It into Contextual
Rule - Pseudocode-Step: 2, 8, 9

– insr ← Generate − Inser(axiom, IPi): It generates the insertion rule from
axiom and member of input set (IPi). The output of the function will be
stored in insr as an insertion rule.

– 1−Sided−Contextual−Rule.push ← [Convert − into − Contextual−
Rule(inser)]: It converts insr into 1 − Sided − Contextual − Rule and store
that.

– IPS ← Remove(IPS, IPi): It removes the current input member IPi from
IPS.

– We now shortly describe about the intuitive idea of the parts 1–4. We try to
identify the selectors from the axiom and contexts from examining input.

– Let the format of 2D insertion rule be LIR where L, I,R ∈ V ++ are left
context, inserted portion, and right context respectively. Axiom and examining
array are respectively

A =

⎡
⎣

a1,1 ... a1,n
a2,1 ... a2,n

...
...

...
am,1 ... am,n

⎤
⎦ , E =

⎡
⎣

a1,1 ... a1,p
a2,1 ... a2,p

...
...

...
am,1 ... am,p

⎤
⎦

Let the initial insertion rule be LIR and from the axiom we can have the fol-
lowing consideration:

Part 1:

L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

⎡
⎣

a1,2 ... a1,n
a2,2 ... a2,n

...
...

...
am,2 ... am,n

⎤
⎦

Check whether any I = [Ii,j]m×r where r ≤ p exists with LIR ∈ sub(E) or not.
If yes then fix that I = [Ii,j]m×r and go to part 3, else go to part 2.

Part 2: Remove the last column of the right context R and the rule becomes
LIR where

L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

[a1,2 ... a1,n−1
a2,2 ... a2,n−1
...

am,2 ... am,n−1

]

Check whether any I = [Ii,j]m×r where r ≤ p exists with LIR ∈ sub(E) or not.
If yes then fix that I = [Ii,j]m×r and go to part 3, else go to part 2 recursively,

until L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

⎡
⎣

a1,2
a2,2

...
am,2

⎤
⎦, and then go to part 4.

Part 3 - Conversion of 2D insertion rule into 1 sided 2D contextual
rule: Here LIN , IIN , RIN are left context, inserted portion, and right context
for insertion rule respectively. On the other hand, LIC , xIC , RIC are left context,
selector, and right context for internal contextual rule respectively.

(LIR)IN → (ϕ̂[x] = LψR)IC where xIC = LIN , LIC = Λ,RIC = IIN . Once
we get a selector and associated context with it, we have the following conditions
for each 2D insertion rule:

164 A. Midya et al.

– Condition 1: If (|L|+ |I|+ |R|)IN = |E|, it implies that on this current axiom
A, only one rule has been applied and we obtain the rule.

– Condition 2: If (|L| + |R|)IN ≤ |A|, then we remove LIN from axiom A,
and obtain a new temporary axiom, also consider RIN as a LIN for the next
insertion rule. Also we remove (LI)IN as a subarray from the examining input
E and obtain a new temporary input. Now we continue our procedure with
this temporary axiom and temporary examing input in the same way.

– Condition 3: If (|L| + |I| + |R|)IN ≤ |E| but (|L| + |R|)IN = |A|, then it can
be understood that some part of the examining input is still left to scan, and
that is considered directly as the left context LIC of the first selector xIC

first

or right context RIC of the last selector xIC
last. We define new rule internal

contextual rule.
– (ϕ̂[x] = LψR)new where Lnew = LIC , Rnew = Λ, xnew = xIC

first, another
rule can be (ϕ̂[x] = LψR)new where Lnew = Λ,Rnew = RIC , xnew = xIC

last. It
should be noted that these particular rules will not be considered for updation
and correction.

Part 4: At that moment, existing first column of R will be concatenated with
existing L.

L =

⎡
⎣

a1,1 a1,2
a2,1 a2,2

...
...

am,1 am,2

⎤
⎦ , R =

⎡
⎣

a1,3 ... a1,n
a2,3 ... a2,n

...
...

...
am,3 ... am,n

⎤
⎦ , go to part 1 until L =

⎡
⎣

a1,1 ... a1,n
a2,1 ... a2,n

...
...

...
am,1 ... am,n

⎤
⎦ ,

in that case defining insertion rule is not possible. We may need to define inser-
tion rule with the current examining array, if we are still unable to define inser-
tion rule, then we will conclude that the choosen axiom is wrong. It is a negative
example as we are dealing with single axiom.

So in this section, we get the selectors from axiom and contexts from exam-
ining input. Later on for new input, we may need to guess (next section).

5.3 Making Correction and Updating Rules - Pseudocode-Step:
10–16

– S←Check−Contextual − Rule(1 − Sided − Contextual − Rulei, IPi):
It checks the correctness of 1 − Sided − Contextual − Rulei for IPi. If S
is true then the correct 1 − Sided − Contextual − Rulei will be pushed onto
set {1 − Sided − Correct − Rule} or it goes for correction.

– Correction−Contextual−Rule(1 − Sided − Contextual − Rulei, IPi):
In that case we need to go for correction of the rule in such a way so that our
new corrected rule can take care of new inputs and as well as previous inputs.

– Let the initial rule be ϕ̂[xi] = LiψRi where Li, Ri are ith left and right context
of the ith selector xi. Here xi+1 is also introduced because we will make the
correction using xi+1.

Proposition 2. In case of correction, we deal with only 1-sided contextual rules
where left context is always empty and selector is not the last one. (see condition

PTA - PICCAL 165

3 of Subsect. 5.2) We will try to find the rule as a subarray from the examining
input.

Let the examining input be E =

⎡
⎣

ai,1 ... ai,p
ai+1,1 ... ai+1,p

...
...

...
am,1 ... am,p

⎤
⎦. We can represent the exam-

ining input in the following format E = PΦxiΦQΦxi+1ΦZ. where P,Z are the
rest of the part of string and they can be empty also, Q is the inserted subarray
portion. Now we present the examining input in 2D form.

E = PΦ

⎡
⎣

ai,k ... ai,α
ai+1,k ... ai+1,α

...
...

...
am,k ... am,α

⎤
⎦ΦQΦ

⎡
⎣

ai,j ... ai,β
ai+1,j ... ai+1,β

...
...

...
am,j ... am,β

⎤
⎦ ΦZ

Now we need to check the contexts. R must be matched with Q. R =
RiΦRi+1Φ...ΦRw where 1 ≤ i ≤ w, and Ri presents the ith column of array.
Q = QiΦQi+1Φ...ΦQz where 1 ≤ i ≤ z, and Qi presents the ith column of array.

Here we are making an analysis to find out the partially equal part (as a
prefix/suffix) between R1ΦR2Φ...ΦRw and Q1ΦQ2Φ...ΦQz and we have shown
the correction part for one rule, in the same way can make the correction for
other rules. In Theorems 3 and 4, we obtain the common-prefix and common-
suffix part between R and Q.

Theorem 2. If the analysis starts with equality such that Q1 = R1, Q2 =
R2Φ...ΦQf = Rs, and Qf+1 �= Rs+1 or f = z or s = w, then we can have
four different types of errors which are stated in terms of following lemmas.

Lemma 4. If (f = z and s = w) then it implies that matching is correct, so no
need to make any correction for this rule and the rule is correct.

Lemma 5. If (f = z and s < w) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = Q1ΦQ2Φ...ΦQf , Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψ[R(i+1)′ where L(i+1)′ = Rs+1ΦRs+2Φ...

ΦRw, R(i+1)′ = Λ, x(i+1)′ = x(i+1).

Lemma 6. If (f < z and s = w) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = R1Φ..ΦRw, Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where L(i+1)′ = Qf+1ΦQf+2Φ...ΦQz,

R(i+1)′ = Λ, x(i+1)′ = x(i+1).

Lemma 7. If (f < z and s < w) then we infer the following three new rules.

– Rulei′ : ϕ̂xi′ = Li′ψRi′ where Ri′ = Q1ΦQ2Φ...ΦQf , Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x](i+1)′ = L(i+1)′ψR(i+1)′ where L(i+1)′ = Rs+1Φ...ΦRw, R(i+1)′

= Λ, x(i+1)′ = xi+1.
– Rule(i+2)′ : ϕ̂[x]i+2 = L(i+2)′ψR(i+2)′ where L(i+2)′ = Qf+1Φ...ΦQz,

R(i+2)′ = Λ, x(i+2)′ = xi+1.

166 A. Midya et al.

Theorem 3. If the analysis starts with inequality such that Q1 �= R1, but Qz =
Rw, Qz−1 = Rw−1Φ...ΦQf = Rs, and Qf−1 �= Rs−1 then we can have three
different types of errors which can be seen in the following lemmas.

Lemma 8. If (s = 1, f > 1) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Li′ = R1ΦR2Φ...ΦRw, Ri′ = Λ, xi′ = xi+1.
– ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQf−1, L(i+1)′ =

Λ, x(i+1)′ = xi.

Lemma 9. If (s > 1) then we infer the following three new rules. Rulei′ :
ϕ̂[xi′] = Li′ψRi′ where Li′ = RsΦRs+1Φ...ΦRw, Ri′ = Λ, xi′ = xi+1. Rule(i+1)′ :
ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQf−1, L(i+1)′ =
Λ, x(i+1)′ = xi. Rule(i+2)′ : ϕ̂[x(i+2)]′ = L(i+2)′ψR(i+2)′ where L(i+2)′ =
Λ,R(i+2)′ = R1ΦR2Φ...ΦRs−1, x(i+2)′ = xi.

Lemma 10. If Qz �= Rw then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = R1ΦR2Φ...ΦRw, Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQz,

L(i+1)′ = Λ, x(i+1)′ = xi.

In this section, we must notice that we have different rules with same selectors.
According to Definitions 4 and 5, for each selector there must be one rule. As we
are inferring 1-sided contextual rule, it does not satisfy our Definitions 4 and 5.
In the next section we will convert 1-sided contextual rule into 2-sided contextual
rule in order to take care of over generalization and Definitions 4 and 5.

5.4 Controlling over Generalization - Pseudocode-Step: 17–21

– Table.insert[Find − Nof − App − of − EachRule − in − EachMember
(1 − Sided − Correct − Rulei, IPi)]: It finds out the application of each rule
on each member of the input and insert that record into the table.

– 2−Sided − Correct − Rule.push[Merge(1 − Sided − Correct − Rulei,
1 − Sided − Correct − Rulej)]: In this case if we find that ith row (Table
Rowi) and jth row (TableRowj) is same then we merge these two rules
(1 − Sided − Correct − Rulei, 1 − Sided − Correct − Rulej) and store as
a 2 − Sided − Correct − Rule.

– In this section we determine the number of applications of each rule to generate
the given input set. It will be presented in table. We put priority in applying
rules where left context is empty and context is smaller in size. If it is found
that without using any rule we can generate the full input set then we can
ignore that rule.

– Actually all the rules are 1-sided where left contexts or right contexts are
empty that generate more elements. Thus, to control this over generalization,
we check that how many times each rule is applied in each member of the input
set. Rules which are applied equal number of times in each member, those can
be merged into one rule based on condition (discussed in Lemmas 11 and 12).

PTA - PICCAL 167

– Also in this way we satisfy our required condition for SPICCAG (Defini-
tion 4), that is, for each selector atmost one rule is applicable.

Lemma 11. If consecutive selectors are xi, xj with (j − i) = 1 and left con-
texts(right contexts) are empty in a set of rule then we can get 1-sided or 2-sided
internal contextual rule after merging them.

Proof. Let xi, xj denote ith and jth selector, Ri, Rj be ith and jth right context
and Li, Lj are ith and jth left context.

– case 1: If xi, xj are such that (j − i) = 1 and if Ri = Rj = Λ then rule
becomes ϕ̂[xi] = LiψRi where Ri = Lj .

– case 2: If xi, xj are such that (j − i) = 1 and if Li = Lj = Λ then the rule
becomes ϕ̂[xi] = LiψRi where Lj = Ri, xi = xj .

Lemma 12. If consecutive selectors are xi, xj with (j − i) = 1 and left contexts
of ith rule and right context of jth rule are empty then we can get 1-sided internal
contextual rule after merging them.

Proof. Let xi, xj denote ith and jth selector, Ri, Rj are left contexts of ith rule
and right context of jth rule respectively.

If xi, xj are such that (j − i) = 1 and if Li = Rj = Λ then the rule becomes
ϕ̂[xi] = LiψRi where Ri = RiΦRj

5.5 Parallalization Contextual Array Rules - Pseudocode-Step:
22, 23

– Parallel − Rule.push(2 − Sided − Correct − Rulei): It converts the 2 −
Sided−Correct−Rulei into parallel rule and push onto set {Parallel−Rule}.
If we get a rule ϕ̂[x] = LψR where

x =

⎡
⎣

ai,k ... ai,α
ai+1,k ... ai+1,α

...
...

...
am,k ... am,α

⎤
⎦ , L =

⎡
⎣

ai,j ... ai,k−1
ai+1,j ... ai+1,k−1

...
...

...
am,j ... am,k−1

⎤
⎦ , R =

⎡
⎣

ai,α+1 ... ai,n
ai+1,α+1 ... ai+1,n

...
...

...
am,α+1 ... am,n

⎤
⎦

According to Definition 2, we can have (m−1) parallel rules ϕ[Pxi] = PLiψPRi

where Pxi, PLi, PRi are respectively selector, left context, right context.

Pxi =
[ai,k ... ai,α

ai+1,k ... ai+1,α

]
, PLi =

[ai,j ... ai,k−1
ai+1,j ... ai+1,k−1

]
, PRi =

[ai,α+1 ... ai,n
ai+1,α+1 ... ai+1,n

]
where 1 ≤ i ≤ m − 1.

Remark 1. The above algorithm can also be used to identify a k − UPICCAG.
A modification required in the algorithm is that, k is also given along with the
positive presentation as an input to the algorithm.

In this case, at the time of defining insertion rule (Sect. 5.2), we need to
focus on the size of selectors and contexts in terms of number of columns as k is
given as an input. Defining insertion rule should be done in the following way,
LIR ∈ sub(E) where |I| = |L| = |R| = k and also |A| = mk,L, I,R ∈ V ++.

168 A. Midya et al.

6 Correctness of the Algorithm and Characteristic
Sample

The correctness of the algorithm can be noticed in view of the fact that the
specific properties of the subclasses considered allow the positive examples. The
correctness of the algorithm can be seen by considering a characteristic sample
for a target language. Also it can be seen that the algorithm runs in polyno-
mial time in the sum of the size of the examples given. (discussed in Sect. 7).
The correctness of the algorithm, can be seen by considering a characteristic
sample for a target SPICCAL. Let L be an SPICCAL. A finite set IPS is
called a characteristic sample of L if and only if L is the smallest SPICCAL
containing IPS.

7 Running Time Complexity of Our Algorithm

In this section we show the running time of our algorithm to infer the column
contextual rules.

Theorem 4. The running time complexity of the given pseudocode in Sect. 5, is
polynomial in the size of the input set, that is, SumofSize(IPS) where IPS =
{IPi, IPi+1, ..., IPk}.
Proof. proof is omitted.

8 Conclusion and Future Work

In this paper we present a polynomial time algorithm to infer subclasses of
parallel internal column contextual array languages from positive examples only.
Here we deal with only column contextual rules. In the form of future direction
of this work, we can deal with column and row contextual rules together, that
is, parallel internal array contextual languages.

References

1. Chandra, H., Martin-Vide, C., Subramanian, K.G., Van, D.L., Wang, P.S.P.: Par-
allel contextual array grammars and trajectories. In: Chen, C.H., Wang, P.S.P.
(eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 55-70
(2004)

2. Chandra, H., Subramanian, K.G., Thomas, D.G.: Parallel contextual array gram-
mars and languages. Electron. Notes Discrete Math. 12, 106–117 (2003)

3. Ehrenfeucht, A., Paun, G., Rozenberg, G.: Contextual grammars and formal lan-
guages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language, vol.
2, pp. 237–293 (1997)

4. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: Inferring subclasses of contex-
tual languages. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS, vol. 1891, pp. 65–74.
Springer, Heidelberg (2000). doi:10.1007/978-3-540-45257-7 6

http://dx.doi.org/10.1007/978-3-540-45257-7_6

PTA - PICCAL 169

5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
6. Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array

languages by contextual array grammars. Fundamenta Informatica 64, 159–170
(2005)

7. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array gram-
mars with matrix and regular control. In: Câmpeanu, C., Manea, F., Shallit, J.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 98–110. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 8

8. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Non-isometric contex-
tual array grammars with regular control and local selectors. In: Durand-Lose, J.,
Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 61–78. Springer, Cham (2015).
doi:10.1007/978-3-319-23111-2 5

9. Haussler, D.: Insertion and iterated insertion as operations on formal languages.
Ph.D. Thesis, University of Colorado, Boulder (1982)

10. Kari, L.: Contextual insertions/deletions and computability. Inf. Comput. 1, 47–61
(1996)

11. Krithivasan, K., Balan, M.S., Rama, R.: Array contextual grammars. In: Martin-
Vide, C., Paun, G. (eds.) Recent Topics in Mathematical and Computational Lin-
guistics, pp. 154-168 (2000)

12. Lalitha, D., Rangarajan, K., Thomas, D.G.: Petri net generating hexagonal arrays.
In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 235–247. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21073-0 22

13. Marcus, S.: Contextual grammars. Revue Roumane de Mathematiques Pures et
Appliques 14(10), 1525–1534 (1969)

14. Rama, R., Smitha, T.A.: Some results on array contextual grammars. Int. J. Pat-
tern Recogn. Artif. Intell. 14, 537–550 (2000)

15. Rosenfield, A., Siromoney, R.: Picture languages - a survey. Lang. Design 1, 229–
245 (1993)

16. Subramanian, K.G., Van, D.L., Chandra, P.H., Quyen, N.D.: Array grammars with
contextual operations. Fundamenta Informaticae 83, 1–18 (2008)

http://dx.doi.org/10.1007/978-3-319-41114-9_8
http://dx.doi.org/10.1007/978-3-319-41114-9_8
http://dx.doi.org/10.1007/978-3-319-23111-2_5
http://dx.doi.org/10.1007/978-3-642-21073-0_22

	Polynomial Time Algorithm for Inferring Subclasses of Parallel Internal Column Contextual Array Languages
	1 Introduction
	2 Definition and Examples
	3 Subclasses of Parallel Internal Column Contextual Array Grammars
	3.1 Example
	3.2 Example of 2-UPICCAG

	4 Identification of Subclasses of Parallel Internal Column Contextual Array Languages
	5 Pseudocode of Our Algorithm
	5.1 Finding Axiom - Pseudocode-Step: 1
	5.2 Defining Insertion Rule and Converting It into Contextual Rule - Pseudocode-Step: 2, 8, 9
	5.3 Making Correction and Updating Rules - Pseudocode-Step: 10--16
	5.4 Controlling over Generalization - Pseudocode-Step: 17--21
	5.5 Parallalization Contextual Array Rules - Pseudocode-Step: 22, 23

	6 Correctness of the Algorithm and Characteristic Sample
	7 Running Time Complexity of Our Algorithm
	8 Conclusion and Future Work
	References

