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Preface

It is a great pleasure to welcome you to the proceedings of the 18th International
Workshop on Combinatorial Image Analysis (IWCIA 2017) held in Plovdiv, Bulgaria,
June 19-21, 2017.

Image analysis is a scientific discipline providing theoretical foundations and
methods for solving real-life problems that appear in various, often societally sensitive,
areas of human practice, such as medicine, robotics, defense, and security. Since
typically the input data to be processed are discrete, the “discrete” or “combinatorial”
approach to image analysis appears to be a natural one and therefore its applicability is
expanding. The fact is that combinatorial image analysis often provides various
advantages in terms of efficiency and accuracy over the more traditional approaches
based on continuous models and requiring numeric computation.

For over 25 years, the IWCIA workshop series has been providing a forum for
researchers throughout the world to present cutting-edge results in combinatorial image
analysis, to discuss recent advances and new challenges in this research field, and to
promote interaction with researchers from other countries. IWCIA had successful prior
meetings in Paris (France) 1991, Ube (Japan) 1992, Washington DC (USA) 1994,
Lyon (France) 1995, Hiroshima (Japan) 1997, Madras (India) 1999, Caen (France)
2000, Philadelphia, PA (USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand)
2004, Berlin (Germany) 2006, Buffalo, NY (USA) 2008, Playa del Carmen (Mexico)
2009, Madrid (Spain) 2011, Austin, TX (USA) 2012, Brno (Czech Republic) 2014, and
Kolkata (India) 2015. The workshop in Plovdiv retained and enriched the international
spirit of these workshops. The IWCIA 2017 Program Committee was very interna-
tional; its members are renowned experts coming from 17 different countries from
Asia, Australia and Oceania, Europe, North and South America. Submissions came
from 19 different countries from Africa, Asia, Europe, and North America.

Each submitted paper was sent to three reviewers. EasyChair provided a convenient
platform for smoothly carrying out the review process, which was quite rigorous,
conducted in a double-blind review mode. The most important selection criterion for
acceptance or rejection of a paper was the overall score received. Other criteria
included: relevance to the workshop topics, correctness, originality, mathematical
depth, clarity, and presentation quality. We believe that as a result, only high-quality
papers were accepted for presentation at IWCIA 2017 and for publication in the present
volume.

The program of the workshop included presentations of contributed papers and
keynote talks by five distinguished scientists. Alfred (Freddy) Bruckstein (Technion,
IIT, Israel) surveyed some models of stochastic multi-agent interactions, involving
simple ant-like a(ge)nts moving in grid or general planar graph environments, leading
to interesting results concerning the average number of visits to various sites and to
connections between Euclidean and discrete geometry. Edwin Hancock (University of
York, UK) presented the edge-based Laplacian and quantum graphs and their use for
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developing more sophisticated heat diffusion and wave propagation. He also discussed
possible applications to shape modeling and recognition. Marc van Kreveld (Utrecht
University, The Netherlands) addressed questions related to geometric representations.
He showed that a simple polygon can always be represented on the grid with constant
Hausdorff distance and sometimes with constant Frechet distance, and discussed
relations to certain mathematical games, such as the Japanese picture puzzles. Christian
Ronse (Université de Strasbourg, France) investigated partial order relations on partial
partitions of a set. He discussed their usefulness to guiding image analysis operations,
such as filtering, reduction, or segmentation. Giinter Rote (Freie Universitdt Berlin,
Germany) first reviewed the existing congruence testing algorithms in two and three
dimensions. Then he presented new algorithmic techniques and geometric insights that
lead to fast algorithms in four dimensions.

The contributed papers are grouped into two parts. The first part includes 17 papers
devoted to theoretical foundations of combinatorial image analysis, in particular studies
on discrete geometry and topology, tilings and patterns, array grammars and languages,
graphical models, and other technical tools for image analysis. The second part
includes ten papers presenting application-driven research on topics such as image
segmentation, classification, reconstruction, and compression, texture analysis, and
bioimaging. We believe that all presented works were of high quality and the workshop
participants benefited from the scientific program. We hope that many of these papers
are of interest to a broader audience, including researchers in scientific areas such as
pattern analysis and recognition, computer vision, shape modeling, and computer
graphics.

A poster session provided some authors with the opportunity to present their
ongoing research projects and original works in progress. The texts of these works are
not included in this volume.

Many individuals and organizations contributed to the success of IWCIA 2017. First
of all, the chairs are indebted to IWCIA’s Steering Committee for endorsing the can-
didacy of Plovdiv for the 18th edition of the workshop. We wish to thank everybody
who submitted their work to IWCIA 2017. Thanks to their contributions, we succeeded
in having a technical program of high scientific quality. We are indebted to all par-
ticipants and especially to the contributors of this volume. Our most sincere thanks go
to the IWCIA 2017 Program Committee whose cooperation in carrying out
high-quality reviews was essential in establishing a strong scientific program. We
express our sincere gratitude to the keynote speakers, Alfred Bruckstein, Edwin
Hancock, Marc van Kreveld, Christian Ronse, and Giinter Rote, for their remarkable
talks and overall contribution to the workshop program.

The success of the workshop would not be possible without the hard work of the
local Organizing Committee. Special thanks go to the co-chair of the Organizing
Committee, Georgi Vragov (Bulgarian Academy of Sciences) for the considerable
amount of time and effort he devoted to the workshop organization, and to the other
committee members, Veselin Igrachev (Rakursy, Plovdiv), Marian Iliev (Union of
Bulgarian Scientists), Ivan Koychev (University of Sofia St. Kliment Ohridski), Ilia
Kozhukharov (AMDFA, Plovdiv), Simeon Marlokov (Milara Int., Plovdiv), and
Georgi Totkov (University of Plovdiv Paisii Hilendarski), for their valuable work. We
remember with gratitude the assistance provided by the three students of Vessela
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Statkova from the Academy of Music, Dance and Fine Arts in Plovdiv and by the
students from the Plovdiv Mathematical High School Acad. K. Popov, who helped
make this conference an enjoyable and fruitful event. We appreciate the support of
Plovdiv Municipality and the personal involvement of Mr. Stefan Stoyanov, Deputy
Mayor of the City of Plovdiv. We also acknowledge with gratitude the help we
received from the Association for Development of the Information Society and its
chair, Ivan Koychev. Thanks go to SUNY Fredonia and SUNY Buffalo State for their
support. Finally, we wish to thank Springer, Computer Science Editorial, and especially
Alfred Hofmann and Anna Kramer, for their efficient and kind cooperation in the
timely production of this book.

June 2017 Valentin E. Brimkov
Reneta P. Barneva
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Simplifier Points in 2D Binary Images

Kélmén Palagyi®™?

Department of Image Processing and Computer Graphics,
University of Szeged, Szeged, Hungary
palagyi@inf.u-szeged.hu

Abstract. The concept of a simple point is well known in digital topol-
ogy: a black point in a binary picture is called a simple point if its
deletion preserves topology. This paper introduces the notion of a sim-
plifier point: a black point in a binary picture is simplifier if it is simple,
and its deletion turns a non-simple border point into simple. We show
that simplifier points are line end points for both (8,4) and (4,8) pic-
tures on the square grid. Our result makes efficient implementation of
endpoint-based topology-preserving 2D thinning algorithms possible.

Keywords: Discrete geometry - Digital topology - Topology preserva-
tion + Thinning algorithms

1 Introduction

A digital binary picture assigns a color of black or white to each point of the
considered digital space [5,8]. A reduction [2] transforms a binary picture only
by changing some black points to white ones, which is referred to as deletion.
Parallel reductions can delete a set of black points simultaneously, while a sequen-
tial reduction traverses the black points of a picture, and considers the actually
visited point for possible deletion at a time [9].

A 2D reduction is topology-preserving if each object in the input picture
contains exactly one object in the output picture, and each white component in
the output picture contains exactly one white component in the input picture
[5]. A black point is called simple point for a set of black points if its deletion is
a topology-preserving reduction [4,5].

Thinning [2,7,12] is a frequently used method for making an approximation
to the skeleton in a topology—preserving way [5]: the border points of a binary
object that satisfy certain topological and geometric constraints are deleted in
iteration steps. The entire process is then repeated until only the ‘skeleton’ is left.
The greater part of existing 2D thinning algorithms preserve line end points (i.e.,
black points that are adjacent to exactly one black point). Note that Bertrand
and Couprie proposed an alternative approach by accumulating curve interior
points that are called isthmuses [1].

In this paper we introduce the concept of a simplifier point: a black point in
a binary picture is simplifier if it is simple, and its deletion turns a non-simple
© Springer International Publishing AG 2017

V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 3-15, 2017.
DOI: 10.1007/978-3-319-59108-7_1
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border point into simple. We show that all simplifier points are line end points
for the considered two kinds of binary pictures on the 2D square grid. This
result makes efficient implementation of endpoint-based topology-preserving 2D
thinning algorithms possible.

The rest of this paper is organized as follows. Section 2 briefly reviews the
relevant notions and results. Then in Sect.3 we prove that simplifier points are
line end points. An efficient scheme for endpoint-based 2D thinning algorithms
is proposed in Sect. 4.

2 Basic Notions and Results

In this paper, we use the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [4,5]. Note that there are other approaches that are based
on cellular/cubical complexes [6], but we insist on the ‘historical paradigm’.

Let us denote by S the square grid (that is dual to Z2, i.e., the set of points in
the 2D plane with integer coordinates). The elements of the considered grid (i.e.,
regular squares) are called points. Two points are 4-adjacent if they share an
edge, and they are 8-adjacent if they share an edge or a vertex. Note that both
adjacency relations are reflexive and symmetric. Let us denote by N;(p) the set
of points being j-adjacent to a point p, and let N3 (p) = N;(p)\{p} (j = 4,8),
see Fig. 1.

* | % | K
e p|e *| P K
* | % | K

Fig. 1. The considered adjacency relations on the square grid. Set N4(p) contains point
p and the four points marked “e” (left), and set Ng(p) is formed by p and the eight
points marked “%” (right).

A sequence of distinct points (pg,p1,...,pm) is called a j-path from pg to
Pm in a non-empty set of points X C S if each point of the sequence is in X
and p; is j-adjacent to p;_1 for each i = 1,2,...,m. Two points are said to be
j-connected in a set X if there is a j-path in X between them. A set of points X
is j-connected in the set of points Y O X if any two points in X are j-connected
inY. A j-component of a set of points X is a maximal (with respect to inclusion)
j-connected subset of X.

Let (k,k) be an ordered pair of adjacency relations ((k, k) = (8,4), (4,8)).
A (k,k) binary digital picture on grid S is a quadruple (S, k, k, B) [5], where
B C S denotes the set of black points, and each point in S\B is said to be a
white point. A black component or object is a k-component of B, while a white
component is a k-component of S\ B.
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A black point p is an interior point if all points in N (p) are black. A black
point is said to be a border point if it is not an interior point (i.e., it is k-adjacent
to at least one white point). A black point p is a line end point if Nj}(p) contains
exactly one black point.

A black point is said to be simple for a set of black points (or in a picture)
if its deletion is a topology-preserving reduction [4,5]. Kardos and Paldgyi gave
easily visualized characterizations of simple points in (8,4) and (4, 8) pictures by
sets of matching templates [3]. The base matching templates depicted in Figs. 2
and 3 are the rephrased versions of the templates presented in [3]. Notations:
each black template position matches a black point; each white element matches
a white point; each position depicted in gray matches any point (i.e., either a
white point or a black point). Note that all the rotated and reflected versions of
the base matching templates also match simple points. For the sake of brevity if
a point is matched by a rotated/reflected version of a base matching template,
we say that the given point is matched by that base template.

mO mDm
. o

(¢) (d)

B o

=— < |
o IS
=

Fig. 2. Base matching templates for characterizing simple points in (8,4)-pictures.
(Note that notions p, g1, and g2 help us to prove Theorem 1.)

DEoE @ EEE - EE N
| | on o
B - z

(a) (b) (c) (d)

Fig. 3. Base matching templates for characterizing simple points in (4, 8)-pictures.
(Note that notions p, q1, g2, and g3 help us to prove Theorem 2.)

We can state that interior points are not simple, some border points may
only be simple, and line end points are simple.

3 Simplifier Points

In this section we introduce the notion of a simplifier point and it is shown that
simplifier points are line end points for both (8,4) and (4, 8) pictures.
First, let us establish two useful properties of simple points.
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Proposition 1. Let p, ¢ € N3 (p)\Na(p), and r = N;(p) N N;(q) be three black
points in picture (S, 8,4, B) (see Fig. 4a). Then q is simple in picture (S, 8,4, B)
if and only if q is simple in picture (S,8,4, B\{p}) (i.e., the simpleness of q does
not depend on the color of p).

Proposition 2. Let p and q € Ng(p)\Na(p) be two black points, and r =
Nj;(p) N N;(q) be a white point in picture (S,4,8,B) (see Fig. 4b). Then q is
simple in picture (S, 4,8, B) if and only if q is simple in picture (S,4,8, B\{p})
(i.e., the simpleness of q does not depend on the color of p).

o

(a) (b)

Fig. 4. Configurations associated with Proposition 1(a) and 2(b).

Propositions 1 and 2 can be readily seen with the help of Figs. 2 and 3, respec-
tively.
Let us now define the notion of a simplifier point.

Definition 1. A point p € B in picture (S,k, k,B) ((k,k) = (8,4),(4,8)) is a
simplifier point if p is simple in (S, k, k, B), and there is a non-simple and border
point ¢ € B in (S, k, k, B), such that q is simple in (S, k, k, B\{p}).

By Figs.2 and 3, the simpleness of a point ¢ for a set of black points is a
local property (i.e., it can be decided by examining Ng(¢)). Hence we can state
the following proposition.

Proposition 3. By ezamining non-simple and border points in N§(p), it can
be decided whether a point p is simplifier or not.

The following two theorems are to characterize simplifier points in (8,4) and
(4, 8) pictures.

Theorem 1. If a point in a (8,4)-picture is a simplifier point, then it is a line
end point.

Proof. Let (S,8,4, B) be a picture and p be a simple point for B. Assume that
there is a point ¢ € B, that is a border point in (S, 8,4, B), it is not simple in
(S8,8,4,B), but it is simple in (S,8,4, B\{p}). (In other words, it is assumed
that p is a simplifier point.) By Proposition 3, we can suppose that g € N§ (p).

Since simple points in (8, 4)-pictures are characterized by the matching tem-
plates depicted in Fig. 2, the following cases are to be investigated:
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— If p is matched by the template in Fig. 2a, then p is a line end point.

— If p is matched by the template in Fig.2b, then consider the two template
positions marked ¢; and ¢s.

e If ¢ = ¢1, then the simpleness of ¢ does not depend on the color of p by

Proposition 1.

e Let ¢ = ¢o. Since ¢ is simple in (S, 8,4, B\{p}), ¢ is matched by a template

in Fig. 2.

x If ¢ is matched by the template in Fig. 2a, then p is a line end point as
it is depicted in Fig. 5a.

x If ¢ is matched by the template in Fig.2b, then p is a line end point
as it is depicted in Fig. 5b, or ¢ is matched by the template in Fig. 2¢
in picture (8,8,4, B) (in which p is a black point) as it is shown in
Fig.5b’ (i.e., ¢ is simple for B). In the latter case we arrived at a
contradiction.

x If ¢ is matched by the template in Fig.2c, then ¢ is matched by the
template in Fig. 2d in picture (S, 8,4, B), see Fig. 5c (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

* If ¢ is matched by the template in Fig. 2d, then ¢ is an interior point
in picture (S, 8,4, B), see Fig. 5d (i.e., ¢ is not a border point). Since
q is a border point in (S, 8,4, B), we arrived at a contradiction.

— If p is matched by the template in Fig. 2c, then consider the two template
positions marked ¢; and ¢s.

e If ¢ = ¢1, then the simpleness of ¢ does not depend on the color of p by

Proposition 1.

e Let ¢ = ¢o. Since ¢ is simple in (S, 8,4, B\{p}), ¢ is matched by a template

in Fig. 2.

x If ¢ is matched by the template in Fig. 2a, then ¢ is matched by the
template in Fig. 2b in picture (S, 8,4, B), see Fig. 6a (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

x If ¢ is matched by the template in Fig.2b, then ¢ is matched by the
template in Fig. 2¢ in picture (S, 8,4, B), see Fig. 6b (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

x If ¢ is matched by the template in Fig.2c, then ¢ is matched by the
template in Fig. 2d in picture (S, 8,4, B), see Fig. 6¢ (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

* If ¢ is matched by the template in Fig. 2d, then ¢ is an interior point in
picture (S, 8,4, B), see Fig. 6d. Since ¢ is a border point in (S, 8,4, B),
we arrived at a contradiction.

— If p is matched by the template in Fig. 2d, then consider the template position
marked ¢;. Let ¢ = ¢1. Since ¢ is simple in (S, 8,4, B\{p}), ¢ is matched by
a template in Fig. 2.

e [t is easy to check that ¢ is not matched by the template in Fig. 2a, and
it is not matched by the template in Fig. 2b, see Fig. 7ab.

e If ¢ is matched by the template in Fig.2c, then ¢ is matched by the
template in Fig. 2d in picture (S, 8,4, B), see Fig. 7c (i.e., ¢ is simple for

B). Thus we arrived at a contradiction.
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p P P P p
o “ e HE ] |
m m m

(a) (b) (b7) () (d)

Fig. 5. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig. 2b and ¢ = ¢o.
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Fig. 6. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig.2c and g = g2.

L _ B
il o [ [a]

Il
(ab) (c) (d)

Fig. 7. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig.2d and ¢ = q;1.

e If ¢ is matched by the template in Fig. 2d, then ¢ is an interior point in
picture (S,8,4, B), see Fig.7d. Since ¢ is a border point in (S, 8,4, B),
we arrived at a contradiction. O

Theorem 2. If a point in a (4,8)-picture is a simplifier point, then it is a line
end point.

Proof. Let (S,4,8,B) be a picture and p be a simple point in that picture.
Assume that there is a point ¢ € B, that is a border point in (S,4,8, B), it is
not simple in (S,4, 8, B), but it is simple in (5,4, 8, B\{p}). (In other words, it
is assumed that p is a simplifier point.) By Proposition 3, we can suppose that
q € Ng(p).

Since simple points in (4, 8)-pictures are characterized by the matching tem-
plates depicted in Fig. 3, the following cases are to be investigated:

— If p is matched by the template in Fig. 3a, then consider the three template
positions marked ¢, g2, and gs.
e Let ¢ = ¢;. Since ¢ is simple in (S, 4, 8, B\{p}), ¢ is matched by a template
in Fig. 3.
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x If ¢ is matched by the template in Fig. 3a, then ¢ is an interior point in
picture (S, 4, 8, B), see Fig. 8a. Since ¢ is a border point in (S, 4, 8, B),
we arrived at a contradiction.

x It is easy to check that ¢ is not matched by the templates in Figs. 3b,
3c, and 3d, see Fig. 8bcd.

e Let ¢ = ¢o. Since ¢ is simple in (S, 4, 8, B\{p}), ¢ is matched by a template

in Fig. 3.

* It is easy to check that ¢ is not matched by the templates in Figs. 3a,
3c, and 3d, see Fig. 9acd.

x If ¢ is matched by the template in Fig. 3b, then ¢ is an interior point in
picture (S,4, 8, B), see Fig. 9b. Since ¢ is a border point in (S, 4,8, B),
we arrived at a contradiction.

e Let ¢ = ¢s3. Since ¢ is simple in (S, 4, 8, B\{p}), ¢ is matched by a template

in Fig. 3.

* It is easy to check that ¢ is not matched by the templates in Figs. 3a
and 3b, see Fig. 10ab.

x If ¢ is matched by the template in Fig.3c, then ¢ is matched by the
template in Fig. 3b in picture (S,4, 8, B), see Fig. 10c (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

x If ¢ is matched by the template in Fig. 3d, then ¢ is matched by the
template in Fig. 3¢ in picture (S, 4,8, B), see Fig. 10d (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

— If p is matched by the template in Fig.3b, then consider the two template
positions marked ¢; and ¢s.

e Let ¢ = ¢1. Since ¢ is simple in (S, 4, 8, B\{p}), ¢ is matched by a template

in Fig. 3.

x It is easy to check that ¢ is not matched by the template in Fig. 3a, see
Fig.11a.

* If ¢ is matched by the template in Fig.3b, then ¢ is matched by the
template in Fig. 3a in picture (S, 4,8, B), see Fig. 11b (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

x If ¢ is matched by the template in Fig.3c, then ¢ is matched by the
template in Fig. 3b in picture (S, 4, 8, B), see Fig. 11c (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

* If ¢ is matched by the template in Fig.3d, then ¢ is matched by the
template in Fig. 3¢ in picture (S,4, 8, B), see Fig. 11d (i.e., ¢ is simple
for B). Thus we arrived at a contradiction.

e If ¢ = ¢o, then the simpleness of ¢ does not depend on the color of p by

Proposition 2.

— If p is matched by the template in Fig. 3c, then consider the two template
positions marked ¢; and gs. In both cases the simpleness of g does not depend
on the color of p by Proposition 2.

— If p is matched by the template in Fig. 3d, then p is a line end point.
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Fig. 8. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig.3a and ¢ = ¢;.
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Fig. 9. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig.3a and g = g¢a.
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Fig. 10. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig.3a and g = g¢s.

q g P

(a)

() (d)

Fig. 11. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig.3b and ¢ = q;.

Theorems 1 and 2 state that if a point is simplifier, then it is a line end point.
The following proposition formulates that the converse of our theorems does not
hold:

Proposition 4. Let p € B be a line end point in picture (S, k,k,B) ((k,k) =
(8,4),(4,8)), and let Nj(p) N B = {q} be a non-simple and border point in
that picture. Then q may be non-simple in (S, k,k, B\{p}) (i.e., p may not be a
simplifier).

Figure 12 is to illustrate Proposition 4.
A sequential reduction is topology-preserving if its deletion rule deletes
only simple points [4,5]. Endpoint-based sequential 2D thinning algorithms are
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o N
m m

Fig. 12. Configurations associated with Proposition4. Point ¢ is a non-simple and
border point, and p is a line end point in (8,4) pictures (left) and (4,8) pictures
(right). We can state that ¢ remains non-simple after the deletion of p. Hence line end
point p is not a simplifier.

composed of topology-preserving sequential reductions that do not delete line
end points. The following proposition is an easy consequence of Theorems 1 and
2:

Proposition 5. The produced ‘skeleton’ of an endpoint-based sequential 2D
thinning algorithm (working on (8,4)- or (4,8)-pictures) contains all non-simple
border points in the original input picture (and in the intermediate pictures of
the iterative thinning process).

Since that algorithm may delete only simple points and preserves line end
points, by Theorems1 and 2, all non-simple border points remain non-simple
border points. Hence those points are in the produced ‘skeleton’.

4 Efficient Implementation of Endpoint-Based 2D
Thinning Algorithms

Proposition 5 provides us an efficient method to implement endpoint-based 2D
thinning algorithms. The proposed method is sketched in Algorithm 1.

The input of Algorithm 1 is array A which stores the (k,k)-picture to be
thinned. In input array A, the value “1” corresponds to black points and the
value “0” is assigned to white ones. Both input and the output pictures are
stored in the same array (i.e., array A will contain the produced ‘skeleton’), so
the proposed method is memory saving.

In order to speed up the process Algorithm 1 uses the list border_list that
stores the border points to be checked in the actual picture of the iterative
thinning process. In order to avoid storing more than one copy of a border point
in border_list, and checking again and again points in the final ‘skeleton’, array
A represents a four-color picture:

— a value of “0” corresponds to white points,

— a value of “1” is assigned to interior points,

— a value of “2” corresponds to border points to be checked (i.e., elements of
the current border_list), and

— a value of “3” is assigned to the detected line end points and non-simple
border points (that are elements of the produced ‘skeleton’ by Proposition 5,
hence their re-checking is not needed).
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Algorithm 1. Efficient Implementation of Endpoint-Based 2D Thinning

Input: array A storing the (k, k)-picture to be thinned
Output: array A containing the picture with the produced ‘skeleton’
// collect border points by a single scan of array A
border_list «— < empty list >
foreach element p in array A do
if p is a border point then
border_list < border_list + < p >
T

// thinning process
repeat
// one iteration / one sequential reduction
number_of_deleted_points «— 0
foreach point p in border_list do
if p is a line end point or a non-simple point then
// a point in the ‘skeleton’ is found
Alp] <3
| border_list « border_list — < p >
Ise if T(p) = true then
// deletion
Alp] < 0
border_list «— border_list — < p >
number_of_deleted_points < number_of_deleted_points +1
// updating the list
foreach point ¢ being k-adjacent to p do
if Alg] =1 then
a2

border_list «— border_list + < q >

0

until number_of_deleted_points = 0;

Note that Palagyi et al. proposed a similar method for implementing 3D fully
parallel thinning algorithms [10]. It uses two lists to speed up the process: one
for storing the border points in the current picture, the other list is to collect all
deletable points in the actual phase of the process.

First, the input picture is scanned and all the border points are inserted into
the list border_list. We should mention here that it is the only time consuming
scan of the entire array A. Since only a small part of points in a usual picture
belong to the objects, the thinning procedure is much faster if we just deal with
the set of border points in the actual picture.

Then the iterative thinning process itself is performed. The kernel of the
repeat cycle corresponds to one iteration (i.e., one sequential reduction), and
variable number_of_deleted_points is to store the number of deleted points within
the actual iteration. If a point p is deleted, then border_list is updated since all
interior points that are k-adjacent to p become border points. The algorithm
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Fig. 13. Illustration of the proposed implementation scheme (see Algorithm 1).

selecting some elements of the ‘skeleton’
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terminates when stability is reached (i.e., number_of_deleted_points = 0). Then
all points having a nonzero value belong to the produced ‘skeleton’.

The sequential reduction in Algorithm 1 is specified by deletion rule T (i.e.,
T(p) = true if p is to be deleted). In [9] Paldgyi has studied equivalent deletion
rules that yield pairs of equivalent parallel and sequential reductions and pairs
of equivalent parallel and sequential thinning algorithms as well. (Two thinning
algorithms are called equivalent if they produce the same result for each input
picture [11].) The implementation scheme of Algorithm 1 can be adapted for
endpoint-based 2D parallel thinning algorithms that comprise parallel reductions
with equivalent deletion rules.

Note that an iteration is decomposed into k > 2 successive parallel reductions
in subiteration-based and subfield-based parallel thinning algorithms [2]. Those
algorithms terminate if no points are deleted in an entire iteration (i.e., in a
cycle of k reductions).

Figure 13 illustrates the effectiveness of the proposed implementation scheme,
where T'(p) = true if p is simple in the actual (8,4) picture. Elements in the
actual border_list are depicted in grey, and row-by-row ordering was assumed in
each deletion phase.

5 Conclusions

This paper introduces the notion of a simplifier point, and it is shown that sim-
plifier points are line end points in both (8,4) and (4, 8) pictures on the square
grid. The characterization of simplifier points involves an efficient implemen-
tation of endpoint-based topology-preserving 2D thinning algorithms in which
multiple checking of non-simple border points can be omitted.

In a future work we are to deal with simplifier points in pictures on
the remaining two regular 2D grids (i.e., triangular and hexagonal sampling
schemes).

Acknowledgements. This work was supported by the grant OTKA K112998 of the
National Scientific Research Fund.
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Abstract. In this paper, shortest paths on two regular tessellations, on
the hexagonal and on the triangular grids, are investigated. The shortest
paths (built by steps to neighbor pixels) between any two points (cells,
pixels) are described as traces and generalized traces on these grids,
respectively. In the hexagonal grid, there is only one type of usual neigh-
borhood and at most two directions of the steps are used in any shortest
paths, and thus, the number of linearizations of these traces is easily
computed by a binomial coefficient based on the coordinate differences
of the pixels. Opposite to this, in the triangular grid the neighborhood
is inhomogeneous (there are three types of neighborhood), moreover this
grid is not a lattice, therefore, the possible shortest paths form more
complicated sets, a kind of generalized traces. The linearizations of these
sets are described by associative rewriting systems, and, as a main combi-
natorial result, the number of the shortest paths are computed between
two triangles, where two cells are considered adjacent if they share at
least one vertex.

Keywords: Combinatorics - Traces - Trajectories + Non-traditional
grids - Triangular grid - Generalized traces - Shortest paths - Number
of shortest paths - Enumerative combinatorics

1 Introduction

In 1977, analyzing basic networks, Mazurkiewicz introduced the concept of par-
tial commutations. Two independent parallel events commute, i.e., their execut-
ing order can be arbitrary in a sequential simulation. By using the concept of
commutations, the work of the concurrent systems can be described by traces. In
these systems some (pairs of) elementary processes (i.e., atomic actions; they are
represented by the letters of the alphabet) may depend on each other, and some
of them can be pairwise independent. The order of two consecutive independent
letters can be arbitrary, in this way the traces are a kind of generalizations of
words. Traces and trace languages play important roles in describing parallel
events and processes. An automata theoretic approach on rational trace lan-
guages can be found in [18,21], and in [19,20] for context-free trace languages.
Actually, linearizations of trace languages, that are sets of words representing
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traces of the trace languages, are accepted by various type of automata. A spe-
cial two-dimensional representation of some traces is given by trajectories on the
square grid. These trajectories were also used to describe syntactic constraints
for shuffling two parallel events described by words in [9]. Trajectories on other
regular grids could also play a somewhat similar important role. A kind of gen-
eralization of traces is presented in [7], where apart from the usual permutation
rules, some other rewriting rules are also allowed. We show that the sets of
shortest paths in the triangular grid can be seen as generalized traces.

Considering the set of (types and directions of the) possible steps as the
alphabet, a path, a sequence of steps, is actually a word. This gives the link
between formal languages, trace theory and digital geometry.

Path counting, an interesting and important technique in digital geometry
and in digital image processing, was invented in [23]. The number of shortest
paths on the square grid was computed by an algorithm in [1], while recursive
formulae were given in [2]. The square grid is counted as the traditionally used
tessellation of the plane. There are other two regular tessellations, namely, the
hexagonal and the triangular grids. They are usually called non traditional or
unconventional grids, since they are less used in practice. On the other side they
have more symmetries and more interesting combinatorial structures than the
square grid has. In several cases they proved to be more efficient in applications as
well. Recently, in [4], counting the shortest paths based on the two closest types of
neighborhood on the triangular grid was also considered. In this paper, these two
non-traditional but regular tessellations of the two-dimensional plane are used.
They are duals of each other in graph theoretic sense. The main achievements of
this work are the following ones: The shortest paths between any two pixels of
these grids are described as (generalized) traces and the number of the shortest
paths are computed by enumerative combinatorial techniques. As we will see,
the case of the hexagonal grid is very simple, it is, actually, shown only for
the analogy. The shortest paths between two hexagons form a trace, in which
the order of the two types of steps can be arbitrary. The triangular grid is not a
lattice, therefore, as we will see, the shortest paths based on the third widely used
neighborhood (that is each pixel having 12 neighbors) form more complicated
sets. We also present formulae to compute the number of shortest paths, in this
way complementing the results of [4].

We note here that various digital, i.e., path based distances are investigated
for the triangular grid, e.g., distances by neighborhood sequences [10,11,14] and
weighted distances [16]. In this paper, we use one of the most natural digital
distance functions which is a special case of the previously mentioned distance
functions. Nevertheless, it already has very interesting theoretical, combinatorial
properties, as we will see later on.

We assume that the readers are familiar with traces and rewriting systems,
otherwise they are referred to, e.g., [3,6,24]. As usual, in this paper, the traces
are also represented by sets of words.
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2 Traces and Trajectories on the Hexagonal Grid

The hexagonal grid can be elegantly described by three coordinates such that
every hexagon has a unique triplet with 0-sum [5], see Fig. 1: formally, the (set of
pixels of the) hexagonal grid can be described as {p(p(1), p(2),p(3)) | p(1), p(2),
p(3) € Z,p(1) + p(2) + p(3) = 0}. Consequently, by stepping from a pixel to
a neighbor one, two of the coordinate values are changing by +1. This formula-
tion coincides the well known and widely used concept of neighbor pixels. (On the
hexagonal grid two pixels are neighbors if they share a side of a hexagon, see, e.g.,
the pixels (—2,0,2) and (—2,1, 1) on Fig. 1. Actually, the same neighborhood con-
cept for the hexagons is resulted if it is required to share at least one point on their
border.) A path connects two pixels by a sequence of neighbor pixels. The (digital)
distance of two pixels is the length, that is the number of steps, of a/the shortest
path between them. It is easy to prove (see, e.g., [8,11]) that the distance, i.e., the
number of steps in a/the shortest path, of any two pixels can be computed as

d(p(p(1),p(2),p(3)),4(q(1),4(2),4(3))) = maxeq1 2,33 {Ip() — (i)}

A (hexagonal stepping) lane is a set of pixels with a fixed coordinate value, e.g., y =
—1 for the top hexagons on Fig. 1. One can very easily generate a shortest path con-
necting the two given pixels p and ¢: if they share a coordinate value, i.e., p(i) = ¢(?)
(for any ¢ € {1,2,3}), then keeping that coordinate value fixed, the pixels can be
connected through a lane [11,17], i.e., by the pixels of {r(r(1),7(2),7(3)) | r(i) =
p(2), min{p(4),¢(j)} < r(j) < max{p(4),q(j)},j # i}. If there is no shared coor-
dinate, then let i € {1,2,3} be a value such that |p(¢) — q(3)] > |p(j) — q(j)| for
every j € {1,2,3}, then a shortest path is the concatenation of the paths connect-
ing, e.g., ptor and r to ¢ with 7(j) = p(j), r(k) = q(k), (i) = —p(j) — q(k) where
i, j, k are pairwise different elements of {1, 2, 3}. In the next section we show how
the number of shortest paths can be computed.

Fig. 1. A part of the hexagonal grid with a symmetric coordinate frame.
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2.1 Number of Shortest Paths on the Hexagonal Grid

Since the hexagonal grid is a lattice, one can step from any pixel to any of the six
directions. Thus the order of the steps in a shortest path is not important, the
reached pixel depends on only their respective numbers. Using the alphabet ) =
{—=,\y /s, "} for the steps in the six directions, each letter is independent
of each other, therefore one can freely move (permute) them in a path. One
can observe that shortest path contains at most two distinct letters and their
numbers are determined by the coordinate differences of the pixels. Therefore, we
can state the following result that can be proven by elementary combinatorics.

Theorem 1. The number of shortest paths between p and q is given by the

binomial coefficient
(maxi{|p(i) - Q(@)|}>
min; {|p(i) — q(i)|} )"

Actually, an equivalence set of shortest paths is the commutative closure of
any singleton language of a shortest path, i.e., these traces are based on the
maximal independency relations (commutations): instead of the words, their
Parikh-vectors [22], the multiset of their letters can be used to describe shortest
paths as traces on the hexagonal grid.

As the main contribution of the paper a similar question is answered: it is
shown how the number of shortest paths can be counted on the triangular grid
(based on neighborhood relation of 12 neighbors).

3 Preliminaries: Description of the Triangular Grid

The triangular grid, preserving the symmetry of the grid, can also be described
by three integer coordinates [10,11,25]. There are two types of pixels (by orienta-
tion): the even pixels have zero-sum triplets, while the odd pixels have one-sum
triplets. The neighborhood relations are formally defined: Let p(p(1),p(2),p(3))
and ¢(q(1),4(2),q(3)) be two pixels, they are m-neighbors (m € {1,2,3}) if

~ |p(@) — q(i)| <1, for i € {1,2,3}, and
= [p(1) = q()[ +[p(2) — q(2)| + |p(3) — a(3)| = m.

Two pixels are neighbors, if they are m-neighbors for some m € {1,2, 3}. Various
neighborhoods and the coordinate system used are shown in Fig.2. The set of
pixels sharing a fixed coordinate is called a lane, e.g., y = —2 for the topmost
pixels of Fig.2. Paths, their lengths and distances of pixels are also defined
analogously to the hexagonal case.

A step to a 2-neighbor does not modify the parity, while step to a 1-neighbor
or a 3-neighbor pixel changes (inverts) the parity. The basic motions, the possible
steps form our alphabet: Let X' = {11, |1, \1, \u1, /1, /1, <2, =2, \2, \2, 2,
/25135 13,3, \3, /"3, 3} The arrows show the directions, while the indices
indicate the used neighborhood of the given step. The steps, the letters of the
alphabet correspond to grid-vectors:
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1, || z/\% T2 /\G -
-1,3\ /-178 N/3.-1-2\ /A1
4057\ -3.0.4/\-2.0.3 /\-T.0. 10!‘ 2,0,-T wz 40
/5,05 L0 /3,03\ /2.0 /1.0, 000\ 1.0,-1 702 30
31,

Fig. 2. A part of the triangular grid with coordinate values (left) and various neigh-
borhood of an even pixel (right).

1= (O’ _170)a 1= (071’0)5 N1 = (07071)7
\«1:(())0’71)3 /1:(17070)3 /1:( 17070)
—o=(-1,0,1), =2 = (1,0,-1), "2 =(0,—-1,1),
\22(0,1,—1),/2:(17—1,0), /2:( 17170)7

T3 = (L -1, 1)v lz3 = <_1’ 1,- 1) \3 = ( 1,-1, 1)
\3:(1a17_1)a/3:(17 L, - 1) /3:( 17171)

For any two pixels p(p(1),p(2),p(2)) and ¢(g(1), ¢(2), ¢(3)), their respective posi-
tions and their shortest paths are isometrically transformed, and, therefore, their
distance is kept by using the following transformations of the grid (see [15] for
details).

— If p is an odd pixel, then by a mirroring both p and ¢ to the center of
the edge shared by the pixels (0,0,0) and (0,1,0) one obtains p'(—(p(1) —
1), —p(3), —p(2)) and ¢'(—(q(1) — 1), —¢(3), —¢(2)) (By this transformation
the parities of the pixels are also changed.)

— If p is an even pixel, then by a translation one can obtain p’(0,0,0) and
q¢'(q(1) = p(1),q(2) — p(2),4(3) — p(3)).

— Now, let p be the origin and let ¢ be a pixel such that i € {1, 3} is the direction
for which |g(7)| > |q(j)| for any j € {1,2,3}. Then the mirroring to the axis
corresponding to the direction k € {1,3} such that k # ¢ transforms ¢ to ¢’
such that ¢'(2) = q(4),¢'(5) = ¢(2),¢' (k) = q(k). (The image of the origin is
itself.)

Based on the previous transformations, w.l.0.g., we can assume that p is the
origin (0,0,0), i.e., further in this paper, we measure the distance, the shortest
paths from the origin to any pixel g of the grid with the following property: the
second coordinate of ¢ has the largest absolute value among its coordinates, i.e.,
lg(2)] > |q(1)| and [g(2)] > |¢(3)]. Pixels ¢ with this property form the analyzed
part of the grid.

In the next subsection we give a shortest path from the origin to any pixel ¢
with the above property based on a greedy algorithm.
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3.1 A Shortest Path

We refer to [10,11] for the detailed description of a more general algorithm
(using various digital distances based on neighborhood sequences) that provides
a shortest path; it can be applied for our case using any type of the defined
neighborhoods in each step: in terms of neighborhood sequences, it can be written
as a sequence with only 3’s meaning that every type of neighbors is allowed in
each step. In this section we provide a shortest path from the origin to any pixel
of the analysed part.

Proposition 1. Let gq(q(1),¢(2),q(3)) be an even pizel such that |q(2)| > |q(1)]
and |q(2)] = |¢(3)]-

- If q(2) > 0, then a shortest path from (0,0,0) to q is obtained as the concate-

nation of —q(1) /o steps and —q(3) \2 steps: /‘;(1)'\‘;(3)'.
- If q(2) <0, then a shortest path from (0,0,0) to q is obtained as the concate-

nation of q(3) N2 steps and q(l) o steps: \|2Q(3)\/|2q(1)\
Proof. Let q(q(1),q(2),q(3)) be an even pixel such that |¢(2)] > |¢(1)| and

@) > 14(3)].

We show a formal proof for the case ¢(2) > 0; a similar proof suffices for the
other case.

Thus ¢ has the coordinate values, (¢(1), ¢(2), ¢(3) with ¢(1) <0 and ¢(3) <0
and ¢(2) = [q(1)| + [a(3)].

Then, a shortest path from (0,0,0) to ¢ cannot have a length less than ¢(2)
since in every step a coordinate value is changed by at most 1.

Let us consider the path consisting of —g(1) 2 steps and then —g(3) N\
steps. The path /|2q(1)|\|2q(3)| is a valid path, since steps to 2-neighbors are
allowed at any pixels (and thus, also in even pixels). Using the coordinate repre-
sentations of the steps: from (0,0, 0), it goes through on (—1,1,0),(-2,2,0),...,
(¢(1),]g(1)],0) and then from (g(1), |g(1)], 0) it goes through (¢(1), |q(1)|+1, ~1),

(¢(1), lg(D)] +2,-2),..., (¢(1), lg(D)] + 1a(3)],4(3)) = ¢- It actually uses |g(1)]
steps in a lane and then |g(3)] steps on another lane, together ¢(2) steps. The

proof of the case is done. O
The next proposition can be proven with a similar technique.

Proposition 2. Let ¢(q(1),q(2),q(3)) be an odd pizel such that |q(2)| > |q(1)]
and |q(2) = ¢(3)|-

- If q(2) > 0, then a shortest path from (0,0,0) to q is obtained as the concate-

nation of 1 |1 step, —q(1) /3 steps and —q(3) N\ steps: |1,/ DN @1
- If q(2) < 0, then a shortest path from (0,0,0) to q is oblained as the
concatenation of 1 13 step, q(3) — 1 N2 steps and q(1) — 1 9 steps:

1R Jg@ =1 a1

Observe that in the obtained paths the largest coordinate difference (the second
coordinate in our case) is decreased in every step. Consequently, the (digital)
distance of any two pixels can be computed as:
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Lemma 1

d(p(p(1),p(2),p(3)),q(q(1),4(2),4(3))) = ier{q%}{lp(i) —q(i)]}.

We note here, that this result can be seen as a special case of one of the main
results of [12-14], but here we have used a much simpler formulation. (Instead
of allowing neighborhood sequences to generate distance functions, in our case,
in each step we could step to any neighbors of the actual pixel. This allows us
to derive the simple formula established in the previous lemma.)

In this paper we concentrate on the shortest paths. Some of them can be
generated by a greedy algorithm (related to the algorithm of [11]), since some
steps of the algorithm may contain a non-deterministic choice. However, there
could be some of them that cannot be generated by the greedy algorithm.

A shortest path in the triangular grid may contain various steps. Notice that
some of the vectors (representing elements of X') can be used to any pixels (zero-
sum vectors). Some vectors can be applied only for even pixels (vectors with sum
1) and some of them can be applied only for odd pixels (vectors with sum —1).
Thus, for instance the sequence of steps 1173 can be applied for odd pixels only,
while the sequence 377 works only starting from an even pixel. The order of the
steps becomes important, because the triangular grid is not a lattice, and thus,
some of the grid-vectors do not translate the grid to itself.

4 Generalized Traces Describing Shortest Paths

In this section we present an associative calculus that provides all the shortest
paths equivalent to the one the process starts with. First, we recall the definition:
C = (X, P) is an associative calculus, where X' is a finite alphabet and P is a
finite set of productions (rewriting rules). Each rewriting rule is an element of
X* x X*. A rule is usually written in the form u = v, where u,v € X*. Let
w € X* be given, we say that w’ is obtained from w applying the rewriting rule
u = v, if there exist wq,ws € X* such that either w = wijuws and w’' = wivws,
or w = wivws and w’ = wyuwsy. Actually, w can also be obtained from w’ by
the same production, thus we may use the notation w < w’. By the reflexive
and transitive closure of <, the relation <* is defined.

Observe that the calculus C defines an equivalence relation on X*. The equiv-
alence class represented by w is denoted by C(w) = {w' | w &* w'}.

Now, let us see how such a calculus can be applied to describe shortest paths.
In any shortest path the largest coordinate difference of the two endpoints (that
is the second coordinate value in our case) must decrease in each step.

Observe that the cardinality of X' is 18, but every pixel has only 12 neighbors.
The triangular grid is not a lattice, the steps Xan = {[1,\1, 1,2, —2, \2,
N2y 2,/ 2, T3, \u3,./ 3} can be used at even, and the steps X, = {11, \1, .1,
—a2,—2,\2, \2, 2, 2, 13, \3, 3} can be used at odd pixels. As one may
observe, only the steps to 2-neighbor pixels can be applied for every pixel, the
possible directions of steps to 1- and 3-neighbors depend on the parity of the
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actual pixel. The independence relation contains pairs of letters such that at
least one of the letters indicates a step to a 2-neighbor pixel. In terms of traces,
this fact can be concluded in the following way:

Lemma 2. In any paths, any letter a € EANYg = {2, —2,\2, \i2, 2,/ 2}
commutes with any letter b€ X' (a #b).

Moreover, in the triangular grid there are composite steps that can be broken
to two steps in various ways. That is related to the serializations in generalized
traces [7]. In the next lemma all of them are listed that are needed in shortest
paths in the analyzed part of the grid, i.e., the second coordinate is modified
by two (during these steps). For the other parts of the grid the description is
analogous.

Lemma 3. The following equivalences hold:

- 99 is equivalent to T3 "3 for even pixels;
- /99 is equivalent to /373 for odd pizels;
- N2\ is equivalent to T3\ 3 for even pizels;
- N2 \2 is equivalent to \ 313 for odd pizels;
- 9N\ is equivalent to 13Ty for even pixels;
- /9\2 18 equivalent to T113 for odd pixels;

- N\ \2 is equivalent to \3l3 for even pizels;
- N2\ s equivalent to |3\ for odd pizels;
- /2.2 is equivalent to /'3]3 for even pizels;
- /2.2 is equivalent to |3, 3 for odd pixels;
- \2/"2 is equivalent to |1]3 for even pixels;
- N2/ 2 18 equivalent to |3]1 for odd pizels;

- 11\ s equivalent to \,3, 2 for even pixels;
—- 1172 is equivalent to 3\ for even pizels.

Proof. We show the formal proof of the first equivalences. The others can be
proven in a similar manner.

/29 is equivalent to T3,"3 for even pixels.

On the left side there are two consecutive steps to 2-neighbors, they are
defined for all pixels. On the right side the first step is T3 that is available only
at even pixels, thus the statement has meaning only for even pixels.

Now, let us see the coordinate representations of these steps:
on the left side: 2(1,—1,0) = (2, —2,0), while
on the right side: (1,—1,1) + (1,-1,—-1) = (2,—2,0). The equivalence is estab-
lished. O

It can be proven, e.g., by a combinatorial way, that there are no more equiva-
lences of two consecutive steps (in our shortest paths) needed. The equivalences
that are not listed in the previous lemmas, e.g., \ 2”2 is equivalent to T1 T3
for odd pixels, can be obtained by using some of the listed equivalences, e.g.,
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Na2.2 is equivalent to "2\ 2 (by Lemma 2) and that is equivalent to 7113 for
odd pixels (by Lemma 3). Of course, there are longer sequences of steps that are
equivalent to each other, e.g., |1]3, 3, 2 is equivalent to /2, 2, 21, but their
equivalence is based on the listed equivalences by two consecutive steps. It can
be proven that the equivalence of every (consecutive) sequence of steps (in our
shortest paths) to another sequence is based on the listed equivalences.

Based on the previous lemmas we are ready to present a rewriting system
(especially, an associative calculus) that can obtain all the shortest paths that
are equivalent to an initial one. Since the parity of the pixels plays an important
role, in a path we keep track of them by allowing it to write this information
after any step to a 2-neighbor pixel, e.g., the shortest path 373,72, "2\ to
the pixel (4,—5,2) can also be written in the following forms: 5 (e) 13,722
(0) N2 or 5 (e) 15,2 (0) /2 (0) \2 (0), etc. The latter form when all the
steps to 2-neighbors are extended with this information is called fully informed
description of the path. For steps to 1-neighbor or 3-neighbor pixels we do not
need additional information, since not the same steps are allowed for even and
for odd pixels, i.e., XA N Xy does not contain any steps to a 1- or a 3-neighbor
pixel. In the following theorem this extended form is used (however, one may
get any correct forms by deleting any/all these information). The theorem is a
consequence of the previous results, especially of Lemmas2 and 3.

Theorem 2. Let C(X, P) be an associative calculus with rewriting rules
P = {a(x)b(z) = b(x)a(z) | a,b € {2, \2, 2,2}, € {e,0}, a #b} U
{a(z)b = ba(y) | a € {72, \2, . 2, N2}, b € {11, 11, T3, I3, 3, \u3, /3, \3},
z,y€{e0f, x£ytU{ N3./2(0) =liN\2(0), /3\2(0) =l1/2(0),
/2(€) /2 (e) =133, 2 (0) /2 (0) =313, N2 (€) N2 (e) =13\,
N2 (0) N2 (0) =N\sl3, T2 (e) N2 (e) =13T1, 2 (0) N2 (0) =T1113,
N2 () N2 (e) =N\als, N2 (0) N2 (0) =l3\3, 2(e) 2 (e) = 3l3,
2(0) /2 (0) =133, N\a2l(e) /2(e) =lils, N\a2(0) .2 (0) =l3l1}.
Let C(w) denote the set of all words that can be obtained from a given fully
informed description of a word w € X* by applying any (finite number) of the
rewriting rules of P.

Let w € X* be a fully informed description of a shortest path from (0,0,0)
to a pizel q (1g(2)| > q(1)], 1¢(2)| > 1¢(3)|). Then, applying C to w, the set C(w)
contains exactly those strings that describe shortest paths from (0,0,0) to g (by
a fully informed description).

Actually, the system can be understood as a generalized trace [7] as we detail
below. The system has several permutative rules, the rules by which a step to a
2-neighbor can be interchanged in the path with the previous or the next step (if
it is not the same). However, the system has another types of productions, e.g.,
Nz (e) N2 (e) =T33 or \\3,/2 (0) =]1\u2 (0). To have our system in a more
similar fashion as the description in [7], we can introduce new letters abbreviating
these “double steps”. In the mentioned examples they could be: N 212 (€) and
142 These new letters show the unbroken “double step” referring the motion
with vectors (0, —2,2), and (0,2, —1) in our case from even pixels (it is indicated
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in the first case, since this vector works for both even and odd pixels, while
in the second case it is obviously working only for even pixels). By breaking
the original productions to two parts using these intermediate “double steps”,
we got the productions 242 () =N\2 (€) N2 (€), \242 (€) =T33 and
Ni+2= N3 2 (0), \i1+2=11\2 (0), respectively. In this form the system is a
generalized trace, but only shortest paths without any “double steps” can be
counted as real shortest paths.

5 The Number of Shortest Paths

In this section, by complementing the results of [4], we count the number of
shortest paths by a combinatorial approach. As we have already seen, there are
two cases by the sign of ¢(2), and also by the parity of pixel ¢. In each case
we gave a shortest path in Propositions 1 and 2, and now, enumerations are
provided to compute the number of shortest paths.

Let us start with the case when ¢ is even.

5.1 The Case of Even Paths

In this case, the parity of p and q are the same, i.e., both of them are even. There
is a shortest path containing only steps to 2-neighbor pixels (see Proposition 1).
However, there can be some other shortest paths in which some of the steps to
2-neighbors are replaced based on some of the productions shown in Theorem 2.

First, let us analyze the case ¢(2) < 0. By Proposition 1 we have a shortest
path ’\‘Qq(‘g)l /\2q(1)|. From this path, by the calculus C given in Theorem 2, one
can obtain any shortest path I7. Observe that in the calculus, apart from the
permutative rules (that changes only the order of two consecutive steps) there
are three types of real rewriting rules that can be applied. Based on them, let
us introduce the following notations (for a shortest path IT).

Notation 1. In case q(2) <0, the letters v, and € are defined as follows.

— Let vy be the number of application of rewriting rules /2 (e) \2 (e) —=13T1
and /5 (0) N2 (0) =71113 (minus the number of their applications in reverse
directions).

— Let 6 be the number of applications of \ 2 (€) \2 (€) =13\ 3 and \2 (0) \2
(0) =\ 313 (minus the number of their applications in reverse directions).

— Let e be the number of applications of /2 (e) /2 () =133 and /2 (0) /2
(0) =313 (minus the number of their applications in reverse directions).

Then I contains the following numbers of the following types of steps:
N2 steps: [¢(3)] —~v—26; 2 steps: [g(1)] —v—2e; 11 steps: v;
T3 steps: v+ 0 + ¢; N3 steps: &; /'3 steps: €.
Moreover, the order of some steps, the ones that changes the parity, takes
matter: these steps are alternating in the following way: starting by a step Ts (if
any), then one step from the set {11, \3, "3}, then again a step 73 (if any), etc.
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The steps \ 2 and 5 can be anywhere in any order. Consequently, to compute
the number of shortest paths, we have

(v+d+e)! (e +~+26 lq(2)]
yotel <|q(1)| —7—26> . (Iq(3) —7—25>

different ones for a fixed value of v,d,¢, (7,4, > 0, v+ 20 < |q(3)|, v+ 2 <
|g(1)]). This can be seen as follows: let the v+ 4+ ¢ many T3 steps are given. The
first term ”Tgfz? ! refers for the possibility to arrange the appropriate number
of T1,\3, "3 steps to have an alternating order of parity changing steps, as it

is requested. The second term (Iggtzfgg) gives the number of possibilities to

place the "5 steps into the path. Finally, the third term, (|q(3‘ﬁ(_2i‘
number of ways the \ 5 steps can be put into the path.

Observe that for these pixels |¢(2)] = ¢(1) + ¢(3). Finally, using the possible
values of 7,0 and e, we obtain the following theorem.

5 6) gives the

Theorem 3. Let q(q(1),q(2),q(3)) be a pixel of the triangular grid such that
q(1) + q(2) + ¢(3) = 0 and q(2) < 0. Then, the number of shortest paths from
the origin (0,0,0) to q is given by

. la(®)]=~ la)|=~
min{|g(D)]la(3)[} [ =] | Z J(W+5+6)!(@(3‘)’1(,22',25)({gﬁgffﬁiﬁ)

151 <! .
= = g ! 6! el

The case when ¢(2) > 0 is analogous (with steps to downward directions).

Notation 2. In case q(2) > 0, let the v,d and € be defined as follows.

— Let v be the number of application of N\ (e) /2 (€) —l1l3 and 2 (0) /2
(0) —=lsl1 (minus the number of their applications in reverse directions).

— Let § be the number of applications of /2 (€) /2 () =, 3l3 and /2 (0) /2
(0) =133 (minus the number of their applications in reverse directions).

— Let € be the number of applications of \2 (€) \u2 (€) =\3l3 and \2 (0) \u2
(0) —13\u3 (minus the number of their applications in reverse directions).

The only other difference (based on the possible rewriting) is that in this
case the “alternation” of steps from the set {]1,.,/5, \,3} and |3 starts with a
step from the first set and finishes by a |3 step. The number of possible paths
is given by the following formula; and it can be proven by the application of
multiplication and addition rules, in a similar manner as in the previous case.

Theorem 4. Let q(q(1),q(2),4q(3)) be a pizel of the triangular grid such that
q(1) +q(2) + ¢(3) = 0 and q(2) > 0. Then, the number of shortest paths from
the origin (0,0,0) to q is computed as

minflaWa@} [ 27 (s g g @)y (la@)+20)

Z lg(1)|—v—26/ \|g(3)| —y—2¢
1§ &) :
~¥=0 §=0 e=0 v ol el
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5.2 The Case of Odd Paths

This case is also divided into two parts based on the sign of ¢(2). Let us start with
q(2) < 0. By Proposition 2 a shortest path to g is given as Tg\lzq(?’)_ll/‘;(l)_l‘.
In these shortest paths, the three types of rewriting of Notation 1 can be applied
that change the types of the steps (not only their order). Consequently, let us
define and use v, § and ¢ similarly as in the case of even paths for ¢(2) < 0, see
Notation 1. Then the numbers of various steps that a shortest path II contain

(with a fixed value of 7,9 and ¢) are as follows:

N2 steps: [q(3) — 1] —y—256; o steps: |¢(1) —1] =y —2e; 11 steps: v;
T3 steps: 1+v+d+¢; N3 steps: §; /'3 steps: €.

Here the alternating sequence of steps 75 and steps from the set {11, 3, "3}
starts and ends with an T3 step. Consequently, the final formula for the number
of shortest paths in this case is computed:

Theorem 5. Let q(q(1),q(2),4(3)) be a pizel of the triangular grid such that
q(1) +q(2) + q(3) = 1 and q(2) < 0. Then, the number of shortest paths from
the origin (0,0,0) to q is

min{q(1)—1,¢(3)—1} Lq(a);l—vJ Lq(l);l—wJ ( +5+€)‘( [q(2)] )( q(3)+~y+2¢ )

Z Z v \g(1)—1-v—2¢) \g(3)—1—v—25
31 21 :
= = ! 4! el

Note that in this case ¢(1),¢(3) > 1 and |¢(2)] = ¢(1) +¢(3) — 1.

Now, let us consider the last case: ¢ is odd, ¢(2) > 0 and ¢(2) = |¢(1)| +
|g(3)] + 1. This case is the most complex, since the parity of the pixels must
be changed during the path, and in this direction any of the elements of the
set {l1,,"3, \u3} can be applied for such reason. Therefore, actually, it is easier
to break the set of the shortest paths C(w) — where w could be, e.g., from
Proposition 2, w = (/2 (0))9MI(\,2 (0))14®)| — to three disjoint sets. In this
way, we can compute the number of shortest paths when the first parity changing
stepis |1, is 3 and is \ 3, separately. We may use the calculus C keeping the first
parity changing step (but maybe moving it by permutative steps interchanging
its place with some steps to 2—neighbors) starting from the following words,
respectively: |1 (/2 (0))"MI(\2 (0))l1®, 75 (/2 (0))11DIZ1 (N (0))la®) I+
and N3 (/2 (0))1MF (N (0))l 7)1,

Defining v, § and € in the same way, as they were in the case of even paths
with ¢(2) > 0 (Notation 2), one can obtain the final result for this, most complex
case.

7=0

Theorem 6. Let q(q(1),q(2),4(3)) be a pizel of the triangular grid such that
q(1) + q(2) + q(3) = 1 and ¢(2) > 0. Then, the number of shortest paths from
the origin (0,0,0) to q is given by



28 B. Nagy and A. Akkeleg
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6 Concluding Remarks

First, we summarize our main results in Fig. 3 showing the number of shortest
paths (red color) for the indicated pixels. As we have seen instead of the binomial
coefficients that are obtained on the hexagonal lattice, more complex formulae
can be used to compute these values. These numbers can be considered, as
a kind of generalizations of the binomial coefficients using the triangular grid,
and actually, they are the cardinalities of the sets representing trajectories of the
shortest paths on the triangular grid. As we have seen they are closely connected
to generalized traces.

LN NN N
NN SIS IS TS SN
NENENINNTNTN TN ININIINIS

Fig. 3. A part of the triangular grid with the number of shortest paths from the
origin. (The region for which the formulae are directly provided is shown with yellow
background, for the other pixels the values can be obtained by rotating the grid.) (Color
figure online)

We note here that a related result, namely, the number of shortest paths is
computed by using only 1-neighbors (closest neighbors) and at most 2-neighbors
for the triangular grid in [4], in this way, we have completed the task started
there.
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On Sets of Line Segments
Featuring a Cactus Structure
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Abstract. In this paper we derive sharp upper and lower bounds on
the number of intersections and closed regions that can occur in a set of
line segments whose underlying planar graph is a cactus graph. These
bounds can be used to evaluate the complexity of certain algorithms
for problems defined on sets of segments in terms of the cardinality of
the segment sets. In particular, we give an application in the problem
of finding a path between two points in a set of segments which travels
through a minimum number of segments.

Keywords: Set of segments - Cactus graph - Segment intersections -
Segment cycle

1 Introduction

Sets of straight line segments with special structures and properties appear
in various applications of geometric modeling, such as scientific visualization,
computer-aided design, and medical image processing. Such segment sets with a
special structure are investigated in the present paper.

Let M be a set of line segments in the plane, and M be the union of all
points of segments in M; exclude from consideration the degenerate case of
intersecting collinear segments which can be merged into a single segment. Let
P be the set of all intersection points of segments in M and C be the set of closed
bounded regions into which the segments in M partition the plane. Let |M| = m,
|P| = p, and |C| = ¢, where | - | denotes set cardinality. The following are well-
known relations between these quantities which hold for arbitrary segment sets:
p < W, c < W Both bounds are sharp, i.e., there are classes
of segment sets for which the bounds hold with equality. For special classes of
segment sets, better bounds can be derived. For example, if a set of segments
features a “tree” structure, then p < m — 1 and ¢ = 0.

These kinds of bounds can be used to analyze the time and space complex-
ity of algorithms for finding the intersections and bounded regions occurring
in a set of segments in terms of m, p, and c; these are fundamental tasks in
computational geometry and have been widely studied (cf. [1,3,13,20,21]). For
example, Balaban’s algorithm for finding segment intersections [1] runs in opti-
mal O(mlogm + p) time and O(m) space. For special classes of graphs, an
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estimation of p in terms of m can yield a better bound on the time and space
complexity of existing algorithms. For instance, for the aforementioned class of
segment sets which feature a tree structure, the time complexity of Balaban’s
algorithm simplifies to O(mlogm), while for general segment sets the algorithm
may require {2(m?) arithmetic operations.

In the present paper, we obtain sharp bounds on p and c¢ for the class of
segment sets which feature a cactus structure, i.e., a structure where the bound-
aries of any two closed regions share at most one point. We show that for such
segment sets, p < 2(m — k1) — 3ke and ¢ < (m — k1) — 2ka, where k1 and ko are
the numbers of connected components of M consisting, respectively, of a single
segment and multiple segments. Both bounds are sharp, as they are attained
for certain classes of segment sets. We also illustrate how these bounds can be
used to estimate and compare the running times of certain algorithms for com-
putation of intersections in a set of segments and for finding a path between two
points in a set of segments which travels through a minimum number of seg-
ments. See [5,7-11,14,17] and the bibliographies therein for other applications
of computing p and ¢, as well as for techniques and results on other problems
defined on segment sets and on graphs constructed through segment sets.

2 Preliminaries

Let M be a set of m segments in the plane, and M be the union of all points
of segments in M. Let P(M) and J(M) be the set of all intersections and the
set of all end-points of segments from M, respectively (note that P N J may
be non-empty); when there is no scope for confusion, dependence on M will be
omitted. Let Gjs = (V, E) be a plane graph whose vertex set is PUJ and where
vertices u and v are adjacent whenever there is a segment s € M which contains
u and v, such that there is no w € V N s that is between u and v.

By a cycle of M we will mean any closed simple polygonal curve in M. By a
cycle segment set of M we will mean the set of segments in M that contribute
to a cycle of M by more than a single point. There is a one-to-one correspon-
dence between the cycles of M, the cycle segment sets of M, and the bounded
faces of Gjs (in the planar embedding induced by M). We will call a connected
component of M trivial if it consists of a single segment, and nontrivial if it con-
tains two or more segments. Let k1 denote the number of trivial components of
M, and ky denote the number of nontrivial components of M. Given a segment
s € M, M\s denotes the union of all points of segments in M\{s}.

A cut vertex of a graph G is a vertex whose deletion increases the number of
connected components of G. A biconnected component or block of G is a maximal
subgraph of G which has no cut vertices. An isomorphism between graphs G
and G4 will be denoted by G ~ G5. Given a vertex v of G, G — v will denote G
with v removed, along with all edges incident to v. A vertex of G is a leaf if it
has a single neighbor in G.

A graph G is called a cactus graph (or simply a cactus) if any two cycles of
G have at most one vertex in common. Every edge of a cactus graph belongs to
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at most one cycle, and the biconnected components of a cactus graph are either
cycles or single edges; see Fig. 1, left, for an example of a cactus graph. Properties
of cactus graphs have been studied with some applications in mind; for example,
cactus graphs arise in the theory of condensation in statistical mechanics, and in
the design of telecommunication systems, material handling networks, and local
area networks. For more applications, properties, and problems solved on cactus
graphs, see [2,6,15,16,18,19] and the bibliographies therein.

We will say that a set of segments M is a segment cactus if the graph G is
a cactus; see Fig. 1, right, for an example. By definition, two cycles of a segment
cactus can have at most one vertex in common, i.e., they cannot share a portion
of a segment different from a point. Thus, there is a one-to-one correspondence
between the cycles of M, the cycle segment sets of M, and the cycles of Gy (as
well as the faces of Gj; in the embedding induced by M). If a segment cactus
has no cycles, it is a segment forest; if the set of segments is also connected, then
it is a segment tree. Thus T is a segment tree if and only if the corresponding
graph Gr is a tree.

Fig. 1. Left: An example of a cactus graph. Right: An example of a segment cactus
with two of its cycles marked by thick lines.

When there is no scope for confusion, some of the definitions introduced in
this section may be applied to M and M interchangeably, e.g., we may refer to
a cycle segment set of M or a connected component of M.

3 Main Results

We begin this section with some preliminary observations about segment sets,
and then present several structural results on segment cacti. It is well-known
(cf. [22]) that every planar graph has an embedding where its edges are mapped
to straight line segments. Let G be an arbitrary planar graph, and G be a
straight-line embedding of G. If the edges incident to some degree 2 vertex v of
G are drawn in G as collinear segments, then v can be slightly shifted so that
the segments incident to it are no longer collinear. This implies the following
observation.
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Observation 1. For any planar graph G, there exists a segment set M such
that G ~ G.

By definition, each of the k; trivial components of a segment set M consist of
a single segment, and each of the ky nontrivial components of M consist of at
least two segments; thus, we have the following observation.

Observation 2. For any segment set M, m > ki + 2k,.

Moreover, since the segments in each nontrivial component are connected, each
nontrivial component must have at least one intersection point.

Observation 3. For any segment set M, p > ks.

If M is a segment forest with trivial components 1, ...,tr, and nontrivial com-
ponents Ty ...,T},, then there can be at most |T;| — 1 intersections in each
nontrivial component T;, which occurs when no three segments have a common
intersection point. This implies the following bound on the number of intersec-
tions in a segment forest.

Observation 4. If M is a segment forest, then p < m — ky — ko.

Note that if M is a connected segment cactus different from a segment tree,
the graph Gy = (V, E) satisfies the inequality |V| < |E|. However, it is not
necessarily the case that |P| < |M|: while a graph edge is incident to exactly
two vertices, a segment from M can contain arbitrarily many intersections with
other segments.

The next result concerns segments whose removal does not affect the con-
nectivity of an arbitrary segment set; a consequence of this result will be used
in the sequel.

Proposition 1. For any nontrivial connected segment set M, there are at least
two segments s, and sp in M such that M\s, and M\sy, are connected.

Proof. Let H be a graph which has a vertex for each segment in M, and where
two vertices are adjacent whenever the corresponding segments intersect in M.

Let s, and s, be any two vertices of H, and = and y be non-intersection points
respectively belonging to the segments s, and s, in M. Since M is connected,
there is a path x,p1,...,pk,y between = and y, where pq,...,pg are parts of
segments (or entire segments) of M. In particular, let p; C s;, for 1 <t < k
(where s;, = s, and s;, = s,). By construction of H, for 1 <t < k-1, s,
is adjacent to s;,,, in H. Thus, the path z,p1,...,px,y in M corresponds to a
path sz, 8:,,...,8;,,8y in H, so H is connected.

Since any connected graph with at least two vertices has at least two non-cut
vertices, H has two non-cut vertices s, and s,. We claim that M\s, and M s,
are connected. To see why, let z and y be any two points in M\s,. If z and y
belong to the same segment, clearly there is a path between them. Otherwise,
let s, and s, respectively be segments containing = and y. Since s, is a non-cut
vertex of H, H —s, is connected. Let 54, s;,,. .., 5i,, 5y be a simple path between
s, and s, in H — s,. By construction of H, segments s, and s;, intersect in M;
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thus, there is a path between x and every point in s;,. Similarly, segments s;,
and s;, intersect in M, so there is also a path between = and every point in s;,.
Continuing in this fashion, we see that there is a path between x and y in M \s,,
so M\s, is connected; similarly, M\s; is connected. O

Corollary 1. Any nontrivial segment tree M contains at least two segments s,
and sp such that M\s, and M\s, are connected, and such that s, and s, each
contain a single intersection point.

Proof. By Proposition 1, there are two segments s, and s;, such that M\s, and
M\sp are connected; we claim that each of these segments contains a single
intersection point. Indeed, since M is a segment tree and is therefore connected,
sq and s, must each contain at least one intersection point. Suppose for con-
tradiction that s, contains two (or more) intersection points x and y. Since M
is a segment tree, there is only one path, namely along s,, between the seg-
ments which intersect s, at x and y. Then, there will be no path between these
segments in M\s,, a contradiction. O

Let M be a set of segments and s be a segment of M with endpoints ¢ and 7.
Let ¢ be the first intersection point in s encountered when moving along s in a
straight line from £ to 7 in M, and 7’ be the last intersection point encountered.
We will say that trimming s is the operation of replacing s by a segment s’ with
endpoints ¢/ and 7’'; if s has fewer than two intersection points, then trimming s
means deleting s. We will say that trimming M means repeatedly trimming the
segments in M until further trimming yields no difference. Note that it may be
possible to trim a segment, then trim another segment, and then trim the first
segment again. See Fig. 2 for an illustration of trimming.

Fig. 2. Left: Set of segments M. Middle: Trimming every segment of M once. Right:
Trimming M.

Proposition 2. A segment cactus M with ¢ > 1 cycles contains at least two
segments s1 and sa, such that for i € {1,2},

(A) s; belongs to a single cycle segment set S;,
(B) the connected components of M\s; which do not contain segments of S; are
segment trees.
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Proof. If ¢ = 1, every segment in the single cycle segment set of M satisfies
properties (A) and (B); thus, assume henceforth that ¢ > 2.

Let @ = {s1,...,5¢} be a maximal set of segments of M such that for
1 < i < g, s; does not belong to any cycle segment set of M, and s; is a segment
whose deletion does not disconnect M\{s1,...,s;_1}. Let M’ = M\Q. By con-
struction, M and M’ have the same cycle segment sets; moreover, the connected
components of M\M' (i.e. of Q) are segment trees. Hence, for any segment
s € M', the connected components of M\s which do not contain segments of
M’ are segment trees. Let M" be the set of segments obtained by trimming M’
(in fact, M" is identical to the set of segments obtained by trimming M). Note
that M, M’, and M" have the same cycles.

Gy has no leaves, since a leaf of G s would have to be an endpoint of a seg-
ment in M and all endpoints of segmentsin M are also intersection points. Thus,
all outer blocks of G s+ (i.e., biconnected components with a single cut vertex) are
cycles. Since ¢ > 2 and since M and M” have the same cycles, it follows that Gy~
has at least two cycles; thus, G~ has at least two outer blocks which are cycles,
say C7 and Cy. Let S1 and S5 be the cycle segment sets in M corresponding to C;
and Cs, respectively. For i € {1,2}, exactly two edges of C; in Gy are incident
to the cut vertex v; of Cj; thus, in M, v; corresponds to an intersection point of at
most two segments of S;. Since 5; contains at least three segments, there is a seg-
ment s; € S; which does not contain v; as an intersection point in M. Then, since
C; is an outer cycle, s; does not belong to any other cycle segment set of M, i.e., s;
satisfies property (A). Furthermore, the connected components of M\ s; which do
not contain segments of .S; also do not contain segments of M’; however, as shown
above, the connected components of M\s; which do not contain segments of M’
are segment trees. Thus, s; satisfies property (B). a

Combining the previous results, we will now derive sharp bounds on the
number of intersections and cycles in a segment cactus.

Theorem 1. If M is a segment cactus, then:
]CQ §p§ 2(m—k1) —3]{32 (1)

OSCS(m—kl)—ng. (2)

Proof. The lower bound in (1) follows from Observation 3, and the lower bound
in (2) follows from the fact that a segment forest is also a segment cactus.

If M is a segment forest, then p < 2p — kg < 2(m — ky — ko) — ko = 2(m —
k1) — 3ko, where the first inequality follows from Observation 3 and the second
inequality follows from Observation 4; this establishes the upper bound in (1).
Likewise, if M is a segment forest, then the upper bound in (2) follows from
Observation 2 and the fact that ¢ = 0. Thus, it remains to be shown that the
upper bounds in (1) and (2) hold for the case when the segment cactus is not a
segment forest, i.e., when ¢ > 1, and hence m > 3. We will proceed by induction
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on m. Both inequalities clearly hold for m = 3. Assume the inequalities hold for
some m > 3 and let M be a segment cactus with m + 1 segments.

By Proposition 2, M contains a segment s; which belongs to a single cycle
segment set S;, such that the connected components of M\s; which do not
contain segments of S; are segment trees. If M\s; does not have any connected
components which do not contain segments of S1, let s, = s;. Note that in
this case, deleting s, from M decreases the number of intersection points by at
most two, and the number of cycles by one. If M\s; has at least one connected
component 7" which does not contain segments of Sy, T is a segment tree which
can only intersect s in a single point, since otherwise s would be part of at least
two cycles. If T' consists of a single segment, let s, be that segment. If T contains
at least two segments, then by Corollary 1, T' contains two segments s, and sy,
each having a single intersection point, such that removing either one of them
from T does not disconnect T'. If neither s, nor s, intersect s, let s, = s1. If
exactly one of s, and s, intersects s, let s, be the segment among s, and s
which does not intersect s. If both s, and s; intersect s, then s, s,, and s; must
all intersect in the same point; in this case, let s, = s1. In each of these cases,
deleting s, from M decreases the number of intersection points by at most one,
and does not affect the number of cycles.

Thus, the segment cactus M\s, has m segments, p — i intersection points
for some i € {0,1,2}, and ¢ — j cycles for some j € {0,1}. By the induction
hypothesis, p — ¢ < 2(m — k1) — 3ko. Then, for the segment cactus M with
m + 1 segments and p intersections, we obtain p < 2(m — k1) — 3ke + 1 <
2(m—k1)—3ke+2 = 2(m+1— k1) — 3ko. Similarly, by the induction hypothesis,
c—1i < (m—ky)— 2ko. Then, for the segment cactus M with m+ 1 segments and
c cycles we obtain ¢ < (m—ky) —2ko+i < (m—ky1)—2ka+1 = (m+1—k;)—2ks.
This concludes the inductive step and establishes the inequalities. a

Observation 5. The upper and lower bounds in (1) and (2) hold with equality
for classes of segment cacti like the ones in Fig. 3.

AXX 7

Fig. 3. Left: A class of segment sets for which the lower bounds in (1) and (2) hold
with equality. Right: A class of segment sets for which the upper bounds in (1) and (2)
hold with equality.

4 Applications

4.1 Finding Intersections

The inequalities derived in Theorem 1 can be used to evaluate and compare the
running times of certain algorithms when these are applied to segment sets with a
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cactus structure. Consider the algorithms of Bentley-Ottmann [3], Chazelle [13],
and Balaban [1] which compute all intersections in a given set of segments. The
time complexities of these algorithms are respectively O((m + p)logm), O(p +
ﬁé?ﬁ;;’i), and O(p + mlogm), the last one being optimal for general segment
sets. The worst case performance of these algorithms is achieved for sets of
segments with £2(m?) intersections, and is respectively 2(m?logm) for Bentley-
Ottmann’s algorithm, and £2(m?) for Chazelle’s and Balaban’s algorithms. Thus,
regarding worst case time complexity, Chazelle’s and Balaban’s algorithms are
superior to Bentley-Ottmann’s algorithm. However, if a segment set has a cactus
structure, Bentley-Ottmann’s and Balaban’s algorithms run in O(m logm) time

2
and are superior to Chazelle’s algorithm, which runs in O(;Zghffgz) time.

Chen and Chan [12] modified Bentley-Ottmann’s algorithm to an O((m +
p) log m)-time in-place algorithm, i.e., an algorithm which uses O(1) cells of
memory in addition to the input array, and whose output is printed in write-
only space; likewise, Vahrenhold [4,23] presented an in-place modification of
Balaban’s algorithm with an O(m log? m+ p) time complexity. As in the original
versions of the two algorithms discussed above, in terms of worst-case time com-
plexity, the in-place version of Balaban’s algorithm is superior to the in-place
version of Bentley-Ottmann’s algorithm, as they require £2(m?) and §2(m? logm)
time, respectively. However, on a segment set with a cactus structure, the latter
runs in O(m logm) time and is superior to the former which runs in O(m log® m)
time.

4.2 Constrained Shortest Path

Let M be an arbitrary connected segment set, and x and y be two points in
M. Consider the problem of finding a path between z and y such that the
path consists of a minimum number of segments (or parts of segments) of M.
This problem could model a scenario where segments represent different lines
of public transportation, where transfer times between lines is high compared
to travel time along a line; thus, one would be interested to find a route which
requires the fewest transfers.

To find such a path, let H be the graph defined in Proposition 1. Given a
simple path s1,...,s; in H, for 1 <4¢ < k — 1, let x; be the intersection point
between the segments in M corresponding to s; and Sit1- For 2 < < k—1, let
pi C s; be the segment with endpoints z;_1 and x;; for some points zg € s1 and
T € Sk, let p1 C 51 and pi C s respectively be the segments with endpoints
20,21, and 2x_1, 2. Then, p1,...,px is a path in M corresponding to the path
S1y...,8, in H.

Now, if a path between points = and y in M passes through the smallest num-
ber of segments, it must also pass through the smallest number of intersections;
thus, such a path in M corresponds to a path with the smallest number of edges
between s; and s, in H, where s, and s, are respectively segments containing
x and y. If one or both of 2 and y are intersection points in M, then H can be
modified by adding new nodes s and s; which are respectively adjacent to all
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of the nodes corresponding to segments which intersect at = and y in M; then,
the shortest path between s;, and s; would correspond to the path in M with
the minimum number of segments.

Since H has m vertices and p edges, the path with the smallest number of
edges between s, and s, in H can be found by breadth first search in O(m + p)
time. For a general segment set, the worst case run time of this procedure could
be 2(m?); however, if the segment set has a cactus structure, by Theorem 1, the
run time would be O(m).

5 Concluding Remarks

In this paper, we derived bounds on the number of intersections and closed
regions that can occur in segment cacti. These bounds can be used to evaluate the
complexity of certain algorithms for problems defined on sets of segments, and,
in some cases, to conclude that a generally sub-optimal algorithm outperforms
a generally optimal algorithm when applied to a segment cactus. It would be
interesting to derive similar upper and lower bounds on p and ¢ for other special
classes of segment sets, for example those corresponding to maximal outerplanar
or maximal planar graphs.

Acknowledgements. We thank the three anonymous reviewers for their valuable
comments. This material is based upon work supported by the National Science Foun-
dation under Grant No. 1450681.
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Abstract. In this paper, we investigate the problem of characterization
and construction of digital ellipsoid to its thinnest (2-minimal) topo-
logical model. We show how this ellipsoid model admits certain char-
acterization based on isothetic-distance and functional-plane properties.
Based on this novel characterization, we derive certain recurrences on
the integer intervals that contain the values of a specific integer expres-
sion corresponding to the integer points comprising the digital ellipsoid.
This, in turn, helps in designing an efficient algorithm for its construc-
tion in the integer space. The algorithm, in principle, is based on inverse
projection of digital elliptical discs and the functional-plane relation of
voxels comprising the digital ellipsoid.

Keywords: Digital ellipsoid - Digital geometry - Integer intervals -
Integer algorithm

1 Introduction

Ellipsoid, also known as spheroid, is an important primitive in 3D geometry.
However, unlike other 3D primitives like plane and sphere that have been studied
in digital geometry in great detail, ellipsoid has not been studied up to its merit
till date. Although some work related to lattice point distribution on real ellip-
soid have been reported in [7,14], they do not closely relate to digital-geometric
models of ellipsoid. In this paper, we present a study on an interesting char-
acterization of the topologically thinnest model (2-minimal) of digital ellipsoid,
which eventually leads to designing an efficient algorithm for its construction.

We consider an ellipsoid with integer specification. Further, for brevity, we
take its canonical form, which means its center is (0,0, 0) and its axes are simply
the coordinate axes. Hence, its equation is

2 2 2
x Y 2%
pol + » + = 1, (1)
where a, b, and ¢ are integers representing the respective lengths of its semi-
principal axes along z-, y-, and z-directions. Without loss of generality, we
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assume that a > b > c. For an early reckoning, let us mention here that our
objective is to construct a digital ellipsoid as a topologically well-formed set of
voxels of minimum cardinality such that each voxel in this set lies as much close
as possible to the corresponding real ellipsoid. Figurel shows an example of
digital ellipsoid produced by our algorithm.

1.1 Metrics and Topology

We fix here some basic definitions and metrics that are used in the sequel. Let
R3 be the 3-dimensional euclidean space and Z> the 3-dimensional integer space.
A wvozel or 3-cell is perceived as a unit cube centered at a point in Z? and is thus
also uniquely identified by its center. As shown in Fig. 1, two distinct voxels are
said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent if they share an
edge (1-cell), and 2-adjacent if they share a face (2-cell). According to this, for
k = 1,2, two voxels are also (k—1)-adjacent whenever they are k-adjacent. So, in
Fig. 1, the 1-adjacent voxels are 0-adjacent too, and hence the 2-adjacent voxels
are both 1- and 0-adjacent.

Es(a,b,c)
0-cell 1-cell
2—0%/
3-cell 0-adjacent 1-adjacent 2-adjacent

Fig. 1. Top: A real ellipsoid with its octants (left) and the corresponding digital ellip-
soid for a = 9,b = 7,c = 4 (right). Bottom: Different adjacency relations.

For k£ =0,1,2, a k-path means a sequence of voxels where every two consec-
utive voxels are k-adjacent. A voxel set S is k-connected if every two voxels of
S are connected by a k-path. Let S’ be a subset of voxel set S. If S\.S’ is not
k-connected, then the set S’ is said to be k-separating in S. A voxel p of S’ is
a simple vozel if S’ \ p is also k-separating in S. The set S’ is k-minimal if it
is k-separating in S and does not contain any simple voxel. In particular, S’ is
2-minimal if it is 2-separating in S and does not contain any simple voxel. In the
context of our work, if we consider S’ as the digital ellipsoid and S as Z2, then S’
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Fig. 2. The principle of our algorithm: construction of £3(9,7,4) from the inverse
projection of digital elliptical discs, €;5,,(9,7), &,,(7,4), and &;,(9,4).

is 2-minimal in Z? (Definition 1). Removal of any voxel from a 2-minimal surface
produces a tunnel in the surface, thereby destroying the 2-separating property
of the digital surface [9].

Between two points p(i, 7, k) and p/(i’, j', k') in R?, the respective x-distance,
y-distance, and z-distance are given by d,(p,p’) = |i — |, dy(p,p’) = |j —
J'l, and d.(p,p’) = |k — K’|. Consequently, the isothetic distance between
p and p’ is taken as the Minkowski norm [13], given by do(p,p’) =
max{d(p,p'),dy(p,p’),d.(p,p')}. The isothetic distance of the point p(4, j, k)
from a surface I' is given by d, (p,I") = min{d,(p, I"),dy(p,I"),d.(p,I")}; here,
d.(p, ") = d(p,q) if there exists a (the nearest, if there is more than one)
point ¢(z,j,k) on I', and oo otherwise; similarly, dy(p,I") = dy(p,q) if there
exists a point ¢(4,y, k) on I', and oo otherwise; and d,(p, ") = d.(p, q) if there
exists a point ¢(i,7,2) on I', and oo otherwise. Following this definition, the
isothetic distance between of a point p from a real ellipsoid E3 is given by
di (pa EB) = min{dz(pv E3)7 dy(pv E3)7 dz(pv E3)}

1.2 Digital Ellipsoid and Its Octants

We denote by Fy, Fy., and F,, the zy-, zz-, and yz-coordinate planes, respec-
tively. We denote by E3(a, b, ¢) the real ellipsoid that follows Eq. 1. Its projections
on Fgy, F,,, and F,, are 2D ellipses, which are denoted by E,,(a,b), E.(a,c),
and E,, (b, c), respectively. The respective digital ellipses of these 2D ellipses are
denoted by &;y(a,b), E-(a,c), £,.(b, ).

We denote by E:EZ) (a,b) the arc of the digital ellipse &y (a,b) lying in the
t-th quadrant, where 1 < t < 4. For ¢ = 1 in particular, &EZ) (a,b) contains all
integer points of £, (a,b) with x,y > 0. As explained in [16,19], a digital ellipse
in canonical form is 4-symmetric by constitution, as it comprises four symmetric
digital arcs lying in four quadrants. Hence, each digital elliptical disc (i.e., a
digital elliptical disc given by the union of the digital ellipse and its interior
integer points), namely £f , X, . or £F,, is also 4-symmetric on its containing

zys “xzo Yz
plane. An example is shown in Fig. 2.
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—

Fig. 3. Hemi-ellipsoid H3(9,7,4). Left: yellow = voxels with one axis-parallel distance
(dz,dy, or d.) from E3 < %, saffron = with two axis-parallel distances < %, red = with
max{dy,dy,d.} < 1. Right: yellow = d, < 3, white = d, > . (Color figure online)

We use the notation E3 or &3 instead of Es(a, b, ¢) or 3(a, b, ¢), for notational
simplicity. Similar simplicity is also followed for other notations whenever it is
clear from the context.

A digital ellipsoid means a set of voxels or integer points obtained by dis-
cretization/voxelization of a real ellipsoid. Based on the topological frame-
work of discretization, a digital ellipsoid can be modeled as naive, standard,
or supercover—the three usual models found for other geometric primitives like
plane or sphere. Out of these three, naive model is the thinnest and it is the
model we consider in our work. Consequently, for our work, we define a digital
ellipsoid as follows.

Definition 1. A digital ellipsoid E3 is a 2-minimal set of voxels such that
max d, (p, E3) is minimized.
pEE3

With respect to the three coordinate planes, a real or a digital ellipsoid can
be divided into 23 = 8 symmetric octants. We denote the ¢-th octant of £ by
é’ét), where 1 < t < 8, and represent it by a 3-bit number of value ¢ — 1, as
shown in Fig. 1. Owing to the 8-symmetry, we characterize only the first octant
5351)(0 <z <a,0<y<b0< 2 <) of a digital ellipsoid, discretize it based on
this characterization, and then take the reflection of the resultant set about the
coordinate planes in order to construct the full ellipsoid.

2 Inverse Projection

The projection of a digital ellipsoid on each of the coordinate planes is a digital
ellipse. Further, as we show in this section, each coordinate plane acts as a
functional plane for a subset of the voxel set comprising the digital ellipsoid.

2.1 Functional Plane

A coordinate plane is said to be functional to a vozel set S if every two voxels in
S have distinct projections (pixels) on that plane [5]. We extend this to define
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the functional plane(s) of each voxel p in S. For this, we denote by AP (p) (resp.,
Ag(f) (p) and Ag)(p)) the pair of 2-adjacent voxels of p along z-axis (resp., along
y- and z-axes). A coordinate plane, say F,, is said to be functional to a vozel
p € S if and only if A (p) NS = . That is, F,, is functional to p if and
only if its projection on Fy, does not coincide with that of any of its 2-adjacent
voxels from S. Clearly, each of the coordinate planes is functional to p if and
only if it has no 2-adjacent voxel in S, and none is functional to p if A;(f)(p) ns,

A?(f) (p)N S, and NS (p) NS are all nonempty. In Fig. 3, we have shown a hemi-
4
ellipsoid /hemispheroid given by Hs = |J Sét). We have the following theorem
t=1
on the functional-plane property of digital ellipsoid.

Theorem 1 (Voxel functional plane). For each vozel of a digital ellipsoid,
there exists at least one functional plane.

Proof. Let p be a voxel in £. Assume that none of the coordinate planes is
functional to p. So, p has at least one 2-adjacent voxel in & from each of
Ag),Agf),Ag). Let these voxels be pg,py,p., respectively. One such configu-
ration (out of eight possible) is shown in the inset figure. Clearly, if p is removed
from &3, then &; still remains 2-separating, as the set {p,, py, p. } does not permit
any 2-path to pass through. This means &3 is not 2-minimal, which contradicts
Definition 1, whence the proof. O

We use Theorem 1 for construction of a digital ellipsoid using
an inverse projection of the digital elliptical discs from their cor-
responding functional planes, that is, from Z2 to Z3. For construc-
tion of the digital elliptical discs, we use a standard algorithm, e.g.,
[12,16,19]. The mapping from digital ellipsoid to a elliptical disc
on its functional plane is surjective in nature, wherefore an inte-
ger point of the elliptical disc does not necessarily map to a unique
voxel of the digital ellipsoid during inverse projection. Herein comes the chal-
lenge of identifying the right voxels while constructing the digital ellipsoid by
inverse projection from three functional planes. For this, we define the voxel set
E ={peZ:d.(pEs) < %} We first show that &£ is 2-separating and
thereby contains &3 as its subset. Subsequently, on removing the simple voxels
from 5;' , we get £3. We first have the following lemma for this.

Lemma 1. If py, and pex are 2-adjacent to each other with py, in the interior
and pex in the exterior or on the surface of Es, then either d (pin, F3) < % or
d1 (pex, E3) < 3.

Proof. As pi, and pey are 2-adjacent to each other, we have d,(pin,pex) = 1.
Let, w.l.o.g., the respective coordinates of pi, and pex be (4,7, k) and (¢, 5,k +1).
Hence, if d. (pin, F3) > %, then d, (pex, E3) < % Since d | (pex, F3) < d,(Pex, E3),
the result follows. O

Theorem 2 (2-separating). The vozel set 5;“ is 2-separating and hence
tunnel-free.
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Proof. We prove by contradiction. Let us assume that £ is not tunnel-free.
Then there exists a 2-path in Z3 5;' connecting the interior and the exterior of
5;' . Let us consider one such 2-path p; ~» p,, where p; lies inside of F3 and p,
on the surface or outside of F3. The path p; ~» p, can be partitioned into two
sub-paths: p; ~ piy lying inside E3 and pex ~» p, outside Ej. Clearly, p;, and
Pex are 2-adjacent to each other. Hence, by Lemma 1, either p;, > % OT Pex = %,
which implies either p;, or pex belongs to Egr —a contradiction. a

To determine the necessary and sufficient condition of deciding whether a
voxel is simple in 5;' , we need the following theorem.

Theorem 3 (Simpleness). A vozel p in £ is ‘simple’ if and only if

a2p) = [aP@) nef| AP e e |- AQpne| 21 @

Proof. For the forward proof, let p satisfy Eq. 2. Then by this equation, each of
the sets Ag)(p), A(yz) (p), and AP (p) contains at least one voxel from & \ {p},
or equivalently, there is at least one 2-adjacent voxel of p along each of the three
principal (i.e., z,y, 2) directions. Hence, removal of p from & does not give
rise to a 2-path, since the 2-adjacent voxels of p along either of these directions
around p does not permit any 2-path to cross the surface of F3. Thus, p is a
simple voxel.

Conversely, if p is a simple voxel, then it must have at least one 2-adjacent
voxel in each of the three sets, AP (p) N &S, A?(f) (p)N &, AP (p) N &S, because
otherwise the union of these sets would contain a voxel ¢ such that d, (g, E3) < %,
which violates the definition of Egr . This sets Eq. 2 in place. O
Theorem 4 (Digital ellipsoid). The vozel set comprising a digital ellipsoid
s given by

& = {p (B <3) A (AL ) = 0)}. (3)

Proof. Follows from the definition of £, its 2-separating property (Theorems 2
and 3). O

2.2 Isothetic Distance

The relation between the isothetic distance of a voxel of a digital ellipsoid and
its functional plane aids in framing the integer intervals that are required during
construction of the digital ellipsoid. We first put here the following lemma.

Lemma 2. The azis-parallel distances of each voxel p(i, j, k) € E3(a,b,c) from
Es(a,b,c) are given as follows.

d:(p, E3) :Hz| - ﬁ\/b202 — 252 — bzkgy if Fy, is functional. (4a)
dy(p, E3) :H]\ — %\/a262 — %2 — a2k2| if Fy, is functional. (4b)
d.(p, E3) :Hk| - ﬁ\/GQbQ — b2 — a2j2’ if Fyy is functional. (4c)
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Proof. The above equations can easily be derived from the definition of distance
metrics given in Sect. 1.1, using elementary algebraic steps. a

Using Lemma 2, we get the isothetic distance for each voxel p in the dig-
ital ellipsoid & from the corresponding real ellipsoid E3, which is given by
di(p,E3) = min{d,(p, E3), dy(p, E3), d.(p, E3)}. However, for efficient com-
putation, we do not directly use this distance metric in the algorithm for con-
struction of £5. Instead, we use the inverse projection from the digital elliptical
discs on the three coordinate planes as follows. The inverse projection of a pixel
in a digital elliptical disc is a voxel set that satisfies Eq.3. Union of all these
voxels obtained by inverse projection yields the required solution. The rationale
lies in the following theorem.

Theorem 5 (Inverse projection). If a vozel p € 5351) has more than one
functional plane, then the inverse projections of its corresponding pizels from
these functional planes map to a unique and same vozel in Eél), which is p.

Proof. Let, w.l.o.g., both Fy, and F,, be functional to the voxel p € 5351). Let
the respective projections of p on these two functional planes be p’ and p”.
Since inverse projection maps a pixel to one or more voxels satisfying Eq. 3, the
inverse (p')~! of p’ would belong to £ and thus would be non-simple. Hence, as
per Eq. 4c, the z-coordinate of (p’)~! can be positive or negative, which implies

it is a unique voxel in 53(,1). A similar argument holds for p too, whence (p')~! =
(p//)—l =p. O

3 Integer Intervals

We derive here the recurrences on integer intervals that are used in the algo-
rithm for digital ellipsoid construction discussed in Sect.4. As the ellipsoid is

8-symmetric, we discuss here the result for Sél).

Lemma 3. F,, is functional to a vozel p(i,j, k) € 83(,1)((1,6, ¢) if and only if p
s non-simple and

4a*b*c? — (2abk + ab)? < 42 (b*i* + a?5?) < 4a*b*c? — (2abk — ab)*. (5)
Proof. By Theorem 4, the two conditions “p € Eél)” and “Fy, is functional”

equivalently imply that p is non-simple and d,(p, E3) < % By Lemma 2 and
Eq.4c, d.(p, E5) = ‘k - ﬁ\/ﬁb? —b22 — a2j2‘. So, equivalently,

1 c 1

< k= —/a?h? —b2i2 — @242 < =

5 ab\/a A a<) <2
— k—1<£\/a2b2—b2i2—a2j2<k+}
2 " ab = 2

= ab(2k — 1) < 2¢v/a2b? — b%i% — 0252 < ab(2k + 1)
= 4a’b*c® — (2abk + ab)? < 4c*(b%i% + a*5?) < 4a*b*c® — (2abk — ab)?,
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as a, b, c,1i,j, k are all integers. O

In line with the above theorem, the following two corollaries are symmetri-
cally provable.

Corollary 1. F,, is functional to a vozel p(i,j, k) € Eél)(a, b,c) if and only if
p is non-simple and
4a?b?c? — (2bci + be)? < 4a?(c?5? + b2k?) < 4a?b*c? — (2bci — be)?.

Corollary 2. F,. is functional to a voxel p(i,j, k) € Sél)(a, b,c) if and only if
p is non-simple and
4a?b%c? — (2acj + ac)? < 4b%(c?i? + a?k?) < 4a®b*c® — (2acj — ac)?.

We refine Lemma 3 to deduce the recursive intervals, as stated next.

Theorem 6. F,, is functional to a vozel p(i,j,k) € Es(a,b, c) if and only if p
is non-simple and 4c?(b%i? + a252) lies in the interval I, = [upn, vy = up + 1),
where k =c—mn, n >0, and u, and l,, are given as follows.

[ 4a®b?c® — (2abe + ab)? if n =0
Un = Up—1 + L1 otherwise

Iy =

{8a2b26 ifn=0

l,—1 — 8a®b? otherwise

Proof. We get ug and [y corresponding to n = 0 by substituting k& = ¢ in Eq. 5.
To get the recurrence of [, for n > 0, observe that I, = 4a?b*c* — (2ab(c —
n) — ab)? — 4a?b?c? + (2ab(c — n) + ab)? = 8a?b*(c — n), as per Eq.5. Hence,
ln_1—1lp = 8a*b?*(c —n+1) —8a?b?(c —n) = 8a?b?. To get the recurrence of u,,,
we substitute k = ¢ —n in Eq.5 to get v,_1 = 4a?b*c?* — (2ab(c — n + 1) — ab)?,
and substitute k = ¢ —n to get u,, = 4a%b*c®> — (2ab(c —n) +ab)? = v,,_1. Thus,
Up = Vp—1 = Up—1 + ln_1. |

For other two functional planes, we have the following corollaries.

Corollary 3. F,. is functional to a vozel p(i, j, k) € E(a,b,c) if and only if p
is non-simple and 4a>(c?52 + b*k?) lies in the interval I, = [un, vy = up + 1),
where i = a—n, n >0, and u, and l, are given as follows.

[ 4a®b?c® — (2bca + be)? if n =0
tn = Up—1 + lp_1 otherwise

Lo 8b%c%a ifn=20
") 1,_1 — 8b2¢? otherwise
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Corollary 4. F,, is functional to a voxel p(i,j,k) € Es(a,b,c) if and only if p
is non-simple and 4b*(c%i? + a®k?) lies in the interval I, = [y, vy = Up + 1),
where j =b—mn, n >0, and u, and l,, are given as follows.

- 4a?b%c? — (2ach + ac)? if n =0
L VA otherwise

L= 8a’c?b ifn=20
" Y U1 — 8a2c? otherwise

4 Algorithm for Digital Ellipsoid

As mentioned in Sect. 1, we consider the canonical form whereby the ellipsoid is
8-symmetric. The center can be an integer point, since it simply means a trans-
lation on the voxel set of & centered at o := (0,0,0). For simplicity, however,
we show here in Algorithm 1 the steps with center at o.

In Line 1 of Algorithm 1, we use three 2D arrays for £}, £+, and £;]. Their
respective sizes are (a + 1) x (b+ 1), (b+1) x (c+ 1), and (a+ 1) x (c+ 1).
They contain the pixel sets of 1st quadrants of the corresponding digital elliptical
discs on Fyy, Fy., and F,,. These pixel sets are generated by the ellipse-drawing
algorithm mentioned earlier.

In Lines 2-4, the procedure GenerateVoxels maps the pixel sets S;;, 5;;1,
Exl to (partial) voxel sets of the 1st octant of the digital ellipsoid. Theorem 6,
Corollaries 3 and 4 are used here.

A demonstration of the algorithm is shown in Fig.4 for construction of
&5(9,7,4). The results produced by the procedure GenerateVoxels (Lines 2—4)
are shown step by step. In Line 5 of Algorithm 1, the full voxel set is generated
by symmetry.

Procedure GenerateVoxels first initializes the necessary parameters (Line 1-
Line 3) to generate voxels from &' (here ‘s’ signifies the coordinate plane).
Procedure InitializeParameters is called for this initialization. In Line 4 of
GenerateVoxels, the first voxel for 5§1) is added, based on the value of the
octant ¢. In the outer while loop (Line 5), 4 is incremented at unit step along

a particular axis of £1. In the repeat-until loop (Line 7), j is incremented at

Algorithm 1. DiGITAL ELLIPSOID (int a,b, ¢)
1 Construct &5, Ex1,Ext on Foy, Fy., Fy

2 Eél) «— GenerateVoxels(a, b, c, 8;;,0)

3 53(1) — Sél) U GenerateVozxels(b, c, a, 5;3, 1)

4 Eél) — 53()1) U GenerateVoxels(a, ¢, b, £1,2)
5
6

& — {(i,4,k) = (lil, ], |k]) € £}
return &3
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Procedure GenerateVoxels(a,b,c, £, 1)

int 10,5 —1,ku,vl,n—0m,ko ni—0,n; —1r;r;n
InitializeParameters(i,j, k,u,v,l,n, m,r;,7j,71,a,b,c)

mo < 0,[0 — l,k() — k

if t =0 then Sél) —{(0,0,k)} else if t =1 then é‘él) — {(k,0,0)} else
£ —{(0,k,0)}

W N =

5 while i < a do
6 while (u < m) A (m < v) A (k> 0) do
7 repeat
8 if £:'[{][j] = 1 then
9 if j =0 then
10 L k’o — k
11 if NotSimple(%, j, k,t) then
12 switch ¢ do
13 case 0
14 | &V — &M Ui k)
15 case 1
16 L 5351) — 53(1) U (k,1,7)
17 case 2
18 L 5351) — 5?(,1) U (3, k, j)
19 m—m+r;2n;+1),n; —n;+1,j —j+1
20 until m > v
21 k—k—1n<—n+1
22 %u<—u+l,l<—l—rl,v<—u+l
23 t—1i+1,5 — 0,n; < 0,mg «— mo+7r;(2n;+1),m «— mo,n; — ni+1,k — ko
24 UpdateParameters(u, v, k,n,a,b,c)
25 if (u>m)V (m > v) then
26 k—k—-1
27 UpdateParameters(u, v, k,n,a,b,c)
28 L | — lo — nr

29 return 5351)

Procedure InitializeParameters(i,j, k,u,v,l,n,m,r;,r;,7,a,b,c)
1k« c,u + 4a*b*c* — 2(abk + ab)?

2 v — 4a’b*c® — 2(abk — ab)?, m — 4¢*(b*i* + a?5?)

3 |« 8(12172c7 r, — 8a%b?

4 7 — 462b2,7"]- — 4c%a?

unit step along another axis of £1. And in the inner while loop (Line 6), k is
used to compute the value of the third coordinate—as the inverse projection—of
the current pixel (4, 5) of £21. The working mechanism of these loops is based on
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Procedure UpdateParameters(u, v, k,n,a,b, c)

1 u — 4a?b*c® — 2(abk + ab)?,v «— 4a®b*c? — 2(abk — ab)?
2n—c—k

Fig. 4. A demonstration of our algorithm.

Theorem 6, Corollaries 3, and 4. In the inner while loop, the condition whether
m lies in the interval [u, v) is verified. Inside the repeat-until loop, m is updated
with increasing value of j until m > v. Here £![i][j] = 1 (Line 8) means the
current pixel (i,7) belongs to £'. In Lines 13-17, the procedure NotSimple
verifies whether the current voxel is simple or not; if not, then based on the
value of ¢, the requisite voxel (4,7, k) or (k,,7) or (i,k,5) is added to 5351). In
Line 19, m is updated as j value is increased.

As initially j = 0, for n;+1 increments of j, m will be increased by r;(2n;+1).
Similarly, for n; + 1 increments of i, m will be increased by r;(2n; + 1). After
the repeat—until loop, k is decreased by 1, and the upper bound, lower bound,
and interval length of the interval are updated (Line 21-22). Outside of the inner
while loop (Line 6), i is increased by unity, and m is updated accordingly. Other
necessary parameters are updated in Line 23-28. UpdateParameters is called to
update the necessary parameters.

5 Concluding Notes

We have proposed here a proven algorithm for construction of the thinnest/2-
minimal model of digital ellipsoid. This is the first algorithm in the literature of
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digital geometry for construction of the thinnest model of ellipsoid in the integer
space and we would like to make further analysis of the algorithm for deriving
some tight bounds on the number of operations used in it.

As we have shown in this paper how topological analysis of digital ellipsoid
results in interesting characterization, which may also be explored further for
a deeper understanding of its geometric and topological properties. Although
several work have been reported in recent time related to voxelization of implicit
surfaces under different topological conditions, e.g., [11,17], construction of the
thinnest model of digital ellipsoid in the 2-minimal topology remained an open
problem, which is addressed by us in this paper. Apart from the 2-minimal
model, there are other models like ‘standard’ and ‘graceful’, which are also used
for voxelization of 3D primitives like line, plane, and sphere [1-6,8,10,15,18].
Designing efficient algorithms for these models of ellipsoid in the voxel space
also deem to be useful and can be pursued in continuation and enhancement of
the work proposed in this paper.
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Abstract. Weighted (or with other name, chamfer) distances on the
triangular grid was introduced recently based on the three well-known
neighborhoods. By having various values of the three used weights, the
approximation of the Euclidean disks are shown, based on the isoperi-
metric ratio. Our results are also compared to similar results on the
square grid. It is shown that the triangular grid, with three weights,
overperforms the quality of the approximation on the square grid by
both two and three weights (i.e., by the traditional 3 x 3 and the 5 x 5-
neighborhoods, respectively) in terms of maximal and average relative
errors.

Keywords: Digital distances - Chamfer distances : Digital disks -
Approximation of the Euclidean distance - Non-traditional grids - Cham-
fer polygons

1 Introduction

Distance functions and metrics play important roles in several fields including
theoretical ones, e.g., mathematics and geometry, and also, in applications in
engineering and various disciplines related to computer science. The most usual
metric is the Euclidean distance and that is the base of Euclidean geometry.
However, in image processing and computer graphics discrete space (based on a
grid /tessellation) is preferred, and fast computation is needed. These discrete or
digital spaces have some inherently different properties from the Euclidean space.
In the Euclidean space there are infinitely many distinct points between any two
distinct points; opposite to this, there are neighbor points (pixels) in digital
spaces. The points of a discrete grid having Euclidean distance r from a given
point of the grid (e.g., the Origin) do not form a circle (in the usual sense), but
usually they form a small finite set that is not connected in any sense. Therefore,
digital distances are of high importance; they are used in various applications
instead of the Euclidean distance [11]. Digital disks, in this paper, are based
on digital distance functions. We may mention here, for the completeness that
digital versions of disks can also be obtained by digitizing Euclidean circles/disks
[11,18] they are the “digitized” circles and disks and they are not the topic of
this paper.

© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-59108-7_5
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There are three regular tessellations of the plane: the square, the hexagonal
and the triangular grids. The points (pixels) of these regular grids are usually
addressed by integer coordinate values. In the square grid, two independent
coordinates are used. The pixels of the hexagonal grid can be addressed with
two integers [12], or with a more elegant solution, with three coordinate values
whose sum is zero reflecting the symmetry of the grid [10,13]. Similarly, in the
triangular grid three coordinate values can effectively be used which are not
linearly independent [15,16,29]; and in this way, the three types of neighborhood
([7], see also Fig. 1), are easily captured in a mathematical way.

Digital distances are path-based and they are defined by connecting pix-
els/points by paths through neighbor pixels/points. The cityblock and the chess-
board distances [27], the first two digital distances, are based on the number of
steps connecting the points where 4-neighbor or 8-neighbor pixels are considered
in each step on the square grid, respectively. Since they are very rough approxi-
mations of the Euclidean distance, the theory of digital distances are developed
in various ways. As already recommended in, as a kind of alternating use of the
two neighborhoods, the neighborhood sequences allow that the steps may vary
in a path [5,19]. In this way, a family of octagonal distances is obtained, with
octagons as digital disks [6,9]. Weighted or chamfer distances were also intro-
duced to have a good approximation to the Euclidean distance, and at the same
time, to have low computational cost, for e.g., distance transforms [1,2,28,30].
It is well known that the approximation of the Euclidean disk/distance becomes
better and better when larger and larger neighborhood is allowed, i.e., a larger
number of weighted steps are used (see, e.g., [3]). With the traditional two neigh-
borhoods, with two weights (one for the cityblock, and other for the diagonal
movements) the obtained disks are octagons. Instead of this, 3 x 3 neighbor-
hood, 5 x 5 neighborhood is introduced and used giving a third weight on knight
movements. In this way, the digital disks become hexadecagons. Further, by 7x 7
neighborhood and 5 weights, 32-gons are obtained, etc. We refer to [3] where opti-
mal weights are computed for various sizes of neighborhood. We just mention
here, that the weighted distances and the neighborhood sequences could also be
mixed, e.g., the weight sequences were introduced in [26] to have an errorless
estimation on a perimeter of a square (with enough large number of weights,
but with only two types of neighborhood, i.e., using 3 x 3 neighborhood only).

Another way to obtain better digital distances, e.g., the lower their rotational
dependency, is based on non-traditional grids. Both the hexagonal and the tri-
angular grids have better symmetric properties than the square grid has: they
have more symmetry axes and rotations with smaller angles already transform
the grid into itself. The theory of distances based on neighborhood sequences on
the triangular grid is also well developed. Digital circles/disks and their types
are analyzed in [17]; while the approximation of the Euclidean circles/distance
is done in [25] using the dual grid notation. The weighted distances have also
been investigated, recently, on the triangular grid [21].

Some of the goodness measures of digital distances used in various applica-
tions give values how good are the approximations of the Euclidean distance by
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them [4]. It can be done by measuring the compactness ratio of the polygons
of the digital disks obtained by digital distances. It is known that the (Euclid-
ean) circles/disks are the most compact objects in the plane, the ratio of the
perimeter square over the area, is 4w 12.566 for them, the smallest among all
objects’. By measuring this value for the digital disks, the approximation of the
Euclidean distance is measured. The highest compactness of the circles can also
be used to define another type of digital disks: the most compact grid objects
try to inherit this characteristic property of the Euclidean circles/disks; they are
characterized in [22,23,31] on various grids. Digital disks (spheres) are analyzed
in [14] in nD rectangular grids based on weighted distances. Other frequently
used measure is the maximal absolute error and its normalized version [2,3]
comparing the chamfer polygon to the Euclidean disk. In this paper, the com-
putation of chamfer polygons (digital disks), and some notes and comparisons
on the approximation of the Euclidean distance are provided.

2 The Triangular Grid

In this section, we briefly recall the description of the triangular grid and the
definition of weighted distances.

The triangular grid is a regular tessellation of the plane with same size equi-
lateral triangles. Actually, it is not a lattice, since there are grid vectors that do
not transform the grid to itself. This is due to the fact that there are two types of
orientations of the triangles. The grid is described by three coordinate axes x, ¥,
and z (see Fig.1, right). In this paper we refer for the triangle pixels, as points,
and usually, we will use their center, i.e., the dual, hexagonal (also knows as hon-
eycomb) grid notation. Each point of grid is described by a unique coordinate
triplet using only integer values. However, the three values are not independent:
the sum of coordinate values can be 0 (even point, shape A) or 1 (odd point, V).
The vector through the mid-point of the edge to the opposite corner point is par-
allel/antiparallel with one of the axes (see also Fig. 1, right). Further we refer to
the set of points of the triangular grid by Z3 (Z3 = {(x,y, )|z +y+2 € {0,1}}).

There are three different types of widely used neighborhoods on the trian-
gular grid. (In the rectangular grid there are only two types of basic neighbor-
hood.) Two distinct points (triangles) are 1-neighbors iff they have a side in

ALL/N2,-1,0,
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1,0, 2,0,-1
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VAV VAN

1,0,-1\ /2,0,-2

-1\ A
02-1/\22
2.-1\ /02,

0.3,
13,2

, Y

Fig. 1. Type of neighbors (left); coordinate system for the triangular grid (right).
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common; they are strict 2-neighbors if there is a triangle which is 1-neighbor
of both of them; further, the two points are strict 3-neighbors iff they share
a corner, but they are not 1- and 2-neighbors. Two pixels are 2-neighbor if
they are strict 2-neighbors or 1-neighbors, and two pixels are 3-neighbors if
they are strict 3-neighbors or 2-neighbors. Formally: Let p = (p(1),p(2),p(3))
and ¢ = (q(1),¢(2),4q(3)) be two distinct points of Z3, they are m-neighbors
(m =1,2,3), if the following two conditions hold:

(1) |p(i) — q(i)] < 1 for every i € {1,2,3}, and

@) _ Ip(i) — a(i)] < m.

K3

Equality in the second equation defines the strict m-neighborhood relation.
In the following we describe some notations which are needed later on. By a-
movement, i.e., by movement with weight «, we denote a step from a point
to one of its 1-neighbors; by G-movement (i.e., by weight 3) a step to a strict
2-neighbor, and similarly by y-movement a step to a strict 3-neighbor point.
We say that two lanes are parallel if the same coordinate is fixed, e.g., the lane
{p(p(1),0,p(3))} is parallel to {p(p(1),3,p(3))}; both of them are perpendicular
to axis y.

Let p = (p(1),p(2),p(3)) and g = (¢(1),4(2),¢(3)) be two 3-neighbor points,
then the number of their coordinate differences gives the order of their strict
neighborhood (as we have defined above). Weighted distances are path based
distances, thus we need paths connecting the points. A path from p to ¢ can be
defined by a finite point sequence p = py, ..., pn = ¢ in which the points p;_1
and p; are 3-neighbors for every 1 < i < n. Thus this path can also be seen as
sequence of n steps, such that in each step we move to a 3-neighbor point of the
previous one. The weight of the path is equal to any 4+ Bns +yns, where n; is the
number of steps to strict i-neighbors in the path (n = ny + ng + n3). There are
several different paths from p to ¢ with various weights. The weighted distance
d(p,q; «, B,7) of p and ¢ with weights «, 3,7 is the sum of weights of a/the
minimal weighted path between p and q. In this paper, the natural condition of
the weights, that is 0 < a < 3 < «, used. There are various cases regarding the
relative ratio of the weights (see [21]).

In this paper, somewhat complementing the results of [24], those cases are
considered which allow to use 1-steps and also 3-steps in the same paths. These
cases are proven to be more complex than the ones considered in [24] and, on
the other side, they provide much better approximations for the Euclidean disks
as we will show. Although most of our results are general (and we prove them
for the general case), we are particularly interested in the cases for which the
digital disks are not characterized yet: in the next sections, distances with weight
conditions:

- 2a>0,3a>y,a+ 08 >vand v+ a <243
- 2a < B and 3a > v

are considered.
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3 Preliminaries: Technical Notions and Notations

Now we recall our central concept: the chamfer balls (chamfer polygons) or
digital disks are defined as

D(O,T;O{,ﬁ,’}/) = {p | d(O,p;O{,ﬁ,’Y) S T}‘

Obviously they depend not only on the radius r, but also on the used weights
a, 3,7. The centre of the disk is the point o. Since we work in the dual represen-
tation of the triangular grid, the elements of Z3 will refer for the center points
of the triangle pixels.

Proposition 1. Let the length of the sides of each equilateral triangle on a grid
be one unit. Let the coordinate azes of the triangular grid go through on the origin
(as in Fig. 4). Let p = (x,y) be the Cartesian coordinate pair of the point in the
middle of the triangle addressed by p = (p(1),p(2),p(3)). Then the Cartesian
coordinates of p can be obtained in the following way:

— if p is a even point (p(1) + p(2) + p(3) = 0), then x = M and y =
E(2).

T2
—if p is a odd point (p(1) + p(2) + p(3) = 1), then & = % and y =
—Bp2) + L.

Proof. Tt is a simple geometrical calculation. a

In this way, we can easily define the convex hull of any (finite) set X of grid
points: let X C R? be the convex polygon with smallest area such that each
point of X is included in X. Formally:

X=¢>"Np | Y A=LX>0andp X
j=1 j=1

Further, the digital set X C Z3 is (digitally) H-conver if X = X NZ32 [8,11]. In
this paper we are interested in convex hulls of digital disks: D.

Let l,,p, be a straight line segment between p; and p. Let my,,, denote
the slope of that line segment connecting p; and pp. Further, let Sa ,, =
{p’ | p’ is inside or on the border of triangle A pog and p’ # p,p’ # q}.

Let L, _, denote the half-lane {p = (p(1),p(2),0) € Z3 | p(2) < 0}, that is
actually a half lane perpendicular to axis z (between the positive part of axis x
and the negative part of axis y) starting from o. Let L, denote the half diamond
chain {p = (p(1), — [ 22|, ~| 2 ]) € Z3 | p(1) > 0} which is a diamond chain
lying on the nonnegative part of axis z, see also Fig. 2(a).

Further, we define other subsets of the triangular grid:

SLoLe—y, =1p = (p(1),p(2),p(3)) | p(1) > 0,p(2) < p(3) <0} that is the set of
points between L, and L, _, including the points on the borders, see Fig. 2(b).
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Similarly, Sz, _,.._, = {p=(p(1),p(2),p(3)) | p(2 ) < 0,p(1) = p(3) = 0} as it
is shown in Fig.2(c). Let F' = Sr, ., USL, _,, denote one sixth of the
triangular grid and let W (r;a, 8,7) = D(o,r; [3, ) N F the part of the disc
inside this sixth. Now, let

Sa ={p=(p(1),p(2),p(3)) | r —a <d(o,p;, 3,7) <r,p € F}.

Let S,o = {p € W(r;a,3,7) | pis 1-neighbor of ¢ and g € Su} \Sa.

Let So = {p € W(r;a,$,7) | pis 1-neighbor of ¢,q € S o} \ (Sa U S a).
Further, this notation is continued for

S o= {p € W(r;a,,v) | p is 1-neighbor of ¢,q € Snila}\ (Snila U S%Qa).
Let So, = {p¢ D(0,7;c,0,7) | pis l-neighbor of ¢,p € F and q € S, }, see
Fig.2 (d). Let V be the set of corner points p of the polygon (i.e., p of the
convex hull D) in F. Since the symmetry of the grid, the digital disks and also
their convex hulls are symmetric. Therefore, in the following lemmas, we con-
sider only points in F' which gives a sixth of the grid such that each digital disk
(and its convex hull) has six similar, rotated parts. See, e.g., [20] for rotations
and other isometric transformations of the grid.

{97' z
b ¥
v

[}

é -
SAroq =

ﬁ

Fig. 2. Various notations: (a) SApoq7 pipes L—y, Lx,—y and Ly (b) Sr, rz,—y (C)
SLL*y’L_y (d) Sla7 Sa and Sal

Let us assume that the sidelength of the triangle pixels be 1 unit (in the
Euclidean plane R?). By using the dual grid notation, i.e., the center of each
triangle pixel instead of the pixel itself, a movement to a
— l-neighbor means a step by length @ ~ 0.57735,

— to a strict 2-neighbor means a step by length exactly 1, and

— to a strict 3-neighbor means a step by length % ~ 1.1547.

One may observe that in the triangular grid, the step to a strict 3-neighbor
has length twice than the length of a step to a l-neighbor. In some of our
examples the sidelength of the triangles, i.e., the length of the strict 2-steps may
be chosen not to be exactly 1 (unit).
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4 Digital Disks and Their Corners

In this section digital disks are described as convex hulls of the point sets reached
with paths having weights at most a given value, called, radius. This way, the
usage of dual representation of the triangular grid, i.e., the vertices of the hexag-
onal grid, allows us to compute standard geometric measures, such as the usual
perimeter and area of these objects. Thus let us consider the centers of the pix-
els instead of them (as we have shown already). The weights «, 5 and ~ can
have various relations defining various cases. In different cases different paths
become optimal, i.e., with minimum weight, and thus, the formula for the dis-
tance depends on the considered case. In some cases, only hexagons, enneagons
and dodecagons can be obtained [21,24]. Note that in the cases considered in
[24], digital disks with at most twelve corners are obtained. The formulae for
computing the weighted distance may depend not only on the weights, but on
the type (parity) of the points.

Let D(o,7;a, 3,7) denote the convex hull of D(o, r; v, 3,7) in R2. Since vari-
ous formulae are used for computing the distance d, convex hulls can be obtained
in various shapes. The relative values of the weights define the various cases.
In the following part we describe some of the shapes of the possible objects
D(o,7;a, 3,7). One of the characterization of these digital disks goes by mea-
suring their side lengths [, perimeters P, areas A, and thus, their isoperimetric
ratios k. The isoperimetric ratio is defined as kK = %2 which can be used to
compare and approximate the Euclidean circle.

Let df be the Euclidean distance of o = (0,0) and p = (z,y), then, obviously,

dF = /T .

Proposition 2. Let p € S o and q € S,, then, obviously, d(o,p;a,3,7) <
d(o,q;c, B,7). If p and q are 1-neighbors, then df < qu.

Proof. Suppose to the contrary that df > qu , then either

- d(ovp;aaﬁa’y) :d(07Q§aaﬂ,’Y)+Oé >1ror
~d(o,p;a, B,7) =d(o,q;0, 8,7) —a+B>r—aor
- (Op7 757 )*d(qu;aaﬂ,’y)*ﬁ+’y>rfa.

In each of these cases d(o,p; o, 3,7) > r or d(o,p; o, 3,7) > 7 — a, hence p € S,
or p ¢ D(o,r;a,3,v) which made contradiction with the assumption. O

Lemma 1. Ifp € F is a corner of D(o,7;a,3,7) (i.e., p€ V), then p € S,.

Proof. We show that any point p ¢ S, is not in V. Suppose that p € S ,. Let
q be a l-neighbor of p such that ¢ € S,. From Proposition 2, it is clear that
df < qu , therefore p cannot be a corner. With the same process it can be shown
that the other points of S o US,o U---US o (S o is the origin) have distance
less than r, but they cannot be a corner. Now suppose p € S,, and ¢ € S,.
Since p ¢ D(o,7; v, 3,7), therefore d(o, p; o, 3,7) > r and it cannot be a corner.
Hence each corner point (in F') belongs to S,. O
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Lemma 2. For any pointp € D(o,r;a,3,7), p € V if and only if there exist two
distinct points p1,p2 € D(o,7; ¢, 8,7), (p1 # p, P2 # p) such that p € SAp oy

Proof. Suppose p € Sa,, ,,, (P # p1,p # p2). It is clear that in this case p ¢ V/,
i.e., it is not a corner.

Now suppose p € D(o,r;a,8,7), p ¢ V. Considering the geometric shape of
D(o,r;a,8,7) = Sa.. U~--USAP% with p§ € V (for i = 1,...,n where

piorg —1oPn’

n is the number of corners). Hence, 3¢ such that p € SApeope. - O
k3 i+1

Theorem 1. D(o,r;a,ﬁ,v) is H-convex with every possible parameters o, 3

and 7.

Proof. Suppose that for a given «, 3,v and r the convex hull D is not H-convex.
Then, by definition, D # D NZ32 and 3p,q € D(o,r;a, 3,7) and p1,pa,p3 € V
such that lpg Nlp,p, # O and lygNlp,p, # O (see Fig. 3). Since Ip’ € Sp,, . such

that p’ ¢ D(o,7;a, 3,7) and that makes contradiction with Lemma 2, hence D

is H-convex. O
p1 P3
[
—
p q
D2
01

Fig. 3. Example for p’ € SApiops UL p' & D(o,7;,3,7). (Note that in this example

the used shape is not a disk.)

Lemma 3. Suppose p1,p2,p3 € So and mep, < Mop, < Mopy. If Mp,p, <
Mpyp, <0, then ps ¢ V.

Proof. If my,p, = mp,p, then py is on the line between p; and ps, therefore
p2 is not a corner. Suppose, NOW, Mp,p, < Mp,p,- SINCE P1,P2,P3 € Sa, then
p1,p2,p3 € D(o,750,8,7) and p» € Sa, ,,, (consider Fig.4), therefore by
Lemma 2, py ¢ V. O

Remark 1. If p1,p2,p3 € So and mp,p, < My, p,, then from geometry it is clear
that my,p, < My ps < Mpyp, (see Fig. 4).
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Fig. 4. Example for p2 € Sa, ,,,, hence it cannot be a corner.

Theorem 2. Let p € V and q € So,Mop < Mog. If V9" € S, mpg < My and
Mop < Moy, then ¢ €V and ﬂpc €V such that mep < Mepe < Meg.

Proof. Suppose to the contrary that Jp° € V such that me, < mepe < Myq,
then on the basis of Lemma 3, mppe < mpeq and by Remark 1, my,e < myp,
(see Fig.5(a)) which makes contradiction with the assumption. Now suppose to
the contrary that ¢ is not a corner and by Lemma 2 there exists p{ € V such
that ¢ € SAWJ%, Mop < Mepe and lpye is a side of D(o,r;a, 3,7). Since my,
is minimum slope, m;; < Mmype, this makes a contradiction with ¢ € Sﬂpopg

consider Fig.5(b)). Hence g € V. O
( g q

(a)

Fig. 5. Comparing slopes (a) mppe < mypg (b) mpg < mygpe, hence q ¢ SApopg'
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Algorithm 1. Algorithm of finding Corners

1: if (2a > B and 3a > vyand a+ > vand a+v < 28) or (2a < 8 and 3a > 7)
then

Find all points in S, according to Lemma 1

end if

Sort the points by their slope
Filtering the S, points according to Lemma 3
Find all corner points through the filtered S, points according to Theorem 2

Based on the previous results we have developed an algorithm to find the
corners of D(o,7;a, 3,7) with the mentioned conditions on the weights for any
nonnegative r: Algorithm 1 finds all corner points in F', actually, the set V.

Algorithm 1 has three main parts, finding all points in S, filtering them,
and finding all corner points among the filtered S, points. These three parts
work based on Lemmas 1, 3 and Theorem 2, respectively.

5 Approximation of Euclidean Disks

Digital disks in the triangular grid of various weights and radius are considered,
they can have many different shapes with various number of corners. In this
section we show some interesting ones. It is known that, in the square grid,
by considering three weights (5 x 5 neighborhood with 24 local neighbors) the
digital disks have 16 corners [3] (in special cases the polygon may be degenerated,
e.g., if all weights equal to each other, specially, a square is obtained). By five
weights, i.e., 7x 7 neighborhood, (maybe degenerated) 32-gons are obtained.
Comparing them to the digital disks on the triangular grid, we present the
convex hull of the digital disks D(o,723;8,15,18) having a large number of
corners, actually it has 63 corners.

One of the “goodness measures” of the digital disks is their isoperimetric ratio.
The digital disk D(o,892;29, 56, 68) has 42 corners and its isoperimetric ratio is
12.628 (see Fig.6), which measure is just 1.0049 times larger than the optimal
Euclidean value 47 (less than half a percent difference with the real disk).

The approximation quality and rotational dependency of digital distances are
usually measured by the help of the (maximum) absolute error, that is, the dis-
tance difference between the point on the circle of radius r and the corresponding
point on the boundary of the chamfer polygon [3]. When it is normalized by the
radius r, it yields the (maximum) normalized error:

_r—L(®)
Bo) = ",
where L(6) is the Euclidean distance between the origin and the point p on the
border of the convex hull of the digital disk such that the angle between the
line connecting the origin to point p and axis x is #. Normalized error is usually
measured in percentages. For 5 x 5 neighborhood, i.e., with 3 weights, in [3] the
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Fig. 6. The digital disk D(o0,892;29, 56,68) with x ~ 12.628.

D(0,15.4952;0.518,0.9728,1.167)

1.6000
1.4000 |

H
12000 |}
|

9% Absolute Error
o o r
2 » o
g & 3
8 8 8
s 8 38

0.4000

0.2000

0.0000 . * N
0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180
Angle

Fig. 7. The rotational dependency of the distances on the square and on the triangular
grids with three weights: the relative error in the function of the angle 6 € [0, 7]. The
solid graph (our results in the triangular grid) and dotted graph (best result on the
square grid, [3]).

optimal weights are computed to obtain minimal normalized error. For these
weights disks with average error 0.699% and with maximal relative error 1.356%
are obtained, this latter occurs at 13.5°. The value of this relative error as the
function of the degree 6 can be seen in Fig. 7 with dotted line.

In the triangular grid, with three weights, considering the usual 12 neighbors
of a pixel, the digital disk D(o,892;29, 56, 68) results the average error 0.464%
and the maximum relative error 0.792% that occurs at 46.1°. See also Fig. 7,
where the value of the error is shown for various direction comparing it also to
the previously mentioned best known case for the square grid.

Another digital disk D(o,1116;29, 56, 68) has 48 corners and its isoperimetric
ratio is k &= 12.636. It has the average error 0.577% and the maximum relative
error is 1.119% that occurs at 2.91°. Observe that the maximal error in this
example occurs in a different angle than at our previous example.
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Notice that the best approximations that we have shown are obtained approx-
imately at the condition o + v = /3 - 3.

6 Conclusions

Approximation of the Euclidean distance, circle and disk are frequent topics of
papers in digital geometry connected to image processing. By using neighbor-
hood sequences, the digital disks are octagons in the square grid [5,6] (hence
the name octagonal distances) and have at most twelve corners in the triangu-
lar grid [17]. The literature about weighted/chamfer distances is also rich. This
concept has appeared recently on the triangular grid, as well. In this paper, we
have continued the work on this field by providing weight triplets and digital
disks that give very good approximations of the Euclidean circle/disk. To com-
pare our results to the well-known results [3] on the square grid, we have shown
that by the traditional three neighbor relations, on the triangular grid, much
better approximations can be done than by optimal weights on the square grid,
even when the 5 x 5 neighborhood with three weights is used. Notice that for
obtaining these results only 12 neighbors are used on the triangular grid, while
the 5 x 5 neighborhood contains 24 neighbor pixels. One of the criteria of the
usage of some distance is their metric properties. In [21] it is proven that all
our weighted distances are metrics. Another criteria for the applications could
be the approximation quality with respect to the Fuclidean distance; results on
this line of research are shown here.

It would be an interesting future work to generalise the notions of the paper
from the regular triangular grid to grids that are obtained by triangulation.
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Abstract. Case-based reasoning object-matching consists of the methods at
choice when the objects can be identified by case models. The result of the
matching process is a number of hypotheses for the true shape of the objects.
These hypotheses have to be verified in a hypothesis-verification process. In this
paper we review what has been done so far and present our hypothesis-
verification rules. The rules are evaluated and the results are discussed and
presented in images. We consider two different hypothesis-verification rules,
one is based on set-theory and the other one is based on statistical measures.
Finally, we describe the results achieved so far and give an outlook about further
work.

Keywords: Case-based reasoning object-matching -  Hypothesis-test
verification - Set theory - Statistical measures

1 Introduction

Case-based object-matching [1] is the methods at choice when the objects can be
identified by case models. These case models can be learnt from the raw data by case
mining [2]. For the case-matching procedure, we need a proper similarity measure that
depends of the case model description. In our case, the case models are object contours
such as round, ellipse-like, or more fuzzy-like geometric figures. The chosen similarity
measure in this work is the cosine-similarity measure [6]. The properties of this simi-
larity measure have been described in detail in [6]. The case matcher takes the case
models and matches them against the objects in the image. In case the similarity measure
is high the found contour will be marked in the image. Often the matcher does not bring
out only one contour for an object, instead of the matcher fires several times at slightly
different spatial positions in the image for the same object. These multiple matches have
to be evaluated after the matching in a hypothesis verification procedure. The aim of this
hypothesis-verification procedure is to obtain only the considered object.

We describe in this paper what kind of hypothesis verification methods we have
developed and tested on our image database. The state-of-the-art of hypothesis veri-
fication methods is described in Sect. 2. In Sect. 3 we describe the hypothesis
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generation and the problems concerned with it. In Sect. 4 we describe kinds of
hypothesis-verification based on Set Theory. Hypothesis-verification rules based on
statistics and results are given in Sect. 5. Finally we summarize our work in Sect. 6 and
we give an outlook to further work on improvements of the matching results.

2 State-of-the Art

The aim of the hypothesis verification is to decide whether a match can be accepted as
correct or not. Therefore hypothesis verification is closely related to the object
recognition process. In literature we can find different approaches for this process.
Grimson and Huttenlocher [1] as well as Jurie [2] and Kartatzis et al. [3] refer to
features in the form of points or line segments. The common target of all these
researchers is to find the best pose for the detected data features. However, all papers
follow different strategies: Grimson and Huttenlocher [1] focus on the question how
random matches can be prevented. They developed a formal means for finding the
fraction of model features that have to be evaluated in order to ensure that the match
occurs only with a given probability at random. The derivation of this fraction is done
in three steps whereas the type of feature, the type of transformation from model to
image and a bound on the positional and orientational error are known. First for every
pairing of a model feature to data feature the set of transformations is determined. This
set defines a particular volume in the transformation space. In the next step the
probability of a common point of intersection between /and more volumes is calcu-
lated. This probability corresponds to match of at least [ pairings of model and image
features. Last a second probability that describes that / or more volumes will intersect at
random, is used to specify a threshold for the fraction of model features that have to be
evaluated at least in order to ensure that the probability of a random match is lower than
a given value.

The aim of the research of Jurie [2] is to find the pose of the model features that best
matches the data features. The pose hypotheses are generated by correspondences
between the model and the data features. Early researches propose to evaluate only
some correspondences in order to find an initial pose hypothesis P that is refined by
iteratively enlarging the number of correspondences. Jurie [2] describes that this way of
hypothesis generation and verification is not optimal. Therefore the paper suggests the
opposite approach: A pose space is generated from different model-data-pairings.
A “box” of the pose space is computed including the initial position P that is large
enough to compensate the data errors. Assuming that the distribution of
model-data-correspondences is Gaussian, the maximal probability of the object to be
matched is determined. Then the box can be refined. The process repeats until the
“box” only contains one pose.

A simpler method of model-based pose estimation and verification is described in
Shahrokni et al. [7]. They deal with the automatic detection of polyhedral objects.
Hypotheses are generated by the knowledge-based connection of corners and line
segments. The model and the transformed hypotheses are evaluated with the method of
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the least squares. The best hypothesis minimizes the sum of squared differences
between the model and the transformed hypothesis.

Katartzis et al. [3] discuss the automatic recognition of rooftops, which are char-
acterized by lines and their connections. After detecting the line segments in the image,
they are grouped in a hierarchical graph. The highest level of the hierarchy contains
closed contours. Every node of the graph is assigned a value that on the one hand
assigns the saliency of the hypothesis and on the other hand represents the likelihood of
the presence of a 3D-structure, which depends on domain-specific knowledge. Based
on the hierarchical graph is defined a Markov Random Field (MRF). By maximization
of the a posteriori probability of the MRF for the concrete graph a consistent config-
uration of the data is found.

In general the verification process for object hypotheses based on line segments is a
widely discussed field.

An approach that totally differs from the discussed ones is given in Leibe et al. [4].
The heart of the described object recognition system is a database with different
appearances of parts of the object that should be recognized. Additionally an “Implicit
Shape Model” is learnt in order to combine the parts to a correct object. If multiple
objects are located in the image then some hypotheses may overlap each other so that a
verification step is required. The method follows the principle of Minimal Description
Length (MDL) that is borrowed from the information theory. The description length of
a hypothesis depends on its area and the probability that the pixels inside the hypothesis
are no object pixels. The description length of two overlapping hypotheses is generated
in the same way. From the resulting values is concluded whether two overlapping
hypotheses refer to two objects or only to one.

3 Hypothesis Generation and Problems

3.1 Hypothesis Generation

In this Section, we want to give you an overview about the model-based object
recognition method that we use to generate our hypotheses. The method is extensively
discussed in Perner and Buehring [5].

A model-based object recognition method uses templates that generalize the
original objects and matches these templates against the objects in the image. During
the match a score is calculated that describes the goodness of the fit between the object
and the template.

We determine the similarity measure based on the cross correlation by using the
direction vectors of an image. This requires the calculation of the dot product Iy
between each direction vector of the model niy = (vk,wk)T, k=1,...,n, and the

. . g T
corresponding image vector iy = (di, e;) " :

-

I = <’7'lk,?k> =iy -k = -di+wi-e), k=1,...,n (1)
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Note that the dot product Iy (see Eq. 1) takes also into account the length of the
vectors 7 and ?k. That means that Zk is influenced by the intensity of the contrast in the
image and the model. In order to remove this influence, the direction vectors are
normalized to unit length by dividing them through their gradient:

B I’?lk ?k N ﬁik '?k _ Vi * dk+Wk * €k o
h=(—=—, =) =— = , k=1,...n (2)
Wl il /Wl - il Arewg - Ja2 +

The score I, (see Eq. 2) takes into account only the directions of the model and the
image vector, i.e. it is invariant against changes of the contrast intensity. We can get the
angle between the direction vectors by determining the value of ;. Therefore we can
conclude that the value of [; ranges from —1 to 1. The vectors 71, and i have the same
direction if [, = 1, the vectors are orthogonal if /; = 0 and both vectors have opposite
direction if /; = —1. In the rest of the paper we say that the value of [, is the local
similarity score of the two direction vectors 7, and ?k.

Usually, we are mainly interested in the similarity score between the complete
model and the image. We want to define this global similarity scores, between the
model and the image as the mean of all local similarity scores:

1 n
a=13 o)
k=1

Just like the local similarity score [, the global score s; is invariant against illu-

mination changes and it ranges from —1 to 1. In case of s; = 1 and s; = —1 the model
and the image object are identical. If s; = 1 then all vectors in the model and the
corresponding image vectors have exactly the same direction. If s; = —1 then all the

vectors have exactly opposite directions, that is only the contrast between the model
and the image is changed.

In general we have to subdivide between global and local contrast changes. If the
contrast between the model and the image is globally inversed then all the model and
image vectors have opposite directions. If the contrast is locally inversed then only
some model and image vectors have opposite direction. With some little modifications
the similarity measure s; becomes invariant to global contrast changes (see Eq. 4) and
local contrast changes (see Eq. 5), respectively.

1 n
= Z I (4)
=

Sy =

1 n
ss="> il (5)
k=1
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In contrast to range of s, the values of s, and s3 are non-negative.

The aim is to store only one model for objects with similar shapes of different scale
and rotation. Therefore a transformed model must be compared to the image at a
particular location. The value of arccos s, indicates the mean angle between the model
and the image vectors.

3.2 Kinds of Hypothesis Verification Based on Set-Theory

The matching process determines each possible match between the image pixels and
the model. In the following we consider the found object as a hypothesis. To each
hypothesis is assigned a matching score based on the similarity measure s3. The score
from the observation of Fig. 1 we can see that the models often match the same object,
i.e. we have a superimposition of models. All the hypotheses in this image have scores
greater than 0.8. Now we need to find a rule which allows us to remove determines the
similarity between the model and the image pixels. It can range from O to 1 whereas the
value of 1 says identity and the value of O dissimilarity. By defining a threshold for the
score we can exclude hypotheses. This is the simplest hypothesis verification process.
If the threshold is set to 0.8 then 734 hypotheses remain. They are shown in Fig. 1 false
hypotheses. The hypotheses in this particular case overlap, touch or are inside of each
other. From that we can develop special relationships of the hypotheses.

et

a. Model | b. Original Image

c. Hypothesiz‘é”d Objects

Fig. 1. Contour Model, original image and hypothesized objects.

The definition of the relationships is based on two hypothesized objects A and B. S
(A) is the set of all image pixels that are inside the contour of the object A including
also the image pixels of the contour. Equally, S(B) is the set of all image pixels inside
the contour of object B including all image pixels of the contour. We want to distin-
guish between three relationships that are described in Table 1.

Determining the number of common pixels of every pair of hypotheses we con-
clude to their relation. In Sect. 4 we analyse the generated hypotheses using the defined
relationships.
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Table 1. Relationships between two Hypotheses.

Relation Figure Description
a. Inside We say that the set S(B) is inside the set S(4) if all
elements that are included in the set S(B) are also

included in the set S(A), i.e. S(B) c S(A) and
there is

S(4)ns(B)=B
and S(4) L S(B) = S(4).
We say that the sets S(A4)and S(B) overlap each
other if they have some equal elements, i.e.

S(4)nS(B)= @, S(4)~S(B)= S(4)
and S(4)S(B) = S(B).

b. Overlapping

c. Almost Inside We say that the hypothesis B is almost inside the
hypothesis A4 if almost all elements of S(B) are
also elements of S(4), i.e.

S(A)nS(B)= @, S(4)S(B)= S(4)
and S(4)n S(B)= S(B)
and |S(4)S(B) ~|S(B)
and|S(4)US(B) ~[S(4) .
This relation is a special case of the relation
“overlapping”.
We say that hypotheses 4 and B are touching if
their contours C(4) and C(B) have some equal
elements, whereas the equal elements are
neighboured. Touching Hypotheses are a special
case of overlapping hypotheses. But it is also
possible that two sets are touched and one set is
inside the other set.

d. Touching

sl )

4 Results

This Section focuses on the reduction of initial hypotheses.

4.1 The Relationship “Inside”

In this Section we want to investigate in the relationship “inside” (Table 1a). Given a
sorted list' of hypotheses, we first extract the hypothesis pairs that fulfil the relationship
“inside” (see Fig. 2b). From the 734 hypothesized matches we can create 138 hypotheses
pairs that fulfil the relationship inside, i.e. one of both hypotheses is totally overlaid by the

! The matching process lists all matched objects sorted by the scale whereas objects with the same
scale are sorted by the rotation.
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other. Note that these pairs are only based on 136 different hypotheses. Thus we conclude
that some hypotheses with high area overlay more than one smaller hypothesis. In other
words we can say that most of the hypotheses are involved in more than one pair.

For the reduction process we rule that the hypothesis with the higher matching score
remains while the other hypothesis of this pair is removed. Since the removed hypothesis
often is a partner in more than one pair, for some hypotheses there will be no other correct
“inside” partner. That is in practice that the number of hypotheses pairs may decrease for
more than one pair. We want to illustrate this fact based on Fig. 2: We obtain a reduction
of 67 hypotheses (Fig. 2a and d) if we successively remove the “inside” partner with the
lower score. Considering the hypotheses that are used to create correct “inside” pairs
(Fig. 2b) and their remaining partners (Fig. 2c), gives a reduction by 95 hypotheses.

From Fig. 2a and d we can see that the total number of hypotheses is only reduced
by about 10%. Since this reduction does not significantly simplify the hypothesis
verification process we investigate in the relation “overlapping” (see Sect. 3.2)

Fig. 2. (a) Hypothesized Matches (734 Hypotheses). (b) Hypothesis Pairs that fulfils the
Relation “inside” (138 Pairs based on 136 Hypotheses). (¢) Remaining Hypotheses after
removing the Hypotheses with lower Score (41 Remaining Partners). (d) Remaining Hypotheses
after applying the “Inside”- Criterion (667 Hypotheses).

4.2 The Relationship “Overlapping”

In this Section, we concentrate on the relationship “overlapping”. Although we could
not significantly reduce the number of hypotheses by applying the relationship “inside”
we work with the reduced number of hypotheses (see Fig. 2d). For presentation pur-
poses we first only consider the 41 remaining hypotheses of the “inside” pairs which
are shown in Fig. 3 (compare to Fig. 2c). At the end of this Section we extend our
investigations to the whole set of hypotheses.
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Fig. 3. Basic hypotheses.

Note that the hypotheses are concentrated in some regions of the image (see Fig. 3).
It seems that many hypotheses are slightly transformed (shifted or twisted) with respect
to other hypotheses. This means that the intersection area of two overlapped hypotheses
A and B has approximately the same size as the area of the hypothesis A and the
hypothesis B respectively. We express this fact with the condition (6):

S(A)NS(B) > 1IS(A)]  AND [S(A)NS(B)|>1IS(B)], € [0,1]  (6)

We restrict the size of the intersection area with respect to the size of the hypothesis
area by the value ¢. If two hypotheses fulfil the Condition (6) we say they overlap each
other. As well as in the discussion of the relationship inside, we assume that the best
match for an object has the highest score. From two overlapping hypotheses we
therefore remove the hypothesis with the lower matching score. In the first part of
Fig. 4 the remaining hypotheses are given when we use the overlapping condition (6)
and varying the thresholds ¢ of the minimal common hypotheses area.

Since the condition (6) mainly combines hypotheses with similar size, we replace
the “AND” with “OR” (7). Then we repeat the test with the new condition (7). The
results are given in the second part of Fig. 4.

(6)

(7

Fig. 4. Applying the Relationship “Overlapping” with different conditions and degrees of
common area to some selected Hypotheses (C = Condition).
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IS(A)NSB) > 1lS(4)] OR [S(A)NSB)| =SB, 1€(0.1]  (7)

As we can see from Fig. 4 the number of hypotheses is as fewer as lower the
threshold of the minimal common hypotheses area is. As we expected more hypotheses
are removed with the second condition (7). Therefore we take the condition (7) using
the threshold 7= 0.67 for applying the “overlapping” relation to all remaining
hypotheses of the “inside” relation (Fig. 5).

667 Hypotheses 35 Hypotheses

Fig. 5. Applying the Relationship “Overlapping” with condition (7) and the Threshold t = 0.67
after the Relationship “Inside”.

From Fig. 5 we can see that the applied criterion reduces the given hypotheses to
about 5%. In order to improve the performance of the reduction process we used the
described rule also to all hypothesized matches. We obtain the same result as if we
remove some hypotheses with the “inside” relation. Therefore we conclude that the first
step in each hypothesis verification process should be the reduction of hypotheses using
“overlapping” relation defined with condition (7) and the common area threshold
t = 0.67. From each pair of overlapped hypotheses the hypothesis with the lower
matching score is removed.

5 Statistical Reduction of the Hypotheses

The method for hypothesis reduction that is described in Sect. 3.2 shows very good
performance. One of the main weaknesses of this method is the arbitrary fixed
threshold of common area. In this Section we want to discuss some more possibilities
of hypothesis reduction based on statistical measures.

5.1 Common Statistical Measures

In order to determine the distribution of the matching scores that range from 0.8 to 1,
we generate a histogram by subdividing the range into non-overlapping classes with a
class width of 0.05. The number of hypotheses within each class is displayed in Fig. 6.
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From the Histogram in Fig. 6 we cannot conclude to any distinct distribution
because we only investigate in a part of the score space. Nevertheless we can determine
the mean yu, and the standard deviation o of all scores. In order to optimize the
threshold we develop a criterion for removing some hypotheses based on the mean and
the standard deviation (8):

0 (e
55 052085 055 055 059 09 031 152 031 025 057 seoe |

Mean = 0.8223
Standard Deviation = 0.0265

Fig. 6. Histogram, mean and standard deviation of the hypothesis scores.

§; < U, +f - o, = delete hypothesis i, i=1,...,h (8)

The number of hypotheses is denoted by h. Figure 7 shows the remaining
hypothesized objects applying different factors f to the 734 hypotheses shown in
Fig. lc.

From Fig. 7 we can see that the number of hypotheses can be reduced significantly
if the threshold for the matching score is increased. Since we expect high scores if the
model matches an object very well, we will obtain as more hypotheses for one object as
better the model matches the object. The results reported in Fig. 7 verify this
assumption.

a. Hypotheses which |b. Remaining c. Remaining d. Remaining
Score mean Hypotheses Hypotheses Hypotheses

=0) applying f= 1 applying f=2 applying f=3

>

236 Hypotheses 78 Hypotheses 39 Hypotheses 23 Hypotheses

Fig. 7. Remaining hypotheses applying condition (9) with different Factors f. (Color figure
online)

Remember that the matcher tolerates object occlusion and touching until 20% if the
score threshold is 0.8. The described method for hypotheses reduction increases the
threshold for accepting a match as a hypothesis. In the consequence it removes also
hypotheses of objects which are occluded or touched. If we want to consider also such
objects, we must not reduce the hypothesized matches based on Eq. (8).
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5.2 Hypotheses Reduction by the Evaluation of the Local Score

For each hypothesis we can store, during the matching process, the number of model
pixels that have the same local contrast as the corresponding image pixel. In the
following we denote this number with c,,,,.. Remember that the model and the image
pixel have the same local contrast if their dot product is positive. Otherwise their local
contrast is inversed. In order to measure the quality of the hypothesis we determine,
with respect to the number n of model pixels, the fraction of contour pixels of the
hypothesis that have the same contrast as the model. Depending on the global contrast
between the model and the hypotheses we should accept very high and very low values
of this fraction. Given a threshold ¢ the minimal fraction of the same contrast for
acceptance, we determine the remaining hypotheses based on Condition (9):

< Shsame < (1 —t) = remove hypothesis i, t€[0,0.5],i=1,...,h (9)
n

Figure shows the remaining hypotheses using different values of the threshold .

It is strange that hypotheses which seem to match the object well are earlier
removed than hypotheses which include some background. Figure 8 shows this phe-
nomenon for the hypotheses of two selected objects in the image based on the threshold
t = 0.25. Each image in Fig. 8 shows a labelled hypothesis whereas red parts display
negative local contrast and blue parts positive local contrast. Below each image the
relative fraction of negative local contrast is given (blue parts of the contour).

62 Hypothéses 107 Hypotheses | 181 Hypotheses | 266 Hypotheses |412 Hypotheses

Fig. 8. Remaining hypotheses applying condition (9) with different Thresholds z. (Color figure
online)

Because of these unexpected results we ask if the approach of the differentiation
between positive and negative local contrast is correct. The power of the similarity
measure that we use is its invariance to local contrast changes, that is, we eliminate the
influence of the sign of the local score by summing up the absolute amount of the local
scores. On the other side we exactly evaluate the sign if we calculate the score of binary
contrast changes (see Fig. 9).

Figure 10 shows the same hypotheses as Fig. 9, but now pixels which local score
higher than 0.9 or lower than —0.9 are marked blue. The other parts are red. Below the
images the relative faction of pixels with high local score (>0.9) is given.
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0.2121

0.2323

0.2222

0.2071

0.2111

Fig. 9. Results for binary contrast changes for different hypotheses.
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Fig. 10. Results for local score higher than 0.9 and lower than —0.9. (Color figure online)

Note that the fraction of high local scores depends on the threshold that defines a
pixel with “high local score”. As higher as the threshold is as lower is the value of this

fraction.

Similar to the experiment we carried out for the binary contour based on contrast
changes (see Fig. 8) we now create the binary contour for all hypotheses as described
above by thresholding the local scores at the value 0.9. Then we remove the hypotheses
which relative fraction of high local scores is lower than (a) 0.6 (b) 0.66 and (c) 0.75.
The results are given in Fig. 11.

From Fig. 11 we can see that this method is another possibility to reduce the
number of hypotheses. Since the hypotheses around the object in the right upper corner
have high similarity scores most of these hypotheses remain.
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a. local score < 0.6 b. local score <0.66 c. local score<0.75
y R ﬁ‘

10 pm|

138 Hypotheses 58 Hypotheses 26 Hypotheses

Fig. 11. Results for different local scores. (Color figure online)

6 Conclusions

In this paper we have described our hypothesis verification process for our case-based
reasoning shape-object matching procedure. We have described the hypothesis-
generation process in brief and the problems concerned with it. Then we described the
kinds of hypothesis verification we have developed for our matching procedure.
Results are given for the different rules. Finally, we introduce some statistical measures
for hypothesis reduction and give results. The final results show good performance but
we can still think of some other verification measures that will further improve the
results. These verification measures will be based on grouping the hypotheses, eval-
uation of the local similarity, and the background fraction of the found objects. This
work is left for a further paper that will finish the hypothesis-verification work and will
give a good summary about the work.
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Abstract. We propose a framework for pattern matching in two-
dimensional arrays of symbols where the patterns are described by an
extended version of the regular matrix grammar and the size of desired
matches is prescribed. We then demonstrate how to reformulate the 2D
pattern matching as the one-dimensional pattern matching (string pat-
tern matching), and study the efficiency of the string pattern match-
ing algorithm based on pattern complexity with respect to two finite
automaton models: (1) the classical finite automaton and (2) the finite
automaton equipped with two scanning heads placed in a fixed distance.
We also identify several subclasses of the considered templates for which
the framework yields a more efficient matching than the naive algorithm.

Keywords: Two-dimensional pattern matching - Matrix grammars *
Pattern complexity * Finite automata + Multi-head automata

1 Introduction

The task of matching string patterns in a text naturally extends to higher dimen-
sions. For example, given a two-dimensional (2D) pattern and a 2D array of sym-
bols, the task of the exact 2D pattern matching is to detect all occurrences of
this pattern in the array. Bird [6] and Baker [5] independently proposed the first
efficient algorithm by reducing the problem into the one-dimensional (1D) pat-
tern matching problem. Then later several researchers suggested different types
of improved algorithms for different cases [2,4,9,10,16].

In pattern matching, another common scenario is to find matching against a
set of patterns described by a suitable formalism such as regular expressions or
finite automata. For instance, the problem of searching for the shortest matching
substring described by a regular expression has a very efficient implementation
and a wide applicability [1]. We can also easily identify many pattern searching
applications specified by a certain template in the 2D setting, arising in fields
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DOI: 10.1007/978-3-319-59108-7_7
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such as computer vision, robotics or data mining. However, it is not always
straightforward to extend a template for string (1D) pattern matching into a
template for 2D pattern matching. For example, the notion of regular expressions
cannot be easily generalized for 2D arrays, especially when we intend to transfer
the efficient matching algorithms for regular expressions with it.

In this paper we address this problematic scenario under the assumption that
patterns are described by an extension of the 2D (regular) matrix grammar [14].
We make the 2D matching task feasible by assuming that the goal is to detect
matches of a prescribed size in an input array of size m x n; namely, we fix the size
of desired matches to be k x £. We say that matches are detected efficiently when
the matching process is much faster than a straightforward naive approach, which
goes through all subpictures of size k x £ in the input and, for each subpicture,
checks whether or not it is a match. If the subpicture checking takes linear time
in the area of the subpicture, namely O(k¢) time, then the whole procedure
requires O(k¢mn) time. We consider a matching algorithm to be efficient if it
runs in time O((logk + log £)mn). Recently, the pattern complexity for picture
languages was introduced [13]. We revisit this pattern complexity and develop
the notion of pattern complexity for a string language. Then we classify the
complexity of the studied 1D matching with respect to several subclasses of
regular languages based on the new pattern complexity.

The rest of the paper is structured as follows. We briefly recall some basic
notations in Sect. 2 and give examples of template usages in 2D pattern matching
in Sect. 3. Then we introduce an extended regular matrix grammar and describe
the matching algorithm in Sect. 4. We study in Sect. 5 complexity of the induced
matching task for strings with respect to two computational models. We conclude
by Sect. 6 where a future work is outlined.

2 Preliminaries

We use the common notation and terms on picture languages [8]. For a finite
alphabet X, a picture P over X is a 2D array of symbols from Y. If P has m rows
and n columns, it is of size m x n, and we write P € Y™™, Rows of P are indexed
from 1 to m, columns of P are indexed from 1 to n, P;; denotes the symbol of
P in the i-th row and the j-th column. In graphical visualizations of pictures,
position (1, 1) is associated with the top-left corner. The set of all pictures over
Y is denoted by £**. In addition, X" = [J7Z, X*™ and X" = [J7Z, X"
Let A= (Q,X,4,qo, F) be a deterministic finite automaton (DFA), where Q
is a set of states, X is an input alphabet, ¢ : Q@ x X' — @ is a transition function,
go € @ is the initial state and F C @ is a set of accepting states. The extended
transition function § : Q x £* — Q is defined by S(q, A) =g, S(q, a) = (g, a) and
(g, aw) = 6(8(q,a),w) for all a € X, w € Z* and ¢ € Q. The language L(A) is
a set of strings w such that S(qo, w) = f for an accepting state f € F.
N={1,2,...}, Ngo = NU{0} and P(S) is the powerset of a set S.
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3 Working Examples

We can think of a template-based 2D pattern matching as a tool for image
processing in digital geometry or for high-level reasoning in computer vision or
robotics. An input array to be searched can be a raster image, a high-level grid
structure built upon an image or a scene representation by dividing the whole
area into sectors of equal size and assigning them labels by their content. We
illustrate these thoughts with the following examples of possible scenarios.

— An image is obtained by scanning the surface of a component. Its area is
divided into sectors, each of which is labeled as either defective (if it contains
a defect) or normal (if there is no defect). The task is to locate subareas of
k x k sectors with the number of defects above an acceptable threshold.

— Given a black-and-white image, search for some basic geometric shapes.

— A robot operates on a grid of sectors where each sector content is one of the
following three—mnothing, an obstacle, an object of interest. The robot knows
the sector content. Now it is ordered to move to a location specified by “a
chair located south-east of a wall in distance at most two meters”.

Inspired by the scenarios, let us define the following picture languages (see also
Fig.1).

Ezample 1 (Counting). For k € N, let Liyaxr = {P € {O,W} | |P|lm < k}, ie,
Lax, i consists of those pictures having at most £ black pixels.

Ezample 2 (Digital geometry). Let Lyect be a picture language over X' = {{J, B}
consisting of pictures where all black pixels form a boundary of a rectangle whose
height and width are at least 3. Moreover, let Lqjae be a picture language over
Y = {J, W} consisting of square pictures P where the main diagonal contains
only black pixels, while the other pixels are white.

Ezxample 3 (Spatial arrangement). Let Ly, be a picture language over ¥ =
{0, X, W} consisting of all P € X** where |Plg = |P|g = 1, with B at a
position (bs,b,) and X at a position (c,, ¢,), fulfilling b, < ¢, and b, < ¢,.

oomgd EEE0 BO0O0 oooo
oomgd EOER0 om0O0d omOoo
BO00O0 ECOER0 oomQd O00OX
oogod EEER ooom oooo

Fig. 1. Example pictures from Lmax,3, Lrect, Ldiag and Lgp.
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4 Regular Matrix Grammars with Scanning Window

One of the earliest ideas of generating pictures by grammars was to define ver-
tical and horizontal productions (regular or context-free), and generate a pic-
ture in two phases. First, a column of symbols is produced using only vertical
productions. Second, all the previously generated symbols serve as the initial
nonterminals that in parallel generate rows by the horizontal productions. A
picture is successfully generated only if all the produced rows are of the same
length. However, it is known that such a grammar is weak [7]; for instance, it is
impossible to use it to generate patterns from Example 2 since it cannot control
a full neighborhood of generated fields (pixels). On the other hand, the grammar
can be easily parsed and it has favorable theoretical properties.

Here we strengthen the grammar by giving it a scanning window-like mech-
anism allowing to synchronize the content generated at neighboring positions,
which provides a control over the generated picture topology. The result is that
the expressive power of the grammar is significantly increased while the simplic-
ity of parsing is still maintained.

Definition 4. A two-dimensional regular matrix grammar with scanning win-
dow of size ¢, abbreviated as 2RMG,. is a tuple G = (N,, Ny, X1, X, S, R*, R"),
where

- N, is a finite set of vertical nonterminals,

— Ny, is a finite set of horizontal nonterminals, with N, N N = (),

- X1 C Ny, is a finite set of intermediates,

— XY is a finite set of terminals,

- S € N, is a starting symbol,

— RY is a finite set of vertical productions of the form N — AM or N — A
where N, M € N, and A € X,

— R is a finite set of horizontal productions of the form V — _aW orV — _a
where V,W € Ny, and _a € X1,

Let G, = (N, X1, S, RV) denote the regular grammar formed by the vertical
productions (with the starting symbol S) and let G;, = (N, X, R") denote the
regular grammar formed by the horizontal productions (without any nonterminal
specified as the starting symbol). Let L(G,) C X7 denote the set of strings
generated by G, and, for N € Xy, let L(Gp, N) C X* denote the set of pictures
generated by G, from N.

Definition 5. We say that a 2RMG,. G = (N,,, N, X1, X, S, R', R") generates
a picture P € X" iff

1. there is C = C1Cs -+ Cpy_cq1 € L(G,), where C; € X7,
2. foreachi=1,...,m—c+1, the subpicture of P consisting of rows from i to
i+c—11isin L(Gp,C;).

The process of generating a picture is depicted in Fig. 2.
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Fig. 2. A 2RMG3; generating a picture of size 5 x 7. Vertical productions generate string
C1C2Cs, displayed as a column. Horizontal productions generate rows 1,2,3 from Cj,
rows 2, 3,4 from C2 and rows 3,4, 5 from C3. Note that the content of each overlapped
row must be identical in all three cases—for instance, the content of the row 3, which
is overlapped by C1, Cs, (s, is identical for all the three cases.

Corollary 6. 2RMG; is equivalent to the normal regular matriz grammar.

A parser for a given 2RMG,. can be constructed as follows. Let P € XY™™ be
an input picture. For N € X7, let A"(N) be a DFA accepting L(Gp, N). At each
step, A" (V) scans a column of ¢ symbols from X (it has a scanning window of
height c). Let A" be the product automaton of all A"(N)’s for all N € X;. Apply
A" to process rows of P from c to m. Note that when processing row 4, A" scans
also symbols in rows i—1,...,i—c+1. Let X1 = {N1,..., Ny} and (¢¢, b, ..., q})
be the state entered by A" at the rightmost column of row i. Define S; C X
to contain N; € Xy iff q§ is an accepting state. Let A be a DFA accepting
L(G,). Then, from A", we construct a nondeterministic finite automaton A4 that
simulates .A” nondeterministically by reading S¢, Sc41, - - . , Sm, guessing C; € S;
in each row ¢ and simulating A" over C. ...C,, (note that A rejects if S; = () for
some i).

Lemma 7. Let X be an alphabet and © C X% be a set of pictures of size ¢ x d
for some ¢,d € N. Let L(O) over X denote a picture language consisting of all

pictures P € X** of size at least ¢ X d whose all subpictures of size ¢ X d are
from ©. Then, there is a 2RMG, generating L(O).

Proof. Construct a 2RMG, G such that L(G,) = {C}* for an intermediate C' and
L(Gp, C) consists of pictures of height ¢ where each subpicture of size ¢ x d is
in ©. The latter (horizontal) language over X! is regular as it is accepted by a
DFA that remembers in states the lastly read subpicture ¢ x d. a

Lemma 8. The family of picture languages generated by 2RMG,. is closed under
union, intersection and complement.

Proof. Follows from closure properties of regular languages and properties of
finite automata. a

Lemmas 7 and 8 can be used to construct a 2RMGy generating Lgiag from
Example 2. For a picture P € {0, B}** of size at least 2 x 2, two properties
have to be checked to ensure that P € Lgjag.
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— In the first and last row of P, the black pixel appears only at the first and
last position, respectively.

— All subpictures of size 2 x 2 of P are in

We can similarly construct a 2RMGg generating L,ect. To generate Lpax i, it
suffices to construct a 2RMG; where the set of intermediates equals X; =
{Cy,C1,...,Ck} and, for each i, the horizontal productions generate from C;
strings w over {M,0} such that |u/m = 4. Let §(C;) = i. Then, the vertical
productions are designed to generate strings v € X5 where Z‘szll 0(v;) < k.

As for Ly, it can be expressed as the intersection Lg, = ng) N ng) where
Lg;) or ng) consists of pictures in which pixel B is at a position (bs,b,) and
pixel K is at a position (¢, ¢,) fulfilling b, < ¢, or b, < ¢, respectively. ng)
is generated by a 2RMG;. ng) is generated by a variant of 2RMG; which first
generates a row of intermediates and then columns of the resulting picture. A
usage of this “transposed” 2RMG; could be integrated in the matching algorithm
which follows next, but we do not give details on this due to the limited space.

Let G = (N, Ny, Y1, X, S, R, R") be a 2RMG,.. Denote I" = X! and
A =P(X). For N € X1, k,t € N, k > ¢, let M}(N) be a DFA accepting
I'* (I'*n L(Gn, N)) (i.e., strings whose suffix of length ¢ is in L(Gy, N)) and
M} be a DFA accepting A* (A"t N L(A)) where A is the automaton from
the parsing algorithm description. For a DFA M, let | M| denote the number
of states of M. Assume also, that c is a small constant (we saw that ¢ < 2 is
sufficient for the working examples).

Theorem 9 (Matching algorithm). Given a 2RMG, G, an input P € X™"
and k,0 € N, k < m, £ <mn, there is an algorithm detecting all subpictures of P
that belong to L(G) N X% in

@ (mn(log|MZ| + Z log|M?(N)|)>

NeX;
time.

Proof. We use an auxiliary 2D array T of size m x n where T; ; denotes its field
at position (7, j). The matching procedure resembles the parsing algorithm. The
input P is first scanned row by row. When passing through an i-th row (i > ¢),
rows ¢,...,1 — c+ 1 are processed simultaneously by all automata M?(N). We
write to T ; a subset S C X which contains N € Xy iff M? (N) enters an accept-
ing state after performing the j-th transition. The second phase goes through
columns of T, skipping always ¢ — 1 first symbols of each column. The automa-
ton M7, is simulated over each column. Whenever M) enters an accepting state
at some T; ;, it indicates that the position (¢,7j) is the bottom-right corner of
a match. The time complexity of the algorithm is determined by the number
of scanned symbols, which is O(mn), and the time complexity of simulating a
transition of each participating automaton, which is proportional to the length
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of states representation, i.e., to O(log|M]|) for an automaton M. Note that we
do not analyze the time complexity of constructing the automata from G as this
is independent of m and n. a

The matching algorithm is of time complexity O (mn(logk + log £)) if |M7}] is
polynomial in k and, for all N € X, |M}(NN)] is polynomial in £. Also note that
instead of DFAs we could have used a different model to perform 1D matching
in rows and columns. We develop these two observations in the next section.

5 String Languages with Polynomial Pattern Complexity

As the template-based 2D pattern matching reduces to 1D pattern matching, it
is essential to investigate the complexity of matching strings of a fixed size. In
this section we define the pattern complexity of string languages with respect to
two models: DFA and a variant of two-head DFA.

5.1 Matching by DFA

Let L be a language over Y. We search for all occurrences of length n patterns
from L in a string w € X* by constructing a DFA accepting L(n) = X* (L N X™).
For any L, the language L(n) is regular (since L N X™ is a finite, hence regular,
language) and is accepted by a DFA with O(|X|™) states. Here we are interested
in those languages L for which L(n) is accepted by a DFA with polynomially
many states in n.

Definition 10 (Pattern complexity of a string language). Let L be a lan-
guage over Y. For eachn € N, let A, = (Qn, X, 6n, qo, Fr) be the state-minimal

DFA accepting L(n). We define the pattern complexity of L to be a func-
tion or, : N — N where or,(n) = |Qy| for alln € N.

Ezample 11. L = {au | v € {a,b}*} has exponential pattern complexity.

We prove it by applying the Myhill-Nerode theorem to L(n). Let u,v €
{a,b}™ where w = uy ... un, v =1 ...0, and there is 7 such that u; # v;. Then,
a’~lis a distinguishing extension as [{ua’~*,va*~1} N L(n)| = 1. This implies
that o, = £2(2") since there are 2" mutually distinguishable strings of length n.

Ezample 12. L = {u|u € {a,b}* Aul, mod 2 =0} has exponential pattern
complexity (apply the Myhill-Nerode theorem as in Example 11).

Ezxample 13. Lyaxk = {u | v € {a,b}* A |u|, < k} has polynomial pattern com-
plexity. For a given n, construct a DFA representing in states k + 1 counters
Ci,...,Cry1 that memorize relative positions of the last k£ + 1 occurrences of a’s
in lastly read n characters. Each counter ranges from 0 to n. If a counter C; is of
value 0, it means that the number of tracked a’s is less than i. One more counter,
counting to n, is added to prevent accepting strings shorter than n. All this suf-
fices to accept L (n) and the constructed DFA has O(n*+?2) states. On the other,
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we can prove that o, , = £2(n*). Consider two strings u,v € {a,b}" such
that |ul, = |v|e = k and u # v. Let i be the smallest ¢ for which u; # v;, hence,
w.l.o.g., u; = a and v; = b. Denote £ = |uy ... u;lq = 1+ vy ...v4|q. Then, a’b*—*
is a distinguishing extension for v and v. As [{w € {a,b}" | |w|, = k}| = 2(n*),
by the Myhill-Nerode theorem, o, = (nk).

max,k

Example 14. In connection with Lemma 7, consider the following regular lan-
guage L over X

L ={w € X" | all length d substrings of w are in O},

where © C X1%? is a set of pictures of size 1 x d—we can regard O as a set of
strings since all pictures of @ are single-row pictures.

Then, o7, = O(dn?) since L(n) can be accepted similarly as Lyaxo from
Example 13 (the number of substrings of length d not in @ must be zero; and it
is needed to remember d lastly read symbols).

Proposition 15. Let Ly and Lg be two languages over X" with polynomial pat-
tern complexity. Then, Ly, = Ly U Ly, Ln = L1 N Ly and L = X*\ L1 have
polynomial pattern complezity.

Proof. For n € N, let A; and A be DFAs with polynomially many states accept-
ing Li(n) and La(n), respectively. We can write

LU(TL) =" ((L1 U Lg) n 2") =" (L1 n En) u X (LQ n 2”) = Ll(n) ULQ(TL),

hence Ly (n) is accepted by the product automaton of 4; and As. Analogously,
we derive Ln(n) = Li(n)NLy(n), meaning again that L(n) is a regular language
accepted by the product automaton. For the complement, it holds

T(n) = 2% ((Z*\L1) N I") = S* "2 (L1 N X") = Z* X"\ Ly (n).

Hence, L(n) consists of those strings w € X* where |w| > n and w is rejected by
Ai. A DFA, with polynomially many states, simultaneously counting to n and
simulating A; can be easily constructed. a

On the other hand, it is not difficult to show that concatenation of two regular
languages with polynomial pattern complexity may result in a regular language
with exponential complexity. This can be easily demonstrated by expressing the
regular language L from Example 11 as L = {a} - {a,b}*. In addition, L = L%
where Lz = {ua | u € {a,b}*} and o1, = O(1).

Corollary 16. There exist reqular languages L1, Lo, Ls over X with polynomial
pattern complexity such that LiLo and (L3)® are of ewponential pattern com-
plexity.
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5.2 Matching by k-gapped Two-Head DFA

In this section we show that a broader subclass of templates has an efficient
matching procedure if the matching algorithm allows to access more number of
(distant) fields in the input text. Namely, the algorithm keeps tracking on the
symbol that leaves a fictive scanning window whose size equals the length of
matches. We model this mechanism by introducing a k-gapped two-head deter-
ministic finite automaton (g2h-DFA) as a finite-state device with two reading
heads hy, b, (the left and right one). The model is almost identical to the tra-
ditional finite-state model except for that there are two heads and the distance
between them on the input is k& while reading the input!.

Informally speaking, given an input v = uj ---u, € X*, the k-gapped g2h-
DFA prepends k — 1 #’s and F to u and reformats u to be u# = ## .- # I u,

—_——

k new symbols

which allows g2h-DFA to place two heads apart from each other at the dis-
tance k on the input. The |- is a delimiter separating the original input string u
from dummy symbols #, which are used for h; to make the desired distance k
between two heads from the beginning of the computation as the initial config-
uration becomes [hy|## - - - # F qolhr]uius - - - up, where [h] and [h,] denote the
corresponding positions of two heads.

Then g2h-DFA starts processing u# from ¢q by reading two symbols indicted
by two heads and going to the next state defined and moving two heads to the
next symbols. The computation ends when g2h-DFA read the whole u#. If it ends
at an accepting state, then we say that g2h-DFA accepts wu.

Definition 17. A k-gapped two-head DFA (g2h-DFA) is a tuple
(k,Q,X,0,q0, F), where k € N is the distance between two heads. The transi-
tion function is of the form ¢ : Qx (X U{#,F})x X — Q. The other components
are the same as for DFA.

Given a g2h-DFA A = (k,Q, X, 6, qo, F) and an input string u = uy - --u, €
27*, the initial configuration is

[h]## - # F qolhr]urug - - - up.

The general configuration computation of A for u# is defined as follows: Given
a current configuration

z[hl]ylyQ s ykqi[hr]yk+1yk+2 T

where x and y = y1y2 - - - y,, are strings over ¥ U {#,} and u# = zy, the next
configuration is

Y1 [hl]y2 e YRYk+1d; [hr}yk-t,-Q Y,
if 6(qi, Y1, Yk+1) = ¢; in A

! The proposed automaton model g2h-DFA is different from the traditional two-headed
finite automaton that has two read-only bidirectional heads.
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We say that a configuration is final if it is 2'[h]y'q[h.], where u# = 2'y’. We
say that it is accepting if ¢ € F—this is the case when A accepts u.

For a language L C X*, recall that L(n) = X* (LN X"). Since L(n) is
regular, there exists a state-minimal g2h-DFA A,, = (n, Qn, X, d,, F),) accepting
L(n). Then, we define the pattern complexity 77, of L with respect to g2h-DFA
to be the number of states in A; namely, 7 : N — N, where 71, (n) = |Q,|.

An immediate outcome of the pattern complexity over g2h-DFA is an ability to
implement a counter for the number of particular symbols in its fictive scanning
window. This is illustrated by the following example.

Ezample 18. Consider the regular language Lnax r = {u | u € {a,b}* A|ul|, < k}
from Example 13. Now consider g2h-DFA A = (n,Q, X, d, (qo,0), F') where Q =
{q0,q1,--yaqn} x {0,1}, ¥ = {a,b}, F ={qo,...,qx} x {1} and

5((qi’0)7#7a) = (Qi+170) for i <mn, 5((%’7 1)aa’a) = (Qia 1);
6((4:,0),#,b) = (¢:;,0), 6((qi,1),b,0) = (g, 1),
0((¢:,0),F,a) = (git1,1) fori<mn, 6((gi,1),a,b) = (g-1,1) fori>1,
((g:,0),F,b) = (¢, 1), 6((gs,1),b,a) = (gi+1,1) for i <m.

We omit all states and transitions that are not applicable to any configuration—
e.g.: 0((¢n,1),b,a). They can be defined arbitrarily. For each state (g;, ), the first
component g; acts as a counter ranged from 0 to n, and the second component j
acts as a flag determining if the prefix of length n has already been read. During
each computation of A, the counter—the index i of the first component of the
current state (g;,j)—is increased/decreased if the symbol scanned by h,/h; is
a. Then it is easy to verify that A accepts Lmaxr(n). Since the number of
states in A is O(n), it holds 71, = O(n), which is an improvement towards
gy, = Q(nk)

max,k

max,k

Ezample 19. For another example of the pattern complexity, consider L =
{au | u € {a,b}*} from Example 11. We construct a g2h-DFA A = (n —
1,@,%,6,(q,0),F) where Q@ = {qo,q1} x {0,1}, ¥ = {a,b}, F' = {(q0, 1)}
and, for ¢ € {0,1},

6((9i,0),#,a) = (q1-4,0), 6((qi,1),a,a) = (g, 1),
6((9i,0),#,b) = (¢:,0), 6((gi,1),b,0) = (g, 1),
6((g:,0),F, a) = (q1-i, 1), 6((qis 1), a,b) = (q1—i, 1),
6((gi,0),,0) = (¢, 1), 6((gis1),b,a) = (q1-4,1)

It is straightforward to verify that A accepts L(n) and, thus, 7, = O(1) for L.

Next, we identify a subclass of regular languages whose pattern complexity
is constant with respect to g2h-DFA.

Definition 20. We say that a DFA A = (Q, X, 6, qo, F') is strongly Eulerian iff
for each q € Q and a € X, there is a state p € Q such that 6(p,a) = q.
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Strongly Eulerian DFAs can be characterized based on the structure of
underlying transition graphs. For a DFA A = (Q,X,d,q0, F) and a € X, let
G(A,a) = (Q, E) be the directed graph where the set of vertices equals @ and
(p,q) is an edge in F iff §(p,a) = ¢q. The automaton A is strongly Eulerian iff, for
each a € X', G(A, a) consists of cycles—See Fig. 3 for an example. Another exam-
ple of a regular language accepted by a strongly Eulerian DFA is the language
from Example 12.

a b
b
Ao

Fig. 3. A strongly Eulerian DFA accepting the string language described by regular
expression a* (b((a + b)a)*(a + b)ba™)*.

Strongly FEulerian DFAs are a superset of well-known bideterministic
automata [15]. A finite automaton A is bideterministic if A and its reversal
automaton A are both deterministic. Researchers considered bideterministic
automata and bideterministic languages in the context of machine learning or
in coding theory in the literature [3,12]. Bideterminism also plays a crucial role
in characterizing minimal DFAs in formal language theory.

Proposition 21. Let L C X* be a regular language accepted by a strongly
Eulerian DFA. Then, T, = O(1).

Proof. Let L = L(A) where A = (Q,X,0,qo, F) is a strongly Eulerian DFA.
Define 6=%(q,a) to be the only state p € @ such that d(p,a) = ¢. For n € N,
construct a g2h-DFA M = (n,Q’, X, ¢, ¢(, F') accepting L(n) as follows. Let
w € X* be an input string of length m where m > n. When processing the
prefix of w of length n, M simulates A and computes 5(q,w1 ...wy) for each
q € @ and a mapping g — 5(q, wy ... wy) is stored in states of M at the end of
the stage. The suffix wy, 41 ...w,, is processed during the second stage. Assume
that M stores the mapping ¢ — S(q7 Wi ... Wpyi—1), its left head scans w; 41 and
the right head scans wy, ;. Then, in the next transition, M updates the mapping
to be ¢ — S(Q, Wit1 .- . Wpyq) using the formulas

0, Wit1 -+ Wppi—1) = 0(8 (g, wi), wi - . Wpio1),

=9

5((], Wi41 - - - wn-‘ri) (5(% Wi41 - - ~wn+i—1)7 wn+i)-

A state of M is accepting iff the stored mapping maps ¢q to a state from F' and
the currently read prefix of w is of length at least n (i.e., - has already been
encountered by h;). To represent the mapping, M needs O(|Q|I?!) states, which
is a constant with respect to n. a
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As the next result we show that it is possible to efficiently detect those
patterns where the number of a particular symbol occurrences corresponds to
the length of a string from a unary regular language. More precisely, let Y be
an alphabet such that a € X and L be a regular language over {a}. We define
the regular language L' = {u € ¥ | a/*l« € L}. Tt can be equivalently expressed
using the shuffle operation as L' = L A (X¥~{a})".

Lemma 22. Let cq,...,cn be positive integers and d = ged(cq, ..., ¢m). There
ezists a bound B € N such that, for any N > B, the equation c1x1+- -+ CpTm =
N has a solution in non-negative integers iff N is divisible by d.

Proof. For a vector of non-negative integers (21, ...,%m), Y rvy ¢;2; is divisible
by d, hence the equation has a solution only if d divides V.

By Bézout’s identity, we can write d = Zyil c;z; for integers z;. Letting
c=Y" ¢, every N divisible by d can be written as N = gc + rd where ¢, r
are integers with 0 <r < g.

If N is large enough, in particular if N > B = ¢ + % max; |z;|, then the
coefficients in N = Y7, (¢ + z;r)c; are all non-negative. O

Proposition 23. Let X be an alphabet, a € X', L C {a}* be a regular language
and L' = L A (X~{a})". Then, 1, = O(n).

Proof. By Parikh’s theorem, S = {|u| | v € L} is a union of finitely many
linear sets. W.l.o.g, consider that S equals a linear set {co + c1t1 + -+ + ¢milm |
t1,...,tm € No} where ¢g € Ny and ¢; € N for all i = 1,...,m. Let B be the
bound given by Lemma 22 for the equation cit; + - -+ + ¢ty = N. Moreover,
let S be the set of all non-negative integers N < B for which the equation has
a non-negative solution. We then construct a g2h-DFA A = (n,Q, X, 6, qo, F)
accepting L'(n) as follows. It counts in states the number of a’s in the lastly
read n characters. Let the counter store a value s. Automaton A accepts iff head
h, has already encountered I, and it holds either 0 < s—¢y < B and s —¢g € S,
or, s —¢p > B and ged(eq, . . ., ) divides s — ¢p. O

Note that as demonstrated in the proof of Proposition 23, a g2h-DFA may
have a quite succinct representation—we construct a g2h-DFA using a constant
memory regardless of n (it is possible to calculate transitions as well as accepting
states by a fixed set of constant-sized formulas). We believe that the problem of
characterizing such g2h-DFAs should be an interesting problem.

As the last observation let us notice that g2h-DFA does not entirely solve
the problem with possible exponential pattern complexity of a regular language
obtained as concatenation of two regular languages of polynomial pattern com-
plexity. This can be easily demonstrated by L = {a,b}-{au | u € {a,b}*}. Using
a g2h-DFA with the head distance n — 1 (instead of n) to search for matches
of patterns in L(n) would fix this particular case, however, there will still be
another examples of the exponential increase.
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6 Conclusion

We have presented a framework supporting to search for template-based two-
dimensional patterns in two-dimensional arrays. The regular matrix grammar
has been extended to a formalism powerful enough for describing patterns that
occur in applications. Complexity of the proposed method has been analyzed
with respect to two models considered for executing one-dimensional matching
tasks for various subclasses of regular languages incorporated by the templates.
We have established positive results (constant or polynomial pattern complexi-
ties) as well as negative results (exponential pattern complexities).

For future research, we see several directions. The computational model used
for one-dimensional matching can be further extended to lower the pattern com-
plexity of some regular languages. For example, more heads with varying distance
can be considered.

The introduced regular matrix grammar with scanning window has its limits.
It might not be powerful enough to describe some patterns of complex topology.
There are two possibilities how to increase the power of the method. One option is
to go beyond regular languages (and regular matrix grammars) when defining the
templates. Note that the connection between regular languages and languages
with polynomial pattern complexity is loose as demonstrated by our results.
Other classes of string languages could establish a more tighter relation. A good
candidate is the family of languages accepted by jumping finite automata [11]
as these automata are related to counting symbols. The second option is to
incorporate a preprocessing of the input image. Fast algorithms like depth-first
search in a graph can be applied to detect topological relationships and such a
preprocessed image can be passed to the matching procedure.

As the last direction, let us mention the possibility to generalize the frame-
work to three-dimensional (or higher-dimensional) patterns as the matrix gram-
mar naturally extends to higher dimensions and the presented matching algo-
rithm can still be based on reduction to one-dimensional matchings for each of
the original dimensions.
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Abstract. Different distance metrics produce Voronoi diagrams with dif-
ferent properties. It is a well-known that on the (real) 2D plane or even on
any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance
metric produces convex Voronoi regions. In this paper, we first show that
this metric produces a persistent VD on the 2D digital plane, as it com-
prises digitally convexr Voronoi regions and hence correctly approximates
the corresponding VD on the 2D real plane. Next, we show that on a 3D
digital plane D, the Euclidean metric spanning over its voxel set does not
guarantee a digital VD which is persistent with the real-space VD. As a
solution, we introduce a novel concept of functional-plane-convezity, which
is ensured by the Euclidean metric spanning over the pedal set of D. Neces-
sary proofs and some visual result have been provided to adjudge the merit
and usefulness of the proposed concept.

Keywords: Digital Voronoi diagram - 3D digital plane - Distance
metric - Digital convexity - Digital geometry

1 Introduction

Voronoi diagram in 2D and in 3D real spaces is a well-researched topic in com-
putational geometry [2,3]. Historically, the concept dates back to the mid-19th
century, since it finds potential applications ranging from modeling cells and bone
micro-architecture in biology to estimating the reserves of valuable minerals and
materials in mining. Voronoi diagrams are also used in designing visual arts
and in numerous other applications in image processing, computer vision, and
graphics. The Euclidean Delaunay triangulation, which is the dual combinatorial
structure of Voronoi diagram in Euclidean space, has a bagful of applications in
scientific computing and mesh generation, especially in terrain modeling.

A Voronoi diagram (VD) is a partitioning of a space into regions based on
distance from a specific set of points as input, which are called seeds (also called
sites or generators). For each seed there is a corresponding region consisting of
all points closer to that seed than to any other (which forms the conventional
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closest-seed Voronoi diagram). These regions are called Voronoi cells or Voronoi
regions. For a given distance metric d, the Voronoi region R; corresponding to a
seed p; (1 < i < n) can be defined as follows.

R, ={qeR?|d(g,p) <d(g,p;)Vj=12,...,n} (1)

Depending on the requirement, a specific distance measure or metric is chosen
to create the VD in real space. Euclidean distance is the most commonly used
metric in practice, as it connects the VD with real-life scenarios. Use of Euclid-
ean metric produces Voronoi regions that are convex polygons in shape. Other
metrics such as Manhattan distance or Mahalanobis distance produce Voronoi
diagrams with different nature of the Voronoi regions, e.g., non-convex or with
complex boundaries. Euclidean distance gives convex Voronoi regions because
the distance travel is uniform in every direction, which is not the case with other
distance measures or metrics.

A Voronoi diagram using Euclidean distance measure is called Fuclidean
Voronoi diagram. Such diagrams on the 2D digital plane can be produced by
following a similar method as the generation of Euclidean Voronoi diagram in
2D real plane. On the 2D digital plane, the set of seed points are 2D integer points
or pixels, and the region R; corresponding to seed p; can be defined simply by
constraining the point ¢ in Eq.1 to be a point in Z2. Hence, a simple pixel-
coloring approach can be used on 2D digital plane to color each pixel with the
color of its closest seed point (incorporating some consistent tie-breaking rule).
However, as shown in [10], this leads to debris pizels due to the presence of sliver
polygons, which happens when the corresponding real Voronoi regions possess
very sharp corners. Hence, a parallel breadth-first-search algorithm starting from
each seed point and incrementally growing each of the Voronoi regions until the
boundaries touch each other, is a more effective method to produce the Euclidean
Voronoi regions on the 2D digital plane [10]. In fact, the 2D digital Euclidean
Voronoi regions are dual of the corresponding Delaunay triangulation, as shown
in [10].

Unlike in the 2D digital plane, Euclidean distance metric does not easily fit
into the topological space of 3D Voronoi diagram (VD) in the voxel space. To
show this, we bring in the concept of persistence of a digital VD with its real
counterpart. For this, we first show in Sect.2 that Euclidean Voronoi regions
on the 2D digital plane are always digitally conver. Owing to this, they closely
approximate the Voronoi regions on the corresponding real plane and approach
the real-plane Voronoi regions with increasing resolution of the underlying grid.
Thus in 2D, a digital VD becomes persistent with the real VD.

Next, we show in Sect.3 that the region-growing strategy, as described in
[10], suffers from lack of persistence while constructing a VD on a 3D digital
plane using the following equation.

Ri={q€ 2’| dq,p) <dlg,p;)Vj=12....n} (2)

where, R; is the Voronoi region corresponding to the seed p;, which is a 3D
integer point or voxel. By ‘3D digital plane’ we mean the thinnest digital plane
(also known as ‘naive plane’), which is 2-minimal (Sect. 2).
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We have investigated the reason behind the failure of Euclidean metric in
the voxel space in producing a persistent VD, which is reported in this paper.
To circumvent the problem, we propose a simple alteration of the Euclidean
distance measure, which is commensurable with correctly constructing a VD
with FP-convex regions on a 3D digital plane. The notion of FP-convex region is
newly introduced in this paper and its significance in the context of digital VD
on 3D planes is explained in Sect. 4. The property of FP-convexity of VD regions
ensures that by increasing the grid resolution to a sufficiently large value, the
digital VD constructed on a 3D digital plane is persistent, as it can be made to
approach the real-space VD on the corresponding real plane.

2 Preliminaries

In this section, we explain the basic definitions and terminologies from digital
geometry which are relevant in the context of our work. For two (real or integer)
points p(i, j, k) and p' (7', j/, k'), we define the distance between them along each
coordinate axis. For the coordinate w € {‘2’,'y’,‘z’}, it is given by

li —4| if w="‘x
dw(p,p") =9 17—l f w="y
k— K| if w= 2"

The inter-point distances define the respective z-, y-, and z-distances between a
point p(4, j, k) and a (real) surface I', which can be generalized as follows.

_ min{dy(p,p') : p' € Tw(p)} if Tw(p) # 0
du(p, ) = {oo otherwise

where, I',(p) = {p' € " : dy(p,p) = 0 Vv € {z" 'y, 2" IN{w}}.

The above definitions are used to define the isothetic distance between two
points, or between a point and a surface. Between two points p(i,j, k) and
p'(i', 5, k"), isothetic distance is taken as the Chebyshev distance or Minkowski
norm [15], given by

doo (p, p') = max{d,(p,p"),dy(p,p"), d-(p,p")}.

Between a point p(i, j, k) and a surface I', it is defined as

di(p,I") = min{d.(p, I"),dy(p,I"),d-(p, ") }.

In 2D Euclidean space, the integer points are termed as pixels and visualized
as unit squares (2-cell) centered on integer points. When represented using unit
squares, two pixels are said to be 1-adjacent if they share an edge (1-cell) and
0-adjacent if they share a vertex (0-cell). A 1-path (0-path) is a sequence of
pixels where each pair of consecutive pixels are 1-adjacent (0-adjacent). A finite
set of pixels (say, R) is 1-connected (0-connected) if a 1-path (0-path) exists in
R between any two pixels of R.
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In 3D space, objects are represented by isothetic polyhedra composed by unit
cubes (voxels) defined by the integer grid. A voxel is an integer point in 3D space,
and equivalently, a 3-cell [15]. Two distinct voxels are said to be 0-adjacent if
they share a vertex (0-cell), 1-adjacent if they share an edge (1-cell), and 2-
adjacent if they share a face (2-cell). The 0-, 1-, and 2-neighborhood notations
adopted by us in our work correspond respectively to the classical 26-, 18-, and
6-neighborhood notations used in [12].

For [ € {0,1,2}, an I-path in a 3D discrete object A (or the discrete space
73) is a sequence of voxels from A such that every two consecutive voxels are
l-adjacent. The object A is said to be [-connected if there is an [-path in A
connecting any two voxels of A. An I-component is a maximal [-connected subset
of A. Let D be a subset of a discrete object A. If AND is not [-connected, then
the set D is I-separating in A. Let D be an [-separating discrete object in A such
that AND has exactly two l-components. A 3-cell ¢ € D is said to be I-simple
w.r.t. D if D~{c} is l-separating in A. An [-separating discrete object in A is
l-minimal if it does not contain any [-simple 3-cell w.r.t. A.

Let A € Z3 be a discrete object and A’ be its projection on a real plane
P. If there exists a bijection between A and A’, then the plane P is said to
be a functional plane of A. For our work, in particular, we say that a coordi-
nate plane, say, zy, is functional for A, if for every voxel v = (z, o, 20) € 4
there is no other voxel in A with the same first two coordinates. For example,
A=1{(2,5,3),(2,6,3),(3,5,3)} is a discrete 3D object. Projecting A on the coor-
dinate planes gives us the 2D sets as follows: {(2,5),(2,6),(3,5)} in zy-plane,
{(5,3),(6,3)} in yz-plane, and {(3,2),(3,3)} in zz-plane. As a bijection exists
here between A and its projection on the zy-plane, it becomes the functional
plane of A.

2.1 3D Digital Plane

Digital plane is a well-researched topic in the subject of digital geometry [9,15].
Standardized and analytical definitions of different classes of digital plane can
be found in several papers [1,6-9,11,14,15]. The analytical equation of a digital
plane having thickness w and centered on the real plane ax + by + cz = p is
given by

p—4 <ar+by+cz<p+%. (3)

For other related details, we refer to [15]. Without loss of generality, we con-
sider p = 0. Therefore, the 2-minimal digital plane (henceforth, simply called
‘digital plane’) centered on the real plane ax + by + ¢z = 0 admits the following
characterization [1,9].

— max(|al, [b], |¢])
2

max(|al, [b], [¢])
2

<ai+bj+ck < (4)
A digital plane always has at least one functional plane (FP) that can be obtained
by removing the coordinate for which the absolute value of the coeflicient is the
highest. For example, for a plane ax + by + cz = 0, if |¢| is greater than both |a]
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and |b|, then zy-plane is the FP corresponding to ax + by + cz = 0. As shown in
[4], the isothetic distance (minimum of the axis-parallel distances) of any voxel
of the digital plane is at most % from the corresponding real plane.

3 2D Digital Voronoi Diagram

Several algorithms can be found in the literature for efficient generation of
Voronoi diagrams on 2D grid. A general approach using incremental growing
from the seed points can be seen in [10]. In this approach, parallel breadth-first-
search is executed from the seeds until the consecutive region boundaries touch
each other. There are GPU-based algorithms as well, e.g., the jump flooding
algorithm in [16], which can be used to efficiently generate Voronoi diagram or
distance transform on 2D grid.

Generation of Euclidean VD on 2D digital plane has, however, certain algo-
rithmic challenges. One such challenge lies in handling debris, which splits a VD
region into multiple connected components. As discussed in [10], a naive coloring-
based algorithm using Eq.1 on 2D digital plane for assigning the nearest-seed
color to each pixel may create debris. The debris effect is more pronounced with
occurrence of ‘sliver’ (long and sharp corner) in a VD region. Figure 1(a) shows
such an instance where the sliver-containing real Voronoi region is shown using a
green boundary and the corresponding digital Voronoi region is shown using pink
pixels. Notice that due to the occurrence of debris points, we get two connected
components here for a single Voronoi region.

A region growing algorithm solves this problem by restricting the growing of
a region when it hits the points from the boundaries of the consecutive regions.
However, in this way, we are letting the debris points be engulfed in a differ-
ent region than where it belonged by Eq. 1. The digital VD obtained by region
growing algorithm is thus not persistent with the real VD, wherefore the cor-
respondence between the real and the digital VDs is lost. A solution to avoid
occurrence of debris points and to simultaneously maintain the correspondence
with the real VD is to increase the grid resolution to a sufficiently large value.

- %

(a) (b)

Fig. 1. (a) Occurrence of debris point due to presence of ‘sliver’ in the real polygon.
(b) Increasing the resolution of the grid solves the problem.
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As can be seen in Fig. 1(b), increasing grid resolution leads to a single compo-
nent for the same Voronoi region. Therefore, henceforth we assume that we are
working with a sufficiently high-resolution grid so that the slivers and resultant
debris do not occur.

3.1 Convexity of Digital Regions

The concept of convexity of a region or a polygon in 2D real plane is quite
unambiguous; however, it is not so in 2D or 3D digital space. The commonly
used convexity notion in 2D digital space is hv-convezity or horizontal-vertical
convexity. A 2D digital region R (a set of pixels) is said to be h-convex or
horizontal-convex if each row of R is 1-connected. Similarly, it is v-convex or
vertical-convex if each column is 1-connected. If R is both h-convex and v-
convex, then it is called hv-convez. The notion of ortho-converity defined for 3D
digital object (a set of voxels) is similar to the notion of hv-convexity in 2D. A
3D digital object R is ortho-convez or orthogonally convex when its intersection
with any plane parallel to one of the coordinate planes is either empty or an hv-
convex object. In other words, each row, each column, and each stack of voxels
in an ortho-convex object is 2-connected.

There is another notion of convexity in digital space, which more closely
resembles the convexity in real space than hv-convexity or ortho-convexity. This
convexity is known as digital convexity and defined as follows.

Definition 1 (Digitally Convex [13]). A 2D digital region R is digitally con-
vex if and only if there does not exist any pixzel p which belongs to the convex
hull of R but not in R.

It has been shown in [13] that a digital region R is (digitally) convex if and
only if any two points of R are connected by a digital straight line segment in R.
It can be realized that, when we increase the resolution of the underlying grid,
a digitally convex region tends to a real convex region, which is not the case for
hv-convex region or ortho-convex regions e.g. an ‘L’-shaped hv-convex region.

From [13], we know that digital convexity satisfies median-point property,
and it is a necessary and sufficient property to make a region digitally convex.
For a pair of pixels, u = (h, k) and w = (h/, k'), let z = (z,y) be the point such
that x = (h+ A')/2 and y = (k + k’)/2. If 2z is an integer point, it is said to
be the median point of v and w. If z is not an integer point, then two integer
points on the real line joining w and w which are nearest to z (possibly u and
w) are said to be the median points of u and w. A 2D digital region R is said to
be satisfying median-point property if for every pair of points in R, at least one
of the median points belong to R. R is digitally convex if and only if it satisfies
the median-point property.

The following lemma helps in ensuring the digital convexity of Voronoi
regions generated using specific distance metrics.

Lemma 1. Inner pizel cover of a convexr region on the 2D real plane is always
digitally convex.
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Proof. The inner pixel cover I of a real convex region C' includes all the pixels
that lie inside C. Assume, there is a pair of points v and w in I such that none
of their median point(s) is included in I. This means the pair (u, w) violates the
median-point property. However, as C' is convex, and u and w both lie inside
C, the real line segment joining v and w completely lies inside C'; hence, any
integer point that lies on this real line segment must lie inside C'. Therefore, the
median point(s) of u and w is included in I, which contradicts our assumption.
Hence, the proof. a

As mentioned earlier, an Euclidean VD on the 2D digital plane can be pro-
duced using Eq. 1 by restricting the domain of seed points to Z2. We now intro-
duce the following theorem on the property of Euclidean VD constructed on the
2D digital plane.

Theorem 1. An Fuclidean Voronoi diagram on the 2D digital plane always
comprises digitally convexr Voronoi regions.

Proof. On the 2D digital plane, each Voronoi region R; of an Euclidean VD
is a 1-connected set of integer points that satisfy Eq. 1. Hence, R; is basically
the inner pixel cover of the corresponding Euclidean Voronoi region on the 2D
real plane. By Lemma 1, the inner pixel cover of a real convex region is always
digitally convex. Hence, the proof. a

The property of digital convexity of each Voronoi region ensures that when
we have a grid of sufficiently high resolution, the digital VD tends to the real
VD, and hence it is persistent.

4 Voronoi Diagram on 3D Digital Plane

As discussed in Sect. 1, Euclidean distance is the perfect metric for computing
convex Voronoi regions on a real plane where the movements are not restricted
to any direction. Euclidean metric also produces digitally convex Voronoi regions
on 2D digital plane, as we have shown in Sect. 3. However, when the input is a 3D
digital plane, we need to be cautious about the selection of the distance metric
to make the resultant VD closely approximate the Euclidean VD on the corre-
sponding 3D real plane. The following example gives an intuitive idea. Assume
there are n seed pixels on the zy-plane. We can assign z-coordinates on these
seeds to lift them in 3D space such that all these n ‘lifted seeds’ now belong
to some 3D digital plane. We can do it in many possible ways and hence can
get many such digital planes. For some of them, the use of inter-voxel Euclidean
metric would produce Voronoi diagrams that are not persistent with their corre-
sponding diagrams on the real planes. To show this, we introduce here a measure
of convexity for Voronoi regions of an Euclidean VD on 3D digital planes.

Definition 2 (FP-convex). A subset of a 3D digital plane is FP-convex if its
projection on the functional plane is digitally convex.
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The above definition uses the fact that each voxel from the 3D digital plane
relates to a single pixel on the projection on the functional plane. Therefore, the
correspondence between an FP-convex set and a digitally convex can be made
from 3D to 2D. As FP-convexity of a voxel set depends entirely on the digital
convexity of its projection on FP, this convexity property does not get affected
with changing orientation of the 3D plane. Further, due to the correlation of FP-
convexity with digital convexity, an FP-convex region on the 3D digital plane
becomes persistent with a real convex region on its corresponding 3D real plane
when we move towards higher grid resolution.

Our objective is to construct Euclidean Voronoi diagram on a 3D digital plane
so that it tends to the real Voronoi diagram with finer and finer grid resolution.
For this, we define a persistent Euclidean Voronoi diagram as the one for which
its comprising Voronoi regions remain FP-convex irrespective of the orientation
of the corresponding real plane in 3D space. In order to ensure this, we need an
appropriate distance metric. In this section, we show the implications of inter-
voxel Euclidean metric on creating the Voronoi regions on 3D digital planes and
how it fails to render a persistent VD. As a practical and effective solution, we pro-
pose a variation of the inter-voxel Euclidean metric, namely inter-pedal Fuclidean
metric, which is guaranteed to create persistent VD on a 3D digital plane.

4.1 Inter-voxel Euclidean Metric

The inter-voxel Euclidean metric directly uses Eq.2 on the voxels of the 3D
digital plane. As we have already mentioned, it can be seen from the results in
Fig. 2(a), the generated Voronoi regions are not FP-convex. Figure2(b) shows
projections of the generated Voronoi regions on the functional plane to highlight
the fact that the produced regions in the projection are not digitally convex.

As we have proved in Sect. 3, the Voronoi regions produced in 2D using the
Euclidean distance between pixel pairs as the distance metric are always digitally
convex. However, as we can see it is not the case for the 3D counterpart. The
genuine reason for this lies in the fact that the voxels of a 3D digital plane do not
lie exactly on the corresponding 3D real plane unless the real plane is a special
case e.g. parallel to some coordinate plane. Whereas, in case of 2D plane, the
pixels and their real counterparts are the same set of points.

As discussed in Sect. 2.1, the voxels of a 3D digital plane lie within an isothetic
distance of % from the real plane. Therefore, in a general case of a plane, the inter-
voxel Euclidean distance does not necessarily represent the Euclidean distance
between their corresponding real points. We name this corresponding real point
of a voxel as the pedal point. More precisely, the pedal point of a voxel is the iso-
thetically nearest point on the underlying real plane. Let p; and p; be two seed
voxels on the 3D digital plane and their respective pedal points on the real plane
be pi- and pj-. Now, when we measure the distance of an arbitrary voxel g on the
3D digital plane from these two seeds, it could be a case that d(q,p;) < d(q,p;),
but d(q¢*, pit) > d(q*, pj--)7 where ¢ is the pedal point of ¢. This leads to assigning
some voxels along the borders of the Voronoi regions wrongly to one region instead
of the other and thus makes the regions FP-non-convex.
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(d)

Fig. 2. Voronoi diagrams on a digital plane and their functional-plane projections
using (a, b) Inter-voxel and (c, d) Inter-pedal Euclidean distances. Notice that in (b)
the yellow region is not digitally convex, which indicates (a) is not persistent. (Color
figure online)

4.2 Inter-pedal Euclidean Metric

As the Euclidean Voronoi regions generated on 3D digital plane are not FP-
convex, we propose the generation of Persistent Fuclidean VD using inter-pedal
Euclidean metric. Pedal Euclidean distance is defined between two voxels p and ¢
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of a digital plane. It is given by the Euclidean distance between the pedal points
of p and q. We have already mentioned that each voxel of the digital plane is
within and isothetic distance of % from the real plane, and isothetic distance is
measured along some axis-parallel line. Therefore, for each voxel, the pedal point
lies on the real plane from which its isothetic distance is measured. As a result,
when we consider the pedal points on the real plane and use Euclidean distance
metric over these pedal points to generate the Voronoi regions, we basically have
shifted our problem to the domain of the corresponding real plane. In particular,
we have the following theorem.

Theorem 2. A Voronoi diagram on any 3D digital plane using inter-pedal
FEuclidean distance is always persistent.

Proof. Let D be the digital plane corresponding to a 3D real plane P. Let S C D
be a set of seed voxels, and R a Voronoi region on D corresponding to a seed
voxel p € S, created using the inter-pedal Euclidean metric. Let D+ be the set
of pedal points corresponding to all the voxels of D, S+ the set of pedal points
corresponding to S, and R+ C D' the set of pedal points corresponding to
R. By the above construction, D is a set of discrete real points. We define an
Euclidean VD on D using S+ as the set of seeds. In this VD, let R denote the
Euclidean Voronoi region corresponding to the seed p*, and C the convex hull
of R+ (shown in the inset figure below). We have the following two observations:

1. As D+ is contained in an Euclidean plane P and we use Euclidean metric to
generate the VD on D+, C' does not contain any point from D+~ R™ .

2. There are one-to-one correspondences from R to R+ and also to R’ where R’
is the projection of R on the FP of D. The projection C’ of C on the FP of
D is a convex polygon. By the previous observation, C' contains no point in
D+ other than R, which implies C’ contains just R’ and no other pixel. So,
the projection R’ of R on the FP of D is the inner pixel cover of C’.

Hence, by Lemma 1, R’ is digitally convex in the 2D digital plane. Finally, by
the definition of FP-convex, we can say that R is FP-convex, which completes
the proof. a

In the inset figure, an illustration of the R
proof of concept is shown. As proved, the P
regions obtained by inter-pedal Euclidean
distance gives us FP-convex Voronoi regions.
An example is shown in Fig. 2(c, d). Figure 3 /
shows Persistent Euclidean VD on a 3D dig-
ital plane at three different levels of reso-
lution. It indicates how FP-convex Voronoi R
regions tend towards real Voronoi regions c'
with finer and finer grid.

a
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Fig. 3. Persistent Euclidean VD on a 3D digital plane at 3 different levels of resolution.

5 Conclusion

We have shown how the Euclidean distance metric defined over the pedal set of
a 3D digital plane can be used for construction of a persistent Voronoi diagram
on the plane. Naturally, this poses the feasibility of the proposed technique for
construction of VD with similar persistence when the underlying real surface
of the digital object is non-linear. For example, for a 2-minimal digital sphere
[5], construction of VD would involve greater challenges and would require an
appropriate convexity measure in the digital space in order to establish the
persistence of the VD with its real counterpart on a real sphere.
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On the application side, a very specific use of persistent VD can be related to
3D terrains for solving various computational problems related to GIS (Geogra-
phy Information System). A suitable distance measure for construction of well-
defined VD on an arbitrary digital surface, e.g., a digital terrain whose underlying
real surface is unknown, seems to be a very challenging task. As we foresee, the
work presented in this paper can be forwarded to meet these challenges in future.
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Abstract. In this paper we propose a new idea to design a measure
for shape descriptors based on the concept of Q-convexity. The new
measure extends the directional convexity measure defined in [2] to a
two-dimensional convexity measure. The derived shape descriptors have
the following features: (1) their values range from 0 to 1; (2) their values
equal 1 if and only if the binary image is Q-convex; (3) they are invariant
by reflection and point symmetry; (4) their computation can be easily
and efficiently implemented.

Keywords: Shape descriptor + Convexity measure + Q-convexity

1 Introduction

Shape representation is a current topic in digital image analysis, for example,
for object recognition and classification. The approaches for handling the prob-
lem consist in the design of new shape descriptors and measures for descriptors
sensitive to distinguish the shapes but robust to noise. There are several meth-
ods used for describing shapes. Sometimes they provide a unified approach that
can be applied to determine a variety of shape measures, but more often they
are specific to a single aspect of shape. Over the years, measures for descriptors
based on convexity have been developed: Area based measures form one popu-
lar category [4,15,16], while boundary-based ones [17] are also frequently used.
Other methods use simplification of the contour [11] or a probabilistic approach
[13,14] to solve the problem.

An alternative to “total” convexity studied in discrete geometry, and espe-
cially in discrete tomographic reconstruction is the horizontal and vertical con-
vexity (or shortly, hv-convexity), arising inherently from the pixel-based repre-
sentation of the digital image (see, e.g., [3,7,8]). A measure of horizontal (or
vertical) convexity was introduced in [2], showing also that the aggregation of
the measure in two dimensions can be a difficult task. In [1] the authors pro-
posed an immediate two-dimensional convexity measure based on the concepts
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V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 105-116, 2017.
DOI: 10.1007/978-3-319-59108-7_9
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of Q-convexity [5,6] and exploiting the geometrical properties of salient points
[9,10]. In this paper, we present an alternative new convexity measure based
on the concept of Q-convexity that extends the directional convexity in [2] to
a two-dimensional convexity measure. This new measure differs from the mea-
sures in [1] because it does not employ salient points, but uses quantitative
information derived directly by the definition of Q-convexity (see Sect.3). As a
result, it is very easy to compute. We show how the measure can be normalized
in two ways to obtain two shape descriptors having the following features: (1)
their values range from 0 to 1; (2) their values equal 1 if and only if the binary
image is Q-convex; (3) they are invariant by reflection and point symmetry; (4)
their computation can be easily and efficiently implemented. We show with some
experiments that the descriptors correctly incorporate the notion of Q-convexity.
Finally, we briefly discuss sensitivity and robustness to noise for them.

2 Notation and Definitions

In this section we introduce the necessary notation and definitions. A binary
image is a digital image containing just black (also called as object or foreground)
and white (background) pixels. A binary image of size mxn (where m,n € Z) can
also be represented by a binary matrix F' = (fi;)mxn where value 1 (respectively,
value 0) indicates that the color of the corresponding pixel is black (respectively,
white). I is called horizontally (respectively, vertically) convez if its 1’s (or black
pixels) follow consecutively in each row (respectively, in each column). We also
say that each row (column) is convex.

Let us denote the vector of row and column sums of the image F by H =
(h1,...,hy) and V = (v1,...,v,), respectively, where

hi:zfij (i=1,...,m) and Uj:Zfi_j G=1...,n). (1)
j=1 i=1

Figure 1 shows a binary image F' with row and column sums H = (1,3, 3,1, 3,2),
and V = (1,4,3,2,1,1,1), respectively, and its matrix representation. F' is hori-
zontally convex but not vertically convex.

1 0100000
3 1110000
3 0111000
1 0100000
3 0011100
2 0000011

1 4 3 2111

Fig.1. A binary image with its horizontal and vertical projections, and its matrix
representation. The binary image is horizontally convex but not vertically convex.
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The rows and columns of a binary image can be represented by using run-
length encoding (see, e.g., [12]) which likely results in a more compact description
of them (especially, if there are relatively few, but preferably long runs of iden-
tical values in the data). A 1-token is a token of 1s and a 0-token is a token of
0s. The length of a given token is the number of occurrences of the same value in
that particular token. For example the row 00111000000111111 can be encoded
by 02130615, where the superscripts represent the length of each token (coun-
ters). The length of the row (column) is the total number of bits present in that
row (column). In our example the length of the row is 17.

2.1 Measuring Non-convexity of a Single Row or Column

In [2] the basic idea of the definition of the directional measure is the following.
First, consider only the horizontal direction. Let us recall that a row is convex if
all its 1’s are consecutive, otherwise 0’s may separate any two 1’s. Then, consider
all the pairs of items 1’s on the same row and the line segments connecting
them. To compute the non-convexity of a row R, we split it into a sequence
of 1-tokens and O-tokens. Leading and trailing 0-tokens do not contribute to
the measure, thus hereafter we shall omit them. The rest of the row can be
encoded as R = 1%10M11%20% .. 1%» where n is the number of 1-tokens and
k1,11, ko, o, ..., ky > 0. Trivially, taking two 1’s from the same 1-token, the line
segment connecting them will not contain any 0’s and hence will not contribute
to the non-convexity measure. Now, let us take two arbitrary 1s from different
1-tokens, say the ith and jth, such that ¢ < j. The contribution to non-convexity
of 0’s in between is given by the sum of the lengths of the 0-token in between:

Z l;. (2)

For two different 1-tokens (ith and jth), we can form k;k; possible pairs of 1s,
by picking one from each. The contribution of these 1-token pairs is

i1
kik; Z ly. (3)
=i

Finally, to get the contributions for the entire row R sum up (3) for all possible
combinations of 1-token pairs:

en(R) = Z kikalt- (4)

1<i<j<n

The value ¢p(R) actually indicates the horizontal non-convezity of R, the
higher ¢y, (R) is, the horizontally “less convex” R is. Figure 2 shows an example
of a binary image and the calculation of the horizontal non-convexity value of
one particular row.
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In [2] the authors proved that the non-convexity of every row can be normal-

ized by
R en(R)
R) = , 5
on(R) = 295 )
where n is the length of the row, and cumulating (5) for all the rows of the
matrix F,

2, () = 2= ) ©)

is the normalized non-horizontal convexity measure. Finally to map horizontal
non-convexity into horizontal convexity, they simply adopt
W, =1 — &y, (7)

Naturally, the same argument can be repeated for the columns of the image
yielding the vertical convexity measure ¥,.

Fig. 2. The non-convexity of the highlighted row R = 110100111 is ¢p(R) = kikal1 +
klk‘g(ll—i—lz)—f—k’zkglg:2-1~1+2~3~3+1-3~2:26.

Another viewpoint to think about this is to calculate the contribution of every
entry 0 in between any two different 1-tokens. If a 0 entry belongs to the ¢-th 0-

token (of length I;), then its contribution is given by: (k1+. . .4+k¢)(kip1+. . - +kn).
Then, for all the 0’s entries in the same token, we get

le(ki 4 ..o+ k) (k1 + - oo+ ki), (8)
and by summing (8) for all O-token:

n—1
> hlk A k) (g - ). (9)
t=1

Finally we may rewrite (9) as follows:

LY kS b (10)

It is easy to see that (4) is equal to (10).
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3 New Q-Convexity Measure

Let F' = (fij)mxn be an m X n binary matrix. Each position (¢,j) determines
the following four quadrants (submatrices):

Zo(i,j) ={(L,k): 1<1<1i, 1 <k<j},
Z1(i,5) ={(Lk): i <l<m, 1 <k<j},
Zy(i,7) ={(LLk): i <1<m, j<k<n},
Z3(i,5) ={(L,k): 1<1<i, j<k<n}

Let us denote the number of object points of F' in Z,(i, ) by n,(i,7), for p =
0,...,3, ie.

nylis ) = card(Zy(i,5) 0 {(i,J) : fis =1}) (p=0,...,8). (11

Definition 1. A binary matrix F is Q-convex if for each (4,7) (no(i,7) > 0 A
ni(i, j) > 0 Ang(i,5) > 0Ans(i,j) > 0) implies f;; = 1.

Fig. 3. A Q-convex image (left) and a non Q-convex image (right). The four quadrants
around the position (4, 6) are illustrated: Zy(4, 6) left-top, Z1(4, 6) left-bottom, Z2(4, 6)
right-bottom, Z3(4,6) right-top. The 4-th row and 6-th column (marked by dashed
lines) are in common between consecutive zones.

If F is not Q-convex, then there exists a position (4, j) violating the Q-convexity
property, i.e. ny(i,5) > 0 for all p=0,...,3 and f;; = 0. Note that if F' is not
horizontally or vertically convex, then it is not QQ-convex. Figure 3 illustrates the
definition of Q-convexity: the binary image on the right is not Q-convex because
fas = 0 but Z,(4, 6) contains 1’s items, for all p = 0,1, 2, 3. In the figure we have
TL()(4, 6) = 5, 711(4, 6) = 97 TL2(4,6) = 5, Tl3(4,6) =4.

We define the non-Q-convexity measure as the sum of the contributions of
non-Q-convexity measure of each 0 entry of F'. Formally,

@Q(ivj) = nO(Z’])n1(27])n2(27j)n3(la.7)(1 - fij)7 (12)
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where (4, j) is an arbitrary position of F', and
0Q(F) =Y eqli,j). (13)
ij

For example, pg(4,6) = no(4,6)n1(4,6)n2(4,6)n3(4,6) =5-9-5 -4 = 900.

Remark 1. If f;; = 1, then ¢qg(i,5) = 0. Moreover, if f;; = 0, but there exists
ny(1,7) = 0, then ¢ (i, ) = 0. Therefore, F' is Q-convex if and only if pg (F') = 0.

Remark 2. By definition, the measure is invariant by reflection and by point
symmetry.

3.1 Connection with the Directional Convexity

Suppose that F' is constituted of just one row R = 1¥1011F20%2 .. 1%~ In this
case no(i,7) = n1(i,7) = k1 + ... + ki, n2(i,5) = ns(i,5) = kyy1 + ... + ky, and
so we have

vo(i5) = Q_k)*( D k) (14)
i=1 j=t+1

and by summing (14) for each entry in the row we get

n—1 t n
paB) =D LY k(D k)™ (15)
t=1 i=1 j=t+1

Comparing (10) with (15) we note that an exponent 2 appears in the latter
one. Roughly speaking, the reason for this is that we consider “regions” (two
dimensions) instead of “boundary” (one dimension).

4 Normalization

A desirable property for a measure is that it ranges in [0, 1]. In this section we
show how to normalize the new measure.

Property 1. By definition, Zy(l,k) C Zy(i,j) if I < ¢ and k < j, and hence
no(l, k) < ng(i,j) with I <4 and k < j. Analogous relations hold for Zy, Zs, Z3
and for ny, ny, ng accordingly.

Recall from (1) that for the row and columns sums of F hy = > ., fu
with I = 1,...,m and vy, = X", fir with & = 1,...,n. Moreover, denote the
horizontal and vertical partial sums by

p T
Hp:Zhl (p=1,...,m) and V,»:Z’Uk- (r=1,...,n). (16)
1=1 k=1

Clearly, H,, = V,, = «, where « is the total number of object pixels.
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Property 2. For fixed row i, we use vx[1...i] to denote the sum limited to 1, i.e.
> i—1 fu. Thus, by Egs. (1), (11), and (16) there follow the relations:

TL()(i,k‘) + n;;(i,k‘) - ’Uk[l . Z] = H;

and
ny(i, k) + na(i, k) —vli...m] =a — H;_q,

fork=1,...,n.
For fixed column j, we use Iy[l...j] to denote the sum limited to j, i.e.
>7 1 fue- Analogously, we have:

no(l,5) +n1(l,5) — [l...5] =V

and
’I'Lg(l,]) +’I’L3(l,j) - hl[] 7’7/] = — ij—l7

fori=1,...,m.
By Properties 1 and 2 there follows:
Property 3
no(t,7) +n1(i,5) +na(i,4) +ns(i,j) = o+ hi +v; + fij
fori=1,...,mand j=1,...,n.
We need the following two lemmas:

Lemma 1. Let x,y be real numbers such that © +y = p, where p is a constant.
Then, the expression xy has a mazimum at x =y = p/2.

Proof. By derivative of xy = g(x) = 2(p — x), we get ¢’(x) = 0 for = p/2, and
it is a maximum.

Lemma 2. Let z,y, z,w be real numbers such that x+y+ z+w = p, where p is
a constant. Then, the expression xyzw has a mazimum at x =y =w = z = p/4.

Proof. The product xyzw is maximal iff zy is maximal and zw is maximal.
Rewrite z +y =p— (w+2) =p; and w+ z = p — (x + y) = p2. By Lemma
1 zy is maximal if x = y = p1/2 and zw is maximal if w = z = py/2. Since
r+y+z+4+w=p, we get 2z + 2w = p and hence w = p/2 — x. Therefore
xyzw = 22(p/2—1)? = g(x) and by derivative we get ¢'(z) = 422 —3pz+p?/2 =0
for = p/4 and it is a maximum.

Now are we able to derive an upper bound to the value ¢g(i,j) for the
position (i, 7) violating the Q-convexity.

Proposition 1. Let f;; be a 0 entry of a binary matriz I, and h; and v; be the
i-th row and j-th column sums. Then, ¢q(i,j) < ((a + h; +vj)/4)%.
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111
101
111

Fig. 4. A binary image F with ¢ (F) = p(2,2) = 3* = (32£2)* = g1.

Proof. By Property 3 we have that ng(4,j) + n1(%,5) + n2(4,5) + n3(4,j) = o+
h;4+v; = p. By Lemma 2 g4, j) = no(i, j)n1 (i, j)na(i, j)ns (4, 7) is maximal for
no(i,J) = n1(i,j) = na(i, j) = ns(i,j) = p/4, then pq(i,j) = (p/4)*. The upper
bound follows.

Note that the bound is tight (see Fig. 4, for example).
In the light of Proposition 1, we may normalize the measure ¢¢q(F') by nor-
malizing each single contribution ¢g (4, j), i.e.,

Lo ol g)

®qi,j) = 7(a+hi+vj)4’ (17)
4

and o

- Z(i,j)eF‘ ¢q(i, )

card(F) ’ (18)

PQ(F)

where F' is constituted by the 0 entries of I violating the Q-convexity (if F' = {)
then we simply assign ¢ (F') = 0). Finally, we map the non-Q-convexity measure
into a Q-convexity measure simply by

VQ(F) = 1= pq(F). (19)

We can also make the measure independent from « and its row and col-
umn sums as follows. Since o < mn, h; < n,w; < m, we get that ¢g(i,j) <
(mntmin=3)4 and hence

G (6 7) = (e ng) " (20)
1

(The reason for —3 is that if f;; contributes, it is 0, and so the first three

inequalities are strict). Therefore, pg(F) is normalized to

mn > 90" (1,])
e (21)
and finally,

W (F) =1 — gl (F). (22)

Remark 3. Both measures assign 1 to Q-convex images by Remark 1. On the
other hand, for instance, ¥q assigns 0, while ¥ assigns 8 /9 to the image in
Fig. 4.
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4.1 Implementation

The measures can be efficiently implemented in linear time in the size of the
image. Indeed, by Property 1 we can count the number of 1’s in F for Z,(f;;),
for each (7, ) in linear time, and store them in a matrix for any p = {1,2, 3,4}.
Then, g (%, j) can be computed in constant time for any (7, j). Normalization is
straightforward.

5 Experiments

We investigated the new measures on some images to show their behavior and
their robustness in case of noise. We considered at first a chessboard image and a
stripe image of sizes 50 x 50 (see Fig. 5). We report on the Q-convexity measures
Vg, ¥5™, and on the non-convexity measure ¢ as a reference. As expected
@ assigns a smaller value to the second image and, accordingly, both ¥q, ¥5™
assign a greater value to it, since it is horizontally convex but not vertically
convex. Notice that in [2] the authors discussed these two examples showing that
two simple aggregations of the directional convexity did not behave correctly. For
comparison, the horizontal (¥,) and vertical (¥,) directional convexity values
are also presented (see (7) for the definition).

¥y, = 0.438400 ¥, = 1.000000

¥, = 0.438400 ¥, = 0.438400

po = 292357892768 o = 267605835504
Yo = 0.979003 Vg = 0.980011

UGE™ = 0.999342 Ua™ = 0.999398

Fig. 5. A chessboard pattern (left) and a stripe pattern (right).

Secondly, we took three 50 x 50 images representing four square regions
separated by a cross pattern as illustrated in Fig.6 with different sizes for the
black pixels. We report the values of the different measures for each image. We
may note two main differences:

— Y4 tends to overestimate the Q-convexity by assigning values close to 1,
whereas Wy assigns values closer to 0. This is true in general, because by
definition 5" is normalized with respect to the size of the image itself.
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¥, = 0.740800 ¥, = 0.416800 ¥, = 0.308800
¥, = 0.740800 ¥, = 0.416800 ¥, = 0.308800
Yq = 0.251430 Yq = 0.399306 Yq = 0.925867
Uo™ = 0.999614 Uo™ = 0.993957 Uo™ = 0.995805

Fig. 6. 50 x 50 images representing four square regions separated by a cross pattern
with different sizes for the black pixels: 10 x 10 (left), 15 x 15 (middle) and 20 x 20
(right).

— By definition, ¥5'" follows opposite behavior of ¢q (normalization is obtained
by dividing by constants), whereas ¥ may have a different behavior depend-
ing on «, and the row and column sums of the image.

In this case, ¥q assigns increasing values to the images, whereas W™ assigns
the smallest value to the second image. It is also clearly observable, that the
horizontal and vertical directional convexity measures do not take into account
the two-dimensional structure of the image. They assign decreasing values to
the images, from left to right. Indeed, the possibility of picking two 1 s in the
same row (column) separated by a 0 in between is decreasing from left to right.
However, to make the image Q-convex we have to add more points to the image
from left to right, and in any case the central image is farer to be Q-convex than
the right image. In addition, note that all the measures assign 0 to the empty
image so that deleting points is not an option to achieve Q-convexity.

Finally, we computed our measures using the images illustrated in Figs. 7 and
8 for comparison. For each image we show their horizontal (vertical) convexity
values (as in [2]) and the Q-convexity measures. Figure 8 illustrates an original
image and its variants by adding salt and pepper noise in percentage of 5%, 10%,
and 20% of the pixels.

¥, = 0.734700 ¥, = 0.657351 ¥, = 0.800969 ¥, = 1.000000
¥, = 0.869380 ¥, = 0.850321 ¥, = 0.785218 ¥, = 0.000000
Yo = 0.844882 Yo = 0.831100 Yo = 0.957032 Yo = 0.936390

wET = 0997191 WS =0.998505 W™ =0.998459 WA = 0.996185

Fig. 7. Example binary images of size 50 x 50, with horizontal (¥3), vertical (&)

mn

convexity and Q-convexity (Pq, ¥g'") shown.
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¥, = 0.786281 ¥, = 0.651773 ¥, = 0.577253 ¥y, = 0.468834

¥, = 0.546486 ¥, = 0.458462 » = 0.411538 » = 0.335765
W, = 0.982493 Wy = 0.979577 W = 0.977229 W, = 0.968567

va" = 0.998914 UGg™ = 0.998476 vo™ = 0.998178 va" = 0.997449

Fig. 8. Same image without, and with 5%, 10%, and 20% noise. For each image we
show horizontal (¥,), vertical (¥,) convexity and Q-convexity (Wq, ¥5'™) measures.

An immediate observation is that for all presented images W™ lies between
0.99 and 1. This seems to be a weakness of this measure, which can be avoided
by renormalizing the values into the interval [0, 1]. For this, the minimal possible
value of W™ should be identified, which is among our further aims. However, for
further comparison let us assume that the minimal value of vo" is min¥g" =
8/9 (the value we observed for Fig.4) and let

TET = BIE" — minTG"), (23)

where 3 = 9 since max W™ —min 3" = 1/9, which stretches the values of V7"
onto the interval [0, 1], and thus provides an exact comparison of g and ¥j".
Denoting the images of Fig. 8 by Fy, F5, F19, and Faq, from left to right respec-
tively, we get ¥¢)'" (Fo) = 0.990226, ¥ (F5) = 0.986284, U5 (Fio) = 0.983602,
and W4"(Fy) = 0.977041. Comparing U5"(F5) — U5"™(Fy) = 0.003942,
W (Fro) — W5 (F) = 0.006624, and W™ (Fy) — U5 (Fy) = 0.013185 to
g (Fs) —Wq(Fy) = 0.002016, U™ (Fio) — 5" (Fy) = 0.005264, and U™ (Fy) —
@é’m(Fo) = 0.013926, respectively, we may note that ¥y is more robust, while
w4 is more sensitive to a moderate amount of noise (5% and 10%), but this,
of course, needs a broader study.

6 Conclusions

In this paper, we presented a new idea to define shape descriptors based on the
concept of Q-convexity. This measure is quantitative and it is an extension of the
directional convexity measure proposed in [2]. This study shows some potential
of these shape descriptors since they correctly incorporate the convexity along
the considered directions, and in particular ¥ seems to be more robust, whereas
w5 to be more sensitive to noise. Moreover they can be computed efficiently
and are invariant by reflection and point symmetry. Further work should be
done to deeply investigate normalization and to conduct experiments for object
recognition and classification.
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Abstract. We study a discrete version of a geometric stable mar-
riage problem originally proposed in a continuous setting by Hoffman,
Holroyd, and Peres, in which points in the plane are stably matched
to cluster centers, as prioritized by their distances, so that each cluster
center is apportioned a set of points of equal area. We show that, for a
discretization of the problem to an n x n grid of pixels with k centers, the
problem can be solved in time O(n2 log® n), and we experiment with two
slower but more practical algorithms and a hybrid method that switches
from one of these algorithms to the other to gain greater efficiency than
either algorithm alone. We also show how to combine geometric sta-
ble matchings with a k-means clustering algorithm, so as to provide a
geometric political-districting algorithm that views distance in economic
terms, and we experiment with weighted versions of stable k-means in
order to improve the connectivity of the resulting clusters.

1 Introduction

A long line of research considers algorithms on objects embedded in n X n grids,
including problems in computational geometry (e.g., see [1,2,8,17,19,26,28,29]),
graph drawing (e.g., see [5,10,14,30]), geographic information systems (e.g.,
see [13]), and geometric image processing (e.g., see [9,11,15,20]). Continuing
this line, we consider in this paper the problem of matching grid points (which
we view as pizels) to k center points in the grid. Pixels have a preference for
centers closer to them, and centers prefer closer pixels as well. The goal is to
match every center to an equal number of pixels and for the matching to be sta-
ble, meaning that no two elements prefer each other to their specified matches.
For example, the centers could be facilities, such as polling places, fire stations,
or post offices, that have assigned jurisdictions and equal operational capacities
(in terms of how many pixels they can serve). Rather than optimizing some com-
putationally challenging global quality criterion based on distance or area, we
seek an assignment of pixels to centers that is locally stable. Figure 1 illustrates
a solution to this stable grid matching problem for a 900 x 900 grid and 100
random centers. Note that some centers are matched to disconnected regions.
Stable grid matching is a special case of the classic stable matching prob-
lem [18], which was originally described in terms of arranging marriages between
N heterosexual men and women in a closed community. In this case, stability
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Fig. 1. An example solution to the stable grid matching problem for a 900 x 900 grid
and 100 centers distributed randomly. Pixels of the same color are assigned to the same
center. (Color figure online)

means that no man-woman pair prefers each other to their assigned mates, which
is necessary (and more important than, e.g., total utility) to prevent extramari-
tal affairs. The Gale-Shapley algorithm [18] finds a stable matching for arbitrary
preferences in O(N?) time. For stable grid matching in an n x n grid this would
give a running time of O(n?), since each “man” would correspond to a pixel
and each “woman” would correspond to one of [n?/k] copies of a center. As
we show, the geometric structure of the stable grid matching problem allows for
significantly more efficient solutions.

We also study the effect of integrating a stable matching with a k-means
clustering method, which alternates between assigning points to cluster centers
and moving cluster centers to better represent their assigned points. Using stable
matching for the assignment stage of this method allows us to fix the size of the
clusters (for instance, to be all equally sized), which might be advantageous in
some applications.

Prior Related Work. As mentioned above, there is considerable prior research on
algorithms involving objects embedded in an n xn grid. The stable grid matching
problem that we study can be viewed as a grid-restricted version of the classic
“post office” problem of Knuth [27], where one wishes to identify each point in the
plane with its closest of k post offices, with the added restriction that the region
assigned to each post office must have the same area. The continuous version
of the stable grid matching problem, which deals with points in R? instead of
discrete pixels, was studied by Hoffman et al. [21]. They showed that there is a
unique solution, and there is a simple numerical method to find it: Start growing
a circle from each center at the same time, all growing at the same speed. When
a yet-unmatched point is reached by a circle, it is assigned to the corresponding
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center. When a center reaches its quota (its region covers 1/k of the area of
the square), its circle halts. (Note that if the halting condition is removed, we
obtain the Voronoi diagram of the centers instead, as in the well-known solution
to Knuth’s post office problem, e.g., see [3].) Due to its continuous, numerical
nature, Hoffman et al. did not analyze the running time of their method; hence,
there is motivation to study the grid-based version of this problem.

With respect to the related problem of k-means clustering, we are interested
in a grid-based version of this problem as well, which has been studied exten-
sively in non-grid discrete contexts (e.g., see [22,24]). In the continuous version
of this problem, one is interested in partitioning a geometric region into subre-
gions that all have the same area (e.g., see [6]). One of the motivations for such
partitions is in political districting, for which there is additional related prior
work (e.g., see [32]). The goal of political districting is to partition a territory
into regions (districts) which all have roughly the same population size and are
“compact”, which informally means that their shape should be connected and
resemble a circle rather than an octopus [32]. Ricca et al. [31] adapted the con-
cept of Voronoi regions to the discrete setting in order to use them for political
districting. Voronoi regions ensured good compactness but poor population bal-
ance, however. Thus, there is motivation for a clustering algorithm based on the
use of stable matchings, since such partitions enforce the property that all regions
have the same size (at the possible cost of connectivity). Finding a scheme that
guarantees both size equality and compactness is an open problem of interest.

Problem Definition. In the stable grid matching problem, we are given a square
nxn grid and k points called centers within the grid. The lattice points are called
pizels or sites. Sites implicitly rank the centers in increasing order of distance,
and centers similarly implicitly rank pixels in increasing order by distance. A
matching is a mapping from sites to centers. The goal is to find a matching with
the following two properties (see Fig. 2, left column):

1. The region of each center (the set of sites assigned to it) must have the same
size up to roundoff errors. The quota of a center is the number of sites that
must be in its region. If n? is a multiple of k, then all the quotas are n?/k.
Otherwise, some centers are allowed one extra site.

2. The matching must be stable. A matching is not stable when a pair of sites
(p1,p2) is assigned to centers ¢; and ¢y such that p; prefers (i.e., according to
some metric is closer to) co over ¢ and ¢ prefers p; over py. This is unstable
because p; and cy prefer each other to their current matches.

Combining k-means with Stable Assignment. The k-means clustering method
is to partition a data set (which, in our case, is an n x n grid) into k regions,
based on a simple iterative refinement algorithm (which is called the k-means
algorithm or Lloyd’s algorithm, e.g., see [24]): We begin by choosing k points,
called cluster centers, randomly in the space. Then, we iteratively repeat the
following two phases: (1) assignment step: each object is assigned to its closest
center, and (2) update step: each center is moved to the centroid of the objects
assigned to it.
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Fig. 2. Left: stable matching in a 300 x 300 grid with the same 50 random centers
for the Euclidean (top), Manhattan (center), and Chebyshev (bottom) metrics. Right:
result of the stable k-means algorithm with unweighted centroids for each metric.

Lloyd’s algorithm converges to a (locally optimal) partition that minimizes
the sum of the squared distances from each object to its assigned center [24].
In this paper, we propose a variation, which we call stable k-means, where the
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assignment step is replaced by a stable matching between objects and centers,
so as to achieve the additional property that the regions all have equal area (to
within roundoff errors). Intuitively, the goal is to implement Lloyd’s algorithm
with stable grid matching so as to improve the compactness of the regions while
preserving equal-sized clusters.

We have found through experimentation that, although the stable k-means
method succeeds in improving compactness, centers can sometimes stop mov-
ing while we are executing Lloyd’s algorithm before their regions became com-
pletely connected (e.g., see Fig.2). Thus, we introduce in this paper an addi-
tional heuristic, where we use weighted centroids, which are more sensitive to
the outlying parts of their region. The usual centroid of a set of points S is
defined as (3_ 5 q)/|S|, where the points are regarded as two-dimensional vec-
tors so that the sum makes sense. Instead, we can compute a weighted centroid
as (X5 W)/ (D es Wq)- A natural choice to use for the weight w, of a point
q assigned to the region of the center c is the distance from ¢ to ¢ raised to some
exponent p that we can choose, d(g,c)?. The larger p is, the more sensitive the
weighted centroids are to outliers. When p = 0, we get the usual centroid. When
p — 400, we get the circumcenter of the region, and when p — —oco we get the
current center.

Contributions. In this paper, we provide the following results:

— The stable grid matching problem, for a grid of n x n pixels with k cen-
ters, can be solved by a randomized algorithm with expected running time
O(n?log® n). Since an n x n grid has ©(n?) pixels, this quasilinear bound
improves the O(n*) time of the Gale-Shapley algorithm. However, this algo-
rithm uses intricate data structures that make it challenging to implement in
practice.

— Given the pragmatic challenges of the above-mentioned quasilinear-time algo-
rithm, we provide two alternative algorithms, a “circle-growing algorithm”
and a “distance-sorting” method, both of which are simple to implement and
have running times of O(n?k).

— We provide an experimental analysis of these two practical algorithms, where
we observe that the circle-growing algorithm is more efficient at finding low-
distance matched pairs, while the distance-sorting based method is more effi-
cient when pairs are farther apart. Therefore, we show that it is advantageous
to switch from one algorithm to the other partway through the matching
process, potentially achieving running times with a sublinear dependence on
k. We experiment with the optimal cutoff for switching between these two
algorithms.

— We also provide the results of experiments to test the connectivity of the
clusters obtained by our stable k-means algorithm, with weighted variants
for finding centroids. Our experiments support the conclusion that no choice
of a weight exponent p will always result in total connectivity. Nevertheless,
our experiments provide evidence that the best results come from the range
—0.8 < p < 0.4. Empirically, more highly negative values of p tend to make



122 D. Eppstein et al.

the algorithm converge slowly or fail to converge, while more highly positive
values of p lead to oscillations in the center placement. See the full version of
the paper for additional figures of these cases.

2 Algorithms

Our stable grid matching algorithms start with an empty matching and add
center—site pairs to it. Given a partial matching, we say a site is available if it
has not been matched yet, and a center is available if the size of its region is
smaller than its quota. A center—site pair is available if both the center and site
are available, and it is a closest available pair if it is available and the distance
from the center to the site is minimum among all available pairs. It is simple to
prove that if an algorithm starts with an empty matching and only adds closest
available pairs to it until it is complete, the resulting matching is stable.

2.1 Circle-Growing Algorithm

In this section we describe our main practical algorithm, the circle-growing algo-
rithm, which mimics the continuous construction from [21]. First, we obtain
the list of all the lattice points with coordinates ranging from —n to n sorted
by distance to the origin. The resulting list P emulates a circle growing from
the origin. When initializing P, we can gain a factor of eight savings in space
by sorting and storing only the points in the triangle A(0,0)(0,n)(n,n). The
remaining points can be obtained by symmetry: if p = (z,y) is a point in the
triangle, the eight points with coordinates of the form (+z,+y) and (fy, tz)
are at the same distance from the origin as p. Moreover, in applications where
we find multiple stable grid matchings, such as in the stable k-means method,
we need only initialize P once. The way we use P depends on the type of centers
we consider.

Integer Centers. In this case we can use the fact that if we relocate the points in
P relative to a center, then they are in the order in which a circle growing from
that center would reach them. To respect that all the circles grow at the same
rate, we iterate through the points in P in order. For each point p, we relocate
it relative to each center ¢ to form the site p + ¢ (the order of the centers does
not matter). We add to the matching any available center—site pair (¢,p + c).
We iterate through P until the matching is complete.

We require O(n?) space and O(n?logn) time to sort the points in P. For
the Euclidean metric instead of using distances to sort P we can use squared
distances, which take integer values between 0 and 2n2. Then, we can use an inte-
ger sorting algorithm such as counting sort to sort in O(n?) time [12, Chap. 8.2].
Since each point in P results in up to O(k) center—site pairs, we need O(n2k)
time to iterate through P.
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Real Centers (Algorithm 1). If centers have real coordinates, we cannot translate
the points in P relative to the centers, because p + ¢ is not necessarily a lattice
point. The workaround is to associate each center c to its closest lattice point
pe. Let § be the maximum distance d(c, p.) among all centers. Then, the center—
site pairs “generated” by each point p in P have the form (¢, p + p.) and their
distances can vary between d(p,O) — § and d(p,O) + § (where O denotes the
origin, (0,0)). Consequently, the distances of pairs generated by points p;,p; in
P with ¢ < j may intertwine, but only if d(p;, O) — ¢ < d(p;, O) + 6. The points
in P after p; whose pairs might intertwine with those of p; form an annulus
centered at O with small radius d(p;, O) and big radius d(p;, O) + 2.

Since ¢ is a constant (for the Euclidean metric, § < \@/ 4), it can be derived
from the Gauss circle problem that such an annulus contains O(d(p;, O)) = O(n)
points.

Algorithm 1. Circle growing algorithm for k real centers on an n x n grid.
Set all sites as unmatched.
Set the quota of the first n? mod k centers to [n2/k].
Set the quota of the remaining centers to [n?/k].
Let P = list of points (z,y) such that —n < z,y < n.
Sort P by nondecreasing distance to (0,0).
For each center ¢, let p. = (round(cg ), round(cy)).
Let 6 = max{dist(c, pc)} among all centers.

je1

while the matching is not complete do
L «— empty list
i« min(j + n, |P|)

for allp € P;,...,P; do > Add to L pairs generated by points in the next chunk
for all centers ¢ with quota > 0 do
S < P+ pe

if 0 < sz,sy < n and s is still available then
Add (e, s) to L.
Let d = max{dist(c, s)} among all pairs (c,s) € L.
for all p € Pit1,...,Pp do > Add to L pairs closer than pairs already in L
if dist(p, O) > dist(P;, O) + 26 then
break
for all centers ¢ with quota > 0 do
S p+Dpe
if 0 < sz,sy < n and s is still available and dist(c, s) < d then
Add (e, s) to L.
Sort L by nondecreasing center—site distance.
for all (¢,s) € L do
if ¢ and s are available then
Match s and c.
Reduce the quota of ¢ by 1.
j—i+1
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The algorithm processes the points in P in chunks of n at a time, adding
available center—site pairs generated by points in the chunk (or points after it,
as we will see) to the matching in order by distance. The invariant is that after
a chunk is processed, its points do not generate any more available pairs, and
we can move on to the next one until the matching is complete. To do this, for
each chunk we construct the list L of all the pairs generated by its points. Let d
be the maximum distance among these pairs. If p; is the last point in the chunk,
the points in P from p; 1 up to the last point at distance to the origin at most
d(pi,O) + 26 can generate pairs with distance less than d. We add any such
pair to L. We have to check O(n) additional points, so L still has size O(kn).
We sort all these pairs and consider them in order, adding any available pair
to the matching. Since each chunk has size n, there will be O(n) chunks. Each
one requires sorting a list of O(kn) pairs, which requires O(knlogn) time (since
k < n?) and O(kn) space. In total, we need O(n?klogn) time and O(n? + nk)
space.

2.2 Distance-Sorting Methods

Unless the centers are clustered together, the circle-growing algorithm finds many
available pairs in the early iterations. However, it reaches a point in which most
circles overlap. Even if the centers are randomly distributed, in the typical case
a large fraction of centers have “far outliers”, sites which belong to their region
but are arbitrarily far because all the area in between is claimed by other centers.
Consequently, many centers have to scan a large fraction of the square. At some
point, thus, it is convenient to switch to a different algorithm that can find
the closest available pairs quickly. In this section, let m and & < m denote,
respectively, the number of available sites and centers after a matching has been
partially completed.

Pair Sort Algorithm. This algorithm simply sorts all the center—site pairs by
distance and considers them in order, adding any available pair to the matching
until it is complete. This algorithm is convenient when we can use integer sorting
techniques, as in the case of the Euclidean metric and integer centers. Then, it
requires O(mk) time and space.

While the pair sort algorithm has a big memory requirement to be used
starting with an empty matching, used after the circle-growing algorithm has
matched a large fraction of sites results in improved performance.

Pair Heap Algorithm. When centers have real coordinates, sorting all the pairs
takes O(mklogm) time, but we can do better. We find for each site s its closest
center ¢g, and build a min-heap with all the center—site pairs of the form (cs, s)
using d(cs, s) as key. Clearly, the top of the heap is a closest available pair. We
can iteratively extract and match the top of the heap until one of the centers
becomes unavailable. When a center ¢ becomes unavailable, all the pairs in the
heap containing ¢ become unavailable. At this point, there are two possibilities:
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FEager update. We find the new closest available center of all the sites that had ¢
as closest center and rebuild the heap from scratch so that it again contains
one pair for each available site and its closest available center.

Lazy update. We proceed as usual until we actually extract a pair (cs, s) with an
unavailable center. Then, we find the new closest available center only for s,
and reinsert the new pair in the heap.

In both cases, we repeat the process until the matching is complete.

We have not addressed yet how to find the closest center to a site. For this,
we can use a nearest neighbor (NN) data structure that supports deletions. Such
a data structure maintains a set of points and is able to answer nearest neighbor
queries, which provide a query point q and ask for the point in the set closest to
q. For the pair heap algorithm, we initialize the NN data structure with the set
of centers and delete them as they become unavailable.

Since we need deletions we can use a dynamic NN data structure, i.e., with
support for insertions as well as deletions. The simplest NN algorithm is a linear
search, and a dynamic data structure based on it has O(k) time per query
and O(1) time per update. The best known complexity of a dynamic NN data
structure is O(log® k) amortized time per operation [7,25].

Given that we know all the query points for our NN data structure ahead
of time (the sites), we can build for each site s an array A, with all the centers
sorted by distance to s. Then, the closest center to a site s is Ag[is], where i, is
the index of the first available center in As. When a center is deleted we simply
mark it. When we get a query for the closest center to a site s, we search Ag
until we find an unmarked center. We can start the search from the index of the
center returned in the last query for s. This data structure requires O(mk) space
and has a O(mklogk) initialization cost to sort all the arrays. The interesting
property is that if we do O(k) queries for a given site s, we require O(k) time
for all of them, as in total we traverse A only once. We call this data structure
presort, although it is not strictly a NN data structure because it knows the
query points ahead of time.

In the pair heap algorithm, we can combine eager and lazy updates with any
NN data structure. In any case, the running time is influenced by «, the sum
among all centers ¢ of the number of sites that had ¢ as closest center when
¢ became unavailable. In the worst case « = O(km), but assuming that each
center is equally likely to be the closest center to each site, the expected value
of a is O(m). In the full version of the paper we test the value of o empirically
in several different settings, and in every case we find a@ < 10m.

With eager updates in total we have to initialize the NN data structure,
perform m extract-min operations, O(m + «) NN queries, & NN deletions, and
rebuild the heap k times. Thus, the running time is O(P(k,m) + mlogm +
(m + a)Q(k) + kD(k) + km), where P(k,m) is the cost of initializing the NN
data structure of choice with k points (and m query points, in the case of the
presort data structure), and Q(k) and D(k) are the costs of queries and deletions,
respectively. With lazy updates, instead of rebuilding the heap we have O(«)
extra insert and extract-min heap operations, which requires O(alogm) time.
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For real centers, the best worst-case bound is with eager deletions and the
presort NN data structure. In that case, we have that the NN queries take
O(km) for any «, so the total running time is O(mklogk + mlogm). If we
assume that o = O(m), then the best time is with lazy deletions and the NN
data structure from [7,25]. The running time with this heuristic assumption is
O(mlog® k +mlogm).

2.3 Bichromatic Closest Pairs and Nearest Neighbor Chains

We now describe a less-practical solution based on bichromatic closest pairs
which achieves the best theoretical running time that we have been able to prove.
A bichromatic closest pair (BCP) data structure maintains a set of points, each
colored red or blue, and is able to answer queries asking for the closest pair of
different color.

The stable grid matching problem can be solved with a BCP data structure
that supports deletions, either on its own or after the circle-growing algorithm.
We first initialize the data structure with the available sites and centers as blue
and red points, respectively. Then, we repeatedly find and match the closest pair,
remove the site, and remove the center if it becomes unavailable. The running
time is O(P(m) + mQ(m) + mD(m)), where P(m),Q(m), and D(m) are the
initialization, query, and deletion costs, respectively, for the BCP data structure
of choice containing m blue points and k < m red points.

Eppstein [16] proposed a fully dynamic BCP data structure that uses an aux-
iliary dynamic NN data structure. Using it, the sequence of operations required
to solve the stable grid matching problem takes O(mT'(m)log® m) time, where
T(m) is the cost per operation of the NN data structure. In particular, com-
bining this with the dynamic nearest neighbor data structure of Chan [7] and
Kaplan et al. [25] gives a total time bound of O(n?log” n) for this problem.

To improve this, we observe that (with a suitable tie-breaking rule to ensure
that no two distances are equal) it is not necessary to find the bichromatic
closest pair in each step: it suffices, instead, to find a mutual nearest neighbor
pair: a pixel and a center that are closer to each other than to any other pixel or
center. The reason is twofold. First, in the algorithm that repeatedly finds and
removes closest pairs, every pair (c¢,p) of mutual nearest neighbors eventually
becomes a closest pair, because until they do, nothing else that the algorithm
does can change the fact that they are mutual nearest neighbors. So (¢, p) will
eventually become matched by the algorithm. Second, if we find a pair (c,p)
that will eventually become matched (such as a mutual nearest neighbor pair),
it is safe to match them early; doing so cannot affect the correctness of the rest
of the algorithm.

To find these, we may adapt the nearest-neighbor chain algorithm from the
theory of hierarchical clustering [4,23] which uses a stack to repeatedly find pairs
of mutual nearest neighbors at a cost of O(1) nearest neighbor queries per pair.
In more detail, the algorithm is as follows.

1. Initialize two dynamic nearest neighbor structures for the pixels and centers,
and an empty stack S.
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2. Repeat the following steps until all pixels have been matched:

(a) If S is empty, push an arbitrary point (either a pixel or a center) onto S.

(b) Let p be the point at the top of S, and use the nearest neighbor data
structure to find the nearest point ¢ of the opposite color to p.

(c) If g is not already on S, push it onto S. Otherwise, ¢ must be the second-
from-top point on .S, and is a mutual nearest neighbor with p. Pop p and
q, match them to each other, and remove one or both of p or ¢ from the
nearest neighbor data structure (always remove the pixel, and remove the
center if it becomes unavailable).

Note that in step 2. (¢) ¢ must be second-from-top because we have a cycle of
(non-mutual) nearest neighbors starting with p — ¢ and then up the stack back
to p. At each step along this cycle, the distance decreases or stays equal. But
it cannot decrease, because there would be no way to increase back again, and
nothing but ¢ — p can be equal to p — ¢, because we are using a tie-breaking
rule. So the cycle has length two and ¢ is second-from-top.

Each step that pushes a new point onto S can be charged against a later
pop operation and its associated matched pixel, so the number of repetitions is
O(n?). This algorithm gives us the following theorem.

Theorem 1. The stable grid matching problem can be solved in O(n?) opera-
tions of a dynamic nearest neighbor data structure. In particular, with the struc-
ture of Chan [7] and Kaplan et al. [25], the time is O(n?log® n).

3 Experiments

Datasets. Table 1 summarizes the parameters used in the different experiments.
We use the following labels for the algorithms: C'G the circle-growing algorithm
alone, and PS and PH for the combination of CG and the pair sort and pair
heap algorithms, respectively. Moreover, for the pair heap algorithm we consider
the following variations: eager/presort (PHpg, p), eager/linear search (PHg 1),
lazy /presort (PHp p), and lazy/linear search (PHp 1).

We focus on the Euclidean metric, but in the full version of the paper we
also consider the Manhattan and Chebyshev metrics. The parameter n is the
length of the side of the square grid, and k is the number of centers. In all the
experiments, the centers are chosen uniformly and independently at random.
Moreover, every data point is the average of 10 runs, each starting with different
centers.

The cutoff is the parameter used to determine when to switch from the
circle-growing algorithm to a different one. We define it as a ratio between the
number of available pairs and the number of pairs already considered by the
circle-growing algorithm.

The algorithms were implemented in C++ (gec version 4.8.2) and the inter-
face in Qt. The experiments were executed by a Intel(R) Core(TM) CPU i7-
3537U 2.00 GHz with 4 GB of RAM, on Windows 10.
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Table 1. Summary of parameters used in the experiments section.

Experiment Algorithms | Metric | n k Cutoff
Exec. time (Fig.3) | All Lo varies | 10n | 0.15
Cutoff (Fig. 4) CG,PHy,1 | L2 1000 | varies | varies

Algorithm Comparison. Figure3 contains a comparison of all the algorithms.
Pair heap is generally better than pair sort, even for integer distances where it
has a higher theoretical complexity. Among pair heap variations, lazy/linear is
the best for both types of centers. In general lazy updates perform better, but
eager /presort is also a strong combination because they synergize: eager updates
require more NN queries in exchange for less extract-min heap operations, and
the presort data structure has fast NN queries.

Integer centers Real centers

—eo— PS
ysb | —m— PHgy
125 PHyy

— I L L I L I L
200 400 600 800 1000 0 200 400 600 800 1000
n n

Fig. 3. Execution time of the various algorithms for integer (left) and real (right)
centers. For all the methods but CG, the cutoff is 0.15. Each data point is the average
of 10 runs with 10n randomly distributed centers and the L2 metric.

Optimal Cutoff. When combining the circle-growing algorithm with another
algorithm, the efficiency of the combination depends on the cutoff used to switch
between both. If we switch too soon, we don’t exploit the good behavior of the
circle-growing algorithm when circles are still mostly disjoint. If we switch too
late, the circle-growing algorithm slows down as it grows the circles in every
direction just to reach some outlying region.

Figure 4 illustrates the role of the cutoff. It shows that most of the execution
time of the circle-growing algorithm is spent with the very few last available
pairs, so even a really small cutoff prompts a substantial improvement. After
that, the additional time spent in the pair heap algorithm slightly beats the
savings in the circle-growing algorithm, resulting in a steady increase of the
total running time.
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Fig. 4. Execution time of the circle-growing algorithm for integer (left) and real (right)
centers, combined with the pair heap algorithm with lazy updates and a linear search
NN data structure. The dotted lines denote the running time of the circle-growing
algorithm alone, i.e., with cutoff 0. Each data point is the average of 10 runs with
randomly distributed centers, n = 1000, and the L2 metric.

4 Discussion

We have defined the stable grid matching problem, developed efficient theoretical
algorithms and practical implementations of slower but simpler algorithms for
this problem, and used our implementation to test different strategies for center
placement in k-means like stable clustering algorithms. However, this work leaves
several open questions:

— For which n and k does the stable grid matching problem have a placement
of centers for which all clusters are connected, and how can such centers be
found?

— Can the worst-case running time of our theoretical O(n?log® n)-time algo-
rithm be improved? Is it possible to achieve similar runtimes without going
through fully-dynamic bichromatic closest pair data structures?

— Can we obtain practical algorithms whose runtime has lower worst-case
dependence on k than our O(n?k)-time circle-growing and distance-sorting
methods?

— Our bichromatic closest pair and distance-sorting algorithms can be made to
work for arbitrary point sets (not just pixels) but the circle-growing method
assumes that the points form a grid, and its time analysis depends on the
fact that the grid is a fat polygon (so that the area of each circle is propor-
tional to the number of grid points that it covers) and that testing whether a
point belongs to the grid is trivial. Can this method be extended to pixelated
versions of more complicated polygons?

— How efficiently can we perform similar distance-based stable matching prob-
lems for graph shortest path distances instead of geometric distances? Can
additional structure (such as the structures found in real-world road networks)
help speed up this computation?
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Abstract. We discuss certain n-ary relations (n > 1 an integer) and
show that each of them induces a connectedness on its underlying set.
Of these n-ary relations, we study a particular one on the digital plane Z>
for every integer n > 1. As the main result, for each of the n-ary relations
studied, we prove a digital analogue of the Jordan curve theorem for the
induced connectedness. It follows that these n-ary relations may be used
as convenient structures on the digital plane for the study of geometric
properties of digital images. For n = 2, such a structure coincides with
the (specialization order of the) Khalimsky topology and, for n > 2, it
allows for a variety of Jordan curves richer than that provided by the
Khalimsky topology.

1 Introduction

A crucial problem of digital topology, a theory that was founded for the study of
geometric and topological properties of digital images, is to provide the digital
plane Z? with a convenient structure for such a study (cf. [9,10]). The classical,
graph theoretic, approach to digital topology is based on using the 4-adjacency
and 8-adjacency graphs for structuring Z? (see [14,15]). Unfortunately, neither
4-adjacency nor 8-adjacency graph alone allows for an analogue of the Jordan
curve theorem (cf. [8]) so that a combination of the two adjacency graphs has
to be used. Despite this drawback, the classical approach to digital topology has
been used to solve numerous problems of digital image processing (see, e.g., [1])
and create a great deal of useful graphic software.

To eliminate the above drawback of the classical approach to digital topology,
a new, purely topological approach was proposed in [5] which utilizes a conve-
nient topology for structuring the digital plane, namely the Khalimsky topology.
The convenience of the Khalimsky topology for structuring the digital plane was
shown in [5] by proving an analogue of the Jordan curve theorem for the topol-
ogy (recall that the classical Jordan curve theorem states that a simple closed
curve in the Euclidean plane separates this plane into exactly two connected
components). The topological approach was then developed by many authors -
see, e.g., [4,6,7,11-13,17,18].

Since the Khalimsky topology is an Alexandroff Ty-topology, it is uniquely
determined by a partial order on Z2, the so-called specialization order of the
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topology. The connectedness in the Khalimsky space then coincides with the
connectedness in the underlying (simple) graph of the specialization order of the
Khalimsky topology. Thus, when studying the connectedness of digital images
with respect to the Khalimsky topology, this graph, rather than the Khalimsky
topology itself, may be used for structuring the digital plane. A disadvantage of
this approach is that Jordan curves in the (specialization order of the) Khalim-
sky topology may never turn at the acute angle 7. It would, therefore, be useful
to find some new, more convenient structures on Z? that would allow Jordan
curves to turn, at some points, to form the acute angle 7. In the present note,
to obtain such a convenient structure, we generalize the specialization order of
the Khalimsky topology, hence a binary relation on Z2, by using certain n-ary
relations on Z? (n > 1 an integer). We will define a connectedness induced by
these relations and will prove a digital Jordan curve theorem for this connect-
edness. Thus, the n-ary relations provide convenient structures on the digital
plane for the study of the geometric properties of digital images that are related
to boundaries because boundaries of objects in digital images are represented by
digital Jordan curves.

2 Preliminaries

Throughout the paper, non-negative integers are considered to be finite ordinals
and they are called, as usual, natural numbers. Thus, given a natural number
n > 0, (z;]i < n) will denote the finite sequence (zg, 21, ..., Tn—1) and (z;]i < n)
the finite sequence (xg,x1,...,%,). These finite sequences will often be treated
as sets, namely the sets {z;; ¢ < n} = {zo,21,...,xp—1} and {z;; i < n} =
{zo, 1, ..., Ty}, respectively.

We will work with some basic graph-theoretic concepts only - we refer to [2]
for them. By a graph G = (V, E), we understand an undirected simple graph
without loops where V' # () is the verter set of G and E C {{z,y}; z,y €V, z #
y} is the set of edges in G. We will say that G is a graph on V. Two vertices
xz,y € V are said to be adjacent (to each other) if {z,y} € E. Recall that a
path in G is a (finite) sequence of pairwise different vertices (i.e., elements of
V') such that every pair of consecutive vertices is adjacent. A (finite) sequence
(xo, 21, ..., xy) of vertices of G with n > 2 is called a circle in G if (z;]i < n)
is a path in G and x¢9 = z,,. A subset A C V is connected in G if any two
points z,y € A may be joined by a path contained in A (i.e., there is a path
(4]t <n) with g = z, z, =y and {z;]i <n} C A). A subset A CV is said to
be a component of G if it is a maximal (with respect to set inclusion) connected
subset of V. A circle C in a graph G is said to be a simple closed curve if, for
every vertex z € C, C' contains precisely two vertices adjacent to z. A simple
closed curve J in a graph with the vertex set V is called a Jordan curve if it
separates the set V into precisely two components, i.e., if the induced subgraph
V' — J has exactly two components.

Recall that, given a directed graph (i.e., a set with a binary relation) D, its
underlying graph is the (undirected) graph obtained by just ignoring the direction
of the edges in D.
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For every point (z,y) € Z?, we denote by A4(x,y) and Ag(z,y) the sets
of all points that are 4-adjacent and 8-adjacent to (x,y), respectively. Thus,
Ag(z,y) = {(z+ i,y +34); 4,5 € {-1,0,1}, ij =0, i+ 7 # 0} and Asg(x,y) =
Ay(z,y) U{(z +i,y+75); i,j € {—1,1}}. The graphs (Z?, A4) and (Z?, Ag) are
called the 4-adjacency graph and §-adjacency graph, respectively.

In digital image processing, the 4-adjacency and 8-adjacency graphs are the
most frequently used structures on the digital plane. But, since the late 1980’s,
another structure on Z? has been used too, namely the Khalimsky topology
[5]. It is the product of two copies of the topology on Z given by the subbase
{{2k —1,2k,2k +1}; k € Z} (for the basic concepts of general topology see [3]).
Recall that, given a topology 7 on a set X, the specialization preorder of T is the
preorder < on X defined by z <y < z € {y} for all z,y € X (where A denotes
the closure operator with respect to 7). Since the Khalimsky topology is Tg (i.e.,
for all t,z € Z%, t € {2} and z € {t} imply t = z), its specialization preorder
is a (partial) order on Z2. And, since the Khalimsky topology is an Alexandroff
topology (i.e., for all A C Z?, A = |J,. 4 {#}), it is uniquely determined by its
specialization order.

The specialization order of the Khalimsky topology coincides with the binary
relation < on Z? given as follows:

For any (z,v), (2,t) € Z2, (z,y) < (2,t) if and only if

(,y) = (2,t) or

x,y are even and (z,t) € Ag(x,y) or

x is even, y is odd, z =z + i where i € {—1,1}, and t = y or
x is odd, y is even, z = x, and t = y + ¢ where i € {—1,1}.

A portion of the specialization order < of the Khalimsky topology is demon-
strated in Fig.1 by a directed graph with the vertex set Z2 where an oriented
edge from a point p to a point ¢ means that ¢ < p.

Fig. 1. A portion of the specialization order of the Khalimsky topology.

The underlying graph of the specialization order of the Khalimsky topology
coincides with the connectedness graph of the topology, i.e., the graph with the
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vertex set Z2 in which two points are adjacent if and only if they are different
and constitute a connected subset of the Khalimsky space. It may easily be seen
that the connectedness in the Khalimsky space coincides with the connectedness
in the connectedness graph of the Khalimsky topology, i.e., in the underlying
graph of the specialization order the topology.

The famous Jordan curve theorem proved for the Khalimsky topology in [4]
may be formulated as follows:

Theorem 1. In the underlying graph of the specialization order of the Khal-
imsky topology, every simple closed curve with at least four points is a Jordan
curve.

It is readily verified that a simple closed curve (and thus also a Jordan curve)
in the underlying graph of the specialization order of the Khalimsky topology
may never turn at the acute angle 7. It could therefore be useful to replace
the specialization order of the Khalimsky topology with some more convenient
structure (relation on Z?) that would allow Jordan curves to turn at the acute

angle 7 at some points. And this is what we will do in the next section.

3 Plain Relations and Induced Connectedness

Recall that, given a natural number n > 0 and a set X, an n-ary relation on
X is a subset R C X™. Thus, the elements of R are finite sequences (ordered
n-tuples) (zg, 1, ..., Zn—1) = (x;]¢ < n) consisting of elements of X (for the basic
properties of n-ary relations see [16]). In the sequel, to eliminate the trivial case
n = 1, we will restrict our considerations to n > 1.

Definition 1. An n-ary relation R on a set X is said to be plain if, for any
g,h € R, g # h implies card (gNh) < 1.

Definition 2. Let R be a plain n-ary relation on a set X and m a natural
number. A sequence C' = (¢x|k < m) of elements of X is called an R-walk if the
following two conditions are satisfied:

I. For every non-negative integer kg < m, there exist (z;]i < n) € R and
ip < n — 1 such that {ck,, Ckot1} = {Tigs Tig+17-
II. Every (z;]i < n) € R satisfies the following two conditions:
(i) if there exist ko < m and ¢9 < n—1 such that cx, = x;, and cxo+1 = Tig+1,
then kg > ig and cx,—; = x;,—; for all j =1,2,..., 49,
(ii) if there exist kg < m and ip < n—1 such that ¢, = =i 41 and cxo+1 = =i,
then kg < m —i9 — 1 and cpy4j = Tiy—j41 for all j =2,3,...,i0 + 1.

An R-walk (cix|k < m) with the property that m > 2 and ¢; = ¢; & {i,j} =
{0, m} is said to be an R-circle.
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Observe that, if (cg,c1, ..., ¢p) is an R-walk, then (¢, cp—1,...,¢0) is an R-
walk, too (so that R-walks are closed under reversion) and, if (di|k < p) and
(exlk < ¢) are R-walks with d, = eg, then, putting f; = dj for all & < p and
fr = ex—p for all k with p < k < p+gq, we get an R-walk (fz|k < p+q) (so that
R-walks are closed under composition).

Given a plain n-ary relation R on a set X, a subset Y C X is said to be
R-connected if, for every pair a,b € Y, there is an R-walk (¢x|k < m) such that
co=a,c, =band ¢; €Y forall i € {0,1,...,m}. A maximal (with respect to
set inclusion) R-connected subset of X is called an R-component of X.

Definition 3. Let R be a plain n-ary relation on a set X. A nonempty, finite
and R-connected subset J of X is said to be an R-simple closed curve if every
element (z;]¢ < n) € R with {zg,z1} C J satisfies {x;|i < n} C J and every
point z € J fulfills one of the following two conditions:

(1) There are exactly two elements (z;]i < n) € R satisfying both {x;|i <n} C
J and z € {zg,x,—1} and there is no element (y;|i < n) € R satisfying both
{y;]i <n} C J and z = y; for some i € {1,2,...,n — 1}.

(2) There is exactly one element (y;|i < n) € R satisfying both {y;|¢ <n} C J
and z = y; for some i € {1,2,...,n—2} and there is no element (z;i < n) € R
satisfying both {z;]i <n} C J and z € {zo, xn_1}.

Clearly, every R-simple closed curve is an R-circle.

Definition 4. Let R be a plain n-ary relation on a set X. An R-simple closed
curve J is called an R-Jordan curve if the subset X —J C X consists (i.e., is the
union) of precisely two R-components.

Remark 1. In the Euclidean plane R?, every Jordan curve J is a minimal sep-
arator of R?, i.e., the subset R? — (J — {p}) C R? is connected for every point
p € J. This is not true for R-Jordan curves, which means that an R-Jordan
curve J may have a point p € J such that the subset Z? — (J — {p}) C Z? is not
R-connected.

From now on, for every natural number n > 1, R,, will denote the plain n-ary
relation on Z? given as follows: For every ((x;,;)|i < n) such that (x;,v;) € Z?
for every i < n, ((x;,y:)|i < n) € R, if and only if one of the following eight
conditions is satisfied:

(1) xo =21 = ... = Tp_1 and there is k € Z such that y; = 2k +1)(n — 1) +4
for all i < n,

(2) 29 =21 = ... = xp—1 and there is k € Z such that y; = 2k +1)(n—1) — 4
for all i < n,

(3) yo =vy1 = ... = Yyn—1 and there is [ € Z such that z; = 2l +1)(n — 1) +1
for all i < n,

(4) yo = y1 = ... = yn—1 and there is | € Z such that z; = (2l +1)(n — 1) — 4

for all i < n,
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(5) there is k € Z such that z; = (2k + 1)(n — 1) + 4 for all ¢ < n and there is
l € Z such that y; = (2l +1)(n — 1) + i for all i < n,

(6) there is k € Z such that z; = (2k 4+ 1)(n — 1) + 4 for all ¢ < n and there is
l € Z such that y; = (21 +1)(n — 1) — i for all i < n,

(7) there is k € Z such that z; = (2k 4+ 1)(n — 1) — 4 for all ¢ < n and there is
l € Z such that y; = (21 +1)(n — 1) +i for all i < n,

(8) there is k € Z such that z; = (2k + 1)(n — 1) — 4 for all ¢ < n and there is
l € Z such that y; = (21 +1)(n — 1) — i for all i < n.

A portion of R, is demonstrated in Fig. 2. The ordered n-tuples belonging
to R,, are represented by arrows oriented from first to last terms. Between any
pair of neighboring parallel horizontal or vertical arrows (having the same ori-
entation), there are n — 2 more parallel arrows with the same orientation that
are not displayed in order to make the Figure transparent.

4(n-1)

3(n-1)

2(n-1)

n-1

0 n-1 2(n-1) 3(n-1) 4(n-1)

Fig. 2. A portion of R,.

It may easily be seen that Ry coincides with the specialization order of the
Khalimsky topology. Thus, Theorem 1 is a Jordan curve theorem for Ry. We will
prove a Jordan curve theorem for every R, with n > 2.

In Fig. 3, (a section of) a graph on Z? is demonstrated but only the vertices
(2k(n—1),2l(n—1)), k,l € Z, are marked out. Thus, on every edge (denoted by
a line segment), there are 2n — 1 vertices that are not displayed.

Theorem 2. Ifn > 2, then every circle in the graph demonstrated in Fig. 3 that
turns only at some of the marked out points (2k(n — 1),2l(n — 1)), k,l € Z, is
an R,-Jordan curve.

Proof. For every point z = ((2k + 1)(n — 1), (2l + 1)(n — 1)), k,l € Z, each of

the following four subsets of Z? will be called an n-fundamental triangle (given
by z):

{(r,s) € 2% 2k(n —1) <

2

< (2k+2)(n—1), 2lln—1) < s < (21 +2)
(n=1), s<r+2ln-1)— -

k(n —1)},
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6(n-1)

4(n-1)

2(n-1)

0 2(n-1)  4(n-1) 6(n-1)

Fig. 3. R,-Jordan curves.

{(r,s) € Z% 2k(n—1) <r < (2k+2)(n—1), 2l(n—1) < s < (21 +2)
(n—=1), s>2l(n—1)+(2k+2)(n—1) —r},

{(r,s) € Z% 2k(n—1) <r < (2k+2)(n—1), 2l(n—1) < s < (20 + 2)
(n—1), s>r+2i(n—1)—2k(n—1)},

{(r,s) € Z% 2k(n—1) <r < (2k+2)(n—1), 2(n—1) < s < (21 +2)
(n—1), s<2l(n—1)4+ 2k+2)(n—1) —r}.

Every n-fundamental triangle consists of 2n? — n points and forms a seg-
ment having the shape of a (digital) rectangular triangle. The n-fundamental
triangles given by z are just the triangles in Fig.3 obtained by dividing the
square segment with the middle point z and the edge length 2(n — 1) by one
of the two diagonals. Each of the diagonals is the hypotenuse of the two n-
fundamental triangles obtained by dividing the square by the diagonal and z is
the middle point of the hypotenuse. Every line segment constituting an edge of
an n-fundamental triangle consists of precisely 2n — 1 points. Clearly, the edges
of any n-fundamental triangle form an R,-simple closed curve. We will show
that every n-fundamental triangle is R,,-connected and so is every set obtained
from an n-fundamental triangle by subtracting some of its edges.

Let z = ((2k+1)(n — 1), (2l + 1)(n — 1)), k,l € Z, be a point and consider
the n-fundamental triangle T = {(r,s) € Z?%; 2k(n — 1) < r < (2k +2)(n —
1), 2n—1) < s < (20+2)(n—-1), y < x+2l(n—-1)—2k(n —1)}. Then
T is the (digital) triangle ABC with the vertices A = (2k(n — 1),2l(n — 1)),
B=((2k+2)(n—1),2l(n—1)),C = ((2k+2)(n—1), (2l +2)(n—1)). For every
u€Z,(2k+1)(n—1) <u < (2k+2)(n—1), the sequence G,, = ((u,y)|2l(n—1) <
y <u+2(—k)(n—1))is an R,-walk (contained in T'), so that G,, is an R,,-
connected set. Similarly, for every v € Z, 2l(n — 1) < v < (20 + 1)(n — 1),
the sequence H, = ((z,v)lv +2(k —)(n—-1) < ax < (2k+2)(n — 1)) is an
R,-walk (contained in T'), so that H, is an R,-connected set. We clearly have
T = H{Gus 2k +1)(n—1) <u < (2k+2)(n— D)} UU{H: 2n—1) <o <
(2141)(n—1)}. It may easily be seen that G,,NH, # () whenever (2k+1)(n—1) <
u < (2k+2)(n—1) and 2l(n—1) < v < (21+1)(n—1). For every natural number
1 < 2n, we put
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S — Grt1y(n-1)+3 if 7 is even,
i = H2l(n—1)+% if 7 is odd.

Then (S;]i < 2n) is a sequence with the property that its members with even
indices form the sequence (G, |(2k+1)(n —1) < u < (2k +2)(n — 1)) and those
with odd indices form the sequence (H,|2i(n —1) < v < (21+1)(n —1)). Hence,
ULSHli < 2n} = ULGu: (2k+1)(n—1) < u < (2k+2)(n—1)}UULH,: 2i(n—1) <
v < (21 +1)(n —1)} and every pair of consecutive members of (S;|i < 2n) has a
non-empty intersection. Thus, since T' = (J{S;|i < 2n}, T is R,-connected. For
each of the other three n-fundamental triangles given by z, the proof is analogous,
and the same is true also for every set obtained from an n-fundamental triangle
(given by z) by subtracting some of its edges.

We will say that a (finite or infinite) sequence S of n-fundamental triangles is
a tiling sequence if the members of S are pairwise different and every member of
S, excluding the first one, has an edge in common with at least one of its prede-
cessors. Given a tiling sequence S of n-fundamental triangles, we denote by S’ the
sequence obtained from S by subtracting, from every member of the sequence,
all its edges that are not shared with any other member of the sequence. By the
firs part of the proof, for every tiling sequence S of n-fundamental triangles, the
set |J{T; T € S} is R,-connected and the same is true for the set | J{T; T € S'}.

Let J be an R,-simple closed curve. Then J constitutes the border of a
polygon Sp C Z2? consisting of n-fundamental triangles. More precisely, Sr
is the union of some n-fundamental triangles such that any pair of them is
disjoint or meets in just one edge in common. Let U be a tiling sequence of
the n-fundamental triangles contained in Sg. Since Sg is finite, U is finite,
too, and we have Sp = |J{T; T € U}. As every n-fundamental triangle
T € U is R,-connected, so is also Sp. Similarly, U’ is a finite sequence with
Sp—J=J{T; T € U'} and, since every member of U’ is R,,-connected (by the
first part of the proof), Sp — J is connected, too.

Further, let V' be a tiling sequence of n-fundamental triangles which are not
contained in Sp. Since the complement of Sy in Z? is infinite, V is infinite,
too. Put S; = J{T; T € V}. As every n-fundamental triangle T € V is B>-
connected, so is also Sy. Similarly, V' is a finite sequence with S;—J = | J{T; T €
V'} and, since every member of V' is connected (by the first part of the proof),
St — J is connected, too.

It may easily be seen that every R,-walk C = (z]i < k), kK > 0 a natural
number, connecting a point of Sg — J with a point of Sy — J meets J (i.e., meets
an edge of an n-fundamental triangle which is contained in J). Therefore, the set
7% —J = (Sp—J)U(Sr —J) is not R,-connected. We have shown that Sg — J
and S; — J are R,-components of Z2 — J, Sp — J finite and S; — J infinite, with
Sr and S; R,-connected. The proof is complete.

The circles in the graph demonstrated in Fig.3 that do not turn at any
point ((2k + 1)(n — 1), (2l + 1)(n — 1)), k,l € Z, which are R-Jordan curves by
Theorem 2, provide a rich enough variety of circles to be used for representing
borders of objects in digital images. The advantage of the circles over the Jordan
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Fig. 4. Rs-Jordan curves.

curves ir} the Khalimsky topology is that they may turn at the acute angle 7 at
some points.

Example 1. Every circle in the graph demonstrated in Fig. 4 that does not turn
at any point (4k + 2,41 + 2), k,l € Z, is an Rz-Jordan curve by Theorem 2.
Thus, for example, the triangle with vertices (0,0), (8,0), (4,4) is an Rs-Jordan
curve but not an Rs-Jordan curve. For this triangle to become an Rs-Jordan
curve, we have to delete the points (0,0), (1,0), (7,0),(8,0). But this will cause
a considerable deformation of the triangle.

4 Conclusions

We have shown that every plain n-nary relation induces connectedness on its
underlying set. This connectedness may be used to define the concepts of a sim-
ple closed curve and a Jordan curve in the underlying set of a given plain n-ary
relation. We introduced and discussed a particular plain n-nary relation on the
digital plane Z? for every natural number n > 1 and showed that the connected-
ness induced by each of these relations allows for a digital analogue of the Jordan
curve theorem. Thus, we have shown that the n-ary relations introduced provide
convenient structures on the digital plane for the study of digital images. While
for n = 2 this structure coincides with the Khalimsky topology, for n > 2 the
structures have the advantage over the Khalimsky topology that they allow the
Jordan curves to turn at the acute angle 7 at some points. Since Jordan curves
represent borders of objects in digital images, the structures on Z? provided by
the n-ary relations discussed may be used in digital image processing for solving
problems related to boundaries, such as pattern recognition, boundary detection,
contour filling, data compression, etc.
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Abstract. An appropriate generalization of the classical notion of
abstract cell complex, called primal-dual abstract cell complex (pACC
for short) is the combinatorial notion used here for modeling and analyz-
ing the topology of nD digital objects and images. Let D C I be a set of
n-xels (ROI) and I be a n-dimensional digital image. We design a theoret-
ical parallel algorithm for constructing a topologically meaningful asym-
metric pACC HSF (D), called Homological Spanning Forest of D (HSF
of D, for short) starting from a canonical symmetric pACC associated
to I and based on the application of elementary homotopy operations
to activate the pACC processing units. From this HSF-graph represen-
tation of D, it is possible to derive complete homology and homotopy
information of it. The preprocessing procedure of computing HSF(I) is
thoroughly discussed. In this way, a significant advance in understanding
how the efficient HSF framework for parallel topological computation of
2D digital images developed in [2] can be generalized to higher dimension
is made.

Keywords: Computational topology - nD digital image - Primal-dual
abstract cell complex - Parallelism - Homological Spanning Forest -
Homotopy operation

1 Introduction

The problem of developing a topologically consistent framework for efficient
parallel topological analysis and recognition of n-dimensional digital objects is
nowadays a major challenge. Intimately associated to this problem, we encounter
the issue to find a suitable representation model from which the extraction of
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topological features and characteristics of the object can be as fast and the most
complete as possible. A successful strategy for achieving these goals is to “cellu-
larize” the images. A primal-dual abstract cell complex [2] (or, pACCs for short),
an appropriate generalization of the notion of abstract cell complex [8,9] for
describing bitopological spaces, efficiently encodes local topological (incidences
between cells, working at sub-n-xel level) information of the digital object in
order to be promoted to global consistent topological information. We are mainly
interested in information related to “homology holes”, which are abstract gen-
eralizations at any dimension of the intuitive notion of curve bounding an arc
or surface bounding a volume [7]. Classically, the different homology holes of a
complex are obtained via linear algebra algorithms based on diagonalization of
incidence matrices to Smith Normal Form [17]. The technique employed here
for parallel processing is based on building asymmetric pACCs from symmet-
ric ones. The asymmetric and non-redundant output pACCs resulting from our
framework encompass the hierarchical graph notion of Homological Spanning
Forest (HSF, for short) developed in [10,11,14]. Roughly speaking, an HSF of a
digital object is a flexible topological model described by a kind of dense topo-
logical skeleton inside the object. Figure 1 shows two different HSF's of the same
2D digital object. The inclusion of an optimal vector field over each tree installed
“inside the object” allows us not only counting the different homological holes
of dimension 0 (connected components or CCs for short) and dimension 1 but
also to removing them via cutting or filling. Moreover, if we retain the vicinity
relations between these HSF graphs, we can reach homotopy-based represen-
tations of 2D digital images like the adjacency tree of a binary image or the
region-adjacency-graph of a grey-level image [13].

In this paper, we design a theoretical parallel algorithm for computing an
HSF-structure of a nD-digital object. Let us emphasize that: (a) the HSF-
approach can be considered as a Morse-based pre-homology computation method

 — T T

TRl RiRe
herrrrd * /

Fig. 1. (Left) ROI consisting in the set of black pixels. The implicit cellularization of
the ROI -using 8-adjacency and being the 0-cells the square physical pixels- is super-
imposed; (Center) Visualization of an HSF of the ROIL. The two trees spanning 0-cells
(in red) of the ROI mean that it has two 8-CCs. The yellow “trees” -derived from
the optimal vector field linking the rest of 1-cells with the set of 2-cells of the ROI-
containing a 1-cell marked with a thick yellow segment determine two one-dimensional
homological holes of the ROI or, equivalently, two 4-CCs of the background; (Right)
Another possible HSF. (Color figure online)
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(e.g. [3,4]) in the sense that a discrete vector field is “optimally” installed over
the pACC. Its novelty lies in dealing with this issue as a pure combinatorial opti-
mization problem in a fully parallel way over a scenario subdivided space and
substituting the classical vector field language of homology by that of the new
dynamic notion of crack (called link in [2]); (b) the theoretical time complexity
of the parallel algorithm of [2] for computing an HSF structure of a binary digital
n X m image is approximately logarithmic (precisely, O(log(n + m))). It seems
that its generalization to nD image context can be done without excessive cost
in complexity; (c) another strength of this framework is its potentiality to gen-
erate new topological representation models of nD objects and images involving
homological holes (not only of dimension zero) and topologically strong relation-
ships between them (for instance, generalizing to nD the notions of adjacency
tree or RAG 2D models).
A flowchart of this nD-HSF algorithm is shown in Fig. 2.

nD digital image o Generation of Generauo_n of
nD digital object nD binary image symmetric pACC asymmetric pACC
Isolation of the ROI

(1,.0)> o SPACC (Io) [ MrSF (Io) == HSF (D)}

Morse Transport Homological
Spanning Forest Spanning Forest

Fig. 2. Workflow of nD-HSF Algorithm.

In what follows, after a section of technical definitions related to the concept
of primal-dual abstract cell complex, we formally describe the different stages of
the previous theoretical algorithm.

2 Primal-Dual Abstract Cell Complexes

A primal-dual abstract cell complex (pACC, for short) is a suitable generalization
of an abstract cell complex and a combinatorial model of a geometric subdivided
object as bitopological spaces.

A finite primal-dual abstract cell complex (pACC for short) C =
(C,°Br.¢B, dimg7 dim§) is composed of:

— C'U{0}, where C is a finite set of cells and ) is the empty set.

~ two dimension functions: (primal dimension) dimzc, :C—{0,1,2,...,4,} and
(dual dimension) dim§ : C — {0,1,2,...,£q}, where £,, {4 € NU{0}. The set
C? (resp. C{) is the set of cells such that their primal (resp. dual) dimension
is 4.

~ two bounding maps: (primal bounding map) a graded function *BP = {¢B},,
such that *BY : C? x C?; - NU{0} (V0 <i < ¢, — 1) and (dual bounding
map) a graded function “B? = {*B{};, such that B¢ : Cf x C¢, | — NU{0},
VO < i < f3 — 1. We extend the respective definitions of CBP and ¢B? to
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C x C by simply assigning value zero to the rest of ordered pairs of cells not
belonging to the original domains.

The set of values the bounding maps takes on as output is the semi-ring
N U {0}. Of course, it is possible to change the images of the bounding maps to
a ring (like Z) or to a field (like Q o R).

The pACC C is called uniquely dimensional if its primal and dual dimensions
both depend on a unique dimension function dms : C — {0,1,2,...,¢}, being
=1, = L4 ¢ is called the dimension of C. In fact, dim, = dms and dimg =
¢ — dms. Let us denote the set of cells C? of primal dimension ¢ simply by C;
and an i-cell means a primal i-cell. A uniquely dimensional pACC C is called
symmetric if B (c,c’) = ©Bd(c’,¢), V0 < i < £ and Ve, ¢’ € C. In this case, the
bounding maps BP and €B? are respectively denoted by B and *B~!.

From now on, to simplify the notation, we drop the subindex i (corresponding
to primal dimension) and the superindex C (corresponding to the ACC name)
from the dimension and bounding maps, unless otherwise specified.

Given two cells ¢ and ¢’ of C, we say that the ordered pair (¢/,c”) is an
(i,i + 1) primal (resp. dual) vector (i = 0,1,...) of the pACC C if its primal
(resp. dual) multiplicity BP(c',c") # 0 (resp. if B4(c/,c¢") # 0), being ¢/ € C?
(resp. ¢ € C%). The cell ¢ is called the tail and ¢” is the head of the primal
(resp. dual) vector (¢,c”). We say that the set {¢/,c"} is an (i,i + 1) primal
(resp. dual) incidence set of the pACC if BP(c/,¢”) # 0 or BP(c”, ) # 0 (resp.
if B4(c/,c") # 0 or BY(c",c') #0), being ¢’ or ¢’ a cell of C? (resp. C%).

Given a pACC C = (C, B?, B, dim,, dimg), let us define a sub-pACC D =
(D,PBP,PBd dim,,dimg) of C as a new pACC with D C C whose: (a) primal
and dual dimension functions agree with those of C restricted to D; (b) the
primal (resp. dual) bounding map satisfies that if PBP(¢’,¢”) = q # 0 (resp.
PBi(c ") = q # 0), then BP(c/,c") > q (resp. B(c,c") > q). If PBP =
BP|pxp and Dpd — Bd\DX[h the sub-pACC D of C is called complete.

The complete sub-pACC StP(c, C) (resp. St?(c, C)) of C, consisting of ¢ and
all elements ¢ in C, such that BP(c,¢’) # 0 (resp. Bé(c,c’) # 0) is called the
primal (resp. dual) open star of ¢ in C. It is exactly the same as the smallest
primal (resp. dual) neighborhood of ¢ in C [9]. If C is an uniquely dimensional
symmetric pACC, so are St?(c,C) and St¢(c, C).

Any pACC can be expressed as a node-arc weighted graph. The incidence
graph G(C) associated to a pACC C is the graph such that its nodes are the
different cells of C and an edge {c, ¢’} of this graph is either a primal or dual inci-
dence set of the pACC or both. If C is symmetric, we propose as label for an edge
{c,c"} (¢ € C;, ¢ € Ciyq) of G(C), the ordered pair (BP(c/,c"), B(c", ).
As weight for a node ¢ € C, we choose the number dms(c).

A primal (resp. dual) crack associated to the (i,4 + 1)-primal (resp. dual)
vector (c,c’) is the set crkP(c,c’) (vesp. crkd(c,c’)) of triplets (c,c’,c"), for all
the cells ¢ such that (¢, ¢”) is a dual (resp. primal) vector. A crack crack(c, )
can be considered as an uniquely dimensional asymmetric sub-pACC of C. For
example, for a primal crack erk?(c, '), its bounding functions BP and B? satisfy
an “ortogonality” condition: for all the triplets (c, ¢/, ¢”) of crkP(c,c’), BP(c,c') =
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BP(c,d) # 0, BP(d, ") = 0, BY(c, ") = B, ") #0, BYc,c/) = 0. Let us
note that the crack notion is an extension of the term link in [2].

A geometric cell complex K can be represented by a uniquely dimensional
symmetric pACC K = (K, B, B~!,dms, ¢ — dms), such that B(c/,¢") € {0,1},
V(c, ") € K x K. In fact, the primal and dual bounding relation maps can
automatically be obtained from the complete set of incidences between cells of
K which differ in one dimension and the dimension map dms of K agrees with
the dimension function of the cell complex K.

Finally, let us note that both bounding graded functions { B¥'}; and {B;-i}j ofa
pACC C = (C, B?, B4, dim,, dimg) can be extended to C' x C in an asymmetric,
irreflexive and transitive way without difficulty, giving raise to two different
(primal and dual) classical ACCs associated to the pACC C. Due to the fact that
every finite topological space with the T0-separation property is isomorphic to an
abstract cellular complex [9], a pACC can be interpreted as a finite bitopological
space. The primal and dual ACC of a uniquely dimensional symmetric pACC
can be deduced one from each other by simply reversing the order of the factors
in the bounding relations.

3 pACC Homotopy Computation

First, we succinctly describe here the distinct steps of the theoretical nD-HSF
Algorithm (whose flowchart is (2)). The rest of this section is devoted to under-
stand the concept of elementary homotopy operation and the sequential algo-
rithm computing an HSF of a pACC.

(a) Input data: The pair (I,D). The nD digital image I : {1,...,m1} X
{1,...,me} x ... x {1,...,m,} — {0,1,...,2° — 1} is represented by a m; x
mg X ... X my (M1, ma,...,my,,c € N) integer-valued matrix. The digital object
D, called region-of-interest (or ROI, for short), is formed by a set of pixels (rep-
resented by their corresponding (row,column) coordinates) of I. In fact, in order
to avoid the mathematical ill-posed problems of the segmentation and noise,
which are ubiquitous in the area of Digital Imagery, I is a pre-segmented digital
image, and D is a region of this previous segmentation.

(b) Extraction of the ROI: From I, we “isolate” the ROI D by means of new
digital binary image Ip of the same dimension than I. The set of black pixels
(numbered by 1’s) of Ip is exactly D.

(c) Generation of topological pACCs: In this phase, we compute two kinds
of pACCs in this order: (a) first, symmetric pACCs, modeling in a redundant
way the connectivity (incidence) information of D and I; (b) finally, asymmetric
pACCs, which are non-redundant sub-pACCs of the previous ones, specifying a
kind of dense homotopy graph-skeleton of them.

Some key notions for understanding our topological scaffolding are those of
primal and dual pACC-homotopy operations. Given a uniquely n-dimensional
symmetric pACC C = (C, B, B~!,dms,n — dms) and a primal vector (c,c),
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then the primal pACC-homotopy operation OpP((c,c’)(C)) is a new symmetric
pACC (C\{c,c'}, B, B~! dms,n — dms), such that the new bounding function
B is defined by:

~ Ve e Sti(c!, O)\{c}, V& € StP(c, O\{c'},

B(¢,@) = B(¢,&) + B(¢,¢)B™'(c/,¢)B(c, &);

— for the rest of pairs of cells (¢, ), B(e,c') = B(e, )

Analogously, we can define elementary dual pACC-homotopy operations. We
emphasize that such kind of operations is not, in general, a map of pACCs (that
is, a map of sets compatible with the dimensions and bounding relations), but

-
it can be considered as a function Op?((c¢,')(C)) : pACC x pACC — pACC.
For example, considering the primal crack pACC crk(c,c’), we can construct
a primal pACC-homotopy operation Op?(crk(c,c’),C) providing us the same
—
resulting pACC than Op?((c, ¢’)(Q)).

| AR TS LS

o
o
=
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Fig. 3. Three different possible HSF outputs of Algorithm primal-HSF applied to a 2D
digital object X of black pixels, depending of the concrete ordered list of cells of X
chosen for sequential processing.

Now, we are able to design a sequential computational method for computing
an HSF of the pACC pACC(Ip), based on an appropriate reduction of cells via
primal homotopy operations.

The output of the previous algorithm consists of a set of asymmetric pACCs
{Fr-1,,}7_, and a minimal pACC H formed by a set of isolated cells of different
primal dimension. Figure 3 shows some outputs of the algorithm for 2D objects.
The cells of H are called critical cells. These data can be reorganized and inter-
preted in terms of a set HSF(C) of connected sub-graphs spanning the set of cells
of C, called Homological Spanning Forest associated to C. In fact, these graphs
can not be trees in dimension higher than two but we use this name because
they appear as a suitable generalization to higher dimension of the notion of the
spanning forest as a tool for labeling connected components of a graph [6]. Let us
limit ourselves to say that the importance to save this combinatorial homology
information of nD digital objects in terms of cracks and graphs primarily lies in
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its capacity of creating robust topological models involving homological holes of
the objects and strong homology (incidence) relations between them.

For a better understanding, we only work the three-dimensional case in the
rest of sections. The nD case is completely analogous.

Algorithm 1. (Sequential pACC-Homology Algorithm)
Input: A uniquely dimensional symmetric pACC C := {C,“B,“B~! dms,n\dms}

A list of all the cells of C ordered by primal dimension A C?w Clyenns c}l, AR
..,cp,  such that dimp(cf) =k, Vk,j.
1: H—~C

2: for k=1ton do

3: Flo—1,k) < 0

4 crk — ()

5 for j =1 to ¢ do

6 if 3¢ € St(c¥,H)/ "B(c,c¥) = 1 then
7 H — Op?(crk(e, cf), H)

8: erk — crk@{crk(e, cb)};

9: Fik—1,k) — the incidence graph G(crk)

10: Output: ((Fo,1),-->F(n-1,n)), H)

4 Generation of Symmetric pACCs and Parallel
Processing Units

The input of the Sequential pACC-Homology Algorithm is a uniquely dimen-
sional symmetric pACC. On the other hand, a fundamental step in the workflow
of nD-HSF Algorithm (Fig.2) is the generation of such objects. Apart from
building these initial pACCs, we also create the parallel processing units of our
framework.

The scenario in which we need to “embed” the digital image Ip is a uniquely
dimensional symmetric pACC intimately associated to the contractible set of
cells denoted by Cell(Ip). Cell(Ip) only depends on the dimensions of Ip and
can be constructed in a straightforward way. The 0-cells are the voxels (elements
of the matrix) of Ip (black or whites), the 1-cells are given by the set of two
6-adjacent voxels (z-frame, y-frame or z-frame adjacent), 2-cells are given by sets
of four mutually 6-adjacent voxels and, 3-cells are given by sets of eight mutu-
ally 6-adjacent voxels. Thus, a dimension function dms : Cell(Ip) — {0,1,2,3}
is well-defined in this way. In order to create topological coordinates (auto-
matically detecting incidences between cells) preserving the initial coordinate
system (row, colum, depth) existing for the voxels of Ip, we use the following
geometric realization for the cells of Cell(Ip): (a) O-cells are points in R? with
natural-value coordinates; (b) a 1-cell is represented at sub-voxel level by the
coordinates of the barycenter of the segment determined by its corresponding
pair of voxels, (c) a 2-cell is represented at sub-voxel level by the coordinates of
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the barycenter of the square formed by the 4-uple of voxels barycenters; (d) a
3-cell is represented at sub-voxel level by the coordinates of the barycenter of
the cube formed by its corresponding 8-uple of voxels. For instance, a 1-cell is
specified by topological coordinates of the type (z1,z2,x3), where two value of
them are natural numbers and the third is a natural number minus % (for exam-
ple, x3). The geometric boundary of this 1-cell which is formed by the set of two
O-cells {(x1,x2,x3 — %), (x1,22,23 + %)} completely describes the dual bound-
ing relation of the 1-cell. Its geometric coboundary, formed by the set of four
2-cells {(z1 + 1,22, 23), (1,22 + 3,23 4+ 1)} fully specifies its primal bounding
relation. Then, it is straightforward to construct the uniquely dimensional sym-
metric pACC pACC(Ip) = (Cell(ID),BID,B;Dl,dimfyD,diméD). Notice that
pACC(Ip) = pACC(I), and, in consequence, pACC(Ip) is independent of
D. We can also define another uniquely dimensional symmetric sub-pACC
pACC(D) of pACC(Ip), being Cell(D) its set of cells. Cell(D) is the topologi-
cal hull of the set of black voxels D within Ip, which means that the O-cells of
Cell(D) are the black voxels of Ip and its é-cells ¢ (i = 1,2, 3) can be recursively
defined in terms of (i — 1)-cells by imposing that St¢(c) C Cell(D).

Any node (i-cell) (z,y, z) of the incidence graph G(pACC(Ip)) has the num-
ber color(z,y, z) as weight. The function color : Cell(Ip) — {0, 3,1} is defined
as follows: (a) for a 0-cell, it is the voxel value in Ip; (b) for an i-cell ¢ with
i > 1, if all the values of the color function over the 0O-cells of ¢ is 0 (resp. 1),
then color(c) is 0 (resp. is 1). In another case, color(c) = .

For creating the parallel processing units, the idea is to establish a regular
partition of the Cell(Ip) into cellular units Cell(x,y,z). There are as many
cellular units as voxels the image has (equivalently, as 0-cells the pACC(Ip) has).
The cellular unit Cellg(x,y, z) associated to the voxel of topological coordinates
(x,y,z) is the set {(w,y,z), (.13—&-%,];,2), (m,y—&—%,z), (x,y,z—i—%), (:U—l—%,y—&—%,z),
(a:—&—%, Y, z—&—%), (z, y—&—%, z+%), (x—|—%, y—i—%, z+3)} (one O-cell, three 1-cells, three
2-cells, one 3-cell). Considered as an uniquely dimensional asymmetric sub-pACC
of pACC(Ip), the processing unit PE(z,y, z) is defined as the sum of pACCs
Do oryev crkP (¢, "), where U = Cells(z,y,z) x Cells(z,y, z). Its underlying
set of cells involves 27 cells which belong to the topological hull generated by the
cells (z,y, 2), (x+1,y,2), (x,y+1,2), (x,y,2+1), (x+1,y+1,2), (z+1,y,2+1),
(r,y+1,z+1) and (z+1,y+1,z+1). The number of primal vectors (see Fig. 4)
involved in PE(z,y, z) is twelve (three (0, 1) vectors, six (1,2) vectors and three
(2,3) vectors).

5 Generation of MrSF's

The next step in the Algorithm nD-HSF is the parallel building of an HSF of
the initial geometric symmetric pACC pACC(Ip). This particular asymmetric
pACC MrSF(Ip) is called Morse Spanning Forest (MrSF for short). An MrSF
has the property that the set of its elementary primal cracks applied in some
order in a sequential process of reduction based on primal homotopy operations
provides a final pACC consisting in only one 0-cell (critical cell). In this way,
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a MrSF for Ip is seen as a kind of “dense combinatorial skeleton” of the con-
tractible cell complex Cell(Ip). This notion has been already developed in [12]
making use exclusively of homological arguments. Finally, the last process of the
pipeline of Fig. 2, called crack transport, consists in a “homotopy optimization”
of MrSF(Ip) in order to get another MrSF, denoted by HSF(Ip), such that its
restriction to Cell(D) is a true HSF HSF(D) of D. This optimization is done
by suitably “transporting” cracks of the MrSF(Ip), with the objective to max-
imize the number of its primal bounding relations between cells of pACC(D).
We focus here in the parallel algorithmic techniques for MrSF construction; the
crack transport step of the algorithm will be studied in detail elsewhere.

A Morse Spanning Forest for a three dimensional digital image I of dimension
my X mg X mg is any output ((Fo,1),F(1,2), F(2,3)); H) of Sequential pACC-
Homology Algorithm applied to pACC(I). It is not difficult to prove that any
MrSF has only one (0, 1)-tree.

(X+1,Y+1,2)

(X.Y.Z+1)

Fig. 4. An activation state (local MrSF rule: direction +Y) of the processing unit
PE(z,y, z) showing its eight active cells, primal and dual activation vectors and asso-
ciated cracks. The O-cell (z,y, z) is drawn with a circle, the 1-cells with triangles, the
2-cells with squares and the 3-cell with a star. The active primal vectors are drawn
with an arrow and using different colors depending on its dimension.

Our algorithm of MrSF generation is divided into two main steps: (a) building
a MrSF at local (voxel’s neighborhood) level by means of a process of activation
of processing units; (b) building the MrSF at global level, specifying the mem-
bership of any cell to the corresponding tree of the MrSF. Afterwards, we can
proceed to the Final HSF determination via crack transports.

(a) MrSF building at local level: Activation of processing units. There
are nine possible activation states for any PE(x,y,z), each one associated to
a particular configuration of four disjoint primal vectors (called primal activa-
tion vectors) involving cells of Cellg(x,y,z). The sum of the crack pACCs of
PE(x,y, z) associated to these primal activation vectors fully defines the corre-
sponding activation state.
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Fig. 5. A (4,3,4) binary 3D image showing active primal (0, 1)-vectors (red and green
colors) and dual (1, 0)-vectors (black thin vectors) of the MrSF. Thicker vectors indicate
possible critical 0-cells. (Color figure online)

For activating in parallel all the processing units of pACC(Ip), we can use
local MrSF rules. For each PE(z,y, z), we choose an activation’s state depending
of giving preference to some order in the principal directions or the particular
configuration of the color function of the cells in PE(x,y, z) (Fig.4).

In our current implementation of the algorithm of MrSF generation: (a) the
local MrSF rules are first defined for the lowest dimension cells and then pro-
gressively extended to higher dimension; (b) we give preference to +Z direction,
then to +Y, and finally to +X.

Once the primal (0, 1)-vector of the PE(x,y, 2) is activated, the two primal
(1,2)-vectors and the (2,3)-vector are activated following the same direction
of the first one. This implies that only one 1-cell of Cells(z,y, z) belong to the
(0, 1)-tree of the MrSF, and the other two 1-cells reside in the (1, 2)-tree. Figure 5
shows an example of the primal (0,1) and (1,2) vectors for a binary 3D image
that contains two black voxels in the center.

The above MrSF arrangement is one the many possible configurations. Its
main advantage is that it can be computed in a fully parallel manner for each
voxel. Other possibilities can be exploited, but the parallelism feature should be
preserved if we would want to process real 3D images in an efficient way.

(b) Global MrSF construction. Once a local MrSF has been defined it is
necessary to introduce global relations between the cells of the whole MrSF.
This process can be done in a similar way to that of [2]. That algorithm was
much easier since it was written only for two dimensional images. Nevertheless,
the idea is the same: to label each cell of the incidence graph (forest) G(MrSF)
of the MrSF, according to its membership to some connected subgraph (tree)
of G(MrSF). At the end of this process, the different connected components of
G(MrSF) must have been labeled (Fig.6).
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Fig. 6. The same (4,3,4) binary 3D image of Fig.5 with the complete MrSF. Thicker
links indicate potential critical 0-cells.

(c) Final HSF determination via crack transports. This final step of the
nD-HSF Algorithm is aimed to minimize the number of critical cells. This would
produce the final HSF. As an example, the trees of Fig. 7(Left) would transform
into that of Fig. 7(Right). A graphical explanation of this process from the lower
dimensional MrSF trees to the higher ones is the following. Firstly, the (0, 1)-
crack marked as ‘D’ is transported to the right inferior crack in the (0, 1)-tree.
Secondly, the crack ‘C’ is laid to its left to continue the closing of the 0-1 tree.
Transports of ‘C’ and ‘D’ supposes the cancellation of one critical 0-cell and
one critical 1-cell. In fact, these cells should be detected as false critical cells
in the initial MrSF. This transport process is really a pairing of critical cells of
different dimensions going through the corresponding tree. Finally, cracks ‘A’ and
‘B’ must be also transported so as to “close” properly the 1-2 tree. This yields
to an equivalent set of trees, which composed the HSF for the ROI. Obviously
this final HSF indicates that the ROI contains only one critical O-cell being the

Fig. 7. (Left) A ROI (composed of 6 voxels in ‘L’ shape) that contains only one CC,
and whose MrSF presents two separated 0-1 trees. Cracks that go out from the ROI
indicate possible critical cells. (Right) The same 3D image that contains only one 0-1
tree after the necessary transports that complete the HSF.



Toward Parallel Computation of Dense Homotopy Skeletons 153

representative of the CC (connected component). The correct computation of
final HSF will yield to the homology of any CC inside a digital image. Some
examples are shown in the next section.

6 Examples of Homological Magnitudes of Several
Shapes Obtained Through 3-Dimensional HSF's

The topological nature of 3D digital images are much richer than that of
2-D images. Attending exclusively to homology groups, apart from cavities and
connected components of a digital object (somewhat comparable to holes and
connected components in 2D imagery context), tunnels appear in 3D. In a nut-
shell, each critical cell of any dimension is in direct relationship with a different
homology generator. Figure 8 and 9 shows different shapes and their correspond-
ing critical cells (those belonging to a crack of a MrSF “going out” of the ROI).
To ease the viewing of these figures, only ROIs are represented and axes are
not drawn. Cells belonging to the black ROI have been filled. These results are
summarized in Table 1. Table 1 shows the results of the different simple shapes of
Figs. 8 to 9 and their critical cells. Excepting Fig. 9 Left (due to its false critical
cells), the number of critical 0-cells agree with the number of CCs, the number of

Table 1. Results of the different simple shapes of Figs. 8 and 9 and their critical cells

Shapes # Critical 0-cells | # Critical 1-cells | # Critical 2-cells
Two perpendicular rings with 1 2 0

contact

Two perpendicular crossing 2 2 0

rings

An empty polyhedron (showing |1 2 3

its MrSF)

An emptypolyhedron (showing |1 2 0

its HSF)

./‘F—‘ — e

I
f

i
!
!

-

Fig. 8. Left: Two perpendicular 3 x 3 rings with contact resulting in two critical 1-cells
(inferior right corner and superior left corner), representative of its two tunnels, and one
critical O-cell (upper right corner), representative of the CC. Right: Two perpendicular
crossing 3 X 3 rings resulting in two critical 1-cells (inferior left corners), representative
of two tunnels, and two critical O-cells (upper right corners), representative of the
two CCs.
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Fig. 9. Left: A MrSF of an empty 3 x 3 x 3 polyhedron. There is one critical 0-cell
(upper right corner), representative of the CC. In addition, three critical 2-cells and
two 3 critical 1-cells (all of them in the inferior side) have appeared. Two pairs of them
are false critical cells. Right: After proper transports (marked with thicker dotted lines),
the HSF of the same empty polyhedron yields to only one critical 2-cell (representative
of the cavity), and the same critical O-cell. Arrows indicates the position of these
resultant critical cells.

critical 1-cells indicates the number of tunnels and the number of critical 2-cells
represents the number of cavities.

7 Conclusions

Based on the notions of primal-dual abstract cell complex and homotopy opera-
tion, and generalizing to higher dimension the work developed in [2], a theoreti-
cal algorithm for computing combinatorial homology structures, called HSFs of
nD digital objects, has been sketched. Focusing in a topological pre-processing
step, called Morse Spanning Forest generation, we set a fully parallel algorithm
for determining a kind of dense topological skeleton associated to the image sce-
nario within which the digital object is embedded. Both to analyze the efficiency
of the procedure and to advance in increasing the degree of understanding on
HSF or pACC homology computation of digital objects, an unpretentious imple-
mentation done in Matlab is used for experimentation. Although a theoretical
complexity study of the parallel algorithm has not yet been carried out, the
encouraging results obtained in [2] allow us to be optimistic in computing the
HSF information in a fast way. Concerning the computation of algebraic homol-
ogy holes with coeflicients in a ring or a field and that of “homotopy holes” of
objects (those related to generalized “parametrized and oriented closed curves”
[7]), they sound theoretically attainable from HSF-graph information. An argu-
ment supporting this idea is the fact that an HSF structure can be algebraically
interpreted (allowing formal sums of cells with coefficients in some ground ring
or field) as an operator controlling a chain homotopy equivalence between an
object and its homology [1,5,12,15,16]. Finally, the possibility to detect homo-
logical hole relationships (like adjacency or “to be surrounded by” between path
connected components in 2D) in an HSF allows holding high expectations in
achieving functional implementations of parallel algorithms of topological pat-
tern recognition based on HSF information.
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Abstract. In [2,16] a new method of description of pictures of digitized
rectangular arrays is introduced based on contextual grammars, called
parallel internal contextual array grammars. In this paper, we pay our
attention on parallel internal column contextual array grammars and
observe that the languages generated by these grammars are not infer-
able from positive data only. We define two subclasses of parallel internal
column contextual array languages, namely, k-uniform and strictly par-
allel internal column contextual languages which are incomparable and
not disjoint classes and provide identification algorithms to learn these
classes.

Keywords: Parallel internal column contextual array grammars - k-
uniform - Identification in the limit from positive data

1 Introduction

In theoretical computer science, formal language theory is one of the fundamental
areas. This study has its origin in Chomskian grammars. Contextual grammars
which are different from Chomskian grammars, have been studied in [3,13] by
formal language theorists, as they provide novel insight into a number of issues
central to formal language theory. In a total contextual grammar, a context
is adjoined depending on the whole current string. Two special cases of total
contextual grammars, namely internal and external are very natural and have
been extensively investigated. (External) Contextual grammars are introduced
by S. Marcus in 1969 [13] with a linguistic motivation in mind. An external
contextual grammar generates a language starting from a finite set of strings
(the base) and iteratively adjoining to its contexts outside the current string.

© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 156-169, 2017.
DOI: 10.1007/978-3-319-59108-7_13
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In other families of contextual grammars, such as internal contextual grammars
[13], the contexts are adjoined inside the current string.

There has been a great interest in adapting the techniques of formal string
language theory for developing methods to study the problem of picture gen-
eration and description, where pictures are considered as connected, digitized
finite arrays in the two-dimensional plane [15]. Recently, extensions of string
contextual grammars to array structures and hyper graphs have been made in
[1,2,6-8,11,12,14,16].

On the other hand, Grammatical Inference refers to the method of inferring
a grammar (and possibly a target language) from data. Data can be text or
informant. The difference between text and informant is that a text gives only
positive examples (all strings do belong to the same language) where informant
is both positive and negative examples. A learning procedure is an algorithm
which is executed on a never-ending stream of inputs. The inputs are grammat-
ical strings/arrays, taken from a target language which is in a known class of
languages. The task is to identify a grammar that generates the target language.
At each point in the process, any string is given as an input to the algorithm.
After each input the algorithm produces a guess at the grammar which is eventu-
ally correct and could be unaltered when additional inputs are given. This model
of learning is Gold’s model of identification in the limit from positive data [5].
It is proved that no super finite language(it contains all finite languages and at
least one infinite language) can be learn-able in the limit from positive examples.
Hence, regular, context free, context sensitive grammars are not learn-able in the
limit from positive examples only.

In this paper, we have introduced two subclasses of parallel internal col-
umn contextual array grammar, called, strictly parallel internal column contex-
tual array grammar (SPICCAG), k-uniform parallel internal column contextual
array grammar (k-UPICCAG) in order to find out identification algorithms. Our
learning strategy is based on Gold’s model.

2 Definition and Examples

If V is a finite alphabet, then V* is the set of all strings including the empty
string A\. An image or a picture over V' is a rectangular m x n array of elements
of V or in short [a;j]mxn, the set of all images including the empty array A is
denoted by V**. A picture language or two dimensional language over V is a
subset of V**. In this paper A denotes any empty array. The notion of column
concatenation is as follows: if X and Y are two arrays where

aij ... a1,k bi,m - bin aij ... a1,k bi,m ... bin

— az,j ... 2,k — ba ... ba — as i ... as g bo ... bo
X = |79 Y = | b2m - 02 | then, XPY = | 425 - a2 ik 02,m .- 02, o
apj ... Ak bim - bin apj o g bim - b

If L1, Lo are two picture languages over an alphabet X', the column concatenation
Li®Ls of Ly, Ly is defined by L1PLy = {XPY | X € L;,Y € Ly}. If X is an
array, the set of all subarrays of X is denoted by sub(X). We now recall the
notion of column array context [2,16].
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Definition 1. Let V' be an alphabet. A column array context ¢ over V is of the
form

c=lu ] [43]
€ V¥V ** where uy,uy are arrays of sizes 1 X p, and v1,vy are arrays of sizes
1 x q, for some p,q > 1 and ¢ is a special symbol not in V.

The next definition deals with parallel internal column contextual operation.

Definition 2. Let V be an alphabet, C' be a finite subset of V**ypV** whose
elements are the column array contexts and ¢ : V** — 2° be mapping, called

choice mapping.
ai,j ... A1,k
az j ... a2,k:|
)

For an array X = [

j <k,ai; €V, we define ¢ : V** — 2V ¥V such that Ly R € ¢[X], where

(51 V1
Uo Vo
L=|.|,R= ,
u.l vy
and
— U4 ai,j Qg ke
Ci = [Uz+1]w[ L+1] SK'Z [awl,j ~--ai+1,k] )

with ¢; € C, (1 <i <1—1), not all need to be distinct.
Given an array X = [a;;] of size m x n, a;j € V,X = X1PXoP X3 where

ai,n ... alp 1 ai,p ... Q1,4 a1,q+1 --- A1,n
az,1 ... az,p ... A2,q az,q4+1 --- A2,n

,XQ = I ,Xg =
- flm p—1 Am,p --- Am,q am,q+1 - Am,n

and 1 < p < qg < n, we write X = Y if Y = X4OPLOPXoPRDPX;3 such that
LYR € <,0[ 2]. Here L and R are called left and right contexts respectively. We
say that Y is obtained from X by parallel internal column contextual operation

Now we consider the notion of parallel internal column contextual array
grammar [2,16].

Definition 3. A parallel internal column contextual array grammar is an
ordered system G = (V,A,C,p) where V is an alphabet, A is a finite subset
of V** called the axiom set, C is a finite subset of V**9V** called column array
contexts, ¢ : V** — 2¢ is the choice mapping which performs the parallel inter-
nal column contextual operation. When ¢ is omitted we call G as a parallel
internal contextual array grammar without choice.

For any X,)Y € V** X = Y if and only if X = Xj0X20X5,Y =
X1PLPXyPRPX 3 with LYR € p[Xs]. We denote by =* the reflexive transi-
tive closure of =, . Then the parallel internal column contextual array language
generated by the parallel internal column contextual array grammar G is defined
as the set Ly, (G) ={Y € V**/3X € A such that X =*Y}.



PTA - PICCAL 159

3 Subclasses of Parallel Internal Column Contextual
Array Grammars

In this paper our main focus is on designing an identification algorithm to infer
parallel internal column contextual array grammar. According to Gold model [5],
no superfinite class of languages is inferable from positive data only. A class of
languages that consists of all finite languages and atleast one infinite language,
is called a super finite class of languages.

Proposition 1. The class of parallel internal column contextual array languages
(PICCAL), is not inferable from positive data only.

Proof. In the case of string languages, the class of internal contextual languages,
is not inferable from positive data only [4]. From this fact, we can conclude
Theorem 1.

As we know that the class (PICCAL) is not inferable from positive data only,
it is natural to look for subclasses of these languages which can be identified in
the limit from positive data only. We now define strictly parallel internal column
contextual array grammar (SPICCAG) and k-uniform parallel internal column
contextual array grammar (k — UPICCAG).

Definition 4. A strictly parallel internal column contextual array grammar

(SPICCAG) is a 6 tuple G = (V, X,C, o, P, A) where

-V is the alphabet.

- X is a finite subset of V**, called selector set and C is a finite subset of
V*hV** | called context set.

— ¢ : V** =29 is a choice mapping.

— P is a finite set of parallel internal column contextual rules of the form, p[z;] =
L;wR; where L, R; € C are the ith left and right context of ith selector x; € X,
L;, R; have same number of rows.

— first[L;] # first[R;] where first[W] denotes the first column of W and L; is
not a subarray of R; and vice versa.

— A is a finite subset of V**, called the axiom set.

— for each selector, there is exactly one rule.

The language generated by strictly parallel internal column contextual array
grammar (SPICCAQG) is called a strictly parallel internal column contextual
array language (SPICCAL) which is Lgin(G) ={Y e V** | Q =*Y,Q € A}.
3.1 Example

Let G = (V, X,C, ¢, P, A) be a strictly parallel internal column contextual array
grammar (SPICCAQG) where V = {a,b},

x=A{[gel. [ap] . haly o =A{l1v 2] v [B] [l w 21}
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@ is a choice mapping

P={elgal =lilviilelis] =[al0 (5] e [Ba] = [R1 121}

aabbd
a={o-|iitt]}
bbaa
Here for each rule p[x;| = Ly R;, first(L;) # first(R;),i > 1, so it does satisfy
Definition 4. Clearly, Lgin(G) = {[EZTLL Z:g:‘t] |n>2m= 2} Here a" = aaa...a

(n times) and a,,, = :, m rows are there. A simple derivation of a member of

L4in(QG) is as follows, ‘

ISIESES XS
ISESESS

aabbd aa b o
— |aabbd aa bl (a3b3)2 .
Q‘Lﬁ%zz];‘{m g}—[ww)JGLsm(G)-

SR Q

Definition 5. A k-uniform parallel internal column contextual array grammar
is a 6-tuple (k —UPICCAG), k>1,G = (V,X,C,p, P, A) where

— V is the alphabet.

— X is a finite subset of V**, called selector set and C' is a subset of V**ipV**,
called context set.

— @ : V** =29 is a choice mapping.

— P is a finite set of parallel internal column contextual array rules of the fol-
lowing form, plz;] = LywR; where L;, R; € C are the ith left and right context
of ith selector x; € X, L;, R; have same number of rows.

— A is the finite subset of V**, called axiom set. Each member of A is an axiom
which contains mk number of columns, for some m > 1 and we put the fol-
lowing restrictions.

If the rule is p[x] = LY R then,

- || = |L| = |R| = k, where |W| denotes the number of columns in an array
w.

— for each selector, there is exactly one rule.

The language generated by k—UPICC AG is called a k-uniform parallel internal
column contextual array language(k-UPICCAL) which is Li_yin(G) = {Y €
3.2 Example of 2-UPICCAG

G=(V,X,C,¢,P,A) is a 22UPICCAG where V = {a, b},

x={[slaelyo={lgalvlsel laslvlas]y

 is a choice mapping,

P={e[stl=[salvsal.wlasl =laslvlatl}
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A= {Q = [Z g b zlﬂ } Here, |z| = |L| = |R| = 2,m = 2, number of columns in
A = mk = 4. So it satisfies Definition 5. Clearly

(ab)" "t ab (ab)" "t ab
(ba)™ "% bb (ba)" "t bb | | M > 2
(ab)™ =1 ab (ab)" "t ab

kauin(G) = {Av

. ababd ababa b
For instance, {bbbb} = [babbb b} € Li—win(Q).
ababd ababa b

Now, if we consider a = black box and b = whit
picture.

ox, we get a nice rectangular

Theorem 1. Lgspzccag is incomparable with Lx_ypzccag and not disjoint.

Proof. We prove this theorem using following lemmas whose proofs are
omitted. O

Lemma 1. Lsprecag — Lx—-upzecag # ¢
Lemma 2. Lx_yprccag — Lsprccag # ¢

Lemma 3. Lx_ypzccag N Lsprccag # ¢

4 Identification of Subclasses of Parallel Internal
Column Contextual Array Languages

In this section, we propose an algorithm to infer SPICCAG from positive data
only. We recall the notion of an insertion rule. The insertion operation is first
considered by Haussler in [9] and based on the operation, insertion systems are
introduced by L. Kari in [10]. Informally, if a string « is inserted between two
parts wy and wy of a string wyws to get wyaws, we call the operation as insertion.

This algorithm takes finite sequences of positive examples in the different
time interval or all together. Our goal is to find out SPICCAG G, such that
IP C L(G) where IP is the input set of arrays. The algorithm works in the
following way. After receiving the first set of arrays as an input, based on the
size(actually based on number of columns), firstly the algorithm determines the
axiom, then it defines 2D insertion rules in order to find out context and selector
from input example. After that, insertion rules are converted into 1-sided! con-
textual rules which will be a guess about the unknown grammar. Then we will
convert 1-sided contextual rule into 2-sided contextual rule to take care of over
generalization. Then updates with new contextual rules if the next input array
cannot be generated by the existing contextual rules. All the guessing will be
done in a flexible way in the sense that the correction is done at every instance.
Finally we will find the parallel internal column contextual rules according to
Definition 2.

In this paper we consider single axiom A and finite selector set. Now, we
present our algorithm with a description for better understanding.

! In an 1-sided contextual rule either left context is A or right context is A.
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Pseudocode of Our Algorithm

17:
18:
19:

20:
21:

22:
23:

. axiom «— Find — Smallest(IPS)
: inser «— Generate — Inser(aziom, I P;)

1 — Sided — Contextual — Rule — {}
1 — Sided — Correct — Rule «— {}
2 — Sided — Correct — Rule — {}

: Parallel — Rule — {}

Table «— M

: 1 — Sided — Contextual — Rule.push[Convert — into — Contextual — Rule(inser)]
: IPS «— Remove(IPS,IP;)
: for (1 — Sided — Contextual — Rule; € {1 — Sided — Contextual — Rule}) do

for (IP; € {IPS}) do
S «— Check — Contextual — Rule(1 — Sided — Contextual — Rule;, I P;)

if S =1 then
1 — Sided — Correct — Rule.push[l — Sided — Contextual — Rule;]
if S =0 then

1 — Sided — Correct — Rule.push[Correction — Contextual — Rule(1 —
Sided — Contextual — Rule;, I P;)]

for (1 — Sided — Correct — Rule; € {1 — Sided — Correct — Rule}) do

for (IP; € {IPS}) do

Table.insert[Find — Nof — App — of — EachRule — in — EachMember(1 —

Sided — Correct — Rule;, I P;)]
if TableRow; = TableRow; then

2—Sided—Correct— Rule.push[Merge(1— Sided— Correct — Rule;, 1 — Sided —
Correct — Rule;)]
for (2 — Sided — Correct — RULE; € {2 — Sided — Correct — Rule}) do

Parallel — Rule.push(2 — Sided — Correct — Rule;)

In the next few subsections we will explain all the steps of our pseudocode

in detail.

5.1

Finding Axiom - Pseudocode-Step: 1

axiom «— Find — Smallest(IPS): It finds the smallest array from the IPS
(input set). The output of the function will be considered as an axiom.

In order to find out the axiom, the number of columns of each array is

evaluated, the array with the smallest number of columns, will be considered as

the

axiom. Also a new input array will be compared with the existing axiom

based on the number of columns, and the smaller one will be considered as an
axiom and Let the single axiom be denoted by A.
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5.2 Defining Insertion Rule and Converting It into Contextual
Rule - Pseudocode-Step: 2, 8, 9

— insr «— Generate — Inser(axiom, IP;): It generates the insertion rule from
axiom and member of input set (IP;). The output of the function will be
stored in insr as an insertion rule.

— 1-—Sided — Contextual—Rule.push < [Convert — into — Contextual—
Rule(inser)|: It converts insr into 1 — Sided — Contextual — Rule and store
that.

— IPS «— Remove(IPS,IP;): It removes the current input member IP; from
1PS.

— We now shortly describe about the intuitive idea of the parts 1-4. We try to
identify the selectors from the axiom and contexts from examining input.

— Let the format of 2D insertion rule be LIR where L,I,R € V1 are left
context, inserted portion, and right context respectively. Axiom and examining
array are respectively

ay,1 ... G1.n a1 ... G1,p

az;1 ... a2,n az;1 ... a2,p
A = . . . , E =

Am,1 - Gm,n Am,1 - Gmp

Let the initial insertion rule be LIR and from the axiom we can have the fol-
lowing consideration:

Part 1:
a1 ai2 ... A1,n
a2 1 a2 2 ... A2 n
L= , R=
am,1 Am,2 - Gm,n

Check whether any I = [I; j]mx, Where r < p exists with LIR € sub(E) or not.
If yes then fix that I = [I; j]mx, and go to part 3, else go to part 2.

Part 2: Remove the last column of the right context R and the rule becomes
LIR where
ai
az1 ai,2 ... Q1,n—1
I = . , R = |:a2,2 v Q2 m—1 :|

: Am,2 oo Gmon—1
Am,1

Check whether any I = [I; j]mx, where r < p exists with LIR € sub(E) or not.
If yes then fix that I = [I; j];nx» and go to part 3, else go to part 2 recursively,

»J
ai 1 ai 2
a2 1 az 2
until L = . , R= .|, and then go to part 4.
a,,’l,l aw’zﬂ

Part 3 - Conversion of 2D insertion rule into 1 sided 2D contextual
rule: Here LN '™V RIN are left context, inserted portion, and right context
for insertion rule respectively. On the other hand, L¢, 2/ R are left context,
selector, and right context for internal contextual rule respectively.

(LIR)IN — (¢[x] = LYy R)'C where 21¢ = LIN [1¢ = A, RIC = ['N. Once
we get a selector and associated context with it, we have the following conditions
for each 2D insertion rule:



164 A. Midya et al.

— Condition 1: If (|L|+|I|+|R|)!™ = |E|, it implies that on this current axiom
A, only one rule has been applied and we obtain the rule.

— Condition 2: If (|L| + |R|)!Y < |A|, then we remove LV from axiom A,
and obtain a new temporary axiom, also consider R'Y as a L'V for the next
insertion rule. Also we remove (LI)!" as a subarray from the examining input
FE and obtain a new temporary input. Now we continue our procedure with
this temporary axiom and temporary examing input in the same way.

— Condition 3: If (|[L| +|I|+ |R|)!Y < |E| but (|L| + |R|)!Y = |A|, then it can
be understood that some part of the examining input is still left to scan, and
that is considered directly as the left context L'C of the first selector m{cgst
or right context R of the last selector x1%,. We define new rule internal
contextual rule.

— (@[z] = LYR)pew where Lpew = LIC Rpew = A Zpew = xfcg,st, another
rule can be (B[z] = LYR)pew Where Lyey = A, Ry = BRI Thew = xllacgf It
should be noted that these particular rules will not be considered for updation
and correction.

Part 4: At that moment, existing first column of R will be concatenated with
existing L.

a1 ai,2 ay,3 ... G1.n ay,1 ... G1.n

a1 a2,2 az,3 ... G2.n a1 ... G2.n
L= . . , R= o , go to part 1 until L = o ,

Am,1 Am,2 Am,3 - Qm,n Am,1 - Gm,n

in that case defining insertion rule is not possible. We may need to define inser-
tion rule with the current examining array, if we are still unable to define inser-
tion rule, then we will conclude that the choosen axiom is wrong. It is a negative
example as we are dealing with single axiom.

So in this section, we get the selectors from axiom and contexts from exam-
ining input. Later on for new input, we may need to guess (next section).

5.3 Making Correction and Updating Rules - Pseudocode-Step:
10-16

— S+ Check—Contextual — Rule(1 — Sided — Contextual — Rule;, IP;):
It checks the correctness of 1 — Sided — Contextual — Rule; for IP;. If S
is true then the correct 1 — Sided — Contextual — Rule; will be pushed onto
set {1 — Sided — Correct — Rule} or it goes for correction.

— Correction— Contextual—Rule(1 — Sided — Contextual — Rule;, IP;):
In that case we need to go for correction of the rule in such a way so that our
new corrected rule can take care of new inputs and as well as previous inputs.

— Let the initial rule be ¢[z;] = L;9»R; where L;, R; are ith left and right context
of the ith selector z;. Here z;11 is also introduced because we will make the
correction using ;1.

Proposition 2. In case of correction, we deal with only 1-sided contextual rules
where left context is always empty and selector is not the last one. (see condition
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3 of Subsect. 5.2) We will try to find the rule as a subarray from the examining
mput.

ai1 ... Qip
@it1,1 - Qitl,p

Let the examining input be £ = S . We can represent the exam-
A e Gmp

ining input in the following format £ = P®x;PQPx;1PZ. where P, Z are the

rest of the part of string and they can be empty also, @ is the inserted subarray

portion. Now we present the examining input in 2D form.

Qi Kk e Q4 aj,j e Q4§ 3
itk -0 Gitl, Qit1,5 - Qi41,8

E =P L DPQP S D7
Am k -+ Am, « Am,j -+ Am 3

Now we need to check the contexts. R must be matched with Q. R =
R, PR;119..PR,, where 1 < i < w, and R; presents the ith column of array.
Q=Q;PQ;119..9Q, where 1 <i < z, and Q; presents the ith column of array.

Here we are making an analysis to find out the partially equal part (as a
prefix/suffix) between R1PRo®P..PR,, and Q1PQ29...9Q, and we have shown
the correction part for one rule, in the same way can make the correction for
other rules. In Theorems 3 and 4, we obtain the common-prefix and common-
suffix part between R and Q.

Theorem 2. If the analysis starts with equality such that Q1 = R1,Q2 =
Ro®..9Qf = Ry, and Q¢y1 # Rsy1 or f = z or s = w, then we can have
four different types of errors which are stated in terms of following lemmas.

Lemma 4. If (f = z and s = w) then it implies that matching is correct, so no
need to make any correction for this rule and the rule is correct.

Lemma 5. If (f =z and s < w) then we infer the following two new rules.

- Ruley : gﬁ[.’bzl] = Li/’l/)Ri/ where Rz” = Ql(I)QQ@...@Qf,Li/ = A,xi/ =T;.
- R’U,le(i+1)/ : (ﬁ[aﬁ(prl)/] = L(i+1)’w[R(i+1)’ where L(Z’+1)/ = RS+1¢RS+2@...
PRy, Riy1y = A T(iv1y = Tig1)-

Lemma 6. If (f < z and s = w) then we infer the following two new rules.

- Rulei/ : @[LUZ/] = Liﬂl)Ri/ where Rz” = Rldj..@Rw, Li’ = A,xi/ = Z;.
- Rule(iﬂ)/ : Lﬁ[l‘(i+1)/] = L(iJrl)/wR(iJrl)/ where L(Z’+1)/ = Qf+1¢Qf+2¢---¢Qza
Riiy1y = A 2(ip1y = Tiig)-

Lemma 7. If (f < z and s < w) then we infer the following three new rules.

- Rulei/ : QZXL‘Z‘/ = Li’wRi’ where Rz” = Q1¢Q2¢...¢Qf, Li/ = A, Ty = Tj.

= Rulegiy1y : @la]iv1y = Ly ¥Ry where L1y = Rs1®... @Ry, Riiqay
=4, L(i+1) = Lit1-

- Rule(i_ﬂ)/ : (ﬁ[l’]ﬂ,g = L(i_;'_g)/il)R(i_,_Q)/ where L(i+2)/ = Qf+1¢@Qz7
R(Hz)’ = Avx(i+2)’ = Tit+1-
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Theorem 3. If the analysis starts with inequality such that Q1 # Ry, but Q, =
Ry, Q.1 = Ry-19..9Q; = R,, and Q¢_1 # Rs—1 then we can have three
different types of errors which can be seen in the following lemmas.

Lemma 8. If (s =1, f > 1) then we infer the following two new rules.

- Rulei/ : QLA?[LL'Z/] = Li’wRi’ where Li/ = Rl@Rgﬁp...@Rw, Ri’ = /Ll‘i/ = Ti41-
- @[‘r(i—&-l)/] = L(i+1)’wR(i+l)’ where R(i+1)’ = Q1@Q2¢~~@folal/(i+1)’ =
A,l‘(i+1)/ = Z;.

Lemma 9. If (s > 1) then we infer the following three new rules. Rule; :
Qlzir] = Ly Ry where Ly = RPR, 1 P.. PRy, Ry = A,y = xi11. Rulegyqy :
Slrry] = Ligry YRy where Ripy = Q1PQe®..9Qs 1, Lty =
A,I(i+1)/ = ;. R’U,le(i_;’_g)/ : @[Z'(i_;'_g)]/ = L(i+2)'wR(i+2)’ where L(i+2)’ =
A, R(H_g)/ = ngng@...QjRS,l, IE(H_Q)/ = Z;.

Lemma 10. If Q. # Ry then we infer the following two new rules.

- Rulei/ : (,Z?[CCZ‘/] = Li’wRi’ where Ri/ = R1¢R2¢...¢Rw, Li’ = /173%‘/ =T;.
- Rule(H_l)/ : c,b[x(i+1)/] = L(i+1)/1/}R(i+1)/ where R(i+1)/ = Q1¢Q2¢...¢QZ7
L('L+1)’ = A,:C(iJrl)/ = T;.

In this section, we must notice that we have different rules with same selectors.
According to Definitions4 and 5, for each selector there must be one rule. As we
are inferring 1-sided contextual rule, it does not satisfy our Definitions4 and 5.
In the next section we will convert 1-sided contextual rule into 2-sided contextual
rule in order to take care of over generalization and Definitions 4 and 5.

5.4 Controlling over Generalization - Pseudocode-Step: 17-21

— Table.insert[Find — Nof — App — of — EachRule — in — EachMember
(1 — Sided — Correct — Rule;, IP;)]: It finds out the application of each rule
on each member of the input and insert that record into the table.

— 2—Sided — Correct — Rule.push|[Merge(1 — Sided — Correct — Rule;,
1 — Sided — Correct — Rule;)]: In this case if we find that ith row (T'able
Row;) and jth row (TableRow;) is same then we merge these two rules
(1 — Sided — Correct — Rule;,1 — Sided — Correct — Rule;) and store as
a 2 — Sided — Correct — Rule.

— In this section we determine the number of applications of each rule to generate
the given input set. It will be presented in table. We put priority in applying
rules where left context is empty and context is smaller in size. If it is found
that without using any rule we can generate the full input set then we can
ignore that rule.

— Actually all the rules are 1-sided where left contexts or right contexts are
empty that generate more elements. Thus, to control this over generalization,
we check that how many times each rule is applied in each member of the input
set. Rules which are applied equal number of times in each member, those can
be merged into one rule based on condition (discussed in Lemmas 11 and 12).
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— Also in this way we satisfy our required condition for SPICCAG (Defini-
tion4), that is, for each selector atmost one rule is applicable.

Lemma 11. If consecutive selectors are x;,x; with (j —i) = 1 and left con-
texts(right contexts) are empty in a set of rule then we can get 1-sided or 2-sided
internal contextual rule after merging them.

Proof. Let z;,x; denote ith and jth selector, R;, R; be ith and jth right context
and L;, L; are ith and jth left context.

— case 1: If z;,z; are such that (j —¢) = 1 and if R; = R; = A then rule
becomes ¢[x;] = Ly R; where R; = L.

— case 2: If x;,x; are such that (j —¢) = 1 and if L; = L; = A then the rule
becomes @lx;] = LY R; where L; = R;, x; = x;.

Lemma 12. If consecutive selectors are x;,x; with (j —i) = 1 and left contexts
of ith rule and right context of jth rule are empty then we can get 1-sided internal
contextual rule after merging them.

Proof. Let x;,x; denote ith and jth selector, R;, R; are left contexts of ith rule
and right context of jth rule respectively.

If x;,x; are such that (j —¢) =1 and if L, = R; = A then the rule becomes
(ﬁ[l‘l] = Llel where ]%z = Rl@Rj

5.5 Parallalization Contextual Array Rules - Pseudocode-Step:
22, 23

— Parallel — Rule.push(2 — Sided — Correct — Rule;): It converts the 2 —
Sided—Correct— Rule; into parallel rule and push onto set { Parallel — Rule}.
If we get a rule ¢[z] = LR where

ik - Qi Qi,j e Qi k—1 @i, a1 .- Qin

itk -0 Gitl, o Ai41,5 --- Qitl k—1 Ait1,04+1 -+ Gitl,m
r = 7L = . . . 7R =

Am,k -+ Am,«a Am,j -+ Am k—1 Am,a+1 -+ Am,n

According to Definition 2, we can have (m — 1) parallel rules ¢[Pz;] = PL,9PR;
where Px;, PL;, PR; are respectively selector, left context, right context.

L ik - G« R Qg5 -0 Qi k—1 e @i, a1 --- Qin
th - [ai+1,k (11:+1,o<] aPLz - [aiJrl,j aH»l,k—l:I 7PR1 - [ai+1,a+1 R )

where 1 <i¢<m —1.

Remark 1. The above algorithm can also be used to identify a k — UPICCAG.
A modification required in the algorithm is that, k is also given along with the
positive presentation as an input to the algorithm.

In this case, at the time of defining insertion rule (Sect.5.2), we need to
focus on the size of selectors and contexts in terms of number of columns as & is
given as an input. Defining insertion rule should be done in the following way,
LIR € sub(E) where |I| = |L| = |R| = k and also |A| = mk,L,I,R € V*+.
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6 Correctness of the Algorithm and Characteristic
Sample

The correctness of the algorithm can be noticed in view of the fact that the
specific properties of the subclasses considered allow the positive examples. The
correctness of the algorithm can be seen by considering a characteristic sample
for a target language. Also it can be seen that the algorithm runs in polyno-
mial time in the sum of the size of the examples given. (discussed in Sect. 7).
The correctness of the algorithm, can be seen by considering a characteristic
sample for a target SPICCAL. Let L be an SPICCAL. A finite set IPS is
called a characteristic sample of L if and only if L is the smallest SPICCAL
containing I PS.

7 Running Time Complexity of Our Algorithm

In this section we show the running time of our algorithm to infer the column
contextual rules.

Theorem 4. The running time complezity of the given pseudocode in Sect. 5, is
polynomial in the size of the input set, that is, SumofSize(IPS) where IPS =
{IP;,IPi}1,....,1P;}.

Proof. proof is omitted.

8 Conclusion and Future Work

In this paper we present a polynomial time algorithm to infer subclasses of
parallel internal column contextual array languages from positive examples only.
Here we deal with only column contextual rules. In the form of future direction
of this work, we can deal with column and row contextual rules together, that
is, parallel internal array contextual languages.
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Abstract. We introduce a new P system model called as parallel con-
textual array insertion deletion P system, based on the modified row and
column contextual rules of parallel contextual array grammar. We can
generate a family of two-dimensional picture languages using this P sys-
tem. We discuss some properties of this P system and find its generating
power by comparing this new family of languages with that of certain
other well known families of two-dimensional picture languages.

Keywords: P system - Rectangular array - Parallel contextual array

1 Introduction

One of the extensions of string language theory is two-dimensional languages.
There has been a continued interest in adapting the techniques of formal string
language theory for developing methods to study the problem of picture genera-
tion and description, where pictures are considered as connected, digitized finite
arrays in the two-dimensional plane. The literature on array grammars and array
acceptors has steadily grown over the past several years.

Rosenfeld [16,17] has investigated isometric array genration, pointing out the
need for array rewriting rules for picture languages. In an array grammar, the
idea is to have rewriting rules that allow replacement of a subarray of a picture
with another subarray, thus generalizing the Chomskian string grammars to
arrays. Siromoney et al. [18] proposed a simple generative model, called two-
dimensional matrix grammar, to describe digital pictures viewed as rectangular
arrays of terminals. Motivated by the need to generate picture languages that
cannot be generated by two-dimensional matrix grammars, Siromoney et al. [19]
introduced array models, generalizing the notion of rewriting rules in which the
catenation of strings is extended to row and column catenation of arrays.

While the study of formal language theory has its origins in Chomskian gram-
mars, another class of grammars, called contextual grammars was introduced by

© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 170-183, 2017.
DOI: 10.1007/978-3-319-59108-7_14
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S. Marcus in 1969 [12]. Contextual grammars have been intensively investigated
by formal language theorists, as they offer novel insight into a number of issues
central to formal language theory [3,14]. A contextual grammar produces a lan-
guage by starting from a given finite set of strings and adding, iteratively, pairs
of strings (called as contexts), associated to sets of words (called selectors) to
the string already obtained. Extension of these grammars to 2-dimensional array
structures has been attempted in [6,8,10]. In [10] a model of array contextual
grammars is introduced. But this model is different from parallel contextual
array grammars in [6,8]. In [10], instead of a finite set of contextual rules, a lan-
guage of arrays which may be an infinite set is used for choosing the contexts.
In the parallel contextual array grammars, row as well as column contexts are
allowed and the contextual rules are finite. The array contextual style introduced
recently in [8] is a modified contextual style of [6].

A P system or membrane system, which was introduced by Paun [13,15],
evolves in parallel; at each step all objects, which can evolve should evolve. A
computation starts from an initial configuration of a system, defined by a mem-
brane structure with objects and evolutions rule in each membrane, and termi-
nates when no further rule can be applied. In P systems with string objects one
uses the Chomskian way of rewriting for computations. In [11] the contextual
way of handling string objects in P systems has been considered and that the
contextual P systems are found to be more powerful than ordinary string con-
textual grammars and its variants. Extending the string rewriting P systems to
arrays, Ceterchi et al. introduced array P systems of the isometric variety using
context-free type of rules [1]. Henceforth, several P system models for generat-
ing arrays, both isometric and non-isometric variety, have been considered in the
literature (for example [2,7,20]).

Picture languages and array grammars are important parts of image process-
ing. Based on the analogy to Chomskian string grammars and languages there
was a belief that these two-dimensional languages will be useful in pattern recog-
nition etc. For this we would need efficient generating tools and also efficient
parsing tools for the generated language families. This is the motivation behind
this paper. In this paper we introduce new P system models, called as parallel
contextual array insertion deletion P system, based on the modified contextual
style [8] of external and internal parallel contextual array grammars considered
in [6]. In Sect.2, we give some prerequisites. In Sect. 3, we define parallel con-
textual array insertion deletion P system and give an example. We also consider
another P system model involving only the insertion operation. In Sect. 4, some
properties for the families of languages generated by both parallel contextual
array insertion deletion P system and parallel contextual insertion P system are
discussed. In Sect. 5, we compare the family of languages generated by the new P
system model with that of certain other well known families of two-dimensional
picture languages like LOC, REC and Families of Siromoney matrix languages
and thus bring out their generative powers. In Sect. 6, we conclude the article
with a brief remark.
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2 Preliminaries

In this section we recall some notions related to formal language theory, array
grammars and parallel contextual array grammars.

Let V be a finite alphabet, V* is the set of words over V including the empty
word A\. VT = V* —{\}. For w € V* and a € V, |w|, denotes the number of
occurrences of a in w. An array consists of finitely many symbols from V' that
are arranged as rows and columns in some particular order and is written in the

aiir o Qin
form, A = [ o
Am1 ** Gmn
and j = 1,2,...,n. The set of all arrays over V is denoted by V** which also

includes the empty array A (zero rows and zero columns). V*t+ = V** — {A}.
For a € V, |A|, denotes the number of occurrences of a in A. The column

or in short A = [a;j]mxn, foralla;; € V,i=1,2,....m

. ail -+ aip bi1 -+ big
concatenation of A= | : ,and B=| : |, defined only when
Am1 *** Amp bp1 - bnq

air -+ aip bir - big . )
¢ttt |U As 1 x n-dimensional arrays
Am1 = Amp bn1  bng
can be easily interpreted as words of length n (and vice versa), we will then

write their column catenation by juxtaposition (as usual). Similarly, the row

m = n, is given by A(DB =

an e
concatenation, defined only when p = ¢, is given by AGB = (zrfll (Z?qp . The
brle b'r:Lq

empty array acts as the identity for column and row catenation of arrays of
arbitrary dimensions.

Definition 1. A Phase-structure matrix grammar (Context-sensitive matrix
grammar (CSMG) Context-free matrix grammar (CFMG), Right-linear matrix
grammar(RLMG)) is defined by a 7-tuple G = (V,,V,, 2, X, S,HR,VR),
where: Vi, is a finite set of horizontal nonterminals; V,, is a finite set of verti-
cal nonterminals; X; C V,, is a finite set of intermediates; X is a finite set of
terminals; S € Vj, is a starting symbol; HR is a finite set of horizontal phase-
structure (context-sensitive, context-free, right-linear) rules; VR is a finite set
of vertical right-linear rules. For more information, we can refer to [18].

Definition 2. Let V' be a finite alphabet. A two-dimensional language L C V*
is local if there exists a finite set of © of tiles over the alphabet V U {#} such
that L = {p € V**|Ba2(p) C O}.

Given a language L, we can consider the set © as the set of all possible blocks
of size (2, 2) of pictures that belong to L (when considered with the frame of #
symbols). The language L is local if, given such a set ©, we can exactly retrieve
the language L. We call the set © a representation by tiles for the local language
L and write L = L(O).

The family of local picture languages will be denoted by LOC.

Definition 3. A two-dimensional language is “Tiling Recognizable” (REC') if
it can be obtained as a projection of a local picture language.
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We can refer to [4,5] for further details about LOC and REC' languages.

Definition 4. Let V' be a finite alphabet. A column array context over V is of
the form, ¢ = $.[us]$c € $.V**S$., u1,uz are of size 1 xp, p > 1 and $. is a
special symbol not in V.

A row array contexts over V is of the form, r = $, [wv1 u2] §,. € §,.V**§,
uy,uz are of sizep X 1, p>1 and $, is a special symbol not in V.

Definition 5. The parallel column contextual insertion operation is defined
as follows: Let V' be an alphabet, C be a finite subset of $.V**$. whose ele-
ments are the column array contexts and @L:(V**, V**) — 2 be a choice map-

) arj -0 A1(k—1) A1k o Q1(1—1) .
ping. For arrays, A=+ - : ,B= = . i i<k<la; eV, we
Amgj *** Am(k—1) Amk ** Am(l—1)
U1
A ~ u .
define Spg : (V**,V**) — $.V**$. such that, $.1.%. € (pi(A,B), I. = |: 2:| if
Um
L Us I Aqj Ai(k—1) Qi Ai(1—1) ) .
Ci = $C [u'i+1]$0 € Pe (a(i+l)j Q1) (k—1) 0 G(Gi+1)k T G(i41)(1—1) )7 ¢i € C’ 1 <@ <

m — 1, not all need to be distinct.
Gwen an array X = [aijlmxn, aij € V such that X = X1(DAQDBDX2,

ail v A1(j—1) aij v C1(k—1) A1(k+p) 7 A1(1-1) ay; - ailn

Xi= i POLA= . ,B= : oo L Xe= 0
Aml ** Am(j—1) Amj = Am(k—1) Am(k+p) " Cm(l—1) Aml * Gmn

1<j<k<i<n+1l(or)l<j<k<li<n+1, wewrite X =;Y ifY =
X1QAQI.OBOMXz, such that $.1.$. € $L(A, B). I. is called as the inserted
column context. We say that Y is obtained from X by parallel column contextual
insertion operation. The following 4 special cases for X = X1(DAQB(DXz2 is
also considered,

1. For j =1 we have X; = A.

2. Forj =k, we have A=A. If j=k=1, then X1 = A and A = A.

8. For k =1, we have B = A.

4. Forl=n+1, we have Xo =A. If k=1=n+1, then B=A and Xo = A.

The case j = k =1 is not considered for parallel column contextual insertion
operation.

Similarly we can define parallel row contextual insertion operation also.

Definition 6. The parallel column contextual deletion operation is defined as
follows: Let V' be an alphabet, C be a finite subset of $.V**$. whose elements
are the column array contexts and P : (V** V**) — 2% be a choice mapping.
For arrays

aij v a1(k-1) @1(k—p) " G10-1)

A= 1 - ,B = oo L j<k<la;eV

Amj am(l’cfl) am(léfp) vt Gm(1-1)

we define PP+ (V** V**) — §.V**$. such that,

$ch$c S ()bi(A)a Dc = |:UZ :| Zf

Um
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L U; I Qij Ai(k—1) Qi (k+p) @i(1—1)
¢i = e [uits ] $e € @, (a(i+1)j A1) (k—1) 0 GGi1) (ktp) T a(i+1><zfl>)

c; € C,1 <i<m—1, not all need to be distinct.
Given an array X = [aijlmxn,aij €V such that X =X1 Q A D. () B
® X27

a1l o A1(G—1) a1y o G1(k—1) @1(k+p) T A1(1-1) aj; - ain
Xi= - : A= o : B = : : Xo= 1 - :

) ) : : )
Am(k+p) " m(l-1)

. . . )
Aml " Am(5—1) Amg 0 Am(k—1)

Qi 0 @mn

1<j<k<li<n+1, wewrite X =>3Y if Y = Xi(DAQBX2, such that
$.D.$. € @CD(A, B). D. is called as the deleted column context. We say that Y is
obtained from X by parallel column contextual deletion operation. The following
4 special cases for X = X1(DAQD.(DBPX2 are to be considered,

1. For j =1 we have X; = A.

2. Forj=k, wehaove A=A. If j=k=1, then X1 =A and A = A.

8. Fork+p=1, we have B = A.

4. Forl=mn+1, we have Xog = A. Ifk+p=1=n+1, then B= A and X2 = A.

Similarly we can define parallel row contextual deletion operation also.

3 Parallel Contextual Array Insertion Deletion
P Systems

In this section we define parallel contextual array insertion deletion P system
and give an example.

Definition 7. A parallel contextual array insertion deletion P system is a con-
struct,

H = (Va T’uaca R7 (MlvjlaDl)a BRI (MhajhaDh)a¢£7@7I~7(P£7SDTD’Z‘O)

where,

V' is the finite nonempty set of symbols called alphabet;

T CV is the output alphabet;

W is the membrane structure with h membranes or regions;

C is the finite subset of $.V**$. called column array contexts;

R is the finite subset of $,V**$,. called row array contexts;

M; s the finite set of arrays over V called as axioms, each associated with
the regions of u;

ol - (V**, V**) — C is the choice mapping performing parallel column con-
tertual insertion operations;

ol (V** V**) — R is the choice mapping performing parallel row contextual
nsertion operations;

©D (V¥ V**) — C is the choice mapping performing parallel column con-
textual deletion operations;



Parallel Contextual Array Insertion Deletion P System 175

©P . (V**,V**) — R is the choice mapping performing parallel row contez-
tual deletion operations;

A = [a(ifl)j a(ii(llz(_kl—)l)} ' Bi = [a(iﬁ)k a(zi(ll)_(zljl)]’ I<j<k<li<n+l
(or) 1 <j<k<l<n+1, ac{hereout,in}, u; and u;+1 are of size 1 x p
with p > 1.

(or)

[({el(Co B =5, [ w5,

izl,l...,n—l},a)}

Qjq Aj(i41) (€2 Ak (i41) .
C; = : : = : : 1< ji<k<li<m+1
A(k—1)i A(k—1)(i+1) Q(1—1)i A(1—1)(i4+1)

(or)1<j<k<Il<m+1, ac {here,out,in:}, u; and u; 1 are of size p x 1

with p > 1.
D; = 0 (07“) { ({‘PCD(AiaBi) = $0[u7iﬁ1]$0 i=12....m- 1},04) }
_ aij o Gi(k—1) _ Qi(k+p) T Qil-1) ]
Ai - [@(i+]1)j a(i+1)(k171>] » Bi = [a(wl)?rkip) a(z‘+1><11*1>]’ I= J = F<lsnt

1, a € {here,out,in}, u; and w;y1 are of size 1 X p with p > 1.

(or)
{({gp{?(C’i,Ei) =, [wown]$,[i=1,2,...,n— 1},a)}

aji @j(i+1) A(k+p)i (k+p)(itl)
C; = [ : : ] B = { : :
A(k—1)i A(k—1)(i+1) A(1—1)i A(1—1)(i+1)
a € {here,out,in}, u; and u;4q are of size p x 1 with p > 1.
1o 18 the output membrane

}1§j§k<l§m+1,

The direct derivation with respect to [] is a binary relation = on V** T**
and is defined as X =; 4 Y, where X € V**|Y € T™* if and only if,
X = XiQAQBDX2, ¥ = XiQAQIL.OOB(X2 or X = Xs6ASBESX,,
Y = X36A61,.6B5 X, for some X1, Xo, X3, X4 € V** and I, I, are inserted
column and row contexts obtained by using the insertion rules based on the
parallel column or row contextual insertion operations according to the choice
mappings. (or)
X =X1QAQDOBOX2, Y = Xi(DADBDX: or X = X368A8D,8B5X,,
Y = X3568A8B8 X, for some X;, X9, X3, X4 € V** and D., D, are deleted
column and row contexts obtained by using the deletion rules based on the
parallel column or row contextual deletion operations according to the choice

mappings.
The initial configuration of the system consists of the membrane structure
with A membranes labelled 1, 2,...,h where the outermost membrane being the

skin membrane is labelled as 1, which also acts as our output membrane. Using
the insertion or deletion rules I; or D; based on the choice mapping ¢; present
in the region ¢ we do the step by step computation. The array we obtain after
each computation is placed in the membrane indicated by a. If we choose « to
be ‘here’, it means that the resulting array remains in the same membrane. If we
choose a to be ‘out’, it means that the resulting array is sent out of the current
membrane and enters the immediate outer membrane. If that outer membrane
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happens to be the skin membrane and if no further computation is possible,
we say that the resulting array is present in the language generated by this P
system. If we choose a to be ‘“in;’, it means that the resulting array is sent to
the membrane labelled ¢t. When there is no rule applicable to the choice array
obtained after the last computation we say that the computation is successful
and it halts. A successful computation depending on o may result in an array
being sent out to the skin membrane. All the arrays with symbols over T collected
in the skin membrane is the language generated by the parallel contextual array
insertion deletion P system ][ and is denoted by PCAIDP (]]). The family of all
array languages PCAIDP (]]) generated by parallel contextual array insertion
deletion P system with at most h membranes is denoted by PCAIDP,.

We also consider P system which involves only the insertion operation i.e.,
1= (T,u,C,R, (M1, I),...,(My, 1), oL, ¢l ig). The language generated by
this P system is denoted by PCAIP (]]). The family of all array languages gen-
erated by parallel contextual array insertion P system with at most h membranes
is denoted by PCAIPy,.

Ezample 1. We consider an example for a PCAIDP (]]),
H = (‘/aT7IU/7Ca R7 <M17II,D1)7 (M27I27D2)790£7805D7§0£7(107'D7 1)

where,

V={eX,Y}

T:{.vX}

= [12]2]x

C o= {SIXYI8 S VIS Sclx¥ISeS. ¥ ¥IS. ScI¥ils.
o3 %18e, S [¥18}

Ro= {S000050 S1TYIS. STYIS. 81XV, s3Ys.
809 218 8 (2 V180 8 1V 180 S [F V18, 8 [Y 218, )

My =10 ‘xx

w={[13:]}

L=0

D :{({gpf’[xx,-o] = S [vv]$., PP[xx,ex] = $ [vv]S$,
WP [xx,xe] = $,»[YY]$7~}JL67’€),<{QO7P[OO,XX,] = $.[vv]$,
P Lo X X X]=8, [y Y]$, 9P [x o, x x] =S, [v 8, here) |

L= {({e1%, %] = 81X Y18 L5, ¥ = Se[2¥18e 1%, %] =
8. 1% V18cfohere), ({@F1X, %] = SI¥ X8, ¢LIX.3] = S[¥ils.
PIX %] = Y alschinere), ({ellxx,e0] = 8. (YYIS,
‘pi[va'Y} = $T[¥}X}$Tv gpi[YX7YX} = $7’[¥}/(]$W <p7{[XY7XY] =
50X Y18, wllvxovel = VYIS fohere), ({ollee, xx] =
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$r[1./1.’]$r7 @r[‘y XY] = $T[1./}};}$T7 tpi[YX,
olixy,xv]=8.[¥Y]$, [Y.,YX]:$T[¥{,]$T},here>}

Dy = {({#P 15, §] = Se[¥18e wPI¥, %] = So[¥18e 9PI3, %] =
S.1¥18 wPI8. ¥ = SclVI8fohere), ({eP[¥. 5] = S.1¥18.,
GPIX Y] = 80¥1800P (5,8 = So[¥ISe ¢P[, 8] = SV,
GPI XD = ScYISchnere), ({9Plxx,e0] = S0y v]s,
GPIxx,ex] = S[vv]s. ¢Plxx.xs] = S[vv]s}a),
({#P Lo x xX] =8, [v ¥]$0, 6P lox, x X] =8, [v ¥]$,, 6P [x e, x x] =
$.[v Y] $T}, a) }7a € {here,out}

Membrane labelled 1 i.e., the skin membrane is the output membrane.
The language generated by this parallel contextual array insertion deletion

P system is,
XX X"
L(ID = { (o™ X )21 ’n >1

Xr X X"

This language can also be generated by a parallel contextual array insertion P
system,

H = (T7M’07R’(M1711)’(M2>I2)’(MB,IS)’(M4,I4)’(M5715)7(p£?50£71)
where,

T ={e, X}

m= [1 [2[3]3]2[4[5]5]4]1

C = {8c[¥]5e, (2150, 8. (318}

R={8,[e0]8, 8, [+ x]$., §.[x4]5, ]

M =10

M, =10 X X X

s ={[: Xz}

My=10

Ms=10

L =0

I, = {({<pg[§,{q = $.[¥18:, ©L[¥,8] = Sc[2]8e, ©L[X, %] =
8. (%18 }.ins ) }

IS = {({ng[i(’%} = $C[)o(}$ca @c[.vX] = $C[:]$C’ @C[)?’%] =
. (%18 },out) }

£ T[ ]$T7 Spr[’X»XX} = $r['X]$rv
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I5 :{<{‘P£[XX7°'] = $,.[e]$., @l[xx,ex] = $.[ex]$,,

Cl[x X, X o] =8, [xe] $T},a ,a € {out, ins}
Membrane labelled 1 i.e., the skin membrane is the output membrane.

By replacing X by Q and e by + we can arrive at pictures like,

4 Properties of Parallel Contextual Array Insertion
Deletion P Systems

In this section we give some properties of parallel contextual array insertion
deletion P system.

Theorem 1. The families PCAIDP;, and PCAIP}, are closed under union, col-
umn catenation and row catenation.

The proofs are straight forward. O

Theorem 2. The families PCAIDPy, and PCAIP;, are closed under reflection
on the base and right leg, transpose and rotations by 90°,180°,270°.

The proofs are straight forward. a

5 Comparison Results

In this section we compare the generative power of PCAIDP;, and PCAIP,
along with that of LOC, REC, families of Siromoney matrix languages and
family of languages generated by parallel contextual array insertion deletion
grammar (PCAIDG) available in the literature [4,5,8,18].

Theorem 3. PCAIDG C PCAIDP;.

Proof. For every parallel contextual array insertion deletion grammar,
G = (V,T,B,C,R, oL, 0P P ©P) we can easily construct a parallel
contextual array insertion deletion P system ][] with two membranes.
[[= (V7Té)[1[2]2]1,07 R, (My, I, D1), (M, I, D3), oL, o2 o, ©P 1) where,

My =
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L= {({ela. 0] = scL2]

$.[ui]%e € o [a, »] in G}’h”‘?)}

8, [ u2]8, € @l [ 02, 0 0a] n G},

a,az € T},out)}

$c[ut]8e € 2[4, Z;] in G},here)}
8, [ 12]8, € P o1 0, 01 02] in G,

here) }

1 is the output membrane.
Clearly we can see that L([]) = L(G).
Hence PCAIDG C PCAIDP,. O

Theorem 4. PCAIP, C PCAIDP,,¥ h > 2.

Proof. Every parallel contextual array insertion P system, [[ = (T,u,C, R,
(My, 1), (M, I3), oL, 0l 1) is also a parallel contextual array insertion dele-
tion P system, H = (‘/, T, s C, }%7 (Ml, Il, Dl), (MQ, IQ, Dg), (pi, (pcD, (p{, (pTD, 1)
where, V = T, D; = Dy = (). Hence PCAIP;,, C PCAIDP;,. Strict inclusion
follows from example 1, where the language L(]]) cannot be generated by any
PCAIP,, PCAIP; and PCAIP;. O

Theorem 5. LOC C PCAIDP,.

Proof. From [8] where we have LOC C PCAIDG. From Theorem 3, we have
PCAIDG C PCAIDP;. Hence LOC' C PCAIDPs. a

Theorem 6. REC C PCAIDP,.

Proof. From [8] where we have REC' C PCAIDG. From Theorem 3, we have
PCAIDG C PCAIDP;. Hence REC C PCAIDP,. a

Theorem 7. LOC C PCAIP;.

Proof. Every LOC' language can be generated by some parallel contextual
array insertion P system with two membranes. Let L be a language over
I' in LOC with a finite set of tiles, @ such that L = L(©). Consider
the parallel contextual array insertion P system with 2 membranes, [[ =
(T, u,C, R, (M, I), (Ma, I), L, oL 1) where,

T=IU{#},

p= [1[2]2]1,
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ohocd s heofu{({e
j;& € @}, 0ut>} and 1 is the output membrane.
Clearly, [] can generate any language in LOC' and hence LOC C PCAIPs.
Now to prove the proper inclusion, we consider the language L' = {(X)3 |m >
1}. This language, L’ is not in LOC as can be seen in [4]. But this language
can be generated by the parallel contextual array insertion P system, []

(T7/14707R7(M17II)7(M2712)7(P£750r7 )7 where T = {X} Bo= [ [ ] ]17 C = [2)7
R:{$TXX$T}7M1:@,M2:{Xxx} Il—(Z)IQ: ({QDT[XX XX]:
$, x x$.},0)},a € {here,out} and 1 is the output membrane.

Hence LOC is properly contained in PCAIPs. O

Theorem 8. REC is incomparable with PCAIP3 but not disjoint.

Proof. The language considered in example 1 cannot be generated by any parallel
contextual array insertion P system with 3 membranes, whereas it is a language
in REC. This proves that REC—PCAIP; = 0).

Now we consider the picture language L consisting of arrays describing stair-

e o 0 0 0 0 0 0 o X
e o 0 0 0 0 0 0 0o X
cases of X’s of the form, S S L T language can be gen-
e o o § XX X o o o
XXXXooewoos
erated by a parallel contextual array insertion P system with 3 membranes,
H - (T,/J,,O R (M1711) (M2712 a(M37[3)a80£7g0£71) Where T = {X .} M =
e o o X o X )
{).().().(§ { TXX$T7 $TX.$ $T'.$}

Q
|
&
oo
oo
oo
&£
)
=y
I
=4
3
> e
— xe
<L
3
L

= $7‘::$7()0£[ ).(7/1] =
Pl (X% a] = X380l [% % 4] = SS9l [k, a] =
:$r},a>},a€{out,in3}

I={({ella, 28] =8.20280 00 [a, % 2] =82 828} out) }

A kind of pumping lemma is available for the picture languages of the fam-
ily REC [4] called as the horizontal iteration lemma and the vertical iteration
lemma. It can be seen that this necessary condition cannot be satisfied in case
we assume that L is in the REC family. Hence L ¢ REC. This proves that
PCAIP3 — REC # 0.

oo
o0
=~
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Now to prove REC N PCAIP3 # (), we consider the language L’ from the
proof of Theorem 7. This language is in REC as can be seen in [4].
Hence REC is incomparable with PCAIP3 but not disjoint. O

Theorem 9. CSML C PCAIDP,.

Proof. From (8], we have CSML C PCAIDG. From Theorem3, we have
PCAIDG C PCAIDP5. Hence the proof. O

Theorem 10. CFML C PCAIPs.

Proof. Every CFM L can be generated by some parallel contextual array inser-
tion P system [] = (T,[1[2]2[s]s]1, C\ R, (M1, 11), (Ma, I5), (M3, I3), oL, ol 1)

where every column insertion rule in I is only of the form, {({(pﬁ [Zi B

W] = s s

n,p > 1},in3)} in Iy with a;,b;,a},b},uj,v; €

b’l b; [2RE 2]
T,i =1,...,n,57 = 1,...,p and for each such rule in I5 there is a column
insertion rule, {({@i{‘;i ‘;;L7 o g:} =3, [Zﬁ . ;fﬂ $c\n,p > 1},05)},04 €

{ing,out} in Iy and only such column insertion rules exists in I3.

- an

Also, every row insertion rule in I is only of the form, {({907{{211 b
ay - ap,
by e b
is the same row insertion rule in I3 and only such row insertion rules exist in I5.

To prove proper inclusion we consider the language L in the proof of Theo-
rem 8, which is not in CFM L but in PCAIP3. To see that the language L is not
in CFML we can refer [19].

Hence CFM L C PCAIP;. |

] =3, [fﬁ o zﬁ] $T’n7p > 1}, here)} and for each such rule in I there

Corollary 1. RML C PCAIP;.

6 Conclusion

In this paper, we have introduced parallel contextual array insertion P Sys-
tem along with parallel contextual array Insertion P system and listed some of
their closure properties. We have given some comparison results with some well
known families of two-dimensional picture languages available in the literature.
We can exhibit more comparison results of the new models with other families
of languages generated by certain other types of P systems in the literature like
parallel contextual array P systems [9] and parallel array-rewriting P systems
[21]. The application of this model can be seen in floor designing, kolam pattern
generation, etc. We can also study various other applications and properties.
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Abstract. An efficient and robust technique for the determination of
the 3D curve skeleton of a digital object is presented in this paper. As
a preprocessing step, the 3D isothetic inner cover of the digital object
is constructed. The voxels adjacent to the surface of the inner cover are
represented in a topological space. The object voxels which are interior
to the inner cover and satisfy certain conditions along the three coordi-
nate planes are also expressed in another topological space. Homotopy
equivalence of the topological spaces is utilized to report the 3D curve
skeleton. The resultant skeleton is a single voxel thick, connected, and
centered representation of the object that preserves the object topology.
Accuracy of shape representation by the skeleton may be varied by using
control values according to the requirement of the application. Experi-
mental results on a wide range of objects demonstrate the efficacy and
robustness of the method.

Keywords: 3D curve skeleton - 3D isothetic inner cover : 3D object
topology - Homotopy + Attaching spaces

1 Introduction

The concept of skeletonization has received considerable attention from a wide
range of research domains due to its potential applications in diverse areas. In
two dimensions as well as in three dimensions, skeletonization has often been
associated with the concept of medial axis and thinning. An object boundary
has been proved to be homotopy equivalent to its medial axis [6]. Skeletonization
of 3D digital objects provide important information about the object topology.
An efficient skeletonization algorithm that is insensitive to object boundary com-
plexity, preserves basic connectivity and centeredness, and facilitates object hole
detection is proposed in [19]. The method involves the SS-coding that converts
objects into a directed cluster graph leading to shortest path extraction and
the BS-coding that generates a traditional minimum distance field. An effective
sequential thinning algorithm has been presented in [18] that directly produces
medial curves from 3D binary objects. The algorithm preserves topology and

© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 184-197, 2017.
DOI: 10.1007/978-3-319-59108-7_15
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exploits the local topological parameters of a digital image to extract the curve
skeleton. Partitioning of an object can assist in the creation of a skeleton and
any segmentation of the skeleton can infer a partitioning of the object. In [11], a
volume-based shape-function called the shape-diameter-function (SDF) has been
used for the purpose. These algorithms are largely insensitive to pose changes of
the same object and also present similar results in analoguous parts of different
objects.

The survey in [14] presents an overview of 3D shape skeletonization for both
surface and curve skeletons using mesh based and voxel based representations.
The survey includes definitions and properties of different types of 3D skeletons
and comparison among them based on those properties like homotopy, invari-
ance, thinness, centeredness, smoothness, etc. A taxonomy of the methods, based
on dimensionality and sampling, used to compute different types of 3D skele-
tons is also included along with a discussion on the assumptions, advantages,
and limitations of the methods. Another comprehensive and concise survey of
different skeletonization algorithms has been presented in [10] where the prin-
ciples, challenges, and benefits of different skeletonization algorithms have been
discussed. Discussion on topology preservation, parallelization, and multi-scale
skeleton approaches constitute a specialty of the survey. Various applications
of skeletonization and the fundamental challenges of assessing the performance
of different skeletonization algorithms have also been included. A comparison
of six curve-skeletonization and four surface-skeletonization methods based on
voxel models has been presented in [12]. A two-level method of comparison is
carried out where firstly, the curve and surface skeletons are globally compared in
terms of the standard criteria like homotopy, thinness, centeredness, smoothness,
etc. followed by a detailed comparison based on resolution. A detailed visualiza-
tion has been proposed here which is able to highlight small-scale centeredness
differences between curve and surface skeletons.

3D skeletonization has also been attempted in the orthogonal domain.
Straight skeleton of an orthogonal polyhedron is constructed by an output sensi-
tive algorithm [7] that exploits a plane-sweep approach instead of shrinking the
object boundary. The curve skeleton extraction algorithm in [13] is restricted to
surface-like objects and is based on the detection of curves and junctions between
different surfaces. In [17], a novel valence driven spatial median (VDSM) algo-
rithm has been developed which eliminates crowded regions and ensures that
the output skeleton is unit-width. It computes the center of a crowded region,
and applies Dijkstra’s shortest path algorithm to generate a unit-width curve to
replace the crowded region. The 3D thinning algorithm proposed in [9] directly
extracts medial lines consisting of arcs and/or curves instead of surfaces. The
thinning strategy used here is the hybrid method, which is a combination of
both directional and subfield methods. A variation in the form of an efficient 3D
parallel thinning algorithm has been reported in [8], which produces medial sur-
faces. Each iteration step is composed of three parallel subiterations according
to the three deletion directions. Other skeletonization algorithms where voxel
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connectivity is ensured or the density of the skeletal structure is controlled by a
thinness parameter, etc. may be found in [2,16].

The use of vertex antipodal points for extracting 3D mesh skeletons has been
reported in literature [1]. A vertex antipodal point is the diametrically opposite
point that belongs to the same mesh. The set of centers of the connecting lines
between each vertex and its antipodal point represents the desired skeleton of
the 3D mesh. In another algorithm based on Discrete Euclidean Distance Trans-
form [15], each interior voxel in the 3D image object is classified according to
its relative distance from the object border. Recently, algorithms for centerline
extraction of tubular objects based on surface normal accumulation [5] and based
on Voronoi covariance measure using orthogonal planes [3] have also been pro-
posed. Though our algorithm exploits the concept of antipodal points, they are
localized to regular specific ranges along each coordinate plane. Also, unlike the
above cases, the centrally located voxels in each grid range are selected to be a
part of the skeleton depending upon the number of object voxels present in the
grid range.

The rest of the paper is organized as follows. A few preliminary concepts
related to the work is explained in Sect.2. In Sect. 3, the 3D curve skeleton of
a given digital object has been extracted by proving its homotopy equivalence
to the topological space representing the 3D isothetic inner cover of the object.
The paper is concluded with some experimental results in Sect. 4.

2 Definitions and Preliminaries

The following concepts have been used in the current work.

2.1 Directional Distance

In a specific grid range along a given coordinate plane, a voxel v has eight
neighbors, four of which are 2-adjacent and four are 1-adjacent to v. Directional
distance between two voxels v; and vy can be defined if v; and vy are such that
vy can be reached from v; following a path consisting of only 1-adjacent (only
2-adjacent) voxels. Then the number of voxels constituting the path (includ-
ing wvy) is the directional distance between the voxels v; and ve. In Fig. 1(a),
the voxels from v; to vy are l-adjacent and in Fig. 1(b), they are 2-adjacent.
In both the cases the directional distance between v; and v, is 3. Note that
directional distance can be calculated for only those pairs of voxels which are
connected according to the above criteria. For example, in Fig. 1(a), there exists
no directional distance between voxels v1 and vs.

2.2 Local Antipodal Points

Antipodal points are defined as diametrically opposite points on a sphere of any
dimension. Along a given coordinate plane in the orthogonal domain, we define
two voxels vy and v} as local antipodal points w.r.t. another voxel v; if
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(a) 0-adjacent (b) 2-adjacent

Fig. 1. Directional distance between voxels v1 (red) and v (blue) is 3. The consecutive
voxels connecting v and vz are (a) 1-adjacent or (b) 2-adjacent. No directional distance
exists between v1 and vz in (a). (Color figure online)

v

Fig. 2. v2, v5 (blue) and vs, v3 (blue) are two pairs of local antipodal points equidistant
from v; (red). (Color figure online)

— vy, v, and v} lie in the same grid range,

— vy and vh are located at equal (or almost equal) directional distance from vy,
and

— vy and v} are diametrically opposite w.r.t. v.

In Fig. 2, vy and v} are local antipodal points which are at equal directional
distance from v;. In this case, 2-adjacency is considered for the directional dis-
tance. vz and v} are also local antipodal points at equal directional distance from
v1 where the connecting voxels are 1-adjacent. Here, vy and vs do not qualify
as local antipodal points because their locations are not diametrically opposite
w.r.t. v1. Note that, given a coordinate plane, there may be at most four pairs
of local antipodal points w.r.t. a given voxel.

3 Proposed Work

Let us consider a 3D digital object A provided as a triangulated data set
such that exactly two triangles are incident on each edge of the triangulation
(Fig. 3(a)). Let the object be embedded on a 3D digital grid represented as a set
of unit grid cubes (UGCs) each of length g. We construct the 3D isothetic inner
cover P (A) which is defined as the 3D polyhedron of maximum volume defined
w.r.t. an underlying grid G having surfaces parallel to the coordinate planes and
inscribing the entire object (Fig.3(b)) [4]. A voxel p is considered as an object
voxel if it is intersected by one or more triangles on the object surface. If each
of the voxels in a UGC are object voxels, then the UGC is called totally object-
occupied. If at least one of the voxels in a UGC is a background voxel, then it
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(a) ()

Fig. 3. A digital object Fox, its 3D isothetic inner cover, and 3D curve skeleton.

is called partially object-occupied. As the grid is represented by a set of UGCs,
each UGC-face constituting the polytope faces of P;(A), is neighbored by a
totally occupied UGC on one side and a partially occupied UGC on the other
side. Therefore, the boundary of the 3D isothetic inner cover may be represented
by a set of totally occupied UGCs. As each voxel contained in a totally occupied
UGC is an object voxel, it may be assumed that the boundary of the 3D isothetic
inner cover is represented by a set of object voxels. Our objective is to find a
single voxel thick 3D curve skeleton of the object which is connected, centered
w.r.t. the object thereby capturing the object shape, as shown in Fig. 3(c).

Let X be the set of object voxels uy, representing the boundary of Pg(A).
Henceforth, object voxels representing the boundary of Pg(A) will be referred to
as boundary voxels and those representing the interior of Pg(A) will be referred
to as interior voxels. Let Iy, I'xy, and Iy, be three topologies defined on X
w.r.t. the three coordinate planes yz-, zz-, and xy-planes. Let Bx., Bxy, and
Bx. be the bases for X for the corresponding topologies defined as a collection
of basis elements such that

i. a basis element P; consists of boundary voxels intercepted between grid values
g; and g;y1, where 0 < i < I, where [ is the length of P;(A) along a given
coordinate plane expressed in units of g.

ii. if 3P;, Pj € Bam, m € {z,y, 2z}, such that P, N'P; # 0, then 3Py, € By, such
that P, C P; NP;.

In Fig.4, a sample set of voxels representing the basis element P; in the grid
range ¢; and g;4+1 along the zz-plane are shown in blue.

Ji+1
L}i

Fig. 4. A sample set of voxels (blue) that represents the basis element P; in the grid
range g; to giy+1. P; is a basis element of the basis Sx, that defines the topological
space X along the zz-plane. (Color figure online)
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Let us be an interior voxel that is at equal (or almost equal) directional
distance from a pair of boundary voxels up and uj, such that up and uj, are
local antipodal points w.r.t us within the grid range g; to g;+1 along a given
coordinate plane. If more than one such pairs exist for a ug along a coordinate
plane, then ug is selected. In Fig.5(a), three pairs of local antipodal points
({z1, 21}, {x2,25}, and {z3,25}) (blue) exist such that the voxel ug (red) is
equidistant from the antipodal voxels in each pair. Hence, ug is selected as shown
in Fig. 5(b). Note that all the voxels connecting ug to the local antipodal points
are either 0O-adjacent or 2-adjacent. Let W be the set of all selected interior
voxels ug and let Iyy,, Iy, and Iy, be three topologies defined on W w.r.t.
the three coordinate planes. Let Sy, Bwy, and By, be the bases for W for the
corresponding topologies defined as a collection of basis elements such that

i. a basis element R; consists of the selected interior voxels intercepted between
grid values g; and g;41, where 0 < ¢ < [, where [ is the length of P (A) along
a given coordinate plane expressed in units of g.

ii. if 3R;, R; € Bwm, m € {x,y, z}, such that R; N R; # 0, then IRy, € Byym
such that Ry C R; N'R;.

In Fig. 5(b), a sample set of voxels representing the basis element R; in the grid
range g; and g;+1 along the zz-plane are shown in red. There exists more than
one pair of antipodal points w.r.t. each voxel in the set.

Let n be the total number of voxels that represent Pg(A). Along a given

coordinate plane
l
i=0

where n; denotes the number of voxels intercepted between g; and g;11. Let W’
be a topological space defined with a topology I'yy/. Let w be an element of W
that belongs to the basis elements R;., Riy, and R;. in the topologies Iy,
Iyy, and Iy, respectively. w € W' if

(w € Riz) A (niz =1")) V ((w € Riy) A (niy =n')) V (w € Riz) A (ni- =n'))) =1

where 1z, niy, and n;, denote the number of voxels intercepted between the grid
ranges g; to g;4+1 along the three coordinate planes and n' = min(n;z, Ny, niz).
The basis By for W' is defined as a collection of basis elements R that satisfy
the same conditions as for the basis elements of Sy .

The method of extracting the 3D curve skeleton may be summarized in the
following steps.

1. Homotopy equivalence: Prove that X and W' are homotopy equivalent.

2. Space attachment: If W’ is disconnected, then connect it by space attachment
technique to form W".

3. Retraction: Define a retraction r : W/’ — & such that S represents the resul-
tant 3D curve skeleton.
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£51

Gi+1
L}i

(a) (b)

Fig. 5. (a) A sample case of three pairs of local antipodal points ({z1,z}}, {z2,z5},
and {z3,z5}) (blue) such that the voxel us (red) is equidistant from the two points in
each pair. (b) A sample set of voxels (red) selected according to (a) that represents the
basis element R; in the grid range g; to gi+1. R; is a basis element of the basis Sy,
that defines the topological space W along the zz-plane. (Color figure online)

3.1 Homotopy Equivalence

Let us consider the grid range g; to g;+1. As defined above, an element w € R/, is
equidistant (equal or nearly equal directional distance) from more than one pairs
of elements x,2’ € P;. As elements x and z’ represent local antipodal points,
they are termed as local antipodal elements. It is observed that a pair of local
antipodal elements is equidistant from a single element w € R}. Let f : X — W'
be a function that maps to w € W’ one element out of each pair of local antipodal
elements in X which are equidistant from w within the grid range g; to g;11. Let
g : W — X be a function that maps w € W’ to one element out of each pair
of local antipodal elements in X which are equidistant from w within the grid
range g; to g;+1. Our objective is to show that the topological space W' is a part
of the 3D curve skeleton of the object by proving that topological spaces W’
and X are homotopy equivalent. If f: X — W' and g : W' — X are continuous
maps such that f o g and g o f are homotopic to the identity map of X and W'
respectively, then X and W are homotopy equivalent.
We have the following lemma.

Lemma 1. f: X = W' and g : W — X are continuous maps.

Proof. Let P; be a basis element of X and let R} be a basis element of W’'. Let
x € P; and w € R} such that f(x) = w, where x,2’ € P; are local antipodal
elements equidistant from w. Let V be an open subset of W such that w € V and
V = U,cs Ri, where J is the set of indices of the basis elements that comprise
the open set V. Therefore, f~*(V) = ,c, f~*(R}). This implies that if each set
f71(R]) is open, then f~1(V) is an open subset of X. Since, f(z) = w is true,
f(P;) C R} holds. As z € P; and P; C f~1(R}) holds, f~1(R}) is an open set
Vi € J. Since union of open sets is open, f~!()) is an open subset of X. Hence,
f is a continuous map.

Let g(w) = z where z,2’ € P; are local antipodal elements equidistant from
w. Let V' be an open subset of X such that V' = |J,.; P;. Hence, g~1(V') =
U;es 971 (P;). This implies that if each set g—'(P;) is open, then g='(V’) is an
open subset of W'. Since, g(w) = x holds, g(R}) C P;. Therefore, w € R, and
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RL c g7 Y(P;). Hence, g~1(P;) is an open set Vi € J. It follows that g is a
continuous map. O

Let Idyy be the identity map of W’ and Idxy be that of X. We have the
following lemma.

Lemma 2. f o g is homotopic to Idy and go f is homotopic to Idy.

Proof. Let x € X and w € W'. Let g(w) = {1, 22, ...,z }. This means that
w is equidistant from k pairs of local antipodal elements {x1, )}, {z2, 25}, ...,
{zk,x}} belonging to X, where 2 < k < 4. This is justified because initially a
voxel is selected for topological space W only if it is equidistant from more than
one pair of local antipodal voxels (Sect. 3).

Let

feog=flg(w))
= f(a:l) N f(.232) n...N f(xk)

= w.

Note that the function f involves intersection operation instead of standard
union operation. Since f(g(w)) =w ¥ w € W', we conclude that f o g~ Idy:.

Now, let f(z) = {w1,ws,ws,...,wy}. Here, x € X is mapped to W’ using
f with no knowledge about the local antipodal element to z. Hence, x may be
mapped to any number of elements in W'.

Let
g(wl) - {xllvxl% ey Ly ""7x1m}7
g(’LUQ) = {J)gl,xzz, ey Ty ....,xzm},
g(wg) = {5331,33327 ey Ty ----,333m},
g(wy) = {Tr1, Tk, ooy Ty ooy Thomn

This indicates that w; is equidistant from ¢m number of pairs of local antipodal
elements {x;1,2}, {®i2s @la}s ooy {Tim,xh,, }, where 1 < i < k. Note that x
remains common in all the cases whereas its local antipodal element is distinct
for each case.

Let

go f=yg(f(x))
= g(w1) Ng(wa) Ng(ws) N ...N g(wy)

Note that the function g also involves intersection operation instead of standard
union operation. Also, the intersection operation involved in the function g in
case of fog and in the function f in case of go f are trivial because the functions
are imposed on a single element. Since g(f(z)) =« V z € X, we conclude that
go f~1Idy. a
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The relation between the topological spaces X and W’ is established by the
following theorem.

Theorem 1. X and W' are homotopy equivalent.

Proof. From Lemmas 1 and 2, f : X — W and g : W — X are continuous
maps such that the path f o g is homotopic to the identity map of W’ and the
path g o f is homotopic to the identity map of X. Since the cardinality of the
bases (number of basis elements) of X and W’ are equal, the path homotopies
are satisfied for all x € X and for all w € W’. Hence, the topological spaces X
and W' are homotopy equivalent. O

3.2 Space Attachment

P (A) may be disconnected [4]. As the topological space X represents the bound-
ary voxels of P;(A), X may also be disconnected. Hence, the topological space
W' may also be disconnected. In order to connect two components of W', we
define a subspace of one of the components, find the closest points between the
subspace and the other component, and then connect them by space attachment
technique. Let W’ be represented as W' = W] UW; UW; U ... UW,. Let us
consider two topological spaces W; C W’ and W] C W' which are components
of W’. In order to attach two topological spaces, we need to define a subspace
D C W, and identify the points in D with the points in W}. Let D be a subset
of W] with a topology I'p defined on it such that I'p = {DNV |V € Iy},
where V is an open set of Iy,. As a degenerate case, I'p will be equivalent to

Let the function h : D — WJ’ be defined by the following method of alternate
BFS (breadth first search) performed on the topological spaces D and Wj’ in
order to find the closest points between them. Let us consider p; € D and
p2 € W; and record the Euclidean distance d(p1,p2) between them. Starting
from p;, BFS is performed as long as the dequeued element p; belongs to the
neighborhood of p;. BFS is paused and d(pi,ps2) is replaced with d(pg,ps2) if
d(pk,p2) < d(p1,p2). Next, a separate BFS traversal is started from po and is
continued as long as the dequeued element p; belongs to the neighborhood of
p2. Again, BFS is paused and d(pg,p2) is replaced with d(pg,p;) if d(pg,p1) <
d(pk,p2). The two separate BFS traversals are continued alternately until both
the queues are empty. Finally, px and p; are selected as the closest points between
D and W;.

Next, W! and Wj’ are to be attached by space attachment technique as
described below. Let the elements in the 26-neighborhood of pg(z, y, z) belonging
to D be given by

N(pr) = {p : Pl € Z* Ap}, € DA L1(pk, i) € {1,2,3} A Loo (P, p) = 1},
where p, = (2/,¥,2'), Loo(pr,p)) = max{|lz — 2'|,ly — ¥'|,|z — 2’|}, and

Li(prpy) = |z —2'| +ly —¢| + ]2 — 2|
Let t(4, j, k) denote the direction of proceeding with the space attachment where
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i,j,k € {—1,0,1}. Starting from py, we find p} = (x +14,y+ 7, 2 + k). The set of
neighboring elements of p} belonging to D is given by N(p}). Next, the neigh-
borhood N(py) is imposed on pj to give N*(p}) (explained next in the example
in Fig. 6). In the process, the set of neighboring elements of p) that are added
to D is given by N*(p}) — (N*(p}) N N(p})). Next, p} is considered as py and
the procedure is continued until p; = p; is reached. Thus, W/ is topologically
attached with WJ’ by adding a new set of elements between the closest points py
and py.

For instance, in Fig. 6(a), the 26-neighborhood of pi(x,y, z) (yellow color) is
highlighted in blue.

N(pk) = {{.’E - 1,y,Z},{JJ - 17y7Z - 1},{%‘,3} +1,2— 1},{x,y - 1?2}7{37_‘_
Ly+Lzh{z+1Ly+1,z+1},{z+ 1,y — 1,2 — 1}} (Fig.6(b), orange color).

Let t = (—1,0,0). Therefore, p} = (x—1,y, 2) as shown in Fig. 6(c) (magenta
color). The 26-neighborhood of pj is highlighted in green (Fig.6(d)).

Nl ={{z—-2,y,z2—1},{z-2,y—1,2+1},{z—1,y, 2 — 1}, {z,y+ 1,2 —
14 {z,y, 2}, {x,y — 1,2}} (Fig.6(e), cyan color).

If the neighborhood of py is imposed on p}, then N*(p}) is obtained by
replacing (z,y,2) by (x — 1,y, 2) in N(pg), i.e.,

N*(pg) = {{.I - 2,y,z},{x - 2,y,z - 1},{$ - 17y + 172 - 1},{3’) - 17:‘/ -
Lzh{z,y + 1,2} {z,y + 1,2 + 1},{z,y — 1,2 — 1}}, as shown by the green
and cyan elements in Fig. 6(f). The set of elements added to D is given by
N*(fl) — (N*(f0) N N(0)) = {{z — 2,9 2h {z — Ly + 1,2 — 1} {z — Ly -
Lzh{x,y + 1,2} {x,y + 1,2 + 1}, {z,y — 1,2 — 1}}, as shown by the green
elements in Fig. 6(f).

3.3 Retraction

Let W be the connected topological space thus obtained. Let V be an open set
in W”. Let S C W be a subspace of W with a topology I's defined on it such
that I's = {SNV | V € Iy~ }. Our aim is to define a topological retraction from
W' to S. Let an element w € W”. Let the elements of the 26-neighborhood of
w(z,y, z) belonging to W’ be given by

Nw)={w :w' € Z> ANw' € W A Li(w,w') € {1,2,3} A Loo(w,w') = 1},

where w’ = (2/,y,7'), Loo(w,w’) = max{|z — 2'|,ly — ¥'|,|z — 2/}, and
Li(w,w') = |z —a'[+ ]y —y'[+ [z = 2|.

The number of elements of N(w) is given by |[N(w)|. Let |N'(w)| = 26 — | N (w)].
w is an element of the subspace S if any one of the following conditions is true.

i [N (w)| >T,
il. 0 < |N'(w)| < T and W'\w is disconnected,
where T is a threshold such that 1 < T < 26. It may be noted that if w does not

satisfy any of the above conditions, then it remains out of consideration while
checking the next element in W”.
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Fig. 6. Attaching spaces W; and W; by adding a set of elements to the subspace D
of Wj. (a) 26-neighborhood of px(z,y, z) (yellow) is highlighted in blue. (b) N(px) =
{{x—l,y,z},{x—Ly,z—l},{x,y—i—l,z—1},{x,y—1,z},{m+1,y+l,z},{x+l,y+
1,z + 1}, {z + 1,y — 1,2z — 1}} (orange color). (c) py = (z — 1,y,2) (magenta). (d)
26-neighborhood of pjy, is highlighted in green. (e) N(py) = {{z — 2,y,2z — 1},{z —
27y —1,z+ 1}5 {x -Lyz- 1}7 {1‘,y+ 1,z— 1}7 {$7y7 Z}7 {xay -1, Z}} (cyan CO]OI‘). (f)
N*p)={{z -2y, 2},{x - 2,y,z— 1}, {z - Ly+ L,z —1},{z -1,y — 1,2}, {z,y +
L, zh{x,y+1,2+ 1}, {x,y—1,2—1}} (cyan and green). Therefore, the set of elements
N*(p%)_(N*(p;c/)mN(pg)) = {{x—Z,y,z},{ac—1,y+1,z—l},{x—l,y—l,z}7{x,y+
1,z},{z,y+1,z+1},{z,y—1,2z—1}} added to D is shown in green color in (f). (Color
figure online)

Let 7 : W’ — & maps all the elements belonging to W’ — S to S. That is,
all the elements of W’ that do not satisfy the above conditions are mapped to
those elements which satisfies any of the conditions. Also, r(w') = w’, Vu' € S
because S\w’ is disconnected. Hence, r | S = Idyy~. Therefore, the function r
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represents a retraction from W’ to S. Since the topological space S is obtained
as a retraction from W, it is concluded that the 3D curve skeleton of a given
triangulated object is reported in the topological space S.

4 Experimental Results and Conclusion

The proposed algorithm has been implemented in C in Linux Fedora Release 13,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. The experimental results in

Elephant Pliers Cube
#t = 160518, #s = 673 #t = 44976, #s = 450 #t = 36864, #s = 315

Spiral Octopus Hand
#t = 114000, #s = 770 #t = 115218, #s = 995

Camel Tiger Human
#t = T4748, #s = 1001 #t = 77400, #s = 785 #t = 52272, #s = 440

Fig. 7. Results for 3D curve skeletons of some digital objects. The number of voxels
in the 3D isothetic inner cover (#t) and that in the 3D curve skeleton (#s) are given
below each figure. (Color figure online)
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Fig. 7 demonstrate the 3D curve skeleton of the digital objects ELephant, Pliers,
Cube, Spiral, Octopus, Hand, Camel, Tiger, and Human. The number of voxels
in the 3D isothetic inner cover (#t) and that in the 3D curve skeleton (#s)
for each digital object are given below each result. The skeleton is connected,
single voxel thick, and centered w.r.t. the object thereby capturing the object
shape up to a high degree of accuracy. The accuracy of capturing the object
shape varies with the accuracy of the 3D isothetic inner cover which may be
adjusted by appropriate scaling of the object. The accuracy of the curve skeleton
also varies with a variation in the grid resolution of the inner cover. A special
case is observed in case of a cube (Fig.7 top right) where the direction of the
skeleton is different from the usual direction owing to the grid ranges considered
orthogonally. The CPU times of extraction of the 3D curve skeleton for the
digital objects in Fig.7 are given in Table 1.

The 3D curve skeleton, thus obtained, is not unique for a given object. It
is yet to be explored whether the object can be reconstructed from the resul-
tant skeleton. A hierarchical representation of the skeleton that is suitable to
distinguish parts of the object may be attempted in future.

Table 1. CPU time of 3D curve skeletonization of some digital objects.

Object (g = 2) | CPU time (in secs.)
Elephant 4.005
Pliers 0.965
Cube 6.045
Spiral 6.276
Octopus 2.952
Hand 1.242
Camel 5.845
Tiger 6.520
Human 0.627
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Abstract. This study develops a new algorithm which automatically
inscribes a convex polygon in a star shaped object 0. Starting at O’s
mass center, our active contour (E-AC) expands until it encounters the
boundary of O (80). As a result it constructs a star-shaped polygon on
90. We measure the Euclidean distance from d0O’s mass center to each
vertex of the star-shaped polygon defined by E-AC. The distances form
a distance function, whose local minima construct star-shaped polygon
inscribed in 80. Its consecutive convex triplets of vertices define a unique
pair of convex polygons inscribed in 90. The Convex Core (CC) of Ois
defined to be the polygon with the largest area (perimeter if the areas
are equal). The CC is unique and invariant to rotation, translation and
scaling. Experiments validate the new algorithm. The paper ends listing
our contributions and comparing them with contemporary papers.

Keywords: Active contour - Distance function - Local minima -
Convexity

1 Introduction

Automatic object decomposition into parts is a subject of interest for the com-
puter vision community and games industry. Three major approaches are used to
solve the problem. One of them is to use low level geometric properties [8,9,12],
the 2nd one applies high level semantic information [2,9] and preliminary knowl-
edge, the 3rd approach is a hybrid of the previous two [9].

Polygon decomposition methods using geometric features and mathematical
concepts are described in [7,12]. Object’s plausible hypotheses are used in [8] to
train a continuous model to determine the likelihood that a segment is part of
an object. The method in [9] integrates low level edge detection and a region
growing with semantic knowledge. Such knowledge about regions and parts is
also used in [2] along with a scanning window and global appearance cues.

A useful analysis on a number of shape representation methods is given by
Tari in [16]. In this work the author uses the shape representation approach of
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V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 198-211, 2017.
DOI: 10.1007/978-3-319-59108-7_16
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partial differential equations (PDE) and considers an object as created by a gross
and peripheral (limbs-convexities, protrusions) parts. The gross part is defined
as the least deformable part under a geometric (the author used “visual” [16])
transformation. The above approach is further elaborated in [17]. The authors
utilized the solution of a special form of the Poisson PDE to generate “Ambrosio-
Tortorelli Phase Field” [17] which provides more accurate object decomposition.
To represent the objects’ shape the authors designed a Randomized Hierarchy
Tree. They validated the theory with a number of sophisticated object decom-
positions from natural images.

In the present paper we adopt the idea that objects are composed of “gross”
or “core” part(s) and “peripheral” part(s), if any [16]. Since we seek the core’s
boundary as a convex polygon, we extend the notion of core to Convex Core
(CC) following an analogy with a concept used in manifolds [4], where the CC
of a hyperbolic 3-manifold is defined as the smallest convex sub-manifold.

The methods capable of inscribing convex polygons into objects have a long
history [7,10-13] and are employed in object (polygons) decomposition. The
latter alone has applications to database management and access, data com-
pression, computer graphics and image processing [12]. The same source also
describes a number of methods used for polygon decomposition and proves that
decomposition of objects with voids is NP complete.

Recall that the convex hull (CH) of an object O is the minimal area convex
polygon circumscribing O and the CH of O is unique [14]. Useful definitions and
study on star-shaped sets are presented in [5]. Finding the maximum area convex
polygon in a star shaped object is a subject of interest to the mathematical
and computer science communities. Multiple algorithms are developed to solve
the problem [7,11,12] including “finding largest potato” and/or “longest stick”
[10,13]. For certain objects the solution is unique, however for others is not. Such
an example is the cross (Fig. 2), where the method in [7] will detect two maximum
area convex subsets. Furthermore, the problem of finding the minimum area
convex polygon inscribed in another polygon is meaningless because an infinite
number of such polygons are possible [1].

In this paper we develop an approach capable of inscribing a convex polygon
in a given 2D star shaped object O [12]. Section 2 formulates basic notions and
an expanding active contour (E-AC). In Sect.3 we define a distance function,
find its minima and use convex triplets of the minima’s vertices to design the
convex core (CC) of 90. Section 4 shows that the newly defined CC is unique,
invariant to rotation, scaling and translation. Section 5 validates the theory with
experimental results. The paper ends deriving conclusions and comparing the
new method with contemporary ones.

2 Background Notions

Let O denotes a closed object in R2, 90 = {v1,...,un} be O‘s boundary of
O. Let rq,....,7; be the subset of dO’s vertices which are concave (also called
“reflex vertices” [7]). Therefore k < n. A concave (reflex) vertex is the vertex
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of an internal (for O) angle larger than 7 radians and a convex vertex v; is
a vertex of an internal angle smaller than 7 (Fig. 1(d)). Consider the following
four definitions:

Definition 1. A point A € O is visible from B € O if and only if AB € 0.

Definition 2. O is a convex object if and only if every pair of points in O are
visible from each other.

Definition 3. O is a star shaped object if and only if there is a point A € O\&O
such that Av; € O fori=1,...,n (all vertices v; are visible from A) ([7]).

The set of points A with the above property is called kernel of 3@, and 1is
denoted by Kern(0O) ([7]). In [5] it is proven that the kernel is convex.

Definition 4. A chain is a set of consecutive vertices on 0. A chain is
monotone if there exists a line-l, in the plane, such that the projections of the
chain vertices on [ follow the same order as on 90. The polygon 90 is monotone
if there exist | which divides dO into two monotone chains (see [12]).

A polygon is inscribed in a circle if and only if its vertices lie on the circle. For
the purpose of our study we follow this idea and introduce four new definitions.

Definition 5. We say that the polygon II is inscribed in the polygon 20 if and
only if every II ‘s vertex lies on an edge from 80 such that II is entirely in 0.

Let IT be inscribed in O such that v; & v (v; coincides with v), v; € (’90,
v € I, then we consider that v belongs to the two 0O edges which meet in v;.

Definition 6. The polygon II is exactly inscribed in the polygon o0 if and only
if I is inscribed in 00, and every 0O edge contains exactly one I1’s vertex.

Therefore no 90 edge contains any edge from the exactly inscribed polygon
IT (Fig.1). Further, it is known that in a closed polygon II, with no self-
intersections, the number of edges equals the number of vertices. Denote this
number by | IT |.

Lemma 1. Consider a convex polygon II such that |II| = n. Then there are
[n/2] + 1 convex polygons, with different number of vertices, which could be
ezxactly inscribed in II. The polygons with the smallest number of vertices has
[n/2], while the one with the largest number has n (Fig. 1(a), (b), (c)).

Proof: 1. Assume |II| = n = 2k. Denote II‘s vertices with v;, the edges with e;,
such that e; = v;v;41, 1 =1,...,n and v, 1 = v1 (V41 coincides with vq). Select
v, © = 1,3,...,2k — 1, denote them by V; = vy;_; for j = 1,.., k. Therefore, we
constructed a polygon IT; exactly inscribed in IT such that |II;| = k, which is
the smallest number of vertices to comply with the exact inscribing (Fig. 1(a)).
If we selected V; € e; such that V; 22 v; and V; 22 v;41 for ¢ = 1,...,n and
Un+1 = v1, we receive the set of vertices Vi, ..., V,, which constitute the exactly
inscribed polygon I7,, with the largest number of vertices (see Fig. 1(b)).
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) Gt ) Bl

Fig.1. (a) and (b) Hexagon and its exactly inscribed polygons with minimum and
maximum number of vertices; (c) Pentagon and exactly inscribed polygon with mini-
mum number of vertices; (d) A star shaped polygon and a non-convex exactly inscribed
one; (e) A star shaped polygon into which no polygon could be exactly inscribed.

Consider IT; and remove its vertex V;. We know that V; & vy;_1 and vg;_1
is a join of eg;_1 and eg;_o. Select the new pints Vo;_1 € e9;—1 and Voo €
e2i—2. Thus we have the set of points Vi,...,V;_1, Va;—9, Va;—1, Vi41, ..., Vi which
constitutes an exactly inscribed polygon IT;41 such that |ITp4q1| =k + 1.

Applying the above procedure on any point from the set IT N Il 1 we con-
struct ITg o such that [ITy2| = k + 2. Continue the algorithm since all vertices
Vi, ..., Vi are exhausted we construct Iy, Il;41, ..., IIs exactly inscribed poly-
gons. Follows that the total number of exactly inscribed, in II, polygons with
different number of vertices is k + 1.

2. Assume |II| = n = 2k + 1. In this case the polygon with the smallest
number of vertices is I41 such that |ITx41| = k + 1, where V; & vg;_; for
i=1,..,k and Vaky1 € eapy1 (see Fig. 1(c)).

The reasoning to prove the remaining part of the odd case is analogous to
the reasoning we presented above for the case with even number of vertices.c

Lemma 1 implies that every star shaped convex polygon has multiple exactly
inscribed convex polygons, with a different number of vertices. On the other
hand, some star shaped polygons, with reflex points, may not have a single
exactly inscribed polygon (Fig. 1(d)).

Definition 7. The polygon II is partially on the polygon 80 if and only if I is
inscribed in 80 and at least one of Il ’s edges lies on a o0 edge. The polygon
IT is entirely on the polygon 20 if and only if each of II’s edges lies on an edge
from 90 and II € O.

The above definition implies that if II is entirely on 90 then II = 90.

Lemma 2. FEvery star shaped polygon is monotone.

Proof: Consider a star shaped object O, with a boundary 8@, whose vertices
are v;,7 = 1,...,n. Follows from Definition 4 that we have to find a line [ which
divides dO into two monotone chains. Consider a point A € Kern(d0). Build the
lines Av; for i =1, ...,n and select a line | 22 Av; (I does not coincide with Av;) for
i =1,...,n such that [ intersects, inside 0, the maximum number of consecutive
lines Av;, for i = wu,...,J (see Fig.2(c)). Consider the Av; intersections with [ as
v; projections on ! and denote the projections with v} for i = u, ..., j.

Assume that the pair v;v;41 is mapped on [ to a pair v;+1v;. This implies
that Av; N Av;11 = U such that U 2 A. Follows that Av; =2 Av;41, which is a
contradiction because the vertices v; and v; 1 does not coincide v; 2 v;y1.
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Y b) . B Ad)

Fig. 2. (a) ;A cross and its kernel- the inner square; (b) An object O12 with 8012 and
its Kern(0012)-the light utriangle with vertex r;; (¢) A € Kern(90i12), the lines Av;,
and the line [ splitting 9012 to two chains. (d) Inscribed convex polygon.

Follows that the projections v} keep the same order on ! as v; do on 90.
Therefore the vertices v;, for ¢ = u, ..., j are monotone and represent a chain.

The projections for the remaining consecutive vertices v;, where i = j +
1,...,u — 1, are defined by the intersection of [ with the Av; reflections about A
(see Fig.2(c)). Denote these intersections with v/ for ¢ = j 4+ 1,...,u — 1. The
same reasoning as above asserts that the projections v’ keep on [ the same order
as v; on 00. Therefore the set of vertices v;, for i = j+1,...,u—1 is monotone
and represents a chain.o

Define an expanding active contour (E-AC) with evolution Eq. 1:

r(q,t(u)) = €271 [z(q), y(q)), (1)
r(g, t(0)) = R.e1 10 [z(q), y(q)]. (2)

In Eq.1, z(q) = Cjcos(caq), y(q) = Casin(caq), t = (to + udt) is the time
parameter, q is a space parameter, a = 0.5|%|7 and C4, Csy, ¢ are coefficients.
From practice, we determined that Eq.1 describes a circle with radius R =
C;1 = Oy if ¢ = 1000, a®t = 0.001 and q € [0, i—’cr} The equation describes a point
(pixel) if ¢ = 1000 and a?t = 2.5. Follows that the curve r(g,t) will evolve from
a point (pixel) to a circle as ¢ decreases from the upper to the lower bound of
2.5/a® >t > 0.001/a?. Thus, to make Eq. 1 defines a point (pixel) we substitute
Cy = Cy = R,a = 0.1,¢c = 1000,ty = 250,u = 0 and receive Eq.2 where
(q) = cos(10%q), y(q) = sin(10%q).

Denote the image function by f(z,y). The following boundary condition (BC)
halts the AC vertices on objects boundaries:

9f(r(g:1))
ot

where ¢ € [0, 2Z] and 2.5/a® > t(u) = to + udt > 0.001/a? for u = —1, -2, .....

’ ac

But, if the double inequality in Eq. 3 fails, then:

r(q, t) 7& r(Q7 t— at) (4)

The initial conditions (IC) defined with Eq. 2, evolution Eq. (1), BC (3) and
u — —00, define an enlarging parametric AC (E-AC), which represents Euclidean
growth from a point r(g,250) € O toward 8O. Figure 3(a) depicts an image of
a neutrophil [6] whose boundary is star shaped and was extracted by E-AC in
0.036s (Fig. 3(b)).

r(g,t(u)) = r(q,t(u) — Ot) if e > > €1, (3)
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Fig. 3. (a) Neotrophil’s video [6] 4th frame; (b) Neutrophil’s boundary extracted by
E-AC; (c) Cat’s (original image from [3]) star shaped boundary visible from the mass
center of the entire boundary. The star shaped boundary is extracted in 0.016s.

3 Active Convex Core Model

Let O be a star shaped object whose boundary 90 is a polygon with vertices
V1, ..., Uy Of which rq1, ..., are concave. Apply E-AC with IC 2 using the initial
point Ry = r(q,£(0)) € O\DO. At u = —1, Ry “springs” to r(g;,t(—1)), ¢; €
[0, %], i = 1,...,e vertices, which draw a closed curve. If u = —2,-3,...., —c0
then Eq. (1) evolves the curve by moving each of its vertices, on a straight line,
until BC (3) halts the vertex on 0. Define a function to measure the Euclidean

distance traveled by every E-AC vertex @; for u =0,—1,..., —u; < O:

d®(Q1(q1,1(0)), Qi(gi, t(u;))) = |r(g, 250 — w;0t)) — r(g, 250). (5)

Denote the E-AC vertices, at the time they halt on 8O, by V; such that
r(g;,t(u;)) = V; for i = 1, ..., e and the mass center of 9O by m(90) = 37 %.

Assume m(90) € O, Ry = m(d0) ¢ Kern(90) and Ry € O\JO (Fig. 2(b)).
It follows from the E-AC definition that the lines XoV; € O for i = 1,...,e. There-
fore, JO(Rg) = {Vi,..., V.} is a star shaped polygon, partially on 0 (Fig. 4(c),
(d)), with Ry € Kern(dO(Re)) and mass center:

e

m(80(Rg)) = Z% =~ Ny, (6)

=1

If Rg = m(0) € Kern(dO) (Fig.2(a)), then there exists an E-AC with
e > n vertices such that at time u* a subset of these vertices coincide with
the A0 vertices: V;, =~ U1, ..., Vi, = vy. Follows that the star shaped polygon
dO(Rg) = {V4, ..., V. } is entirely on 90, dO(R) = HO (Fig. 4(a), (b)) and Ry =
;. Thus, we choose Rg 2 m(90) as E-AC initial point and measure the distances
dE(No,Vi), i = 1,...,e. Then we calculate their local minima, employing the
statements:

(1) the Euclidean distances |Rgr;| to the concave vertices r;,i = 1, ...,k rep-
resent local minima;

(i) if a DO(Ro)’s edge belongs to a convexity, then the local minimum, of
the distances to the edge, equals the length of the perpendicular from Ry to the
line defined by the edge. For this case we consider two subcases:

— if the end of the perpendicular lies on the edge, then the local minimum is
the length of the perpendicular;
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a) b) <)

Fig.4. Oy from Fig. 2. (a) The star shaped polygon 9012 (Ro) produced by E-AC
with initial point Ro & A € Kern(9012); (b) 0012(Ng) is entirely on 90; (c) 8032(N0)
produced by E-AC with Rg 2 A ¢ Kern(90:12); (d) 0012(Xo) is partially on 9O.

— if the end of the perpendicular does not lie on the edge, the algorithm con-
siders that there is no minimum distance to the edge Fig.5(b)).

Theorem 1. Given a conver object O. The end points of the local minima of
the distances from Rg to 00(Xg)) define a convex polygon inscribed in 0O.

Proof: Since O is convex follows that Ry € Kern(O) and d0(Ry) = 90.
Lemmal asserts that, in a convex polygon with n edges one may inscribe a
convex polygon with maximum n vertices. Since O is convex, follows that the
polygon 90 has no concave (reflex) points. Therefore the local minima of the
distances are represented only by the perpendiculars from Rq to 0. If the end of
every perpendicular to the line of every edge is inner to the edge, then the poly-
gon, defined by the end points of the local minima (perpendiculars), is exactly
inscribed in AO. If the end of at least one local minimum (perpendicular) is outer
for the edge then the polygon defined by the end points of the perpendiculars is
inscribed in 90.

We prove now that the minimum number of perpendiculars from Ry to the
boundary 8O is 2. Assume that 90 is a triangle (the closed polygon with, non
zero area, and the smallest number of edges). Recall that R is inner for a0.
Connect Ny with the 90 vertices. Ny is a vertex common for three angles. At
least two of them are greater than /2, which implies that the ends of at least
two perpendiculars, from Yo, lie on o0 edges. Follows that any polygon whose
number of edges is larger than 3 will have at least two minima. ¢

Theorem 1 constructs exactly inscribed convex polygon in a convex object
O. But if O is star shaped then the end points of the local minima of the dis-
tances NoVj, define star shaped polygon {Vj,, ..., V;, } = I'(A0(Ry)) inscribed in
d0. Traverse I'(DO(Ry)) starting with V;, and generate the consecutive triplets
Viiea V3. Vjy for i = 1,.. w, such that V;; = V; and Vj, ., = V. Therefore,
a set of w distinct triplets of consecutive vertices exist on I'(dO(Rg)). The set
is invariant according to the starting point, and we check the convexity of its
triplets:

(ji = 1) Wi — Vi) < (@jer1) — 25i) Wi — Yji—1))s (7)

If a triplet satisfies Eq. (7) then it is convex and the algorithm keeps the three
points, otherwise the algorithm discards (deletes):
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Fig. 5. (a) Os5 star shaped and the E-AC generated star shaped polygon 8615(}10) for
Ry = m(80i5); (b) The star shaped polygon I'(8015(Ro)); (¢) The convex polygon
C1(015(R0))) extracted from I'(9015(Rg)) using Eq. (7) and deleting the 1st point from
every triplet of I'(8015(Ro)) vertices; (d) The convex polygon C3(O15(Ro))) extracted
from I"(8015(No)) using Eq. (7) and deleting the 3rd point.

* the first point Vj,_,, in clockwise direction, and keeps the remaining two.
When the set of triplets is exhausted the remaining vertices form a convex poly-
gon C1(O(Rg)) inscribed in DO as shown in Fig. 5(c);

** the third point Vj,,,, in clockwise direction, and keeps the remaining
two. When the set of triplets is exhausted the remaining vertices form a convex
polygon C5(O(Rg)) inscribed in O as shown in Fig. 5(d).

Deleting the middle point may produce an edge a part of which does not
belong to O. Therefore the generated polygon will be convex but will neither be
inscribed in, nor will be on o0 (partially or entirely). Therefore such a case is
not in consideration.

Follows that the new algorithm inscribes, in 8@, two convex polygons:
C1(O(Rg)), C5(O(Ro)), and calculates their areas Ac,, A, using [15]:

p+1
A= Z(Ijiyj(i-i-l) - xj(i+1)yji)v (8)
i=1

where p denotes the number of polygon’s vertices, and (p + 1)mopp = 1.

Definition 8. Congider star shaped object O and the inscribed-convex polygons
C1(O(RNg)) and C3(O(Ro)). The one with largest area we call Convex Core (CC)
of O, CC(O). If Ac, = Ac, the one with largest perimeter is considered as CC.

The derivations made so far could be summarized in the following parametric
active CC algorithm (PACCA) for star shaped object O:

1. Run E-AC with initial point Ry = m(d0) and find dO(Ry) entirely on 9O
if Xy € Kern(00) (Fig.4(b)), and partially on 0O otherwise (Figs.5(a) and
4(d));

2. Calculate the Euclidean distances from Xg to the 0O(Xg) vertices;

3. Find the local minima of the distances. Use their end points to construct the
polygon I'(00(Rg)) = {V;,,...,V;, } (Fig.5(b));
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4. Traverse I'(A0(Ry)) in clockwise direction. Start with any vertex Vj,. Apply
Eq.7 on every triplet consecutive boundary vertices. Deleting the 1st or the
3rd vertices construct C1(O(Rg)) and C3(O(Rg)) (Figs. 5(c), (d));

5. Employing Eq. (8) and Definition 8 find CC(O).

4 Properties and Validation

Hereafter we prove the existence and uniqueness of the CC of a star shaped object
O. Recall that the CC is a closed convex polygon. In this study we consider that
the closed convex polygon with the smallest number of vertices and zero area is
the straight segment, which may represent CC as shown in Fig. 6(b)).

Fig. 6. (a) A pentagon Os and the E-AC generated polygon 905 (Rg), which is entirely
on Os for g 2 m(90s); (b) The CC for 90s is the straight segment.

L]
bound:
mass center

a) AN

C

Fig. 7. (a) O and the star shaped polygon 0O (Ro) produced by E-AC with Xo €
Kern(00u); (b) 001 (Rg) alone. (¢) O along with its CC; (d) CC(On) alone.

Denote the mass center of the O vertices with m(90) = Ry, and assume
Ry € Kern(O). The Euclidean growth driven by E-AC starting at R, exists and
is unique. Follows that the star shaped polygon {V17 ey Ve & 86(&0) exists, is
unique and is entirely on dO. Therefore O (Ry) = 9O (Figs. 4(b) and 6(a)).

If Xy € O\AO but Ry ¢ Kern(O) the star shaped polygon d0(Rg) exists, is
unique and is partially on O (Figs.5(a) and 4(d)).

From the two statements above follows that if Xy € O\AO the set of distances
[RoVil, ..oy [NoVe| exists, is unique and belongs to O. Therefore the set of local
minima of the distances exists and is unique. This implies that the star-shaped
polygon F(aé(Ng)), inscribed in A0, is unique.

Note, there are star shaped objects such that Ro ¢ O\dO (Fig.7(a)). There-
fore the set of distances does not belong to O\AO either. In this case we select
Ny € Kern(O) and Ny 2 m(aO) Applying E-AC with initial point Ry we find
GO(NO) which exists, is unique and entirely on 90. Using Eq.6 we calculate
m(00(Ry)) = Ry, which is the mass center of the E-AC vertices {V;, ..., V. } € 9O.
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Follows that R; € O\JO, which implies that [¥;V;| € O for i = 1, .., e. Thus we
calculate the set of distances N1 V4], ...., [N V| and determine their minima in a
unique way. Therefore the star-shaped polygon I (aé(m)) is unique.

Theorem 1 asserts that if A0 is non-zero area convex polygon its distance
function attains at least 2 local minima. Assume a star shaped 90 having at
least one concave vertex ri. Follows that |[Nor1| is a local minimum. Recall, if
Ny € (5\86 the distance function is calculated using Ny, and 8; € é\@é is
utilized if g ¢ O\@é. This is known that if a point is inner for a polygon, there
is at least one perpendicular from the point to the polygon’s edge such that the
end of a the perpendicular lies on a edge. Follows that there are at least two
minima (w > 2). Therefore the star shaped polygon {Vj,,...,V;, } = F(aé(N))
exists for both: convex and star shaped objects.

If w = 2 then I'(A0O(Rg)) = C1(O(Rg)) = C3(O(Rg)) and the CC is a
straight segment (Fig. 6(b)). If w = 3 then I'(A0(Xg)) is a triangle which yields
C1(O(Rg)) = C5(O(Rg)) and the CC is a triangle (Fig. 7).

Recall, the convex polygons C1(O(Rg)), C3(O(Xg)) are generated traversing
I'(00(Rg))’s vertices in clockwise direction and using the convex triplets found
by Eq.(7) deleting the 1st or the 3rd point in non convex triplets. We proved
that I"(OO(Rg)) exists and is unique. Therefore the set of consecutive triplets
of its boundary vertices exists and is unique as well. Follows that C;(O(Ro)),
C3(O(Rg)) are invariant to the starting point of I'(0(R)) traversal, and accord-
ing to rotation in clockwise direction (Fig. 8). C1(O(Rp)), C3(O(Xy)) are invariant
to traversal and rotation in counterclockwise direction as well. The statement
holds because deleting the 1st (the 3rd) point of a triplet in a counterclockwise
direction of traversing a boundary is the same as deleting the 3rd (1st) point in
clockwise direction.

Recall that, to find the inscribed convex polygons C;(O(Rg)), C3(O(Rg)) we
use I'(O0(Rg)) if Ry = m(00) € O\@O and I'(AO(X;)) is used if m(d0) ¢
0O\O. Since Ry and R; are inner to dO follows that the shapes of the inscribed
polygons are invariant to translation and scaling of 0 (Fig. 10).

So far we proved that the pair of convex polygons C1(O(Rg)), C3(O(Ry)),
inscribed in a star-shaped object Ou7 exists is unique and invariant according to

‘“‘ y R
® K6£&§.

<4
B

Fig. 8. The object O15 from Fig. 5, with shortened second convexity; (a) The object

e)» |
Oi15 with its CC; (b) the CC alone; (c)—(h) rotations by —m/2, —m, —37/2.

| .4
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a)’ I n O s *X
Fig. 9. An object O14—4 with 14 vertices and 4u reflex points, symrrvletric according to
the vertical line connecting two of them; (a) O14-4 along with 9014—4(Ro) which is
entirvely on 9014—4,; (b) 8?14,4(?‘20) alone; (c) 914,4 along with C£(014,4(No)); (d)
01(01474(?‘20)) alone; (e) 01474 along with 03(01474(?‘%)); (f) 03(01474(}&0)) alone.

-~ -~
A s N
a) b) ©) d)

Fig. 10. (a) The star and its CC in an image of 1024 x 1024; (b) the CCalone; (c)
The star and its CC in an image of 128 x 128; (d) the CC alone. Original image
from [3].

rotation, translation and scaling the object 0. Among the two polygons we call
CC of O the one with largest area. Note, there are star-shaped objects for which
C1(O(Rg)) = C5(O(Rg)) but do not coincide (Fig.9). In this case we consider
that the CC is represented by a single polygon, located in two different parts of
the object.

Lemma 3. If 90 is convex then C1(O(Ro)) = C5(O(Ry)).

In Lemma 3 the two polygons coincide because I (8O(N0)) is convex. Therefore,
all consecutive triplets of its vertices are convex and there are no points to delete.

If C1(O(Rg)) # C3(O(Rg)) but Ac, = Ac, we select as a CC the polygon
with the greatest perimeter. Follows that the CC is unique.

5 Experimental Results

We codded in Java the Euclidean Growth E-AC model along with the CC detec-
tion algorithm. To validate the theoretical concepts we performed a number of
experiments on a diverse set of images containing star-shaped objects of varying
sizes and shapes. For this purpose we used a PC with CPU 2.40 GHz, 4GB RAM
such that a single core was engaged.

The computation complexity of the CC detection method is O(m * e), where
e shows the number of the E-AC vertices, while m is the length, in pixels, of
the largest side of the box enveloping the star-shaped object 0. Figure 11 shows
experimental results in finding the CC of six star shaped objects in images with
varying sizes. Studying these results, one may notice that the additional branch
of the object in Fig.11(j) compared to the object in (g) added a horizontal
straight segment to the CC (Figs. 11(i), (1)). On the other hand the run time for
the two experiments is same: 0.76s.
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Flg 11. The images in columns 1 and 4 contain six objects O along with the polygons
GO(NO) Columns 2 and 5 show the objects O along with their CCs; Columns 3 and 6
contain the CCs alone. The images in (m) and (p) come from Tari’s collection [3].

Although E-AC is capable of expanding the active contour through color
images we refrain from presenting experiments with color objects because the
scope of the present study is to define the geometric structure CC. Also, input
must be pre-processed to remove noise, since certain types of noise can affect
the shape of the polygon I'(d0(Xg)) and consequently the shape of CC as well.

6 Conclusions

The main contribution of the paper is the development of a new algorithm for
inscribing a convex polygon (named convex core (CC)) in a star shaped object.
We proved that the CC of a star shaped object exists, is unique, invariant to
rotation, translation and scaling. These properties show that the CC segments,
in a unique way, every star-shaped object to convex parts.

The algorithm is implemented in Java along with an expanding active con-
tour. The software was validated on a large amount of star-shaped objects includ-
ing objects from a collection used by Tari [3].

An other contribution of this paper is the definition of the following new
notions: (a) inscribed polygon in another polygon; (b) exactly inscribed polygon
in another polygon; (¢) a polygon partially on another polygon; (d) a polygon
entirely on another polygon. We prove also that every star-shaped polygon is
monotone.

The importance of the problem for automatic objects segmentation provoked
interest among the computer vision and mathematical societies. This interest led
to the development of a number of methods and algorithms capable of automat-
ically defining maximum area convex polygons (objects) inside another polygon
(object) “peeled potato,” “longest stick” [10]. Compared to our new method,
in accordance with the new definitions introduced in this paper, the polygons
defined in [10] are partially on the original polygon, while the CC is an inscribed
polygon. The method in [11] may define inscribed and even exactly inscribed
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maximum area parallelogram in a polygon, but the method in [11] can not
inscribe any other convex polygon, while our method does.

A more general approach for finding the maximum area convex subset of
a star shaped object is developed in [7]. The method cuts the convex protru-
sions and determines the kernel of the object. The calculation complexity of the
method is O(n + klogk), where n is the number of the boundary points, while
k is the number of reflex points. Comparing the Big Oh above with the Big Oh
of our algorithm one may notice that every methods is faster than the other for
certain cases. Both methods differ in the sense that the one in [7] defines maxi-
mal area polygon which is partially on the original, while our method determines
inscribed polygon. Also, our algorithm is capable of segmenting a convex polygon
while the one in [7] can’t. Moreover, for a cross as the one in Fig. 11 our method
determines a single inscribed polygon, while the method in [7] determines two -
every branch is considered as a maximal subset.

A sophisticated and conceptually different method for object decomposition
is given in [3,16,17]. The method applies Ambrosio-Tortorelli field generated by
the solution of the Poisson PDE, and separates the object to different regions. An
advantage of the method in [3,16,17] is that it segments any object with concav-
ities, while our algorithm segments only star-shaped objects. But an advantage
of our method is that it is capable of segmenting convex objects while the other
one is not.

Our study continues with extending E-AC capabilities and making this tool
resilient to noise. Also, we are investigating the opportunity to extend the present
method and develop one capable of inscribing convex polygons in non star shaped
objects using any point in é\(aé) as initial point for the active contour.

Acknowledgement. Thanks to the anonymous reviewers whose notes helped us
improve the paper. In loving memory of our parents and grandparents, Mariika and
Metody Sirakov, for their support throughout our lives and professional development.
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Abstract. We introduce in this paper certain interesting characteriza-
tion of isothetic distance functions in the 3D space. The characterization
done by us eventually leads to decomposition of an isothetic distance
function for higher-order simplices to that of lower-order ones, which
subsequently helps in efficient computation. We show how inter-simplex
isothetic distance is a natural choice for determining an appropriate
voxel size during the voxelization of a 2-manifold surface, such as the
most-commonly used triangle mesh. Preliminary test result have been
furnished to demonstrate its merit and aptness.

Keywords: Digital geometry - Digital line - Digital triangle
Discretization - Isothetic distance + Manifolds

1 Introduction

Discretization of a geometric object in the real space to a set of isotropic pixels
or voxels is a well-studied problem in the subject of digital geometry. Different
distance metrics are used for this, each having its own merits and issues while
being used from one domain to another or from one application to another. Out
of the most commonly used metrics, ‘Euclidean distance’ is a natural choice
for some, owing to its easy comprehensibility and implementability both in the
real and in the discrete spaces. However, it is not readily commensurable with
the process of pixelization or voxelization of an object when it is subject to
certain topological conditions, as we show in this paper. In fact, it is better
replaced by ‘isothetic distance’, which is the focus of this study.

1.1 Motivation

The motivation of our study mainly springs from the recent upsurge in voxeliza-
tion and various applications involving voxel sets. A significant volume of work
on voxelization and related applications have been reported in recent time. The
first group of work is on designing efficient voxelization algorithms for 2-manifold
surfaces such as triangle mesh. Although some work had initiated on this in 1990s
[6,8,13,15,25], its importance has shot up quite lately with the current explosion
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in computational field and various voxel-based applications. Some recent work
related to voxelization algorithms can be seen in [12,19,21,24,26,33,34].

On the application side, a multitude of work have come up over the last
few years, which essentially indicates the advantage of voxelized representation
of a surface for various purposes. These include reconstruction of surfaces from
voxelized data [23,37]; 3D printing using voxel set as input [5,7,9,30,31,36];
ray casting using voxel octrees [17,20]; shadow generation based on voxelized
geometry [14,27,32]; texture creation on voxelized surfaces [11,35]; animation
with well-formed voxel sets [10]; and physical simulation like fluid flow where
particles are modeled as voxels [22].

1.2 Owur Contribution

Computation of isothetic distance between two simplices can be considered as
an optimization problem and hence can be solved by an optimization tech-
nique. Since isothetic distance is a continuous but not a differentiable function,
derivative-based optimization cannot be used. Moreover, optimization methods
are iterative, time consuming, and can provide approximate solutions, in gen-
eral. For example, computation of isothetic distance between two triangles will
be inefficient if an iterative method is used. As an efficient solution, we show how
isothetic distance between two simplices, e.g., two triangles, can be computed in
constant time, using decomposition to lower-order simplices.

We show that for discretization of a 2-manifold surface, certain constraints
need to be satisfied. This constraints can be, for example, based on topological
properties of a voxel set in concurrence with those of its preimage in the real
space. In short and by intuition, as voxels have their edges or faces parallel to
the principal axes or the principal planes, isothetic distance becomes a natural
choice for determining the maximum permissible size.

It is worth mentioning here that the discretization problem has been studied
by several researchers for continuous analytical surfaces such as the ones that
are r-regular; see, for example, [18,28,29]. For topological equivalence of an r-
regular surface with its discrete representation under Gauss digitization, we refer
to [28]. Discretization of n-dimensional implicit surfaces and related analysis can
be seen in [29], and for further details we refer to a recent work in [18]. The major
difference of our work with all these work are as follows.

— We consider 2-manifold surface, e.g., triangle mesh, for voxelization. On the
contrary, the above-mentioned techniques all deal with r-regular implicit sur-
faces.

— We show how the voxel size can be fixed using inter-simplex isothetic dis-
tance for 2-manifold surface. Estimation of voxel size for r-regular surface is
computationally expensive and not addressed in the related papers.

— A 2-manifold surface such as triangle mesh is not r-regular and hence can-
not readily be analyzed by the existing techniques. Our technique based on
isothetic distance is designed for this and can efficiently voxelize the surface
with necessary topological properties.
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2 Preliminaries

This section contains some basic terminologies to be used in the sequel. The rest
are put in the relevant sections.

A 2-simplex means, in general, a planar facet (e.g., triangle) of a mesh in
the 3D real space. A 2-simplex M) consists of a planar interior bounded by
three or more 1-simplices (line segments), which are denoted by Mi(z:l), where
i=1,2,3,..., and an equal number of 0-simplices (points) denoted by Mi(zzo).
Similarly, each 1-simplex L), has a linear interior and is bounded by two
0-simplices, denoted as Lgl:o),Lélzo). For a persistent topology, we consider 2-
manifold orientable surface, and hence the constituent 2-simplices intersect each
other only at 0- and 1-simplices.

A pizel is a 2-cell, or equivalently, an axis-parallel unit square centered at
a point in Z?2 [16]. A pixel is this made of four 1-cells (edges) and four O-cells
(vertices); and hence, a 2D digital straight line (2DSL) or segment (2DSS) can
be 0- or 1-connected. In a 0-connected 2DSL or 2DSS for example, every two
consecutive pixels are 0-adjacent. A vozel is a 3-dimensional extension of a pixel,
and defined as a 3-cell or an axis-parallel unit cube centered at a point in Z3. It
contains eight O-cells, twelve 1-cells, and six 2-cells (faces). Two voxels are said
to be k-adjacent (k = 0,1,2) if they share a k-cell. Note that this notion of 0-,
1-, and 2-adjacencies is equivalent to the notion of 26-, 18-, and 6-neighborhoods
used in [8].

Let p(xp, Yp, 2p) and q(x4, yq, 24) be two O-simplices or ordinary points in R3.
The z-distance, y-distance, z-distance between them are denoted by f.(p,q) :=
lzp — 24|, fy(Ps @) = Yp —yql, and f.(p,q) := |zp — 24|, respectively, and are used
to define the isothetic distance between them as follows.

Definition 1. The 0-0 or inter-point isothetic distance between p and q is
defined as

fi(p,q) = max{f.(p,q), fy(,q), f-(p,q)}- (1)

The axis-parallel box with p and q as two endpoints of its principal diagonal is
called the isoBox of p and q, and denoted by B(p, q).

Note that f, (p, ¢) is basically the L, or Chebyshev norm between two points
p and q [16]. Geometrically, it is the maximum length over the three sides of their
isoBox. We extend Eq. 1 to define and characterize the isothetic distance between
two higher-order geometric primitives like points/0-simplices, line segments/1-
simplices, triangles/2-simplices, and between two set of simplices. As a general-
ization, we now introduce the following definition.

Definition 2. For m,n € {0, 1,2}, the m-n or inter-simpler isothetic dis-
tance between two simplices M™ and N is defined as

fJ_(M(m),N(”)) = min{fj_(p,q) : (p € M(m)) A (q € N(”))}‘ (2)
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Note that for an orientable 2-manifold surface, the isothetic distance between
two 2-simplices is zero if and only if they are adjacent, i.e., they share a 0- or
a 1-simplex. The possible cases arising during the computation of triangle-to-
triangle and other types of inter-simplex distance are discussed in Sect. 3.

3 Characterization of Isothetic Distance

We start with the following observation.

Observation 1. All three axis-parallel distances and hence the isothetic dis-
tance of a fized point p from a variable point on a line in R3 are convex contin-
wous functions having their minimums at finite points.

Proof. Let the line be L = a+ (b—a)t, where t € R, and let a and b be two fixed
and distinct points on L. For brevity, let x4, = 4 — Xp, Tpa = Tp — X4, etc. Then
the z-distance function f,(p,q) := |zp,| between p and ¢(t) € L can explicitly
be written as

Tpa — b Ty if £ < 222
= s e 3
fz(p:q) {xap +t - 2p, otherwise. ®)

Tpa
Tha

The other two functions fy(p,q) = |ype| and f.(p,q) := |2pq| can be shown to
be of the same nature in a similar way. Figure 1 shows an example. Since the
maximum of two (or more) continuous functions is continuous, and the maximum
of two convex functions is convex, the proof follows. a

Hence, f.(p,q) is a piecewise linear function with a global minimum at ¢ =

Observation 1 can be extended for the isothetic distance between a fixed
point and a variable point on a 3D plane or on a 2-simplex. This is in fact true
when both the points are allowed to vary on the simplices. We have the following
observation for this.

Observation 2. The axis-parallel and the isothetic distance functions defined
for two variable points lying on two k-simplices, k € {0,1,2}, are continuous,
convex, and piecewise linear.

We now do a characterization of isoBox and corresponding isothetic distance
between 0- and 1-simplices. We use the following lemma for this.

Lemma 1. Let L be a straight line and p be a point in R3. Let q be a point in
L such that f1(p,q) = fi(p,L). Then at least two among f.(p,q), fy(p,q), and
f=(p,q) are equal in value.

Proof. Let, w.lo.g., f1(p,q) = fz(p,q). From the definition of isothetic distance,
fo(p,@) = fy(p.q) and fo(p,q) = f.(p,q). If f2(p,q) is strictly greater than both
fy(p,q) and f.(p,q), then we can still move ¢ on L so as to reduce it further
until it becomes equal with f,(p, ¢) or f.(p,q). This happens as each of f,(p, q),
fy(p,q), and f.(p, q) is a convex continuous function (Observation 1). O
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fy(p,q)

0 0.5 1 -0.17 0 1

@) £, L) = fy(0. L) > f-(p. L) | (b) folp, L) # fu(p L) # f-(p, L),

Fig. 1. Two possible cases of 0-1 (p-to-L) isothetic distance. Here, the endpoints of L
are a = (5.2,5.0,4.8) and b = (4.6, 6.0, 5.2) with respective parameter values ¢t = 0 and
1. The variable point ¢ lies on L. (a) Case 1: p = (4.2,4.8,5.4). The isoBox has two of
its sides equal and larger in length than the third, which implies it touches an interior
point ¢t = 0.5 := (4.9,5.5,5.0) of the line L. (b) Case 2: p = (5.6,4.2,5.4). All three
axis-parallel distances from p to L are different, which means the isoBox touches L at
one endpoint. As shown in the plots, f1 (p, L) = 0.7 in (a) and 0.8 in (b).

When L is a finite line segment, Lemma 1 implies that there may not exist an
interior point ¢ in L at which two axis-parallel distances are of the same value;
the isothetic distance in such case occurs at an endpoint of L. Figure 1 illustrates
these two cases. In particular, we have the following theorem.

Theorem 1. Let a and b be the endpoints of a line segment L, and p be a point
in R3. If q is an interior point in L such that i (p,q) = f1(p,L), then at least
two of the azis-parallel distances between p and q are equal in value; otherwise,
the isothetic distance occurs when q coincides with either a or b.

Proof. Let L' be the straight line containing the segment L. Let ¢ be a point
in L' such that f,(p,q) = fi(p,L). If ¢ is a point in L, then by Lemma 1,
the theorem holds. If ¢ lies in L'\\L, then we can move ¢ on L’ to the effect
that f) (p,q) increases continuously (Observation 1) until ¢ coincides with an
endpoint of L. This completes the proof. O

Theorem 1 can be extended to higher-order simplices as well, and is stated
in the following theorem.

Theorem 2. Ifp and q are two points in M™ and N respectively, such that
either p or q is an interior point and f1 (p,q) = f1(M™) N™) then at least
two of the axis-parallel distances between p and q are equal in value.
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Proof. We prove by contradiction. If possible, let p be an interior point in M (™)

such that, w.lo.g., f1(M™ NM™) = f.(p,q) > f,(p,q) > f.(p,q). As p lies in
the interior of M (™) there ex1sts a sufficiently small neighborhood X, (p) of p in
M(™). As the distance functions are all linear and continuous (Observation 1),
we always get a point p’ in X.(p) such that f.(p',q) < fz(p,q), which implies
fe(pyq) > fL (M N™)) whence the contradiction. O

4 Decomposition of Distance Functions

In this section we discuss the algebraic techniques for computing the isothetic
distance between two simplices having same or different order. We denote by B
the isoBox of two simplices under consideration.

4.1 0-1 Distance

Let LM be a 1-simplex and p a 0-simplex or point in R3. Let q(t) = tLngO) +(1-
t)Lgle), where ¢ is a real number. Then, by Theorem 1, the function f, (p, L))
is decomposed into two cases as follows (see Fig. 1).

Case 1. B(p, L) touches a point in L(l)\{Lgl:o),Lglio)}, which is true if and
only if the following equation has a solution ¢ € (0, 1).

(|xp_xq(t)}_ |yp_yq(t)|) (!IP_Iq(t)|_ |ZP_Zq(t)|) (|yp—yq(t)|_ |ZP_Z11(t)|) =0 (4)

Case 2. Equation4 produces t ¢ [0, 1], which means B(p, L(l)) touches L1 at
L:(leo) or at L(LO) and so it reduces to 0-0 distance function, i.e., f (p, L(l)) =

mln{fL p, L 10)) fl(p7 (1 0))}

4.2 0-2 Distance

Let M@ be a 2-simplex defined by the 1- simplex set M) .= {L(l) :1<i<k}
and the 0-simplex set M(?) := {q k} Clearly, a point ¢(t) := Zle t;qi

belongs to the interior of M) if and only if {;}¥, € (0,1)* and Zi:l t; = 1.
The distance function f, (p, M) between a point p and the simplex M 2) can
be decomposed as follows.

Case 1. The isoBox IB%(p,M(z)) touches an interior point of M), which is
true if and only if at least two of the axis-parallel distances are equal in value
(Theorem 2), or equivalently, the following equation yields {t;}¥_, € (0,1)* with

25:1 ti =1
(lzo=aw| =[50 =va0 ] ) (20 =20 | = 202000 ) ([0 v | = |20 = 2a0)|) = 0 (5)

Case 2. B(p,M(2)) touches M2 at one of its 1-simplices, and so reduces to

0-1 function (Sect.4.1), i.e., fi(p, M®) = min {fl(p, Lgl))}.
LB emm
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y y y

(a) Case 1 (b) Case 2(i) (c) Case 2(ii)

Fig. 2. Decomposition of 1-1 distance into possible cases and sub-cases: isoBox touches
(a) both the line segments at their interiors; (b) one at the interior; (¢) both at their
endpoints. Case 1 is solved in the parametric space, while Case 2(i) as 0-1 and Case 2(ii)
as 0-0 distance functions.

4.3 1-1 Distance

Let KM and L™ be two 1-simplices.. Let g(s) = SKF:O) +(1- S)Kélzo) and
r(t) = tLgle) + (1 - t)LgI:O)7 where s,t are two real numbers. The distance
function f (p, M) between a point p and the simplex M (?) can be decomposed
as follows (see Fig.2).

Case 1. The isoBox B(K™, L™M) touches the interiors of both the 1-simplices
if and only if, by Theorem 2, the following equation yields (s,t) € (0,1)2.

(Iae) = 7| = 92t = vr0]) ([7at0) = 2r0] = [2006) = 20000

(st = wr0] = |20 = 2000]) =0 (6)

Case 2. B(K™, LM) touches one of the 0-simplices, and so reduces to 0-1 func-
tion (Sect.4.1), i.e., fi (KM, LM) = 111%112 {fJ_(KZ-(LO),L(l)),fJ_(LEI:O),K(l))}.

4.4 2-2 Distance

Using the result presented in Sects. 4.2 and 4.3, we get the following theorem on
the inter-simplex distance between two 2-simplices.

Theorem 3. For two 2-simplices, there exists an isoBox that does not simulta-
neously touch their interiors.

Proof. We assume that M) and N® are mutually in general orientation, that is
non-parallel to each other, since otherwise there exist infinitely many positions
of the isoBox B(M ), N()), and the theorem is true for some of them. We prove
by contradiction for the general case. Let, if possible, ]B%(M(Q), N(z)) touch M3
and N®) at their respective interior points p and ¢ such that fJ_(M(Q), N(Z)) =
f1(p,q). By Theorem 2, at least two among f.(p,q), fy(p,q), f-(p,q) are equal
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in value. So, let, wlo.g., f1(p,q) == f2(p,q) = fy(p,q) = f.(p,q). Let X.(p)
be a sufficiently small neighborhood of p in M), Since the axis-parallel dis-
tance functions are linear and continuous (Observation 1), and M) and N
are mutually non-parallel, we always get another point p’ € X.(p) such that

f2(0',q) < fe(p,q) and f,(p',q) < fy(p,q), or fL(¥',q) < fL(p,q), whence the
contradiction. 0

Clearly, by Theorem 3, the isothetic distance between M) and N is given by

min {fJ_ (Mi(2:1)7NJ(2:1)>}’
1<i<m
1<j<n

LM ND) mind {fJ_ (Mi(zzo)w(z))}, (7)

1<i<m

min {fJ_ (NJ(Q:O), M(Q))}

1<j<n

where, m and n denote the respective number of 1-simplices (and the same of
0-simplices thereof) comprising M (?) and N(2).

Equation 7 shows how the isothetic distance between two 2-simplices (tri-
angles) is computed from the isothetic distances among lower-order simplices.
An illustration of the concept is given in Fig. 3. Notice in particular that the

<=
2-2 isothetic
[
<> <>
[ ]
o
0-2 parametric W
®
<> <>
°
L]
0-1 isothetic 1-1 parametric
° ° °
[ ]
<=> <=>
° °
L] ° °
0-1 parametric Chebyshev

Fig. 3. Hierarchy of computation of isothetic distance.
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computation of 2-2 isothetic distance is quite simplified, since the isoBox never
touches the interior regions of both the triangles in simultaneity, as shown by
us; hence, it has only two possibilities: (i)solving in the parametric space for a
point and the interior of a triangle and (ii) 1-1 isothetic distance. Clearly, the
distance computation between any two simplices down the hierarchy takes O(1)
time, wherefore the 2-2 isothetic distance is done in O(1) time.

4.5 Voxel Size

The inter-simplex isothetic distance determines the voxel unit for voxelization of
a 2-manifold surface. We show some result in Sect. 5. For the underlying theory,
we recall here a few concepts from [3,4,16].

Let A be a set of 3-cells (i.e., voxels), which may be of finite or of infinite
cardinality. For k = 0,1, 2, a k-path in A is a sequence of voxels in A where every
two consecutive voxels are k-adjacent. If there is a k-path in A between any two
voxels of A, then A is said to be k-connected. A k-component in A is a maximal
k-connected subset of A. If B is a subset of A such that AN\ B is not k-connected,
then B is said to be k-separating in A; in addition, B is k-minimal if it contains
no k-simple voxel. A k-simple vozel of B is a voxel v such that Bx\{v} is still
k-separating.

The clearance between two voxel sets A and B is the number of voxels com-
prising a/the shortest 2-path between A and B, discounting the first and the last
voxels. We denote by V(M (?) the 2-minimal voxel set obtained by voxelization
of M®) | wherefore the distance of each voxel v € V(M®)) is at most half the
voxel unit from M), We use these concepts in the following theorem.

Theorem 4. Let M3 and N@) be two 2-simplices in an orientable surface such
that § == f1 (M@ N®) > 0. The clearance between V(M) and V(N?)) is

o . F)
at least k voxel units if the vozel length is fized to s < =

Proof. As the voxelization of the 2-simplices is 2-minimal and the voxel unit is
s, the isothetic distance of (the center of) each voxel u € V(M®)) from M? is
at most £, and so also for each voxel v € V(N?)) from N® (see [2]: Theorem 1).
For a clearance of at least x voxels, the isothetic distance between V(M (?)) and
V(N®) is at least & + 1 voxels, and hence fi (M® N®) > s(k+1)+2x 5,

or, s < O

o
K+2°

We end this section with a brief discussion on the homeomorphism between
a 2-manifold surface S and the voxel set V(S) given by the union of naive (i.e.,
2-minimal) voxelization of all 2-simplices comprising the surface S. We refer to
a recent work [1] for further details. As shown in [1], by making the voxel size
appropriately small, the following conditions are ensured:

(i) for each real point p lying on the surface S, there exists a voxel v € V(S§),
which is sufficiently close to p;

(ii) for each voxel v € V(S), there exists a point p € S, which is sufficiently
close to v.
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Theorem 4 can be used to fix the voxel size while setting up the homeomorphism.
Its practical usefulness is discussed further in Sect. 5.

5 Test Result

Based on the isothetic distance metric, we have designed an algorithm for vox-
elization that takes as input a 2-manifold surface along with the value of the
parameter k. The algorithm first computes the inter-simplex isothetic distance
for every pair of non-adjacent 2-simplices, using the decomposition technique
discussed in Sect. 4. It uses the minimum (d,,i,) of these inter-simplex distances,
and based on the specified value of k, finds the appropriate voxel size s using
Theorem 4. Each 2-simplex (triangle) is then voxelized to its 2-minimal set as
discussed in [4, Sect. 7.3.1].

The algorithm runs in the integer space. This is achieved by scaling up the
input surface by a factor of % Owing to this, the effective voxel size becomes
unity in the transformed voxel space and the voxelization also retains the
required property of 2-minimality for the voxel set corresponding to each 2-
simplex. This is as per the practice commonly followed in the existing algorithms
[19,21,24,26].

We have shown here our test result on two models, namely cogwheel and
bunny, in Figs. 4 and 5. A summary of result for these two models and a couple of
other models is presented in Table 1. In the figures, we have shown cutout images
for seeing the interiors of the voxelized surfaces. It is clear from these result that
the number of voxels is minimum when & is set to 1, and with an increasing value
of k, the voxelized surface improves in size and quality, as the voxel size s becomes
smaller and the number of voxels ngs becomes larger, thereby approximating
the surface with a higher resolution and precision. Nevertheless, the resultant
voxelization is always homeomorphic as long as x > 1. For a low value of &