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Abstract. We study a discrete version of a geometric stable mar-
riage problem originally proposed in a continuous setting by Hoffman,
Holroyd, and Peres, in which points in the plane are stably matched
to cluster centers, as prioritized by their distances, so that each cluster
center is apportioned a set of points of equal area. We show that, for a
discretization of the problem to an n×n grid of pixels with k centers, the
problem can be solved in time O(n2 log5 n), and we experiment with two
slower but more practical algorithms and a hybrid method that switches
from one of these algorithms to the other to gain greater efficiency than
either algorithm alone. We also show how to combine geometric sta-
ble matchings with a k-means clustering algorithm, so as to provide a
geometric political-districting algorithm that views distance in economic
terms, and we experiment with weighted versions of stable k-means in
order to improve the connectivity of the resulting clusters.

1 Introduction

A long line of research considers algorithms on objects embedded in n×n grids,
including problems in computational geometry (e.g., see [1,2,8,17,19,26,28,29]),
graph drawing (e.g., see [5,10,14,30]), geographic information systems (e.g.,
see [13]), and geometric image processing (e.g., see [9,11,15,20]). Continuing
this line, we consider in this paper the problem of matching grid points (which
we view as pixels) to k center points in the grid. Pixels have a preference for
centers closer to them, and centers prefer closer pixels as well. The goal is to
match every center to an equal number of pixels and for the matching to be sta-
ble, meaning that no two elements prefer each other to their specified matches.
For example, the centers could be facilities, such as polling places, fire stations,
or post offices, that have assigned jurisdictions and equal operational capacities
(in terms of how many pixels they can serve). Rather than optimizing some com-
putationally challenging global quality criterion based on distance or area, we
seek an assignment of pixels to centers that is locally stable. Figure 1 illustrates
a solution to this stable grid matching problem for a 900 × 900 grid and 100
random centers. Note that some centers are matched to disconnected regions.

Stable grid matching is a special case of the classic stable matching prob-
lem [18], which was originally described in terms of arranging marriages between
N heterosexual men and women in a closed community. In this case, stability
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Fig. 1. An example solution to the stable grid matching problem for a 900 × 900 grid
and 100 centers distributed randomly. Pixels of the same color are assigned to the same
center. (Color figure online)

means that no man-woman pair prefers each other to their assigned mates, which
is necessary (and more important than, e.g., total utility) to prevent extramari-
tal affairs. The Gale-Shapley algorithm [18] finds a stable matching for arbitrary
preferences in O(N2) time. For stable grid matching in an n × n grid this would
give a running time of O(n4), since each “man” would correspond to a pixel
and each “woman” would correspond to one of �n2/k� copies of a center. As
we show, the geometric structure of the stable grid matching problem allows for
significantly more efficient solutions.

We also study the effect of integrating a stable matching with a k-means
clustering method, which alternates between assigning points to cluster centers
and moving cluster centers to better represent their assigned points. Using stable
matching for the assignment stage of this method allows us to fix the size of the
clusters (for instance, to be all equally sized), which might be advantageous in
some applications.

Prior Related Work. As mentioned above, there is considerable prior research on
algorithms involving objects embedded in an n×n grid. The stable grid matching
problem that we study can be viewed as a grid-restricted version of the classic
“post office” problem of Knuth [27], where one wishes to identify each point in the
plane with its closest of k post offices, with the added restriction that the region
assigned to each post office must have the same area. The continuous version
of the stable grid matching problem, which deals with points in R

2 instead of
discrete pixels, was studied by Hoffman et al. [21]. They showed that there is a
unique solution, and there is a simple numerical method to find it: Start growing
a circle from each center at the same time, all growing at the same speed. When
a yet-unmatched point is reached by a circle, it is assigned to the corresponding
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center. When a center reaches its quota (its region covers 1/k of the area of
the square), its circle halts. (Note that if the halting condition is removed, we
obtain the Voronoi diagram of the centers instead, as in the well-known solution
to Knuth’s post office problem, e.g., see [3].) Due to its continuous, numerical
nature, Hoffman et al. did not analyze the running time of their method; hence,
there is motivation to study the grid-based version of this problem.

With respect to the related problem of k-means clustering, we are interested
in a grid-based version of this problem as well, which has been studied exten-
sively in non-grid discrete contexts (e.g., see [22,24]). In the continuous version
of this problem, one is interested in partitioning a geometric region into subre-
gions that all have the same area (e.g., see [6]). One of the motivations for such
partitions is in political districting, for which there is additional related prior
work (e.g., see [32]). The goal of political districting is to partition a territory
into regions (districts) which all have roughly the same population size and are
“compact”, which informally means that their shape should be connected and
resemble a circle rather than an octopus [32]. Ricca et al. [31] adapted the con-
cept of Voronoi regions to the discrete setting in order to use them for political
districting. Voronoi regions ensured good compactness but poor population bal-
ance, however. Thus, there is motivation for a clustering algorithm based on the
use of stable matchings, since such partitions enforce the property that all regions
have the same size (at the possible cost of connectivity). Finding a scheme that
guarantees both size equality and compactness is an open problem of interest.

Problem Definition. In the stable grid matching problem, we are given a square
n×n grid and k points called centers within the grid. The lattice points are called
pixels or sites. Sites implicitly rank the centers in increasing order of distance,
and centers similarly implicitly rank pixels in increasing order by distance. A
matching is a mapping from sites to centers. The goal is to find a matching with
the following two properties (see Fig. 2, left column):

1. The region of each center (the set of sites assigned to it) must have the same
size up to roundoff errors. The quota of a center is the number of sites that
must be in its region. If n2 is a multiple of k, then all the quotas are n2/k.
Otherwise, some centers are allowed one extra site.

2. The matching must be stable. A matching is not stable when a pair of sites
(p1, p2) is assigned to centers c1 and c2 such that p1 prefers (i.e., according to
some metric is closer to) c2 over c1 and c2 prefers p1 over p2. This is unstable
because p1 and c2 prefer each other to their current matches.

Combining k-means with Stable Assignment. The k-means clustering method
is to partition a data set (which, in our case, is an n × n grid) into k regions,
based on a simple iterative refinement algorithm (which is called the k-means
algorithm or Lloyd’s algorithm, e.g., see [24]): We begin by choosing k points,
called cluster centers, randomly in the space. Then, we iteratively repeat the
following two phases: (1) assignment step: each object is assigned to its closest
center, and (2) update step: each center is moved to the centroid of the objects
assigned to it.
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Fig. 2. Left: stable matching in a 300 × 300 grid with the same 50 random centers
for the Euclidean (top), Manhattan (center), and Chebyshev (bottom) metrics. Right:
result of the stable k-means algorithm with unweighted centroids for each metric.

Lloyd’s algorithm converges to a (locally optimal) partition that minimizes
the sum of the squared distances from each object to its assigned center [24].
In this paper, we propose a variation, which we call stable k-means, where the
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assignment step is replaced by a stable matching between objects and centers,
so as to achieve the additional property that the regions all have equal area (to
within roundoff errors). Intuitively, the goal is to implement Lloyd’s algorithm
with stable grid matching so as to improve the compactness of the regions while
preserving equal-sized clusters.

We have found through experimentation that, although the stable k-means
method succeeds in improving compactness, centers can sometimes stop mov-
ing while we are executing Lloyd’s algorithm before their regions became com-
pletely connected (e.g., see Fig. 2). Thus, we introduce in this paper an addi-
tional heuristic, where we use weighted centroids, which are more sensitive to
the outlying parts of their region. The usual centroid of a set of points S is
defined as (

∑
q∈S q)/|S|, where the points are regarded as two-dimensional vec-

tors so that the sum makes sense. Instead, we can compute a weighted centroid
as (

∑
q∈S wqq)/(

∑
q∈S wq). A natural choice to use for the weight wq of a point

q assigned to the region of the center c is the distance from q to c raised to some
exponent p that we can choose, d(q, c)p. The larger p is, the more sensitive the
weighted centroids are to outliers. When p = 0, we get the usual centroid. When
p → +∞, we get the circumcenter of the region, and when p → −∞ we get the
current center.

Contributions. In this paper, we provide the following results:

– The stable grid matching problem, for a grid of n × n pixels with k cen-
ters, can be solved by a randomized algorithm with expected running time
O(n2 log5 n). Since an n × n grid has Θ(n2) pixels, this quasilinear bound
improves the O(n4) time of the Gale-Shapley algorithm. However, this algo-
rithm uses intricate data structures that make it challenging to implement in
practice.

– Given the pragmatic challenges of the above-mentioned quasilinear-time algo-
rithm, we provide two alternative algorithms, a “circle-growing algorithm”
and a “distance-sorting” method, both of which are simple to implement and
have running times of O(n2k).

– We provide an experimental analysis of these two practical algorithms, where
we observe that the circle-growing algorithm is more efficient at finding low-
distance matched pairs, while the distance-sorting based method is more effi-
cient when pairs are farther apart. Therefore, we show that it is advantageous
to switch from one algorithm to the other partway through the matching
process, potentially achieving running times with a sublinear dependence on
k. We experiment with the optimal cutoff for switching between these two
algorithms.

– We also provide the results of experiments to test the connectivity of the
clusters obtained by our stable k-means algorithm, with weighted variants
for finding centroids. Our experiments support the conclusion that no choice
of a weight exponent p will always result in total connectivity. Nevertheless,
our experiments provide evidence that the best results come from the range
−0.8 ≤ p ≤ 0.4. Empirically, more highly negative values of p tend to make
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the algorithm converge slowly or fail to converge, while more highly positive
values of p lead to oscillations in the center placement. See the full version of
the paper for additional figures of these cases.

2 Algorithms

Our stable grid matching algorithms start with an empty matching and add
center–site pairs to it. Given a partial matching, we say a site is available if it
has not been matched yet, and a center is available if the size of its region is
smaller than its quota. A center–site pair is available if both the center and site
are available, and it is a closest available pair if it is available and the distance
from the center to the site is minimum among all available pairs. It is simple to
prove that if an algorithm starts with an empty matching and only adds closest
available pairs to it until it is complete, the resulting matching is stable.

2.1 Circle-Growing Algorithm

In this section we describe our main practical algorithm, the circle-growing algo-
rithm, which mimics the continuous construction from [21]. First, we obtain
the list of all the lattice points with coordinates ranging from −n to n sorted
by distance to the origin. The resulting list P emulates a circle growing from
the origin. When initializing P , we can gain a factor of eight savings in space
by sorting and storing only the points in the triangle �(0, 0)(0, n)(n, n). The
remaining points can be obtained by symmetry: if p = (x, y) is a point in the
triangle, the eight points with coordinates of the form (±x,±y) and (±y,±x)
are at the same distance from the origin as p. Moreover, in applications where
we find multiple stable grid matchings, such as in the stable k-means method,
we need only initialize P once. The way we use P depends on the type of centers
we consider.

Integer Centers. In this case we can use the fact that if we relocate the points in
P relative to a center, then they are in the order in which a circle growing from
that center would reach them. To respect that all the circles grow at the same
rate, we iterate through the points in P in order. For each point p, we relocate
it relative to each center c to form the site p + c (the order of the centers does
not matter). We add to the matching any available center–site pair (c, p + c).
We iterate through P until the matching is complete.

We require O(n2) space and O(n2 log n) time to sort the points in P . For
the Euclidean metric instead of using distances to sort P we can use squared
distances, which take integer values between 0 and 2n2. Then, we can use an inte-
ger sorting algorithm such as counting sort to sort in O(n2) time [12, Chap. 8.2].
Since each point in P results in up to O(k) center–site pairs, we need O(n2k)
time to iterate through P .
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Real Centers (Algorithm 1). If centers have real coordinates, we cannot translate
the points in P relative to the centers, because p + c is not necessarily a lattice
point. The workaround is to associate each center c to its closest lattice point
pc. Let δ be the maximum distance d(c, pc) among all centers. Then, the center–
site pairs “generated” by each point p in P have the form (c, p + pc) and their
distances can vary between d(p,O) − δ and d(p,O) + δ (where O denotes the
origin, (0, 0)). Consequently, the distances of pairs generated by points pi, pj in
P with i < j may intertwine, but only if d(pj , O) − δ ≤ d(pi, O) + δ. The points
in P after pi whose pairs might intertwine with those of pi form an annulus
centered at O with small radius d(pi, O) and big radius d(pi, O) + 2δ.

Since δ is a constant (for the Euclidean metric, δ ≤ √
2/4), it can be derived

from the Gauss circle problem that such an annulus contains O(d(pi, O)) = O(n)
points.

Algorithm 1. Circle growing algorithm for k real centers on an n × n grid.
Set all sites as unmatched.
Set the quota of the first n2 mod k centers to �n2/k�.
Set the quota of the remaining centers to �n2/k�.
Let P = list of points (x, y) such that − n < x, y < n.
Sort P by nondecreasing distance to (0, 0).
For each center c, let pc = (round(cx), round(cy)).
Let δ = max{dist(c, pc)} among all centers.
j ← 1
while the matching is not complete do

L ← empty list
i ← min(j + n, |P |)
for all p ∈ Pj , . . . , Pi do � Add to L pairs generated by points in the next chunk

for all centers c with quota > 0 do
s ← p + pc
if 0 ≤ sx, sy < n and s is still available then

Add (c, s) to L.
Let d = max{dist(c, s)} among all pairs (c, s) ∈ L.
for all p ∈ Pi+1, . . . , P|P | do � Add to L pairs closer than pairs already in L

if dist(p, O) > dist(Pi, O) + 2δ then
break

for all centers c with quota > 0 do
s ← p + pc
if 0 ≤ sx, sy < n and s is still available and dist(c, s) ≤ d then

Add (c, s) to L.
Sort L by nondecreasing center–site distance.
for all (c, s) ∈ L do

if c and s are available then
Match s and c.
Reduce the quota of c by 1.

j ← i + 1
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The algorithm processes the points in P in chunks of n at a time, adding
available center–site pairs generated by points in the chunk (or points after it,
as we will see) to the matching in order by distance. The invariant is that after
a chunk is processed, its points do not generate any more available pairs, and
we can move on to the next one until the matching is complete. To do this, for
each chunk we construct the list L of all the pairs generated by its points. Let d
be the maximum distance among these pairs. If pi is the last point in the chunk,
the points in P from pi+1 up to the last point at distance to the origin at most
d(pi, O) + 2δ can generate pairs with distance less than d. We add any such
pair to L. We have to check O(n) additional points, so L still has size O(kn).
We sort all these pairs and consider them in order, adding any available pair
to the matching. Since each chunk has size n, there will be O(n) chunks. Each
one requires sorting a list of O(kn) pairs, which requires O(kn log n) time (since
k ≤ n2) and O(kn) space. In total, we need O(n2k log n) time and O(n2 + nk)
space.

2.2 Distance-Sorting Methods

Unless the centers are clustered together, the circle-growing algorithm finds many
available pairs in the early iterations. However, it reaches a point in which most
circles overlap. Even if the centers are randomly distributed, in the typical case
a large fraction of centers have “far outliers”, sites which belong to their region
but are arbitrarily far because all the area in between is claimed by other centers.
Consequently, many centers have to scan a large fraction of the square. At some
point, thus, it is convenient to switch to a different algorithm that can find
the closest available pairs quickly. In this section, let m and k ≤ m denote,
respectively, the number of available sites and centers after a matching has been
partially completed.

Pair Sort Algorithm. This algorithm simply sorts all the center–site pairs by
distance and considers them in order, adding any available pair to the matching
until it is complete. This algorithm is convenient when we can use integer sorting
techniques, as in the case of the Euclidean metric and integer centers. Then, it
requires O(mk) time and space.

While the pair sort algorithm has a big memory requirement to be used
starting with an empty matching, used after the circle-growing algorithm has
matched a large fraction of sites results in improved performance.

Pair Heap Algorithm. When centers have real coordinates, sorting all the pairs
takes O(mk log m) time, but we can do better. We find for each site s its closest
center cs, and build a min-heap with all the center–site pairs of the form (cs, s)
using d(cs, s) as key. Clearly, the top of the heap is a closest available pair. We
can iteratively extract and match the top of the heap until one of the centers
becomes unavailable. When a center c becomes unavailable, all the pairs in the
heap containing c become unavailable. At this point, there are two possibilities:
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Eager update. We find the new closest available center of all the sites that had c
as closest center and rebuild the heap from scratch so that it again contains
one pair for each available site and its closest available center.

Lazy update. We proceed as usual until we actually extract a pair (cs, s) with an
unavailable center. Then, we find the new closest available center only for s,
and reinsert the new pair in the heap.

In both cases, we repeat the process until the matching is complete.
We have not addressed yet how to find the closest center to a site. For this,

we can use a nearest neighbor (NN) data structure that supports deletions. Such
a data structure maintains a set of points and is able to answer nearest neighbor
queries, which provide a query point q and ask for the point in the set closest to
q. For the pair heap algorithm, we initialize the NN data structure with the set
of centers and delete them as they become unavailable.

Since we need deletions we can use a dynamic NN data structure, i.e., with
support for insertions as well as deletions. The simplest NN algorithm is a linear
search, and a dynamic data structure based on it has O(k) time per query
and O(1) time per update. The best known complexity of a dynamic NN data
structure is O(log5 k) amortized time per operation [7,25].

Given that we know all the query points for our NN data structure ahead
of time (the sites), we can build for each site s an array As with all the centers
sorted by distance to s. Then, the closest center to a site s is As[is], where is is
the index of the first available center in As. When a center is deleted we simply
mark it. When we get a query for the closest center to a site s, we search As

until we find an unmarked center. We can start the search from the index of the
center returned in the last query for s. This data structure requires O(mk) space
and has a O(mk log k) initialization cost to sort all the arrays. The interesting
property is that if we do O(k) queries for a given site s, we require O(k) time
for all of them, as in total we traverse As only once. We call this data structure
presort, although it is not strictly a NN data structure because it knows the
query points ahead of time.

In the pair heap algorithm, we can combine eager and lazy updates with any
NN data structure. In any case, the running time is influenced by α, the sum
among all centers c of the number of sites that had c as closest center when
c became unavailable. In the worst case α = O(km), but assuming that each
center is equally likely to be the closest center to each site, the expected value
of α is O(m). In the full version of the paper we test the value of α empirically
in several different settings, and in every case we find α < 10m.

With eager updates in total we have to initialize the NN data structure,
perform m extract-min operations, O(m + α) NN queries, k NN deletions, and
rebuild the heap k times. Thus, the running time is O(P (k,m) + m log m +
(m + α)Q(k) + kD(k) + km), where P (k,m) is the cost of initializing the NN
data structure of choice with k points (and m query points, in the case of the
presort data structure), and Q(k) and D(k) are the costs of queries and deletions,
respectively. With lazy updates, instead of rebuilding the heap we have O(α)
extra insert and extract-min heap operations, which requires O(α log m) time.
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For real centers, the best worst-case bound is with eager deletions and the
presort NN data structure. In that case, we have that the NN queries take
O(km) for any α, so the total running time is O(mk log k + m log m). If we
assume that α = O(m), then the best time is with lazy deletions and the NN
data structure from [7,25]. The running time with this heuristic assumption is
O(m log5 k + m log m).

2.3 Bichromatic Closest Pairs and Nearest Neighbor Chains

We now describe a less-practical solution based on bichromatic closest pairs
which achieves the best theoretical running time that we have been able to prove.
A bichromatic closest pair (BCP) data structure maintains a set of points, each
colored red or blue, and is able to answer queries asking for the closest pair of
different color.

The stable grid matching problem can be solved with a BCP data structure
that supports deletions, either on its own or after the circle-growing algorithm.
We first initialize the data structure with the available sites and centers as blue
and red points, respectively. Then, we repeatedly find and match the closest pair,
remove the site, and remove the center if it becomes unavailable. The running
time is O(P (m) + mQ(m) + mD(m)), where P (m), Q(m), and D(m) are the
initialization, query, and deletion costs, respectively, for the BCP data structure
of choice containing m blue points and k ≤ m red points.

Eppstein [16] proposed a fully dynamic BCP data structure that uses an aux-
iliary dynamic NN data structure. Using it, the sequence of operations required
to solve the stable grid matching problem takes O(mT (m) log2 m) time, where
T (m) is the cost per operation of the NN data structure. In particular, com-
bining this with the dynamic nearest neighbor data structure of Chan [7] and
Kaplan et al. [25] gives a total time bound of O(n2 log7 n) for this problem.

To improve this, we observe that (with a suitable tie-breaking rule to ensure
that no two distances are equal) it is not necessary to find the bichromatic
closest pair in each step: it suffices, instead, to find a mutual nearest neighbor
pair: a pixel and a center that are closer to each other than to any other pixel or
center. The reason is twofold. First, in the algorithm that repeatedly finds and
removes closest pairs, every pair (c, p) of mutual nearest neighbors eventually
becomes a closest pair, because until they do, nothing else that the algorithm
does can change the fact that they are mutual nearest neighbors. So (c, p) will
eventually become matched by the algorithm. Second, if we find a pair (c, p)
that will eventually become matched (such as a mutual nearest neighbor pair),
it is safe to match them early; doing so cannot affect the correctness of the rest
of the algorithm.

To find these, we may adapt the nearest-neighbor chain algorithm from the
theory of hierarchical clustering [4,23] which uses a stack to repeatedly find pairs
of mutual nearest neighbors at a cost of O(1) nearest neighbor queries per pair.
In more detail, the algorithm is as follows.

1. Initialize two dynamic nearest neighbor structures for the pixels and centers,
and an empty stack S.
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2. Repeat the following steps until all pixels have been matched:
(a) If S is empty, push an arbitrary point (either a pixel or a center) onto S.
(b) Let p be the point at the top of S, and use the nearest neighbor data

structure to find the nearest point q of the opposite color to p.
(c) If q is not already on S, push it onto S. Otherwise, q must be the second-

from-top point on S, and is a mutual nearest neighbor with p. Pop p and
q, match them to each other, and remove one or both of p or q from the
nearest neighbor data structure (always remove the pixel, and remove the
center if it becomes unavailable).

Note that in step 2. (c) q must be second-from-top because we have a cycle of
(non-mutual) nearest neighbors starting with p → q and then up the stack back
to p. At each step along this cycle, the distance decreases or stays equal. But
it cannot decrease, because there would be no way to increase back again, and
nothing but q → p can be equal to p → q, because we are using a tie-breaking
rule. So the cycle has length two and q is second-from-top.

Each step that pushes a new point onto S can be charged against a later
pop operation and its associated matched pixel, so the number of repetitions is
O(n2). This algorithm gives us the following theorem.

Theorem 1. The stable grid matching problem can be solved in O(n2) opera-
tions of a dynamic nearest neighbor data structure. In particular, with the struc-
ture of Chan [7] and Kaplan et al. [25], the time is O(n2 log5 n).

3 Experiments

Datasets. Table 1 summarizes the parameters used in the different experiments.
We use the following labels for the algorithms: CG the circle-growing algorithm
alone, and PS and PH for the combination of CG and the pair sort and pair
heap algorithms, respectively. Moreover, for the pair heap algorithm we consider
the following variations: eager/presort (PHE,P ), eager/linear search (PHE,L),
lazy/presort (PHL,P ), and lazy/linear search (PHL,L).

We focus on the Euclidean metric, but in the full version of the paper we
also consider the Manhattan and Chebyshev metrics. The parameter n is the
length of the side of the square grid, and k is the number of centers. In all the
experiments, the centers are chosen uniformly and independently at random.
Moreover, every data point is the average of 10 runs, each starting with different
centers.

The cutoff is the parameter used to determine when to switch from the
circle-growing algorithm to a different one. We define it as a ratio between the
number of available pairs and the number of pairs already considered by the
circle-growing algorithm.

The algorithms were implemented in C++ (gcc version 4.8.2) and the inter-
face in Qt. The experiments were executed by a Intel(R) Core(TM) CPU i7-
3537U 2.00 GHz with 4 GB of RAM, on Windows 10.
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Table 1. Summary of parameters used in the experiments section.

Experiment Algorithms Metric n k Cutoff

Exec. time (Fig. 3) All L2 varies 10n 0.15

Cutoff (Fig. 4) CG,PHL,L L2 1000 varies varies

Algorithm Comparison. Figure 3 contains a comparison of all the algorithms.
Pair heap is generally better than pair sort, even for integer distances where it
has a higher theoretical complexity. Among pair heap variations, lazy/linear is
the best for both types of centers. In general lazy updates perform better, but
eager/presort is also a strong combination because they synergize: eager updates
require more NN queries in exchange for less extract-min heap operations, and
the presort data structure has fast NN queries.

Fig. 3. Execution time of the various algorithms for integer (left) and real (right)
centers. For all the methods but CG, the cutoff is 0.15. Each data point is the average
of 10 runs with 10n randomly distributed centers and the L2 metric.

Optimal Cutoff. When combining the circle-growing algorithm with another
algorithm, the efficiency of the combination depends on the cutoff used to switch
between both. If we switch too soon, we don’t exploit the good behavior of the
circle-growing algorithm when circles are still mostly disjoint. If we switch too
late, the circle-growing algorithm slows down as it grows the circles in every
direction just to reach some outlying region.

Figure 4 illustrates the role of the cutoff. It shows that most of the execution
time of the circle-growing algorithm is spent with the very few last available
pairs, so even a really small cutoff prompts a substantial improvement. After
that, the additional time spent in the pair heap algorithm slightly beats the
savings in the circle-growing algorithm, resulting in a steady increase of the
total running time.
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Fig. 4. Execution time of the circle-growing algorithm for integer (left) and real (right)
centers, combined with the pair heap algorithm with lazy updates and a linear search
NN data structure. The dotted lines denote the running time of the circle-growing
algorithm alone, i.e., with cutoff 0. Each data point is the average of 10 runs with
randomly distributed centers, n = 1000, and the L2 metric.

4 Discussion

We have defined the stable grid matching problem, developed efficient theoretical
algorithms and practical implementations of slower but simpler algorithms for
this problem, and used our implementation to test different strategies for center
placement in k-means like stable clustering algorithms. However, this work leaves
several open questions:

– For which n and k does the stable grid matching problem have a placement
of centers for which all clusters are connected, and how can such centers be
found?

– Can the worst-case running time of our theoretical O(n2 log5 n)-time algo-
rithm be improved? Is it possible to achieve similar runtimes without going
through fully-dynamic bichromatic closest pair data structures?

– Can we obtain practical algorithms whose runtime has lower worst-case
dependence on k than our O(n2k)-time circle-growing and distance-sorting
methods?

– Our bichromatic closest pair and distance-sorting algorithms can be made to
work for arbitrary point sets (not just pixels) but the circle-growing method
assumes that the points form a grid, and its time analysis depends on the
fact that the grid is a fat polygon (so that the area of each circle is propor-
tional to the number of grid points that it covers) and that testing whether a
point belongs to the grid is trivial. Can this method be extended to pixelated
versions of more complicated polygons?

– How efficiently can we perform similar distance-based stable matching prob-
lems for graph shortest path distances instead of geometric distances? Can
additional structure (such as the structures found in real-world road networks)
help speed up this computation?
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