
Valentin E. Brimkov
Reneta P. Barneva (Eds.)

 123

LN
CS

 1
02

56

18th International Workshop, IWCIA 2017
Plovdiv, Bulgaria, June 19–21, 2017
Proceedings

Combinatorial
Image Analysis

Lecture Notes in Computer Science 10256

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412

Valentin E. Brimkov • Reneta P. Barneva (Eds.)

Combinatorial
Image Analysis
18th International Workshop, IWCIA 2017
Plovdiv, Bulgaria, June 19–21, 2017
Proceedings

123

Editors
Valentin E. Brimkov
SUNY Buffalo State
Buffalo, NY
USA

and

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia
Bulgaria

Reneta P. Barneva
State University of New York at Fredonia
Fredonia, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59107-0 ISBN 978-3-319-59108-7 (eBook)
DOI 10.1007/978-3-319-59108-7

Library of Congress Control Number: 2017940841

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is a great pleasure to welcome you to the proceedings of the 18th International
Workshop on Combinatorial Image Analysis (IWCIA 2017) held in Plovdiv, Bulgaria,
June 19–21, 2017.

Image analysis is a scientific discipline providing theoretical foundations and
methods for solving real-life problems that appear in various, often societally sensitive,
areas of human practice, such as medicine, robotics, defense, and security. Since
typically the input data to be processed are discrete, the “discrete” or “combinatorial”
approach to image analysis appears to be a natural one and therefore its applicability is
expanding. The fact is that combinatorial image analysis often provides various
advantages in terms of efficiency and accuracy over the more traditional approaches
based on continuous models and requiring numeric computation.

For over 25 years, the IWCIA workshop series has been providing a forum for
researchers throughout the world to present cutting-edge results in combinatorial image
analysis, to discuss recent advances and new challenges in this research field, and to
promote interaction with researchers from other countries. IWCIA had successful prior
meetings in Paris (France) 1991, Ube (Japan) 1992, Washington DC (USA) 1994,
Lyon (France) 1995, Hiroshima (Japan) 1997, Madras (India) 1999, Caen (France)
2000, Philadelphia, PA (USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand)
2004, Berlin (Germany) 2006, Buffalo, NY (USA) 2008, Playa del Carmen (Mexico)
2009, Madrid (Spain) 2011, Austin, TX (USA) 2012, Brno (Czech Republic) 2014, and
Kolkata (India) 2015. The workshop in Plovdiv retained and enriched the international
spirit of these workshops. The IWCIA 2017 Program Committee was very interna-
tional; its members are renowned experts coming from 17 different countries from
Asia, Australia and Oceania, Europe, North and South America. Submissions came
from 19 different countries from Africa, Asia, Europe, and North America.

Each submitted paper was sent to three reviewers. EasyChair provided a convenient
platform for smoothly carrying out the review process, which was quite rigorous,
conducted in a double-blind review mode. The most important selection criterion for
acceptance or rejection of a paper was the overall score received. Other criteria
included: relevance to the workshop topics, correctness, originality, mathematical
depth, clarity, and presentation quality. We believe that as a result, only high-quality
papers were accepted for presentation at IWCIA 2017 and for publication in the present
volume.

The program of the workshop included presentations of contributed papers and
keynote talks by five distinguished scientists. Alfred (Freddy) Bruckstein (Technion,
IIT, Israel) surveyed some models of stochastic multi-agent interactions, involving
simple ant-like a(ge)nts moving in grid or general planar graph environments, leading
to interesting results concerning the average number of visits to various sites and to
connections between Euclidean and discrete geometry. Edwin Hancock (University of
York, UK) presented the edge-based Laplacian and quantum graphs and their use for

developing more sophisticated heat diffusion and wave propagation. He also discussed
possible applications to shape modeling and recognition. Marc van Kreveld (Utrecht
University, The Netherlands) addressed questions related to geometric representations.
He showed that a simple polygon can always be represented on the grid with constant
Hausdorff distance and sometimes with constant Frechet distance, and discussed
relations to certain mathematical games, such as the Japanese picture puzzles. Christian
Ronse (Université de Strasbourg, France) investigated partial order relations on partial
partitions of a set. He discussed their usefulness to guiding image analysis operations,
such as filtering, reduction, or segmentation. Günter Rote (Freie Universität Berlin,
Germany) first reviewed the existing congruence testing algorithms in two and three
dimensions. Then he presented new algorithmic techniques and geometric insights that
lead to fast algorithms in four dimensions.

The contributed papers are grouped into two parts. The first part includes 17 papers
devoted to theoretical foundations of combinatorial image analysis, in particular studies
on discrete geometry and topology, tilings and patterns, array grammars and languages,
graphical models, and other technical tools for image analysis. The second part
includes ten papers presenting application-driven research on topics such as image
segmentation, classification, reconstruction, and compression, texture analysis, and
bioimaging. We believe that all presented works were of high quality and the workshop
participants benefited from the scientific program. We hope that many of these papers
are of interest to a broader audience, including researchers in scientific areas such as
pattern analysis and recognition, computer vision, shape modeling, and computer
graphics.

A poster session provided some authors with the opportunity to present their
ongoing research projects and original works in progress. The texts of these works are
not included in this volume.

Many individuals and organizations contributed to the success of IWCIA 2017. First
of all, the chairs are indebted to IWCIA’s Steering Committee for endorsing the can-
didacy of Plovdiv for the 18th edition of the workshop. We wish to thank everybody
who submitted their work to IWCIA 2017. Thanks to their contributions, we succeeded
in having a technical program of high scientific quality. We are indebted to all par-
ticipants and especially to the contributors of this volume. Our most sincere thanks go
to the IWCIA 2017 Program Committee whose cooperation in carrying out
high-quality reviews was essential in establishing a strong scientific program. We
express our sincere gratitude to the keynote speakers, Alfred Bruckstein, Edwin
Hancock, Marc van Kreveld, Christian Ronse, and Günter Rote, for their remarkable
talks and overall contribution to the workshop program.

The success of the workshop would not be possible without the hard work of the
local Organizing Committee. Special thanks go to the co-chair of the Organizing
Committee, Georgi Vragov (Bulgarian Academy of Sciences) for the considerable
amount of time and effort he devoted to the workshop organization, and to the other
committee members, Veselin Igrachev (Rakursy, Plovdiv), Marian Iliev (Union of
Bulgarian Scientists), Ivan Koychev (University of Sofia St. Kliment Ohridski), Ilia
Kozhukharov (AMDFA, Plovdiv), Simeon Marlokov (Milara Int., Plovdiv), and
Georgi Totkov (University of Plovdiv Paisii Hilendarski), for their valuable work. We
remember with gratitude the assistance provided by the three students of Vessela

VI Preface

Statkova from the Academy of Music, Dance and Fine Arts in Plovdiv and by the
students from the Plovdiv Mathematical High School Acad. K. Popov, who helped
make this conference an enjoyable and fruitful event. We appreciate the support of
Plovdiv Municipality and the personal involvement of Mr. Stefan Stoyanov, Deputy
Mayor of the City of Plovdiv. We also acknowledge with gratitude the help we
received from the Association for Development of the Information Society and its
chair, Ivan Koychev. Thanks go to SUNY Fredonia and SUNY Buffalo State for their
support. Finally, we wish to thank Springer, Computer Science Editorial, and especially
Alfred Hofmann and Anna Kramer, for their efficient and kind cooperation in the
timely production of this book.

June 2017 Valentin E. Brimkov
Reneta P. Barneva

Preface VII

Organization

IWCIA 2017 was held in Plovdiv, Bulgaria, June 19–21, 2017.

General Chairs

Valentin E. Brimkov SUNY Buffalo State, USA
Reneta P. Barneva SUNY Fredonia, USA

Steering Committee

Bhargab B. Bhattacharya Indian Statistical Institute, Kolkata, India
Valentin E. Brimkov SUNY Buffalo State, USA
Gabor T. Herman CUNY Graduate Center, USA
Kostadin Koroutchev Universidad Autonoma de Madrid, Spain
Josef Šlapal Technical University of Brno, Czech Republic

Keynote Speakers

Alfred M. Bruckstein Technion, IIT, Israel
Edwin R. Hancock University of York, UK
Marc van Kreveld Utrecht University, The Netherlands
Christian Ronse Université de Strasbourg, France
Günter Rote Freie Universität Berlin, Germany

Program Committee

Eric Andres Université de Poitiers, France
Tetsuo Asano JAIST, Japan
Péter Balázs University of Szeged, Hungary
Jacky Baltes University of Manitoba, Canada
George Bebis University of Nevada at Reno, USA
Bhargab B. Bhattacharya Indian Statistical Institute, Kolkata, India
Partha Bhowmick IIT Kharagpur, India
Alfred M. Bruckstein Technion, IIT, Israel
Jean-Marc Chassery Université de Grenoble, France
Li Chen University of the District of Columbia, USA
David Coeurjolly Université de Lyon, France
Mousumi Dutt St. Thomas College of Engineering and Technology,

India
Fabien Feschet Université d’Auvergne, France

Leila De Floriani University of Genoa, Italy and University of Maryland,
USA

Chiou-Shann Fuh National Taiwan University, Taiwan
Edwin Hancock University of York, UK
Fay Huang National Ilan University, Taiwan
Atsushi Imiya IMIT, Chiba University, Japan
Kamen Kanev Shizuoka University, Japan
Gisela Klette University of Auckland, New Zealand
Reinhard Klette University of Auckland, New Zealand
Yung Kong CUNY Queens College, USA
Vladimir Kovalevski Technische Fachhochschule Berlin, Germany
Walter G. Kropatsch Vienna University of Technology, Austria
Longin Jan Latecki Temple University, USA
Jerome Liang SUNY Stony Brook, USA
Joakim Lindblad Uppsala University, Sweden
Benedek Nagy Eastern Mediterranean University, North Cyprus
Gregory M. Nielson Arizona State University, USA
Maurice Nivat LIAFA, France
Janos Pach EPFL Lausanne, Switzerland and Renyi Institute

Budapest, Hungary
Kalman Palagyi University of Szeged, Hungary
Petra Perner Institute of Computer Vision and Applied Computer

Sciences, Germany
Nicolai Petkov University of Groningen, The Netherlands
Hemerson Pistori Dom Bosco Catholic University, Brazil
Ioannis Pitas University of Thessaloniki, Greece
Konrad Polthier Freie Universität Berlin, Germany
Hong Qin SUNY Stony Brook, USA
Paolo Remagnino Kingston University, UK
Ralf Reulke Humboldt University, Germany
Bodo Rosenhahn MPI Informatik, Germany
Arun Ross West Virginia University, USA
Nikolay Sirakov Texas A&M University, USA
Rani Siromoney Madras Christian College, India
Wladyslaw Skarbek Warsaw University of Technology, Poland
Ali Shokoufandeh Drexel University, USA
K.G. Subramanian Madras Christian College, India
Joao Manuel R.S. Tavares University of Porto, Portugal
Gnanaraj Thomas Madras Christian College, India
Peter Veelaert University of Ghent, Belgium
Petra Wiederhold CINVESTAV-IPN, Mexico
Jinhui Xu SUNY University at Buffalo, USA

X Organization

Organizing Committee

Reneta Barneva (Co-chair) SUNY Fredonia, USA
Ivan Koychev (Co-chair) University of Sofia St. Kliment Ohridski, Bulgaria
Georgi Vragov (Co-chair) Bulgarian Academy of Sciences, Bulgaria
Veselin Igrachev Rakursy, Bulgaria
Marian Iliev Union of Bulgarian Scientists, Bulgaria
Ilia Kozhukharov AMDFA, Plovdiv, Bulgaria
Simeon A. Marlokov Milara Int., Bulgaria
Georgi Totkov University of Plovdiv Paisii Hilendarski, Bulgaria

Additional Reviewers

Khaled Abuhmaidan
Piyush Bhunre
Ranita Biswas
Federico Gelsomini
Yangwei Liu
Hamid Mir-Mohammad-Sadeghi
Oliver Müller
Sanjoy Pratihar
Mohammad Reza Saadat

Partner Institutions

Association for Development of the Information Society, Bulgaria
Plovdiv Municipality, Bulgaria
SUNY Buffalo State, Buffalo, NY, USA
SUNY Fredonia, Fredonia, NY, USA

Organization XI

Contents

Theoretical Foundations: Discrete Geometry and Topology,
Tilings and Patterns, Grammars, Models, and Other Technical Tools
for Image Analysis

Simplifier Points in 2D Binary Images. 3
Kálmán Palágyi

Trajectories and Traces on Non-traditional Regular Tessellations
of the Plane . 16

Benedek Nagy and Arif Akkeleş

On Sets of Line Segments Featuring a Cactus Structure 30
Boris Brimkov

Construction of Thinnest Digital Ellipsoid Using Inverse Projection
and Recursive Integer Intervals . 40

Papia Mahato and Partha Bhowmick

On the Chamfer Polygons on the Triangular Grid . 53
Hamid Mir-Mohammad-Sadeghi and Benedek Nagy

Verification of Hypotheses Generated by Case-Based Reasoning
Object Matching . 66

Petra Perner

Template-Based Pattern Matching in Two-Dimensional Arrays 79
Yo-Sub Han and Daniel Průša

Construction of Persistent Voronoi Diagram on 3D Digital Plane 93
Ranita Biswas and Partha Bhowmick

Extension of a One-Dimensional Convexity Measure to Two Dimensions . . . 105
Sara Brunetti, Péter Balázs, and Péter Bodnár

Algorithms for Stable Matching and Clustering in a Grid 117
David Eppstein, Michael T. Goodrich, and Nil Mamano

A Relational Generalization of the Khalimsky Topology 132
Josef Šlapal

Toward Parallel Computation of Dense Homotopy Skeletons
for nD Digital Objects . 142

Pedro Real, Fernando Diaz-del-Rio, and Darian Onchis

http://dx.doi.org/10.1007/978-3-319-59108-7_1
http://dx.doi.org/10.1007/978-3-319-59108-7_2
http://dx.doi.org/10.1007/978-3-319-59108-7_2
http://dx.doi.org/10.1007/978-3-319-59108-7_3
http://dx.doi.org/10.1007/978-3-319-59108-7_4
http://dx.doi.org/10.1007/978-3-319-59108-7_4
http://dx.doi.org/10.1007/978-3-319-59108-7_5
http://dx.doi.org/10.1007/978-3-319-59108-7_6
http://dx.doi.org/10.1007/978-3-319-59108-7_6
http://dx.doi.org/10.1007/978-3-319-59108-7_7
http://dx.doi.org/10.1007/978-3-319-59108-7_8
http://dx.doi.org/10.1007/978-3-319-59108-7_9
http://dx.doi.org/10.1007/978-3-319-59108-7_10
http://dx.doi.org/10.1007/978-3-319-59108-7_11
http://dx.doi.org/10.1007/978-3-319-59108-7_12
http://dx.doi.org/10.1007/978-3-319-59108-7_12

Polynomial Time Algorithm for Inferring Subclasses of Parallel Internal
Column Contextual Array Languages . 156

Abhisek Midya, D.G. Thomas, Alok Kumar Pani, Saleem Malik,
and Shaleen Bhatnagar

Parallel Contextual Array Insertion Deletion P System. 170
S. James Immanuel, D.G. Thomas, Robinson Thamburaj,
and Atulya K. Nagar

A 3D Curve Skeletonization Method . 184
Nilanjana Karmakar, Sharmistha Mondal, and Arindam Biswas

Inscribing Convex Polygons in Star-Shaped Objects 198
Nikolay M. Sirakov and Nona Nikolaeva Sirakova

On Characterization and Decomposition of Isothetic Distance Functions
for 2-Manifolds. 212

Piyush K. Bhunre, Partha Bhowmick, and Jayanta Mukhopadhyay

Theory and Applications: Image Segmentation, Classification,
Reconstruction, Compression, Texture Analysis, and Bioimaging

Topological Data Analysis for Self-organization of Biological Tissues 229
M.J. Jimenez, M. Rucco, P. Vicente-Munuera, P. Gómez-Gálvez,
and L.M. Escudero

Distance Between Vector-Valued Representations of Objects in Images
with Application in Object Detection and Classification 243

Nataša Sladoje and Joakim Lindblad

A Statistical-Topological Feature Combination for Recognition of Isolated
Hand Gestures from Kinect Based Depth Images . 256

Soumi Paul, Hayat Nasser, Mita Nasipuri, Phuc Ngo, Subhadip Basu,
and Isabelle Debled-Rennesson

Image Segmentation via Weighted Carving Decompositions 268
Derek Mikesell and Illya V. Hicks

An Image Texture Analysis Method for Minority Language Identification . . . 280
Darko Brodić, Alessia Amelio, and Zoran N. Milivojević

JPEG Quantization Table Optimization by Guided Fireworks Algorithm 294
Eva Tuba, Milan Tuba, Dana Simian, and Raka Jovanovic

Shape Matching for Rigid Objects by Aligning Sequences Based
on Boundary Change Points . 308

Abdullah N. Arslan and Nikolay M. Sirakov

XIV Contents

http://dx.doi.org/10.1007/978-3-319-59108-7_13
http://dx.doi.org/10.1007/978-3-319-59108-7_13
http://dx.doi.org/10.1007/978-3-319-59108-7_14
http://dx.doi.org/10.1007/978-3-319-59108-7_15
http://dx.doi.org/10.1007/978-3-319-59108-7_16
http://dx.doi.org/10.1007/978-3-319-59108-7_17
http://dx.doi.org/10.1007/978-3-319-59108-7_17
http://dx.doi.org/10.1007/978-3-319-59108-7_18
http://dx.doi.org/10.1007/978-3-319-59108-7_19
http://dx.doi.org/10.1007/978-3-319-59108-7_19
http://dx.doi.org/10.1007/978-3-319-59108-7_20
http://dx.doi.org/10.1007/978-3-319-59108-7_20
http://dx.doi.org/10.1007/978-3-319-59108-7_21
http://dx.doi.org/10.1007/978-3-319-59108-7_22
http://dx.doi.org/10.1007/978-3-319-59108-7_23
http://dx.doi.org/10.1007/978-3-319-59108-7_24
http://dx.doi.org/10.1007/978-3-319-59108-7_24

Gradient and Graph Cuts Based Method for Multi-level Discrete
Tomography . 322

Tibor Lukić and Marina Marčeta

Reconstruction of Nearly Convex Colored Images. 334
Fethi Jarray and Ghassen Tlig

A Greedy Algorithm for Reconstructing Binary Matrices with Adjacent 1s . . . 347
Fethi Jarray and Ghassen Tlig

Author Index . 357

Contents XV

http://dx.doi.org/10.1007/978-3-319-59108-7_25
http://dx.doi.org/10.1007/978-3-319-59108-7_25
http://dx.doi.org/10.1007/978-3-319-59108-7_26
http://dx.doi.org/10.1007/978-3-319-59108-7_27

Theoretical Foundations: Discrete
Geometry and Topology, Tilings and

Patterns, Grammars, Models, and Other
Technical Tools for Image Analysis

Simplifier Points in 2D Binary Images

Kálmán Palágyi(B)

Department of Image Processing and Computer Graphics,
University of Szeged, Szeged, Hungary

palagyi@inf.u-szeged.hu

Abstract. The concept of a simple point is well known in digital topol-
ogy: a black point in a binary picture is called a simple point if its
deletion preserves topology. This paper introduces the notion of a sim-
plifier point: a black point in a binary picture is simplifier if it is simple,
and its deletion turns a non-simple border point into simple. We show
that simplifier points are line end points for both (8, 4) and (4, 8) pic-
tures on the square grid. Our result makes efficient implementation of
endpoint-based topology-preserving 2D thinning algorithms possible.

Keywords: Discrete geometry · Digital topology · Topology preserva-
tion · Thinning algorithms

1 Introduction

A digital binary picture assigns a color of black or white to each point of the
considered digital space [5,8]. A reduction [2] transforms a binary picture only
by changing some black points to white ones, which is referred to as deletion.
Parallel reductions can delete a set of black points simultaneously, while a sequen-
tial reduction traverses the black points of a picture, and considers the actually
visited point for possible deletion at a time [9].

A 2D reduction is topology-preserving if each object in the input picture
contains exactly one object in the output picture, and each white component in
the output picture contains exactly one white component in the input picture
[5]. A black point is called simple point for a set of black points if its deletion is
a topology-preserving reduction [4,5].

Thinning [2,7,12] is a frequently used method for making an approximation
to the skeleton in a topology–preserving way [5]: the border points of a binary
object that satisfy certain topological and geometric constraints are deleted in
iteration steps. The entire process is then repeated until only the ‘skeleton’ is left.
The greater part of existing 2D thinning algorithms preserve line end points (i.e.,
black points that are adjacent to exactly one black point). Note that Bertrand
and Couprie proposed an alternative approach by accumulating curve interior
points that are called isthmuses [1].

In this paper we introduce the concept of a simplifier point : a black point in
a binary picture is simplifier if it is simple, and its deletion turns a non-simple

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-59108-7 1

4 K. Palágyi

border point into simple. We show that all simplifier points are line end points
for the considered two kinds of binary pictures on the 2D square grid. This
result makes efficient implementation of endpoint-based topology-preserving 2D
thinning algorithms possible.

The rest of this paper is organized as follows. Section 2 briefly reviews the
relevant notions and results. Then in Sect. 3 we prove that simplifier points are
line end points. An efficient scheme for endpoint-based 2D thinning algorithms
is proposed in Sect. 4.

2 Basic Notions and Results

In this paper, we use the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [4,5]. Note that there are other approaches that are based
on cellular/cubical complexes [6], but we insist on the ‘historical paradigm’.

Let us denote by S the square grid (that is dual to Z
2, i.e., the set of points in

the 2D plane with integer coordinates). The elements of the considered grid (i.e.,
regular squares) are called points. Two points are 4-adjacent if they share an
edge, and they are 8-adjacent if they share an edge or a vertex. Note that both
adjacency relations are reflexive and symmetric. Let us denote by Nj(p) the set
of points being j-adjacent to a point p, and let N∗

j (p) = Nj(p)\{p} (j = 4, 8),
see Fig. 1.

•
• p •

•
p

Fig. 1. The considered adjacency relations on the square grid. Set N4(p) contains point
p and the four points marked “•” (left), and set N8(p) is formed by p and the eight
points marked “�” (right).

A sequence of distinct points 〈p0, p1, . . . , pm〉 is called a j-path from p0 to
pm in a non-empty set of points X ⊆ S if each point of the sequence is in X
and pi is j-adjacent to pi−1 for each i = 1, 2, . . . ,m. Two points are said to be
j-connected in a set X if there is a j-path in X between them. A set of points X
is j-connected in the set of points Y ⊇ X if any two points in X are j-connected
in Y . A j-component of a set of points X is a maximal (with respect to inclusion)
j-connected subset of X.

Let (k, k̄) be an ordered pair of adjacency relations ((k, k̄) = (8, 4), (4, 8)).
A (k, k̄) binary digital picture on grid S is a quadruple (S, k, k̄, B) [5], where
B ⊆ S denotes the set of black points, and each point in S\B is said to be a
white point . A black component or object is a k-component of B, while a white
component is a k̄-component of S\B.

Simplifier Points in 2D Binary Images 5

A black point p is an interior point if all points in N ∗̄
k
(p) are black. A black

point is said to be a border point if it is not an interior point (i.e., it is k̄-adjacent
to at least one white point). A black point p is a line end point if N∗

k (p) contains
exactly one black point.

A black point is said to be simple for a set of black points (or in a picture)
if its deletion is a topology-preserving reduction [4,5]. Kardos and Palágyi gave
easily visualized characterizations of simple points in (8, 4) and (4, 8) pictures by
sets of matching templates [3]. The base matching templates depicted in Figs. 2
and 3 are the rephrased versions of the templates presented in [3]. Notations:
each black template position matches a black point; each white element matches
a white point; each position depicted in gray matches any point (i.e., either a
white point or a black point). Note that all the rotated and reflected versions of
the base matching templates also match simple points. For the sake of brevity if
a point is matched by a rotated/reflected version of a base matching template,
we say that the given point is matched by that base template.

p p

q1 q2

p

q1 q2

p

q1

(a) (b) (c) (d)

Fig. 2. Base matching templates for characterizing simple points in (8, 4)-pictures.
(Note that notions p, q1, and q2 help us to prove Theorem 1.)

q1 q2

q3 p q1 p

q2

q1

p

q2

p

(a) (b) (c) (d)

Fig. 3. Base matching templates for characterizing simple points in (4, 8)-pictures.
(Note that notions p, q1, q2, and q3 help us to prove Theorem 2.)

We can state that interior points are not simple, some border points may
only be simple, and line end points are simple.

3 Simplifier Points

In this section we introduce the notion of a simplifier point and it is shown that
simplifier points are line end points for both (8, 4) and (4, 8) pictures.

First, let us establish two useful properties of simple points.

6 K. Palágyi

Proposition 1. Let p, q ∈ N∗
8 (p)\N4(p), and r = N∗

4 (p) ∩N∗
4 (q) be three black

points in picture (S, 8, 4, B) (see Fig. 4a). Then q is simple in picture (S, 8, 4, B)
if and only if q is simple in picture (S, 8, 4, B\{p}) (i.e., the simpleness of q does
not depend on the color of p).

Proposition 2. Let p and q ∈ N∗
8 (p)\N4(p) be two black points, and r =

N∗
4 (p) ∩ N∗

4 (q) be a white point in picture (S, 4, 8, B) (see Fig. 4b). Then q is
simple in picture (S, 4, 8, B) if and only if q is simple in picture (S, 4, 8, B\{p})
(i.e., the simpleness of q does not depend on the color of p).

p r

q

p r

q

(a) (b)

Fig. 4. Configurations associated with Proposition 1(a) and 2(b).

Propositions 1 and 2 can be readily seen with the help of Figs. 2 and 3, respec-
tively.

Let us now define the notion of a simplifier point.

Definition 1. A point p ∈ B in picture (S, k, k̄, B) ((k, k̄) = (8, 4), (4, 8)) is a
simplifier point if p is simple in (S, k, k̄, B), and there is a non-simple and border
point q ∈ B in (S, k, k̄, B), such that q is simple in (S, k, k̄, B\{p}).

By Figs. 2 and 3, the simpleness of a point q for a set of black points is a
local property (i.e., it can be decided by examining N∗

8 (q)). Hence we can state
the following proposition.

Proposition 3. By examining non-simple and border points in N∗
8 (p), it can

be decided whether a point p is simplifier or not.

The following two theorems are to characterize simplifier points in (8, 4) and
(4, 8) pictures.

Theorem 1. If a point in a (8, 4)-picture is a simplifier point, then it is a line
end point.

Proof. Let (S, 8, 4, B) be a picture and p be a simple point for B. Assume that
there is a point q ∈ B, that is a border point in (S, 8, 4, B), it is not simple in
(S, 8, 4, B), but it is simple in (S, 8, 4, B\{p}). (In other words, it is assumed
that p is a simplifier point.) By Proposition 3, we can suppose that q ∈ N∗

8 (p).
Since simple points in (8, 4)-pictures are characterized by the matching tem-

plates depicted in Fig. 2, the following cases are to be investigated:

Simplifier Points in 2D Binary Images 7

– If p is matched by the template in Fig. 2a, then p is a line end point.
– If p is matched by the template in Fig. 2b, then consider the two template

positions marked q1 and q2.
• If q = q1, then the simpleness of q does not depend on the color of p by

Proposition 1.
• Let q = q2. Since q is simple in (S, 8, 4, B\{p}), q is matched by a template

in Fig. 2.
∗ If q is matched by the template in Fig. 2a, then p is a line end point as

it is depicted in Fig. 5a.
∗ If q is matched by the template in Fig. 2b, then p is a line end point

as it is depicted in Fig. 5b, or q is matched by the template in Fig. 2c
in picture (S, 8, 4, B) (in which p is a black point) as it is shown in
Fig. 5b’ (i.e., q is simple for B). In the latter case we arrived at a
contradiction.

∗ If q is matched by the template in Fig. 2c, then q is matched by the
template in Fig. 2d in picture (S, 8, 4, B), see Fig. 5c (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 2d, then q is an interior point
in picture (S, 8, 4, B), see Fig. 5d (i.e., q is not a border point). Since
q is a border point in (S, 8, 4, B), we arrived at a contradiction.

– If p is matched by the template in Fig. 2c, then consider the two template
positions marked q1 and q2.

• If q = q1, then the simpleness of q does not depend on the color of p by
Proposition 1.

• Let q = q2. Since q is simple in (S, 8, 4, B\{p}), q is matched by a template
in Fig. 2.
∗ If q is matched by the template in Fig. 2a, then q is matched by the

template in Fig. 2b in picture (S, 8, 4, B), see Fig. 6a (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 2b, then q is matched by the
template in Fig. 2c in picture (S, 8, 4, B), see Fig. 6b (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 2c, then q is matched by the
template in Fig. 2d in picture (S, 8, 4, B), see Fig. 6c (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 2d, then q is an interior point in
picture (S, 8, 4, B), see Fig. 6d. Since q is a border point in (S, 8, 4, B),
we arrived at a contradiction.

– If p is matched by the template in Fig. 2d, then consider the template position
marked q1. Let q = q1. Since q is simple in (S, 8, 4, B\{p}), q is matched by
a template in Fig. 2.

• It is easy to check that q is not matched by the template in Fig. 2a, and
it is not matched by the template in Fig. 2b, see Fig. 7ab.

• If q is matched by the template in Fig. 2c, then q is matched by the
template in Fig. 2d in picture (S, 8, 4, B), see Fig. 7c (i.e., q is simple for
B). Thus we arrived at a contradiction.

8 K. Palágyi

p

q

p

q

p

q

p

q

p

q

(a) (b) (b’) (c) (d)

Fig. 5. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig. 2b and q = q2.

p

q

p

q

p

q

p

q

(a) (b) (c) (d)

Fig. 6. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig. 2c and q = q2.

p

q

p

q

p

q

(ab) (c) (d)

Fig. 7. Configurations associated with Theorem 1 when (the originally black) simple
point p is matched by the template in Fig. 2d and q = q1.

• If q is matched by the template in Fig. 2d, then q is an interior point in
picture (S, 8, 4, B), see Fig. 7d. Since q is a border point in (S, 8, 4, B),
we arrived at a contradiction. 	

Theorem 2. If a point in a (4, 8)-picture is a simplifier point, then it is a line
end point.

Proof. Let (S, 4, 8, B) be a picture and p be a simple point in that picture.
Assume that there is a point q ∈ B, that is a border point in (S, 4, 8, B), it is
not simple in (S, 4, 8, B), but it is simple in (S, 4, 8, B\{p}). (In other words, it
is assumed that p is a simplifier point.) By Proposition 3, we can suppose that
q ∈ N∗

8 (p).
Since simple points in (4, 8)-pictures are characterized by the matching tem-

plates depicted in Fig. 3, the following cases are to be investigated:

– If p is matched by the template in Fig. 3a, then consider the three template
positions marked q1, q2, and q3.

• Let q = q1. Since q is simple in (S, 4, 8, B\{p}), q is matched by a template
in Fig. 3.

Simplifier Points in 2D Binary Images 9

∗ If q is matched by the template in Fig. 3a, then q is an interior point in
picture (S, 4, 8, B), see Fig. 8a. Since q is a border point in (S, 4, 8, B),
we arrived at a contradiction.

∗ It is easy to check that q is not matched by the templates in Figs. 3b,
3c, and 3d, see Fig. 8bcd.

• Let q = q2. Since q is simple in (S, 4, 8, B\{p}), q is matched by a template
in Fig. 3.
∗ It is easy to check that q is not matched by the templates in Figs. 3a,

3c, and 3d, see Fig. 9acd.
∗ If q is matched by the template in Fig. 3b, then q is an interior point in

picture (S, 4, 8, B), see Fig. 9b. Since q is a border point in (S, 4, 8, B),
we arrived at a contradiction.

• Let q = q3. Since q is simple in (S, 4, 8, B\{p}), q is matched by a template
in Fig. 3.
∗ It is easy to check that q is not matched by the templates in Figs. 3a

and 3b, see Fig. 10ab.
∗ If q is matched by the template in Fig. 3c, then q is matched by the

template in Fig. 3b in picture (S, 4, 8, B), see Fig. 10c (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 3d, then q is matched by the
template in Fig. 3c in picture (S, 4, 8, B), see Fig. 10d (i.e., q is simple
for B). Thus we arrived at a contradiction.

– If p is matched by the template in Fig. 3b, then consider the two template
positions marked q1 and q2.

• Let q = q1. Since q is simple in (S, 4, 8, B\{p}), q is matched by a template
in Fig. 3.
∗ It is easy to check that q is not matched by the template in Fig. 3a, see

Fig. 11a.
∗ If q is matched by the template in Fig. 3b, then q is matched by the

template in Fig. 3a in picture (S, 4, 8, B), see Fig. 11b (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 3c, then q is matched by the
template in Fig. 3b in picture (S, 4, 8, B), see Fig. 11c (i.e., q is simple
for B). Thus we arrived at a contradiction.

∗ If q is matched by the template in Fig. 3d, then q is matched by the
template in Fig. 3c in picture (S, 4, 8, B), see Fig. 11d (i.e., q is simple
for B). Thus we arrived at a contradiction.

• If q = q2, then the simpleness of q does not depend on the color of p by
Proposition 2.

– If p is matched by the template in Fig. 3c, then consider the two template
positions marked q1 and q2. In both cases the simpleness of q does not depend
on the color of p by Proposition 2.

– If p is matched by the template in Fig. 3d, then p is a line end point.

	

10 K. Palágyi

q

p

q

p

(a) (bcd)

Fig. 8. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig. 3a and q = q1.

q

p

q

p

(acd) (b)

Fig. 9. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig. 3a and q = q2.

q p q p q p

(ab) (c) (d)

Fig. 10. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig. 3a and q = q3.

q p q p q p q p

(a) (b) (c) (d)

Fig. 11. Configurations associated with Theorem 2 when (the originally black) simple
point p is matched by the template in Fig. 3b and q = q1.

Theorems 1 and 2 state that if a point is simplifier, then it is a line end point.
The following proposition formulates that the converse of our theorems does not
hold:

Proposition 4. Let p ∈ B be a line end point in picture (S, k, k̄, B) ((k, k̄) =
(8, 4), (4, 8)), and let N∗

k (p) ∩ B = {q} be a non-simple and border point in
that picture. Then q may be non-simple in (S, k, k̄, B\{p}) (i.e., p may not be a
simplifier).

Figure 12 is to illustrate Proposition 4.
A sequential reduction is topology-preserving if its deletion rule deletes

only simple points [4,5]. Endpoint-based sequential 2D thinning algorithms are

Simplifier Points in 2D Binary Images 11

q p q p

Fig. 12. Configurations associated with Proposition 4. Point q is a non-simple and
border point, and p is a line end point in (8, 4) pictures (left) and (4, 8) pictures
(right). We can state that q remains non-simple after the deletion of p. Hence line end
point p is not a simplifier.

composed of topology-preserving sequential reductions that do not delete line
end points. The following proposition is an easy consequence of Theorems 1 and
2:

Proposition 5. The produced ‘skeleton’ of an endpoint-based sequential 2D
thinning algorithm (working on (8, 4)- or (4, 8)-pictures) contains all non-simple
border points in the original input picture (and in the intermediate pictures of
the iterative thinning process).

Since that algorithm may delete only simple points and preserves line end
points, by Theorems 1 and 2, all non-simple border points remain non-simple
border points. Hence those points are in the produced ‘skeleton’.

4 Efficient Implementation of Endpoint-Based 2D
Thinning Algorithms

Proposition 5 provides us an efficient method to implement endpoint-based 2D
thinning algorithms. The proposed method is sketched in Algorithm1.

The input of Algorithm 1 is array A which stores the (k, k̄)-picture to be
thinned. In input array A, the value “1” corresponds to black points and the
value “0” is assigned to white ones. Both input and the output pictures are
stored in the same array (i.e., array A will contain the produced ‘skeleton’), so
the proposed method is memory saving.

In order to speed up the process Algorithm1 uses the list border list that
stores the border points to be checked in the actual picture of the iterative
thinning process. In order to avoid storing more than one copy of a border point
in border list, and checking again and again points in the final ‘skeleton’, array
A represents a four-color picture:

– a value of “0” corresponds to white points,
– a value of “1” is assigned to interior points,
– a value of “2” corresponds to border points to be checked (i.e., elements of

the current border list), and
– a value of “3” is assigned to the detected line end points and non-simple

border points (that are elements of the produced ‘skeleton’ by Proposition 5,
hence their re-checking is not needed).

12 K. Palágyi

Algorithm 1. Efficient Implementation of Endpoint-Based 2D Thinning
Input: array A storing the (k, k̄)-picture to be thinned
Output: array A containing the picture with the produced ‘skeleton’
// collect border points by a single scan of array A
border list ← < empty list >
foreach element p in array A do

if p is a border point then
border list ← border list + < p >
A[p] ← 2

// thinning process

repeat
// one iteration / one sequential reduction

number of deleted points ← 0
foreach point p in border list do

if p is a line end point or a non-simple point then
// a point in the ‘skeleton’ is found

A[p] ← 3
border list ← border list − < p >

else if T (p) = true then
// deletion

A[p] ← 0
border list ← border list − < p >
number of deleted points ← number of deleted points +1
// updating the list

foreach point q being k̄-adjacent to p do
if A[q] = 1 then

A[q] ← 2
border list ← border list + < q >

until number of deleted points = 0;

Note that Palágyi et al. proposed a similar method for implementing 3D fully
parallel thinning algorithms [10]. It uses two lists to speed up the process: one
for storing the border points in the current picture, the other list is to collect all
deletable points in the actual phase of the process.

First, the input picture is scanned and all the border points are inserted into
the list border list. We should mention here that it is the only time consuming
scan of the entire array A. Since only a small part of points in a usual picture
belong to the objects, the thinning procedure is much faster if we just deal with
the set of border points in the actual picture.

Then the iterative thinning process itself is performed. The kernel of the
repeat cycle corresponds to one iteration (i.e., one sequential reduction), and
variable number of deleted points is to store the number of deleted points within
the actual iteration. If a point p is deleted, then border list is updated since all
interior points that are k̄-adjacent to p become border points. The algorithm

Simplifier Points in 2D Binary Images 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 0 0 1 0 0 1 0

0 1 0 0 0 1 1 0 0 1 1 1 0 1 0

0 1 1 0 1 1 1 0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0 0 0 1 1 1 0 0

0 1 1 1 1 1 0 0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0 1 0 0 0 0

0 1 1 1 0 0 0 1 0 0 0 1 1 0 0

0 1 1 0 0 0 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 2 0 0 0 0 2 0 0 0

0 2 0 0 2 0 2 0 0 0 2 0 0 2 0

0 2 0 0 0 2 2 0 0 2 1 2 0 2 0

0 2 2 0 2 1 2 0 2 1 1 1 2 0 0

0 2 2 2 1 1 1 2 0 2 1 1 2 0 0

0 0 0 2 1 1 2 0 0 0 2 1 2 0 0

0 2 2 1 1 2 0 0 0 2 1 1 1 2 0

0 0 0 2 1 2 2 2 2 2 1 2 2 0 0

0 0 2 1 2 0 2 0 0 0 2 0 0 0 0

0 2 1 2 0 0 0 2 0 0 0 2 2 0 0

0 2 2 0 0 0 0 0 2 0 2 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

an (8, 4) picture to be thinned collecting border points

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 2 0 0 2 1 2 0 3 0

0 2 2 0 2 1 2 0 3 1 1 1 3 0 0

0 2 2 2 1 1 1 3 0 2 1 1 2 0 0

0 0 0 2 1 1 2 0 0 0 2 1 2 0 0

0 3 3 1 1 2 0 0 0 2 1 1 1 2 0

0 0 0 2 1 2 2 3 3 2 1 2 2 0 0

0 0 2 1 2 0 3 0 0 0 3 0 0 0 0

0 2 1 2 0 0 0 3 0 0 0 3 3 0 0

0 2 2 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 0 0 0 0 2 0 0 3 0

0 0 2 0 0 2 0 0 3 2 1 2 3 0 0

0 0 0 2 2 1 2 3 0 0 2 2 0 0 0

0 0 0 0 2 2 0 0 0 0 0 2 0 0 0

0 3 3 2 1 2 0 0 0 2 2 2 2 0 0

0 0 0 0 2 0 2 3 3 0 2 0 0 0 0

0 0 0 2 0 0 3 0 0 0 3 0 0 0 0

0 0 2 0 0 0 0 3 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

selecting some elements of the ‘skeleton’ deletion and updating border list

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 0 0 0 0 3 0 0 3 0

0 0 3 0 0 3 0 0 3 3 1 2 3 0 0

0 0 0 3 2 1 3 3 0 0 2 2 0 0 0

0 0 0 0 2 2 0 0 0 0 0 3 0 0 0

0 3 3 3 1 3 0 0 0 3 2 2 2 0 0

0 0 0 0 3 0 3 3 3 0 3 0 0 0 0

0 0 0 3 0 0 3 0 0 0 3 0 0 0 0

0 0 3 0 0 0 0 3 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 0 0 0 0 3 0 0 3 0

0 0 3 0 0 3 0 0 3 3 2 0 3 0 0

0 0 0 3 2 1 3 3 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0 0 0 0 3 0 0 0

0 3 3 3 2 3 0 0 0 3 0 2 0 0 0

0 0 0 0 3 0 3 3 3 0 3 0 0 0 0

0 0 0 3 0 0 3 0 0 0 3 0 0 0 0

0 0 3 0 0 0 0 3 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

selecting some elements of the ‘skeleton’ deletion and updating border list

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 0 0 0 0 3 0 0 3 0

0 0 3 0 0 3 0 0 3 3 3 0 3 0 0

0 0 0 3 3 1 3 3 0 0 0 3 0 0 0

0 0 0 0 0 3 0 0 0 0 0 3 0 0 0

0 3 3 3 2 3 0 0 0 3 0 3 0 0 0

0 0 0 0 3 0 3 3 3 0 3 0 0 0 0

0 0 0 3 0 0 3 0 0 0 3 0 0 0 0

0 0 3 0 0 0 0 3 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 3 0 0 0 0 3 0 0 0

0 3 0 0 3 0 3 0 0 0 3 0 0 3 0

0 3 0 0 0 3 0 0 0 0 3 0 0 3 0

0 0 3 0 0 3 0 0 3 3 3 0 3 0 0

0 0 0 3 3 1 3 3 0 0 0 3 0 0 0

0 0 0 0 0 3 0 0 0 0 0 3 0 0 0

0 3 3 3 0 3 0 0 0 3 0 3 0 0 0

0 0 0 0 3 0 3 3 3 0 3 0 0 0 0

0 0 0 3 0 0 3 0 0 0 3 0 0 0 0

0 0 3 0 0 0 0 3 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 3 0 3 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

selecting some elements of the ‘skeleton’ deletion and updating border list

Fig. 13. Illustration of the proposed implementation scheme (see Algorithm 1).

14 K. Palágyi

terminates when stability is reached (i.e., number of deleted points = 0). Then
all points having a nonzero value belong to the produced ‘skeleton’.

The sequential reduction in Algorithm1 is specified by deletion rule T (i.e.,
T (p) = true if p is to be deleted). In [9] Palágyi has studied equivalent deletion
rules that yield pairs of equivalent parallel and sequential reductions and pairs
of equivalent parallel and sequential thinning algorithms as well. (Two thinning
algorithms are called equivalent if they produce the same result for each input
picture [11].) The implementation scheme of Algorithm 1 can be adapted for
endpoint-based 2D parallel thinning algorithms that comprise parallel reductions
with equivalent deletion rules.

Note that an iteration is decomposed into k ≥ 2 successive parallel reductions
in subiteration-based and subfield-based parallel thinning algorithms [2]. Those
algorithms terminate if no points are deleted in an entire iteration (i.e., in a
cycle of k reductions).

Figure 13 illustrates the effectiveness of the proposed implementation scheme,
where T (p) = true if p is simple in the actual (8, 4) picture. Elements in the
actual border list are depicted in grey, and row-by-row ordering was assumed in
each deletion phase.

5 Conclusions

This paper introduces the notion of a simplifier point, and it is shown that sim-
plifier points are line end points in both (8, 4) and (4, 8) pictures on the square
grid. The characterization of simplifier points involves an efficient implemen-
tation of endpoint-based topology-preserving 2D thinning algorithms in which
multiple checking of non-simple border points can be omitted.

In a future work we are to deal with simplifier points in pictures on
the remaining two regular 2D grids (i.e., triangular and hexagonal sampling
schemes).

Acknowledgements. This work was supported by the grant OTKA K112998 of the
National Scientific Research Fund.

References

1. Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly,
D., Montanvert, A., Chassery, J. (eds.): Géométrie discrète et images numériques,
pp. 187–209. Hermès Science Publications (2007)

2. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y.,
Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–
179. Elsevier Science B.V, Amsterdam (1996)

3. Kardos, P., Palágyi, K.: On topology preservation in triangular, square, and hexag-
onal grids. In: Proceedings of the 8th International Symposium on Image and Signal
Processing and Analysis, ISPA 2013, pp. 782–787 (2013)

4. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern
Recognit. Artif. Intell. 9, 813–844 (1995)

Simplifier Points in 2D Binary Images 15

5. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vis. Graph. Image Process. 48, 357–393 (1989)

6. Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Publishing House, Berlin
(2008)

7. Lam, L., Lee, S.-W., Suen, S.-W.: Thinning methodologies – a comprehensive sur-
vey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)

8. Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing - A Dis-
crete Approach. Academic Press, New York (2000)

9. Palágyi, K.: Equivalent sequential and parallel reductions in arbitrary binary pic-
tures. Int. J. Pattern Recognit. Artif. Intell. 28, 1460009-1–1460009-16 (2014)

10. Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning
algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms,
vol. 2, pp. 165–188. Springer, Dordrecht (2012)

11. Palágyi, K., Németh, G., Kardos, P.: Topology-preserving equivalent parallel and
sequential 4-subiteration 2D thinning algorithms. In: Proceedings of the 9th Inter-
national Symposium on Image and Signal Processing and Analysis, ISPA 2015, pp.
306–311 (2015)

12. Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition.
Series in Machine Perception and Artificial Intelligence. World Scientific, Singapore
(1994)

Trajectories and Traces on Non-traditional
Regular Tessellations of the Plane

Benedek Nagy(B) and Arif Akkeleş

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Mersin-10, Famagusta, North Cyprus, Turkey

nbenedek.inf@gmail.com

Abstract. In this paper, shortest paths on two regular tessellations, on
the hexagonal and on the triangular grids, are investigated. The shortest
paths (built by steps to neighbor pixels) between any two points (cells,
pixels) are described as traces and generalized traces on these grids,
respectively. In the hexagonal grid, there is only one type of usual neigh-
borhood and at most two directions of the steps are used in any shortest
paths, and thus, the number of linearizations of these traces is easily
computed by a binomial coefficient based on the coordinate differences
of the pixels. Opposite to this, in the triangular grid the neighborhood
is inhomogeneous (there are three types of neighborhood), moreover this
grid is not a lattice, therefore, the possible shortest paths form more
complicated sets, a kind of generalized traces. The linearizations of these
sets are described by associative rewriting systems, and, as a main combi-
natorial result, the number of the shortest paths are computed between
two triangles, where two cells are considered adjacent if they share at
least one vertex.

Keywords: Combinatorics · Traces · Trajectories · Non-traditional
grids · Triangular grid · Generalized traces · Shortest paths · Number
of shortest paths · Enumerative combinatorics

1 Introduction

In 1977, analyzing basic networks, Mazurkiewicz introduced the concept of par-
tial commutations. Two independent parallel events commute, i.e., their execut-
ing order can be arbitrary in a sequential simulation. By using the concept of
commutations, the work of the concurrent systems can be described by traces. In
these systems some (pairs of) elementary processes (i.e., atomic actions; they are
represented by the letters of the alphabet) may depend on each other, and some
of them can be pairwise independent. The order of two consecutive independent
letters can be arbitrary, in this way the traces are a kind of generalizations of
words. Traces and trace languages play important roles in describing parallel
events and processes. An automata theoretic approach on rational trace lan-
guages can be found in [18,21], and in [19,20] for context-free trace languages.
Actually, linearizations of trace languages, that are sets of words representing
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 16–29, 2017.
DOI: 10.1007/978-3-319-59108-7 2

Trajectories and Traces on Non-traditional Regular Tessellations 17

traces of the trace languages, are accepted by various type of automata. A spe-
cial two-dimensional representation of some traces is given by trajectories on the
square grid. These trajectories were also used to describe syntactic constraints
for shuffling two parallel events described by words in [9]. Trajectories on other
regular grids could also play a somewhat similar important role. A kind of gen-
eralization of traces is presented in [7], where apart from the usual permutation
rules, some other rewriting rules are also allowed. We show that the sets of
shortest paths in the triangular grid can be seen as generalized traces.

Considering the set of (types and directions of the) possible steps as the
alphabet, a path, a sequence of steps, is actually a word. This gives the link
between formal languages, trace theory and digital geometry.

Path counting, an interesting and important technique in digital geometry
and in digital image processing, was invented in [23]. The number of shortest
paths on the square grid was computed by an algorithm in [1], while recursive
formulae were given in [2]. The square grid is counted as the traditionally used
tessellation of the plane. There are other two regular tessellations, namely, the
hexagonal and the triangular grids. They are usually called non traditional or
unconventional grids, since they are less used in practice. On the other side they
have more symmetries and more interesting combinatorial structures than the
square grid has. In several cases they proved to be more efficient in applications as
well. Recently, in [4], counting the shortest paths based on the two closest types of
neighborhood on the triangular grid was also considered. In this paper, these two
non-traditional but regular tessellations of the two-dimensional plane are used.
They are duals of each other in graph theoretic sense. The main achievements of
this work are the following ones: The shortest paths between any two pixels of
these grids are described as (generalized) traces and the number of the shortest
paths are computed by enumerative combinatorial techniques. As we will see,
the case of the hexagonal grid is very simple, it is, actually, shown only for
the analogy. The shortest paths between two hexagons form a trace, in which
the order of the two types of steps can be arbitrary. The triangular grid is not a
lattice, therefore, as we will see, the shortest paths based on the third widely used
neighborhood (that is each pixel having 12 neighbors) form more complicated
sets. We also present formulae to compute the number of shortest paths, in this
way complementing the results of [4].

We note here that various digital, i.e., path based distances are investigated
for the triangular grid, e.g., distances by neighborhood sequences [10,11,14] and
weighted distances [16]. In this paper, we use one of the most natural digital
distance functions which is a special case of the previously mentioned distance
functions. Nevertheless, it already has very interesting theoretical, combinatorial
properties, as we will see later on.

We assume that the readers are familiar with traces and rewriting systems,
otherwise they are referred to, e.g., [3,6,24]. As usual, in this paper, the traces
are also represented by sets of words.

18 B. Nagy and A. Akkeleş

2 Traces and Trajectories on the Hexagonal Grid

The hexagonal grid can be elegantly described by three coordinates such that
every hexagon has a unique triplet with 0-sum [5], see Fig. 1: formally, the (set of
pixels of the) hexagonal grid can be described as {p(p(1), p(2), p(3)) | p(1), p(2),
p(3) ∈ Z, p(1) + p(2) + p(3) = 0}. Consequently, by stepping from a pixel to
a neighbor one, two of the coordinate values are changing by ±1. This formula-
tion coincides the well known and widely used concept of neighbor pixels. (On the
hexagonal grid two pixels are neighbors if they share a side of a hexagon, see, e.g.,
the pixels (−2, 0, 2) and (−2, 1, 1) on Fig. 1. Actually, the same neighborhood con-
cept for the hexagons is resulted if it is required to share at least one point on their
border.) A path connects two pixels by a sequence of neighbor pixels. The (digital)
distance of two pixels is the length, that is the number of steps, of a/the shortest
path between them. It is easy to prove (see, e.g., [8,11]) that the distance, i.e., the
number of steps in a/the shortest path, of any two pixels can be computed as

d(p(p(1), p(2), p(3)), q(q(1), q(2), q(3))) = maxi∈{1,2,3}{|p(i) − q(i)|}.
A (hexagonal stepping) lane is a set of pixels with a fixed coordinate value, e.g., y =
−1 for the top hexagons on Fig. 1. One can very easily generate a shortest path con-
necting the two given pixels p and q: if they share a coordinate value, i.e., p(i) = q(i)
(for any i ∈ {1, 2, 3}), then keeping that coordinate value fixed, the pixels can be
connected through a lane [11,17], i.e., by the pixels of {r(r(1), r(2), r(3)) | r(i) =
p(i),min{p(j), q(j)} ≤ r(j) ≤ max{p(j), q(j)}, j �= i}. If there is no shared coor-
dinate, then let i ∈ {1, 2, 3} be a value such that |p(i) − q(i)| ≥ |p(j) − q(j)| for
every j ∈ {1, 2, 3}, then a shortest path is the concatenation of the paths connect-
ing, e.g., p to r and r to q with r(j) = p(j), r(k) = q(k), r(i) = −p(j)− q(k) where
i, j, k are pairwise different elements of {1, 2, 3}. In the next section we show how
the number of shortest paths can be computed.

Fig. 1. A part of the hexagonal grid with a symmetric coordinate frame.

Trajectories and Traces on Non-traditional Regular Tessellations 19

2.1 Number of Shortest Paths on the Hexagonal Grid

Since the hexagonal grid is a lattice, one can step from any pixel to any of the six
directions. Thus the order of the steps in a shortest path is not important, the
reached pixel depends on only their respective numbers. Using the alphabet Σ =
{→,↘,↙,←,↖,↗} for the steps in the six directions, each letter is independent
of each other, therefore one can freely move (permute) them in a path. One
can observe that shortest path contains at most two distinct letters and their
numbers are determined by the coordinate differences of the pixels. Therefore, we
can state the following result that can be proven by elementary combinatorics.

Theorem 1. The number of shortest paths between p and q is given by the
binomial coefficient (

maxi{|p(i) − q(i)|}
mini{|p(i) − q(i)|}

)
.

Actually, an equivalence set of shortest paths is the commutative closure of
any singleton language of a shortest path, i.e., these traces are based on the
maximal independency relations (commutations): instead of the words, their
Parikh-vectors [22], the multiset of their letters can be used to describe shortest
paths as traces on the hexagonal grid.

As the main contribution of the paper a similar question is answered: it is
shown how the number of shortest paths can be counted on the triangular grid
(based on neighborhood relation of 12 neighbors).

3 Preliminaries: Description of the Triangular Grid

The triangular grid, preserving the symmetry of the grid, can also be described
by three integer coordinates [10,11,25]. There are two types of pixels (by orienta-
tion): the even pixels have zero-sum triplets, while the odd pixels have one-sum
triplets. The neighborhood relations are formally defined: Let p(p(1), p(2), p(3))
and q(q(1), q(2), q(3)) be two pixels, they are m-neighbors (m ∈ {1, 2, 3}) if

– |p(i) − q(i)| ≤ 1, for i ∈ {1, 2, 3}, and
– |p(1) − q(1)| + |p(2) − q(2)| + |p(3) − q(3)| = m.

Two pixels are neighbors, if they are m-neighbors for some m ∈ {1, 2, 3}. Various
neighborhoods and the coordinate system used are shown in Fig. 2. The set of
pixels sharing a fixed coordinate is called a lane, e.g., y = −2 for the topmost
pixels of Fig. 2. Paths, their lengths and distances of pixels are also defined
analogously to the hexagonal case.

A step to a 2-neighbor does not modify the parity, while step to a 1-neighbor
or a 3-neighbor pixel changes (inverts) the parity. The basic motions, the possible
steps form our alphabet: Let Σ = {↑1, ↓1,↖1,↘1,↗1,↙1,←2,→2,↖2,↘2,↗2,
↙2, ↑3, ↓3,↖3,↘3,↗3,↙3}. The arrows show the directions, while the indices
indicate the used neighborhood of the given step. The steps, the letters of the
alphabet correspond to grid-vectors:

20 B. Nagy and A. Akkeleş

Fig. 2. A part of the triangular grid with coordinate values (left) and various neigh-
borhood of an even pixel (right).

↑1 = (0,−1, 0), ↓1 = (0, 1, 0), ↖1 = (0, 0, 1),
↘1 = (0, 0,−1), ↗1 = (1, 0, 0), ↙1 = (−1, 0, 0),
←2 = (−1, 0, 1), →2 = (1, 0,−1), ↖2 = (0,−1, 1),
↘2 = (0, 1,−1), ↗2 = (1,−1, 0), ↙2 = (−1, 1, 0),
↑3 = (1,−1, 1), ↓3 = (−1, 1,−1), ↖3 = (−1,−1, 1),

↘3 = (1, 1,−1), ↗3 = (1,−1,−1), ↙3 = (−1, 1, 1).

For any two pixels p(p(1), p(2), p(2)) and q(q(1), q(2), q(3)), their respective posi-
tions and their shortest paths are isometrically transformed, and, therefore, their
distance is kept by using the following transformations of the grid (see [15] for
details).

– If p is an odd pixel, then by a mirroring both p and q to the center of
the edge shared by the pixels (0, 0, 0) and (0, 1, 0) one obtains p′(−(p(1) −
1),−p(3),−p(2)) and q′(−(q(1) − 1),−q(3),−q(2)) (By this transformation
the parities of the pixels are also changed.)

– If p is an even pixel, then by a translation one can obtain p′(0, 0, 0) and
q′(q(1) − p(1), q(2) − p(2), q(3) − p(3)).

– Now, let p be the origin and let q be a pixel such that i ∈ {1, 3} is the direction
for which |q(i)| ≥ |q(j)| for any j ∈ {1, 2, 3}. Then the mirroring to the axis
corresponding to the direction k ∈ {1, 3} such that k �= i transforms q to q′

such that q′(2) = q(j), q′(j) = q(2), q′(k) = q(k). (The image of the origin is
itself.)

Based on the previous transformations, w.l.o.g., we can assume that p is the
origin (0, 0, 0), i.e., further in this paper, we measure the distance, the shortest
paths from the origin to any pixel q of the grid with the following property: the
second coordinate of q has the largest absolute value among its coordinates, i.e.,
|q(2)| ≥ |q(1)| and |q(2)| ≥ |q(3)|. Pixels q with this property form the analyzed
part of the grid.

In the next subsection we give a shortest path from the origin to any pixel q
with the above property based on a greedy algorithm.

Trajectories and Traces on Non-traditional Regular Tessellations 21

3.1 A Shortest Path

We refer to [10,11] for the detailed description of a more general algorithm
(using various digital distances based on neighborhood sequences) that provides
a shortest path; it can be applied for our case using any type of the defined
neighborhoods in each step: in terms of neighborhood sequences, it can be written
as a sequence with only 3’s meaning that every type of neighbors is allowed in
each step. In this section we provide a shortest path from the origin to any pixel
of the analysed part.

Proposition 1. Let q(q(1), q(2), q(3)) be an even pixel such that |q(2)| ≥ |q(1)|
and |q(2)| ≥ |q(3)|.
– If q(2) > 0, then a shortest path from (0, 0, 0) to q is obtained as the concate-

nation of −q(1) ↙2 steps and −q(3) ↘2 steps: ↙|q(1)|
2 ↘|q(3)|

2 .
– If q(2) < 0, then a shortest path from (0, 0, 0) to q is obtained as the concate-

nation of q(3) ↖2 steps and q(1) ↗2 steps: ↖|q(3)|
2 ↗|q(1)|

2 .

Proof. Let q(q(1), q(2), q(3)) be an even pixel such that |q(2)| ≥ |q(1)| and
|q(2)| ≥ |q(3)|.

We show a formal proof for the case q(2) > 0; a similar proof suffices for the
other case.

Thus q has the coordinate values, (q(1), q(2), q(3) with q(1) ≤ 0 and q(3) ≤ 0
and q(2) = |q(1)| + |q(3)|.

Then, a shortest path from (0, 0, 0) to q cannot have a length less than q(2)
since in every step a coordinate value is changed by at most 1.

Let us consider the path consisting of −q(1) ↙2 steps and then −q(3) ↘2

steps. The path ↙|q(1)|
2 ↘|q(3)|

2 is a valid path, since steps to 2-neighbors are
allowed at any pixels (and thus, also in even pixels). Using the coordinate repre-
sentations of the steps: from (0, 0, 0), it goes through on (−1, 1, 0), (−2, 2, 0), . . . ,
(q(1), |q(1)|, 0) and then from (q(1), |q(1)|, 0) it goes through (q(1), |q(1)|+1,−1),
(q(1), |q(1)| + 2,−2), . . . , (q(1), |q(1)| + |q(3)|, q(3)) = q. It actually uses |q(1)|
steps in a lane and then |q(3)| steps on another lane, together q(2) steps. The
proof of the case is done. ��

The next proposition can be proven with a similar technique.

Proposition 2. Let q(q(1), q(2), q(3)) be an odd pixel such that |q(2)| ≥ |q(1)|
and |q(2)| ≥ |q(3)|.
– If q(2) > 0, then a shortest path from (0, 0, 0) to q is obtained as the concate-

nation of 1 ↓1 step, −q(1) ↙2 steps and −q(3) ↘2 steps: ↓1↙|q(1)|
2 ↘|q(3)|

2 .
– If q(2) < 0, then a shortest path from (0, 0, 0) to q is obtained as the

concatenation of 1 ↑3 step, q(3) − 1 ↖2 steps and q(1) − 1 ↗2 steps:
↑3↖|q(3)−1|

2 ↗|q(1)−1|
2 .

Observe that in the obtained paths the largest coordinate difference (the second
coordinate in our case) is decreased in every step. Consequently, the (digital)
distance of any two pixels can be computed as:

22 B. Nagy and A. Akkeleş

Lemma 1

d(p(p(1), p(2), p(3)), q(q(1), q(2), q(3))) = max
i∈{1,2,3}

{|p(i) − q(i)|}.

We note here, that this result can be seen as a special case of one of the main
results of [12–14], but here we have used a much simpler formulation. (Instead
of allowing neighborhood sequences to generate distance functions, in our case,
in each step we could step to any neighbors of the actual pixel. This allows us
to derive the simple formula established in the previous lemma.)

In this paper we concentrate on the shortest paths. Some of them can be
generated by a greedy algorithm (related to the algorithm of [11]), since some
steps of the algorithm may contain a non-deterministic choice. However, there
could be some of them that cannot be generated by the greedy algorithm.

A shortest path in the triangular grid may contain various steps. Notice that
some of the vectors (representing elements of Σ) can be used to any pixels (zero-
sum vectors). Some vectors can be applied only for even pixels (vectors with sum
1) and some of them can be applied only for odd pixels (vectors with sum −1).
Thus, for instance the sequence of steps ↑1↑3 can be applied for odd pixels only,
while the sequence ↑3↑1 works only starting from an even pixel. The order of the
steps becomes important, because the triangular grid is not a lattice, and thus,
some of the grid-vectors do not translate the grid to itself.

4 Generalized Traces Describing Shortest Paths

In this section we present an associative calculus that provides all the shortest
paths equivalent to the one the process starts with. First, we recall the definition:
C = (Σ,P) is an associative calculus, where Σ is a finite alphabet and P is a
finite set of productions (rewriting rules). Each rewriting rule is an element of
Σ∗ × Σ∗. A rule is usually written in the form u � v, where u, v ∈ Σ∗. Let
w ∈ Σ∗ be given, we say that w′ is obtained from w applying the rewriting rule
u � v, if there exist w1, w2 ∈ Σ∗ such that either w = w1uw2 and w′ = w1vw2,
or w = w1vw2 and w′ = w2uw2. Actually, w can also be obtained from w′ by
the same production, thus we may use the notation w ⇔ w′. By the reflexive
and transitive closure of ⇔, the relation ⇔∗ is defined.

Observe that the calculus C defines an equivalence relation on Σ∗. The equiv-
alence class represented by w is denoted by C(w) = {w′ | w ⇔∗ w′}.

Now, let us see how such a calculus can be applied to describe shortest paths.
In any shortest path the largest coordinate difference of the two endpoints (that
is the second coordinate value in our case) must decrease in each step.

Observe that the cardinality of Σ is 18, but every pixel has only 12 neighbors.
The triangular grid is not a lattice, the steps Σ� = {↓1,↖1,↗1,←2,→2,↖2,
↘2,↗2,↙2, ↑3,↘3,↙3} can be used at even, and the steps Σ� = {↑1,↘1,↙1,
←2,→2,↖2,↘2,↗2,↙2, ↓3,↖3,↗3} can be used at odd pixels. As one may
observe, only the steps to 2-neighbor pixels can be applied for every pixel, the
possible directions of steps to 1- and 3-neighbors depend on the parity of the

Trajectories and Traces on Non-traditional Regular Tessellations 23

actual pixel. The independence relation contains pairs of letters such that at
least one of the letters indicates a step to a 2-neighbor pixel. In terms of traces,
this fact can be concluded in the following way:

Lemma 2. In any paths, any letter a ∈ Σ�∩Σ� = {←2,→2,↖2,↘2,↗2,↙2}
commutes with any letter b ∈ Σ (a �= b).

Moreover, in the triangular grid there are composite steps that can be broken
to two steps in various ways. That is related to the serializations in generalized
traces [7]. In the next lemma all of them are listed that are needed in shortest
paths in the analyzed part of the grid, i.e., the second coordinate is modified
by two (during these steps). For the other parts of the grid the description is
analogous.

Lemma 3. The following equivalences hold:

– ↗2↗2 is equivalent to ↑3↗3 for even pixels;
– ↗2↗2 is equivalent to ↗3↑3 for odd pixels;
– ↖2↖2 is equivalent to ↑3↖3 for even pixels;
– ↖2↖2 is equivalent to ↖3↑3 for odd pixels;
– ↗2↖2 is equivalent to ↑3↑1 for even pixels;
– ↗2↖2 is equivalent to ↑1↑3 for odd pixels;
– ↘2↘2 is equivalent to ↘3↓3 for even pixels;
– ↘2↘2 is equivalent to ↓3↘3 for odd pixels;
– ↙2↙2 is equivalent to ↙3↓3 for even pixels;
– ↙2↙2 is equivalent to ↓3↙3 for odd pixels;
– ↘2↙2 is equivalent to ↓1↓3 for even pixels;
– ↘2↙2 is equivalent to ↓3↓1 for odd pixels;
– ↓1↘2 is equivalent to ↘3↙2 for even pixels;
– ↓1↙2 is equivalent to ↙3↘2 for even pixels.

Proof. We show the formal proof of the first equivalences. The others can be
proven in a similar manner.

↗2↗2 is equivalent to ↑3↗3 for even pixels.

On the left side there are two consecutive steps to 2-neighbors, they are
defined for all pixels. On the right side the first step is ↑3 that is available only
at even pixels, thus the statement has meaning only for even pixels.

Now, let us see the coordinate representations of these steps:
on the left side: 2(1,−1, 0) = (2,−2, 0), while
on the right side: (1,−1, 1) + (1,−1,−1) = (2,−2, 0). The equivalence is estab-
lished. ��

It can be proven, e.g., by a combinatorial way, that there are no more equiva-
lences of two consecutive steps (in our shortest paths) needed. The equivalences
that are not listed in the previous lemmas, e.g., ↖2↗2 is equivalent to ↑1↑3
for odd pixels, can be obtained by using some of the listed equivalences, e.g.,

24 B. Nagy and A. Akkeleş

↖2↗2 is equivalent to ↗2↖2 (by Lemma 2) and that is equivalent to ↑1↑3 for
odd pixels (by Lemma 3). Of course, there are longer sequences of steps that are
equivalent to each other, e.g., ↓1↓3↙3↙2 is equivalent to ↙2↙2↙2↓1, but their
equivalence is based on the listed equivalences by two consecutive steps. It can
be proven that the equivalence of every (consecutive) sequence of steps (in our
shortest paths) to another sequence is based on the listed equivalences.

Based on the previous lemmas we are ready to present a rewriting system
(especially, an associative calculus) that can obtain all the shortest paths that
are equivalent to an initial one. Since the parity of the pixels plays an important
role, in a path we keep track of them by allowing it to write this information
after any step to a 2-neighbor pixel, e.g., the shortest path ↗2↑3↗2↗2↖2 to
the pixel (4,−5, 2) can also be written in the following forms: ↗2 (e) ↑3↗2↗2

(o) ↖2 or ↗2 (e) ↑3↗2 (o) ↗2 (o) ↖2 (o), etc. The latter form when all the
steps to 2-neighbors are extended with this information is called fully informed
description of the path. For steps to 1-neighbor or 3-neighbor pixels we do not
need additional information, since not the same steps are allowed for even and
for odd pixels, i.e., Σ� ∩ Σ� does not contain any steps to a 1- or a 3-neighbor
pixel. In the following theorem this extended form is used (however, one may
get any correct forms by deleting any/all these information). The theorem is a
consequence of the previous results, especially of Lemmas 2 and 3.

Theorem 2. Let C(Σ,P) be an associative calculus with rewriting rules
P = {a(x)b(x) � b(x)a(x) | a, b ∈ {↗2,↘2,↙2,↖2}, x ∈ {e, o}, a �= b} ∪
{a(x)b � ba(y) | a ∈ {↗2,↘2,↙2,↖2}, b ∈ {↑1, ↓1, ↑3, ↓3,↗3,↘3,↙3,↖3},
x, y ∈ {e, o}, x �= y} ∪ { ↘3↙2 (o) �↓1↘2 (o), ↙3↘2 (o) �↓1↙2 (o),
↗2 (e) ↗2 (e) �↑3↗3, ↗2 (o) ↗2 (o) �↗3↑3, ↖2 (e) ↖2 (e) �↑3↖3,
↖2 (o) ↖2 (o) �↖3↑3, ↗2 (e) ↖2 (e) �↑3↑1, ↗2 (o) ↖2 (o) �↑1↑3,
↘2 (e) ↘2 (e) �↘3↓3, ↘2 (o) ↘2 (o) �↓3↘3, ↙2 (e) ↙2 (e) �↙3↓3,
↙2 (o) ↙2 (o) �↓3↙3, ↘2 (e) ↙2 (e) �↓1↓3, ↘2 (o) ↙2 (o) �↓3↓1}.
Let C(w) denote the set of all words that can be obtained from a given fully
informed description of a word w ∈ Σ∗ by applying any (finite number) of the
rewriting rules of P .

Let w ∈ Σ∗ be a fully informed description of a shortest path from (0, 0, 0)
to a pixel q (|q(2)| ≥ |q(1)|, |q(2)| ≥ |q(3)|). Then, applying C to w, the set C(w)
contains exactly those strings that describe shortest paths from (0, 0, 0) to q (by
a fully informed description).

Actually, the system can be understood as a generalized trace [7] as we detail
below. The system has several permutative rules, the rules by which a step to a
2-neighbor can be interchanged in the path with the previous or the next step (if
it is not the same). However, the system has another types of productions, e.g.,
↖2 (e) ↖2 (e) �↑3↖3 or ↘3↙2 (o) �↓1↘2 (o). To have our system in a more
similar fashion as the description in [7], we can introduce new letters abbreviating
these “double steps”. In the mentioned examples they could be: ↖2+2 (e) and
↘1+2. These new letters show the unbroken “double step” referring the motion
with vectors (0,−2, 2), and (0, 2,−1) in our case from even pixels (it is indicated

Trajectories and Traces on Non-traditional Regular Tessellations 25

in the first case, since this vector works for both even and odd pixels, while
in the second case it is obviously working only for even pixels). By breaking
the original productions to two parts using these intermediate “double steps”,
we got the productions ↖2+2 (e) �↖2 (e) ↖2 (e), ↖2+2 (e) �↑3↖3 and
↘1+2�↘3↙2 (o), ↘1+2�↓1↘2 (o), respectively. In this form the system is a
generalized trace, but only shortest paths without any “double steps” can be
counted as real shortest paths.

5 The Number of Shortest Paths

In this section, by complementing the results of [4], we count the number of
shortest paths by a combinatorial approach. As we have already seen, there are
two cases by the sign of q(2), and also by the parity of pixel q. In each case
we gave a shortest path in Propositions 1 and 2, and now, enumerations are
provided to compute the number of shortest paths.

Let us start with the case when q is even.

5.1 The Case of Even Paths

In this case, the parity of p and q are the same, i.e., both of them are even. There
is a shortest path containing only steps to 2-neighbor pixels (see Proposition 1).
However, there can be some other shortest paths in which some of the steps to
2-neighbors are replaced based on some of the productions shown in Theorem2.

First, let us analyze the case q(2) < 0. By Proposition 1 we have a shortest
path ↖|q(3)|

2 ↗|q(1)|
2 . From this path, by the calculus C given in Theorem 2, one

can obtain any shortest path Π. Observe that in the calculus, apart from the
permutative rules (that changes only the order of two consecutive steps) there
are three types of real rewriting rules that can be applied. Based on them, let
us introduce the following notations (for a shortest path Π).

Notation 1. In case q(2) < 0, the letters γ, δ and ε are defined as follows.

– Let γ be the number of application of rewriting rules ↗2 (e) ↖2 (e) →↑3↑1
and ↗2 (o) ↖2 (o) →↑1↑3 (minus the number of their applications in reverse
directions).

– Let δ be the number of applications of ↖2 (e) ↖2 (e) →↑3↖3 and ↖2 (o) ↖2

(o) →↖3↑3 (minus the number of their applications in reverse directions).
– Let ε be the number of applications of ↗2 (e) ↗2 (e) →↑3↗3 and ↗2 (o) ↗2

(o) →↗3↑3 (minus the number of their applications in reverse directions).

Then Π contains the following numbers of the following types of steps:
↖2 steps: |q(3)| − γ − 2δ; ↗2 steps: |q(1)| − γ − 2ε; ↑1 steps: γ;
↑3 steps: γ + δ + ε; ↖3 steps: δ; ↗3 steps: ε.

Moreover, the order of some steps, the ones that changes the parity, takes
matter: these steps are alternating in the following way: starting by a step ↑3 (if
any), then one step from the set {↑1,↖3,↗3}, then again a step ↑3 (if any), etc.

26 B. Nagy and A. Akkeleş

The steps ↖2 and ↗2 can be anywhere in any order. Consequently, to compute
the number of shortest paths, we have

(γ + δ + ε)!
γ! δ! ε!

×
(|q(1)| + γ + 2δ

|q(1)| − γ − 2ε

)
×

(|q(2)|
|q(3)| − γ − 2δ

)

different ones for a fixed value of γ, δ, ε, (γ, δ, ε ≥ 0, γ + 2δ ≤ |q(3)|, γ + 2ε ≤
|q(1)|). This can be seen as follows: let the γ+δ+ε many ↑3 steps are given. The
first term (γ+δ+ε)!

γ! δ! ε! refers for the possibility to arrange the appropriate number
of ↑1,↖3,↗3 steps to have an alternating order of parity changing steps, as it
is requested. The second term

(|q(1)|+γ+2δ
|q(1)|−γ−2ε

)
gives the number of possibilities to

place the ↗2 steps into the path. Finally, the third term,
(|q(2)|
|q(3)|−γ−2δ

)
gives the

number of ways the ↖2 steps can be put into the path.
Observe that for these pixels |q(2)| = q(1) + q(3). Finally, using the possible

values of γ, δ and ε, we obtain the following theorem.

Theorem 3. Let q(q(1), q(2), q(3)) be a pixel of the triangular grid such that
q(1) + q(2) + q(3) = 0 and q(2) < 0. Then, the number of shortest paths from
the origin (0, 0, 0) to q is given by

min{|q(1)|,|q(3)|}∑
γ=0

� |q(3)|−γ
2 �∑

δ=0

� |q(1)|−γ
2 �∑

ε=0

(γ + δ + ε)!
(|q(2)|
|q(3)|−γ−2δ

)(|q(1)|+γ+2δ
|q(1)|−γ−2ε

)
γ! δ! ε!

.

The case when q(2) > 0 is analogous (with steps to downward directions).

Notation 2. In case q(2) > 0, let the γ, δ and ε be defined as follows.

– Let γ be the number of application of ↘2 (e) ↙2 (e) →↓1↓3 and ↘2 (o) ↙2

(o) →↓3↓1 (minus the number of their applications in reverse directions).
– Let δ be the number of applications of ↙2 (e) ↙2 (e) →↙3↓3 and ↙2 (o) ↙2

(o) →↓3↙3 (minus the number of their applications in reverse directions).
– Let ε be the number of applications of ↘2 (e) ↘2 (e) →↘3↓3 and ↘2 (o) ↘2

(o) →↓3↘3 (minus the number of their applications in reverse directions).

The only other difference (based on the possible rewriting) is that in this
case the “alternation” of steps from the set {↓1,↙3,↘3} and ↓3 starts with a
step from the first set and finishes by a ↓3 step. The number of possible paths
is given by the following formula; and it can be proven by the application of
multiplication and addition rules, in a similar manner as in the previous case.

Theorem 4. Let q(q(1), q(2), q(3)) be a pixel of the triangular grid such that
q(1) + q(2) + q(3) = 0 and q(2) > 0. Then, the number of shortest paths from
the origin (0, 0, 0) to q is computed as

min{|q(1)|,|q(3)|}∑
γ=0

� |q(1)|−γ
2 �∑

δ=0

� |q(3)|−γ
2 �∑

ε=0

(γ + δ + ε)!
(|q(2)|
|q(1)|−γ−2δ

)(|q(3)|+γ+2δ
|q(3)|−γ−2ε

)
γ! δ! ε!

.

Trajectories and Traces on Non-traditional Regular Tessellations 27

5.2 The Case of Odd Paths

This case is also divided into two parts based on the sign of q(2). Let us start with
q(2) < 0. By Proposition 2 a shortest path to q is given as ↑3↖|q(3)−1|

2 ↗|q(1)−1|
2 .

In these shortest paths, the three types of rewriting of Notation 1 can be applied
that change the types of the steps (not only their order). Consequently, let us
define and use γ, δ and ε similarly as in the case of even paths for q(2) < 0, see
Notation 1. Then the numbers of various steps that a shortest path Π contain
(with a fixed value of γ, δ and ε) are as follows:

↖2 steps: |q(3) − 1| − γ − 2δ; ↗2 steps: |q(1) − 1| − γ − 2ε; ↑1 steps: γ;
↑3 steps: 1+γ +δ+ε; ↖3 steps: δ; ↗3 steps: ε.

Here the alternating sequence of steps ↑3 and steps from the set {↑1,↖3,↗3}
starts and ends with an ↑3 step. Consequently, the final formula for the number
of shortest paths in this case is computed:

Theorem 5. Let q(q(1), q(2), q(3)) be a pixel of the triangular grid such that
q(1) + q(2) + q(3) = 1 and q(2) < 0. Then, the number of shortest paths from
the origin (0, 0, 0) to q is

min{q(1)−1,q(3)−1}∑
γ=0

� q(3)−1−γ
2 �∑

δ=0

� q(1)−1−γ
2 �∑

ε=0

(γ + δ + ε)!
(|q(2)|
q(1)−1−γ−2ε

)(
q(3)+γ+2ε

q(3)−1−γ−2δ

)
γ! δ! ε!

.

Note that in this case q(1), q(3) ≥ 1 and |q(2)| = q(1) + q(3) − 1.
Now, let us consider the last case: q is odd, q(2) > 0 and q(2) = |q(1)| +

|q(3)| + 1. This case is the most complex, since the parity of the pixels must
be changed during the path, and in this direction any of the elements of the
set {↓1,↙3,↘3} can be applied for such reason. Therefore, actually, it is easier
to break the set of the shortest paths C(w) – where w could be, e.g., from
Proposition 2, w =↓1 (↙2 (o))|q(1)|(↘2 (o))|q(3)| – to three disjoint sets. In this
way, we can compute the number of shortest paths when the first parity changing
step is ↓1, is ↙3 and is ↘3, separately. We may use the calculus C keeping the first
parity changing step (but maybe moving it by permutative steps interchanging
its place with some steps to 2-neighbors) starting from the following words,
respectively: ↓1 (↙2 (o))|q(1)|(↘2 (o))|q(3)|, ↙3 (↙2 (o))|q(1)|−1(↘2 (o))|q(3)|+1

and ↘3 (↙2 (o))|q(1)|+1(↘2 (o))|q(3)|−1.
Defining γ, δ and ε in the same way, as they were in the case of even paths

with q(2) > 0 (Notation 2), one can obtain the final result for this, most complex
case.

Theorem 6. Let q(q(1), q(2), q(3)) be a pixel of the triangular grid such that
q(1) + q(2) + q(3) = 1 and q(2) > 0. Then, the number of shortest paths from
the origin (0, 0, 0) to q is given by

28 B. Nagy and A. Akkeleş

min{|q(1)|−1,|q(3)|−1}∑
γ=0

� |q(3)|−1−γ
2 �∑

δ=0

� |q(1)|−1−γ
2 �∑

ε=0

(γ+δ+ε)!(q(2)−2
|q(1)|−1−γ−2ε)(|q(3)|+γ+2ε

|q(3)|−1−γ−2δ)
γ! δ! ε! +

+
min{|q(1)|,|q(3)|−2}∑

γ=0

� |q(3)|−2−γ
2 �∑

δ=0

� |q(1)|−γ
2 �∑

ε=0

(γ+δ+ε)!(q(2)−2
|q(1)|−γ−2ε)(|q(3)|−1+γ+2ε

|q(3)|−2−γ−2δ)
γ! δ! ε! +

+
min{|q(1)|−2,|q(3)|}∑

γ=0

� |q(3)|−γ
2 �∑

δ=0

� |q(1)|−2−γ
2 �∑

ε=0

(γ+δ+ε)!(q(2)−2
|q(1)|−2−γ−2ε)(|q(3)|+1+γ+2ε

|q(3)|−γ−2δ)
γ! δ! ε! .

6 Concluding Remarks

First, we summarize our main results in Fig. 3 showing the number of shortest
paths (red color) for the indicated pixels. As we have seen instead of the binomial
coefficients that are obtained on the hexagonal lattice, more complex formulae
can be used to compute these values. These numbers can be considered, as
a kind of generalizations of the binomial coefficients using the triangular grid,
and actually, they are the cardinalities of the sets representing trajectories of the
shortest paths on the triangular grid. As we have seen they are closely connected
to generalized traces.

Fig. 3. A part of the triangular grid with the number of shortest paths from the
origin. (The region for which the formulae are directly provided is shown with yellow
background, for the other pixels the values can be obtained by rotating the grid.) (Color
figure online)

We note here that a related result, namely, the number of shortest paths is
computed by using only 1-neighbors (closest neighbors) and at most 2-neighbors
for the triangular grid in [4], in this way, we have completed the task started
there.

References

1. Das, P.P.: An algorithm for computing the number of minimal paths in digital
images. Pattern Recognit. Lett. 9, 107–116 (1988)

2. Das, P.P.: Computing minimal paths in digital geometry. Pattern Recognit. Lett.
10, 595–603 (1991)

3. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

Trajectories and Traces on Non-traditional Regular Tessellations 29

4. Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1-
and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). doi:10.1007/
978-3-319-26145-4 9

5. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image
Process. 4(9), 1213–1222 (1995)

6. Herendi, T., Nagy, B.: Parallel Approach of Algorithms. Typotex, Budapest (2014)
7. Janicki, R., Kleijn, J., Koutny, M., Mikulski, L.: Generalising traces, CS-TR-1436,

Technical report, Newcastle University (2014). Partly presented at LATA 2015
8. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. Trans. Comput. C–25(5),

532–533 (1976)
9. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic con-

straints. Theor. Comput. Sci. 197, 1–56 (1998)
10. Nagy, B.: Finding shortest path with neighborhood sequences in triangular grids.

In: Proceedings of the 2nd ISPA, pp. 55–60 (2001)
11. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J. Com-

put. Inf. Technol. 11, 111–122 (2003)
12. Nagy, B.: Calculating distance with neighborhood sequences in the hexagonal grid.

In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 98–109. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30503-3 8

13. Nagy, B.: Digital geometry of various grids based on neighbourhood structures. In:
KEPAF 2007, 6th Conference of Hungarian Association for Image Processing and
Pattern Recognition, Debrecen, pp. 46–53 (2007)

14. Nagy, B.: Distances with neighbourhood sequences in cubic and triangular grids.
Pattern Recognit. Lett. 28, 99–109 (2007)

15. Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: Pro-
ceedings of the 6th ISPA, pp. 432–437 (2009)

16. Nagy, B.: Weighted distances on a triangular grid. In: Barneva, R.P., Brimkov,
V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 37–50. Springer, Cham
(2014). doi:10.1007/978-3-319-07148-0 5

17. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal
and on the triangular grids. Ann. Math. Artif. Intell. 75, 117–134 (2015)

18. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata accept
all rational trace languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.)
LATA 2010. LNCS, vol. 6031, pp. 463–474. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13089-2 39

19. Nagy, B., Otto, F.: An automata-theoretical characterization of context-free trace
languages. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 406–417. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18381-2 34

20. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata governed
by an external pushdown store. RAIRO-ITA 45, 413–448 (2011)

21. Nagy, B., Otto, F.: On CD-systems of stateless deterministic R-automata with
window size one. J. Comput. Syst. Sci. 78, 780–806 (2012)

22. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
23. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit.

1, 33–61 (1968)
24. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.

Springer, Heidelberg (1997)
25. Stojmenovic, I.: Honeycomb networks: topological properties and communication

algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)

http://dx.doi.org/10.1007/978-3-319-26145-4_9
http://dx.doi.org/10.1007/978-3-319-26145-4_9
http://dx.doi.org/10.1007/978-3-540-30503-3_8
http://dx.doi.org/10.1007/978-3-319-07148-0_5
http://dx.doi.org/10.1007/978-3-642-13089-2_39
http://dx.doi.org/10.1007/978-3-642-13089-2_39
http://dx.doi.org/10.1007/978-3-642-18381-2_34

On Sets of Line Segments
Featuring a Cactus Structure

Boris Brimkov(B)

Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
boris.brimkov@rice.edu

Abstract. In this paper we derive sharp upper and lower bounds on
the number of intersections and closed regions that can occur in a set of
line segments whose underlying planar graph is a cactus graph. These
bounds can be used to evaluate the complexity of certain algorithms
for problems defined on sets of segments in terms of the cardinality of
the segment sets. In particular, we give an application in the problem
of finding a path between two points in a set of segments which travels
through a minimum number of segments.

Keywords: Set of segments · Cactus graph · Segment intersections ·
Segment cycle

1 Introduction

Sets of straight line segments with special structures and properties appear
in various applications of geometric modeling, such as scientific visualization,
computer-aided design, and medical image processing. Such segment sets with a
special structure are investigated in the present paper.

Let M be a set of line segments in the plane, and M be the union of all
points of segments in M ; exclude from consideration the degenerate case of
intersecting collinear segments which can be merged into a single segment. Let
P be the set of all intersection points of segments in M and C be the set of closed
bounded regions into which the segments in M partition the plane. Let |M | = m,
|P | = p, and |C| = c, where | · | denotes set cardinality. The following are well-
known relations between these quantities which hold for arbitrary segment sets:
p ≤ m(m−1)

2 , c ≤ (m−1)(m−2)
2 . Both bounds are sharp, i.e., there are classes

of segment sets for which the bounds hold with equality. For special classes of
segment sets, better bounds can be derived. For example, if a set of segments
features a “tree” structure, then p ≤ m − 1 and c = 0.

These kinds of bounds can be used to analyze the time and space complex-
ity of algorithms for finding the intersections and bounded regions occurring
in a set of segments in terms of m, p, and c; these are fundamental tasks in
computational geometry and have been widely studied (cf. [1,3,13,20,21]). For
example, Balaban’s algorithm for finding segment intersections [1] runs in opti-
mal O(m log m + p) time and O(m) space. For special classes of graphs, an
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 30–39, 2017.
DOI: 10.1007/978-3-319-59108-7 3

On Sets of Line Segments Featuring a Cactus Structure 31

estimation of p in terms of m can yield a better bound on the time and space
complexity of existing algorithms. For instance, for the aforementioned class of
segment sets which feature a tree structure, the time complexity of Balaban’s
algorithm simplifies to O(m log m), while for general segment sets the algorithm
may require Ω(m2) arithmetic operations.

In the present paper, we obtain sharp bounds on p and c for the class of
segment sets which feature a cactus structure, i.e., a structure where the bound-
aries of any two closed regions share at most one point. We show that for such
segment sets, p ≤ 2(m − k1) − 3k2 and c ≤ (m − k1) − 2k2, where k1 and k2 are
the numbers of connected components of M consisting, respectively, of a single
segment and multiple segments. Both bounds are sharp, as they are attained
for certain classes of segment sets. We also illustrate how these bounds can be
used to estimate and compare the running times of certain algorithms for com-
putation of intersections in a set of segments and for finding a path between two
points in a set of segments which travels through a minimum number of seg-
ments. See [5,7–11,14,17] and the bibliographies therein for other applications
of computing p and c, as well as for techniques and results on other problems
defined on segment sets and on graphs constructed through segment sets.

2 Preliminaries

Let M be a set of m segments in the plane, and M be the union of all points
of segments in M . Let P (M) and J(M) be the set of all intersections and the
set of all end-points of segments from M , respectively (note that P ∩ J may
be non-empty); when there is no scope for confusion, dependence on M will be
omitted. Let GM = (V,E) be a plane graph whose vertex set is P ∪J and where
vertices u and v are adjacent whenever there is a segment s ∈ M which contains
u and v, such that there is no w ∈ V ∩ s that is between u and v.

By a cycle of M we will mean any closed simple polygonal curve in M . By a
cycle segment set of M we will mean the set of segments in M that contribute
to a cycle of M by more than a single point. There is a one-to-one correspon-
dence between the cycles of M , the cycle segment sets of M , and the bounded
faces of GM (in the planar embedding induced by M). We will call a connected
component of M trivial if it consists of a single segment, and nontrivial if it con-
tains two or more segments. Let k1 denote the number of trivial components of
M , and k2 denote the number of nontrivial components of M . Given a segment
s ∈ M , M\s denotes the union of all points of segments in M\{s}.

A cut vertex of a graph G is a vertex whose deletion increases the number of
connected components of G. A biconnected component or block of G is a maximal
subgraph of G which has no cut vertices. An isomorphism between graphs G1

and G2 will be denoted by G1 � G2. Given a vertex v of G, G − v will denote G
with v removed, along with all edges incident to v. A vertex of G is a leaf if it
has a single neighbor in G.

A graph G is called a cactus graph (or simply a cactus) if any two cycles of
G have at most one vertex in common. Every edge of a cactus graph belongs to

32 B. Brimkov

at most one cycle, and the biconnected components of a cactus graph are either
cycles or single edges; see Fig. 1, left, for an example of a cactus graph. Properties
of cactus graphs have been studied with some applications in mind; for example,
cactus graphs arise in the theory of condensation in statistical mechanics, and in
the design of telecommunication systems, material handling networks, and local
area networks. For more applications, properties, and problems solved on cactus
graphs, see [2,6,15,16,18,19] and the bibliographies therein.

We will say that a set of segments M is a segment cactus if the graph GM is
a cactus; see Fig. 1, right, for an example. By definition, two cycles of a segment
cactus can have at most one vertex in common, i.e., they cannot share a portion
of a segment different from a point. Thus, there is a one-to-one correspondence
between the cycles of M , the cycle segment sets of M , and the cycles of GM (as
well as the faces of GM in the embedding induced by M). If a segment cactus
has no cycles, it is a segment forest; if the set of segments is also connected, then
it is a segment tree. Thus T is a segment tree if and only if the corresponding
graph GT is a tree.

Fig. 1. Left: An example of a cactus graph. Right: An example of a segment cactus
with two of its cycles marked by thick lines.

When there is no scope for confusion, some of the definitions introduced in
this section may be applied to M and M interchangeably, e.g., we may refer to
a cycle segment set of M or a connected component of M .

3 Main Results

We begin this section with some preliminary observations about segment sets,
and then present several structural results on segment cacti. It is well-known
(cf. [22]) that every planar graph has an embedding where its edges are mapped
to straight line segments. Let G be an arbitrary planar graph, and ̂G be a
straight-line embedding of G. If the edges incident to some degree 2 vertex v of
G are drawn in ̂G as collinear segments, then v can be slightly shifted so that
the segments incident to it are no longer collinear. This implies the following
observation.

On Sets of Line Segments Featuring a Cactus Structure 33

Observation 1. For any planar graph G, there exists a segment set M such
that GM � G.

By definition, each of the k1 trivial components of a segment set M consist of
a single segment, and each of the k2 nontrivial components of M consist of at
least two segments; thus, we have the following observation.

Observation 2. For any segment set M , m ≥ k1 + 2k2.

Moreover, since the segments in each nontrivial component are connected, each
nontrivial component must have at least one intersection point.

Observation 3. For any segment set M , p ≥ k2.

If M is a segment forest with trivial components t1, . . . , tk1 and nontrivial com-
ponents T1 . . . , Tk2 , then there can be at most |Ti| − 1 intersections in each
nontrivial component Ti, which occurs when no three segments have a common
intersection point. This implies the following bound on the number of intersec-
tions in a segment forest.

Observation 4. If M is a segment forest, then p ≤ m − k1 − k2.

Note that if M is a connected segment cactus different from a segment tree,
the graph GM = (V,E) satisfies the inequality |V | ≤ |E|. However, it is not
necessarily the case that |P | ≤ |M |: while a graph edge is incident to exactly
two vertices, a segment from M can contain arbitrarily many intersections with
other segments.

The next result concerns segments whose removal does not affect the con-
nectivity of an arbitrary segment set; a consequence of this result will be used
in the sequel.

Proposition 1. For any nontrivial connected segment set M , there are at least
two segments sa and sb in M such that M\sa and M\sb are connected.

Proof. Let H be a graph which has a vertex for each segment in M , and where
two vertices are adjacent whenever the corresponding segments intersect in M .

Let sx and sy be any two vertices of H, and x and y be non-intersection points
respectively belonging to the segments sx and sy in M . Since M is connected,
there is a path x, p1, . . . , pk, y between x and y, where p1, . . . , pk are parts of
segments (or entire segments) of M . In particular, let pt ⊆ sit for 1 ≤ t ≤ k
(where si1 = sx and sik = sy). By construction of H, for 1 ≤ t ≤ k − 1, sit
is adjacent to sit+1 in H. Thus, the path x, p1, . . . , pk, y in M corresponds to a
path sx, si1 , . . . , sik , sy in H, so H is connected.

Since any connected graph with at least two vertices has at least two non-cut
vertices, H has two non-cut vertices sa and sb. We claim that M\sa and M\sb
are connected. To see why, let x and y be any two points in M\sa. If x and y
belong to the same segment, clearly there is a path between them. Otherwise,
let sx and sy respectively be segments containing x and y. Since sa is a non-cut
vertex of H, H−sa is connected. Let sx, si1 , . . . , sik , sy be a simple path between
sx and sy in H − sa. By construction of H, segments sx and si1 intersect in M ;

34 B. Brimkov

thus, there is a path between x and every point in si1 . Similarly, segments si1
and si2 intersect in M , so there is also a path between x and every point in si2 .
Continuing in this fashion, we see that there is a path between x and y in M\sa,
so M\sa is connected; similarly, M\sb is connected. 	

Corollary 1. Any nontrivial segment tree M contains at least two segments sa
and sb such that M\sa and M\sb are connected, and such that sa and sb each
contain a single intersection point.

Proof. By Proposition 1, there are two segments sa and sb such that M\sa and
M\sb are connected; we claim that each of these segments contains a single
intersection point. Indeed, since M is a segment tree and is therefore connected,
sa and sb must each contain at least one intersection point. Suppose for con-
tradiction that sa contains two (or more) intersection points x and y. Since M
is a segment tree, there is only one path, namely along sa, between the seg-
ments which intersect sa at x and y. Then, there will be no path between these
segments in M\sa, a contradiction. 	

Let M be a set of segments and s be a segment of M with endpoints � and r.
Let �′ be the first intersection point in s encountered when moving along s in a
straight line from � to r in M , and r′ be the last intersection point encountered.
We will say that trimming s is the operation of replacing s by a segment s′ with
endpoints �′ and r′; if s has fewer than two intersection points, then trimming s
means deleting s. We will say that trimming M means repeatedly trimming the
segments in M until further trimming yields no difference. Note that it may be
possible to trim a segment, then trim another segment, and then trim the first
segment again. See Fig. 2 for an illustration of trimming.

Fig. 2. Left: Set of segments M . Middle: Trimming every segment of M once. Right:
Trimming M .

Proposition 2. A segment cactus M with c ≥ 1 cycles contains at least two
segments s1 and s2, such that for i ∈ {1, 2},
(A) si belongs to a single cycle segment set Si,
(B) the connected components of M\si which do not contain segments of Si are

segment trees.

On Sets of Line Segments Featuring a Cactus Structure 35

Proof. If c = 1, every segment in the single cycle segment set of M satisfies
properties (A) and (B); thus, assume henceforth that c ≥ 2.

Let Q = {s1, . . . , sq} be a maximal set of segments of M such that for
1 ≤ i ≤ q, si does not belong to any cycle segment set of M , and si is a segment
whose deletion does not disconnect M\{s1, . . . , si−1}. Let M ′ = M\Q. By con-
struction, M and M ′ have the same cycle segment sets; moreover, the connected
components of M\M ′ (i.e. of Q) are segment trees. Hence, for any segment
s ∈ M ′, the connected components of M\s which do not contain segments of
M ′ are segment trees. Let M ′′ be the set of segments obtained by trimming M ′

(in fact, M ′′ is identical to the set of segments obtained by trimming M). Note
that M , M ′, and M ′′ have the same cycles.

GM ′′ has no leaves, since a leaf of GM ′′ would have to be an endpoint of a seg-
ment inM ′′, and all endpoints of segments inM ′′ are also intersection points. Thus,
all outer blocks of GM ′′ (i.e., biconnected components with a single cut vertex) are
cycles. Since c ≥ 2 and since M and M ′′ have the same cycles, it follows that GM ′′

has at least two cycles; thus, GM ′′ has at least two outer blocks which are cycles,
say C1 and C2. Let S1 and S2 be the cycle segment sets in M corresponding to C1

and C2, respectively. For i ∈ {1, 2}, exactly two edges of Ci in GM ′′ are incident
to the cut vertex vi of Ci; thus, in M , vi corresponds to an intersection point of at
most two segments of Si. Since Si contains at least three segments, there is a seg-
ment si ∈ Si which does not contain vi as an intersection point in M . Then, since
Ci is an outer cycle, si does not belong to any other cycle segment set of M , i.e., si
satisfies property (A). Furthermore, the connected components of M\si which do
not contain segments of Si also do not contain segments of M ′; however, as shown
above, the connected components of M\si which do not contain segments of M ′

are segment trees. Thus, si satisfies property (B). 	

Combining the previous results, we will now derive sharp bounds on the
number of intersections and cycles in a segment cactus.

Theorem 1. If M is a segment cactus, then:

k2 ≤ p ≤ 2(m − k1) − 3k2 (1)

0 ≤ c ≤ (m − k1) − 2k2. (2)

Proof. The lower bound in (1) follows from Observation 3, and the lower bound
in (2) follows from the fact that a segment forest is also a segment cactus.

If M is a segment forest, then p ≤ 2p − k2 ≤ 2(m − k1 − k2) − k2 = 2(m −
k1) − 3k2, where the first inequality follows from Observation 3 and the second
inequality follows from Observation 4; this establishes the upper bound in (1).
Likewise, if M is a segment forest, then the upper bound in (2) follows from
Observation 2 and the fact that c = 0. Thus, it remains to be shown that the
upper bounds in (1) and (2) hold for the case when the segment cactus is not a
segment forest, i.e., when c ≥ 1, and hence m ≥ 3. We will proceed by induction

36 B. Brimkov

on m. Both inequalities clearly hold for m = 3. Assume the inequalities hold for
some m ≥ 3 and let M be a segment cactus with m + 1 segments.

By Proposition 2, M contains a segment s1 which belongs to a single cycle
segment set S1, such that the connected components of M\s1 which do not
contain segments of S1 are segment trees. If M\s1 does not have any connected
components which do not contain segments of S1, let s∗ = s1. Note that in
this case, deleting s∗ from M decreases the number of intersection points by at
most two, and the number of cycles by one. If M\s1 has at least one connected
component T which does not contain segments of S1, T is a segment tree which
can only intersect s in a single point, since otherwise s would be part of at least
two cycles. If T consists of a single segment, let s∗ be that segment. If T contains
at least two segments, then by Corollary 1, T contains two segments sa and sb,
each having a single intersection point, such that removing either one of them
from T does not disconnect T . If neither sa nor sb intersect s, let s∗ = s1. If
exactly one of sa and sb intersects s, let s∗ be the segment among sa and sb
which does not intersect s. If both sa and sb intersect s, then s, sa, and sb must
all intersect in the same point; in this case, let s∗ = s1. In each of these cases,
deleting s∗ from M decreases the number of intersection points by at most one,
and does not affect the number of cycles.

Thus, the segment cactus M\s∗ has m segments, p − i intersection points
for some i ∈ {0, 1, 2}, and c − j cycles for some j ∈ {0, 1}. By the induction
hypothesis, p − i ≤ 2(m − k1) − 3k2. Then, for the segment cactus M with
m + 1 segments and p intersections, we obtain p ≤ 2(m − k1) − 3k2 + i ≤
2(m−k1)−3k2+2 = 2(m+1−k1)−3k2. Similarly, by the induction hypothesis,
c− i ≤ (m−k1)−2k2. Then, for the segment cactus M with m+1 segments and
c cycles we obtain c ≤ (m−k1)−2k2+i ≤ (m−k1)−2k2+1 = (m+1−k1)−2k2.
This concludes the inductive step and establishes the inequalities. 	

Observation 5. The upper and lower bounds in (1) and (2) hold with equality
for classes of segment cacti like the ones in Fig. 3.

Fig. 3. Left: A class of segment sets for which the lower bounds in (1) and (2) hold
with equality. Right: A class of segment sets for which the upper bounds in (1) and (2)
hold with equality.

4 Applications

4.1 Finding Intersections

The inequalities derived in Theorem 1 can be used to evaluate and compare the
running times of certain algorithms when these are applied to segment sets with a

On Sets of Line Segments Featuring a Cactus Structure 37

cactus structure. Consider the algorithms of Bentley-Ottmann [3], Chazelle [13],
and Balaban [1] which compute all intersections in a given set of segments. The
time complexities of these algorithms are respectively O((m + p) log m), O(p +
m log2 m
log logm), and O(p + m log m), the last one being optimal for general segment
sets. The worst case performance of these algorithms is achieved for sets of
segments with Ω(m2) intersections, and is respectively Ω(m2 log m) for Bentley-
Ottmann’s algorithm, and Ω(m2) for Chazelle’s and Balaban’s algorithms. Thus,
regarding worst case time complexity, Chazelle’s and Balaban’s algorithms are
superior to Bentley-Ottmann’s algorithm. However, if a segment set has a cactus
structure, Bentley-Ottmann’s and Balaban’s algorithms run in O(m log m) time
and are superior to Chazelle’s algorithm, which runs in O(m log2 m

log logm) time.
Chen and Chan [12] modified Bentley-Ottmann’s algorithm to an O((m +

p) log m)-time in-place algorithm, i.e., an algorithm which uses O(1) cells of
memory in addition to the input array, and whose output is printed in write-
only space; likewise, Vahrenhold [4,23] presented an in-place modification of
Balaban’s algorithm with an O(m log2 m+p) time complexity. As in the original
versions of the two algorithms discussed above, in terms of worst-case time com-
plexity, the in-place version of Balaban’s algorithm is superior to the in-place
version of Bentley-Ottmann’s algorithm, as they require Ω(m2) and Ω(m2 log m)
time, respectively. However, on a segment set with a cactus structure, the latter
runs in O(m log m) time and is superior to the former which runs in O(m log2 m)
time.

4.2 Constrained Shortest Path

Let M be an arbitrary connected segment set, and x and y be two points in
M . Consider the problem of finding a path between x and y such that the
path consists of a minimum number of segments (or parts of segments) of M .
This problem could model a scenario where segments represent different lines
of public transportation, where transfer times between lines is high compared
to travel time along a line; thus, one would be interested to find a route which
requires the fewest transfers.

To find such a path, let H be the graph defined in Proposition 1. Given a
simple path s1, . . . , sk in H, for 1 ≤ i ≤ k − 1, let xi be the intersection point
between the segments in M corresponding to si and si+1. For 2 ≤ i ≤ k − 1, let
pi ⊆ si be the segment with endpoints xi−1 and xi; for some points x0 ∈ s1 and
xk ∈ sk, let p1 ⊆ s1 and pk ⊆ sk respectively be the segments with endpoints
x0, x1, and xk−1, xk. Then, p1, . . . , pk is a path in M corresponding to the path
s1, . . . , sk in H.

Now, if a path between points x and y in M passes through the smallest num-
ber of segments, it must also pass through the smallest number of intersections;
thus, such a path in M corresponds to a path with the smallest number of edges
between sx and sy in H, where sx and sy are respectively segments containing
x and y. If one or both of x and y are intersection points in M , then H can be
modified by adding new nodes s′

x and s′
y which are respectively adjacent to all

38 B. Brimkov

of the nodes corresponding to segments which intersect at x and y in M ; then,
the shortest path between s′

x and s′
y would correspond to the path in M with

the minimum number of segments.
Since H has m vertices and p edges, the path with the smallest number of

edges between sx and sy in H can be found by breadth first search in O(m + p)
time. For a general segment set, the worst case run time of this procedure could
be Ω(m2); however, if the segment set has a cactus structure, by Theorem 1, the
run time would be O(m).

5 Concluding Remarks

In this paper, we derived bounds on the number of intersections and closed
regions that can occur in segment cacti. These bounds can be used to evaluate the
complexity of certain algorithms for problems defined on sets of segments, and,
in some cases, to conclude that a generally sub-optimal algorithm outperforms
a generally optimal algorithm when applied to a segment cactus. It would be
interesting to derive similar upper and lower bounds on p and c for other special
classes of segment sets, for example those corresponding to maximal outerplanar
or maximal planar graphs.

Acknowledgements. We thank the three anonymous reviewers for their valuable
comments. This material is based upon work supported by the National Science Foun-
dation under Grant No. 1450681.

References

1. Balaban, I.J.: An optimal algorithm for finding segment intersections. In: Proceed-
ings of 11-th Annual ACM Symposium on Computational Geometry, pp. 211–219
(1995)

2. Ben-Moshe, B., Dvir, A., Segal, M., Tamir, A.: Centdian computation in cactus
graphs. J. Graph Algorithms Appl. 16(2), 199–224 (2012)

3. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. 28, 643–647 (1979)

4. Bose, P., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Vahrenhold, J.: Space-
efficient geometric divide-and-conquer algorithms. Comput. Geometry 37(3), 209–
227 (2007)

5. Brévilliers, M., Chevallier, N., Schmitt, D.: Triangulations of line segment sets in
the plane. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
388–399. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77050-3 32

6. Brimkov, B., Hicks, I.V.: Memory efficient algorithms for cactus graphs and block
graphs. Discrete Appl. Math. 216, 393–407 (2017)

7. Brimkov, V.E.: Approximability issues of guarding a set of segments. Int. J. Com-
put. Math. 90(8), 1653–1667 (2013)

8. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments
in the plane. Theoret. Comput. Sci. 412(15), 1313–1324 (2011)

9. Brimkov, V.E., Leach, A., Wu, J., Mastroianni, M.: Approximation algorithms for
a geometric set cover problem. Discrete Appl. Math. 160, 1039–1052 (2012)

http://dx.doi.org/10.1007/978-3-540-77050-3_32

On Sets of Line Segments Featuring a Cactus Structure 39

10. de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A., Noy, M.: Triangle-free planar
graphs and segment intersection graphs. J. Graph Algorithms Appl. 6(1), 7–26
(2002)

11. Chan, T.M., Chen, E.Y.: Optimal in-place and cache-oblivious algorithms for 3-
D convex hulls and 2-D segment intersection. Comput. Geometry 43(8), 636–646
(2010)

12. Chen, E.Y., Chan, T.M.: A space-efficient algorithm for line segment intersection.
In: Proceedings of the 15th Canadian Conference on Computational Geometry, pp.
68–71 (2003)

13. Chazelle, B.M.: Reporting and counting arbitrary planar intersections. Report CS-
83-16, Department of Computer Science, Brown University, Providence, RI, USA
(1983)

14. Francis, M.C., Kratochv́ıl, J., Vyskočil, T.: Segment representation of a subclass
of co-planar graphs. Discrete Math. 312(10), 1815–1818 (2012)

15. Harary, F., Uhlenbeck, G.: On the number of Husimi trees I. Proc. Natl. Acad. Sci.
39, 315–322 (1953)

16. Husimi, K.: Note on Mayers’ theory of cluster integrals. J. Chem. Phys. 18, 682–684
(1950)

17. Kára, J., Kratochv́ıl, J.: Fixed parameter tractability of independent set in seg-
ment intersection graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 166–174. Springer, Heidelberg (2006). doi:10.1007/
11847250 15

18. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems,
part 1: the p-center. SIAM J. Appl. Math 37, 513–537 (1979)

19. Koontz, W.L.G.: Economic evaluation of loop feeder relief alternatives. Bell Syst.
Tech. J. 59, 277–281 (1980)

20. Preparata, F., Shamos, M.I.: Computational Geometry: An Introduction. Springer,
New York (1985)

21. Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a
graph. Commun. ACM 13, 722–726 (1970)

22. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936)

23. Vahrenhold, J.: Line-segment intersection made in-place. Comput. Geometry 38,
213–230 (2007)

http://dx.doi.org/10.1007/11847250_15
http://dx.doi.org/10.1007/11847250_15

Construction of Thinnest Digital Ellipsoid
Using Inverse Projection

and Recursive Integer Intervals

Papia Mahato and Partha Bhowmick(B)

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

papiamahatostar@gmail.com, bhowmick@gmail.com

Abstract. In this paper, we investigate the problem of characterization
and construction of digital ellipsoid to its thinnest (2-minimal) topo-
logical model. We show how this ellipsoid model admits certain char-
acterization based on isothetic-distance and functional-plane properties.
Based on this novel characterization, we derive certain recurrences on
the integer intervals that contain the values of a specific integer expres-
sion corresponding to the integer points comprising the digital ellipsoid.
This, in turn, helps in designing an efficient algorithm for its construc-
tion in the integer space. The algorithm, in principle, is based on inverse
projection of digital elliptical discs and the functional-plane relation of
voxels comprising the digital ellipsoid.

Keywords: Digital ellipsoid · Digital geometry · Integer intervals ·
Integer algorithm

1 Introduction

Ellipsoid, also known as spheroid, is an important primitive in 3D geometry.
However, unlike other 3D primitives like plane and sphere that have been studied
in digital geometry in great detail, ellipsoid has not been studied up to its merit
till date. Although some work related to lattice point distribution on real ellip-
soid have been reported in [7,14], they do not closely relate to digital-geometric
models of ellipsoid. In this paper, we present a study on an interesting char-
acterization of the topologically thinnest model (2-minimal) of digital ellipsoid,
which eventually leads to designing an efficient algorithm for its construction.

We consider an ellipsoid with integer specification. Further, for brevity, we
take its canonical form, which means its center is (0, 0, 0) and its axes are simply
the coordinate axes. Hence, its equation is

x2

a2
+

y2

b2
+

z2

c2
= 1, (1)

where a, b, and c are integers representing the respective lengths of its semi-
principal axes along x-, y-, and z-directions. Without loss of generality, we
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 40–52, 2017.
DOI: 10.1007/978-3-319-59108-7 4

Digital Ellipsoid 41

assume that a � b � c. For an early reckoning, let us mention here that our
objective is to construct a digital ellipsoid as a topologically well-formed set of
voxels of minimum cardinality such that each voxel in this set lies as much close
as possible to the corresponding real ellipsoid. Figure 1 shows an example of
digital ellipsoid produced by our algorithm.

1.1 Metrics and Topology

We fix here some basic definitions and metrics that are used in the sequel. Let
R

3 be the 3-dimensional euclidean space and Z
3 the 3-dimensional integer space.

A voxel or 3-cell is perceived as a unit cube centered at a point in Z
3 and is thus

also uniquely identified by its center. As shown in Fig. 1, two distinct voxels are
said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent if they share an
edge (1-cell), and 2-adjacent if they share a face (2-cell). According to this, for
k = 1, 2, two voxels are also (k−1)-adjacent whenever they are k-adjacent. So, in
Fig. 1, the 1-adjacent voxels are 0-adjacent too, and hence the 2-adjacent voxels
are both 1- and 0-adjacent.

E3(a, b, c) E3(a, b, c)

Fig. 1. Top: A real ellipsoid with its octants (left) and the corresponding digital ellip-
soid for a = 9, b = 7, c = 4 (right). Bottom: Different adjacency relations.

For k = 0, 1, 2, a k-path means a sequence of voxels where every two consec-
utive voxels are k-adjacent. A voxel set S is k-connected if every two voxels of
S are connected by a k-path. Let S′ be a subset of voxel set S. If S�S′ is not
k-connected, then the set S′ is said to be k-separating in S. A voxel p of S′ is
a simple voxel if S′

� p is also k-separating in S. The set S′ is k-minimal if it
is k-separating in S and does not contain any simple voxel. In particular, S′ is
2-minimal if it is 2-separating in S and does not contain any simple voxel. In the
context of our work, if we consider S′ as the digital ellipsoid and S as Z

3, then S′

42 P. Mahato and P. Bhowmick

Fig. 2. The principle of our algorithm: construction of E3(9, 7, 4) from the inverse
projection of digital elliptical discs, E∗

xy(9, 7), E∗
yz(7, 4), and E∗

xz(9, 4).

is 2-minimal in Z
3 (Definition 1). Removal of any voxel from a 2-minimal surface

produces a tunnel in the surface, thereby destroying the 2-separating property
of the digital surface [9].

Between two points p(i, j, k) and p′(i′, j′, k′) in R
3, the respective x-distance,

y-distance, and z-distance are given by dx(p, p′) = |i − i′|, dy(p, p′) = |j −
j′|, and dz(p, p′) = |k − k′|. Consequently, the isothetic distance between
p and p′ is taken as the Minkowski norm [13], given by d∞(p, p′) =
max{dx(p, p′), dy(p, p′), dz(p, p′)}. The isothetic distance of the point p(i, j, k)
from a surface Γ is given by d⊥(p, Γ) = min{dx(p, Γ), dy(p, Γ), dz(p, Γ)}; here,
dx(p, Γ) = dx(p, q) if there exists a (the nearest, if there is more than one)
point q(x, j, k) on Γ , and ∞ otherwise; similarly, dy(p, Γ) = dy(p, q) if there
exists a point q(i, y, k) on Γ , and ∞ otherwise; and dz(p, Γ) = dz(p, q) if there
exists a point q(i, j, z) on Γ , and ∞ otherwise. Following this definition, the
isothetic distance between of a point p from a real ellipsoid E3 is given by
d⊥(p,E3) = min{dx(p,E3), dy(p,E3), dz(p,E3)}.

1.2 Digital Ellipsoid and Its Octants

We denote by Fxy, Fxz, and Fyz the xy-, xz-, and yz-coordinate planes, respec-
tively. We denote by E3(a, b, c) the real ellipsoid that follows Eq. 1. Its projections
on Fxy, Fxz, and Fyz are 2D ellipses, which are denoted by Exy(a, b), Exz(a, c),
and Eyz(b, c), respectively. The respective digital ellipses of these 2D ellipses are
denoted by Exy(a, b), Exz(a, c), Eyz(b, c).

We denote by E(t)
xy (a, b) the arc of the digital ellipse Exy(a, b) lying in the

t-th quadrant, where 1 � t � 4. For t = 1 in particular, E(t)
xy (a, b) contains all

integer points of Exy(a, b) with x, y � 0. As explained in [16,19], a digital ellipse
in canonical form is 4-symmetric by constitution, as it comprises four symmetric
digital arcs lying in four quadrants. Hence, each digital elliptical disc (i.e., a
digital elliptical disc given by the union of the digital ellipse and its interior
integer points), namely E∗

xy, E∗
xz, or E∗

yz, is also 4-symmetric on its containing
plane. An example is shown in Fig. 2.

Digital Ellipsoid 43

Fig. 3. Hemi-ellipsoid H3(9, 7, 4). Left: yellow = voxels with one axis-parallel distance
(dx, dy, or dz) from E3 � 1

2
, saffron = with two axis-parallel distances � 1

2
, red = with

max{dx, dy, dz} � 1
2
. Right: yellow = dx � 1

2
, white = dx > 1

2
. (Color figure online)

We use the notation E3 or E3 instead of E3(a, b, c) or E3(a, b, c), for notational
simplicity. Similar simplicity is also followed for other notations whenever it is
clear from the context.

A digital ellipsoid means a set of voxels or integer points obtained by dis-
cretization/voxelization of a real ellipsoid. Based on the topological frame-
work of discretization, a digital ellipsoid can be modeled as naive, standard,
or supercover—the three usual models found for other geometric primitives like
plane or sphere. Out of these three, naive model is the thinnest and it is the
model we consider in our work. Consequently, for our work, we define a digital
ellipsoid as follows.

Definition 1. A digital ellipsoid E3 is a 2-minimal set of voxels such that
max
p∈E3

d⊥(p,E3) is minimized.

With respect to the three coordinate planes, a real or a digital ellipsoid can
be divided into 23 = 8 symmetric octants. We denote the t-th octant of E3 by
E(t)
3 , where 1 � t � 8, and represent it by a 3-bit number of value t − 1, as

shown in Fig. 1. Owing to the 8-symmetry, we characterize only the first octant
E(1)
3 (0 � x � a, 0 � y � b, 0 � z � c) of a digital ellipsoid, discretize it based on

this characterization, and then take the reflection of the resultant set about the
coordinate planes in order to construct the full ellipsoid.

2 Inverse Projection

The projection of a digital ellipsoid on each of the coordinate planes is a digital
ellipse. Further, as we show in this section, each coordinate plane acts as a
functional plane for a subset of the voxel set comprising the digital ellipsoid.

2.1 Functional Plane

A coordinate plane is said to be functional to a voxel set S if every two voxels in
S have distinct projections (pixels) on that plane [5]. We extend this to define

44 P. Mahato and P. Bhowmick

the functional plane(s) of each voxel p in S. For this, we denote by A
(2)
x (p) (resp.,

A
(2)
y (p) and A

(2)
z (p)) the pair of 2-adjacent voxels of p along x-axis (resp., along

y- and z-axes). A coordinate plane, say Fxy, is said to be functional to a voxel
p ∈ S if and only if A

(2)
z (p) ∩ S = ∅. That is, Fxy is functional to p if and

only if its projection on Fxy does not coincide with that of any of its 2-adjacent
voxels from S. Clearly, each of the coordinate planes is functional to p if and
only if it has no 2-adjacent voxel in S, and none is functional to p if A

(2)
x (p) ∩ S,

A
(2)
y (p) ∩ S, and A

(2)
z (p) ∩ S are all nonempty. In Fig. 3, we have shown a hemi-

ellipsoid/hemispheroid given by H3 =
4⋃

t=1
E(t)
3 . We have the following theorem

on the functional-plane property of digital ellipsoid.

Theorem 1 (Voxel functional plane). For each voxel of a digital ellipsoid,
there exists at least one functional plane.

Proof. Let p be a voxel in E3. Assume that none of the coordinate planes is
functional to p. So, p has at least one 2-adjacent voxel in E3 from each of
A

(2)
x , A

(2)
y , A

(2)
z . Let these voxels be px, py, pz, respectively. One such configu-

ration (out of eight possible) is shown in the inset figure. Clearly, if p is removed
from E3, then E3 still remains 2-separating, as the set {px, py, pz} does not permit
any 2-path to pass through. This means E3 is not 2-minimal, which contradicts
Definition 1, whence the proof. ��

We use Theorem 1 for construction of a digital ellipsoid using
an inverse projection of the digital elliptical discs from their cor-
responding functional planes, that is, from Z

2 to Z
3. For construc-

tion of the digital elliptical discs, we use a standard algorithm, e.g.,
[12,16,19]. The mapping from digital ellipsoid to a elliptical disc
on its functional plane is surjective in nature, wherefore an inte-
ger point of the elliptical disc does not necessarily map to a unique
voxel of the digital ellipsoid during inverse projection. Herein comes the chal-
lenge of identifying the right voxels while constructing the digital ellipsoid by
inverse projection from three functional planes. For this, we define the voxel set
E+
3 = {p ∈ Z

3 : d⊥(p,E3) � 1
2}. We first show that E+

3 is 2-separating and
thereby contains E3 as its subset. Subsequently, on removing the simple voxels
from E+

3 , we get E3. We first have the following lemma for this.

Lemma 1. If pin and pex are 2-adjacent to each other with pin in the interior
and pex in the exterior or on the surface of E3, then either d⊥(pin, E3) � 1

2 or
d⊥(pex, E3) � 1

2 .

Proof. As pin and pex are 2-adjacent to each other, we have dz(pin, pex) = 1.
Let, w.l.o.g., the respective coordinates of pin and pex be (i, j, k) and (i, j, k +1).
Hence, if dz(pin, E3) � 1

2 , then dz(pex, E3) � 1
2 . Since d⊥(pex, E3) � dz(pex, E3),

the result follows. ��
Theorem 2 (2-separating). The voxel set E+

3 is 2-separating and hence
tunnel-free.

Digital Ellipsoid 45

Proof. We prove by contradiction. Let us assume that E+
3 is not tunnel-free.

Then there exists a 2-path in Z
3
�E+

3 connecting the interior and the exterior of
E+
3 . Let us consider one such 2-path p1 � pn, where p1 lies inside of E3 and pn

on the surface or outside of E3. The path p1 � pn can be partitioned into two
sub-paths: p1 � pin lying inside E3 and pex � pn outside E3. Clearly, pin and
pex are 2-adjacent to each other. Hence, by Lemma 1, either pin � 1

2 or pex � 1
2 ,

which implies either pin or pex belongs to E+
3 —a contradiction. ��

To determine the necessary and sufficient condition of deciding whether a
voxel is simple in E+

3 , we need the following theorem.

Theorem 3 (Simpleness). A voxel p in E+
3 is ‘simple’ if and only if

A
(2)

E+
3

(p) :=
∣
∣
∣A(2)

x (p) ∩ E+
3

∣
∣
∣ ·

∣
∣
∣A(2)

y (p) ∩ E+
3

∣
∣
∣ ·

∣
∣
∣A(2)

z (p) ∩ E+
3

∣
∣
∣ � 1. (2)

Proof. For the forward proof, let p satisfy Eq. 2. Then by this equation, each of
the sets A

(2)
x (p), A

(2)
y (p), and A

(2)
z (p) contains at least one voxel from E+

3 � {p},
or equivalently, there is at least one 2-adjacent voxel of p along each of the three
principal (i.e., x, y, z) directions. Hence, removal of p from E+

3 does not give
rise to a 2-path, since the 2-adjacent voxels of p along either of these directions
around p does not permit any 2-path to cross the surface of E3. Thus, p is a
simple voxel.

Conversely, if p is a simple voxel, then it must have at least one 2-adjacent
voxel in each of the three sets, A

(2)
x (p) ∩ E+

3 , A
(2)
y (p) ∩ E+

3 , A
(2)
z (p) ∩ E+

3 , because
otherwise the union of these sets would contain a voxel q such that d⊥(q, E3) � 1

2 ,
which violates the definition of E+

3 . This sets Eq. 2 in place. ��
Theorem 4 (Digital ellipsoid). The voxel set comprising a digital ellipsoid
is given by

E3 =
{

p :
(
d⊥(p,E3) � 1

2

)
∧

(
A

(2)

E+
3

(p) = 0
)}

. (3)

Proof. Follows from the definition of E+
3 , its 2-separating property (Theorems 2

and 3). ��

2.2 Isothetic Distance

The relation between the isothetic distance of a voxel of a digital ellipsoid and
its functional plane aids in framing the integer intervals that are required during
construction of the digital ellipsoid. We first put here the following lemma.

Lemma 2. The axis-parallel distances of each voxel p(i, j, k) ∈ E3(a, b, c) from
E3(a, b, c) are given as follows.

dx(p,E3) =
∣
∣|i| − a

bc

√
b2c2 − c2j2 − b2k2

∣
∣ if Fyz is functional. (4a)

dy(p,E3) =
∣
∣|j| − b

ac

√
a2c2 − c2i2 − a2k2

∣
∣ if Fxz is functional. (4b)

dz(p,E3) =
∣
∣|k| − c

ab

√
a2b2 − b2i2 − a2j2

∣
∣ if Fxy is functional. (4c)

46 P. Mahato and P. Bhowmick

Proof. The above equations can easily be derived from the definition of distance
metrics given in Sect. 1.1, using elementary algebraic steps. ��

Using Lemma 2, we get the isothetic distance for each voxel p in the dig-
ital ellipsoid E3 from the corresponding real ellipsoid E3, which is given by
d⊥(p,E3) = min{dx(p,E3), dy(p,E3), dz(p,E3)}. However, for efficient com-
putation, we do not directly use this distance metric in the algorithm for con-
struction of E3. Instead, we use the inverse projection from the digital elliptical
discs on the three coordinate planes as follows. The inverse projection of a pixel
in a digital elliptical disc is a voxel set that satisfies Eq. 3. Union of all these
voxels obtained by inverse projection yields the required solution. The rationale
lies in the following theorem.

Theorem 5 (Inverse projection). If a voxel p ∈ E(1)
3 has more than one

functional plane, then the inverse projections of its corresponding pixels from
these functional planes map to a unique and same voxel in E(1)

3 , which is p.

Proof. Let, w.l.o.g., both Fxy and Fxz be functional to the voxel p ∈ E(1)
3 . Let

the respective projections of p on these two functional planes be p′ and p′′.
Since inverse projection maps a pixel to one or more voxels satisfying Eq. 3, the
inverse (p′)−1 of p′ would belong to E3 and thus would be non-simple. Hence, as
per Eq. 4c, the z-coordinate of (p′)−1 can be positive or negative, which implies
it is a unique voxel in E(1)

3 . A similar argument holds for p′′ too, whence (p′)−1 =
(p′′)−1 = p. ��

3 Integer Intervals

We derive here the recurrences on integer intervals that are used in the algo-
rithm for digital ellipsoid construction discussed in Sect. 4. As the ellipsoid is
8-symmetric, we discuss here the result for E(1)

3 .

Lemma 3. Fxy is functional to a voxel p(i, j, k) ∈ E(1)
3 (a, b, c) if and only if p

is non-simple and

4a2b2c2 − (2abk + ab)2 � 4c2(b2i2 + a2j2) < 4a2b2c2 − (2abk − ab)2. (5)

Proof. By Theorem 4, the two conditions “p ∈ E(1)
3 ” and “Fxy is functional”

equivalently imply that p is non-simple and dz(p,E3) � 1
2 . By Lemma 2 and

Eq. 4c, dz(p,E3) =
∣
∣k − c

ab

√
a2b2 − b2i2 − a2j2

∣
∣. So, equivalently,

−1
2

� k − c

ab

√
a2b2 − b2i2 − a2j2 <

1
2

⇐⇒ k − 1
2

<
c

ab

√
a2b2 − b2i2 − a2j2 � k +

1
2

⇐⇒ ab(2k − 1) < 2c
√

a2b2 − b2i2 − a2j2 � ab(2k + 1)
⇐⇒ 4a2b2c2 − (2abk + ab)2 � 4c2(b2i2 + a2j2) < 4a2b2c2 − (2abk − ab)2,

Digital Ellipsoid 47

as a, b, c, i, j, k are all integers. ��
In line with the above theorem, the following two corollaries are symmetri-

cally provable.

Corollary 1. Fyz is functional to a voxel p(i, j, k) ∈ E(1)
3 (a, b, c) if and only if

p is non-simple and
4a2b2c2 − (2bci + bc)2 � 4a2(c2j2 + b2k2) < 4a2b2c2 − (2bci − bc)2.

Corollary 2. Fxz is functional to a voxel p(i, j, k) ∈ E(1)
3 (a, b, c) if and only if

p is non-simple and
4a2b2c2 − (2acj + ac)2 � 4b2(c2i2 + a2k2) < 4a2b2c2 − (2acj − ac)2.

We refine Lemma 3 to deduce the recursive intervals, as stated next.

Theorem 6. Fxy is functional to a voxel p(i, j, k) ∈ E3(a, b, c) if and only if p
is non-simple and 4c2(b2i2 + a2j2) lies in the interval In = [un, vn := un + ln),
where k = c − n, n � 0, and un and ln are given as follows.

un =
{

4a2b2c2 − (2abc + ab)2 if n = 0
un−1 + ln−1 otherwise

ln =
{

8a2b2c if n = 0
ln−1 − 8a2b2 otherwise

(6)

Proof. We get u0 and l0 corresponding to n = 0 by substituting k = c in Eq. 5.
To get the recurrence of ln for n > 0, observe that ln = 4a2b2c2 − (2ab(c −
n) − ab)2 − 4a2b2c2 + (2ab(c − n) + ab)2 = 8a2b2(c − n), as per Eq. 5. Hence,
ln−1 − ln = 8a2b2(c−n+1)− 8a2b2(c−n) = 8a2b2. To get the recurrence of un,
we substitute k = c − n in Eq. 5 to get vn−1 = 4a2b2c2 − (2ab(c − n + 1) − ab)2,
and substitute k = c − n to get un = 4a2b2c2 − (2ab(c − n) + ab)2 = vn−1. Thus,
un = vn−1 = un−1 + ln−1. ��

For other two functional planes, we have the following corollaries.

Corollary 3. Fyz is functional to a voxel p(i, j, k) ∈ E3(a, b, c) if and only if p
is non-simple and 4a2(c2j2 + b2k2) lies in the interval In = [un, vn := un + ln),
where i = a − n, n � 0, and un and ln are given as follows.

un =
{

4a2b2c2 − (2bca + bc)2 if n = 0
un−1 + ln−1 otherwise

ln =
{

8b2c2a if n = 0
ln−1 − 8b2c2 otherwise

(7)

48 P. Mahato and P. Bhowmick

Corollary 4. Fxz is functional to a voxel p(i, j, k) ∈ E3(a, b, c) if and only if p
is non-simple and 4b2(c2i2 + a2k2) lies in the interval In = [un, vn := un + ln),
where j = b − n, n � 0, and un and ln are given as follows.

un =
{

4a2b2c2 − (2acb + ac)2 if n = 0
un−1 + ln−1 otherwise

ln =
{

8a2c2b if n = 0
ln−1 − 8a2c2 otherwise

(8)

4 Algorithm for Digital Ellipsoid

As mentioned in Sect. 1, we consider the canonical form whereby the ellipsoid is
8-symmetric. The center can be an integer point, since it simply means a trans-
lation on the voxel set of E3 centered at o := (0, 0, 0). For simplicity, however,
we show here in Algorithm 1 the steps with center at o.

In Line 1 of Algorithm 1, we use three 2D arrays for E∗1
xy , E∗1

yz , and E∗1
xz . Their

respective sizes are (a + 1) × (b + 1), (b + 1) × (c + 1), and (a + 1) × (c + 1).
They contain the pixel sets of 1st quadrants of the corresponding digital elliptical
discs on Fxy, Fyz, and Fxz. These pixel sets are generated by the ellipse-drawing
algorithm mentioned earlier.

In Lines 2–4, the procedure GenerateVoxels maps the pixel sets E∗1
xy , E∗1

yz ,
E∗1
xz to (partial) voxel sets of the 1st octant of the digital ellipsoid. Theorem 6,

Corollaries 3 and 4 are used here.
A demonstration of the algorithm is shown in Fig. 4 for construction of

E3(9, 7, 4). The results produced by the procedure GenerateVoxels (Lines 2–4)
are shown step by step. In Line 5 of Algorithm 1, the full voxel set is generated
by symmetry.

Procedure GenerateVoxels first initializes the necessary parameters (Line 1–
Line 3) to generate voxels from E∗1

s (here ‘s’ signifies the coordinate plane).
Procedure InitializeParameters is called for this initialization. In Line 4 of
GenerateVoxels, the first voxel for E(1)

3 is added, based on the value of the
octant t. In the outer while loop (Line 5), i is incremented at unit step along
a particular axis of E∗1

s . In the repeat-until loop (Line 7), j is incremented at

Algorithm 1. Digital Ellipsoid (int a, b, c)
1 Construct E∗1

xy , E∗1
yz , E∗1

xz on Fxy, Fyz, Fxz

2 E(1)
3 ← GenerateVoxels(a, b, c, E∗1

xy , 0)

3 E(1)
3 ← E(1)

3 ∪ GenerateVoxels(b, c, a, E∗1
yz , 1)

4 E(1)
3 ← E(1)

3 ∪ GenerateVoxels(a, c, b, E∗1
xz , 2)

5 E3 ← {(i, j, k) : (|i|, |j|, |k|) ∈ E(1)
3 }

6 return E3

Digital Ellipsoid 49

Procedure GenerateVoxels(a, b, c, E∗1
s , t)

1 int i ← 0, j ← 1, k, u, v, l, n ← 0,m, k0, ni ← 0, nj ← 1, ri, rj , rl
2 InitializeParameters(i, j, k, u, v, l, n,m, ri, rj , rl, a, b, c)
3 m0 ← 0, l0 ← l, k0 ← k

4 if t = 0 then E(1)
3 ← {(0, 0, k)} else if t = 1 then E(1)

3 ← {(k, 0, 0)} else

E(1)
3 ← {(0, k, 0)}

5 while i � a do
6 while (u � m) ∧ (m � v) ∧ (k � 0) do
7 repeat
8 if E∗1

s [i][j] = 1 then
9 if j = 0 then

10 k0 ← k

11 if NotSimple(i, j, k, t) then
12 switch t do
13 case 0

14 E(1)
3 ← E(1)

3 ∪ (i, j, k)

15 case 1

16 E(1)
3 ← E(1)

3 ∪ (k, i, j)

17 case 2

18 E(1)
3 ← E(1)

3 ∪ (i, k, j)

19 m ← m + rj(2nj + 1), nj ← nj + 1, j ← j + 1

20 until m � v
21 k ← k − 1, n ← n + 1
22 u ← u + l, l ← l − rl, v ← u + l

23 i ← i+1, j ← 0, nj ← 0,m0 ← m0+ri(2ni+1),m ← m0, ni ← ni+1, k ← k0
24 UpdateParameters(u, v, k, n, a, b, c)
25 if (u > m) ∨ (m � v) then
26 k ← k − 1
27 UpdateParameters(u, v, k, n, a, b, c)

28 l ← l0 − nrl

29 return E(1)
3

Procedure InitializeParameters(i, j, k, u, v, l, n,m, ri, rj , rl, a, b, c)

1 k ← c, u ← 4a2b2c2 − 2(abk + ab)2

2 v ← 4a2b2c2 − 2(abk − ab)2,m ← 4c2(b2i2 + a2j2)
3 l ← 8a2b2c, rl ← 8a2b2

4 ri ← 4c2b2, rj ← 4c2a2

unit step along another axis of E∗1
s . And in the inner while loop (Line 6), k is

used to compute the value of the third coordinate—as the inverse projection—of
the current pixel (i, j) of E∗1

s . The working mechanism of these loops is based on

50 P. Mahato and P. Bhowmick

Procedure UpdateParameters(u, v, k, n, a, b, c)

1 u ← 4a2b2c2 − 2(abk + ab)2, v ← 4a2b2c2 − 2(abk − ab)2

2 n ← c − k

Fig. 4. A demonstration of our algorithm.

Theorem 6, Corollaries 3, and 4. In the inner while loop, the condition whether
m lies in the interval [u, v) is verified. Inside the repeat-until loop, m is updated
with increasing value of j until m � v. Here E∗1

s [i][j] = 1 (Line 8) means the
current pixel (i, j) belongs to E∗1

s . In Lines 13–17, the procedure NotSimple
verifies whether the current voxel is simple or not; if not, then based on the
value of t, the requisite voxel (i, j, k) or (k, i, j) or (i, k, j) is added to E(1)

3 . In
Line 19, m is updated as j value is increased.

As initially j = 0, for nj+1 increments of j, m will be increased by rj(2nj+1).
Similarly, for ni + 1 increments of i, m will be increased by ri(2ni + 1). After
the repeat–until loop, k is decreased by 1, and the upper bound, lower bound,
and interval length of the interval are updated (Line 21–22). Outside of the inner
while loop (Line 6), i is increased by unity, and m is updated accordingly. Other
necessary parameters are updated in Line 23–28. UpdateParameters is called to
update the necessary parameters.

5 Concluding Notes

We have proposed here a proven algorithm for construction of the thinnest/2-
minimal model of digital ellipsoid. This is the first algorithm in the literature of

Digital Ellipsoid 51

digital geometry for construction of the thinnest model of ellipsoid in the integer
space and we would like to make further analysis of the algorithm for deriving
some tight bounds on the number of operations used in it.

As we have shown in this paper how topological analysis of digital ellipsoid
results in interesting characterization, which may also be explored further for
a deeper understanding of its geometric and topological properties. Although
several work have been reported in recent time related to voxelization of implicit
surfaces under different topological conditions, e.g., [11,17], construction of the
thinnest model of digital ellipsoid in the 2-minimal topology remained an open
problem, which is addressed by us in this paper. Apart from the 2-minimal
model, there are other models like ‘standard’ and ‘graceful’, which are also used
for voxelization of 3D primitives like line, plane, and sphere [1–6,8,10,15,18].
Designing efficient algorithms for these models of ellipsoid in the voxel space
also deem to be useful and can be pursued in continuation and enhancement of
the work proposed in this paper.

References

1. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Vis.
Comput. Graph. 3(1), 75–86 (1997)

2. Bera, S., Bhowmick, P., Bhattacharya, B.B.: On the characterization of absentee-
voxels in a spherical surface and volume of revolution in Z

3. J. Math. Imaging Vis.
56(3), 535–553 (2016)

3. Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through
primitive integer operations. Theoret. Comput. Sci. 624, 56–72 (2016)

4. Biswas, R., Bhowmick, P., Brimkov, V.E.: On the polyhedra of graceful spheres
and circular geodesics. Discrete Appl. Math. 216, 362–375 (2017)

5. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci.
283(1), 151–170 (2002)

6. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete
Appl. Math. 155(4), 468–495 (2007)

7. Chamizo, F., Cristóbal, E., Ubis, A.: Lattice points in rational ellipsoids. J. Math.
Anal. Appl. 350(1), 283–289 (2009)

8. Chamizo, F., Cristóbal, E., Ubis, A.: Visible lattice points in the sphere. J. Number
Theor. 126(2), 200–211 (2007)

9. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models
Image Process. 57(6), 453–461 (1995)

10. Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness.
In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp.
425–436. Springer, Heidelberg (2006). doi:10.1007/11907350 36

11. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Debled-
Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS,
vol. 6607, pp. 83–94. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19867-0 7

12. Haiwen, F., Lianqiang, N.: A hybrid generating algorithm for fast ellipses draw-
ing. In: International Conference on Computer Science and Information Processing
(CSIP), pp. 1022–1025. IEEE (2012)

13. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

http://dx.doi.org/10.1007/11907350_36
http://dx.doi.org/10.1007/978-3-642-19867-0_7

52 P. Mahato and P. Bhowmick

14. Kühleitner, M.: On lattice points in rational ellipsoids: An omega estimate for
the error term. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg 70(1), 105–111 (2000)

15. Magyar, A.: On the distribution of lattice points on spheres and level surfaces of
polynomials. J. Number Theor. 122(1), 69–83 (2007)

16. Mahato, P., Bhowmick, P.: Construction of digital ellipse by recursive integer inter-
vals. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol.
9647, pp. 295–308. Springer, Cham (2016). doi:10.1007/978-3-319-32360-2 23

17. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital sur-
faces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.)
DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi:10.1007/
978-3-319-09955-2 28

18. Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
From morphological models to analytical characterizations and topological prop-
erties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

19. Yao, C., Rokne, J.G.: Run-length slice algorithms for the scan-conversion of ellipses.
Comput. Graph. 22(4), 463–477 (1998)

http://dx.doi.org/10.1007/978-3-319-32360-2_23
http://dx.doi.org/10.1007/978-3-319-09955-2_28
http://dx.doi.org/10.1007/978-3-319-09955-2_28

On the Chamfer Polygons
on the Triangular Grid

Hamid Mir-Mohammad-Sadeghi(B) and Benedek Nagy(B)

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Mersin-10, Famagusta, North Cyprus, Turkey

ha.sadeghi@gmail.com, nbenedek.inf@gmail.com

Abstract. Weighted (or with other name, chamfer) distances on the
triangular grid was introduced recently based on the three well-known
neighborhoods. By having various values of the three used weights, the
approximation of the Euclidean disks are shown, based on the isoperi-
metric ratio. Our results are also compared to similar results on the
square grid. It is shown that the triangular grid, with three weights,
overperforms the quality of the approximation on the square grid by
both two and three weights (i.e., by the traditional 3 × 3 and the 5 × 5-
neighborhoods, respectively) in terms of maximal and average relative
errors.

Keywords: Digital distances · Chamfer distances · Digital disks ·
Approximation of the Euclidean distance · Non-traditional grids · Cham-
fer polygons

1 Introduction

Distance functions and metrics play important roles in several fields including
theoretical ones, e.g., mathematics and geometry, and also, in applications in
engineering and various disciplines related to computer science. The most usual
metric is the Euclidean distance and that is the base of Euclidean geometry.
However, in image processing and computer graphics discrete space (based on a
grid/tessellation) is preferred, and fast computation is needed. These discrete or
digital spaces have some inherently different properties from the Euclidean space.
In the Euclidean space there are infinitely many distinct points between any two
distinct points; opposite to this, there are neighbor points (pixels) in digital
spaces. The points of a discrete grid having Euclidean distance r from a given
point of the grid (e.g., the Origin) do not form a circle (in the usual sense), but
usually they form a small finite set that is not connected in any sense. Therefore,
digital distances are of high importance; they are used in various applications
instead of the Euclidean distance [11]. Digital disks, in this paper, are based
on digital distance functions. We may mention here, for the completeness that
digital versions of disks can also be obtained by digitizing Euclidean circles/disks
[11,18] they are the “digitized” circles and disks and they are not the topic of
this paper.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 53–65, 2017.
DOI: 10.1007/978-3-319-59108-7 5

54 H. Mir-Mohammad-Sadeghi and B. Nagy

There are three regular tessellations of the plane: the square, the hexagonal
and the triangular grids. The points (pixels) of these regular grids are usually
addressed by integer coordinate values. In the square grid, two independent
coordinates are used. The pixels of the hexagonal grid can be addressed with
two integers [12], or with a more elegant solution, with three coordinate values
whose sum is zero reflecting the symmetry of the grid [10,13]. Similarly, in the
triangular grid three coordinate values can effectively be used which are not
linearly independent [15,16,29]; and in this way, the three types of neighborhood
([7], see also Fig. 1), are easily captured in a mathematical way.

Digital distances are path-based and they are defined by connecting pix-
els/points by paths through neighbor pixels/points. The cityblock and the chess-
board distances [27], the first two digital distances, are based on the number of
steps connecting the points where 4-neighbor or 8-neighbor pixels are considered
in each step on the square grid, respectively. Since they are very rough approxi-
mations of the Euclidean distance, the theory of digital distances are developed
in various ways. As already recommended in, as a kind of alternating use of the
two neighborhoods, the neighborhood sequences allow that the steps may vary
in a path [5,19]. In this way, a family of octagonal distances is obtained, with
octagons as digital disks [6,9]. Weighted or chamfer distances were also intro-
duced to have a good approximation to the Euclidean distance, and at the same
time, to have low computational cost, for e.g., distance transforms [1,2,28,30].
It is well known that the approximation of the Euclidean disk/distance becomes
better and better when larger and larger neighborhood is allowed, i.e., a larger
number of weighted steps are used (see, e.g., [3]). With the traditional two neigh-
borhoods, with two weights (one for the cityblock, and other for the diagonal
movements) the obtained disks are octagons. Instead of this, 3 × 3 neighbor-
hood, 5×5 neighborhood is introduced and used giving a third weight on knight
movements. In this way, the digital disks become hexadecagons. Further, by 7×7
neighborhood and 5 weights, 32-gons are obtained, etc. We refer to [3] where opti-
mal weights are computed for various sizes of neighborhood. We just mention
here, that the weighted distances and the neighborhood sequences could also be
mixed, e.g., the weight sequences were introduced in [26] to have an errorless
estimation on a perimeter of a square (with enough large number of weights,
but with only two types of neighborhood, i.e., using 3 × 3 neighborhood only).

Another way to obtain better digital distances, e.g., the lower their rotational
dependency, is based on non-traditional grids. Both the hexagonal and the tri-
angular grids have better symmetric properties than the square grid has: they
have more symmetry axes and rotations with smaller angles already transform
the grid into itself. The theory of distances based on neighborhood sequences on
the triangular grid is also well developed. Digital circles/disks and their types
are analyzed in [17]; while the approximation of the Euclidean circles/distance
is done in [25] using the dual grid notation. The weighted distances have also
been investigated, recently, on the triangular grid [21].

Some of the goodness measures of digital distances used in various applica-
tions give values how good are the approximations of the Euclidean distance by

On the Chamfer Polygons on the Triangular Grid 55

them [4]. It can be done by measuring the compactness ratio of the polygons
of the digital disks obtained by digital distances. It is known that the (Euclid-
ean) circles/disks are the most compact objects in the plane, the ratio of the
perimeter square over the area, is 4π ≈12.566 for them, the smallest among all
objects’. By measuring this value for the digital disks, the approximation of the
Euclidean distance is measured. The highest compactness of the circles can also
be used to define another type of digital disks: the most compact grid objects
try to inherit this characteristic property of the Euclidean circles/disks; they are
characterized in [22,23,31] on various grids. Digital disks (spheres) are analyzed
in [14] in nD rectangular grids based on weighted distances. Other frequently
used measure is the maximal absolute error and its normalized version [2,3]
comparing the chamfer polygon to the Euclidean disk. In this paper, the com-
putation of chamfer polygons (digital disks), and some notes and comparisons
on the approximation of the Euclidean distance are provided.

2 The Triangular Grid

In this section, we briefly recall the description of the triangular grid and the
definition of weighted distances.

The triangular grid is a regular tessellation of the plane with same size equi-
lateral triangles. Actually, it is not a lattice, since there are grid vectors that do
not transform the grid to itself. This is due to the fact that there are two types of
orientations of the triangles. The grid is described by three coordinate axes x, y,
and z (see Fig. 1, right). In this paper we refer for the triangle pixels, as points,
and usually, we will use their center, i.e., the dual, hexagonal (also knows as hon-
eycomb) grid notation. Each point of grid is described by a unique coordinate
triplet using only integer values. However, the three values are not independent:
the sum of coordinate values can be 0 (even point, shape �) or 1 (odd point, ∇).
The vector through the mid-point of the edge to the opposite corner point is par-
allel/antiparallel with one of the axes (see also Fig. 1, right). Further we refer to
the set of points of the triangular grid by Z

3
∗ (Z3

∗ = {(x, y, z)|x+y+z ∈ {0, 1}}).
There are three different types of widely used neighborhoods on the trian-

gular grid. (In the rectangular grid there are only two types of basic neighbor-
hood.) Two distinct points (triangles) are 1-neighbors iff they have a side in

Fig. 1. Type of neighbors (left); coordinate system for the triangular grid (right).

56 H. Mir-Mohammad-Sadeghi and B. Nagy

common; they are strict 2-neighbors if there is a triangle which is 1-neighbor
of both of them; further, the two points are strict 3-neighbors iff they share
a corner, but they are not 1- and 2-neighbors. Two pixels are 2-neighbor if
they are strict 2-neighbors or 1-neighbors, and two pixels are 3-neighbors if
they are strict 3-neighbors or 2-neighbors. Formally: Let p = (p(1), p(2), p(3))
and q = (q(1), q(2), q(3)) be two distinct points of Z

3
∗, they are m-neighbors

(m = 1, 2, 3), if the following two conditions hold:

(1) |p(i) − q(i)| ≤ 1 for every i ∈ {1, 2, 3}, and

(2)
3∑

i=1

|p(i) − q(i)| ≤ m.

Equality in the second equation defines the strict m-neighborhood relation.
In the following we describe some notations which are needed later on. By α-
movement, i.e., by movement with weight α, we denote a step from a point
to one of its 1-neighbors; by β-movement (i.e., by weight β) a step to a strict
2-neighbor, and similarly by γ-movement a step to a strict 3-neighbor point.
We say that two lanes are parallel if the same coordinate is fixed, e.g., the lane
{p(p(1), 0, p(3))} is parallel to {p(p(1), 3, p(3))}; both of them are perpendicular
to axis y.

Let p = (p(1), p(2), p(3)) and q = (q(1), q(2), q(3)) be two 3-neighbor points,
then the number of their coordinate differences gives the order of their strict
neighborhood (as we have defined above). Weighted distances are path based
distances, thus we need paths connecting the points. A path from p to q can be
defined by a finite point sequence p = p0, ..., pn = q in which the points pi−1

and pi are 3-neighbors for every 1 ≤ i ≤ n. Thus this path can also be seen as
sequence of n steps, such that in each step we move to a 3-neighbor point of the
previous one. The weight of the path is equal to αn1+βn2+γn3, where ni is the
number of steps to strict i-neighbors in the path (n = n1 + n2 + n3). There are
several different paths from p to q with various weights. The weighted distance
d(p, q;α, β, γ) of p and q with weights α, β, γ is the sum of weights of a/the
minimal weighted path between p and q. In this paper, the natural condition of
the weights, that is 0 < α ≤ β ≤ γ, used. There are various cases regarding the
relative ratio of the weights (see [21]).

In this paper, somewhat complementing the results of [24], those cases are
considered which allow to use 1-steps and also 3-steps in the same paths. These
cases are proven to be more complex than the ones considered in [24] and, on
the other side, they provide much better approximations for the Euclidean disks
as we will show. Although most of our results are general (and we prove them
for the general case), we are particularly interested in the cases for which the
digital disks are not characterized yet: in the next sections, distances with weight
conditions:

– 2α > β, 3α > γ, α + β > γ and γ + α ≤ 2β
– 2α ≤ β and 3α > γ

are considered.

On the Chamfer Polygons on the Triangular Grid 57

3 Preliminaries: Technical Notions and Notations

Now we recall our central concept: the chamfer balls (chamfer polygons) or
digital disks are defined as

D(o, r;α, β, γ) = {p | d(o, p;α, β, γ) ≤ r}.

Obviously they depend not only on the radius r, but also on the used weights
α, β, γ. The centre of the disk is the point o. Since we work in the dual represen-
tation of the triangular grid, the elements of Z

3
∗ will refer for the center points

of the triangle pixels.

Proposition 1. Let the length of the sides of each equilateral triangle on a grid
be one unit. Let the coordinate axes of the triangular grid go through on the origin
(as in Fig. 4). Let p̄ = (x, y) be the Cartesian coordinate pair of the point in the
middle of the triangle addressed by p = (p(1), p(2), p(3)). Then the Cartesian
coordinates of p̄ can be obtained in the following way:

– if p is a even point (p(1) + p(2) + p(3) = 0), then x = p(1)−p(3)
2 and y =

−
√
3
2 p(2).

– if p is a odd point (p(1) + p(2) + p(3) = 1), then x = p(1)−p(3)
2 and y =

−
√
3
2 p(2) +

√
3
6 .

Proof. It is a simple geometrical calculation. ��
In this way, we can easily define the convex hull of any (finite) set X of grid

points: let X̄ ⊂ R
2 be the convex polygon with smallest area such that each

point of X is included in X̄. Formally:

X̄ =

⎧
⎨

⎩

n∑

j=1

λj p̄j

∣
∣
∣
∣
∣
∣

n∑

j=1

λj = 1, λj ≥ 0 and pj ∈ X

⎫
⎬

⎭
.

Further, the digital set X ⊂ Z
3
∗ is (digitally) H-convex if X = X̄ ∩ Z

3
∗ [8,11]. In

this paper we are interested in convex hulls of digital disks: D̄.
Let lp1p2 be a straight line segment between p̄1 and p̄2. Let mp1p2 denote

the slope of that line segment connecting p̄1 and p̄2. Further, let S�poq
={

p′ | p̄′ is inside or on the border of triangle � p̄ōq̄ and p′ �= p, p′ �= q}.
Let Lx,−y denote the half-lane {p = (p(1), p(2), 0) ∈ Z

3
∗ | p(2) ≤ 0}, that is

actually a half lane perpendicular to axis z (between the positive part of axis x
and the negative part of axis y) starting from o. Let Lx denote the half diamond
chain {p = (p(1),−p(1)

2 �,−p(1)
2 �) ∈ Z

3
∗ | p(1) ≥ 0} which is a diamond chain

lying on the nonnegative part of axis x, see also Fig. 2(a).
Further, we define other subsets of the triangular grid:

SLx,Lx,−y
= {p = (p(1), p(2), p(3)) | p(1) ≥ 0, p(2) ≤ p(3) ≤ 0} that is the set of

points between Lx and Lx,−y including the points on the borders, see Fig. 2(b).

58 H. Mir-Mohammad-Sadeghi and B. Nagy

Similarly, SLx,−y,L−y
= {p = (p(1), p(2), p(3)) | p(2) ≤ 0, p(1) ≥ p(3) ≥ 0} as it

is shown in Fig. 2(c). Let F = SLx,Lx,−y
∪ SLx,−y,L−y

denote one sixth of the
triangular grid and let W (r;α, β, γ) = D(o, r;α, β, γ) ∩ F the part of the disc
inside this sixth. Now, let
Sα = {p = (p(1), p(2), p(3)) | r − α < d(o, p;α, β, γ) ≤ r, p ∈ F}.
Let S

1α = {p ∈ W (r;α, β, γ) | p is 1-neighbor of q and q ∈ Sα} \Sα.
Let S

2α =
{
p ∈ W (r;α, β, γ) | p is 1-neighbor of q, q ∈ S

1α

} \ (
Sα ∪ S

1α

)
.

Further, this notation is continued for
S

nα =
{

p ∈ W (r;α, β, γ) | p is 1-neighbor of q, q ∈ S
n−1α

}
\

(
S

n−1α ∪ S
n−2α

)
.

Let Sα1 = {p /∈ D(0, r;α, β, γ) | p is 1-neighbor of q, p ∈ F and q ∈ Sα}, see
Fig. 2 (d). Let V be the set of corner points p of the polygon (i.e., p̄ of the
convex hull D̄) in F . Since the symmetry of the grid, the digital disks and also
their convex hulls are symmetric. Therefore, in the following lemmas, we con-
sider only points in F which gives a sixth of the grid such that each digital disk
(and its convex hull) has six similar, rotated parts. See, e.g., [20] for rotations
and other isometric transformations of the grid.

(a) (b) (c) (d)

Fig. 2. Various notations: (a) S�poq , lp1p2 , L−y, Lx, −y and Lx (b) SLx,Lx,−y (c)
SLx,−y,L−y (d) S

1α, Sα and Sα1

Let us assume that the sidelength of the triangle pixels be 1 unit (in the
Euclidean plane R

2). By using the dual grid notation, i.e., the center of each
triangle pixel instead of the pixel itself, a movement to a

– 1-neighbor means a step by length
√
3
3 ≈ 0.57735,

– to a strict 2-neighbor means a step by length exactly 1, and
– to a strict 3-neighbor means a step by length 2

√
3

3 ≈ 1.1547.

One may observe that in the triangular grid, the step to a strict 3-neighbor
has length twice than the length of a step to a 1-neighbor. In some of our
examples the sidelength of the triangles, i.e., the length of the strict 2-steps may
be chosen not to be exactly 1 (unit).

On the Chamfer Polygons on the Triangular Grid 59

4 Digital Disks and Their Corners

In this section digital disks are described as convex hulls of the point sets reached
with paths having weights at most a given value, called, radius. This way, the
usage of dual representation of the triangular grid, i.e., the vertices of the hexag-
onal grid, allows us to compute standard geometric measures, such as the usual
perimeter and area of these objects. Thus let us consider the centers of the pix-
els instead of them (as we have shown already). The weights α, β and γ can
have various relations defining various cases. In different cases different paths
become optimal, i.e., with minimum weight, and thus, the formula for the dis-
tance depends on the considered case. In some cases, only hexagons, enneagons
and dodecagons can be obtained [21,24]. Note that in the cases considered in
[24], digital disks with at most twelve corners are obtained. The formulae for
computing the weighted distance may depend not only on the weights, but on
the type (parity) of the points.

Let D̄(o, r;α, β, γ) denote the convex hull of D(o, r;α, β, γ) in R
2. Since vari-

ous formulae are used for computing the distance d, convex hulls can be obtained
in various shapes. The relative values of the weights define the various cases.
In the following part we describe some of the shapes of the possible objects
D̄(o, r;α, β, γ). One of the characterization of these digital disks goes by mea-
suring their side lengths l, perimeters P , areas A, and thus, their isoperimetric
ratios κ. The isoperimetric ratio is defined as κ = P 2

A which can be used to
compare and approximate the Euclidean circle.

Let dE
p be the Euclidean distance of ō = (0, 0) and p̄ = (x, y), then, obviously,

dE
p =

√
x2 + y2.

Proposition 2. Let p ∈ S
1α and q ∈ Sα, then, obviously, d(o, p;α, β, γ) <

d(o, q;α, β, γ). If p and q are 1-neighbors, then dE
p < dE

q .

Proof. Suppose to the contrary that dE
p > dE

q , then either

– d(o, p;α, β, γ) = d(o, q;α, β, γ) + α > r or
– d(o, p;α, β, γ) = d(o, q;α, β, γ) − α + β > r − α or
– d(o, p;α, β, γ) = d(o, q;α, β, γ) − β + γ > r − α.

In each of these cases d(o, p;α, β, γ) > r or d(o, p;α, β, γ) > r − α, hence p ∈ Sα

or p /∈ D(o, r;α, β, γ) which made contradiction with the assumption. ��
Lemma 1. If p ∈ F is a corner of D̄(o, r;α, β, γ) (i.e., p ∈ V), then p ∈ Sα.

Proof. We show that any point p /∈ Sα is not in V . Suppose that p ∈ S
1α. Let

q be a 1-neighbor of p such that q ∈ Sα. From Proposition 2, it is clear that
dE

p < dE
q , therefore p cannot be a corner. With the same process it can be shown

that the other points of S
2α ∪ S

2α ∪ · · · ∪ S
nα (S

nα is the origin) have distance
less than r, but they cannot be a corner. Now suppose p ∈ Sα1 and q ∈ Sα.
Since p /∈ D(o, r;α, β, γ), therefore d(o, p;α, β, γ) > r and it cannot be a corner.
Hence each corner point (in F) belongs to Sα. ��

60 H. Mir-Mohammad-Sadeghi and B. Nagy

Lemma 2. For any point p ∈ D(o, r;α, β, γ), p /∈ V if and only if there exist two
distinct points p1, p2 ∈ D(o, r;α, β, γ), (p1 �= p, p2 �= p) such that p ∈ S�p1op2

.

Proof. Suppose p ∈ S�p1op2
(p �= p1, p �= p2). It is clear that in this case p �∈ V ,

i.e., it is not a corner.
Now suppose p ∈ D(o, r;α, β, γ), p /∈ V . Considering the geometric shape of

D(o, r;α, β, γ) = S�pc1opc2
∪ · · · ∪ S�pc

n−1opcn
, with pc

i ∈ V (for i = 1, . . . , n where
n is the number of corners). Hence, ∃i such that p ∈ S�pc

i
opc

i+1
. ��

Theorem 1. D̄(o, r;α, β, γ) is H-convex with every possible parameters α, β
and γ.

Proof. Suppose that for a given α, β, γ and r the convex hull D̄ is not H-convex.
Then, by definition, D �= D̄ ∩ Z

3
∗ and ∃p, q ∈ D(o, r;α, β, γ) and p1, p2, p3 ∈ V

such that lpq ∩ lp1p2 �= Ø and lpq ∩ lp2p3 �= Ø (see Fig. 3). Since ∃p′ ∈ S�p1op3
such

that p′ /∈ D(o, r;α, β, γ) and that makes contradiction with Lemma 2, hence D̄
is H-convex. ��

Fig. 3. Example for p′ ∈ S�p1op3
but p′ /∈ D(o, r; α, β, γ). (Note that in this example

the used shape is not a disk.)

Lemma 3. Suppose p1, p2, p3 ∈ Sα and mop1 < mop2 < mop3 . If mp2p3 ≤
mp1p2 < 0, then p2 /∈ V .

Proof. If mp2p3 = mp1p2 then p2 is on the line between p1 and p3, therefore
p2 is not a corner. Suppose, now, mp2p3 < mp1p2 . Since p1, p2, p3 ∈ Sα, then
p1, p2, p3 ∈ D(o, r;α, β, γ) and p2 ∈ S�p1op2

(consider Fig. 4), therefore by
Lemma 2, p2 /∈ V . ��
Remark 1. If p1, p2, p3 ∈ Sα and mp2p3 < mp1p2 , then from geometry it is clear
that mp2p3 < mp1p3 < mp1p2 (see Fig. 4).

On the Chamfer Polygons on the Triangular Grid 61

Fig. 4. Example for p2 ∈ S�p1op3
, hence it cannot be a corner.

Theorem 2. Let p ∈ V and q ∈ Sα,mop < moq. If ∀p′ ∈ Sα,mpq < mpp′ and
mop < mop′ , then q ∈ V and �pc ∈ V such that mop < mopc < moq.

Proof. Suppose to the contrary that ∃pc ∈ V such that mop < mopc < moq,
then on the basis of Lemma 3, mppc < mpcq and by Remark 1, mppc < mpq

(see Fig. 5(a)) which makes contradiction with the assumption. Now suppose to
the contrary that q is not a corner and by Lemma 2 there exists pc

1 ∈ V such
that q ∈ S�popc1

, mop < mopc
1

and lppc
1

is a side of D(o, r;α, β, γ). Since mpq

is minimum slope, mpq < mppc
1
, this makes a contradiction with q ∈ S�popc1

(consider Fig. 5(b)). Hence q ∈ V . ��

(a) (b)

Fig. 5. Comparing slopes (a) mppc < mpq (b) mpq < mqpc
1
, hence q /∈ S�popc1

.

62 H. Mir-Mohammad-Sadeghi and B. Nagy

Algorithm 1. Algorithm of finding Corners
1: if (2α > β and 3α > γ and α + β > γ and α + γ ≤ 2β) or (2α ≤ β and 3α > γ)

then
2: Find all points in Sα according to Lemma 1
3: end if
4: Sort the points by their slope
5: Filtering the Sα points according to Lemma 3
6: Find all corner points through the filtered Sα points according to Theorem 2

Based on the previous results we have developed an algorithm to find the
corners of D̄(o, r;α, β, γ) with the mentioned conditions on the weights for any
nonnegative r: Algorithm 1 finds all corner points in F , actually, the set V .

Algorithm 1 has three main parts, finding all points in Sα, filtering them,
and finding all corner points among the filtered Sα points. These three parts
work based on Lemmas 1, 3 and Theorem 2, respectively.

5 Approximation of Euclidean Disks

Digital disks in the triangular grid of various weights and radius are considered,
they can have many different shapes with various number of corners. In this
section we show some interesting ones. It is known that, in the square grid,
by considering three weights (5× 5 neighborhood with 24 local neighbors) the
digital disks have 16 corners [3] (in special cases the polygon may be degenerated,
e.g., if all weights equal to each other, specially, a square is obtained). By five
weights, i.e., 7× 7 neighborhood, (maybe degenerated) 32-gons are obtained.
Comparing them to the digital disks on the triangular grid, we present the
convex hull of the digital disks D(o, 723; 8, 15, 18) having a large number of
corners, actually it has 63 corners.

One of the “goodness measures” of the digital disks is their isoperimetric ratio.
The digital disk D(o, 892; 29, 56, 68) has 42 corners and its isoperimetric ratio is
12.628 (see Fig. 6), which measure is just 1.0049 times larger than the optimal
Euclidean value 4π (less than half a percent difference with the real disk).

The approximation quality and rotational dependency of digital distances are
usually measured by the help of the (maximum) absolute error, that is, the dis-
tance difference between the point on the circle of radius r and the corresponding
point on the boundary of the chamfer polygon [3]. When it is normalized by the
radius r, it yields the (maximum) normalized error:

E(θ) ≡ r − L(θ)
r

,

where L(θ) is the Euclidean distance between the origin and the point p on the
border of the convex hull of the digital disk such that the angle between the
line connecting the origin to point p and axis x is θ. Normalized error is usually
measured in percentages. For 5 × 5 neighborhood, i.e., with 3 weights, in [3] the

On the Chamfer Polygons on the Triangular Grid 63

Fig. 6. The digital disk D(o, 892; 29, 56, 68) with κ ≈ 12.628.

Fig. 7. The rotational dependency of the distances on the square and on the triangular
grids with three weights: the relative error in the function of the angle θ ∈ [0, π]. The
solid graph (our results in the triangular grid) and dotted graph (best result on the
square grid, [3]).

optimal weights are computed to obtain minimal normalized error. For these
weights disks with average error 0.699% and with maximal relative error 1.356%
are obtained, this latter occurs at 13.5◦. The value of this relative error as the
function of the degree θ can be seen in Fig. 7 with dotted line.

In the triangular grid, with three weights, considering the usual 12 neighbors
of a pixel, the digital disk D(o, 892; 29, 56, 68) results the average error 0.464%
and the maximum relative error 0.792% that occurs at 46.1◦. See also Fig. 7,
where the value of the error is shown for various direction comparing it also to
the previously mentioned best known case for the square grid.

Another digital disk D(o, 1116; 29, 56, 68) has 48 corners and its isoperimetric
ratio is κ ≈ 12.636. It has the average error 0.577% and the maximum relative
error is 1.119% that occurs at 2.91◦. Observe that the maximal error in this
example occurs in a different angle than at our previous example.

64 H. Mir-Mohammad-Sadeghi and B. Nagy

Notice that the best approximations that we have shown are obtained approx-
imately at the condition α + γ =

√
3 · β.

6 Conclusions

Approximation of the Euclidean distance, circle and disk are frequent topics of
papers in digital geometry connected to image processing. By using neighbor-
hood sequences, the digital disks are octagons in the square grid [5,6] (hence
the name octagonal distances) and have at most twelve corners in the triangu-
lar grid [17]. The literature about weighted/chamfer distances is also rich. This
concept has appeared recently on the triangular grid, as well. In this paper, we
have continued the work on this field by providing weight triplets and digital
disks that give very good approximations of the Euclidean circle/disk. To com-
pare our results to the well-known results [3] on the square grid, we have shown
that by the traditional three neighbor relations, on the triangular grid, much
better approximations can be done than by optimal weights on the square grid,
even when the 5 × 5 neighborhood with three weights is used. Notice that for
obtaining these results only 12 neighbors are used on the triangular grid, while
the 5 × 5 neighborhood contains 24 neighbor pixels. One of the criteria of the
usage of some distance is their metric properties. In [21] it is proven that all
our weighted distances are metrics. Another criteria for the applications could
be the approximation quality with respect to the Euclidean distance; results on
this line of research are shown here.

It would be an interesting future work to generalise the notions of the paper
from the regular triangular grid to grids that are obtained by triangulation.

References

1. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Gr.
Image Process. 27(3), 321–345 (1984)

2. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph.
Image Process. 34(3), 344–371 (1986)

3. Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE
Trans. Image Process. 7(10), 1477–1484 (1998)

4. Celebi, M.E., Celiker, F., Kingravi, H.A.: On Euclidean norm approximations.
Pattern Recogn. 44(2), 278–283 (2011)

5. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Generalised distances in digital geom-
etry. Inform. Sci. 42, 51–67 (1987)

6. Das, P.P., Chatterji, B.N.: Octagonal distances for digital pictures. Inform. Sci.
50, 123–150 (1990)

7. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular
arrays. Comm. ACM 15, 827–837 (1972)

8. Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette,
R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer,
Heidelberg (2001). doi:10.1007/3-540-45576-0 13

9. Farkas, J., Baják, Sz., Nagy, B.: Notes on approximating the Euclidean circle in
square grids. Pure Math. Appl. - PU.M.A. 17, 309–322 (2006)

http://dx.doi.org/10.1007/3-540-45576-0_13

On the Chamfer Polygons on the Triangular Grid 65

10. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Proc.
4, 1213–1221 (1995)

11. Klette, R., Rosenfeld, A.: Digital geometry. Geometric methods for digital picture
analysis. Morgan Kaufmann Publishers, Elsevier Science B.V. (2004)

12. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. Trans. Comput. C–25(5),
532–533 (1976)

13. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach.
Springer, London (2005)

14. Mukherjee, J.: Hyperspheres of weighted distances in arbitrary dimension. Pattern
Recogn. Lett. 34, 117–123 (2013)

15. Nagy, B.: Metrics based on neighbourhood sequences in triangular grids. Pure
Math. Appl. - PU.M.A. 13, 259–274 (2002)

16. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J. Com-
put. Inf. Technol. 11, 111–122 (2003)

17. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recogn.
Lett. 25, 1231–1242 (2004)

18. Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed
radius. Electron. Notes Discrete Math. 20, 607–622 (2005)

19. Nagy, B.: Distance with generalized neighbourhood sequences in nD and ∞D. Disc.
Appl. Math. 156, 2344–2351 (2008)

20. Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: ISPA
2009, Salzburg, Austria, pp. 432–437 (2009)

21. Nagy, B.: Weighted distances on a triangular grid. In: Barneva, R.P., Brimkov,
V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 37–50. Springer, Cham
(2014). doi:10.1007/978-3-319-07148-0 5

22. Nagy, B., Barczi, K.: Isoperimetrically optimal polygons in the triangular grid. In:
Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 194–207. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21073-0 19

23. Nagy, B., Barczi, K.: Isoperimetrically optimal polygons in the triangular grid with
Jordan-type neighbourhood on the boundary. Int. J. Comput. Math. 90, 1629–1652
(2013)

24. Nagy, B., Mir-Mohammad-Sadeghi, H.: Digital disks by weighted distances
in the triangular grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.)
DGCI 2016. LNCS, vol. 9647, pp. 385–397. Springer, Cham (2016). doi:10.1007/
978-3-319-32360-2 30

25. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences
in a hexagonal grid. Theoret. Comput. Sci. 412, 1364–1377 (2011)

26. Nagy, B., Strand, R., Normand, N.: A weight sequence distance function. In: Hen-
driks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp.
292–301. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9 25

27. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recogn.
1, 33–61 (1968)

28. Sintorn, I.-M., Borgefors, G.: Weighted distance transforms in rectangular grids.
ICIAP 2001, 322–326 (2001)

29. Stojmenovic, I.: Honeycomb networks: topological properties and communication
algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)

30. Svensson, S., Borgefors, G.: Distance transforms in 3D using four different weights.
Pattern Recogn. Lett. 23, 1407–1418 (2002)

31. Vainsencher, D., Bruckstein, A.M.: On isoperimetrically optimal polyforms. The-
oret. Comput. Sci. 406, 146–159 (2008)

http://dx.doi.org/10.1007/978-3-319-07148-0_5
http://dx.doi.org/10.1007/978-3-642-21073-0_19
http://dx.doi.org/10.1007/978-3-319-32360-2_30
http://dx.doi.org/10.1007/978-3-319-32360-2_30
http://dx.doi.org/10.1007/978-3-642-38294-9_25

Verification of Hypotheses Generated
by Case-Based Reasoning Object Matching

Petra Perner(&)

Institute of Computer Vision and Applied Computer Sciences,
IBaI, PSF 301114, 04251 Leipzig, Germany

pperner@ibai-institut.de

http://www.ibai-institut.de

Abstract. Case-based reasoning object-matching consists of the methods at
choice when the objects can be identified by case models. The result of the
matching process is a number of hypotheses for the true shape of the objects.
These hypotheses have to be verified in a hypothesis-verification process. In this
paper we review what has been done so far and present our hypothesis-
verification rules. The rules are evaluated and the results are discussed and
presented in images. We consider two different hypothesis-verification rules,
one is based on set-theory and the other one is based on statistical measures.
Finally, we describe the results achieved so far and give an outlook about further
work.

Keywords: Case-based reasoning object-matching � Hypothesis-test
verification � Set theory � Statistical measures

1 Introduction

Case-based object-matching [1] is the methods at choice when the objects can be
identified by case models. These case models can be learnt from the raw data by case
mining [2]. For the case-matching procedure, we need a proper similarity measure that
depends of the case model description. In our case, the case models are object contours
such as round, ellipse-like, or more fuzzy-like geometric figures. The chosen similarity
measure in this work is the cosine-similarity measure [6]. The properties of this simi-
larity measure have been described in detail in [6]. The case matcher takes the case
models and matches them against the objects in the image. In case the similarity measure
is high the found contour will be marked in the image. Often the matcher does not bring
out only one contour for an object, instead of the matcher fires several times at slightly
different spatial positions in the image for the same object. These multiple matches have
to be evaluated after the matching in a hypothesis verification procedure. The aim of this
hypothesis-verification procedure is to obtain only the considered object.

We describe in this paper what kind of hypothesis verification methods we have
developed and tested on our image database. The state-of-the-art of hypothesis veri-
fication methods is described in Sect. 2. In Sect. 3 we describe the hypothesis

© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 66–78, 2017.
DOI: 10.1007/978-3-319-59108-7_6

generation and the problems concerned with it. In Sect. 4 we describe kinds of
hypothesis-verification based on Set Theory. Hypothesis-verification rules based on
statistics and results are given in Sect. 5. Finally we summarize our work in Sect. 6 and
we give an outlook to further work on improvements of the matching results.

2 State-of-the Art

The aim of the hypothesis verification is to decide whether a match can be accepted as
correct or not. Therefore hypothesis verification is closely related to the object
recognition process. In literature we can find different approaches for this process.
Grimson and Huttenlocher [1] as well as Jurie [2] and Kartatzis et al. [3] refer to
features in the form of points or line segments. The common target of all these
researchers is to find the best pose for the detected data features. However, all papers
follow different strategies: Grimson and Huttenlocher [1] focus on the question how
random matches can be prevented. They developed a formal means for finding the
fraction of model features that have to be evaluated in order to ensure that the match
occurs only with a given probability at random. The derivation of this fraction is done
in three steps whereas the type of feature, the type of transformation from model to
image and a bound on the positional and orientational error are known. First for every
pairing of a model feature to data feature the set of transformations is determined. This
set defines a particular volume in the transformation space. In the next step the
probability of a common point of intersection between land more volumes is calcu-
lated. This probability corresponds to match of at least l pairings of model and image
features. Last a second probability that describes that l or more volumes will intersect at
random, is used to specify a threshold for the fraction of model features that have to be
evaluated at least in order to ensure that the probability of a random match is lower than
a given value.

The aim of the research of Jurie [2] is to find the pose of the model features that best
matches the data features. The pose hypotheses are generated by correspondences
between the model and the data features. Early researches propose to evaluate only
some correspondences in order to find an initial pose hypothesis P that is refined by
iteratively enlarging the number of correspondences. Jurie [2] describes that this way of
hypothesis generation and verification is not optimal. Therefore the paper suggests the
opposite approach: A pose space is generated from different model-data-pairings.
A “box” of the pose space is computed including the initial position P that is large
enough to compensate the data errors. Assuming that the distribution of
model-data-correspondences is Gaussian, the maximal probability of the object to be
matched is determined. Then the box can be refined. The process repeats until the
“box” only contains one pose.

A simpler method of model-based pose estimation and verification is described in
Shahrokni et al. [7]. They deal with the automatic detection of polyhedral objects.
Hypotheses are generated by the knowledge-based connection of corners and line
segments. The model and the transformed hypotheses are evaluated with the method of

Verification of Hypotheses Generated by Case-Based Reasoning 67

the least squares. The best hypothesis minimizes the sum of squared differences
between the model and the transformed hypothesis.

Katartzis et al. [3] discuss the automatic recognition of rooftops, which are char-
acterized by lines and their connections. After detecting the line segments in the image,
they are grouped in a hierarchical graph. The highest level of the hierarchy contains
closed contours. Every node of the graph is assigned a value that on the one hand
assigns the saliency of the hypothesis and on the other hand represents the likelihood of
the presence of a 3D-structure, which depends on domain-specific knowledge. Based
on the hierarchical graph is defined a Markov Random Field (MRF). By maximization
of the a posteriori probability of the MRF for the concrete graph a consistent config-
uration of the data is found.

In general the verification process for object hypotheses based on line segments is a
widely discussed field.

An approach that totally differs from the discussed ones is given in Leibe et al. [4].
The heart of the described object recognition system is a database with different
appearances of parts of the object that should be recognized. Additionally an “Implicit
Shape Model” is learnt in order to combine the parts to a correct object. If multiple
objects are located in the image then some hypotheses may overlap each other so that a
verification step is required. The method follows the principle of Minimal Description
Length (MDL) that is borrowed from the information theory. The description length of
a hypothesis depends on its area and the probability that the pixels inside the hypothesis
are no object pixels. The description length of two overlapping hypotheses is generated
in the same way. From the resulting values is concluded whether two overlapping
hypotheses refer to two objects or only to one.

3 Hypothesis Generation and Problems

3.1 Hypothesis Generation

In this Section, we want to give you an overview about the model-based object
recognition method that we use to generate our hypotheses. The method is extensively
discussed in Perner and Buehring [5].

A model-based object recognition method uses templates that generalize the
original objects and matches these templates against the objects in the image. During
the match a score is calculated that describes the goodness of the fit between the object
and the template.

We determine the similarity measure based on the cross correlation by using the
direction vectors of an image. This requires the calculation of the dot product ~lk
between each direction vector of the model ~mk ¼ vk;wkð ÞT , k ¼ 1; . . .; n, and the
corresponding image vector~ik ¼ dk; ekð ÞT :

~lk ¼ ~mk;~ik
� � ¼ ~mk �~ik ¼ vk � dk þwk � ekð Þ; k ¼ 1; . . .; n ð1Þ

68 P. Perner

Note that the dot product ~lk (see Eq. 1) takes also into account the length of the
vectors ~mk and~ik . That means that~lk is influenced by the intensity of the contrast in the
image and the model. In order to remove this influence, the direction vectors are
normalized to unit length by dividing them through their gradient:

lk ¼ ~mk

~mkk k ;
~ik
~ik
�� ��

* +
¼ ~mk �~ik

~mkk k � ~ik
�� �� ¼ vk � dk þwk � ekffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2k þw2
k

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ki þ e2k

q ; k ¼ 1; . . .; n ð2Þ

The score lk (see Eq. 2) takes into account only the directions of the model and the
image vector, i.e. it is invariant against changes of the contrast intensity. We can get the
angle between the direction vectors by determining the value of lk. Therefore we can
conclude that the value of lk ranges from −1 to 1. The vectors ~mk and~ik have the same
direction if lk ¼ 1, the vectors are orthogonal if lk ¼ 0 and both vectors have opposite
direction if lk ¼ �1. In the rest of the paper we say that the value of lk is the local
similarity score of the two direction vectors ~mk and~ik.

Usually, we are mainly interested in the similarity score between the complete
model and the image. We want to define this global similarity scores1 between the
model and the image as the mean of all local similarity scores:

s1 ¼ 1
n

Xn
k¼1

lk ð3Þ

Just like the local similarity score lk the global score s1 is invariant against illu-
mination changes and it ranges from −1 to 1. In case of s1 ¼ 1 and s1 ¼ �1 the model
and the image object are identical. If s1 ¼ 1 then all vectors in the model and the
corresponding image vectors have exactly the same direction. If s1 ¼ �1 then all the
vectors have exactly opposite directions, that is only the contrast between the model
and the image is changed.

In general we have to subdivide between global and local contrast changes. If the
contrast between the model and the image is globally inversed then all the model and
image vectors have opposite directions. If the contrast is locally inversed then only
some model and image vectors have opposite direction. With some little modifications
the similarity measure s1 becomes invariant to global contrast changes (see Eq. 4) and
local contrast changes (see Eq. 5), respectively.

s2 ¼ 1
n

Xn
k¼1

lk

�����
����� ð4Þ

s3 ¼ 1
n

Xn
k¼1

lkj j ð5Þ

Verification of Hypotheses Generated by Case-Based Reasoning 69

In contrast to range of s1, the values of s2 and s3 are non-negative.
The aim is to store only one model for objects with similar shapes of different scale

and rotation. Therefore a transformed model must be compared to the image at a
particular location. The value of arccos s2 indicates the mean angle between the model
and the image vectors.

3.2 Kinds of Hypothesis Verification Based on Set-Theory

The matching process determines each possible match between the image pixels and
the model. In the following we consider the found object as a hypothesis. To each
hypothesis is assigned a matching score based on the similarity measure s3. The score
from the observation of Fig. 1 we can see that the models often match the same object,
i.e. we have a superimposition of models. All the hypotheses in this image have scores
greater than 0.8. Now we need to find a rule which allows us to remove determines the
similarity between the model and the image pixels. It can range from 0 to 1 whereas the
value of 1 says identity and the value of 0 dissimilarity. By defining a threshold for the
score we can exclude hypotheses. This is the simplest hypothesis verification process.
If the threshold is set to 0.8 then 734 hypotheses remain. They are shown in Fig. 1 false
hypotheses. The hypotheses in this particular case overlap, touch or are inside of each
other. From that we can develop special relationships of the hypotheses.

The definition of the relationships is based on two hypothesized objects A and B. S
(A) is the set of all image pixels that are inside the contour of the object A including
also the image pixels of the contour. Equally, S(B) is the set of all image pixels inside
the contour of object B including all image pixels of the contour. We want to distin-
guish between three relationships that are described in Table 1.

Determining the number of common pixels of every pair of hypotheses we con-
clude to their relation. In Sect. 4 we analyse the generated hypotheses using the defined
relationships.

a. Model b. Original Image c. Hypothesized Objects

Fig. 1. Contour Model, original image and hypothesized objects.

70 P. Perner

4 Results

This Section focuses on the reduction of initial hypotheses.

4.1 The Relationship “Inside”

In this Section we want to investigate in the relationship “inside” (Table 1a). Given a
sorted list1 of hypotheses, we first extract the hypothesis pairs that fulfil the relationship
“inside” (see Fig. 2b). From the 734 hypothesized matches we can create 138 hypotheses
pairs that fulfil the relationship inside, i.e. one of both hypotheses is totally overlaid by the

Table 1. Relationships between two Hypotheses.

1 The matching process lists all matched objects sorted by the scale whereas objects with the same
scale are sorted by the rotation.

Verification of Hypotheses Generated by Case-Based Reasoning 71

other. Note that these pairs are only based on 136 different hypotheses. Thus we conclude
that some hypotheses with high area overlay more than one smaller hypothesis. In other
words we can say that most of the hypotheses are involved in more than one pair.

For the reduction process we rule that the hypothesis with the higher matching score
remains while the other hypothesis of this pair is removed. Since the removed hypothesis
often is a partner in more than one pair, for some hypotheses there will be no other correct
“inside” partner. That is in practice that the number of hypotheses pairs may decrease for
more than one pair. We want to illustrate this fact based on Fig. 2: We obtain a reduction
of 67 hypotheses (Fig. 2a and d) if we successively remove the “inside” partner with the
lower score. Considering the hypotheses that are used to create correct “inside” pairs
(Fig. 2b) and their remaining partners (Fig. 2c), gives a reduction by 95 hypotheses.

From Fig. 2a and d we can see that the total number of hypotheses is only reduced
by about 10%. Since this reduction does not significantly simplify the hypothesis
verification process we investigate in the relation “overlapping” (see Sect. 3.2)

4.2 The Relationship “Overlapping”

In this Section, we concentrate on the relationship “overlapping”. Although we could
not significantly reduce the number of hypotheses by applying the relationship “inside”
we work with the reduced number of hypotheses (see Fig. 2d). For presentation pur-
poses we first only consider the 41 remaining hypotheses of the “inside” pairs which
are shown in Fig. 3 (compare to Fig. 2c). At the end of this Section we extend our
investigations to the whole set of hypotheses.

a b

dc

Fig. 2. (a) Hypothesized Matches (734 Hypotheses). (b) Hypothesis Pairs that fulfils the
Relation “inside” (138 Pairs based on 136 Hypotheses). (c) Remaining Hypotheses after
removing the Hypotheses with lower Score (41 Remaining Partners). (d) Remaining Hypotheses
after applying the “Inside”- Criterion (667 Hypotheses).

72 P. Perner

Note that the hypotheses are concentrated in some regions of the image (see Fig. 3).
It seems that many hypotheses are slightly transformed (shifted or twisted) with respect
to other hypotheses. This means that the intersection area of two overlapped hypotheses
A and B has approximately the same size as the area of the hypothesis A and the
hypothesis B respectively. We express this fact with the condition (6):

S Að Þ \ S Bð Þj j � t S Að Þj j AND S Að Þ \ S Bð Þj j � t S Bð Þj j; t 2 0; 1½ � ð6Þ

We restrict the size of the intersection area with respect to the size of the hypothesis
area by the value t. If two hypotheses fulfil the Condition (6) we say they overlap each
other. As well as in the discussion of the relationship inside, we assume that the best
match for an object has the highest score. From two overlapping hypotheses we
therefore remove the hypothesis with the lower matching score. In the first part of
Fig. 4 the remaining hypotheses are given when we use the overlapping condition (6)
and varying the thresholds t of the minimal common hypotheses area.

Since the condition (6) mainly combines hypotheses with similar size, we replace
the “AND” with “OR” (7). Then we repeat the test with the new condition (7). The
results are given in the second part of Fig. 4.

Fig. 3. Basic hypotheses.

C t=0.95 t=0.9 t=0.8 t=0.67

(6)

28 Hypotheses 19 Hypotheses 14 Hypotheses 9 Hypotheses

19 Hypotheses 13 Hypotheses 9 Hypotheses 8 Hypotheses

(7)

Fig. 4. Applying the Relationship “Overlapping” with different conditions and degrees of
common area to some selected Hypotheses (C = Condition).

Verification of Hypotheses Generated by Case-Based Reasoning 73

S Að Þ \ S Bð Þj j � t S Að Þj j OR S Að Þ \ S Bð Þj j � t S Bð Þj j; t 2 0; 1½ � ð7Þ

As we can see from Fig. 4 the number of hypotheses is as fewer as lower the
threshold of the minimal common hypotheses area is. As we expected more hypotheses
are removed with the second condition (7). Therefore we take the condition (7) using
the threshold t = 0.67 for applying the “overlapping” relation to all remaining
hypotheses of the “inside” relation (Fig. 5).

From Fig. 5 we can see that the applied criterion reduces the given hypotheses to
about 5%. In order to improve the performance of the reduction process we used the
described rule also to all hypothesized matches. We obtain the same result as if we
remove some hypotheses with the “inside” relation. Therefore we conclude that the first
step in each hypothesis verification process should be the reduction of hypotheses using
“overlapping” relation defined with condition (7) and the common area threshold
t = 0.67. From each pair of overlapped hypotheses the hypothesis with the lower
matching score is removed.

5 Statistical Reduction of the Hypotheses

The method for hypothesis reduction that is described in Sect. 3.2 shows very good
performance. One of the main weaknesses of this method is the arbitrary fixed
threshold of common area. In this Section we want to discuss some more possibilities
of hypothesis reduction based on statistical measures.

5.1 Common Statistical Measures

In order to determine the distribution of the matching scores that range from 0.8 to 1,
we generate a histogram by subdividing the range into non-overlapping classes with a
class width of 0.05. The number of hypotheses within each class is displayed in Fig. 6.

a. Basic Hypotheses b. Remaining Hypotheses

667 Hypotheses 35 Hypotheses

Fig. 5. Applying the Relationship “Overlapping” with condition (7) and the Threshold t = 0.67
after the Relationship “Inside”.

74 P. Perner

From the Histogram in Fig. 6 we cannot conclude to any distinct distribution
because we only investigate in a part of the score space. Nevertheless we can determine
the mean ls and the standard deviation rs of all scores. In order to optimize the
threshold we develop a criterion for removing some hypotheses based on the mean and
the standard deviation (8):

si\ls þ f � rs) delete hypothesis i; i ¼ 1; . . .; h ð8Þ

The number of hypotheses is denoted by h. Figure 7 shows the remaining
hypothesized objects applying different factors f to the 734 hypotheses shown in
Fig. 1c.

From Fig. 7 we can see that the number of hypotheses can be reduced significantly
if the threshold for the matching score is increased. Since we expect high scores if the
model matches an object very well, we will obtain as more hypotheses for one object as
better the model matches the object. The results reported in Fig. 7 verify this
assumption.

Remember that the matcher tolerates object occlusion and touching until 20% if the
score threshold is 0.8. The described method for hypotheses reduction increases the
threshold for accepting a match as a hypothesis. In the consequence it removes also
hypotheses of objects which are occluded or touched. If we want to consider also such
objects, we must not reduce the hypothesized matches based on Eq. (8).

Mean = 0.8223
Standard Deviation = 0.0265

Fig. 6. Histogram, mean and standard deviation of the hypothesis scores.

a. Hypotheses which
Score mean
> (f=0)

b. Remaining
Hypotheses
applying f = 1

c. Remaining
Hypotheses
applying f = 2

d. Remaining
Hypotheses
applying f = 3

236 Hypotheses 78 Hypotheses 39 Hypotheses 23 Hypotheses

Fig. 7. Remaining hypotheses applying condition (9) with different Factors f. (Color figure
online)

Verification of Hypotheses Generated by Case-Based Reasoning 75

5.2 Hypotheses Reduction by the Evaluation of the Local Score

For each hypothesis we can store, during the matching process, the number of model
pixels that have the same local contrast as the corresponding image pixel. In the
following we denote this number with csame. Remember that the model and the image
pixel have the same local contrast if their dot product is positive. Otherwise their local
contrast is inversed. In order to measure the quality of the hypothesis we determine,
with respect to the number n of model pixels, the fraction of contour pixels of the
hypothesis that have the same contrast as the model. Depending on the global contrast
between the model and the hypotheses we should accept very high and very low values
of this fraction. Given a threshold t the minimal fraction of the same contrast for
acceptance, we determine the remaining hypotheses based on Condition (9):

t\
ci;same
n

\ 1� tð Þ) remove hypothesis i; t 2 0; 0:5½ �; i ¼ 1; . . .; h ð9Þ

Figure shows the remaining hypotheses using different values of the threshold t.
It is strange that hypotheses which seem to match the object well are earlier

removed than hypotheses which include some background. Figure 8 shows this phe-
nomenon for the hypotheses of two selected objects in the image based on the threshold
t = 0.25. Each image in Fig. 8 shows a labelled hypothesis whereas red parts display
negative local contrast and blue parts positive local contrast. Below each image the
relative fraction of negative local contrast is given (blue parts of the contour).

Because of these unexpected results we ask if the approach of the differentiation
between positive and negative local contrast is correct. The power of the similarity
measure that we use is its invariance to local contrast changes, that is, we eliminate the
influence of the sign of the local score by summing up the absolute amount of the local
scores. On the other side we exactly evaluate the sign if we calculate the score of binary
contrast changes (see Fig. 9).

Figure 10 shows the same hypotheses as Fig. 9, but now pixels which local score
higher than 0.9 or lower than −0.9 are marked blue. The other parts are red. Below the
images the relative faction of pixels with high local score (>0.9) is given.

a. t = 0.1 b. t = 0.15 c. t = 0.2 d. t = 0.25 e. t = 0.33

62 Hypotheses 107 Hypotheses 181 Hypotheses 266 Hypotheses 412 Hypotheses

Fig. 8. Remaining hypotheses applying condition (9) with different Thresholds t. (Color figure
online)

76 P. Perner

Note that the fraction of high local scores depends on the threshold that defines a
pixel with “high local score”. As higher as the threshold is as lower is the value of this
fraction.

Similar to the experiment we carried out for the binary contour based on contrast
changes (see Fig. 8) we now create the binary contour for all hypotheses as described
above by thresholding the local scores at the value 0.9. Then we remove the hypotheses
which relative fraction of high local scores is lower than (a) 0.6 (b) 0.66 and (c) 0.75.
The results are given in Fig. 11.

From Fig. 11 we can see that this method is another possibility to reduce the
number of hypotheses. Since the hypotheses around the object in the right upper corner
have high similarity scores most of these hypotheses remain.

0.1437 0.25 0.1990 0.2475 0.2222 0.2374

0.2121 0.2323 0.2222 0.2071 0.2111 0.1910

Fig. 9. Results for binary contrast changes for different hypotheses.

0.5000 0.6122 0.5969 0.6061 0.5960 0.6313

0.6465 0.6010 0.5657 0.5808 0.5628 0.5327

Fig. 10. Results for local score higher than 0.9 and lower than −0.9. (Color figure online)

Verification of Hypotheses Generated by Case-Based Reasoning 77

6 Conclusions

In this paper we have described our hypothesis verification process for our case-based
reasoning shape-object matching procedure. We have described the hypothesis-
generation process in brief and the problems concerned with it. Then we described the
kinds of hypothesis verification we have developed for our matching procedure.
Results are given for the different rules. Finally, we introduce some statistical measures
for hypothesis reduction and give results. The final results show good performance but
we can still think of some other verification measures that will further improve the
results. These verification measures will be based on grouping the hypotheses, eval-
uation of the local similarity, and the background fraction of the found objects. This
work is left for a further paper that will finish the hypothesis-verification work and will
give a good summary about the work.

References

1. Grimson, W.E.L., Huttenlocher, D.P.: On the verification of hypothesized matches in
model-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 13(12), 1201–1213 (1991)

2. Jurie, F.: Hypothesis verification in model-based object recognition with a Gaussian Error
Model. In: Proceedings of the European Conference on Computer Vision, Freiburg, Germany,
pp. 642–656 (1998)

3. Katartzis, A., Sahli, H., Nyssen, E., Cornelis, J.: Detection of buildings from a single airborne
image using a Markov Random Field Model. In: Proceedings of IEEE International
Geoscience and Remote Sensing Symposium (IGARSS 2001), Sydney, Australia (2001)

4. Leibe, V.,Leonardis, A., Schiele, B.: Combined object categorization and segmentation with
an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer
Vision, Prague, May 2004

5. Perner, P., Bühring, A.: Case-based object recognition. In: Funk, P., González Calero, P.A.
(eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 375–388. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-28631-8_28

6. Perner, P., Jänichen, S., Perner, H.: Case-based object recognition for airborne fungi
recognition. J. Artif. Intell. Med. AIM 36(2), 137–157 (2006). Special Issue on CBR

7. Shahrokni, A., Vacchetti, L., Lepetit, V., Fua, P.: Polyhedral object detection and pose
estimation for augmented reality applications (2002)

a. local score < 0.6 b. local score <0.66 c. local score<0.75

138 Hypotheses 58 Hypotheses 26 Hypotheses

Fig. 11. Results for different local scores. (Color figure online)

78 P. Perner

http://dx.doi.org/10.1007/978-3-540-28631-8_28

Template-Based Pattern Matching
in Two-Dimensional Arrays

Yo-Sub Han1 and Daniel Pr̊uša2,3(B)

1 Department of Computer Science, Yonsei University,
50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 Faculty of Electrical Engineering, Czech Technical University,

Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic
prusapa1@fel.cvut.cz

3 Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University, Zikova 1903/4, 166 36 Prague 6, Czech Republic

Abstract. We propose a framework for pattern matching in two-
dimensional arrays of symbols where the patterns are described by an
extended version of the regular matrix grammar and the size of desired
matches is prescribed. We then demonstrate how to reformulate the 2D
pattern matching as the one-dimensional pattern matching (string pat-
tern matching), and study the efficiency of the string pattern match-
ing algorithm based on pattern complexity with respect to two finite
automaton models: (1) the classical finite automaton and (2) the finite
automaton equipped with two scanning heads placed in a fixed distance.
We also identify several subclasses of the considered templates for which
the framework yields a more efficient matching than the naive algorithm.

Keywords: Two-dimensional pattern matching · Matrix grammars ·
Pattern complexity · Finite automata · Multi-head automata

1 Introduction

The task of matching string patterns in a text naturally extends to higher dimen-
sions. For example, given a two-dimensional (2D) pattern and a 2D array of sym-
bols, the task of the exact 2D pattern matching is to detect all occurrences of
this pattern in the array. Bird [6] and Baker [5] independently proposed the first
efficient algorithm by reducing the problem into the one-dimensional (1D) pat-
tern matching problem. Then later several researchers suggested different types
of improved algorithms for different cases [2,4,9,10,16].

In pattern matching, another common scenario is to find matching against a
set of patterns described by a suitable formalism such as regular expressions or
finite automata. For instance, the problem of searching for the shortest matching
substring described by a regular expression has a very efficient implementation
and a wide applicability [1]. We can also easily identify many pattern searching
applications specified by a certain template in the 2D setting, arising in fields
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 79–92, 2017.
DOI: 10.1007/978-3-319-59108-7 7

80 Y.-S. Han and D. Pr̊uša

such as computer vision, robotics or data mining. However, it is not always
straightforward to extend a template for string (1D) pattern matching into a
template for 2D pattern matching. For example, the notion of regular expressions
cannot be easily generalized for 2D arrays, especially when we intend to transfer
the efficient matching algorithms for regular expressions with it.

In this paper we address this problematic scenario under the assumption that
patterns are described by an extension of the 2D (regular) matrix grammar [14].
We make the 2D matching task feasible by assuming that the goal is to detect
matches of a prescribed size in an input array of size m×n; namely, we fix the size
of desired matches to be k×�. We say that matches are detected efficiently when
the matching process is much faster than a straightforward naive approach, which
goes through all subpictures of size k × � in the input and, for each subpicture,
checks whether or not it is a match. If the subpicture checking takes linear time
in the area of the subpicture, namely O(k�) time, then the whole procedure
requires O(k�mn) time. We consider a matching algorithm to be efficient if it
runs in time O((log k + log �)mn). Recently, the pattern complexity for picture
languages was introduced [13]. We revisit this pattern complexity and develop
the notion of pattern complexity for a string language. Then we classify the
complexity of the studied 1D matching with respect to several subclasses of
regular languages based on the new pattern complexity.

The rest of the paper is structured as follows. We briefly recall some basic
notations in Sect. 2 and give examples of template usages in 2D pattern matching
in Sect. 3. Then we introduce an extended regular matrix grammar and describe
the matching algorithm in Sect. 4. We study in Sect. 5 complexity of the induced
matching task for strings with respect to two computational models. We conclude
by Sect. 6 where a future work is outlined.

2 Preliminaries

We use the common notation and terms on picture languages [8]. For a finite
alphabet Σ, a picture P over Σ is a 2D array of symbols from Σ. If P has m rows
and n columns, it is of size m × n, and we write P ∈ Σm,n. Rows of P are indexed
from 1 to m, columns of P are indexed from 1 to n, Pi,j denotes the symbol of
P in the i-th row and the j-th column. In graphical visualizations of pictures,
position (1, 1) is associated with the top-left corner. The set of all pictures over
Σ is denoted by Σ∗,∗. In addition, Σ∗,n =

⋃∞
i=0 Σi,n and Σm,∗ =

⋃∞
j=0 Σm,j .

Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton (DFA), where Q
is a set of states, Σ is an input alphabet, δ : Q×Σ → Q is a transition function,
q0 ∈ Q is the initial state and F ⊆ Q is a set of accepting states. The extended
transition function δ̂ : Q×Σ∗ → Q is defined by δ̂(q, λ) = q, δ̂(q, a) = δ(q, a) and
δ̂(q, aw) = δ̂(δ(q, a), w) for all a ∈ Σ, w ∈ Σ∗ and q ∈ Q. The language L(A) is
a set of strings w such that δ̂(q0, w) = f for an accepting state f ∈ F .

N = {1, 2, . . .}, N0 = N ∪ {0} and P(S) is the powerset of a set S.

Template-Based Pattern Matching in 2D Arrays 81

3 Working Examples

We can think of a template-based 2D pattern matching as a tool for image
processing in digital geometry or for high-level reasoning in computer vision or
robotics. An input array to be searched can be a raster image, a high-level grid
structure built upon an image or a scene representation by dividing the whole
area into sectors of equal size and assigning them labels by their content. We
illustrate these thoughts with the following examples of possible scenarios.

– An image is obtained by scanning the surface of a component. Its area is
divided into sectors, each of which is labeled as either defective (if it contains
a defect) or normal (if there is no defect). The task is to locate subareas of
k × k sectors with the number of defects above an acceptable threshold.

– Given a black-and-white image, search for some basic geometric shapes.
– A robot operates on a grid of sectors where each sector content is one of the

following three—nothing, an obstacle, an object of interest. The robot knows
the sector content. Now it is ordered to move to a location specified by “a
chair located south-east of a wall in distance at most two meters”.

Inspired by the scenarios, let us define the following picture languages (see also
Fig. 1).

Example 1 (Counting). For k ∈ N, let Lmax,k = {P ∈ {�,�} | |P |� ≤ k}, i.e.,
Lmax,k consists of those pictures having at most k black pixels.

Example 2 (Digital geometry). Let Lrect be a picture language over Σ = {�,�}
consisting of pictures where all black pixels form a boundary of a rectangle whose
height and width are at least 3. Moreover, let Ldiag be a picture language over
Σ = {�,�} consisting of square pictures P where the main diagonal contains
only black pixels, while the other pixels are white.

Example 3 (Spatial arrangement). Let Lsp be a picture language over Σ =
{�,�,�} consisting of all P ∈ Σ∗,∗ where |P |� = |P |� = 1, with � at a
position (bx, by) and � at a position (cx, cy), fulfilling bx < cx and by < cy.

Fig. 1. Example pictures from Lmax,3, Lrect, Ldiag and Lsp.

82 Y.-S. Han and D. Pr̊uša

4 Regular Matrix Grammars with Scanning Window

One of the earliest ideas of generating pictures by grammars was to define ver-
tical and horizontal productions (regular or context-free), and generate a pic-
ture in two phases. First, a column of symbols is produced using only vertical
productions. Second, all the previously generated symbols serve as the initial
nonterminals that in parallel generate rows by the horizontal productions. A
picture is successfully generated only if all the produced rows are of the same
length. However, it is known that such a grammar is weak [7]; for instance, it is
impossible to use it to generate patterns from Example 2 since it cannot control
a full neighborhood of generated fields (pixels). On the other hand, the grammar
can be easily parsed and it has favorable theoretical properties.

Here we strengthen the grammar by giving it a scanning window-like mech-
anism allowing to synchronize the content generated at neighboring positions,
which provides a control over the generated picture topology. The result is that
the expressive power of the grammar is significantly increased while the simplic-
ity of parsing is still maintained.

Definition 4. A two-dimensional regular matrix grammar with scanning win-
dow of size c, abbreviated as 2RMGc is a tuple G = (Nv, Nh, ΣI , Σ, S,Rv, Rh),
where

– Nv is a finite set of vertical nonterminals,
– Nh is a finite set of horizontal nonterminals, with Nv ∩ Nh = ∅,
– ΣI ⊆ Nh is a finite set of intermediates,
– Σ is a finite set of terminals,
– S ∈ Nv is a starting symbol,
– Rv is a finite set of vertical productions of the form N → AM or N → A

where N,M ∈ Nv and A ∈ ΣI ,
– Rh is a finite set of horizontal productions of the form V → aW or V → a

where V,W ∈ Nh and a ∈ Σc,1.

Let Gv = (Nv, ΣI , S,Rv) denote the regular grammar formed by the vertical
productions (with the starting symbol S) and let Gh = (Nh, Σ,Rh) denote the
regular grammar formed by the horizontal productions (without any nonterminal
specified as the starting symbol). Let L(Gv) ⊆ Σ∗

I denote the set of strings
generated by Gv and, for N ∈ ΣI , let L(Gh, N) ⊆ Σc,∗ denote the set of pictures
generated by Gh from N .

Definition 5. We say that a 2RMGc G = (Nv, Nh, ΣI , Σ, S,Rv, Rh) generates
a picture P ∈ Σm,n iff

1. there is C = C1C2 · · · Cm−c+1 ∈ L(Gv), where Ci ∈ ΣI ,
2. for each i = 1, . . . , m − c + 1, the subpicture of P consisting of rows from i to

i + c − 1 is in L(Gh, Ci).

The process of generating a picture is depicted in Fig. 2.

Template-Based Pattern Matching in 2D Arrays 83

1

2

3

4

5

C1

C2

C3

Fig. 2. A 2RMG3 generating a picture of size 5 × 7. Vertical productions generate string
C1C2C3, displayed as a column. Horizontal productions generate rows 1, 2, 3 from C1,
rows 2, 3, 4 from C2 and rows 3, 4, 5 from C3. Note that the content of each overlapped
row must be identical in all three cases—for instance, the content of the row 3, which
is overlapped by C1, C2, C3, is identical for all the three cases.

Corollary 6. 2RMG1 is equivalent to the normal regular matrix grammar.

A parser for a given 2RMGc can be constructed as follows. Let P ∈ Σm,n be
an input picture. For N ∈ ΣI , let Ah(N) be a DFA accepting L(Gh, N). At each
step, Ah(N) scans a column of c symbols from Σ (it has a scanning window of
height c). Let Ah be the product automaton of all Ah(N)’s for all N ∈ ΣI . Apply
Ah to process rows of P from c to m. Note that when processing row i, Ah scans
also symbols in rows i−1, . . . , i−c+1. Let ΣI = {N1, . . . , Nk} and (qi

1, q
i
2, . . . , q

i
k)

be the state entered by Ah at the rightmost column of row i. Define Si ⊆ ΣI

to contain Nj ∈ ΣI iff qi
j is an accepting state. Let Av be a DFA accepting

L(Gv). Then, from Av, we construct a nondeterministic finite automaton A that
simulates Av nondeterministically by reading Sc,Sc+1, . . . ,Sm, guessing Ci ∈ Si

in each row i and simulating Av over Cc . . . Cm (note that A rejects if Si = ∅ for
some i).

Lemma 7. Let Σ be an alphabet and Θ ⊆ Σc,d be a set of pictures of size c × d
for some c, d ∈ N. Let L(Θ) over Σ denote a picture language consisting of all
pictures P ∈ Σ∗,∗ of size at least c × d whose all subpictures of size c × d are
from Θ. Then, there is a 2RMGc generating L(Θ).

Proof. Construct a 2RMGc G such that L(Gv) = {C}∗ for an intermediate C and
L(Gh, C) consists of pictures of height c where each subpicture of size c × d is
in Θ. The latter (horizontal) language over Σc,1 is regular as it is accepted by a
DFA that remembers in states the lastly read subpicture c × d. 	

Lemma 8. The family of picture languages generated by 2RMGc is closed under
union, intersection and complement.

Proof. Follows from closure properties of regular languages and properties of
finite automata. 	

Lemmas 7 and 8 can be used to construct a 2RMG2 generating Ldiag from
Example 2. For a picture P ∈ {�,�}∗,∗ of size at least 2 × 2, two properties
have to be checked to ensure that P ∈ Ldiag.

84 Y.-S. Han and D. Pr̊uša

– All subpictures of size 2 × 2 of P are in
{

� �
� � ,

� �
� � ,

� �
� � ,

� �
� �

}

.

– In the first and last row of P , the black pixel appears only at the first and
last position, respectively.

We can similarly construct a 2RMG2 generating Lrect. To generate Lmax,k, it
suffices to construct a 2RMG1 where the set of intermediates equals ΣI =
{C0, C1, . . . , Ck} and, for each i, the horizontal productions generate from Ci

strings u over {�,�} such that |u|� = i. Let δ(Ci) = i. Then, the vertical
productions are designed to generate strings v ∈ Σ∗

I where
∑|v|

i=1 δ(vi) ≤ k.
As for Lsp, it can be expressed as the intersection Lsp = L

(x)
sp ∩ L

(y)
sp where

L
(x)
sp or L

(y)
sp consists of pictures in which pixel � is at a position (bx, by) and

pixel � is at a position (cx, cy) fulfilling bx < cx or by < cy, respectively. L
(y)
sp

is generated by a 2RMG1. L
(x)
sp is generated by a variant of 2RMG1 which first

generates a row of intermediates and then columns of the resulting picture. A
usage of this “transposed” 2RMG1 could be integrated in the matching algorithm
which follows next, but we do not give details on this due to the limited space.

Let G = (Nv, Nh, ΣI , Σ, S,Rv, Rh) be a 2RMGc. Denote Γ = Σc,1 and
Δ = P(ΣI). For N ∈ ΣI , k, � ∈ N, k ≥ c, let Mh

� (N) be a DFA accepting
Γ ∗ (

Γ � ∩ L(Gh, N)
)

(i.e., strings whose suffix of length � is in L(Gh, N)) and
Mv

k be a DFA accepting Δ∗ (
Δk−c+1 ∩ L(A)

)
where A is the automaton from

the parsing algorithm description. For a DFA M, let |M| denote the number
of states of M. Assume also, that c is a small constant (we saw that c ≤ 2 is
sufficient for the working examples).

Theorem 9 (Matching algorithm). Given a 2RMGc G, an input P ∈ Σm,n

and k, � ∈ N, k ≤ m, � ≤ n, there is an algorithm detecting all subpictures of P
that belong to L(G) ∩ Σk,� in

O
(

mn
(

log |Mv
k| +

∑

N∈ΣI

log |Mh
� (N)|

)
)

time.

Proof. We use an auxiliary 2D array T of size m × n where Ti,j denotes its field
at position (i, j). The matching procedure resembles the parsing algorithm. The
input P is first scanned row by row. When passing through an i-th row (i ≥ c),
rows i, . . . , i − c + 1 are processed simultaneously by all automata Mh

� (N). We
write to Ti,j a subset S ⊆ ΣI which contains N ∈ ΣI iff Mh

� (N) enters an accept-
ing state after performing the j-th transition. The second phase goes through
columns of T , skipping always c − 1 first symbols of each column. The automa-
ton Mv

k is simulated over each column. Whenever Mv
k enters an accepting state

at some Ti,j , it indicates that the position (i, j) is the bottom-right corner of
a match. The time complexity of the algorithm is determined by the number
of scanned symbols, which is O(mn), and the time complexity of simulating a
transition of each participating automaton, which is proportional to the length

Template-Based Pattern Matching in 2D Arrays 85

of states representation, i.e., to O(log |M|) for an automaton M. Note that we
do not analyze the time complexity of constructing the automata from G as this
is independent of m and n. 	

The matching algorithm is of time complexity O (mn(log k + log �)) if |Mv
k| is

polynomial in k and, for all N ∈ ΣI , |Mh
� (N)| is polynomial in �. Also note that

instead of DFAs we could have used a different model to perform 1D matching
in rows and columns. We develop these two observations in the next section.

5 String Languages with Polynomial Pattern Complexity

As the template-based 2D pattern matching reduces to 1D pattern matching, it
is essential to investigate the complexity of matching strings of a fixed size. In
this section we define the pattern complexity of string languages with respect to
two models: DFA and a variant of two-head DFA.

5.1 Matching by DFA

Let L be a language over Σ. We search for all occurrences of length n patterns
from L in a string w ∈ Σ∗ by constructing a DFA accepting L(n) = Σ∗ (L ∩ Σn).
For any L, the language L(n) is regular (since L ∩ Σn is a finite, hence regular,
language) and is accepted by a DFA with O(|Σ|n) states. Here we are interested
in those languages L for which L(n) is accepted by a DFA with polynomially
many states in n.

Definition 10 (Pattern complexity of a string language). Let L be a lan-
guage over Σ. For each n ∈ N, let An = (Qn, Σ, δn, q0, Fn) be the state-minimal

DFA accepting L(n). We define the pattern complexity of L to be a func-
tion σL : N → N where σL(n) = |Qn| for all n ∈ N.

Example 11. L = {au | u ∈ {a, b}∗} has exponential pattern complexity.
We prove it by applying the Myhill-Nerode theorem to L(n). Let u, v ∈

{a, b}n where u = u1 . . . un, v = v1 . . . vn and there is i such that ui �= vi. Then,
ai−1 is a distinguishing extension as |{uai−1, vai−1} ∩ L(n)| = 1. This implies
that σL = Ω(2n) since there are 2n mutually distinguishable strings of length n.

Example 12. L = {u | u ∈ {a, b}∗ ∧ |u|b mod 2 = 0} has exponential pattern
complexity (apply the Myhill-Nerode theorem as in Example 11).

Example 13. Lmax,k = {u | u ∈ {a, b}∗ ∧ |u|a ≤ k} has polynomial pattern com-
plexity. For a given n, construct a DFA representing in states k + 1 counters
C1, . . . , Ck+1 that memorize relative positions of the last k + 1 occurrences of a’s
in lastly read n characters. Each counter ranges from 0 to n. If a counter Ci is of
value 0, it means that the number of tracked a’s is less than i. One more counter,
counting to n, is added to prevent accepting strings shorter than n. All this suf-
fices to accept Lk(n) and the constructed DFA has O(nk+2) states. On the other,

86 Y.-S. Han and D. Pr̊uša

we can prove that σLmax,k = Ω(nk). Consider two strings u, v ∈ {a, b}n such
that |u|a = |v|a = k and u �= v. Let i be the smallest i for which ui �= vi, hence,
w.l.o.g., ui = a and vi = b. Denote � = |u1 . . . ui|a = 1+ |v1 . . . vi|a. Then, a�bi−�

is a distinguishing extension for u and v. As |{w ∈ {a, b}n | |w|a = k}| = Ω(nk),
by the Myhill-Nerode theorem, σLmax,k = Ω(nk).

Example 14. In connection with Lemma 7, consider the following regular lan-
guage L over Σ:

L = {w ∈ Σ∗ | all length d substrings of w are in Θ},

where Θ ⊆ Σ1×d is a set of pictures of size 1 × d—we can regard Θ as a set of
strings since all pictures of Θ are single-row pictures.

Then, σL = O(dn2) since L(n) can be accepted similarly as Lmax,0 from
Example 13 (the number of substrings of length d not in Θ must be zero; and it
is needed to remember d lastly read symbols).

Proposition 15. Let L1 and L2 be two languages over Σ with polynomial pat-
tern complexity. Then, L∪ = L1 ∪ L2, L∩ = L1 ∩ L2 and L = Σ∗

�L1 have
polynomial pattern complexity.

Proof. For n ∈ N, let A1 and A2 be DFAs with polynomially many states accept-
ing L1(n) and L2(n), respectively. We can write

L∪(n) = Σ∗ ((L1 ∪ L2) ∩ Σn) = Σ∗ (L1 ∩ Σn) ∪ Σ∗ (L2 ∩ Σn) = L1(n) ∪ L2(n),

hence L∪(n) is accepted by the product automaton of A1 and A2. Analogously,
we derive L∩(n) = L1(n)∩L2(n), meaning again that L∩(n) is a regular language
accepted by the product automaton. For the complement, it holds

L(n) = Σ∗ ((Σ∗
�L1) ∩ Σn) = Σ∗Σn

�Σ∗ (L1 ∩ Σn) = Σ∗Σn
�L1(n).

Hence, L(n) consists of those strings w ∈ Σ∗ where |w| ≥ n and w is rejected by
A1. A DFA, with polynomially many states, simultaneously counting to n and
simulating A1 can be easily constructed. 	

On the other hand, it is not difficult to show that concatenation of two regular
languages with polynomial pattern complexity may result in a regular language
with exponential complexity. This can be easily demonstrated by expressing the
regular language L from Example 11 as L = {a} · {a, b}∗. In addition, L = LR

3

where L3 = {ua | u ∈ {a, b}∗} and σL3 = O(1).

Corollary 16. There exist regular languages L1, L2, L3 over Σ with polynomial
pattern complexity such that L1L2 and (L3)R are of exponential pattern com-
plexity.

Template-Based Pattern Matching in 2D Arrays 87

5.2 Matching by k-gapped Two-Head DFA

In this section we show that a broader subclass of templates has an efficient
matching procedure if the matching algorithm allows to access more number of
(distant) fields in the input text. Namely, the algorithm keeps tracking on the
symbol that leaves a fictive scanning window whose size equals the length of
matches. We model this mechanism by introducing a k-gapped two-head deter-
ministic finite automaton (g2h-DFA) as a finite-state device with two reading
heads hl, hr (the left and right one). The model is almost identical to the tra-
ditional finite-state model except for that there are two heads and the distance
between them on the input is k while reading the input1.

Informally speaking, given an input u = u1 · · · un ∈ Σ∗, the k-gapped g2h-
DFA prepends k − 1 #’s and � to u and reformats u to be u# = ## · · · # �

︸ ︷︷ ︸
k new symbols

u,

which allows g2h-DFA to place two heads apart from each other at the dis-
tance k on the input. The � is a delimiter separating the original input string u
from dummy symbols #, which are used for hl to make the desired distance k
between two heads from the beginning of the computation as the initial config-
uration becomes [hl]## · · · # � q0[hr]u1u2 · · · un, where [hl] and [hr] denote the
corresponding positions of two heads.

Then g2h-DFA starts processing u# from q0 by reading two symbols indicted
by two heads and going to the next state defined and moving two heads to the
next symbols. The computation ends when g2h-DFA read the whole u#. If it ends
at an accepting state, then we say that g2h-DFA accepts u.

Definition 17. A k-gapped two-head DFA (g2h-DFA) is a tuple
(k,Q,Σ, δ, q0, F), where k ∈ N is the distance between two heads. The transi-
tion function is of the form δ : Q×(Σ∪{#,�})×Σ →Q. The other components
are the same as for DFA.

Given a g2h-DFA A = (k,Q,Σ, δ, q0, F) and an input string u = u1 · · · un ∈
Σ∗, the initial configuration is

[hl]## · · · # � q0[hr]u1u2 · · · un.

The general configuration computation of A for u# is defined as follows: Given
a current configuration

x[hl]y1y2 · · · ykqi[hr]yk+1yk+2 · · · yn,

where x and y = y1y2 · · · yn are strings over Σ ∪ {#,�} and u# = xy, the next
configuration is

xy1[hl]y2 · · · ykyk+1qj [hr]yk+2 · · · yn,

if δ(qi, y1, yk+1) = qj in A.

1 The proposed automaton model g2h-DFA is different from the traditional two-headed
finite automaton that has two read-only bidirectional heads.

88 Y.-S. Han and D. Pr̊uša

We say that a configuration is final if it is x′[hl]y′q[hr], where u# = x′y′. We
say that it is accepting if q ∈ F—this is the case when A accepts u.

For a language L ⊆ Σ∗, recall that L(n) = Σ∗ (L ∩ Σn). Since L(n) is
regular, there exists a state-minimal g2h-DFA An = (n,Qn, Σ, δn, Fn) accepting
L(n). Then, we define the pattern complexity τL of L with respect to g2h-DFA
to be the number of states in A; namely, τL : N → N, where τL(n) = |Qn|.

An immediate outcome of the pattern complexity over g2h-DFA is an ability to
implement a counter for the number of particular symbols in its fictive scanning
window. This is illustrated by the following example.

Example 18. Consider the regular language Lmax,k = {u | u ∈ {a, b}∗ ∧ |u|a ≤ k}
from Example 13. Now consider g2h-DFA A = (n,Q,Σ, δ, (q0, 0), F) where Q =
{q0, q1, . . . , qn} × {0, 1}, Σ = {a, b}, F = {q0, . . . , qk} × {1} and

δ((qi, 0),#, a) = (qi+1, 0) for i < n, δ((qi, 1), a, a) = (qi, 1),
δ((qi, 0),#, b) = (qi, 0), δ((qi, 1), b, b) = (qi, 1),
δ((qi, 0),�, a) = (qi+1, 1) for i < n, δ((qi, 1), a, b) = (qi−1, 1) for i > 1,

δ((qi, 0),�, b) = (qi, 1), δ((qi, 1), b, a) = (qi+1, 1) for i < n.

We omit all states and transitions that are not applicable to any configuration—
e.g.: δ((qn, 1), b, a). They can be defined arbitrarily. For each state (qi, j), the first
component qi acts as a counter ranged from 0 to n, and the second component j
acts as a flag determining if the prefix of length n has already been read. During
each computation of A, the counter—the index i of the first component of the
current state (qi, j)—is increased/decreased if the symbol scanned by hr/hl is
a. Then it is easy to verify that A accepts Lmax,k(n). Since the number of
states in A is O(n), it holds τLmax,k = O(n), which is an improvement towards
σLmax,k = Ω(nk).

Example 19. For another example of the pattern complexity, consider L =
{au | u ∈ {a, b}∗} from Example 11. We construct a g2h-DFA A = (n −
1, Q,Σ, δ, (q0, 0), F) where Q = {q0, q1} × {0, 1}, Σ = {a, b}, F = {(q0, 1)}
and, for i ∈ {0, 1},

δ((qi, 0),#, a) = (q1−i, 0), δ((qi, 1), a, a) = (qi, 1),
δ((qi, 0),#, b) = (qi, 0), δ((qi, 1), b, b) = (qi, 1),
δ((qi, 0),�, a) = (q1−i, 1), δ((qi, 1), a, b) = (q1−i, 1),
δ((qi, 0),�, b) = (qi, 1), δ((qi, 1), b, a) = (q1−i, 1).

It is straightforward to verify that A accepts L(n) and, thus, τL = O(1) for L.

Next, we identify a subclass of regular languages whose pattern complexity
is constant with respect to g2h-DFA.

Definition 20. We say that a DFA A = (Q,Σ, δ, q0, F) is strongly Eulerian iff
for each q ∈ Q and a ∈ Σ, there is a state p ∈ Q such that δ(p, a) = q.

Template-Based Pattern Matching in 2D Arrays 89

Strongly Eulerian DFAs can be characterized based on the structure of
underlying transition graphs. For a DFA A = (Q,Σ, δ, q0, F) and a ∈ Σ, let
G(A, a) = (Q,E) be the directed graph where the set of vertices equals Q and
(p, q) is an edge in E iff δ(p, a) = q. The automaton A is strongly Eulerian iff, for
each a ∈ Σ, G(A, a) consists of cycles—See Fig. 3 for an example. Another exam-
ple of a regular language accepted by a strongly Eulerian DFA is the language
from Example 12.

a

b a, b

a

b

Fig. 3. A strongly Eulerian DFA accepting the string language described by regular
expression a∗(b((a + b)a)∗(a + b)ba∗)∗.

Strongly Eulerian DFAs are a superset of well-known bideterministic
automata [15]. A finite automaton A is bideterministic if A and its reversal
automaton AR are both deterministic. Researchers considered bideterministic
automata and bideterministic languages in the context of machine learning or
in coding theory in the literature [3,12]. Bideterminism also plays a crucial role
in characterizing minimal DFAs in formal language theory.

Proposition 21. Let L ⊆ Σ∗ be a regular language accepted by a strongly
Eulerian DFA. Then, τL = O(1).

Proof. Let L = L(A) where A = (Q,Σ, δ, q0, F) is a strongly Eulerian DFA.
Define δ−1(q, a) to be the only state p ∈ Q such that δ(p, a) = q. For n ∈ N,
construct a g2h-DFA M = (n,Q′, Σ, δ′, q′

0, F
′) accepting L(n) as follows. Let

w ∈ Σ∗ be an input string of length m where m ≥ n. When processing the
prefix of w of length n, M simulates A and computes δ̂(q, w1 . . . wn) for each
q ∈ Q and a mapping q → δ̂(q, w1 . . . wn) is stored in states of M at the end of
the stage. The suffix wn+1 . . . wm is processed during the second stage. Assume
that M stores the mapping q → δ̂(q, wi . . . wn+i−1), its left head scans wi+1 and
the right head scans wn+i. Then, in the next transition, M updates the mapping
to be q → δ̂(q, wi+1 . . . wn+i) using the formulas

δ̂(q, wi+1 . . . wn+i−1) = δ̂(δ−1(q, wi), wi . . . wn+i−1),

δ̂(q, wi+1 . . . wn+i) = δ(δ̂(q, wi+1 . . . wn+i−1), wn+i).

A state of M is accepting iff the stored mapping maps q0 to a state from F and
the currently read prefix of w is of length at least n (i.e., � has already been
encountered by hl). To represent the mapping, M needs O(|Q||Q|) states, which
is a constant with respect to n. 	

90 Y.-S. Han and D. Pr̊uša

As the next result we show that it is possible to efficiently detect those
patterns where the number of a particular symbol occurrences corresponds to
the length of a string from a unary regular language. More precisely, let Σ be
an alphabet such that a ∈ Σ and L be a regular language over {a}. We define
the regular language L′ = {u ∈ Σ | a|u|a ∈ L}. It can be equivalently expressed
using the shuffle operation as L′ = L Δ (Σ�{a})∗.

Lemma 22. Let c1, . . . , cm be positive integers and d = gcd(c1, . . . , cm). There
exists a bound B ∈ N such that, for any N ≥ B, the equation c1x1+· · ·+cmxm =
N has a solution in non-negative integers iff N is divisible by d.

Proof. For a vector of non-negative integers (x1, . . . , xm),
∑m

i=1 cixi is divisible
by d, hence the equation has a solution only if d divides N .

By Bézout’s identity, we can write d =
∑m

i=1 cizi for integers zi. Letting
c =

∑m
i=1 ci, every N divisible by d can be written as N = qc + rd where q, r

are integers with 0 ≤ r < c
d .

If N is large enough, in particular if N ≥ B = c + c2

d maxi |zi|, then the
coefficients in N =

∑m
i=1(q + zir)ci are all non-negative. 	

Proposition 23. Let Σ be an alphabet, a ∈ Σ, L ⊆ {a}∗ be a regular language
and L′ = L Δ (Σ�{a})∗. Then, τL′ = O(n).

Proof. By Parikh’s theorem, S = {|u| | u ∈ L} is a union of finitely many
linear sets. W.l.o.g, consider that S equals a linear set {c0 + c1t1 + · · · + cmtm |
t1, . . . , tm ∈ N0} where c0 ∈ N0 and ci ∈ N for all i = 1, . . . , m. Let B be the
bound given by Lemma 22 for the equation c1t1 + · · · + cmtm = N . Moreover,
let S be the set of all non-negative integers N < B for which the equation has
a non-negative solution. We then construct a g2h-DFA A = (n,Q,Σ, δ, q0, F)
accepting L′(n) as follows. It counts in states the number of a’s in the lastly
read n characters. Let the counter store a value s. Automaton A accepts iff head
hr has already encountered �, and it holds either 0 ≤ s− c0 < B and s− c0 ∈ S,
or, s − c0 ≥ B and gcd(c1, . . . , cm) divides s − c0. 	

Note that as demonstrated in the proof of Proposition 23, a g2h-DFA may
have a quite succinct representation—we construct a g2h-DFA using a constant
memory regardless of n (it is possible to calculate transitions as well as accepting
states by a fixed set of constant-sized formulas). We believe that the problem of
characterizing such g2h-DFAs should be an interesting problem.

As the last observation let us notice that g2h-DFA does not entirely solve
the problem with possible exponential pattern complexity of a regular language
obtained as concatenation of two regular languages of polynomial pattern com-
plexity. This can be easily demonstrated by L = {a, b} · {au | u ∈ {a, b}∗}. Using
a g2h-DFA with the head distance n − 1 (instead of n) to search for matches
of patterns in L(n) would fix this particular case, however, there will still be
another examples of the exponential increase.

Template-Based Pattern Matching in 2D Arrays 91

6 Conclusion

We have presented a framework supporting to search for template-based two-
dimensional patterns in two-dimensional arrays. The regular matrix grammar
has been extended to a formalism powerful enough for describing patterns that
occur in applications. Complexity of the proposed method has been analyzed
with respect to two models considered for executing one-dimensional matching
tasks for various subclasses of regular languages incorporated by the templates.
We have established positive results (constant or polynomial pattern complexi-
ties) as well as negative results (exponential pattern complexities).

For future research, we see several directions. The computational model used
for one-dimensional matching can be further extended to lower the pattern com-
plexity of some regular languages. For example, more heads with varying distance
can be considered.

The introduced regular matrix grammar with scanning window has its limits.
It might not be powerful enough to describe some patterns of complex topology.
There are two possibilities how to increase the power of the method. One option is
to go beyond regular languages (and regular matrix grammars) when defining the
templates. Note that the connection between regular languages and languages
with polynomial pattern complexity is loose as demonstrated by our results.
Other classes of string languages could establish a more tighter relation. A good
candidate is the family of languages accepted by jumping finite automata [11]
as these automata are related to counting symbols. The second option is to
incorporate a preprocessing of the input image. Fast algorithms like depth-first
search in a graph can be applied to detect topological relationships and such a
preprocessed image can be passed to the matching procedure.

As the last direction, let us mention the possibility to generalize the frame-
work to three-dimensional (or higher-dimensional) patterns as the matrix gram-
mar naturally extends to higher dimensions and the presented matching algo-
rithm can still be based on reduction to one-dimensional matchings for each of
the original dimensions.

Acknowledgments. Han was supported by the Basic Science Research Program
through NRF funded by MEST (2015R1D1A1A01060097) and the IITP grant funded
by the Korea government (MSIP) (R0124-16-0002), and Pr̊uša was supported by the
Czech Science Foundation under grant no. 15-04960S.

References

1. Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.)
Algorithms and Complexity, Handbook of Theoretical Computer Science, vol. A,
pp. 255–300. The MIT Press, Cambridge (1990)

2. Amir, A., Benson, G., Farach, M.: Alphabet independent two dimensional match-
ing. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory
of Computing, STOC 1992, NY, USA, pp. 59–68 (1992). http://doi.acm.org/10.
1145/129712.129719

http://doi.acm.org/10.1145/129712.129719
http://doi.acm.org/10.1145/129712.129719

92 Y.-S. Han and D. Pr̊uša

3. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
4. Baeza-Yates, R., Régnier, M.: Fast two-dimensional pattern matching. Inf.

Process. Lett. 45(1), 51–57 (1993). http://www.sciencedirect.com/science/article/
pii/002001909390250D

5. Baker, T.P.: A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM J. Comput. 7(4), 533–541 (1978). http://dx.
doi.org/10.1137/0207043

6. Bird, R.S.: Two dimensional pattern matching. Inf. Process. Lett. 6(5), 168–170
(1977). http://dx.doi.org/10.1016/0020-0190(77)90017–5

7. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Scanning pictures the
Boustrophedon way. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 202–216. Springer, Cham (2015). doi:10.1007/
978-3-319-26145-4 15

8. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, New
York (1997)

9. Kärkkäinen, J., Ukkonen, E.: Two and higher dimensional pattern matching in
optimal expected time. In: Sleator, D.D. (ed.) Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, Arlington, Virginia, 23–25, pp.
715–723. ACM/SIAM (1994). http://dl.acm.org/citation.cfm?id=314464.314680

10. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987). http://dx.doi.org/10.1147/rd.312.0249

11. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput.
Sci. 23(7), 1555–1578 (2012). http://www.fit.vutbr.cz/research/view pub.php.cs?
id=9795

12. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844

13. Pr̊uša, D.: Complexity of sets of two-dimensional patterns. In: Han, Y.-S., Salomaa,
K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 236–247. Springer, Cham (2016). doi:10.
1007/978-3-319-40946-7 20

14. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972). http://
www.sciencedirect.com/science/article/pii/S0146664X72800194

15. Tamm, H., Ukkonen, E.: Bideterministic automata and minimal representations of
regular languages. Theoret. Comput. Sci. 328(1–2), 135–149 (2004)

16. Zhu, R.F., Takaoka, T.: A technique for two-dimensional pattern matching. ACM
Commun. 32(9), 1110–1120 (1989). http://doi.acm.org/10.1145/66451.66459

http://www.sciencedirect.com/science/article/pii/002001909390250D
http://www.sciencedirect.com/science/article/pii/002001909390250D
http://dx.doi.org/10.1137/0207043
http://dx.doi.org/10.1137/0207043
http://dx.doi.org/10.1016/0020-0190(77)90017--5
http://dx.doi.org/10.1007/978-3-319-26145-4_15
http://dx.doi.org/10.1007/978-3-319-26145-4_15
http://dl.acm.org/citation.cfm?id=314464.314680
http://dx.doi.org/10.1147/rd.312.0249
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=9795
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=9795
http://dx.doi.org/10.1007/BFb0023844
http://dx.doi.org/10.1007/978-3-319-40946-7_20
http://dx.doi.org/10.1007/978-3-319-40946-7_20
http://www.sciencedirect.com/science/article/pii/S0146664X72800194
http://www.sciencedirect.com/science/article/pii/S0146664X72800194
http://doi.acm.org/10.1145/66451.66459

Construction of Persistent Voronoi Diagram
on 3D Digital Plane

Ranita Biswas1(B) and Partha Bhowmick2

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Roorkee, India

biswas.ranita@gmail.com
2 Department of Computer Science and Engineering,

Indian Institute of Technology, Kharagpur, India
bhowmick@gmail.com

Abstract. Different distance metrics produce Voronoi diagrams with dif-
ferent properties. It is a well-known that on the (real) 2D plane or even on
any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance
metric produces convex Voronoi regions. In this paper, we first show that
this metric produces a persistent VD on the 2D digital plane, as it com-
prises digitally convex Voronoi regions and hence correctly approximates
the corresponding VD on the 2D real plane. Next, we show that on a 3D
digital plane D, the Euclidean metric spanning over its voxel set does not
guarantee a digital VD which is persistent with the real-space VD. As a
solution, we introduce a novel concept of functional-plane-convexity, which
is ensured by the Euclidean metric spanning over the pedal set of D. Neces-
sary proofs and some visual result have been provided to adjudge the merit
and usefulness of the proposed concept.

Keywords: Digital Voronoi diagram · 3D digital plane · Distance
metric · Digital convexity · Digital geometry

1 Introduction

Voronoi diagram in 2D and in 3D real spaces is a well-researched topic in com-
putational geometry [2,3]. Historically, the concept dates back to the mid-19th
century, since it finds potential applications ranging from modeling cells and bone
micro-architecture in biology to estimating the reserves of valuable minerals and
materials in mining. Voronoi diagrams are also used in designing visual arts
and in numerous other applications in image processing, computer vision, and
graphics. The Euclidean Delaunay triangulation, which is the dual combinatorial
structure of Voronoi diagram in Euclidean space, has a bagful of applications in
scientific computing and mesh generation, especially in terrain modeling.

A Voronoi diagram (VD) is a partitioning of a space into regions based on
distance from a specific set of points as input, which are called seeds (also called
sites or generators). For each seed there is a corresponding region consisting of
all points closer to that seed than to any other (which forms the conventional
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 93–104, 2017.
DOI: 10.1007/978-3-319-59108-7 8

94 R. Biswas and P. Bhowmick

closest-seed Voronoi diagram). These regions are called Voronoi cells or Voronoi
regions. For a given distance metric d, the Voronoi region Ri corresponding to a
seed pi (1 � i � n) can be defined as follows.

Ri =
{
q ∈ R

2 | d(q, pi) � d(q, pj) ∀ j = 1, 2, . . . , n
}

(1)

Depending on the requirement, a specific distance measure or metric is chosen
to create the VD in real space. Euclidean distance is the most commonly used
metric in practice, as it connects the VD with real-life scenarios. Use of Euclid-
ean metric produces Voronoi regions that are convex polygons in shape. Other
metrics such as Manhattan distance or Mahalanobis distance produce Voronoi
diagrams with different nature of the Voronoi regions, e.g., non-convex or with
complex boundaries. Euclidean distance gives convex Voronoi regions because
the distance travel is uniform in every direction, which is not the case with other
distance measures or metrics.

A Voronoi diagram using Euclidean distance measure is called Euclidean
Voronoi diagram. Such diagrams on the 2D digital plane can be produced by
following a similar method as the generation of Euclidean Voronoi diagram in
2D real plane. On the 2D digital plane, the set of seed points are 2D integer points
or pixels, and the region Ri corresponding to seed pi can be defined simply by
constraining the point q in Eq. 1 to be a point in Z

2. Hence, a simple pixel-
coloring approach can be used on 2D digital plane to color each pixel with the
color of its closest seed point (incorporating some consistent tie-breaking rule).
However, as shown in [10], this leads to debris pixels due to the presence of sliver
polygons, which happens when the corresponding real Voronoi regions possess
very sharp corners. Hence, a parallel breadth-first-search algorithm starting from
each seed point and incrementally growing each of the Voronoi regions until the
boundaries touch each other, is a more effective method to produce the Euclidean
Voronoi regions on the 2D digital plane [10]. In fact, the 2D digital Euclidean
Voronoi regions are dual of the corresponding Delaunay triangulation, as shown
in [10].

Unlike in the 2D digital plane, Euclidean distance metric does not easily fit
into the topological space of 3D Voronoi diagram (VD) in the voxel space. To
show this, we bring in the concept of persistence of a digital VD with its real
counterpart. For this, we first show in Sect. 2 that Euclidean Voronoi regions
on the 2D digital plane are always digitally convex. Owing to this, they closely
approximate the Voronoi regions on the corresponding real plane and approach
the real-plane Voronoi regions with increasing resolution of the underlying grid.
Thus in 2D, a digital VD becomes persistent with the real VD.

Next, we show in Sect. 3 that the region-growing strategy, as described in
[10], suffers from lack of persistence while constructing a VD on a 3D digital
plane using the following equation.

Ri =
{
q ∈ Z

3 | d(q, pi) � d(q, pj) ∀ j = 1, 2, . . . , n
}

(2)

where, Ri is the Voronoi region corresponding to the seed pi, which is a 3D
integer point or voxel. By ‘3D digital plane’ we mean the thinnest digital plane
(also known as ‘naive plane’), which is 2-minimal (Sect. 2).

Persistent Voronoi Diagram on 3D Digital Plane 95

We have investigated the reason behind the failure of Euclidean metric in
the voxel space in producing a persistent VD, which is reported in this paper.
To circumvent the problem, we propose a simple alteration of the Euclidean
distance measure, which is commensurable with correctly constructing a VD
with FP-convex regions on a 3D digital plane. The notion of FP-convex region is
newly introduced in this paper and its significance in the context of digital VD
on 3D planes is explained in Sect. 4. The property of FP-convexity of VD regions
ensures that by increasing the grid resolution to a sufficiently large value, the
digital VD constructed on a 3D digital plane is persistent, as it can be made to
approach the real-space VD on the corresponding real plane.

2 Preliminaries

In this section, we explain the basic definitions and terminologies from digital
geometry which are relevant in the context of our work. For two (real or integer)
points p(i, j, k) and p′(i′, j′, k′), we define the distance between them along each
coordinate axis. For the coordinate w ∈ {‘x’,‘y’,‘z’}, it is given by

dw(p, p′) =

⎧
⎨

⎩

|i − i′| if w = ‘x’
|j − j′| if w = ‘y’
|k − k′| if w = ‘z’.

The inter-point distances define the respective x-, y-, and z-distances between a
point p(i, j, k) and a (real) surface Γ , which can be generalized as follows.

dw(p, Γ) =
{

min{dw(p, p′) : p′ ∈ Γw(p)} if Γw(p) �= ∅
∞ otherwise

where, Γw(p) = {p′ ∈ Γ : dv(p, p′) = 0 ∀v ∈ {‘x’,‘y’,‘z’}�{w}}.
The above definitions are used to define the isothetic distance between two

points, or between a point and a surface. Between two points p(i, j, k) and
p′(i′, j′, k′), isothetic distance is taken as the Chebyshev distance or Minkowski
norm [15], given by

d∞(p, p′) = max{dx(p, p′), dy(p, p′), dz(p, p′)}.

Between a point p(i, j, k) and a surface Γ , it is defined as

d⊥(p, Γ) = min{dx(p, Γ), dy(p, Γ), dz(p, Γ)}.

In 2D Euclidean space, the integer points are termed as pixels and visualized
as unit squares (2-cell) centered on integer points. When represented using unit
squares, two pixels are said to be 1-adjacent if they share an edge (1-cell) and
0-adjacent if they share a vertex (0-cell). A 1-path (0-path) is a sequence of
pixels where each pair of consecutive pixels are 1-adjacent (0-adjacent). A finite
set of pixels (say, R) is 1-connected (0-connected) if a 1-path (0-path) exists in
R between any two pixels of R.

96 R. Biswas and P. Bhowmick

In 3D space, objects are represented by isothetic polyhedra composed by unit
cubes (voxels) defined by the integer grid. A voxel is an integer point in 3D space,
and equivalently, a 3-cell [15]. Two distinct voxels are said to be 0-adjacent if
they share a vertex (0-cell), 1-adjacent if they share an edge (1-cell), and 2-
adjacent if they share a face (2-cell). The 0-, 1-, and 2-neighborhood notations
adopted by us in our work correspond respectively to the classical 26-, 18-, and
6-neighborhood notations used in [12].

For l ∈ {0, 1, 2}, an l-path in a 3D discrete object A (or the discrete space
Z
3) is a sequence of voxels from A such that every two consecutive voxels are

l-adjacent. The object A is said to be l-connected if there is an l-path in A
connecting any two voxels of A. An l-component is a maximal l-connected subset
of A. Let D be a subset of a discrete object A. If A�D is not l-connected, then
the set D is l-separating in A. Let D be an l-separating discrete object in A such
that A�D has exactly two l-components. A 3-cell c ∈ D is said to be l-simple
w.r.t. D if D�{c} is l-separating in A. An l-separating discrete object in A is
l-minimal if it does not contain any l-simple 3-cell w.r.t. A.

Let A ∈ Z
3 be a discrete object and A′ be its projection on a real plane

P . If there exists a bijection between A and A′, then the plane P is said to
be a functional plane of A. For our work, in particular, we say that a coordi-
nate plane, say, xy, is functional for A, if for every voxel v = (x0, y0, z0) ∈ A
there is no other voxel in A with the same first two coordinates. For example,
A = {(2, 5, 3), (2, 6, 3), (3, 5, 3)} is a discrete 3D object. Projecting A on the coor-
dinate planes gives us the 2D sets as follows: {(2, 5), (2, 6), (3, 5)} in xy-plane,
{(5, 3), (6, 3)} in yz-plane, and {(3, 2), (3, 3)} in zx-plane. As a bijection exists
here between A and its projection on the xy-plane, it becomes the functional
plane of A.

2.1 3D Digital Plane

Digital plane is a well-researched topic in the subject of digital geometry [9,15].
Standardized and analytical definitions of different classes of digital plane can
be found in several papers [1,6–9,11,14,15]. The analytical equation of a digital
plane having thickness ω and centered on the real plane ax + by + cz = μ is
given by

μ − ω
2 � ax + by + cz < μ + ω

2 . (3)

For other related details, we refer to [15]. Without loss of generality, we con-
sider μ = 0. Therefore, the 2-minimal digital plane (henceforth, simply called
‘digital plane’) centered on the real plane ax + by + cz = 0 admits the following
characterization [1,9].

−max(|a|, |b|, |c|)
2

� ai + bj + ck <
max(|a|, |b|, |c|)

2
(4)

A digital plane always has at least one functional plane (FP) that can be obtained
by removing the coordinate for which the absolute value of the coefficient is the
highest. For example, for a plane ax + by + cz = 0, if |c| is greater than both |a|

Persistent Voronoi Diagram on 3D Digital Plane 97

and |b|, then xy-plane is the FP corresponding to ax + by + cz = 0. As shown in
[4], the isothetic distance (minimum of the axis-parallel distances) of any voxel
of the digital plane is at most 1

2 from the corresponding real plane.

3 2D Digital Voronoi Diagram

Several algorithms can be found in the literature for efficient generation of
Voronoi diagrams on 2D grid. A general approach using incremental growing
from the seed points can be seen in [10]. In this approach, parallel breadth-first-
search is executed from the seeds until the consecutive region boundaries touch
each other. There are GPU-based algorithms as well, e.g., the jump flooding
algorithm in [16], which can be used to efficiently generate Voronoi diagram or
distance transform on 2D grid.

Generation of Euclidean VD on 2D digital plane has, however, certain algo-
rithmic challenges. One such challenge lies in handling debris, which splits a VD
region into multiple connected components. As discussed in [10], a naive coloring-
based algorithm using Eq. 1 on 2D digital plane for assigning the nearest-seed
color to each pixel may create debris. The debris effect is more pronounced with
occurrence of ‘sliver’ (long and sharp corner) in a VD region. Figure 1(a) shows
such an instance where the sliver-containing real Voronoi region is shown using a
green boundary and the corresponding digital Voronoi region is shown using pink
pixels. Notice that due to the occurrence of debris points, we get two connected
components here for a single Voronoi region.

A region growing algorithm solves this problem by restricting the growing of
a region when it hits the points from the boundaries of the consecutive regions.
However, in this way, we are letting the debris points be engulfed in a differ-
ent region than where it belonged by Eq. 1. The digital VD obtained by region
growing algorithm is thus not persistent with the real VD, wherefore the cor-
respondence between the real and the digital VDs is lost. A solution to avoid
occurrence of debris points and to simultaneously maintain the correspondence
with the real VD is to increase the grid resolution to a sufficiently large value.

)b()a(

Fig. 1. (a) Occurrence of debris point due to presence of ‘sliver’ in the real polygon.
(b) Increasing the resolution of the grid solves the problem.

98 R. Biswas and P. Bhowmick

As can be seen in Fig. 1(b), increasing grid resolution leads to a single compo-
nent for the same Voronoi region. Therefore, henceforth we assume that we are
working with a sufficiently high-resolution grid so that the slivers and resultant
debris do not occur.

3.1 Convexity of Digital Regions

The concept of convexity of a region or a polygon in 2D real plane is quite
unambiguous; however, it is not so in 2D or 3D digital space. The commonly
used convexity notion in 2D digital space is hv-convexity or horizontal-vertical
convexity. A 2D digital region R (a set of pixels) is said to be h-convex or
horizontal-convex if each row of R is 1-connected. Similarly, it is v-convex or
vertical-convex if each column is 1-connected. If R is both h-convex and v-
convex, then it is called hv-convex. The notion of ortho-convexity defined for 3D
digital object (a set of voxels) is similar to the notion of hv-convexity in 2D. A
3D digital object R is ortho-convex or orthogonally convex when its intersection
with any plane parallel to one of the coordinate planes is either empty or an hv-
convex object. In other words, each row, each column, and each stack of voxels
in an ortho-convex object is 2-connected.

There is another notion of convexity in digital space, which more closely
resembles the convexity in real space than hv-convexity or ortho-convexity. This
convexity is known as digital convexity and defined as follows.

Definition 1 (Digitally Convex [13]). A 2D digital region R is digitally con-
vex if and only if there does not exist any pixel p which belongs to the convex
hull of R but not in R.

It has been shown in [13] that a digital region R is (digitally) convex if and
only if any two points of R are connected by a digital straight line segment in R.
It can be realized that, when we increase the resolution of the underlying grid,
a digitally convex region tends to a real convex region, which is not the case for
hv-convex region or ortho-convex regions e.g. an ‘L’-shaped hv-convex region.

From [13], we know that digital convexity satisfies median-point property,
and it is a necessary and sufficient property to make a region digitally convex.
For a pair of pixels, u = (h, k) and w = (h′, k′), let z = (x, y) be the point such
that x = (h + h′)/2 and y = (k + k′)/2. If z is an integer point, it is said to
be the median point of u and w. If z is not an integer point, then two integer
points on the real line joining u and w which are nearest to z (possibly u and
w) are said to be the median points of u and w. A 2D digital region R is said to
be satisfying median-point property if for every pair of points in R, at least one
of the median points belong to R. R is digitally convex if and only if it satisfies
the median-point property.

The following lemma helps in ensuring the digital convexity of Voronoi
regions generated using specific distance metrics.

Lemma 1. Inner pixel cover of a convex region on the 2D real plane is always
digitally convex.

Persistent Voronoi Diagram on 3D Digital Plane 99

Proof. The inner pixel cover I of a real convex region C includes all the pixels
that lie inside C. Assume, there is a pair of points u and w in I such that none
of their median point(s) is included in I. This means the pair (u,w) violates the
median-point property. However, as C is convex, and u and w both lie inside
C, the real line segment joining u and w completely lies inside C; hence, any
integer point that lies on this real line segment must lie inside C. Therefore, the
median point(s) of u and w is included in I, which contradicts our assumption.
Hence, the proof. ��

As mentioned earlier, an Euclidean VD on the 2D digital plane can be pro-
duced using Eq. 1 by restricting the domain of seed points to Z

2. We now intro-
duce the following theorem on the property of Euclidean VD constructed on the
2D digital plane.

Theorem 1. An Euclidean Voronoi diagram on the 2D digital plane always
comprises digitally convex Voronoi regions.

Proof. On the 2D digital plane, each Voronoi region Ri of an Euclidean VD
is a 1-connected set of integer points that satisfy Eq. 1. Hence, Ri is basically
the inner pixel cover of the corresponding Euclidean Voronoi region on the 2D
real plane. By Lemma 1, the inner pixel cover of a real convex region is always
digitally convex. Hence, the proof. ��

The property of digital convexity of each Voronoi region ensures that when
we have a grid of sufficiently high resolution, the digital VD tends to the real
VD, and hence it is persistent.

4 Voronoi Diagram on 3D Digital Plane

As discussed in Sect. 1, Euclidean distance is the perfect metric for computing
convex Voronoi regions on a real plane where the movements are not restricted
to any direction. Euclidean metric also produces digitally convex Voronoi regions
on 2D digital plane, as we have shown in Sect. 3. However, when the input is a 3D
digital plane, we need to be cautious about the selection of the distance metric
to make the resultant VD closely approximate the Euclidean VD on the corre-
sponding 3D real plane. The following example gives an intuitive idea. Assume
there are n seed pixels on the xy-plane. We can assign z-coordinates on these
seeds to lift them in 3D space such that all these n ‘lifted seeds’ now belong
to some 3D digital plane. We can do it in many possible ways and hence can
get many such digital planes. For some of them, the use of inter-voxel Euclidean
metric would produce Voronoi diagrams that are not persistent with their corre-
sponding diagrams on the real planes. To show this, we introduce here a measure
of convexity for Voronoi regions of an Euclidean VD on 3D digital planes.

Definition 2 (FP-convex). A subset of a 3D digital plane is FP-convex if its
projection on the functional plane is digitally convex.

100 R. Biswas and P. Bhowmick

The above definition uses the fact that each voxel from the 3D digital plane
relates to a single pixel on the projection on the functional plane. Therefore, the
correspondence between an FP-convex set and a digitally convex can be made
from 3D to 2D. As FP-convexity of a voxel set depends entirely on the digital
convexity of its projection on FP, this convexity property does not get affected
with changing orientation of the 3D plane. Further, due to the correlation of FP-
convexity with digital convexity, an FP-convex region on the 3D digital plane
becomes persistent with a real convex region on its corresponding 3D real plane
when we move towards higher grid resolution.

Our objective is to construct Euclidean Voronoi diagram on a 3D digital plane
so that it tends to the real Voronoi diagram with finer and finer grid resolution.
For this, we define a persistent Euclidean Voronoi diagram as the one for which
its comprising Voronoi regions remain FP-convex irrespective of the orientation
of the corresponding real plane in 3D space. In order to ensure this, we need an
appropriate distance metric. In this section, we show the implications of inter-
voxel Euclidean metric on creating the Voronoi regions on 3D digital planes and
how it fails to render a persistent VD. As a practical and effective solution, we pro-
pose a variation of the inter-voxel Euclidean metric, namely inter-pedal Euclidean
metric, which is guaranteed to create persistent VD on a 3D digital plane.

4.1 Inter-voxel Euclidean Metric

The inter-voxel Euclidean metric directly uses Eq. 2 on the voxels of the 3D
digital plane. As we have already mentioned, it can be seen from the results in
Fig. 2(a), the generated Voronoi regions are not FP-convex. Figure 2(b) shows
projections of the generated Voronoi regions on the functional plane to highlight
the fact that the produced regions in the projection are not digitally convex.

As we have proved in Sect. 3, the Voronoi regions produced in 2D using the
Euclidean distance between pixel pairs as the distance metric are always digitally
convex. However, as we can see it is not the case for the 3D counterpart. The
genuine reason for this lies in the fact that the voxels of a 3D digital plane do not
lie exactly on the corresponding 3D real plane unless the real plane is a special
case e.g. parallel to some coordinate plane. Whereas, in case of 2D plane, the
pixels and their real counterparts are the same set of points.

As discussed in Sect. 2.1, the voxels of a 3D digital plane lie within an isothetic
distance of 1

2 from the real plane. Therefore, in a general case of a plane, the inter-
voxel Euclidean distance does not necessarily represent the Euclidean distance
between their corresponding real points. We name this corresponding real point
of a voxel as the pedal point. More precisely, the pedal point of a voxel is the iso-
thetically nearest point on the underlying real plane. Let pi and pj be two seed
voxels on the 3D digital plane and their respective pedal points on the real plane
be p⊥

i and p⊥
j . Now, when we measure the distance of an arbitrary voxel q on the

3D digital plane from these two seeds, it could be a case that d(q, pi) < d(q, pj),
but d(q⊥, p⊥

i) > d(q⊥, p⊥
j), where q⊥ is the pedal point of q. This leads to assigning

some voxels along the borders of the Voronoi regions wrongly to one region instead
of the other and thus makes the regions FP-non-convex.

Persistent Voronoi Diagram on 3D Digital Plane 101

)b()a(

)d()c(

Fig. 2. Voronoi diagrams on a digital plane and their functional-plane projections
using (a, b) Inter-voxel and (c, d) Inter-pedal Euclidean distances. Notice that in (b)
the yellow region is not digitally convex, which indicates (a) is not persistent. (Color
figure online)

4.2 Inter-pedal Euclidean Metric

As the Euclidean Voronoi regions generated on 3D digital plane are not FP-
convex, we propose the generation of Persistent Euclidean VD using inter-pedal
Euclidean metric. Pedal Euclidean distance is defined between two voxels p and q

102 R. Biswas and P. Bhowmick

of a digital plane. It is given by the Euclidean distance between the pedal points
of p and q. We have already mentioned that each voxel of the digital plane is
within and isothetic distance of 1

2 from the real plane, and isothetic distance is
measured along some axis-parallel line. Therefore, for each voxel, the pedal point
lies on the real plane from which its isothetic distance is measured. As a result,
when we consider the pedal points on the real plane and use Euclidean distance
metric over these pedal points to generate the Voronoi regions, we basically have
shifted our problem to the domain of the corresponding real plane. In particular,
we have the following theorem.

Theorem 2. A Voronoi diagram on any 3D digital plane using inter-pedal
Euclidean distance is always persistent.

Proof. Let D be the digital plane corresponding to a 3D real plane P . Let S ⊂ D
be a set of seed voxels, and R a Voronoi region on D corresponding to a seed
voxel p ∈ S, created using the inter-pedal Euclidean metric. Let D⊥ be the set
of pedal points corresponding to all the voxels of D, S⊥ the set of pedal points
corresponding to S, and R⊥ ⊂ D⊥ the set of pedal points corresponding to
R. By the above construction, D⊥ is a set of discrete real points. We define an
Euclidean VD on D⊥ using S⊥ as the set of seeds. In this VD, let R⊥ denote the
Euclidean Voronoi region corresponding to the seed p⊥, and C the convex hull
of R⊥ (shown in the inset figure below). We have the following two observations:

1. As D⊥ is contained in an Euclidean plane P and we use Euclidean metric to
generate the VD on D⊥, C does not contain any point from D⊥

�R⊥.
2. There are one-to-one correspondences from R to R⊥ and also to R′ where R′

is the projection of R on the FP of D. The projection C ′ of C on the FP of
D is a convex polygon. By the previous observation, C contains no point in
D⊥ other than R⊥, which implies C ′ contains just R′ and no other pixel. So,
the projection R′ of R on the FP of D is the inner pixel cover of C ′.

Hence, by Lemma 1, R′ is digitally convex in the 2D digital plane. Finally, by
the definition of FP-convex, we can say that R is FP-convex, which completes
the proof. ��

In the inset figure, an illustration of the
proof of concept is shown. As proved, the
regions obtained by inter-pedal Euclidean
distance gives us FP-convex Voronoi regions.
An example is shown in Fig. 2(c, d). Figure 3
shows Persistent Euclidean VD on a 3D dig-
ital plane at three different levels of reso-
lution. It indicates how FP-convex Voronoi
regions tend towards real Voronoi regions
with finer and finer grid.

Persistent Voronoi Diagram on 3D Digital Plane 103

Fig. 3. Persistent Euclidean VD on a 3D digital plane at 3 different levels of resolution.

5 Conclusion

We have shown how the Euclidean distance metric defined over the pedal set of
a 3D digital plane can be used for construction of a persistent Voronoi diagram
on the plane. Naturally, this poses the feasibility of the proposed technique for
construction of VD with similar persistence when the underlying real surface
of the digital object is non-linear. For example, for a 2-minimal digital sphere
[5], construction of VD would involve greater challenges and would require an
appropriate convexity measure in the digital space in order to establish the
persistence of the VD with its real counterpart on a real sphere.

104 R. Biswas and P. Bhowmick

On the application side, a very specific use of persistent VD can be related to
3D terrains for solving various computational problems related to GIS (Geogra-
phy Information System). A suitable distance measure for construction of well-
defined VD on an arbitrary digital surface, e.g., a digital terrain whose underlying
real surface is unknown, seems to be a very challenging task. As we foresee, the
work presented in this paper can be forwarded to meet these challenges in future.

References

1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Mod-
els Image Process. 59(5), 302–309 (1997)

2. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

3. Aurenhammer, F., Klein, R., Lee, D.: Voronoi Diagrams and Delaunay Triangula-
tions. World Scientific, Singapore (2013)

4. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic
paths and circles in Z

3. Theor. Comput. Sci. 605, 146–163 (2015)
5. Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through

primitive integer operations. Theor. Comput. Sci. 624, 56–72 (2016)
6. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci.

283(1), 151–170 (2002)
7. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput.

Sci. 319(1–3), 203–227 (2004)
8. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial prob-

lems. Discrete Appl. Math. 147(2–3), 169–186 (2005)
9. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete

Appl. Math. 155(4), 468–495 (2007)
10. Cao, T.T., Edelsbrunner, H., Tan, T.S.: Triangulations from topologically correct

digital Voronoi diagrams. Comput. Geom. 48(7), 507–519 (2015)
11. Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital

plane preimage structure. Discrete Appl. Math. 151(1–3), 78–92 (2005)
12. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models

Image Process. 57(6), 453–461 (1995)
13. Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions.

IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)
14. Klette, R., Stojmenović, I., Žunić, J.: A parametrization of digital planes by least

square fits and generalizations. Graph. Models Image Process. 58, 295–300 (1996)
15. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture

Analysis. Morgan Kaufmann, San Francisco (2004)
16. Rong, G., Tan, T.S.: Jump flooding in GPU with applications to Voronoi diagram

and distance transform. In: Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, pp. 109–116 (2006)

Extension of a One-Dimensional Convexity
Measure to Two Dimensions

Sara Brunetti1, Péter Balázs2(B), and Péter Bodnár2

1 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Via Roma, 56, 53100 Siena, Italy

sara.brunetti@unisi.it
2 Department of Image Processing and Computer Graphics,
University of Szeged, Árpád tér 2., Szeged 6720, Hungary

{pbalazs,bodnaar}@inf.u-szeged.hu

Abstract. In this paper we propose a new idea to design a measure
for shape descriptors based on the concept of Q-convexity. The new
measure extends the directional convexity measure defined in [2] to a
two-dimensional convexity measure. The derived shape descriptors have
the following features: (1) their values range from 0 to 1; (2) their values
equal 1 if and only if the binary image is Q-convex; (3) they are invariant
by reflection and point symmetry; (4) their computation can be easily
and efficiently implemented.

Keywords: Shape descriptor · Convexity measure · Q-convexity

1 Introduction

Shape representation is a current topic in digital image analysis, for example,
for object recognition and classification. The approaches for handling the prob-
lem consist in the design of new shape descriptors and measures for descriptors
sensitive to distinguish the shapes but robust to noise. There are several meth-
ods used for describing shapes. Sometimes they provide a unified approach that
can be applied to determine a variety of shape measures, but more often they
are specific to a single aspect of shape. Over the years, measures for descriptors
based on convexity have been developed: Area based measures form one popu-
lar category [4,15,16], while boundary-based ones [17] are also frequently used.
Other methods use simplification of the contour [11] or a probabilistic approach
[13,14] to solve the problem.

An alternative to “total” convexity studied in discrete geometry, and espe-
cially in discrete tomographic reconstruction is the horizontal and vertical con-
vexity (or shortly, hv-convexity), arising inherently from the pixel-based repre-
sentation of the digital image (see, e.g., [3,7,8]). A measure of horizontal (or
vertical) convexity was introduced in [2], showing also that the aggregation of
the measure in two dimensions can be a difficult task. In [1] the authors pro-
posed an immediate two-dimensional convexity measure based on the concepts
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 105–116, 2017.
DOI: 10.1007/978-3-319-59108-7 9

106 S. Brunetti et al.

of Q-convexity [5,6] and exploiting the geometrical properties of salient points
[9,10]. In this paper, we present an alternative new convexity measure based
on the concept of Q-convexity that extends the directional convexity in [2] to
a two-dimensional convexity measure. This new measure differs from the mea-
sures in [1] because it does not employ salient points, but uses quantitative
information derived directly by the definition of Q-convexity (see Sect. 3). As a
result, it is very easy to compute. We show how the measure can be normalized
in two ways to obtain two shape descriptors having the following features: (1)
their values range from 0 to 1; (2) their values equal 1 if and only if the binary
image is Q-convex; (3) they are invariant by reflection and point symmetry; (4)
their computation can be easily and efficiently implemented. We show with some
experiments that the descriptors correctly incorporate the notion of Q-convexity.
Finally, we briefly discuss sensitivity and robustness to noise for them.

2 Notation and Definitions

In this section we introduce the necessary notation and definitions. A binary
image is a digital image containing just black (also called as object or foreground)
and white (background) pixels. A binary image of size m×n (where m,n ∈ Z) can
also be represented by a binary matrix F = (fij)m×n where value 1 (respectively,
value 0) indicates that the color of the corresponding pixel is black (respectively,
white). F is called horizontally (respectively, vertically) convex if its 1’s (or black
pixels) follow consecutively in each row (respectively, in each column). We also
say that each row (column) is convex.

Let us denote the vector of row and column sums of the image F by H =
(h1, . . . , hm) and V = (v1, . . . , vn), respectively, where

hi =
n∑

j=1

fij (i = 1, . . . , m) and vj =
m∑

i=1

fij (j = 1, . . . , n). (1)

Figure 1 shows a binary image F with row and column sums H = (1, 3, 3, 1, 3, 2),
and V = (1, 4, 3, 2, 1, 1, 1), respectively, and its matrix representation. F is hori-
zontally convex but not vertically convex.

1
3
3
1
3
2

1 4 3 2 1 1 1

1 1 1 0 0 0
1

0
0 0 0 000

0 1 1 1 0 0 0
0

0 0
0 00 1

0 10 1 1
0 0

0 0 0 0 0 1 1

Fig. 1. A binary image with its horizontal and vertical projections, and its matrix
representation. The binary image is horizontally convex but not vertically convex.

Extension of a One-Dimensional Convexity Measure 107

The rows and columns of a binary image can be represented by using run-
length encoding (see, e.g., [12]) which likely results in a more compact description
of them (especially, if there are relatively few, but preferably long runs of iden-
tical values in the data). A 1-token is a token of 1s and a 0-token is a token of
0s. The length of a given token is the number of occurrences of the same value in
that particular token. For example the row 00111000000111111 can be encoded
by 02130616, where the superscripts represent the length of each token (coun-
ters). The length of the row (column) is the total number of bits present in that
row (column). In our example the length of the row is 17.

2.1 Measuring Non-convexity of a Single Row or Column

In [2] the basic idea of the definition of the directional measure is the following.
First, consider only the horizontal direction. Let us recall that a row is convex if
all its 1’s are consecutive, otherwise 0’s may separate any two 1’s. Then, consider
all the pairs of items 1’s on the same row and the line segments connecting
them. To compute the non-convexity of a row R, we split it into a sequence
of 1-tokens and 0-tokens. Leading and trailing 0-tokens do not contribute to
the measure, thus hereafter we shall omit them. The rest of the row can be
encoded as R = 1k10l11k20l2 . . . 1kn , where n is the number of 1-tokens and
k1, l1, k2, l2, . . . , kn > 0. Trivially, taking two 1’s from the same 1-token, the line
segment connecting them will not contain any 0’s and hence will not contribute
to the non-convexity measure. Now, let us take two arbitrary 1s from different
1-tokens, say the ith and jth, such that i < j. The contribution to non-convexity
of 0’s in between is given by the sum of the lengths of the 0-token in between:

j−1∑

t=i

lt. (2)

For two different 1-tokens (ith and jth), we can form kikj possible pairs of 1s,
by picking one from each. The contribution of these 1-token pairs is

kikj

j−1∑

t=i

lt. (3)

Finally, to get the contributions for the entire row R sum up (3) for all possible
combinations of 1-token pairs:

ϕh(R) =
∑

1≤i<j≤n

kikj

j−1∑

t=i

lt. (4)

The value ϕh(R) actually indicates the horizontal non-convexity of R, the
higher ϕh(R) is, the horizontally “less convex” R is. Figure 2 shows an example
of a binary image and the calculation of the horizontal non-convexity value of
one particular row.

108 S. Brunetti et al.

In [2] the authors proved that the non-convexity of every row can be normal-
ized by

ϕ̂h(R) =
ϕh(R)
(n/3)3

, (5)

where n is the length of the row, and cumulating (5) for all the rows of the
matrix F ,

Φh(F) =
∑m

i=1 ϕ̂h(Ri)
m

(6)

is the normalized non-horizontal convexity measure. Finally to map horizontal
non-convexity into horizontal convexity, they simply adopt

Ψh = 1 − Φh. (7)

Naturally, the same argument can be repeated for the columns of the image
yielding the vertical convexity measure Ψv.

Fig. 2. The non-convexity of the highlighted row R = 110100111 is ϕh(R) = k1k2l1 +
k1k3(l1 + l2) + k2k3l3 = 2 · 1 · 1 + 2 · 3 · 3 + 1 · 3 · 2 = 26.

Another viewpoint to think about this is to calculate the contribution of every
entry 0 in between any two different 1-tokens. If a 0 entry belongs to the t-th 0-
token (of length lt), then its contribution is given by: (k1+. . .+kt)(kt+1+. . .+kn).
Then, for all the 0’s entries in the same token, we get

lt(k1 + . . . + kt)(kt+1 + . . . + kn), (8)

and by summing (8) for all 0-token:
n−1∑

t=1

lt(k1 + . . . + kt)(kt+1 + . . . + kn). (9)

Finally we may rewrite (9) as follows:
n−1∑

t=1

lt

t∑

i=1

ki

n∑

j=t+1

kj . (10)

It is easy to see that (4) is equal to (10).

Extension of a One-Dimensional Convexity Measure 109

3 New Q-Convexity Measure

Let F = (fij)m×n be an m × n binary matrix. Each position (i, j) determines
the following four quadrants (submatrices):

Z0(i, j) = {(l, k) : 1 ≤ l ≤ i, 1 ≤ k ≤ j},

Z1(i, j) = {(l, k) : i ≤ l ≤ m, 1 ≤ k ≤ j},

Z2(i, j) = {(l, k) : i ≤ l ≤ m, j ≤ k ≤ n},

Z3(i, j) = {(l, k) : 1 ≤ l ≤ i, j ≤ k ≤ n}.

Let us denote the number of object points of F in Zp(i, j) by np(i, j), for p =
0, . . . , 3, i.e.

np(i, j) = card(Zp(i, j) ∩ {(i, j) : fij = 1}) (p = 0, . . . , 3). (11)

Definition 1. A binary matrix F is Q-convex if for each (i, j) (n0(i, j) > 0 ∧
n1(i, j) > 0 ∧ n2(i, j) > 0 ∧ n3(i, j) > 0) implies fij = 1.

Fig. 3. A Q-convex image (left) and a non Q-convex image (right). The four quadrants
around the position (4, 6) are illustrated: Z0(4, 6) left-top, Z1(4, 6) left-bottom, Z2(4, 6)
right-bottom, Z3(4, 6) right-top. The 4-th row and 6-th column (marked by dashed
lines) are in common between consecutive zones.

If F is not Q-convex, then there exists a position (i, j) violating the Q-convexity
property, i.e. np(i, j) > 0 for all p = 0, . . . , 3 and fij = 0. Note that if F is not
horizontally or vertically convex, then it is not Q-convex. Figure 3 illustrates the
definition of Q-convexity: the binary image on the right is not Q-convex because
f46 = 0 but Zp(4, 6) contains 1’s items, for all p = 0, 1, 2, 3. In the figure we have
n0(4, 6) = 5, n1(4, 6) = 9, n2(4, 6) = 5, n3(4, 6) = 4.

We define the non-Q-convexity measure as the sum of the contributions of
non-Q-convexity measure of each 0 entry of F . Formally,

ϕQ(i, j) = n0(i, j)n1(i, j)n2(i, j)n3(i, j)(1 − fij), (12)

110 S. Brunetti et al.

where (i, j) is an arbitrary position of F , and

ϕQ(F) =
∑

ij

ϕQ(i, j). (13)

For example, ϕQ(4, 6) = n0(4, 6)n1(4, 6)n2(4, 6)n3(4, 6) = 5 · 9 · 5 · 4 = 900.

Remark 1. If fij = 1, then ϕQ(i, j) = 0. Moreover, if fij = 0, but there exists
np(i, j) = 0, then ϕQ(i, j) = 0. Therefore, F is Q-convex if and only if ϕQ(F) = 0.

Remark 2. By definition, the measure is invariant by reflection and by point
symmetry.

3.1 Connection with the Directional Convexity

Suppose that F is constituted of just one row R = 1k10l11k20l2 . . . 1kn . In this
case n0(i, j) = n1(i, j) = k1 + . . . + kt, n2(i, j) = n3(i, j) = kt+1 + . . . + kn, and
so we have

ϕQ(i, j) = (
t∑

i=1

ki)2(
n∑

j=t+1

kj)2, (14)

and by summing (14) for each entry in the row we get

ϕQ(R) =
n−1∑

t=1

lt(
t∑

i=1

ki)2(
n∑

j=t+1

kj)2. (15)

Comparing (10) with (15) we note that an exponent 2 appears in the latter
one. Roughly speaking, the reason for this is that we consider “regions” (two
dimensions) instead of “boundary” (one dimension).

4 Normalization

A desirable property for a measure is that it ranges in [0, 1]. In this section we
show how to normalize the new measure.

Property 1. By definition, Z0(l, k) ⊆ Z0(i, j) if l ≤ i and k ≤ j, and hence
n0(l, k) ≤ n0(i, j) with l ≤ i and k ≤ j. Analogous relations hold for Z1, Z2, Z3

and for n1, n2, n3 accordingly.

Recall from (1) that for the row and columns sums of F hl =
∑n

k=1 flk

with l = 1, . . . , m and vk =
∑m

l=1 flk with k = 1, . . . , n. Moreover, denote the
horizontal and vertical partial sums by

Hp =
p∑

l=1

hl (p = 1, . . . , m) and Vr =
r∑

k=1

vk (r = 1, . . . , n). (16)

Clearly, Hm = Vn = α, where α is the total number of object pixels.

Extension of a One-Dimensional Convexity Measure 111

Property 2. For fixed row i, we use vk[1 . . . i] to denote the sum limited to i, i.e.∑i
l=1 flk. Thus, by Eqs. (1), (11), and (16) there follow the relations:

n0(i, k) + n3(i, k) − vk[1 . . . i] = Hi

and
n1(i, k) + n2(i, k) − vk[i . . . m] = α − Hi−1,

for k = 1, . . . , n.
For fixed column j, we use hl[1 . . . j] to denote the sum limited to j, i.e.∑j

k=1 flk. Analogously, we have:

n0(l, j) + n1(l, j) − hl[1 . . . j] = Vj

and
n2(l, j) + n3(l, j) − hl[j . . . n] = α − Vj−1,

for l = 1, . . . , m.

By Properties 1 and 2 there follows:

Property 3

n0(i, j) + n1(i, j) + n2(i, j) + n3(i, j) = α + hi + vj + fij

for i = 1, . . . , m and j = 1, . . . , n.

We need the following two lemmas:

Lemma 1. Let x, y be real numbers such that x + y = p, where p is a constant.
Then, the expression xy has a maximum at x = y = p/2.

Proof. By derivative of xy = g(x) = x(p − x), we get g′(x) = 0 for x = p/2, and
it is a maximum.

Lemma 2. Let x, y, z, w be real numbers such that x+y + z +w = p, where p is
a constant. Then, the expression xyzw has a maximum at x = y = w = z = p/4.

Proof. The product xyzw is maximal iff xy is maximal and zw is maximal.
Rewrite x + y = p − (w + z) = p1 and w + z = p − (x + y) = p2. By Lemma
1 xy is maximal if x = y = p1/2 and zw is maximal if w = z = p2/2. Since
x + y + z + w = p, we get 2x + 2w = p and hence w = p/2 − x. Therefore
xyzw = x2(p/2−x)2 = g(x) and by derivative we get g′(x) = 4x2−3px+p2/2 = 0
for x = p/4 and it is a maximum.

Now are we able to derive an upper bound to the value ϕQ(i, j) for the
position (i, j) violating the Q-convexity.

Proposition 1. Let fij be a 0 entry of a binary matrix F , and hi and vj be the
i-th row and j-th column sums. Then, ϕQ(i, j) ≤ ((α + hi + vj)/4)4.

112 S. Brunetti et al.

1 1 1
1 0 1
1 1 1

Fig. 4. A binary image F with ϕQ(F) = ϕQ(2, 2) = 34 = (8+2+2
4

)4 = 81.

Proof. By Property 3 we have that n0(i, j) + n1(i, j) + n2(i, j) + n3(i, j) = α +
hi + vj = p. By Lemma 2 ϕQ(i, j) = n0(i, j)n1(i, j)n2(i, j)n3(i, j) is maximal for
n0(i, j) = n1(i, j) = n2(i, j) = n3(i, j) = p/4, then ϕQ(i, j) = (p/4)4. The upper
bound follows.

Note that the bound is tight (see Fig. 4, for example).
In the light of Proposition 1, we may normalize the measure ϕQ(F) by nor-

malizing each single contribution ϕQ(i, j), i.e.,

ϕ̂Q(i, j) =
ϕQ(i, j)

(α+hi+vj

4)
4 , (17)

and

ϕ̂Q(F) =

∑
(i,j)∈F̄ ϕ̂Q(i, j)

card(F̄)
, (18)

where F̄ is constituted by the 0 entries of F violating the Q-convexity (if F̄ = ∅
then we simply assign ϕ̂Q(F) = 0). Finally, we map the non-Q-convexity measure
into a Q-convexity measure simply by

ΨQ(F) = 1 − ϕ̂Q(F). (19)

We can also make the measure independent from α and its row and col-
umn sums as follows. Since α ≤ mn, hi ≤ n,vj ≤ m, we get that ϕQ(i, j) <
(mn+m+n−3

4)4, and hence

ϕ̂mn
Q (i, j) =

ϕQ(i, j)

(mn+m+n−3
4)4

. (20)

(The reason for −3 is that if fij contributes, it is 0, and so the first three
inequalities are strict). Therefore, ϕQ(F) is normalized to

ϕ̂mn
Q (F) =

∑
ij ϕ̂mn

Q (i, j)
mn

, (21)

and finally,
Ψmn

Q (F) = 1 − ϕ̂mn
Q (F). (22)

Remark 3. Both measures assign 1 to Q-convex images by Remark 1. On the
other hand, for instance, ΨQ assigns 0, while Ψmn

Q assigns 8/9 to the image in
Fig. 4.

Extension of a One-Dimensional Convexity Measure 113

4.1 Implementation

The measures can be efficiently implemented in linear time in the size of the
image. Indeed, by Property 1 we can count the number of 1’s in F for Zp(fij),
for each (i, j) in linear time, and store them in a matrix for any p = {1, 2, 3, 4}.
Then, ϕQ(i, j) can be computed in constant time for any (i, j). Normalization is
straightforward.

5 Experiments

We investigated the new measures on some images to show their behavior and
their robustness in case of noise. We considered at first a chessboard image and a
stripe image of sizes 50×50 (see Fig. 5). We report on the Q-convexity measures
ΨQ, Ψmn

Q , and on the non-convexity measure ϕQ as a reference. As expected
ϕQ assigns a smaller value to the second image and, accordingly, both ΨQ, Ψmn

Q

assign a greater value to it, since it is horizontally convex but not vertically
convex. Notice that in [2] the authors discussed these two examples showing that
two simple aggregations of the directional convexity did not behave correctly. For
comparison, the horizontal (Ψh) and vertical (Ψv) directional convexity values
are also presented (see (7) for the definition).

Ψh = 0.438400 Ψh = 1.000000
Ψv = 0.438400 Ψv = 0.438400
ϕQ = 292357892768 ϕQ = 267605835504
ΨQ = 0.979003 ΨQ = 0.980011
Ψmn
Q = 0.999342 Ψmn

Q = 0.999398

Fig. 5. A chessboard pattern (left) and a stripe pattern (right).

Secondly, we took three 50 × 50 images representing four square regions
separated by a cross pattern as illustrated in Fig. 6 with different sizes for the
black pixels. We report the values of the different measures for each image. We
may note two main differences:

– Ψmn
Q tends to overestimate the Q-convexity by assigning values close to 1,

whereas ΨQ assigns values closer to 0. This is true in general, because by
definition Ψmn

Q is normalized with respect to the size of the image itself.

114 S. Brunetti et al.

Ψh = 0.740800 Ψh = 0.416800 Ψh = 0.308800
Ψv = 0.740800 Ψv = 0.416800 Ψv = 0.308800
ΨQ = 0.251430 ΨQ = 0.399306 ΨQ = 0.925867
Ψmn
Q = 0.999614 Ψmn

Q = 0.993957 Ψmn
Q = 0.995805

Fig. 6. 50 × 50 images representing four square regions separated by a cross pattern
with different sizes for the black pixels: 10 × 10 (left), 15 × 15 (middle) and 20 × 20
(right).

– By definition, Ψmn
Q follows opposite behavior of ϕQ (normalization is obtained

by dividing by constants), whereas ΨQ may have a different behavior depend-
ing on α, and the row and column sums of the image.

In this case, ΨQ assigns increasing values to the images, whereas Ψmn
Q assigns

the smallest value to the second image. It is also clearly observable, that the
horizontal and vertical directional convexity measures do not take into account
the two-dimensional structure of the image. They assign decreasing values to
the images, from left to right. Indeed, the possibility of picking two 1 s in the
same row (column) separated by a 0 in between is decreasing from left to right.
However, to make the image Q-convex we have to add more points to the image
from left to right, and in any case the central image is farer to be Q-convex than
the right image. In addition, note that all the measures assign 0 to the empty
image so that deleting points is not an option to achieve Q-convexity.

Finally, we computed our measures using the images illustrated in Figs. 7 and
8 for comparison. For each image we show their horizontal (vertical) convexity
values (as in [2]) and the Q-convexity measures. Figure 8 illustrates an original
image and its variants by adding salt and pepper noise in percentage of 5%, 10%,
and 20% of the pixels.

Ψh = 0.734700 Ψh = 0.657351 Ψh = 0.800969 Ψh = 1.000000
Ψv = 0.869380 Ψv = 0.850321 Ψv = 0.785218 Ψv = 0.000000
ΨQ = 0.844882 ΨQ = 0.831100 ΨQ = 0.957032 ΨQ = 0.936390
Ψmn
Q = 0.997191 Ψmn

Q = 0.998505 Ψmn
Q = 0.998459 Ψmn

Q = 0.996185

Fig. 7. Example binary images of size 50 × 50, with horizontal (Ψh), vertical (Ψv)
convexity and Q-convexity (ΨQ, Ψmn

Q) shown.

Extension of a One-Dimensional Convexity Measure 115

Ψh = 0.786281 Ψh = 0.651773 Ψh = 0.577253 Ψh = 0.468834
Ψv = 0.546486 Ψv = 0.458462 Ψv = 0.411538 Ψv = 0.335765
ΨQ = 0.982493 ΨQ = 0.979577 ΨQ = 0.977229 ΨQ = 0.968567
Ψmn
Q = 0.998914 Ψmn

Q = 0.998476 Ψmn
Q = 0.998178 Ψmn

Q = 0.997449

Fig. 8. Same image without, and with 5%, 10%, and 20% noise. For each image we
show horizontal (Ψh), vertical (Ψv) convexity and Q-convexity (ΨQ, Ψmn

Q) measures.

An immediate observation is that for all presented images Ψmn
Q lies between

0.99 and 1. This seems to be a weakness of this measure, which can be avoided
by renormalizing the values into the interval [0, 1]. For this, the minimal possible
value of Ψmn

Q should be identified, which is among our further aims. However, for
further comparison let us assume that the minimal value of Ψmn

Q is min Ψmn
Q =

8/9 (the value we observed for Fig. 4) and let

Ψ̃mn
Q = β(Ψmn

Q − min Ψmn
Q), (23)

where β = 9 since max Ψmn
Q −min Ψmn

Q = 1/9, which stretches the values of Ψmn
Q

onto the interval [0, 1], and thus provides an exact comparison of ΨQ and Ψmn
Q .

Denoting the images of Fig. 8 by F0, F5, F10, and F20, from left to right respec-
tively, we get Ψ̃mn

Q (F0) = 0.990226, Ψ̃mn
Q (F5) = 0.986284, Ψ̃mn

Q (F10) = 0.983602,
and Ψ̃mn

Q (F20) = 0.977041. Comparing Ψ̃mn
Q (F5) − Ψ̃mn

Q (F0) = 0.003942,
Ψ̃mn

Q (F10) − Ψ̃mn
Q (F0) = 0.006624, and Ψ̃mn

Q (F20) − Ψ̃mn
Q (F0) = 0.013185 to

ΨQ(F5)−ΨQ(F0) = 0.002916, Ψ̃mn
Q (F10)− Ψ̃mn

Q (F0) = 0.005264, and Ψ̃mn
Q (F20)−

Ψ̃mn
Q (F0) = 0.013926, respectively, we may note that ΨQ is more robust, while

Ψmn
Q is more sensitive to a moderate amount of noise (5% and 10%), but this,

of course, needs a broader study.

6 Conclusions

In this paper, we presented a new idea to define shape descriptors based on the
concept of Q-convexity. This measure is quantitative and it is an extension of the
directional convexity measure proposed in [2]. This study shows some potential
of these shape descriptors since they correctly incorporate the convexity along
the considered directions, and in particular ΨQ seems to be more robust, whereas
Ψmn

Q to be more sensitive to noise. Moreover they can be computed efficiently
and are invariant by reflection and point symmetry. Further work should be
done to deeply investigate normalization and to conduct experiments for object
recognition and classification.

116 S. Brunetti et al.

Acknowledgements. The collaboration of the authors was supported by the COST
Action MP1207 “EXTREMA: Enhanced X-ray Tomographic Reconstruction: Experi-
ment, Modeling, and Algorithms”. The research of Péter Balázs and Péter Bodnár was
supported by the NKFIH OTKA [grant number K112998]. The authors also thank the
anonymous reviewers for their useful observations which enhanced the quality of the
paper.

References

1. Balázs, P., Brunetti, S.: A measure of Q-Convexity. In: Normand, N., Guédon, J.,
Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 219–230. Springer, Cham
(2016). doi:10.1007/978-3-319-32360-2 17

2. Balázs, P., Ozsvár, Z., Tasi, T.S., Nyúl, L.G.: A measure of directional convex-
ity inspired by binary tomography. Fundamenta Informaticae 141(2–3), 151–167
(2015)

3. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: a
property for the reconstruction. Int. J. Imag. Syst. Technol. 9, 69–77 (1998)

4. Boxter, L.: Computing deviations from convexity in polygons. Pattern Recogn.
Lett. 14, 163–167 (1993)

5. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor.
Comput. Sci. 304(1–3), 35–57 (2003)

6. Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic
projections in quartic time. Theor. Comput. Sci. 406(1–2), 55–62 (2008)

7. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction
of 4- and 8-connected convex discrete sets from row and column projections. Linear
Algebra Appl. 339, 37–57 (2001)

8. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal
projections. Inform. Process. Lett. 69(6), 283–289 (1999)

9. Daurat, A.: Salient points of Q-convex sets. Int. J. Pattern Recogn. Artif. Intell.
15, 1023–1030 (2001)

10. Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. Electron. Notes
Discrete Math. 12, 208–219 (2003)

11. Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on
discrete contour evolution. Comput. Vis. Image Understand. 73(3), 441–454 (1999)

12. Nelson, M.R.: The Data Compression Book. M&T Books, Redwood City (1991)
13. Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic

interpretation of images. IEEE Trans. Pattern Anal. 28(9), 1501–1512 (2006)
14. Rosin, P.L., Zunic, J.: Probabilistic convexity measure. IET Image Process. 1(2),

182–188 (2007)
15. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision,

3rd edn. Thomson Learning, Toronto (2008)
16. Stern, H.: Polygonal entropy: a convexity measure. Pattern Recogn. Lett. 10, 229–

235 (1998)
17. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE T. Pattern

Anal. 26(7), 923–934 (2004)

http://dx.doi.org/10.1007/978-3-319-32360-2_17

Algorithms for Stable Matching
and Clustering in a Grid

David Eppstein, Michael T. Goodrich, and Nil Mamano(B)

Department of Computer Science, University of California, Irvine, USA
{eppstein,nmamano}@uci.edu, goodrich@acm.org

Abstract. We study a discrete version of a geometric stable mar-
riage problem originally proposed in a continuous setting by Hoffman,
Holroyd, and Peres, in which points in the plane are stably matched
to cluster centers, as prioritized by their distances, so that each cluster
center is apportioned a set of points of equal area. We show that, for a
discretization of the problem to an n×n grid of pixels with k centers, the
problem can be solved in time O(n2 log5 n), and we experiment with two
slower but more practical algorithms and a hybrid method that switches
from one of these algorithms to the other to gain greater efficiency than
either algorithm alone. We also show how to combine geometric sta-
ble matchings with a k-means clustering algorithm, so as to provide a
geometric political-districting algorithm that views distance in economic
terms, and we experiment with weighted versions of stable k-means in
order to improve the connectivity of the resulting clusters.

1 Introduction

A long line of research considers algorithms on objects embedded in n×n grids,
including problems in computational geometry (e.g., see [1,2,8,17,19,26,28,29]),
graph drawing (e.g., see [5,10,14,30]), geographic information systems (e.g.,
see [13]), and geometric image processing (e.g., see [9,11,15,20]). Continuing
this line, we consider in this paper the problem of matching grid points (which
we view as pixels) to k center points in the grid. Pixels have a preference for
centers closer to them, and centers prefer closer pixels as well. The goal is to
match every center to an equal number of pixels and for the matching to be sta-
ble, meaning that no two elements prefer each other to their specified matches.
For example, the centers could be facilities, such as polling places, fire stations,
or post offices, that have assigned jurisdictions and equal operational capacities
(in terms of how many pixels they can serve). Rather than optimizing some com-
putationally challenging global quality criterion based on distance or area, we
seek an assignment of pixels to centers that is locally stable. Figure 1 illustrates
a solution to this stable grid matching problem for a 900 × 900 grid and 100
random centers. Note that some centers are matched to disconnected regions.

Stable grid matching is a special case of the classic stable matching prob-
lem [18], which was originally described in terms of arranging marriages between
N heterosexual men and women in a closed community. In this case, stability
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 117–131, 2017.
DOI: 10.1007/978-3-319-59108-7 10

118 D. Eppstein et al.

Fig. 1. An example solution to the stable grid matching problem for a 900 × 900 grid
and 100 centers distributed randomly. Pixels of the same color are assigned to the same
center. (Color figure online)

means that no man-woman pair prefers each other to their assigned mates, which
is necessary (and more important than, e.g., total utility) to prevent extramari-
tal affairs. The Gale-Shapley algorithm [18] finds a stable matching for arbitrary
preferences in O(N2) time. For stable grid matching in an n × n grid this would
give a running time of O(n4), since each “man” would correspond to a pixel
and each “woman” would correspond to one of �n2/k� copies of a center. As
we show, the geometric structure of the stable grid matching problem allows for
significantly more efficient solutions.

We also study the effect of integrating a stable matching with a k-means
clustering method, which alternates between assigning points to cluster centers
and moving cluster centers to better represent their assigned points. Using stable
matching for the assignment stage of this method allows us to fix the size of the
clusters (for instance, to be all equally sized), which might be advantageous in
some applications.

Prior Related Work. As mentioned above, there is considerable prior research on
algorithms involving objects embedded in an n×n grid. The stable grid matching
problem that we study can be viewed as a grid-restricted version of the classic
“post office” problem of Knuth [27], where one wishes to identify each point in the
plane with its closest of k post offices, with the added restriction that the region
assigned to each post office must have the same area. The continuous version
of the stable grid matching problem, which deals with points in R

2 instead of
discrete pixels, was studied by Hoffman et al. [21]. They showed that there is a
unique solution, and there is a simple numerical method to find it: Start growing
a circle from each center at the same time, all growing at the same speed. When
a yet-unmatched point is reached by a circle, it is assigned to the corresponding

Stable Matching and Clustering in a Grid 119

center. When a center reaches its quota (its region covers 1/k of the area of
the square), its circle halts. (Note that if the halting condition is removed, we
obtain the Voronoi diagram of the centers instead, as in the well-known solution
to Knuth’s post office problem, e.g., see [3].) Due to its continuous, numerical
nature, Hoffman et al. did not analyze the running time of their method; hence,
there is motivation to study the grid-based version of this problem.

With respect to the related problem of k-means clustering, we are interested
in a grid-based version of this problem as well, which has been studied exten-
sively in non-grid discrete contexts (e.g., see [22,24]). In the continuous version
of this problem, one is interested in partitioning a geometric region into subre-
gions that all have the same area (e.g., see [6]). One of the motivations for such
partitions is in political districting, for which there is additional related prior
work (e.g., see [32]). The goal of political districting is to partition a territory
into regions (districts) which all have roughly the same population size and are
“compact”, which informally means that their shape should be connected and
resemble a circle rather than an octopus [32]. Ricca et al. [31] adapted the con-
cept of Voronoi regions to the discrete setting in order to use them for political
districting. Voronoi regions ensured good compactness but poor population bal-
ance, however. Thus, there is motivation for a clustering algorithm based on the
use of stable matchings, since such partitions enforce the property that all regions
have the same size (at the possible cost of connectivity). Finding a scheme that
guarantees both size equality and compactness is an open problem of interest.

Problem Definition. In the stable grid matching problem, we are given a square
n×n grid and k points called centers within the grid. The lattice points are called
pixels or sites. Sites implicitly rank the centers in increasing order of distance,
and centers similarly implicitly rank pixels in increasing order by distance. A
matching is a mapping from sites to centers. The goal is to find a matching with
the following two properties (see Fig. 2, left column):

1. The region of each center (the set of sites assigned to it) must have the same
size up to roundoff errors. The quota of a center is the number of sites that
must be in its region. If n2 is a multiple of k, then all the quotas are n2/k.
Otherwise, some centers are allowed one extra site.

2. The matching must be stable. A matching is not stable when a pair of sites
(p1, p2) is assigned to centers c1 and c2 such that p1 prefers (i.e., according to
some metric is closer to) c2 over c1 and c2 prefers p1 over p2. This is unstable
because p1 and c2 prefer each other to their current matches.

Combining k-means with Stable Assignment. The k-means clustering method
is to partition a data set (which, in our case, is an n × n grid) into k regions,
based on a simple iterative refinement algorithm (which is called the k-means
algorithm or Lloyd’s algorithm, e.g., see [24]): We begin by choosing k points,
called cluster centers, randomly in the space. Then, we iteratively repeat the
following two phases: (1) assignment step: each object is assigned to its closest
center, and (2) update step: each center is moved to the centroid of the objects
assigned to it.

120 D. Eppstein et al.

Fig. 2. Left: stable matching in a 300 × 300 grid with the same 50 random centers
for the Euclidean (top), Manhattan (center), and Chebyshev (bottom) metrics. Right:
result of the stable k-means algorithm with unweighted centroids for each metric.

Lloyd’s algorithm converges to a (locally optimal) partition that minimizes
the sum of the squared distances from each object to its assigned center [24].
In this paper, we propose a variation, which we call stable k-means, where the

Stable Matching and Clustering in a Grid 121

assignment step is replaced by a stable matching between objects and centers,
so as to achieve the additional property that the regions all have equal area (to
within roundoff errors). Intuitively, the goal is to implement Lloyd’s algorithm
with stable grid matching so as to improve the compactness of the regions while
preserving equal-sized clusters.

We have found through experimentation that, although the stable k-means
method succeeds in improving compactness, centers can sometimes stop mov-
ing while we are executing Lloyd’s algorithm before their regions became com-
pletely connected (e.g., see Fig. 2). Thus, we introduce in this paper an addi-
tional heuristic, where we use weighted centroids, which are more sensitive to
the outlying parts of their region. The usual centroid of a set of points S is
defined as (

∑
q∈S q)/|S|, where the points are regarded as two-dimensional vec-

tors so that the sum makes sense. Instead, we can compute a weighted centroid
as (

∑
q∈S wqq)/(

∑
q∈S wq). A natural choice to use for the weight wq of a point

q assigned to the region of the center c is the distance from q to c raised to some
exponent p that we can choose, d(q, c)p. The larger p is, the more sensitive the
weighted centroids are to outliers. When p = 0, we get the usual centroid. When
p → +∞, we get the circumcenter of the region, and when p → −∞ we get the
current center.

Contributions. In this paper, we provide the following results:

– The stable grid matching problem, for a grid of n × n pixels with k cen-
ters, can be solved by a randomized algorithm with expected running time
O(n2 log5 n). Since an n × n grid has Θ(n2) pixels, this quasilinear bound
improves the O(n4) time of the Gale-Shapley algorithm. However, this algo-
rithm uses intricate data structures that make it challenging to implement in
practice.

– Given the pragmatic challenges of the above-mentioned quasilinear-time algo-
rithm, we provide two alternative algorithms, a “circle-growing algorithm”
and a “distance-sorting” method, both of which are simple to implement and
have running times of O(n2k).

– We provide an experimental analysis of these two practical algorithms, where
we observe that the circle-growing algorithm is more efficient at finding low-
distance matched pairs, while the distance-sorting based method is more effi-
cient when pairs are farther apart. Therefore, we show that it is advantageous
to switch from one algorithm to the other partway through the matching
process, potentially achieving running times with a sublinear dependence on
k. We experiment with the optimal cutoff for switching between these two
algorithms.

– We also provide the results of experiments to test the connectivity of the
clusters obtained by our stable k-means algorithm, with weighted variants
for finding centroids. Our experiments support the conclusion that no choice
of a weight exponent p will always result in total connectivity. Nevertheless,
our experiments provide evidence that the best results come from the range
−0.8 ≤ p ≤ 0.4. Empirically, more highly negative values of p tend to make

122 D. Eppstein et al.

the algorithm converge slowly or fail to converge, while more highly positive
values of p lead to oscillations in the center placement. See the full version of
the paper for additional figures of these cases.

2 Algorithms

Our stable grid matching algorithms start with an empty matching and add
center–site pairs to it. Given a partial matching, we say a site is available if it
has not been matched yet, and a center is available if the size of its region is
smaller than its quota. A center–site pair is available if both the center and site
are available, and it is a closest available pair if it is available and the distance
from the center to the site is minimum among all available pairs. It is simple to
prove that if an algorithm starts with an empty matching and only adds closest
available pairs to it until it is complete, the resulting matching is stable.

2.1 Circle-Growing Algorithm

In this section we describe our main practical algorithm, the circle-growing algo-
rithm, which mimics the continuous construction from [21]. First, we obtain
the list of all the lattice points with coordinates ranging from −n to n sorted
by distance to the origin. The resulting list P emulates a circle growing from
the origin. When initializing P , we can gain a factor of eight savings in space
by sorting and storing only the points in the triangle �(0, 0)(0, n)(n, n). The
remaining points can be obtained by symmetry: if p = (x, y) is a point in the
triangle, the eight points with coordinates of the form (±x,±y) and (±y,±x)
are at the same distance from the origin as p. Moreover, in applications where
we find multiple stable grid matchings, such as in the stable k-means method,
we need only initialize P once. The way we use P depends on the type of centers
we consider.

Integer Centers. In this case we can use the fact that if we relocate the points in
P relative to a center, then they are in the order in which a circle growing from
that center would reach them. To respect that all the circles grow at the same
rate, we iterate through the points in P in order. For each point p, we relocate
it relative to each center c to form the site p + c (the order of the centers does
not matter). We add to the matching any available center–site pair (c, p + c).
We iterate through P until the matching is complete.

We require O(n2) space and O(n2 log n) time to sort the points in P . For
the Euclidean metric instead of using distances to sort P we can use squared
distances, which take integer values between 0 and 2n2. Then, we can use an inte-
ger sorting algorithm such as counting sort to sort in O(n2) time [12, Chap. 8.2].
Since each point in P results in up to O(k) center–site pairs, we need O(n2k)
time to iterate through P .

Stable Matching and Clustering in a Grid 123

Real Centers (Algorithm 1). If centers have real coordinates, we cannot translate
the points in P relative to the centers, because p + c is not necessarily a lattice
point. The workaround is to associate each center c to its closest lattice point
pc. Let δ be the maximum distance d(c, pc) among all centers. Then, the center–
site pairs “generated” by each point p in P have the form (c, p + pc) and their
distances can vary between d(p,O) − δ and d(p,O) + δ (where O denotes the
origin, (0, 0)). Consequently, the distances of pairs generated by points pi, pj in
P with i < j may intertwine, but only if d(pj , O) − δ ≤ d(pi, O) + δ. The points
in P after pi whose pairs might intertwine with those of pi form an annulus
centered at O with small radius d(pi, O) and big radius d(pi, O) + 2δ.

Since δ is a constant (for the Euclidean metric, δ ≤ √
2/4), it can be derived

from the Gauss circle problem that such an annulus contains O(d(pi, O)) = O(n)
points.

Algorithm 1. Circle growing algorithm for k real centers on an n × n grid.
Set all sites as unmatched.
Set the quota of the first n2 mod k centers to �n2/k�.
Set the quota of the remaining centers to �n2/k�.
Let P = list of points (x, y) such that − n < x, y < n.
Sort P by nondecreasing distance to (0, 0).
For each center c, let pc = (round(cx), round(cy)).
Let δ = max{dist(c, pc)} among all centers.
j ← 1
while the matching is not complete do

L ← empty list
i ← min(j + n, |P |)
for all p ∈ Pj , . . . , Pi do � Add to L pairs generated by points in the next chunk

for all centers c with quota > 0 do
s ← p + pc
if 0 ≤ sx, sy < n and s is still available then

Add (c, s) to L.
Let d = max{dist(c, s)} among all pairs (c, s) ∈ L.
for all p ∈ Pi+1, . . . , P|P | do � Add to L pairs closer than pairs already in L

if dist(p, O) > dist(Pi, O) + 2δ then
break

for all centers c with quota > 0 do
s ← p + pc
if 0 ≤ sx, sy < n and s is still available and dist(c, s) ≤ d then

Add (c, s) to L.
Sort L by nondecreasing center–site distance.
for all (c, s) ∈ L do

if c and s are available then
Match s and c.
Reduce the quota of c by 1.

j ← i + 1

124 D. Eppstein et al.

The algorithm processes the points in P in chunks of n at a time, adding
available center–site pairs generated by points in the chunk (or points after it,
as we will see) to the matching in order by distance. The invariant is that after
a chunk is processed, its points do not generate any more available pairs, and
we can move on to the next one until the matching is complete. To do this, for
each chunk we construct the list L of all the pairs generated by its points. Let d
be the maximum distance among these pairs. If pi is the last point in the chunk,
the points in P from pi+1 up to the last point at distance to the origin at most
d(pi, O) + 2δ can generate pairs with distance less than d. We add any such
pair to L. We have to check O(n) additional points, so L still has size O(kn).
We sort all these pairs and consider them in order, adding any available pair
to the matching. Since each chunk has size n, there will be O(n) chunks. Each
one requires sorting a list of O(kn) pairs, which requires O(kn log n) time (since
k ≤ n2) and O(kn) space. In total, we need O(n2k log n) time and O(n2 + nk)
space.

2.2 Distance-Sorting Methods

Unless the centers are clustered together, the circle-growing algorithm finds many
available pairs in the early iterations. However, it reaches a point in which most
circles overlap. Even if the centers are randomly distributed, in the typical case
a large fraction of centers have “far outliers”, sites which belong to their region
but are arbitrarily far because all the area in between is claimed by other centers.
Consequently, many centers have to scan a large fraction of the square. At some
point, thus, it is convenient to switch to a different algorithm that can find
the closest available pairs quickly. In this section, let m and k ≤ m denote,
respectively, the number of available sites and centers after a matching has been
partially completed.

Pair Sort Algorithm. This algorithm simply sorts all the center–site pairs by
distance and considers them in order, adding any available pair to the matching
until it is complete. This algorithm is convenient when we can use integer sorting
techniques, as in the case of the Euclidean metric and integer centers. Then, it
requires O(mk) time and space.

While the pair sort algorithm has a big memory requirement to be used
starting with an empty matching, used after the circle-growing algorithm has
matched a large fraction of sites results in improved performance.

Pair Heap Algorithm. When centers have real coordinates, sorting all the pairs
takes O(mk log m) time, but we can do better. We find for each site s its closest
center cs, and build a min-heap with all the center–site pairs of the form (cs, s)
using d(cs, s) as key. Clearly, the top of the heap is a closest available pair. We
can iteratively extract and match the top of the heap until one of the centers
becomes unavailable. When a center c becomes unavailable, all the pairs in the
heap containing c become unavailable. At this point, there are two possibilities:

Stable Matching and Clustering in a Grid 125

Eager update. We find the new closest available center of all the sites that had c
as closest center and rebuild the heap from scratch so that it again contains
one pair for each available site and its closest available center.

Lazy update. We proceed as usual until we actually extract a pair (cs, s) with an
unavailable center. Then, we find the new closest available center only for s,
and reinsert the new pair in the heap.

In both cases, we repeat the process until the matching is complete.
We have not addressed yet how to find the closest center to a site. For this,

we can use a nearest neighbor (NN) data structure that supports deletions. Such
a data structure maintains a set of points and is able to answer nearest neighbor
queries, which provide a query point q and ask for the point in the set closest to
q. For the pair heap algorithm, we initialize the NN data structure with the set
of centers and delete them as they become unavailable.

Since we need deletions we can use a dynamic NN data structure, i.e., with
support for insertions as well as deletions. The simplest NN algorithm is a linear
search, and a dynamic data structure based on it has O(k) time per query
and O(1) time per update. The best known complexity of a dynamic NN data
structure is O(log5 k) amortized time per operation [7,25].

Given that we know all the query points for our NN data structure ahead
of time (the sites), we can build for each site s an array As with all the centers
sorted by distance to s. Then, the closest center to a site s is As[is], where is is
the index of the first available center in As. When a center is deleted we simply
mark it. When we get a query for the closest center to a site s, we search As

until we find an unmarked center. We can start the search from the index of the
center returned in the last query for s. This data structure requires O(mk) space
and has a O(mk log k) initialization cost to sort all the arrays. The interesting
property is that if we do O(k) queries for a given site s, we require O(k) time
for all of them, as in total we traverse As only once. We call this data structure
presort, although it is not strictly a NN data structure because it knows the
query points ahead of time.

In the pair heap algorithm, we can combine eager and lazy updates with any
NN data structure. In any case, the running time is influenced by α, the sum
among all centers c of the number of sites that had c as closest center when
c became unavailable. In the worst case α = O(km), but assuming that each
center is equally likely to be the closest center to each site, the expected value
of α is O(m). In the full version of the paper we test the value of α empirically
in several different settings, and in every case we find α < 10m.

With eager updates in total we have to initialize the NN data structure,
perform m extract-min operations, O(m + α) NN queries, k NN deletions, and
rebuild the heap k times. Thus, the running time is O(P (k,m) + m log m +
(m + α)Q(k) + kD(k) + km), where P (k,m) is the cost of initializing the NN
data structure of choice with k points (and m query points, in the case of the
presort data structure), and Q(k) and D(k) are the costs of queries and deletions,
respectively. With lazy updates, instead of rebuilding the heap we have O(α)
extra insert and extract-min heap operations, which requires O(α log m) time.

126 D. Eppstein et al.

For real centers, the best worst-case bound is with eager deletions and the
presort NN data structure. In that case, we have that the NN queries take
O(km) for any α, so the total running time is O(mk log k + m log m). If we
assume that α = O(m), then the best time is with lazy deletions and the NN
data structure from [7,25]. The running time with this heuristic assumption is
O(m log5 k + m log m).

2.3 Bichromatic Closest Pairs and Nearest Neighbor Chains

We now describe a less-practical solution based on bichromatic closest pairs
which achieves the best theoretical running time that we have been able to prove.
A bichromatic closest pair (BCP) data structure maintains a set of points, each
colored red or blue, and is able to answer queries asking for the closest pair of
different color.

The stable grid matching problem can be solved with a BCP data structure
that supports deletions, either on its own or after the circle-growing algorithm.
We first initialize the data structure with the available sites and centers as blue
and red points, respectively. Then, we repeatedly find and match the closest pair,
remove the site, and remove the center if it becomes unavailable. The running
time is O(P (m) + mQ(m) + mD(m)), where P (m), Q(m), and D(m) are the
initialization, query, and deletion costs, respectively, for the BCP data structure
of choice containing m blue points and k ≤ m red points.

Eppstein [16] proposed a fully dynamic BCP data structure that uses an aux-
iliary dynamic NN data structure. Using it, the sequence of operations required
to solve the stable grid matching problem takes O(mT (m) log2 m) time, where
T (m) is the cost per operation of the NN data structure. In particular, com-
bining this with the dynamic nearest neighbor data structure of Chan [7] and
Kaplan et al. [25] gives a total time bound of O(n2 log7 n) for this problem.

To improve this, we observe that (with a suitable tie-breaking rule to ensure
that no two distances are equal) it is not necessary to find the bichromatic
closest pair in each step: it suffices, instead, to find a mutual nearest neighbor
pair: a pixel and a center that are closer to each other than to any other pixel or
center. The reason is twofold. First, in the algorithm that repeatedly finds and
removes closest pairs, every pair (c, p) of mutual nearest neighbors eventually
becomes a closest pair, because until they do, nothing else that the algorithm
does can change the fact that they are mutual nearest neighbors. So (c, p) will
eventually become matched by the algorithm. Second, if we find a pair (c, p)
that will eventually become matched (such as a mutual nearest neighbor pair),
it is safe to match them early; doing so cannot affect the correctness of the rest
of the algorithm.

To find these, we may adapt the nearest-neighbor chain algorithm from the
theory of hierarchical clustering [4,23] which uses a stack to repeatedly find pairs
of mutual nearest neighbors at a cost of O(1) nearest neighbor queries per pair.
In more detail, the algorithm is as follows.

1. Initialize two dynamic nearest neighbor structures for the pixels and centers,
and an empty stack S.

Stable Matching and Clustering in a Grid 127

2. Repeat the following steps until all pixels have been matched:
(a) If S is empty, push an arbitrary point (either a pixel or a center) onto S.
(b) Let p be the point at the top of S, and use the nearest neighbor data

structure to find the nearest point q of the opposite color to p.
(c) If q is not already on S, push it onto S. Otherwise, q must be the second-

from-top point on S, and is a mutual nearest neighbor with p. Pop p and
q, match them to each other, and remove one or both of p or q from the
nearest neighbor data structure (always remove the pixel, and remove the
center if it becomes unavailable).

Note that in step 2. (c) q must be second-from-top because we have a cycle of
(non-mutual) nearest neighbors starting with p → q and then up the stack back
to p. At each step along this cycle, the distance decreases or stays equal. But
it cannot decrease, because there would be no way to increase back again, and
nothing but q → p can be equal to p → q, because we are using a tie-breaking
rule. So the cycle has length two and q is second-from-top.

Each step that pushes a new point onto S can be charged against a later
pop operation and its associated matched pixel, so the number of repetitions is
O(n2). This algorithm gives us the following theorem.

Theorem 1. The stable grid matching problem can be solved in O(n2) opera-
tions of a dynamic nearest neighbor data structure. In particular, with the struc-
ture of Chan [7] and Kaplan et al. [25], the time is O(n2 log5 n).

3 Experiments

Datasets. Table 1 summarizes the parameters used in the different experiments.
We use the following labels for the algorithms: CG the circle-growing algorithm
alone, and PS and PH for the combination of CG and the pair sort and pair
heap algorithms, respectively. Moreover, for the pair heap algorithm we consider
the following variations: eager/presort (PHE,P), eager/linear search (PHE,L),
lazy/presort (PHL,P), and lazy/linear search (PHL,L).

We focus on the Euclidean metric, but in the full version of the paper we
also consider the Manhattan and Chebyshev metrics. The parameter n is the
length of the side of the square grid, and k is the number of centers. In all the
experiments, the centers are chosen uniformly and independently at random.
Moreover, every data point is the average of 10 runs, each starting with different
centers.

The cutoff is the parameter used to determine when to switch from the
circle-growing algorithm to a different one. We define it as a ratio between the
number of available pairs and the number of pairs already considered by the
circle-growing algorithm.

The algorithms were implemented in C++ (gcc version 4.8.2) and the inter-
face in Qt. The experiments were executed by a Intel(R) Core(TM) CPU i7-
3537U 2.00 GHz with 4 GB of RAM, on Windows 10.

128 D. Eppstein et al.

Table 1. Summary of parameters used in the experiments section.

Experiment Algorithms Metric n k Cutoff

Exec. time (Fig. 3) All L2 varies 10n 0.15

Cutoff (Fig. 4) CG,PHL,L L2 1000 varies varies

Algorithm Comparison. Figure 3 contains a comparison of all the algorithms.
Pair heap is generally better than pair sort, even for integer distances where it
has a higher theoretical complexity. Among pair heap variations, lazy/linear is
the best for both types of centers. In general lazy updates perform better, but
eager/presort is also a strong combination because they synergize: eager updates
require more NN queries in exchange for less extract-min heap operations, and
the presort data structure has fast NN queries.

Fig. 3. Execution time of the various algorithms for integer (left) and real (right)
centers. For all the methods but CG, the cutoff is 0.15. Each data point is the average
of 10 runs with 10n randomly distributed centers and the L2 metric.

Optimal Cutoff. When combining the circle-growing algorithm with another
algorithm, the efficiency of the combination depends on the cutoff used to switch
between both. If we switch too soon, we don’t exploit the good behavior of the
circle-growing algorithm when circles are still mostly disjoint. If we switch too
late, the circle-growing algorithm slows down as it grows the circles in every
direction just to reach some outlying region.

Figure 4 illustrates the role of the cutoff. It shows that most of the execution
time of the circle-growing algorithm is spent with the very few last available
pairs, so even a really small cutoff prompts a substantial improvement. After
that, the additional time spent in the pair heap algorithm slightly beats the
savings in the circle-growing algorithm, resulting in a steady increase of the
total running time.

Stable Matching and Clustering in a Grid 129

Fig. 4. Execution time of the circle-growing algorithm for integer (left) and real (right)
centers, combined with the pair heap algorithm with lazy updates and a linear search
NN data structure. The dotted lines denote the running time of the circle-growing
algorithm alone, i.e., with cutoff 0. Each data point is the average of 10 runs with
randomly distributed centers, n = 1000, and the L2 metric.

4 Discussion

We have defined the stable grid matching problem, developed efficient theoretical
algorithms and practical implementations of slower but simpler algorithms for
this problem, and used our implementation to test different strategies for center
placement in k-means like stable clustering algorithms. However, this work leaves
several open questions:

– For which n and k does the stable grid matching problem have a placement
of centers for which all clusters are connected, and how can such centers be
found?

– Can the worst-case running time of our theoretical O(n2 log5 n)-time algo-
rithm be improved? Is it possible to achieve similar runtimes without going
through fully-dynamic bichromatic closest pair data structures?

– Can we obtain practical algorithms whose runtime has lower worst-case
dependence on k than our O(n2k)-time circle-growing and distance-sorting
methods?

– Our bichromatic closest pair and distance-sorting algorithms can be made to
work for arbitrary point sets (not just pixels) but the circle-growing method
assumes that the points form a grid, and its time analysis depends on the
fact that the grid is a fat polygon (so that the area of each circle is propor-
tional to the number of grid points that it covers) and that testing whether a
point belongs to the grid is trivial. Can this method be extended to pixelated
versions of more complicated polygons?

– How efficiently can we perform similar distance-based stable matching prob-
lems for graph shortest path distances instead of geometric distances? Can
additional structure (such as the structures found in real-world road networks)
help speed up this computation?

130 D. Eppstein et al.

References

1. Akman, V., Franklin, W.R., Kankanhalli, M., Narayanaswami, C.: Geometric com-
puting and uniform grid technique. Comput.-Aid. Des. 21(7), 410–420 (1989)

2. Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation algorithms for lawn
mowing and milling. Comput. Geom. 17(1), 25–50 (2000)

3. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

4. Benzécri, J.P.: Construction d’une classification ascendante hiérarchique par la
recherche en châıne des voisins réciproques. Les Cahiers de l’Analyse des Données
7(2), 209–218 (1982). http://www.numdam.org/item?id=CAD 1982 7 2 209 0

5. Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.:
Using ILP/SAT to determine pathwidth, visibility representations, and other grid-
based graph drawings. In: Wismath, S., Wolff, A. (eds.) 21st International Sym-
posium on Graph Drawing (GD), pp. 460–471 (2013)

6. Böhringer, K.F., Donald, R.B., Halperin, D.: On the area bisectors of a polygon.
Discrete Comput. Geom. 22(2), 269–285 (1999)

7. Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neigh-
bor queries. J. ACM 57(3), 16: 1–16: 15 (2010)

8. Chan, T.M., Patrascu, M.: Transdichotomous results in computational geometry,
i: point location in sublogarithmic time. SIAM J. Comput. 39(2), 703–729 (2009)

9. Chandran, S., Kim, S.K., Mount, D.M.: Parallel computational geometry of rec-
tangles. Algorithmica 7(1), 25–49 (1992)

10. Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. Comput.
Geom. 11(1), 29–54 (1998)

11. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays.
Discrete Comput. Geom. 42(3), 359–378 (2009)

12. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Boston (2001)

13. De Floriani, L., Puppo, E., Magillo, P.: Applications of computational geometry
to geographic information systems. In: Handbook of Computational Geometry, pp.
333–388 (1999)

14. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

15. Dehne, F., Pham, Q.T., Stojmenović, I.: Optimal visibility algorithms for binary
images on the hypercube. Int. J. Parallel Programm. 19(3), 213–224 (1990)

16. Eppstein, D.: Dynamic Euclidean minimum spanning trees and extrema of binary
functions. Discrete Comput. Geom. 13(1), 111–122 (1995)

17. Fang, T.P., Piegl, L.A.: Delaunay triangulation using a uniform grid. IEEE Com-
put. Graph. Appl. 13(3), 36–47 (1993)

18. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

19. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. In: 27th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 143–152 (1986)

20. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, New York (2003)

21. Hoffman, C., Holroyd, A.E., Peres, Y.: A stable marriage of Poisson and Lebesgue.
Ann. Probab. 34(4), 1241–1272 (2006)

22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

http://www.numdam.org/item?id=CAD_1982__7_2_209_0

Stable Matching and Clustering in a Grid 131

23. Juan, J.: Programme de classification hiérarchique par l’algorithme de la recherche
en châıne des voisins réciproques. Les Cahiers de l’Analyse des Données 7(2), 219–
225 (1982). http://www.numdam.org/item?id=CAD 1982 7 2 219 0

24. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

25. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
Electronic preprint arxiv:1604.03654 (2016)

26. Keil, J.M.: Computational geometry on an integer grid. Ph.D. thesis, University
of British Columbia (1980)

27. Knuth, D.E.: The Art of Computer Programming Sorting and Searching. Pearson
Education, Reading (1998)

28. Overmars, M.H.: Computational geometry on a grid an overview. In: Earnshaw
R.A. (eds.) Theoretical Foundations of Computer Graphics and CAD. NATO ASI
Series (Series F: Computer and Systems Sciences), vol. 40, pp. 167–184. Springer,
Heidelberg (1988)

29. Overmars, M.H.: Efficient data structures for range searching on a grid. J. Algo-
rithms 9(2), 254–275 (1988)

30. Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawings of plane
graphs. Comput. Geom. 10(3), 203–220 (1998)

31. Ricca, F., Scozzari, A., Simeone, B.: Weighted Voronoi region algorithms for polit-
ical districting. Math. Comput. Modell. 48(9–10), 1468–1477 (2008)

32. Solbrig, M.: Mathematical Aspects of Gerrymandering. Master’s thesis, University
of Washington (2013). https://digital.lib.washington.edu/researchworks/handle/
1773/24334

http://www.numdam.org/item?id=CAD_1982__7_2_219_0
http://arxiv.org/abs/1604.03654
https://digital.lib.washington.edu/researchworks/handle/1773/24334
https://digital.lib.washington.edu/researchworks/handle/1773/24334

A Relational Generalization
of the Khalimsky Topology

Josef Šlapal(B)

Institute of Mathematics, Brno University of Technology, Brno, Czech Republic
slapal@fme.vutbr.cz

Abstract. We discuss certain n-ary relations (n > 1 an integer) and
show that each of them induces a connectedness on its underlying set.
Of these n-ary relations, we study a particular one on the digital plane Z2

for every integer n > 1. As the main result, for each of the n-ary relations
studied, we prove a digital analogue of the Jordan curve theorem for the
induced connectedness. It follows that these n-ary relations may be used
as convenient structures on the digital plane for the study of geometric
properties of digital images. For n = 2, such a structure coincides with
the (specialization order of the) Khalimsky topology and, for n > 2, it
allows for a variety of Jordan curves richer than that provided by the
Khalimsky topology.

1 Introduction

A crucial problem of digital topology, a theory that was founded for the study of
geometric and topological properties of digital images, is to provide the digital
plane Z

2 with a convenient structure for such a study (cf. [9,10]). The classical,
graph theoretic, approach to digital topology is based on using the 4-adjacency
and 8-adjacency graphs for structuring Z

2 (see [14,15]). Unfortunately, neither
4-adjacency nor 8-adjacency graph alone allows for an analogue of the Jordan
curve theorem (cf. [8]) so that a combination of the two adjacency graphs has
to be used. Despite this drawback, the classical approach to digital topology has
been used to solve numerous problems of digital image processing (see, e.g., [1])
and create a great deal of useful graphic software.

To eliminate the above drawback of the classical approach to digital topology,
a new, purely topological approach was proposed in [5] which utilizes a conve-
nient topology for structuring the digital plane, namely the Khalimsky topology.
The convenience of the Khalimsky topology for structuring the digital plane was
shown in [5] by proving an analogue of the Jordan curve theorem for the topol-
ogy (recall that the classical Jordan curve theorem states that a simple closed
curve in the Euclidean plane separates this plane into exactly two connected
components). The topological approach was then developed by many authors -
see, e.g., [4,6,7,11–13,17,18].

Since the Khalimsky topology is an Alexandroff T0-topology, it is uniquely
determined by a partial order on Z

2, the so-called specialization order of the

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 132–141, 2017.
DOI: 10.1007/978-3-319-59108-7 11

A Relational Generalization of the Khalimsky Topology 133

topology. The connectedness in the Khalimsky space then coincides with the
connectedness in the underlying (simple) graph of the specialization order of the
Khalimsky topology. Thus, when studying the connectedness of digital images
with respect to the Khalimsky topology, this graph, rather than the Khalimsky
topology itself, may be used for structuring the digital plane. A disadvantage of
this approach is that Jordan curves in the (specialization order of the) Khalim-
sky topology may never turn at the acute angle π

4 . It would, therefore, be useful
to find some new, more convenient structures on Z

2 that would allow Jordan
curves to turn, at some points, to form the acute angle π

4 . In the present note,
to obtain such a convenient structure, we generalize the specialization order of
the Khalimsky topology, hence a binary relation on Z

2, by using certain n-ary
relations on Z

2 (n > 1 an integer). We will define a connectedness induced by
these relations and will prove a digital Jordan curve theorem for this connect-
edness. Thus, the n-ary relations provide convenient structures on the digital
plane for the study of the geometric properties of digital images that are related
to boundaries because boundaries of objects in digital images are represented by
digital Jordan curves.

2 Preliminaries

Throughout the paper, non-negative integers are considered to be finite ordinals
and they are called, as usual, natural numbers. Thus, given a natural number
n > 0, (xi|i < n) will denote the finite sequence (x0, x1, ..., xn−1) and (xi|i ≤ n)
the finite sequence (x0, x1, ..., xn). These finite sequences will often be treated
as sets, namely the sets {xi; i < n} = {x0, x1, ..., xn−1} and {xi; i ≤ n} =
{x0, x1, ..., xn}, respectively.

We will work with some basic graph-theoretic concepts only - we refer to [2]
for them. By a graph G = (V,E), we understand an undirected simple graph
without loops where V �= ∅ is the vertex set of G and E ⊆ {{x, y}; x, y ∈ V, x �=
y} is the set of edges in G. We will say that G is a graph on V . Two vertices
x, y ∈ V are said to be adjacent (to each other) if {x, y} ∈ E. Recall that a
path in G is a (finite) sequence of pairwise different vertices (i.e., elements of
V) such that every pair of consecutive vertices is adjacent. A (finite) sequence
(x0, x1, ..., xn) of vertices of G with n > 2 is called a circle in G if (xi|i < n)
is a path in G and x0 = xn. A subset A ⊆ V is connected in G if any two
points x, y ∈ A may be joined by a path contained in A (i.e., there is a path
(xi|i ≤ n) with x0 = x, xn = y and {xi|i ≤ n} ⊆ A). A subset A ⊆ V is said to
be a component of G if it is a maximal (with respect to set inclusion) connected
subset of V . A circle C in a graph G is said to be a simple closed curve if, for
every vertex z ∈ C, C contains precisely two vertices adjacent to z. A simple
closed curve J in a graph with the vertex set V is called a Jordan curve if it
separates the set V into precisely two components, i.e., if the induced subgraph
V − J has exactly two components.

Recall that, given a directed graph (i.e., a set with a binary relation) D, its
underlying graph is the (undirected) graph obtained by just ignoring the direction
of the edges in D.

134 J. Šlapal

For every point (x, y) ∈ Z
2, we denote by A4(x, y) and A8(x, y) the sets

of all points that are 4-adjacent and 8-adjacent to (x, y), respectively. Thus,
A4(x, y) = {(x + i, y + j); i, j ∈ {−1, 0, 1}, ij = 0, i + j �= 0} and A8(x, y) =
A4(x, y) ∪ {(x + i, y + j); i, j ∈ {−1, 1}}. The graphs (Z2, A4) and (Z2, A8) are
called the 4-adjacency graph and 8-adjacency graph, respectively.

In digital image processing, the 4-adjacency and 8-adjacency graphs are the
most frequently used structures on the digital plane. But, since the late 1980’s,
another structure on Z

2 has been used too, namely the Khalimsky topology
[5]. It is the product of two copies of the topology on Z given by the subbase
{{2k− 1, 2k, 2k+1}; k ∈ Z} (for the basic concepts of general topology see [3]).
Recall that, given a topology T on a set X, the specialization preorder of T is the
preorder ≤ on X defined by x ≤ y ⇔ x ∈ {y} for all x, y ∈ X (where A denotes
the closure operator with respect to T). Since the Khalimsky topology is T0 (i.e.,
for all t, z ∈ Z

2, t ∈ {z} and z ∈ {t} imply t = z), its specialization preorder
is a (partial) order on Z

2. And, since the Khalimsky topology is an Alexandroff
topology (i.e., for all A ⊆ Z

2, A =
⋃

z∈A {z}), it is uniquely determined by its
specialization order.

The specialization order of the Khalimsky topology coincides with the binary
relation ≤ on Z

2 given as follows:
For any (x, y), (z, t) ∈ Z

2, (x, y) ≤ (z, t) if and only if

(x, y) = (z, t) or
x, y are even and (z, t) ∈ A8(x, y) or
x is even, y is odd, z = x + i where i ∈ {−1, 1}, and t = y or
x is odd, y is even, z = x, and t = y + i where i ∈ {−1, 1}.

A portion of the specialization order ≤ of the Khalimsky topology is demon-
strated in Fig. 1 by a directed graph with the vertex set Z

2 where an oriented
edge from a point p to a point q means that q ≤ p.

0 1 2 3 4

1

2

3

4

Fig. 1. A portion of the specialization order of the Khalimsky topology.

The underlying graph of the specialization order of the Khalimsky topology
coincides with the connectedness graph of the topology, i.e., the graph with the

A Relational Generalization of the Khalimsky Topology 135

vertex set Z
2 in which two points are adjacent if and only if they are different

and constitute a connected subset of the Khalimsky space. It may easily be seen
that the connectedness in the Khalimsky space coincides with the connectedness
in the connectedness graph of the Khalimsky topology, i.e., in the underlying
graph of the specialization order the topology.

The famous Jordan curve theorem proved for the Khalimsky topology in [4]
may be formulated as follows:

Theorem 1. In the underlying graph of the specialization order of the Khal-
imsky topology, every simple closed curve with at least four points is a Jordan
curve.

It is readily verified that a simple closed curve (and thus also a Jordan curve)
in the underlying graph of the specialization order of the Khalimsky topology
may never turn at the acute angle π

4 . It could therefore be useful to replace
the specialization order of the Khalimsky topology with some more convenient
structure (relation on Z

2) that would allow Jordan curves to turn at the acute
angle π

4 at some points. And this is what we will do in the next section.

3 Plain Relations and Induced Connectedness

Recall that, given a natural number n > 0 and a set X, an n-ary relation on
X is a subset R ⊆ Xn. Thus, the elements of R are finite sequences (ordered
n-tuples) (x0, x1, ..., xn−1) = (xi|i < n) consisting of elements of X (for the basic
properties of n-ary relations see [16]). In the sequel, to eliminate the trivial case
n = 1, we will restrict our considerations to n > 1.

Definition 1. An n-ary relation R on a set X is said to be plain if, for any
g, h ∈ R, g �= h implies card (g ∩ h) ≤ 1.

Definition 2. Let R be a plain n-ary relation on a set X and m a natural
number. A sequence C = (ck|k ≤ m) of elements of X is called an R-walk if the
following two conditions are satisfied:

I. For every non-negative integer k0 < m, there exist (xi|i < n) ∈ R and
i0 < n − 1 such that {ck0 , ck0+1} = {xi0 , xi0+1}.

II. Every (xi|i < n) ∈ R satisfies the following two conditions:
(i) if there exist k0 < m and i0 < n−1 such that ck0 = xi0 and ck0+1 = xi0+1,

then k0 ≥ i0 and ck0−j = xi0−j for all j = 1, 2, ..., i0,
(ii) if there exist k0 < m and i0 < n−1 such that ck0 = xi0+1 and ck0+1 = xi0 ,

then k0 ≤ m − i0 − 1 and ck0+j = xi0−j+1 for all j = 2, 3, ..., i0 + 1.

An R-walk (ck|k ≤ m) with the property that m ≥ 2 and ci = cj ⇔ {i, j} =
{0,m} is said to be an R-circle.

136 J. Šlapal

Observe that, if (c0, c1, ..., cn) is an R-walk, then (cn, cn−1, ..., c0) is an R-
walk, too (so that R-walks are closed under reversion) and, if (dk|k ≤ p) and
(ek|k ≤ q) are R-walks with dp = e0, then, putting fk = dk for all k ≤ p and
fk = ek−p for all k with p ≤ k ≤ p+ q, we get an R-walk (fk|k ≤ p+ q) (so that
R-walks are closed under composition).

Given a plain n-ary relation R on a set X, a subset Y ⊆ X is said to be
R-connected if, for every pair a, b ∈ Y , there is an R-walk (ck|k ≤ m) such that
c0 = a, cm = b and ci ∈ Y for all i ∈ {0, 1, ...,m}. A maximal (with respect to
set inclusion) R-connected subset of X is called an R-component of X.

Definition 3. Let R be a plain n-ary relation on a set X. A nonempty, finite
and R-connected subset J of X is said to be an R-simple closed curve if every
element (xi|i < n) ∈ R with {x0, x1} ⊆ J satisfies {xi|i < n} ⊆ J and every
point z ∈ J fulfills one of the following two conditions:

(1) There are exactly two elements (xi|i < n) ∈ R satisfying both {xi|i < n} ⊆
J and z ∈ {x0, xn−1} and there is no element (yi|i < n) ∈ R satisfying both
{yi|i < n} ⊆ J and z = yi for some i ∈ {1, 2, ..., n − 1}.

(2) There is exactly one element (yi|i < n) ∈ R satisfying both {yi|i < n} ⊆ J
and z = yi for some i ∈ {1, 2, ..., n−2} and there is no element (xi|i < n) ∈ R
satisfying both {xi|i < n} ⊆ J and z ∈ {x0, xn−1}.

Clearly, every R-simple closed curve is an R-circle.

Definition 4. Let R be a plain n-ary relation on a set X. An R-simple closed
curve J is called an R-Jordan curve if the subset X −J ⊆ X consists (i.e., is the
union) of precisely two R-components.

Remark 1. In the Euclidean plane R
2, every Jordan curve J is a minimal sep-

arator of R2, i.e., the subset R
2 − (J − {p}) ⊆ R

2 is connected for every point
p ∈ J . This is not true for R-Jordan curves, which means that an R-Jordan
curve J may have a point p ∈ J such that the subset Z2 − (J − {p}) ⊆ Z

2 is not
R-connected.

From now on, for every natural number n > 1, Rn will denote the plain n-ary
relation on Z

2 given as follows: For every ((xi, yi)|i < n) such that (xi, yi) ∈ Z
2

for every i < n, ((xi, yi)|i < n) ∈ Rn if and only if one of the following eight
conditions is satisfied:

(1) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = (2k + 1)(n − 1) + i
for all i < n,

(2) x0 = x1 = ... = xn−1 and there is k ∈ Z such that yi = (2k + 1)(n − 1) − i
for all i < n,

(3) y0 = y1 = ... = yn−1 and there is l ∈ Z such that xi = (2l + 1)(n − 1) + i
for all i < n,

(4) y0 = y1 = ... = yn−1 and there is l ∈ Z such that xi = (2l + 1)(n − 1) − i
for all i < n,

A Relational Generalization of the Khalimsky Topology 137

(5) there is k ∈ Z such that xi = (2k + 1)(n − 1) + i for all i < n and there is
l ∈ Z such that yi = (2l + 1)(n − 1) + i for all i < n,

(6) there is k ∈ Z such that xi = (2k + 1)(n − 1) + i for all i < n and there is
l ∈ Z such that yi = (2l + 1)(n − 1) − i for all i < n,

(7) there is k ∈ Z such that xi = (2k + 1)(n − 1) − i for all i < n and there is
l ∈ Z such that yi = (2l + 1)(n − 1) + i for all i < n,

(8) there is k ∈ Z such that xi = (2k + 1)(n − 1) − i for all i < n and there is
l ∈ Z such that yi = (2l + 1)(n − 1) − i for all i < n.

A portion of Rn is demonstrated in Fig. 2. The ordered n-tuples belonging
to Rn are represented by arrows oriented from first to last terms. Between any
pair of neighboring parallel horizontal or vertical arrows (having the same ori-
entation), there are n − 2 more parallel arrows with the same orientation that
are not displayed in order to make the Figure transparent.

0 n-1 2(n-1) 3(n-1) 4(n-1)

n-1

2(n-1)

3(n-1)

4(n-1)

Fig. 2. A portion of Rn.

It may easily be seen that R2 coincides with the specialization order of the
Khalimsky topology. Thus, Theorem1 is a Jordan curve theorem for R2. We will
prove a Jordan curve theorem for every Rn with n > 2.

In Fig. 3, (a section of) a graph on Z
2 is demonstrated but only the vertices

(2k(n− 1), 2l(n− 1)), k, l ∈ Z, are marked out. Thus, on every edge (denoted by
a line segment), there are 2n − 1 vertices that are not displayed.

Theorem 2. If n > 2, then every circle in the graph demonstrated in Fig. 3 that
turns only at some of the marked out points (2k(n − 1), 2l(n − 1)), k, l ∈ Z, is
an Rn-Jordan curve.

Proof. For every point z = ((2k + 1)(n − 1), (2l + 1)(n − 1)), k, l ∈ Z, each of
the following four subsets of Z2 will be called an n-fundamental triangle (given
by z):

{(r, s) ∈ Z
2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l + 2)

(n − 1), s ≤ r + 2l(n − 1) − 2k(n − 1)},

138 J. Šlapal

0 2(n-1) 4(n-1) 6(n-1)

2(n-1)

4(n-1)

6(n-1)

Fig. 3. Rn-Jordan curves.

{(r, s) ∈ Z
2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l + 2)

(n − 1), s ≥ 2l(n − 1) + (2k + 2)(n − 1) − r},
{(r, s) ∈ Z

2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l + 2)
(n − 1), s ≥ r + 2l(n − 1) − 2k(n − 1)},

{(r, s) ∈ Z
2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l + 2)

(n − 1), s ≤ 2l(n − 1) + (2k + 2)(n − 1) − r}.
Every n-fundamental triangle consists of 2n2 − n points and forms a seg-

ment having the shape of a (digital) rectangular triangle. The n-fundamental
triangles given by z are just the triangles in Fig. 3 obtained by dividing the
square segment with the middle point z and the edge length 2(n − 1) by one
of the two diagonals. Each of the diagonals is the hypotenuse of the two n-
fundamental triangles obtained by dividing the square by the diagonal and z is
the middle point of the hypotenuse. Every line segment constituting an edge of
an n-fundamental triangle consists of precisely 2n− 1 points. Clearly, the edges
of any n-fundamental triangle form an Rn-simple closed curve. We will show
that every n-fundamental triangle is Rn-connected and so is every set obtained
from an n-fundamental triangle by subtracting some of its edges.

Let z = ((2k + 1)(n − 1), (2l + 1)(n − 1)), k, l ∈ Z, be a point and consider
the n-fundamental triangle T = {(r, s) ∈ Z

2; 2k(n − 1) ≤ r ≤ (2k + 2)(n −
1), 2l(n − 1) ≤ s ≤ (2l + 2)(n − 1), y ≤ x + 2l(n − 1) − 2k(n − 1)}. Then
T is the (digital) triangle ABC with the vertices A = (2k(n − 1), 2l(n − 1)),
B = ((2k+2)(n− 1), 2l(n− 1)), C = ((2k+2)(n− 1), (2l+2)(n− 1)). For every
u ∈ Z, (2k+1)(n−1) ≤ u ≤ (2k+2)(n−1), the sequence Gu = ((u, y)|2l(n−1) ≤
y ≤ u + 2(l − k)(n − 1)) is an Rn-walk (contained in T), so that Gu is an Rn-
connected set. Similarly, for every v ∈ Z, 2l(n − 1) ≤ v ≤ (2l + 1)(n − 1),
the sequence Hv = ((x, v)|v + 2(k − l)(n − 1) ≤ x ≤ (2k + 2)(n − 1)) is an
Rn-walk (contained in T), so that Hv is an Rn-connected set. We clearly have
T =

⋃
{Gu; (2k + 1)(n − 1) ≤ u ≤ (2k + 2)(n − 1)} ∪

⋃
{Hv; 2l(n − 1) ≤ v ≤

(2l+1)(n−1)}. It may easily be seen that Gu∩Hv �= ∅ whenever (2k+1)(n−1) ≤
u ≤ (2k+2)(n−1) and 2l(n−1) ≤ v ≤ (2l+1)(n−1). For every natural number
i < 2n, we put

A Relational Generalization of the Khalimsky Topology 139

Si =

{
G(2k+1)(n−1)+ i

2
if i is even,

H2l(n−1)+ i−1
2

if i is odd.

Then (Si|i < 2n) is a sequence with the property that its members with even
indices form the sequence (Gu|(2k + 1)(n− 1) ≤ u ≤ (2k + 2)(n− 1)) and those
with odd indices form the sequence (Hv|2l(n− 1) ≤ v ≤ (2l+ 1)(n− 1)). Hence,⋃

{Si|i < 2n} =
⋃

{Gu; (2k+1)(n−1) ≤ u ≤ (2k+2)(n−1)}∪
⋃

{Hv; 2l(n−1) ≤
v ≤ (2l + 1)(n− 1)} and every pair of consecutive members of (Si|i < 2n) has a
non-empty intersection. Thus, since T =

⋃
{Si|i < 2n}, T is Rn-connected. For

each of the other three n-fundamental triangles given by z, the proof is analogous,
and the same is true also for every set obtained from an n-fundamental triangle
(given by z) by subtracting some of its edges.

We will say that a (finite or infinite) sequence S of n-fundamental triangles is
a tiling sequence if the members of S are pairwise different and every member of
S, excluding the first one, has an edge in common with at least one of its prede-
cessors. Given a tiling sequence S of n-fundamental triangles, we denote by S′ the
sequence obtained from S by subtracting, from every member of the sequence,
all its edges that are not shared with any other member of the sequence. By the
firs part of the proof, for every tiling sequence S of n-fundamental triangles, the
set

⋃
{T ; T ∈ S} is Rn-connected and the same is true for the set

⋃
{T ; T ∈ S′}.

Let J be an Rn-simple closed curve. Then J constitutes the border of a
polygon SF ⊆ Z

2 consisting of n-fundamental triangles. More precisely, SF

is the union of some n-fundamental triangles such that any pair of them is
disjoint or meets in just one edge in common. Let U be a tiling sequence of
the n-fundamental triangles contained in SF . Since SF is finite, U is finite,
too, and we have SF =

⋃
{T ; T ∈ U}. As every n-fundamental triangle

T ∈ U is Rn-connected, so is also SF . Similarly, U ′ is a finite sequence with
SF −J =

⋃
{T ; T ∈ U ′} and, since every member of U ′ is Rn-connected (by the

first part of the proof), SF − J is connected, too.
Further, let V be a tiling sequence of n-fundamental triangles which are not

contained in SF . Since the complement of SF in Z
2 is infinite, V is infinite,

too. Put SI =
⋃

{T ; T ∈ V }. As every n-fundamental triangle T ∈ V is B2-
connected, so is also SI . Similarly, V ′ is a finite sequence with SI−J =

⋃
{T ; T ∈

V ′} and, since every member of V ′ is connected (by the first part of the proof),
SI − J is connected, too.

It may easily be seen that every Rn-walk C = (zi|i ≤ k), k > 0 a natural
number, connecting a point of SF −J with a point of SI −J meets J (i.e., meets
an edge of an n-fundamental triangle which is contained in J). Therefore, the set
Z
2 − J = (SF − J) ∪ (SI − J) is not Rn-connected. We have shown that SF − J

and SI −J are Rn-components of Z2 −J , SF −J finite and SI −J infinite, with
SF and SI Rn-connected. The proof is complete.

The circles in the graph demonstrated in Fig. 3 that do not turn at any
point ((2k + 1)(n − 1), (2l + 1)(n − 1)), k, l ∈ Z, which are R-Jordan curves by
Theorem 2, provide a rich enough variety of circles to be used for representing
borders of objects in digital images. The advantage of the circles over the Jordan

140 J. Šlapal

0 2 4 6 8 10 12

2

4

6

8

10

12

Fig. 4. R3-Jordan curves.

curves in the Khalimsky topology is that they may turn at the acute angle π
4 at

some points.

Example 1. Every circle in the graph demonstrated in Fig. 4 that does not turn
at any point (4k + 2, 4l + 2), k, l ∈ Z, is an R3-Jordan curve by Theorem2.
Thus, for example, the triangle with vertices (0, 0), (8, 0), (4, 4) is an R3-Jordan
curve but not an R2-Jordan curve. For this triangle to become an R2-Jordan
curve, we have to delete the points (0, 0), (1, 0), (7, 0), (8, 0). But this will cause
a considerable deformation of the triangle.

4 Conclusions

We have shown that every plain n-nary relation induces connectedness on its
underlying set. This connectedness may be used to define the concepts of a sim-
ple closed curve and a Jordan curve in the underlying set of a given plain n-ary
relation. We introduced and discussed a particular plain n-nary relation on the
digital plane Z

2 for every natural number n > 1 and showed that the connected-
ness induced by each of these relations allows for a digital analogue of the Jordan
curve theorem. Thus, we have shown that the n-ary relations introduced provide
convenient structures on the digital plane for the study of digital images. While
for n = 2 this structure coincides with the Khalimsky topology, for n > 2 the
structures have the advantage over the Khalimsky topology that they allow the
Jordan curves to turn at the acute angle π

4 at some points. Since Jordan curves
represent borders of objects in digital images, the structures on Z

2 provided by
the n-ary relations discussed may be used in digital image processing for solving
problems related to boundaries, such as pattern recognition, boundary detection,
contour filling, data compression, etc.

A Relational Generalization of the Khalimsky Topology 141

Acknowledgement. This work was supported by the Brno University of Technology
Specific Research Program, project no. FSI-S-17-4464.

References

1. Brimkov, V.E., Klette, R.: Border and surface tracing - theoretical foundations.
IEEE Trans. Pattern Anal. Mach. Intell. 30, 577–590 (2008)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics.
Springer, Heidelberg (2008)

3. Engelking, R.: General Topology. Państwowe Wydawnictwo Naukowe, Warszawa
(1977)

4. Han, S.-E.: Compression of Khalimsky topological spaces. Filomat 26, 1101–1114
(2012)

5. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected
topologies on finite ordered sets. Topology Appl. 36, 1–17 (1990)

6. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital plane. J.
Appl. Math. Stochast. Anal. 3, 27–55 (1990)

7. Kiselman, C.O.: Digital Jordan curve theorems. In: Borgefors, G., Nyström, I.,
Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 46–56. Springer, Heidelberg
(2000). doi:10.1007/3-540-44438-6 5

8. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topol-
ogy. Am. Math. Monthly 98, 902–917 (1991)

9. Kong, T.Y., Roscoe, W.: A theory of binary digital pictures. Comput. Vision
Graphics Image Process. 32, 221–243 (1985)

10. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vis. Graph. Image Process. 48, 357–393 (1989)

11. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-
dimensional digital space. Discr. Comput. Geom. 6, 155–161 (1991)

12. Melin, E.: Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging
and Vision 28, 169–177 (2007)

13. Melin, E.: Continuous digitization in Khalimsky spaces. J. Approx. Theory 150,
96–116 (2008)

14. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Math. 17, 146–
160 (1970)

15. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)
16. Šlapal, J.: Cardinal arithmetics of general relational systems. Publ. Math. Debrecen

18, 39–48 (1991)
17. Šlapal, J.: Convenient closure operators on Z

2. In: Wiederhold, P., Barneva, R.P.
(eds.) IWCIA 2009. LNCS, vol. 5852, pp. 425–436. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10210-3 33

18. Šlapal, J.: Topological structuring of the digital plane. Discr. Math. Theor. Com-
put. Sci. 15, 425–436 (2013)

http://dx.doi.org/10.1007/3-540-44438-6_5
http://dx.doi.org/10.1007/978-3-642-10210-3_33

Toward Parallel Computation of Dense
Homotopy Skeletons for nD Digital Objects

Pedro Real1, Fernando Diaz-del-Rio2(B), and Darian Onchis3,4

1 Institute of Mathematics, University of Seville,
Avda. Reina Mercedes s/n, 41012 Seville, Spain

real@us.es
2 Computer Architecture and Technology Department,

University of Seville, Avda. Reina Mercedes s/n, 41012 Seville, Spain
fdiaz@us.es

3 Faculty of Mathematics, Univ. of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
4 Faculty of Mathematics and Computer Science,

West Univ. of Timisoara, Bulevardul Vasile Parvan 4,

300223 Timisoara, Romania

Abstract. An appropriate generalization of the classical notion of
abstract cell complex, called primal-dual abstract cell complex (pACC
for short) is the combinatorial notion used here for modeling and analyz-
ing the topology of nD digital objects and images. Let D ⊂ I be a set of
n-xels (ROI) and I be a n-dimensional digital image. We design a theoret-
ical parallel algorithm for constructing a topologically meaningful asym-
metric pACC HSF (D), called Homological Spanning Forest of D (HSF
of D, for short) starting from a canonical symmetric pACC associated
to I and based on the application of elementary homotopy operations
to activate the pACC processing units. From this HSF-graph represen-
tation of D, it is possible to derive complete homology and homotopy
information of it. The preprocessing procedure of computing HSF (I) is
thoroughly discussed. In this way, a significant advance in understanding
how the efficient HSF framework for parallel topological computation of
2D digital images developed in [2] can be generalized to higher dimension
is made.

Keywords: Computational topology · nD digital image · Primal-dual
abstract cell complex · Parallelism · Homological Spanning Forest ·
Homotopy operation

1 Introduction

The problem of developing a topologically consistent framework for efficient
parallel topological analysis and recognition of n-dimensional digital objects is
nowadays a major challenge. Intimately associated to this problem, we encounter
the issue to find a suitable representation model from which the extraction of
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 142–155, 2017.
DOI: 10.1007/978-3-319-59108-7 12

Toward Parallel Computation of Dense Homotopy Skeletons 143

topological features and characteristics of the object can be as fast and the most
complete as possible. A successful strategy for achieving these goals is to “cellu-
larize” the images. A primal-dual abstract cell complex [2] (or, pACCs for short),
an appropriate generalization of the notion of abstract cell complex [8,9] for
describing bitopological spaces, efficiently encodes local topological (incidences
between cells, working at sub-n-xel level) information of the digital object in
order to be promoted to global consistent topological information. We are mainly
interested in information related to “homology holes”, which are abstract gen-
eralizations at any dimension of the intuitive notion of curve bounding an arc
or surface bounding a volume [7]. Classically, the different homology holes of a
complex are obtained via linear algebra algorithms based on diagonalization of
incidence matrices to Smith Normal Form [17]. The technique employed here
for parallel processing is based on building asymmetric pACCs from symmet-
ric ones. The asymmetric and non-redundant output pACCs resulting from our
framework encompass the hierarchical graph notion of Homological Spanning
Forest (HSF, for short) developed in [10,11,14]. Roughly speaking, an HSF of a
digital object is a flexible topological model described by a kind of dense topo-
logical skeleton inside the object. Figure 1 shows two different HSFs of the same
2D digital object. The inclusion of an optimal vector field over each tree installed
“inside the object” allows us not only counting the different homological holes
of dimension 0 (connected components or CCs for short) and dimension 1 but
also to removing them via cutting or filling. Moreover, if we retain the vicinity
relations between these HSF graphs, we can reach homotopy-based represen-
tations of 2D digital images like the adjacency tree of a binary image or the
region-adjacency-graph of a grey-level image [13].

In this paper, we design a theoretical parallel algorithm for computing an
HSF-structure of a nD-digital object. Let us emphasize that: (a) the HSF-
approach can be considered as a Morse-based pre-homology computation method

Fig. 1. (Left) ROI consisting in the set of black pixels. The implicit cellularization of
the ROI -using 8-adjacency and being the 0-cells the square physical pixels- is super-
imposed; (Center) Visualization of an HSF of the ROI. The two trees spanning 0-cells
(in red) of the ROI mean that it has two 8-CCs. The yellow “trees” -derived from
the optimal vector field linking the rest of 1-cells with the set of 2-cells of the ROI-
containing a 1-cell marked with a thick yellow segment determine two one-dimensional
homological holes of the ROI or, equivalently, two 4-CCs of the background; (Right)
Another possible HSF. (Color figure online)

144 P. Real et al.

(e.g. [3,4]) in the sense that a discrete vector field is “optimally” installed over
the pACC. Its novelty lies in dealing with this issue as a pure combinatorial opti-
mization problem in a fully parallel way over a scenario subdivided space and
substituting the classical vector field language of homology by that of the new
dynamic notion of crack (called link in [2]); (b) the theoretical time complexity
of the parallel algorithm of [2] for computing an HSF structure of a binary digital
n × m image is approximately logarithmic (precisely, O(log(n + m))). It seems
that its generalization to nD image context can be done without excessive cost
in complexity; (c) another strength of this framework is its potentiality to gen-
erate new topological representation models of nD objects and images involving
homological holes (not only of dimension zero) and topologically strong relation-
ships between them (for instance, generalizing to nD the notions of adjacency
tree or RAG 2D models).

A flowchart of this nD-HSF algorithm is shown in Fig. 2.

Fig. 2. Workflow of nD-HSF Algorithm.

In what follows, after a section of technical definitions related to the concept
of primal-dual abstract cell complex, we formally describe the different stages of
the previous theoretical algorithm.

2 Primal-Dual Abstract Cell Complexes

A primal-dual abstract cell complex (pACC, for short) is a suitable generalization
of an abstract cell complex and a combinatorial model of a geometric subdivided
object as bitopological spaces.

A finite primal-dual abstract cell complex (pACC for short) C =
(C, CBp, CBd, dimC

p , dimC
d) is composed of:

– C
⋃{∅}, where C is a finite set of cells and ∅ is the empty set.

– two dimension functions: (primal dimension) dimC
p : C → {0, 1, 2, . . . , �p} and

(dual dimension) dimC
d : C → {0, 1, 2, . . . , �d}, where �p, �d ∈ N∪{0}. The set

Cp
i (resp. Cd

i) is the set of cells such that their primal (resp. dual) dimension
is i.

– two bounding maps: (primal bounding map) a graded function CBp = {CBp
i }i,

such that CBp
i : Cp

i × Cp
i+1 → N ∪ {0} (∀0 ≤ i ≤ �p − 1) and (dual bounding

map) a graded function CBd = {CBd
i }i, such that CBd

i : Cd
i ×Cd

i+1 → N∪{0},
∀0 ≤ i ≤ �d − 1. We extend the respective definitions of CBp and CBd to

Toward Parallel Computation of Dense Homotopy Skeletons 145

C × C by simply assigning value zero to the rest of ordered pairs of cells not
belonging to the original domains.

The set of values the bounding maps takes on as output is the semi-ring
N ∪ {0}. Of course, it is possible to change the images of the bounding maps to
a ring (like Z) or to a field (like Q o R).

The pACC C is called uniquely dimensional if its primal and dual dimensions
both depend on a unique dimension function dms : C → {0, 1, 2, . . . , �}, being
� = �p = �d. � is called the dimension of C. In fact, dimp = dms and dimd =
� − dms. Let us denote the set of cells Cp

i of primal dimension i simply by Ci

and an i-cell means a primal i-cell. A uniquely dimensional pACC C is called
symmetric if CBp

i (c, c′) = CBd
i (c′, c), ∀0 ≤ i ≤ � and ∀c, c′ ∈ C. In this case, the

bounding maps CBp and CBd are respectively denoted by CB and CB−1.
From now on, to simplify the notation, we drop the subindex i (corresponding

to primal dimension) and the superindex C (corresponding to the ACC name)
from the dimension and bounding maps, unless otherwise specified.

Given two cells c′ and c′′ of C, we say that the ordered pair (c′, c′′) is an
(i, i + 1) primal (resp. dual) vector (i = 0, 1, . . .) of the pACC C if its primal
(resp. dual) multiplicity Bp(c′, c′′) �= 0 (resp. if Bd(c′, c′′) �= 0), being c′ ∈ Cp

i

(resp. c′ ∈ Cd
i). The cell c′ is called the tail and c′′ is the head of the primal

(resp. dual) vector (c′, c′′). We say that the set {c′, c′′} is an (i, i + 1) primal
(resp. dual) incidence set of the pACC if Bp(c′, c′′) �= 0 or Bp(c′′, c′) �= 0 (resp.
if Bd(c′, c′′) �= 0 or Bd(c′′, c′) �= 0), being c′ or c′′ a cell of Cp

i (resp. Cd
i).

Given a pACC C = (C,Bp, Bd, dimp, dimd), let us define a sub-pACC D =
(D, DBp, DBd, dimp, dimd) of C as a new pACC with D ⊂ C whose: (a) primal
and dual dimension functions agree with those of C restricted to D; (b) the
primal (resp. dual) bounding map satisfies that if DBp(c′, c′′) = q �= 0 (resp.
DBd(c′, c′′) = q �= 0), then Bp(c′, c′′) ≥ q (resp. Bd(c′, c′′) ≥ q). If DBp =
Bp|D×D and DBd = Bd|D×D, the sub-pACC D of C is called complete.

The complete sub-pACC Stp(c,C) (resp. Std(c,C)) of C, consisting of c and
all elements c′ in C, such that Bp(c, c′) �= 0 (resp. Bd(c, c′) �= 0) is called the
primal (resp. dual) open star of c in C. It is exactly the same as the smallest
primal (resp. dual) neighborhood of c in C [9]. If C is an uniquely dimensional
symmetric pACC, so are Stp(c,C) and Std(c,C).

Any pACC can be expressed as a node-arc weighted graph. The incidence
graph G(C) associated to a pACC C is the graph such that its nodes are the
different cells of C and an edge {c, c′} of this graph is either a primal or dual inci-
dence set of the pACC or both. If C is symmetric, we propose as label for an edge
{c′, c′′} (c′ ∈ Ci, c′′ ∈ Ci+1) of G(C), the ordered pair (Bp(c′, c′′), Bd(c′′, c′)).
As weight for a node c ∈ C, we choose the number dms(c).

A primal (resp. dual) crack associated to the (i, i + 1)-primal (resp. dual)
vector (c, c′) is the set crkp(c, c′) (resp. crkd(c, c′)) of triplets (c, c′, c′′), for all
the cells c′′ such that (c′, c′′) is a dual (resp. primal) vector. A crack crack(c, c′)
can be considered as an uniquely dimensional asymmetric sub-pACC of C. For
example, for a primal crack crkp(c, c′), its bounding functions B̄p and B̄d satisfy
an “ortogonality” condition: for all the triplets (c, c′, c′′) of crkp(c, c′), B̄p(c, c′) =

146 P. Real et al.

Bp(c, c′) �= 0, B̄p(c′, c′′) = 0, B̄d(c′, c′′) = Bd(c′, c′′) �= 0, B̄d(c, c′) = 0. Let us
note that the crack notion is an extension of the term link in [2].

A geometric cell complex K can be represented by a uniquely dimensional
symmetric pACC K = (K,B,B−1, dms, � − dms), such that B(c′, c′′) ∈ {0, 1},
∀(c′, c′′) ∈ K × K. In fact, the primal and dual bounding relation maps can
automatically be obtained from the complete set of incidences between cells of
K which differ in one dimension and the dimension map dms of K agrees with
the dimension function of the cell complex K.

Finally, let us note that both bounding graded functions {Bp
i }i and {Bd

j }j of a
pACC C = (C,Bp, Bd, dimp, dimd) can be extended to C ×C in an asymmetric,
irreflexive and transitive way without difficulty, giving raise to two different
(primal and dual) classical ACCs associated to the pACC C. Due to the fact that
every finite topological space with the T0-separation property is isomorphic to an
abstract cellular complex [9], a pACC can be interpreted as a finite bitopological
space. The primal and dual ACC of a uniquely dimensional symmetric pACC
can be deduced one from each other by simply reversing the order of the factors
in the bounding relations.

3 pACC Homotopy Computation

First, we succinctly describe here the distinct steps of the theoretical nD-HSF
Algorithm (whose flowchart is (2)). The rest of this section is devoted to under-
stand the concept of elementary homotopy operation and the sequential algo-
rithm computing an HSF of a pACC.

(a) Input data: The pair (I,D). The nD digital image I : {1, . . . , m1} ×
{1, . . . , m2} × . . . × {1, . . . , mn} → {0, 1, ..., 2c − 1} is represented by a m1 ×
m2 × . . .×mn (m1,m2, . . . , mn, c ∈ N) integer-valued matrix. The digital object
D, called region-of-interest (or ROI, for short), is formed by a set of pixels (rep-
resented by their corresponding (row,column) coordinates) of I. In fact, in order
to avoid the mathematical ill-posed problems of the segmentation and noise,
which are ubiquitous in the area of Digital Imagery, I is a pre-segmented digital
image, and D is a region of this previous segmentation.

(b) Extraction of the ROI: From I, we “isolate” the ROI D by means of new
digital binary image ID of the same dimension than I. The set of black pixels
(numbered by 1’s) of ID is exactly D.

(c) Generation of topological pACCs: In this phase, we compute two kinds
of pACCs in this order: (a) first, symmetric pACCs, modeling in a redundant
way the connectivity (incidence) information of D and I; (b) finally, asymmetric
pACCs, which are non-redundant sub-pACCs of the previous ones, specifying a
kind of dense homotopy graph-skeleton of them.

Some key notions for understanding our topological scaffolding are those of
primal and dual pACC-homotopy operations. Given a uniquely n-dimensional
symmetric pACC C = (C,B,B−1, dms, n − dms) and a primal vector (c, c′),

Toward Parallel Computation of Dense Homotopy Skeletons 147

then the primal pACC-homotopy operation Opp(
−−−→
(c, c′)(C)) is a new symmetric

pACC (C\{c, c′}, B̃, B̃−1, dms, n − dms), such that the new bounding function
B̃ is defined by:

– ∀c̄ ∈ Std(c′,C)\{c}, ∀c̄′ ∈ Stp(c,C)\{c′},

B̃(c̄, c̄′) = B(c̄, c̄′) + B(c̄, c′)B−1(c′, c)B(c, c̄′);

– for the rest of pairs of cells (c, c′), B̃(c, c′) = B(c, c′)

Analogously, we can define elementary dual pACC-homotopy operations. We
emphasize that such kind of operations is not, in general, a map of pACCs (that
is, a map of sets compatible with the dimensions and bounding relations), but
it can be considered as a function Opp(

−−−→
(c, c′)(C)) : pACC × pACC → pACC.

For example, considering the primal crack pACC crk(c, c′), we can construct
a primal pACC-homotopy operation Opp(crk(c, c′),C) providing us the same
resulting pACC than Opp(

−−−→
(c, c′)(C)).

Fig. 3. Three different possible HSF outputs of Algorithm primal-HSF applied to a 2D
digital object X of black pixels, depending of the concrete ordered list of cells of X
chosen for sequential processing.

Now, we are able to design a sequential computational method for computing
an HSF of the pACC pACC(ID), based on an appropriate reduction of cells via
primal homotopy operations.

The output of the previous algorithm consists of a set of asymmetric pACCs
{Fk−1,k}nk=1 and a minimal pACC H formed by a set of isolated cells of different
primal dimension. Figure 3 shows some outputs of the algorithm for 2D objects.
The cells of H are called critical cells. These data can be reorganized and inter-
preted in terms of a set HSF (C) of connected sub-graphs spanning the set of cells
of C, called Homological Spanning Forest associated to C. In fact, these graphs
can not be trees in dimension higher than two but we use this name because
they appear as a suitable generalization to higher dimension of the notion of the
spanning forest as a tool for labeling connected components of a graph [6]. Let us
limit ourselves to say that the importance to save this combinatorial homology
information of nD digital objects in terms of cracks and graphs primarily lies in

148 P. Real et al.

its capacity of creating robust topological models involving homological holes of
the objects and strong homology (incidence) relations between them.

For a better understanding, we only work the three-dimensional case in the
rest of sections. The nD case is completely analogous.

Algorithm 1. (Sequential pACC-Homology Algorithm)
Input: A uniquely dimensional symmetric pACC C := {C, CB, CB−1, dms, n\dms}
A list of all the cells of C ordered by primal dimension c01 . . . c0�0 , c11, . . . , c

1
�1 , . . . cn

1 ,

. . . , cn
�n such that dimp(ck

j) = k, ∀k, j.
1: H ← C
2: for k = 1 to n do
3: F(k−1,k) ← ∅
4: crk ← ∅
5: for j = 1 to �k do
6: if ∃c̄ ∈ Std(ck

j ,H)/ HB(c̄, ck
j) = 1 then

7: H ← Opp(crk(c̄, ck
j),H)

8: crk ← crk
⊕{crk(c̄, ck

j)};
9: F(k−1,k) ← the incidence graph G(crk)

10: Output: ((F(0,1), . . . , F(n−1,n)), H)

4 Generation of Symmetric pACCs and Parallel
Processing Units

The input of the Sequential pACC-Homology Algorithm is a uniquely dimen-
sional symmetric pACC. On the other hand, a fundamental step in the workflow
of nD-HSF Algorithm (Fig. 2) is the generation of such objects. Apart from
building these initial pACCs, we also create the parallel processing units of our
framework.

The scenario in which we need to “embed” the digital image ID is a uniquely
dimensional symmetric pACC intimately associated to the contractible set of
cells denoted by Cell(ID). Cell(ID) only depends on the dimensions of ID and
can be constructed in a straightforward way. The 0-cells are the voxels (elements
of the matrix) of ID (black or whites), the 1-cells are given by the set of two
6-adjacent voxels (x-frame, y-frame or z-frame adjacent), 2-cells are given by sets
of four mutually 6-adjacent voxels and, 3-cells are given by sets of eight mutu-
ally 6-adjacent voxels. Thus, a dimension function dms : Cell(ID) → {0, 1, 2, 3}
is well-defined in this way. In order to create topological coordinates (auto-
matically detecting incidences between cells) preserving the initial coordinate
system (row, colum, depth) existing for the voxels of ID, we use the following
geometric realization for the cells of Cell(ID): (a) 0-cells are points in R

3 with
natural-value coordinates; (b) a 1-cell is represented at sub-voxel level by the
coordinates of the barycenter of the segment determined by its corresponding
pair of voxels, (c) a 2-cell is represented at sub-voxel level by the coordinates of

Toward Parallel Computation of Dense Homotopy Skeletons 149

the barycenter of the square formed by the 4-uple of voxels barycenters; (d) a
3-cell is represented at sub-voxel level by the coordinates of the barycenter of
the cube formed by its corresponding 8-uple of voxels. For instance, a 1-cell is
specified by topological coordinates of the type (x1, x2, x3), where two value of
them are natural numbers and the third is a natural number minus 1

2 (for exam-
ple, x3). The geometric boundary of this 1-cell which is formed by the set of two
0-cells {(x1, x2, x3 − 1

2), (x1, x2, x3 + 1
2)} completely describes the dual bound-

ing relation of the 1-cell. Its geometric coboundary, formed by the set of four
2-cells {(x1 ± 1

2 , x2, x3), (x1, x2 ± 1
2 , x3 + 1

2)} fully specifies its primal bounding
relation. Then, it is straightforward to construct the uniquely dimensional sym-
metric pACC pACC(ID) = (Cell(ID), BID , B−1

ID
, dimID

p , dimID
d). Notice that

pACC(ID) = pACC(I), and, in consequence, pACC(ID) is independent of
D. We can also define another uniquely dimensional symmetric sub-pACC
pACC(D) of pACC(ID), being Cell(D) its set of cells. Cell(D) is the topologi-
cal hull of the set of black voxels D within ID, which means that the 0-cells of
Cell(D) are the black voxels of ID and its i-cells c (i = 1, 2, 3) can be recursively
defined in terms of (i − 1)-cells by imposing that Std(c) ⊂ Cell(D).

Any node (i-cell) (x, y, z) of the incidence graph G(pACC(ID)) has the num-
ber color(x, y, z) as weight. The function color : Cell(ID) → {0, 1

2 , 1} is defined
as follows: (a) for a 0-cell, it is the voxel value in ID; (b) for an i-cell c with
i ≥ 1, if all the values of the color function over the 0-cells of c is 0 (resp. 1),
then color(c) is 0 (resp. is 1). In another case, color(c) = 1

2 .
For creating the parallel processing units, the idea is to establish a regular

partition of the Cell(ID) into cellular units Cell(x, y, z). There are as many
cellular units as voxels the image has (equivalently, as 0-cells the pACC(ID) has).
The cellular unit Cell8(x, y, z) associated to the voxel of topological coordinates
(x, y, z) is the set {(x, y, z), (x+ 1

2 , y, z), (x, y+ 1
2 , z), (x, y, z+ 1

2), (x+ 1
2 , y+ 1

2 , z),
(x+ 1

2 , y, z+ 1
2), (x, y+ 1

2 , z+ 1
2), (x+ 1

2 , y+ 1
2 , z+ 1

2)} (one 0-cell, three 1-cells, three
2-cells, one 3-cell). Considered as an uniquely dimensional asymmetric sub-pACC
of pACC(ID), the processing unit PE(x, y, z) is defined as the sum of pACCs⊕

(c′,c′′)∈U crkp(c′, c′′), where U = Cell8(x, y, z) × Cell8(x, y, z). Its underlying
set of cells involves 27 cells which belong to the topological hull generated by the
cells (x, y, z), (x+1, y, z), (x, y+1, z), (x, y, z+1), (x+1, y+1, z), (x+1, y, z+1),
(x, y+1, z+1) and (x+1, y+1, z+1). The number of primal vectors (see Fig. 4)
involved in PE(x, y, z) is twelve (three (0, 1) vectors, six (1, 2) vectors and three
(2, 3) vectors).

5 Generation of MrSFs

The next step in the Algorithm nD-HSF is the parallel building of an HSF of
the initial geometric symmetric pACC pACC(ID). This particular asymmetric
pACC MrSF (ID) is called Morse Spanning Forest (MrSF for short). An MrSF
has the property that the set of its elementary primal cracks applied in some
order in a sequential process of reduction based on primal homotopy operations
provides a final pACC consisting in only one 0-cell (critical cell). In this way,

150 P. Real et al.

a MrSF for ID is seen as a kind of “dense combinatorial skeleton” of the con-
tractible cell complex Cell(ID). This notion has been already developed in [12]
making use exclusively of homological arguments. Finally, the last process of the
pipeline of Fig. 2, called crack transport, consists in a “homotopy optimization”
of MrSF (ID) in order to get another MrSF, denoted by HSF (ID), such that its
restriction to Cell(D) is a true HSF HSF (D) of D. This optimization is done
by suitably “transporting” cracks of the MrSF (ID), with the objective to max-
imize the number of its primal bounding relations between cells of pACC(D).
We focus here in the parallel algorithmic techniques for MrSF construction; the
crack transport step of the algorithm will be studied in detail elsewhere.

A Morse Spanning Forest for a three dimensional digital image I of dimension
m1 × m2 × m3 is any output ((F(0,1),F(1,2),F(2,3)),H) of Sequential pACC-
Homology Algorithm applied to pACC(I). It is not difficult to prove that any
MrSF has only one (0, 1)-tree.

Fig. 4. An activation state (local MrSF rule: direction +Y) of the processing unit
PE(x, y, z) showing its eight active cells, primal and dual activation vectors and asso-
ciated cracks. The 0-cell (x, y, z) is drawn with a circle, the 1-cells with triangles, the
2-cells with squares and the 3-cell with a star. The active primal vectors are drawn
with an arrow and using different colors depending on its dimension.

Our algorithm of MrSF generation is divided into two main steps: (a) building
a MrSF at local (voxel’s neighborhood) level by means of a process of activation
of processing units; (b) building the MrSF at global level, specifying the mem-
bership of any cell to the corresponding tree of the MrSF. Afterwards, we can
proceed to the Final HSF determination via crack transports.

(a) MrSF building at local level: Activation of processing units. There
are nine possible activation states for any PE(x, y, z), each one associated to
a particular configuration of four disjoint primal vectors (called primal activa-
tion vectors) involving cells of Cell8(x, y, z). The sum of the crack pACCs of
PE(x, y, z) associated to these primal activation vectors fully defines the corre-
sponding activation state.

Toward Parallel Computation of Dense Homotopy Skeletons 151

Fig. 5. A (4,3,4) binary 3D image showing active primal (0, 1)-vectors (red and green
colors) and dual (1, 0)-vectors (black thin vectors) of the MrSF. Thicker vectors indicate
possible critical 0-cells. (Color figure online)

For activating in parallel all the processing units of pACC(ID), we can use
local MrSF rules. For each PE(x, y, z), we choose an activation’s state depending
of giving preference to some order in the principal directions or the particular
configuration of the color function of the cells in PE(x, y, z) (Fig. 4).

In our current implementation of the algorithm of MrSF generation: (a) the
local MrSF rules are first defined for the lowest dimension cells and then pro-
gressively extended to higher dimension; (b) we give preference to +Z direction,
then to +Y , and finally to +X.

Once the primal (0, 1)-vector of the PE(x, y, z) is activated, the two primal
(1, 2)-vectors and the (2, 3)-vector are activated following the same direction
of the first one. This implies that only one 1-cell of Cell8(x, y, z) belong to the
(0, 1)-tree of the MrSF, and the other two 1-cells reside in the (1, 2)-tree. Figure 5
shows an example of the primal (0, 1) and (1, 2) vectors for a binary 3D image
that contains two black voxels in the center.

The above MrSF arrangement is one the many possible configurations. Its
main advantage is that it can be computed in a fully parallel manner for each
voxel. Other possibilities can be exploited, but the parallelism feature should be
preserved if we would want to process real 3D images in an efficient way.

(b) Global MrSF construction. Once a local MrSF has been defined it is
necessary to introduce global relations between the cells of the whole MrSF.
This process can be done in a similar way to that of [2]. That algorithm was
much easier since it was written only for two dimensional images. Nevertheless,
the idea is the same: to label each cell of the incidence graph (forest) G(MrSF)
of the MrSF, according to its membership to some connected subgraph (tree)
of G(MrSF). At the end of this process, the different connected components of
G(MrSF) must have been labeled (Fig. 6).

152 P. Real et al.

Fig. 6. The same (4,3,4) binary 3D image of Fig. 5 with the complete MrSF. Thicker
links indicate potential critical 0-cells.

(c) Final HSF determination via crack transports. This final step of the
nD-HSF Algorithm is aimed to minimize the number of critical cells. This would
produce the final HSF. As an example, the trees of Fig. 7(Left) would transform
into that of Fig. 7(Right). A graphical explanation of this process from the lower
dimensional MrSF trees to the higher ones is the following. Firstly, the (0, 1)-
crack marked as ‘D’ is transported to the right inferior crack in the (0, 1)-tree.
Secondly, the crack ‘C’ is laid to its left to continue the closing of the 0–1 tree.
Transports of ‘C’ and ‘D’ supposes the cancellation of one critical 0-cell and
one critical 1-cell. In fact, these cells should be detected as false critical cells
in the initial MrSF. This transport process is really a pairing of critical cells of
different dimensions going through the corresponding tree. Finally, cracks ‘A’ and
‘B’ must be also transported so as to “close” properly the 1–2 tree. This yields
to an equivalent set of trees, which composed the HSF for the ROI. Obviously
this final HSF indicates that the ROI contains only one critical 0-cell being the

Fig. 7. (Left) A ROI (composed of 6 voxels in ‘L’ shape) that contains only one CC,
and whose MrSF presents two separated 0–1 trees. Cracks that go out from the ROI
indicate possible critical cells. (Right) The same 3D image that contains only one 0–1
tree after the necessary transports that complete the HSF.

Toward Parallel Computation of Dense Homotopy Skeletons 153

representative of the CC (connected component). The correct computation of
final HSF will yield to the homology of any CC inside a digital image. Some
examples are shown in the next section.

6 Examples of Homological Magnitudes of Several
Shapes Obtained Through 3-Dimensional HSFs

The topological nature of 3D digital images are much richer than that of
2-D images. Attending exclusively to homology groups, apart from cavities and
connected components of a digital object (somewhat comparable to holes and
connected components in 2D imagery context), tunnels appear in 3D. In a nut-
shell, each critical cell of any dimension is in direct relationship with a different
homology generator. Figure 8 and 9 shows different shapes and their correspond-
ing critical cells (those belonging to a crack of a MrSF “going out” of the ROI).
To ease the viewing of these figures, only ROIs are represented and axes are
not drawn. Cells belonging to the black ROI have been filled. These results are
summarized in Table 1. Table 1 shows the results of the different simple shapes of
Figs. 8 to 9 and their critical cells. Excepting Fig. 9 Left (due to its false critical
cells), the number of critical 0-cells agree with the number of CCs, the number of

Table 1. Results of the different simple shapes of Figs. 8 and 9 and their critical cells

Shapes # Critical 0-cells # Critical 1-cells # Critical 2-cells

Two perpendicular rings with
contact

1 2 0

Two perpendicular crossing
rings

2 2 0

An empty polyhedron (showing
its MrSF)

1 2 3

An emptypolyhedron (showing
its HSF)

1 2 0

Fig. 8. Left: Two perpendicular 3 × 3 rings with contact resulting in two critical 1-cells
(inferior right corner and superior left corner), representative of its two tunnels, and one
critical 0-cell (upper right corner), representative of the CC. Right: Two perpendicular
crossing 3 × 3 rings resulting in two critical 1-cells (inferior left corners), representative
of two tunnels, and two critical 0-cells (upper right corners), representative of the
two CCs.

154 P. Real et al.

Fig. 9. Left: A MrSF of an empty 3 × 3 × 3 polyhedron. There is one critical 0-cell
(upper right corner), representative of the CC. In addition, three critical 2-cells and
two 3 critical 1-cells (all of them in the inferior side) have appeared. Two pairs of them
are false critical cells. Right: After proper transports (marked with thicker dotted lines),
the HSF of the same empty polyhedron yields to only one critical 2-cell (representative
of the cavity), and the same critical 0-cell. Arrows indicates the position of these
resultant critical cells.

critical 1-cells indicates the number of tunnels and the number of critical 2-cells
represents the number of cavities.

7 Conclusions

Based on the notions of primal-dual abstract cell complex and homotopy opera-
tion, and generalizing to higher dimension the work developed in [2], a theoreti-
cal algorithm for computing combinatorial homology structures, called HSFs of
nD digital objects, has been sketched. Focusing in a topological pre-processing
step, called Morse Spanning Forest generation, we set a fully parallel algorithm
for determining a kind of dense topological skeleton associated to the image sce-
nario within which the digital object is embedded. Both to analyze the efficiency
of the procedure and to advance in increasing the degree of understanding on
HSF or pACC homology computation of digital objects, an unpretentious imple-
mentation done in Matlab is used for experimentation. Although a theoretical
complexity study of the parallel algorithm has not yet been carried out, the
encouraging results obtained in [2] allow us to be optimistic in computing the
HSF information in a fast way. Concerning the computation of algebraic homol-
ogy holes with coefficients in a ring or a field and that of “homotopy holes” of
objects (those related to generalized “parametrized and oriented closed curves”
[7]), they sound theoretically attainable from HSF-graph information. An argu-
ment supporting this idea is the fact that an HSF structure can be algebraically
interpreted (allowing formal sums of cells with coefficients in some ground ring
or field) as an operator controlling a chain homotopy equivalence between an
object and its homology [1,5,12,15,16]. Finally, the possibility to detect homo-
logical hole relationships (like adjacency or “to be surrounded by” between path
connected components in 2D) in an HSF allows holding high expectations in
achieving functional implementations of parallel algorithms of topological pat-
tern recognition based on HSF information.

Toward Parallel Computation of Dense Homotopy Skeletons 155

Acknowledgments. This work has been supported by the Spanish research projects
(supported by the Ministerio de Economı́a y Competitividad and FEDER funds)
COFNET (Event-based Cognitive Visual and Auditory Sensory Fusion, TEC2016-
77785-P) and TOP4COG (Topological Recognition of 4D Digital Images via HSF
model, MTM2016-81030-P (AEI/FEDER,UE)). The last co-author gratefully acknowl-
edges the support of the Austrian Science Fund FWF-P27516.

References

1. Berciano, A., Molina-Abril, H., Real, P.: Searching high order invariants in com-
puter imagery. Appl. Algebra Eng. Commun. Comput. 23(1–2), 17–28 (2012)

2. Dı́az-del-Ŕıo, F., Real, P., Onchis, D.: A parallel homological spanning forest frame-
work for 2D topological image analysis. Pattern Recogn. Lett. 83, 49–58 (2016)

3. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., Dlotko,
P.: The efficiency of a homology algorithm based on discrete Morse theory and
coreductions. Image-A: Appl. Math. Image Eng. 1(1), 41–48 (2010)

4. Floriani, L., Fugacci, U., Iuricich, F.: Homological shape analysis through discrete
morse theory. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds.) Per-
spectives in Shape Analysis. MV, pp. 187–209. Springer, Cham (2016). doi:10.
1007/978-3-319-24726-7 9

5. González-Dı́az, R., Real, P.: On the cohomology of 3D digital images. Discrete
Appl. Math. 147(2), 245–263 (2005)

6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

7. Hurewicz, W.: Homology and homotopy theory. In Proceedings of the International
Mathematical Congress of 1950, p. 344. University of Toronto Press (1952)

8. Klette, R.: Cell complexes through time. In International Symposium on Optical
Science and Technology. International Society for Optics and Photonics, pp. 134–
145 (2000)

9. Kovalevsky, V.: Finite topology as applied to image analysis. Comput. Vis. Graph.
Image Process. 46, 141–161 (1989)

10. Molina-Abril, H., Real, P., Nakamura, A., Klette, R.: Connectivity calculus of
fractal polyhedrons. Pattern Recogn. 48(4), 1150–1160 (2015)

11. Molina-Abril, H., Real, P.: Homological spanning forest framework for 2D image
analysis. Ann. Math. Artif. Intell. 64(4), 385–409 (2012)

12. Molina-Abril, H., Real, P.: Homological optimality in Discrete Morse Theory
through chain homotopies. Pattern Recogn. Lett. 11, 1501–1506 (2012)

13. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer Science and
Business Media, Heidelberg (1977)

14. Real, P., Molina-Abril, H., Gonzalez-Lorenzo, A., Bac, A., Mari, J.L.: Searching
combinatorial optimality using graph-based homology information. Appl. Algebra
Eng. Comm. Comp. 26(1–2), 103–120 (2015)

15. Real, P.: Homological perturbation theory and associativity. Homology, Homotopy
Appl. 2(1), 51–88 (2000)

16. Real, P.: An algorithm computing homotopy groups. Math. Comput. Simul. 42(4–
6), 461–465 (1996)

17. Veblen, O.: Analisis Situs, vol. 5. A.M.S. Publications, Providence (1931)

http://dx.doi.org/10.1007/978-3-319-24726-7_9
http://dx.doi.org/10.1007/978-3-319-24726-7_9

Polynomial Time Algorithm for Inferring
Subclasses of Parallel Internal Column

Contextual Array Languages

Abhisek Midya1(B), D.G. Thomas2, Alok Kumar Pani3, Saleem Malik1,
and Shaleen Bhatnagar1

1 Information Technology, Alliance University, Bangalore 562106, India
abhisekmidyacse@gmail.com, baronsaleem@gmail.com,

shaleenbhatnagar@gmail.com
2 Department of Mathematics, Madras Christian College, Chennai 600059, India

dgthomasmcc@yahoo.com
3 Computer Science and Engineering, Christ University Faculty of Engineering,

Bangalore 560074, India
alok.kumar@christuniversity.in

Abstract. In [2,16] a new method of description of pictures of digitized
rectangular arrays is introduced based on contextual grammars, called
parallel internal contextual array grammars. In this paper, we pay our
attention on parallel internal column contextual array grammars and
observe that the languages generated by these grammars are not infer-
able from positive data only. We define two subclasses of parallel internal
column contextual array languages, namely, k-uniform and strictly par-
allel internal column contextual languages which are incomparable and
not disjoint classes and provide identification algorithms to learn these
classes.

Keywords: Parallel internal column contextual array grammars · k-
uniform · Identification in the limit from positive data

1 Introduction

In theoretical computer science, formal language theory is one of the fundamental
areas. This study has its origin in Chomskian grammars. Contextual grammars
which are different from Chomskian grammars, have been studied in [3,13] by
formal language theorists, as they provide novel insight into a number of issues
central to formal language theory. In a total contextual grammar, a context
is adjoined depending on the whole current string. Two special cases of total
contextual grammars, namely internal and external are very natural and have
been extensively investigated. (External) Contextual grammars are introduced
by S. Marcus in 1969 [13] with a linguistic motivation in mind. An external
contextual grammar generates a language starting from a finite set of strings
(the base) and iteratively adjoining to its contexts outside the current string.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 156–169, 2017.
DOI: 10.1007/978-3-319-59108-7 13

PTA - PICCAL 157

In other families of contextual grammars, such as internal contextual grammars
[13], the contexts are adjoined inside the current string.

There has been a great interest in adapting the techniques of formal string
language theory for developing methods to study the problem of picture gen-
eration and description, where pictures are considered as connected, digitized
finite arrays in the two-dimensional plane [15]. Recently, extensions of string
contextual grammars to array structures and hyper graphs have been made in
[1,2,6–8,11,12,14,16].

On the other hand, Grammatical Inference refers to the method of inferring
a grammar (and possibly a target language) from data. Data can be text or
informant. The difference between text and informant is that a text gives only
positive examples (all strings do belong to the same language) where informant
is both positive and negative examples. A learning procedure is an algorithm
which is executed on a never-ending stream of inputs. The inputs are grammat-
ical strings/arrays, taken from a target language which is in a known class of
languages. The task is to identify a grammar that generates the target language.
At each point in the process, any string is given as an input to the algorithm.
After each input the algorithm produces a guess at the grammar which is eventu-
ally correct and could be unaltered when additional inputs are given. This model
of learning is Gold’s model of identification in the limit from positive data [5].
It is proved that no super finite language(it contains all finite languages and at
least one infinite language) can be learn-able in the limit from positive examples.
Hence, regular, context free, context sensitive grammars are not learn-able in the
limit from positive examples only.

In this paper, we have introduced two subclasses of parallel internal col-
umn contextual array grammar, called, strictly parallel internal column contex-
tual array grammar (SPICCAG), k-uniform parallel internal column contextual
array grammar (k-UPICCAG) in order to find out identification algorithms. Our
learning strategy is based on Gold’s model.

2 Definition and Examples

If V is a finite alphabet, then V ∗ is the set of all strings including the empty
string λ. An image or a picture over V is a rectangular m × n array of elements
of V or in short [aij]m×n, the set of all images including the empty array Λ is
denoted by V ∗∗. A picture language or two dimensional language over V is a
subset of V ∗∗. In this paper Λ denotes any empty array. The notion of column
concatenation is as follows: if X and Y are two arrays where

X =
[a1,j ... a1,k

a2,j ... a2,k
...

al,j ... al,k

]
, Y =

[
b1,m ... b1,n

b2,m ... b2,n
...

bl,m ... bl,n

]
then,XΦY =

[
a1,j ... a1,k b1,m ... b1,n

a2,j ... a2,k b2,m ... b2,n
...

al,j ... al,k bl,m ... bl,n

]

If L1, L2 are two picture languages over an alphabet Σ, the column concatenation
L1ΦL2 of L1, L2 is defined by L1ΦL2 = {XΦY | X ∈ L1, Y ∈ L2}. If X is an
array, the set of all subarrays of X is denoted by sub(X). We now recall the
notion of column array context [2,16].

158 A. Midya et al.

Definition 1. Let V be an alphabet. A column array context c over V is of the
form

c = [u1
u2] ψ [v1

v2]

∈ V ∗∗ψV ∗∗where u1, u2 are arrays of sizes 1×p, and v1, v2 are arrays of sizes
1 × q, for some p, q ≥ 1 and ψ is a special symbol not in V .

The next definition deals with parallel internal column contextual operation.

Definition 2. Let V be an alphabet, C be a finite subset of V ∗∗ψV ∗∗ whose
elements are the column array contexts and ϕ : V ∗∗ → 2C be mapping, called
choice mapping.

For an array X =
[a1,j ... a1,k

a2,j ... a2,k
...

al,j ... al,k

]
,

j ≤ k, aij ∈ V , we define ϕ̂ : V ∗∗ → 2V ∗∗ψV ∗∗
such that LψR ∈ ϕ̂[X], where

L =

⎡
⎣

u1
u2

...
ul

⎤
⎦ , R =

⎡
⎣

v1
v2

...
vl

⎤
⎦ ,

and
ci = [ui

ui+1] ψ [vi
vi+1] ∈ ϕ

[ai,j ...ai,k
ai+1,j ...ai+1,k

]
,

with ci ∈ C, (1 ≤ i ≤ l − 1), not all need to be distinct.
Given an array X = [aij] of size m × n, aij ∈ V,X = X1ΦX2ΦX3 where

X1 =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦ ,X2 =

⎡
⎣

a1,p ... a1,q
a2,p ... a2,q

...
...

...
am,p ... am,q

⎤
⎦ ,X3 =

⎡
⎣

a1,q+1 ... a1,n
a2,q+1 ... a2,n

...
...

...
am,q+1 ... am,n

⎤
⎦

and 1 ≤ p ≤ q ≤ n, we write X ⇒ Y if Y = X1ΦLΦX2ΦRΦX3 such that
LψR ∈ ϕ̂[X2]. Here L and R are called left and right contexts respectively. We
say that Y is obtained from X by parallel internal column contextual operation
(⇒in).

Now we consider the notion of parallel internal column contextual array
grammar [2,16].

Definition 3. A parallel internal column contextual array grammar is an
ordered system G = (V,A,C, ϕ) where V is an alphabet, A is a finite subset
of V ∗∗ called the axiom set, C is a finite subset of V ∗∗ψV ∗∗ called column array
contexts, ϕ : V ∗∗ → 2C is the choice mapping which performs the parallel inter-
nal column contextual operation. When ϕ is omitted we call G as a parallel
internal contextual array grammar without choice.

For any X,Y ∈ V ∗∗,X ⇒ Y if and only if X = X1ΦX2ΦX3, Y =
X1ΦLΦX2ΦRΦX3 with LψR ∈ ϕ̂[X2]. We denote by ⇒∗ the reflexive transi-
tive closure of ⇒in. Then the parallel internal column contextual array language
generated by the parallel internal column contextual array grammar G is defined
as the set Lin(G) = {Y ∈ V ∗∗/∃X ∈ A such that X ⇒∗ Y }.

PTA - PICCAL 159

3 Subclasses of Parallel Internal Column Contextual
Array Grammars

In this paper our main focus is on designing an identification algorithm to infer
parallel internal column contextual array grammar. According to Gold model [5],
no superfinite class of languages is inferable from positive data only. A class of
languages that consists of all finite languages and atleast one infinite language,
is called a super finite class of languages.

Proposition 1. The class of parallel internal column contextual array languages
(PICCAL), is not inferable from positive data only.

Proof. In the case of string languages, the class of internal contextual languages,
is not inferable from positive data only [4]. From this fact, we can conclude
Theorem 1.

As we know that the class (PICCAL) is not inferable from positive data only,
it is natural to look for subclasses of these languages which can be identified in
the limit from positive data only. We now define strictly parallel internal column
contextual array grammar (SPICCAG) and k-uniform parallel internal column
contextual array grammar (k − UPICCAG).

Definition 4. A strictly parallel internal column contextual array grammar
(SPICCAG) is a 6 tuple G = (V,X,C, ϕ, P,A) where

– V is the alphabet.
– X is a finite subset of V ∗∗, called selector set and C is a finite subset of

V ∗∗ψV ∗∗, called context set.
– ϕ : V ∗∗ → 2C is a choice mapping.
– P is a finite set of parallel internal column contextual rules of the form, ϕ[xi] =

LiψRi where Li, Ri ∈ C are the ith left and right context of ith selector xi ∈ X,
Li, Ri have same number of rows.

– first[Li] �= first[Ri] where first[W] denotes the first column of W and Li is
not a subarray of Ri and vice versa.

– A is a finite subset of V ∗∗, called the axiom set.
– for each selector, there is exactly one rule.

The language generated by strictly parallel internal column contextual array
grammar (SPICCAG) is called a strictly parallel internal column contextual
array language (SPICCAL) which is Lsin(G) = {Y ∈ V ∗∗ | Q ⇒∗ Y,Q ∈ A}.

3.1 Example

Let G = (V,X,C, ϕ, P,A) be a strictly parallel internal column contextual array
grammar (SPICCAG) where V = {a, b},

X =
{[

a b
b a

]
,
[

a b
a b

]
,
[

b a
b a

]}
, C =

{
[a

b] ψ [b
a] , [a

a] ψ
[

b
b

]
,
[

b
b

]
ψ [a

a]
}

160 A. Midya et al.

ϕ is a choice mapping

P =
{
ϕ

[
a b
b a

]
= [a

b] ψ [b
a] , ϕ

[
a b
a b

]
= [a

a] ψ
[

b
b

]
, ϕ

[
b a
b a

]
=

[
b
b

]
ψ [a

a]
}

,

A =
{

Q =
[

a a b b
a a b b
b b a a
b b a a

]}

Here for each rule ϕ[xi] = LiψRi, first(Li) �= first(Ri), i ≥ 1, so it does satisfy
Definition 4. Clearly, Lsin(G) =

{[
(an bn)m

(bn an)m

]
| n ≥ 2,m = 2

}
Here an = aaa...a

(n times) and am =
a
...
a

, m rows are there. A simple derivation of a member of

Lsin(G) is as follows,

Q =
[

a a b b
a a b b
b b a a
b b a a

]
⇒

[
a a a b b b
a a a b b b
b b b a a a
b b b a a a

]
=

[
(a3 b3)2
(b3 a3)2

]
∈ Lsin(G).

Definition 5. A k-uniform parallel internal column contextual array grammar
is a 6-tuple (k − UPICCAG), k ≥ 1, G = (V,X,C, ϕ, P,A) where

– V is the alphabet.
– X is a finite subset of V ∗∗, called selector set and C is a subset of V ∗∗ψV ∗∗,

called context set.
– ϕ : V ∗∗ → 2C is a choice mapping.
– P is a finite set of parallel internal column contextual array rules of the fol-

lowing form, ϕ[xi] = LiψRi where Li, Ri ∈ C are the ith left and right context
of ith selector xi ∈ X, Li, Ri have same number of rows.

– A is the finite subset of V ∗∗, called axiom set. Each member of A is an axiom
which contains mk number of columns, for some m ≥ 1 and we put the fol-
lowing restrictions.

If the rule is ϕ[x] = LψR then,

– |x| = |L| = |R| = k, where |W | denotes the number of columns in an array
W .

– for each selector, there is exactly one rule.

The language generated by k−UPICCAG is called a k-uniform parallel internal
column contextual array language(k-UPICCAL) which is Lk−uin(G) = {Y ∈
V ∗∗ | Q ⇒∗ Y,Q ∈ A}.

3.2 Example of 2-UPICCAG

G = (V,X,C, ϕ, P,A) is a 2-UPICCAG where V = {a, b},

X =
{[

a b
b b

]
,
[

b b
a b

]}
, C =

{[
a b
b a

]
ψ

[
a b
b a

]
,
[

b a
a b

]
ψ

[
b a
a b

]}
,

ϕ is a choice mapping,

P =
{
ϕ

[
a b
b b

]
=

[
a b
b a

]
ψ

[
a b
b a

]
, ϕ

[
b b
a b

]
=

[
b a
a b

]
ψ

[
b a
a b

]}
,

PTA - PICCAL 161

A =
{

Q =
[

a b a b
b b b b
a b a b

]}
. Here, |x| = |L| = |R| = 2,m = 2, number of columns in

A = mk = 4. So it satisfies Definition 5. Clearly

Lk−uin(G) =

{
A,

[
(ab)n−1 ab (ab)n−1 ab

(ba)n−1 bb (ba)n−1 bb

(ab)n−1 ab (ab)n−1 ab

]
| n ≥ 2

}

For instance,
[

a b a b
b b b b
a b a b

]
⇒

[
a b a b a b a b
b a b b b a b b
a b a b a b a b

]
∈ Lk−uin(G).

Now, if we consider a = black box and b = white box, we get a nice rectangular
picture.

Theorem 1. LSPICCAG is incomparable with LK−UPICCAG and not disjoint.

Proof. We prove this theorem using following lemmas whose proofs are
omitted. 	

Lemma 1. LSPICCAG − LK−UPICCAG �= φ

Lemma 2. LK−UPICCAG − LSPICCAG �= φ

Lemma 3. LK−UPICCAG ∩ LSPICCAG �= φ

4 Identification of Subclasses of Parallel Internal
Column Contextual Array Languages

In this section, we propose an algorithm to infer SPICCAG from positive data
only. We recall the notion of an insertion rule. The insertion operation is first
considered by Haussler in [9] and based on the operation, insertion systems are
introduced by L. Kari in [10]. Informally, if a string α is inserted between two
parts w1 and w2 of a string w1w2 to get w1αw2, we call the operation as insertion.

This algorithm takes finite sequences of positive examples in the different
time interval or all together. Our goal is to find out SPICCAG G, such that
IP ⊆ L(G) where IP is the input set of arrays. The algorithm works in the
following way. After receiving the first set of arrays as an input, based on the
size(actually based on number of columns), firstly the algorithm determines the
axiom, then it defines 2D insertion rules in order to find out context and selector
from input example. After that, insertion rules are converted into 1-sided1 con-
textual rules which will be a guess about the unknown grammar. Then we will
convert 1-sided contextual rule into 2-sided contextual rule to take care of over
generalization. Then updates with new contextual rules if the next input array
cannot be generated by the existing contextual rules. All the guessing will be
done in a flexible way in the sense that the correction is done at every instance.
Finally we will find the parallel internal column contextual rules according to
Definition 2.

In this paper we consider single axiom A and finite selector set. Now, we
present our algorithm with a description for better understanding.
1 In an 1-sided contextual rule either left context is Λ or right context is Λ.

162 A. Midya et al.

5 Pseudocode of Our Algorithm

1: axiom ← Find − Smallest(IPS)
2: inser ← Generate − Inser(axiom, IPi)
3: 1 − Sided − Contextual − Rule ← {}
4: 1 − Sided − Correct − Rule ← {}
5: 2 − Sided − Correct − Rule ← {}
6: Parallel − Rule ← {}
7: Table ← �
8: 1− Sided − Contextual − Rule.push[Convert − into − Contextual − Rule(inser)]
9: IPS ← Remove(IPS, IPi)
10: for (1 − Sided − Contextual − Rulei ∈ {1 − Sided − Contextual − Rule}) do
11: for (IPi ∈ {IPS}) do
12: S ← Check − Contextual − Rule(1 − Sided − Contextual − Rulei, IPi)
13: if S = 1 then
14: 1 − Sided − Correct − Rule.push[1 − Sided − Contextual − Rulei]

15: if S = 0 then
16: 1 − Sided − Correct − Rule.push[Correction − Contextual − Rule(1 −

Sided − Contextual − Rulei, IPi)]

17: for (1 − Sided − Correct − Rulei ∈ {1 − Sided − Correct − Rule}) do
18: for (IPi ∈ {IPS}) do
19: Table.insert[Find − Nof − App − of − EachRule − in − EachMember(1−

Sided − Correct − Rulei, IPi)]

20: if TableRowi = TableRowj then
21: 2−Sided−Correct−Rule.push[Merge(1−Sided−Correct−Rulei, 1−Sided−

Correct − Rulej)]

22: for (2 − Sided − Correct − RULEi ∈ {2 − Sided − Correct − Rule}) do
23: Parallel − Rule.push(2 − Sided − Correct − Rulei)

In the next few subsections we will explain all the steps of our pseudocode
in detail.

5.1 Finding Axiom - Pseudocode-Step: 1

axiom ← Find – Smallest(IPS): It finds the smallest array from the IPS
(input set). The output of the function will be considered as an axiom.

In order to find out the axiom, the number of columns of each array is
evaluated, the array with the smallest number of columns, will be considered as
the axiom. Also a new input array will be compared with the existing axiom
based on the number of columns, and the smaller one will be considered as an
axiom and Let the single axiom be denoted by A.

PTA - PICCAL 163

5.2 Defining Insertion Rule and Converting It into Contextual
Rule - Pseudocode-Step: 2, 8, 9

– insr ← Generate − Inser(axiom, IPi): It generates the insertion rule from
axiom and member of input set (IPi). The output of the function will be
stored in insr as an insertion rule.

– 1−Sided−Contextual−Rule.push ← [Convert − into − Contextual−
Rule(inser)]: It converts insr into 1 − Sided − Contextual − Rule and store
that.

– IPS ← Remove(IPS, IPi): It removes the current input member IPi from
IPS.

– We now shortly describe about the intuitive idea of the parts 1–4. We try to
identify the selectors from the axiom and contexts from examining input.

– Let the format of 2D insertion rule be LIR where L, I,R ∈ V ++ are left
context, inserted portion, and right context respectively. Axiom and examining
array are respectively

A =

⎡
⎣

a1,1 ... a1,n
a2,1 ... a2,n

...
...

...
am,1 ... am,n

⎤
⎦ , E =

⎡
⎣

a1,1 ... a1,p
a2,1 ... a2,p

...
...

...
am,1 ... am,p

⎤
⎦

Let the initial insertion rule be LIR and from the axiom we can have the fol-
lowing consideration:

Part 1:

L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

⎡
⎣

a1,2 ... a1,n
a2,2 ... a2,n

...
...

...
am,2 ... am,n

⎤
⎦

Check whether any I = [Ii,j]m×r where r ≤ p exists with LIR ∈ sub(E) or not.
If yes then fix that I = [Ii,j]m×r and go to part 3, else go to part 2.

Part 2: Remove the last column of the right context R and the rule becomes
LIR where

L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

[a1,2 ... a1,n−1
a2,2 ... a2,n−1
...

am,2 ... am,n−1

]

Check whether any I = [Ii,j]m×r where r ≤ p exists with LIR ∈ sub(E) or not.
If yes then fix that I = [Ii,j]m×r and go to part 3, else go to part 2 recursively,

until L =

⎡
⎣

a1,1
a2,1

...
am,1

⎤
⎦ , R =

⎡
⎣

a1,2
a2,2

...
am,2

⎤
⎦, and then go to part 4.

Part 3 - Conversion of 2D insertion rule into 1 sided 2D contextual
rule: Here LIN , IIN , RIN are left context, inserted portion, and right context
for insertion rule respectively. On the other hand, LIC , xIC , RIC are left context,
selector, and right context for internal contextual rule respectively.

(LIR)IN → (ϕ̂[x] = LψR)IC where xIC = LIN , LIC = Λ,RIC = IIN . Once
we get a selector and associated context with it, we have the following conditions
for each 2D insertion rule:

164 A. Midya et al.

– Condition 1: If (|L|+ |I|+ |R|)IN = |E|, it implies that on this current axiom
A, only one rule has been applied and we obtain the rule.

– Condition 2: If (|L| + |R|)IN ≤ |A|, then we remove LIN from axiom A,
and obtain a new temporary axiom, also consider RIN as a LIN for the next
insertion rule. Also we remove (LI)IN as a subarray from the examining input
E and obtain a new temporary input. Now we continue our procedure with
this temporary axiom and temporary examing input in the same way.

– Condition 3: If (|L| + |I| + |R|)IN ≤ |E| but (|L| + |R|)IN = |A|, then it can
be understood that some part of the examining input is still left to scan, and
that is considered directly as the left context LIC of the first selector xIC

first

or right context RIC of the last selector xIC
last. We define new rule internal

contextual rule.
– (ϕ̂[x] = LψR)new where Lnew = LIC , Rnew = Λ, xnew = xIC

first, another
rule can be (ϕ̂[x] = LψR)new where Lnew = Λ,Rnew = RIC , xnew = xIC

last. It
should be noted that these particular rules will not be considered for updation
and correction.

Part 4: At that moment, existing first column of R will be concatenated with
existing L.

L =

⎡
⎣

a1,1 a1,2
a2,1 a2,2

...
...

am,1 am,2

⎤
⎦ , R =

⎡
⎣

a1,3 ... a1,n
a2,3 ... a2,n

...
...

...
am,3 ... am,n

⎤
⎦ , go to part 1 until L =

⎡
⎣

a1,1 ... a1,n
a2,1 ... a2,n

...
...

...
am,1 ... am,n

⎤
⎦ ,

in that case defining insertion rule is not possible. We may need to define inser-
tion rule with the current examining array, if we are still unable to define inser-
tion rule, then we will conclude that the choosen axiom is wrong. It is a negative
example as we are dealing with single axiom.

So in this section, we get the selectors from axiom and contexts from exam-
ining input. Later on for new input, we may need to guess (next section).

5.3 Making Correction and Updating Rules - Pseudocode-Step:
10–16

– S←Check−Contextual − Rule(1 − Sided − Contextual − Rulei, IPi):
It checks the correctness of 1 − Sided − Contextual − Rulei for IPi. If S
is true then the correct 1 − Sided − Contextual − Rulei will be pushed onto
set {1 − Sided − Correct − Rule} or it goes for correction.

– Correction−Contextual−Rule(1 − Sided − Contextual − Rulei, IPi):
In that case we need to go for correction of the rule in such a way so that our
new corrected rule can take care of new inputs and as well as previous inputs.

– Let the initial rule be ϕ̂[xi] = LiψRi where Li, Ri are ith left and right context
of the ith selector xi. Here xi+1 is also introduced because we will make the
correction using xi+1.

Proposition 2. In case of correction, we deal with only 1-sided contextual rules
where left context is always empty and selector is not the last one. (see condition

PTA - PICCAL 165

3 of Subsect. 5.2) We will try to find the rule as a subarray from the examining
input.

Let the examining input be E =

⎡
⎣

ai,1 ... ai,p
ai+1,1 ... ai+1,p

...
...

...
am,1 ... am,p

⎤
⎦. We can represent the exam-

ining input in the following format E = PΦxiΦQΦxi+1ΦZ. where P,Z are the
rest of the part of string and they can be empty also, Q is the inserted subarray
portion. Now we present the examining input in 2D form.

E = PΦ

⎡
⎣

ai,k ... ai,α
ai+1,k ... ai+1,α

...
...

...
am,k ... am,α

⎤
⎦ΦQΦ

⎡
⎣

ai,j ... ai,β
ai+1,j ... ai+1,β

...
...

...
am,j ... am,β

⎤
⎦ ΦZ

Now we need to check the contexts. R must be matched with Q. R =
RiΦRi+1Φ...ΦRw where 1 ≤ i ≤ w, and Ri presents the ith column of array.
Q = QiΦQi+1Φ...ΦQz where 1 ≤ i ≤ z, and Qi presents the ith column of array.

Here we are making an analysis to find out the partially equal part (as a
prefix/suffix) between R1ΦR2Φ...ΦRw and Q1ΦQ2Φ...ΦQz and we have shown
the correction part for one rule, in the same way can make the correction for
other rules. In Theorems 3 and 4, we obtain the common-prefix and common-
suffix part between R and Q.

Theorem 2. If the analysis starts with equality such that Q1 = R1, Q2 =
R2Φ...ΦQf = Rs, and Qf+1 �= Rs+1 or f = z or s = w, then we can have
four different types of errors which are stated in terms of following lemmas.

Lemma 4. If (f = z and s = w) then it implies that matching is correct, so no
need to make any correction for this rule and the rule is correct.

Lemma 5. If (f = z and s < w) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = Q1ΦQ2Φ...ΦQf , Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψ[R(i+1)′ where L(i+1)′ = Rs+1ΦRs+2Φ...

ΦRw, R(i+1)′ = Λ, x(i+1)′ = x(i+1).

Lemma 6. If (f < z and s = w) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = R1Φ..ΦRw, Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where L(i+1)′ = Qf+1ΦQf+2Φ...ΦQz,

R(i+1)′ = Λ, x(i+1)′ = x(i+1).

Lemma 7. If (f < z and s < w) then we infer the following three new rules.

– Rulei′ : ϕ̂xi′ = Li′ψRi′ where Ri′ = Q1ΦQ2Φ...ΦQf , Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x](i+1)′ = L(i+1)′ψR(i+1)′ where L(i+1)′ = Rs+1Φ...ΦRw, R(i+1)′

= Λ, x(i+1)′ = xi+1.
– Rule(i+2)′ : ϕ̂[x]i+2 = L(i+2)′ψR(i+2)′ where L(i+2)′ = Qf+1Φ...ΦQz,

R(i+2)′ = Λ, x(i+2)′ = xi+1.

166 A. Midya et al.

Theorem 3. If the analysis starts with inequality such that Q1 �= R1, but Qz =
Rw, Qz−1 = Rw−1Φ...ΦQf = Rs, and Qf−1 �= Rs−1 then we can have three
different types of errors which can be seen in the following lemmas.

Lemma 8. If (s = 1, f > 1) then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Li′ = R1ΦR2Φ...ΦRw, Ri′ = Λ, xi′ = xi+1.
– ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQf−1, L(i+1)′ =

Λ, x(i+1)′ = xi.

Lemma 9. If (s > 1) then we infer the following three new rules. Rulei′ :
ϕ̂[xi′] = Li′ψRi′ where Li′ = RsΦRs+1Φ...ΦRw, Ri′ = Λ, xi′ = xi+1. Rule(i+1)′ :
ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQf−1, L(i+1)′ =
Λ, x(i+1)′ = xi. Rule(i+2)′ : ϕ̂[x(i+2)]′ = L(i+2)′ψR(i+2)′ where L(i+2)′ =
Λ,R(i+2)′ = R1ΦR2Φ...ΦRs−1, x(i+2)′ = xi.

Lemma 10. If Qz �= Rw then we infer the following two new rules.

– Rulei′ : ϕ̂[xi′] = Li′ψRi′ where Ri′ = R1ΦR2Φ...ΦRw, Li′ = Λ, xi′ = xi.
– Rule(i+1)′ : ϕ̂[x(i+1)′] = L(i+1)′ψR(i+1)′ where R(i+1)′ = Q1ΦQ2Φ...ΦQz,

L(i+1)′ = Λ, x(i+1)′ = xi.

In this section, we must notice that we have different rules with same selectors.
According to Definitions 4 and 5, for each selector there must be one rule. As we
are inferring 1-sided contextual rule, it does not satisfy our Definitions 4 and 5.
In the next section we will convert 1-sided contextual rule into 2-sided contextual
rule in order to take care of over generalization and Definitions 4 and 5.

5.4 Controlling over Generalization - Pseudocode-Step: 17–21

– Table.insert[Find − Nof − App − of − EachRule − in − EachMember
(1 − Sided − Correct − Rulei, IPi)]: It finds out the application of each rule
on each member of the input and insert that record into the table.

– 2−Sided − Correct − Rule.push[Merge(1 − Sided − Correct − Rulei,
1 − Sided − Correct − Rulej)]: In this case if we find that ith row (Table
Rowi) and jth row (TableRowj) is same then we merge these two rules
(1 − Sided − Correct − Rulei, 1 − Sided − Correct − Rulej) and store as
a 2 − Sided − Correct − Rule.

– In this section we determine the number of applications of each rule to generate
the given input set. It will be presented in table. We put priority in applying
rules where left context is empty and context is smaller in size. If it is found
that without using any rule we can generate the full input set then we can
ignore that rule.

– Actually all the rules are 1-sided where left contexts or right contexts are
empty that generate more elements. Thus, to control this over generalization,
we check that how many times each rule is applied in each member of the input
set. Rules which are applied equal number of times in each member, those can
be merged into one rule based on condition (discussed in Lemmas 11 and 12).

PTA - PICCAL 167

– Also in this way we satisfy our required condition for SPICCAG (Defini-
tion 4), that is, for each selector atmost one rule is applicable.

Lemma 11. If consecutive selectors are xi, xj with (j − i) = 1 and left con-
texts(right contexts) are empty in a set of rule then we can get 1-sided or 2-sided
internal contextual rule after merging them.

Proof. Let xi, xj denote ith and jth selector, Ri, Rj be ith and jth right context
and Li, Lj are ith and jth left context.

– case 1: If xi, xj are such that (j − i) = 1 and if Ri = Rj = Λ then rule
becomes ϕ̂[xi] = LiψRi where Ri = Lj .

– case 2: If xi, xj are such that (j − i) = 1 and if Li = Lj = Λ then the rule
becomes ϕ̂[xi] = LiψRi where Lj = Ri, xi = xj .

Lemma 12. If consecutive selectors are xi, xj with (j − i) = 1 and left contexts
of ith rule and right context of jth rule are empty then we can get 1-sided internal
contextual rule after merging them.

Proof. Let xi, xj denote ith and jth selector, Ri, Rj are left contexts of ith rule
and right context of jth rule respectively.

If xi, xj are such that (j − i) = 1 and if Li = Rj = Λ then the rule becomes
ϕ̂[xi] = LiψRi where Ri = RiΦRj

5.5 Parallalization Contextual Array Rules - Pseudocode-Step:
22, 23

– Parallel − Rule.push(2 − Sided − Correct − Rulei): It converts the 2 −
Sided−Correct−Rulei into parallel rule and push onto set {Parallel−Rule}.
If we get a rule ϕ̂[x] = LψR where

x =

⎡
⎣

ai,k ... ai,α
ai+1,k ... ai+1,α

...
...

...
am,k ... am,α

⎤
⎦ , L =

⎡
⎣

ai,j ... ai,k−1
ai+1,j ... ai+1,k−1

...
...

...
am,j ... am,k−1

⎤
⎦ , R =

⎡
⎣

ai,α+1 ... ai,n
ai+1,α+1 ... ai+1,n

...
...

...
am,α+1 ... am,n

⎤
⎦

According to Definition 2, we can have (m−1) parallel rules ϕ[Pxi] = PLiψPRi

where Pxi, PLi, PRi are respectively selector, left context, right context.

Pxi =
[ai,k ... ai,α

ai+1,k ... ai+1,α

]
, PLi =

[ai,j ... ai,k−1
ai+1,j ... ai+1,k−1

]
, PRi =

[ai,α+1 ... ai,n
ai+1,α+1 ... ai+1,n

]
where 1 ≤ i ≤ m − 1.

Remark 1. The above algorithm can also be used to identify a k − UPICCAG.
A modification required in the algorithm is that, k is also given along with the
positive presentation as an input to the algorithm.

In this case, at the time of defining insertion rule (Sect. 5.2), we need to
focus on the size of selectors and contexts in terms of number of columns as k is
given as an input. Defining insertion rule should be done in the following way,
LIR ∈ sub(E) where |I| = |L| = |R| = k and also |A| = mk,L, I,R ∈ V ++.

168 A. Midya et al.

6 Correctness of the Algorithm and Characteristic
Sample

The correctness of the algorithm can be noticed in view of the fact that the
specific properties of the subclasses considered allow the positive examples. The
correctness of the algorithm can be seen by considering a characteristic sample
for a target language. Also it can be seen that the algorithm runs in polyno-
mial time in the sum of the size of the examples given. (discussed in Sect. 7).
The correctness of the algorithm, can be seen by considering a characteristic
sample for a target SPICCAL. Let L be an SPICCAL. A finite set IPS is
called a characteristic sample of L if and only if L is the smallest SPICCAL
containing IPS.

7 Running Time Complexity of Our Algorithm

In this section we show the running time of our algorithm to infer the column
contextual rules.

Theorem 4. The running time complexity of the given pseudocode in Sect. 5, is
polynomial in the size of the input set, that is, SumofSize(IPS) where IPS =
{IPi, IPi+1, ..., IPk}.
Proof. proof is omitted.

8 Conclusion and Future Work

In this paper we present a polynomial time algorithm to infer subclasses of
parallel internal column contextual array languages from positive examples only.
Here we deal with only column contextual rules. In the form of future direction
of this work, we can deal with column and row contextual rules together, that
is, parallel internal array contextual languages.

References

1. Chandra, H., Martin-Vide, C., Subramanian, K.G., Van, D.L., Wang, P.S.P.: Par-
allel contextual array grammars and trajectories. In: Chen, C.H., Wang, P.S.P.
(eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 55-70
(2004)

2. Chandra, H., Subramanian, K.G., Thomas, D.G.: Parallel contextual array gram-
mars and languages. Electron. Notes Discrete Math. 12, 106–117 (2003)

3. Ehrenfeucht, A., Paun, G., Rozenberg, G.: Contextual grammars and formal lan-
guages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language, vol.
2, pp. 237–293 (1997)

4. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: Inferring subclasses of contex-
tual languages. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS, vol. 1891, pp. 65–74.
Springer, Heidelberg (2000). doi:10.1007/978-3-540-45257-7 6

http://dx.doi.org/10.1007/978-3-540-45257-7_6

PTA - PICCAL 169

5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
6. Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array

languages by contextual array grammars. Fundamenta Informatica 64, 159–170
(2005)

7. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array gram-
mars with matrix and regular control. In: Câmpeanu, C., Manea, F., Shallit, J.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 98–110. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 8

8. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Non-isometric contex-
tual array grammars with regular control and local selectors. In: Durand-Lose, J.,
Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 61–78. Springer, Cham (2015).
doi:10.1007/978-3-319-23111-2 5

9. Haussler, D.: Insertion and iterated insertion as operations on formal languages.
Ph.D. Thesis, University of Colorado, Boulder (1982)

10. Kari, L.: Contextual insertions/deletions and computability. Inf. Comput. 1, 47–61
(1996)

11. Krithivasan, K., Balan, M.S., Rama, R.: Array contextual grammars. In: Martin-
Vide, C., Paun, G. (eds.) Recent Topics in Mathematical and Computational Lin-
guistics, pp. 154-168 (2000)

12. Lalitha, D., Rangarajan, K., Thomas, D.G.: Petri net generating hexagonal arrays.
In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 235–247. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21073-0 22

13. Marcus, S.: Contextual grammars. Revue Roumane de Mathematiques Pures et
Appliques 14(10), 1525–1534 (1969)

14. Rama, R., Smitha, T.A.: Some results on array contextual grammars. Int. J. Pat-
tern Recogn. Artif. Intell. 14, 537–550 (2000)

15. Rosenfield, A., Siromoney, R.: Picture languages - a survey. Lang. Design 1, 229–
245 (1993)

16. Subramanian, K.G., Van, D.L., Chandra, P.H., Quyen, N.D.: Array grammars with
contextual operations. Fundamenta Informaticae 83, 1–18 (2008)

http://dx.doi.org/10.1007/978-3-319-41114-9_8
http://dx.doi.org/10.1007/978-3-319-41114-9_8
http://dx.doi.org/10.1007/978-3-319-23111-2_5
http://dx.doi.org/10.1007/978-3-642-21073-0_22

Parallel Contextual Array Insertion
Deletion P System

S. James Immanuel1(B), D.G. Thomas1, Robinson Thamburaj1,
and Atulya K. Nagar2

1 Department of Mathematics, Madras Christian College,
Tambaram, Chennai 600059, India

james imch@yahoo.co.in, dgthomasmcc@yahoo.com, robin.mcc@gmail.com
2 Department of Mathematics and Computer Science,

Liverpool Hope University, Liverpool, UK
nagara@hope.ac.uk

Abstract. We introduce a new P system model called as parallel con-
textual array insertion deletion P system, based on the modified row and
column contextual rules of parallel contextual array grammar. We can
generate a family of two-dimensional picture languages using this P sys-
tem. We discuss some properties of this P system and find its generating
power by comparing this new family of languages with that of certain
other well known families of two-dimensional picture languages.

Keywords: P system · Rectangular array · Parallel contextual array

1 Introduction

One of the extensions of string language theory is two-dimensional languages.
There has been a continued interest in adapting the techniques of formal string
language theory for developing methods to study the problem of picture genera-
tion and description, where pictures are considered as connected, digitized finite
arrays in the two-dimensional plane. The literature on array grammars and array
acceptors has steadily grown over the past several years.

Rosenfeld [16,17] has investigated isometric array genration, pointing out the
need for array rewriting rules for picture languages. In an array grammar, the
idea is to have rewriting rules that allow replacement of a subarray of a picture
with another subarray, thus generalizing the Chomskian string grammars to
arrays. Siromoney et al. [18] proposed a simple generative model, called two-
dimensional matrix grammar, to describe digital pictures viewed as rectangular
arrays of terminals. Motivated by the need to generate picture languages that
cannot be generated by two-dimensional matrix grammars, Siromoney et al. [19]
introduced array models, generalizing the notion of rewriting rules in which the
catenation of strings is extended to row and column catenation of arrays.

While the study of formal language theory has its origins in Chomskian gram-
mars, another class of grammars, called contextual grammars was introduced by
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 170–183, 2017.
DOI: 10.1007/978-3-319-59108-7 14

Parallel Contextual Array Insertion Deletion P System 171

S. Marcus in 1969 [12]. Contextual grammars have been intensively investigated
by formal language theorists, as they offer novel insight into a number of issues
central to formal language theory [3,14]. A contextual grammar produces a lan-
guage by starting from a given finite set of strings and adding, iteratively, pairs
of strings (called as contexts), associated to sets of words (called selectors) to
the string already obtained. Extension of these grammars to 2-dimensional array
structures has been attempted in [6,8,10]. In [10] a model of array contextual
grammars is introduced. But this model is different from parallel contextual
array grammars in [6,8]. In [10], instead of a finite set of contextual rules, a lan-
guage of arrays which may be an infinite set is used for choosing the contexts.
In the parallel contextual array grammars, row as well as column contexts are
allowed and the contextual rules are finite. The array contextual style introduced
recently in [8] is a modified contextual style of [6].

A P system or membrane system, which was introduced by Paun [13,15],
evolves in parallel; at each step all objects, which can evolve should evolve. A
computation starts from an initial configuration of a system, defined by a mem-
brane structure with objects and evolutions rule in each membrane, and termi-
nates when no further rule can be applied. In P systems with string objects one
uses the Chomskian way of rewriting for computations. In [11] the contextual
way of handling string objects in P systems has been considered and that the
contextual P systems are found to be more powerful than ordinary string con-
textual grammars and its variants. Extending the string rewriting P systems to
arrays, Ceterchi et al. introduced array P systems of the isometric variety using
context-free type of rules [1]. Henceforth, several P system models for generat-
ing arrays, both isometric and non-isometric variety, have been considered in the
literature (for example [2,7,20]).

Picture languages and array grammars are important parts of image process-
ing. Based on the analogy to Chomskian string grammars and languages there
was a belief that these two-dimensional languages will be useful in pattern recog-
nition etc. For this we would need efficient generating tools and also efficient
parsing tools for the generated language families. This is the motivation behind
this paper. In this paper we introduce new P system models, called as parallel
contextual array insertion deletion P system, based on the modified contextual
style [8] of external and internal parallel contextual array grammars considered
in [6]. In Sect. 2, we give some prerequisites. In Sect. 3, we define parallel con-
textual array insertion deletion P system and give an example. We also consider
another P system model involving only the insertion operation. In Sect. 4, some
properties for the families of languages generated by both parallel contextual
array insertion deletion P system and parallel contextual insertion P system are
discussed. In Sect. 5, we compare the family of languages generated by the new P
system model with that of certain other well known families of two-dimensional
picture languages like LOC, REC and Families of Siromoney matrix languages
and thus bring out their generative powers. In Sect. 6, we conclude the article
with a brief remark.

172 S. James Immanuel et al.

2 Preliminaries

In this section we recall some notions related to formal language theory, array
grammars and parallel contextual array grammars.

Let V be a finite alphabet, V ∗ is the set of words over V including the empty
word λ. V + = V ∗ − {λ}. For w ∈ V ∗ and a ∈ V , |w|a denotes the number of
occurrences of a in w. An array consists of finitely many symbols from V that
are arranged as rows and columns in some particular order and is written in the
form, A =

[a11 ··· a1n...
. . .

...
am1 ··· amn

]
or in short A = [aij]m×n, for all aij ∈ V , i = 1, 2, . . . ,m

and j = 1, 2, . . . , n. The set of all arrays over V is denoted by V ∗∗ which also
includes the empty array Λ (zero rows and zero columns). V ++ = V ∗∗ − {Λ}.
For a ∈ V , |A|a denotes the number of occurrences of a in A. The column

concatenation of A =
[

a11 ··· a1p...
. . .

...
am1 ··· amp

]
, and B =

[
b11 ··· b1q...

. . .
...

bn1 ··· bnq

]
, defined only when

m = n, is given by A©|| B =
[

a11 ··· a1p b11 ··· b1q...
. . .

...
...

. . .
...

am1 ··· amp bn1 ··· bnq

]
. As 1×n-dimensional arrays

can be easily interpreted as words of length n (and vice versa), we will then
write their column catenation by juxtaposition (as usual). Similarly, the row

concatenation, defined only when p = q, is given by A©=B =

⎡
⎢⎣

a11 ··· a1p...
. . .

...
am1 ··· amp

b11 ··· b1q...
. . .

...
bn1 ··· bnq

⎤
⎥⎦. The

empty array acts as the identity for column and row catenation of arrays of
arbitrary dimensions.

Definition 1. A Phase-structure matrix grammar (Context-sensitive matrix
grammar (CSMG) Context-free matrix grammar (CFMG), Right-linear matrix
grammar(RLMG)) is defined by a 7-tuple G = (Vh, Vv, ΣI , Σ, S,HR, V R),
where: Vh is a finite set of horizontal nonterminals; Vv is a finite set of verti-
cal nonterminals; ΣI ⊆ Vv is a finite set of intermediates; Σ is a finite set of
terminals; S ∈ Vh is a starting symbol; HR is a finite set of horizontal phase-
structure (context-sensitive, context-free, right-linear) rules; V R is a finite set
of vertical right-linear rules. For more information, we can refer to [18].

Definition 2. Let V be a finite alphabet. A two-dimensional language L ⊆ V ∗

is local if there exists a finite set of Θ of tiles over the alphabet V ∪ {#} such
that L = {p ∈ V ∗∗|B2,2(p̂) ⊆ Θ}.

Given a language L, we can consider the set Θ as the set of all possible blocks
of size (2, 2) of pictures that belong to L (when considered with the frame of #
symbols). The language L is local if, given such a set Θ, we can exactly retrieve
the language L. We call the set Θ a representation by tiles for the local language
L and write L = L(Θ).

The family of local picture languages will be denoted by LOC.

Definition 3. A two-dimensional language is “Tiling Recognizable” (REC) if
it can be obtained as a projection of a local picture language.

Parallel Contextual Array Insertion Deletion P System 173

We can refer to [4,5] for further details about LOC and REC languages.

Definition 4. Let V be a finite alphabet. A column array context over V is of
the form, c = $c [u1

u2] $c ∈ $cV
∗∗$c, u1, u2 are of size 1 × p, p ≥ 1 and $c is a

special symbol not in V .
A row array contexts over V is of the form, r = $r [u1 u2] $r ∈ $rV

∗∗$r,
u1, u2 are of size p × 1, p ≥ 1 and $r is a special symbol not in V .

Definition 5. The parallel column contextual insertion operation is defined
as follows: Let V be an alphabet, C be a finite subset of $cV

∗∗$c whose ele-
ments are the column array contexts and ϕI

c :(V
∗∗, V ∗∗) → 2C be a choice map-

ping. For arrays, A =
a1j ··· a1(k−1)...

. . .
...

amj ··· am(k−1)
, B =

a1k ··· a1(l−1)...
. . .

...
amk ··· am(l−1)

, j < k < l, aij ∈ V , we

define ϕ̂I
c : (V ∗∗, V ∗∗) → $cV

∗∗$c such that, cIcc ∈ ϕ̂I
c(A,B), Ic =

[u1
u2...
um

]
if

ci = $c [ui
ui+1] $c ∈ ϕI

c

(aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1) ,

aik ··· ai(l−1)
a(i+1)k ··· a(i+1)(l−1)

)
, ci ∈ C, 1 ≤ i ≤

m − 1, not all need to be distinct.
Given an array X = [aij]m×n, aij ∈ V such that X = X1©|| A©|| B©|| X2,

X1 =
a11 ··· a1(j−1)
...

. . .
...

am1 ··· am(j−1)
, A =

a1j ··· a1(k−1)
...

. . .
...

amj ··· am(k−1)
, B =

a1(k+p) ··· a1(l−1)
...

. . .
...

am(k+p) ··· am(l−1)
, X2 =

a1l ··· a1n...
. . .

...
aml ··· amn

,

1 ≤ j ≤ k < l ≤ n + 1 (or) 1 ≤ j < k ≤ l ≤ n + 1, we write X ⇒i Y if Y =
X1©|| A©|| Ic©|| B©|| X2, such that cIcc ∈ ϕ̂I

c(A,B). Ic is called as the inserted
column context. We say that Y is obtained from X by parallel column contextual
insertion operation. The following 4 special cases for X = X1©|| A©|| B©|| X2 is
also considered,

1. For j = 1 we have X1 = Λ.
2. For j = k, we have A = Λ. If j = k = 1, then X1 = Λ and A = Λ.
3. For k = l, we have B = Λ.
4. For l = n + 1, we have X2 = Λ. If k = l = n + 1, then B = Λ and X2 = Λ.

The case j = k = l is not considered for parallel column contextual insertion
operation.

Similarly we can define parallel row contextual insertion operation also.

Definition 6. The parallel column contextual deletion operation is defined as
follows: Let V be an alphabet, C be a finite subset of $cV

∗∗$c whose elements
are the column array contexts and ϕD

c : (V ∗∗, V ∗∗) → 2C be a choice mapping.
For arrays

A =
a1j ··· a1(k−1)...

. . .
...

amj ··· am(k−1)
, B =

a1(k−p) ··· a1(l−1)...
. . .

...
am(k−p) ··· am(l−1)

, j < k < l, aij ∈ V

we define ϕ̂D
c : (V ∗∗, V ∗∗) → $cV

∗∗$c such that,

cDcc ∈ ϕ̂I
c(A), Dc =

[u1
u2...
um

]
if

174 S. James Immanuel et al.

ci = $c [ui
ui+1] $c ∈ ϕI

c

(aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1) ,

ai(k+p) ··· ai(l−1)
a(i+1)(k+p) ··· a(i+1)(l−1)

)

ci ∈ C, 1 ≤ i ≤ m − 1, not all need to be distinct.
Given an array X = [aij]m×n, aij ∈ V such that X = X1 ©|| A ©|| Dc ©|| B

©|| X2,

X1 =
a11 ··· a1(j−1)
...

. . .
...

am1 ··· am(j−1)
, A =

a1j ··· a1(k−1)
...

. . .
...

amj ··· am(k−1)
, B =

a1(k+p) ··· a1(l−1)
...

. . .
...

am(k+p) ··· am(l−1)
, X2 =

a1l ··· a1n...
. . .

...
aml ··· amn

,

1 ≤ j ≤ k < l ≤ n + 1, we write X ⇒d Y if Y = X1©|| A©|| B©|| X2, such that
cDcc ∈ ϕ̂D

c (A,B). Dc is called as the deleted column context. We say that Y is
obtained from X by parallel column contextual deletion operation. The following
4 special cases for X = X1©|| A©|| Dc©|| B©|| X2 are to be considered,

1. For j = 1 we have X1 = Λ.
2. For j = k, we have A = Λ. If j = k = 1, then X1 = Λ and A = Λ.
3. For k + p = l, we have B = Λ.
4. For l = n+1, we have X2 = Λ. If k+p = l = n+1, then B = Λ and X2 = Λ.

Similarly we can define parallel row contextual deletion operation also.

3 Parallel Contextual Array Insertion Deletion
P Systems

In this section we define parallel contextual array insertion deletion P system
and give an example.

Definition 7. A parallel contextual array insertion deletion P system is a con-
struct,

∏
= (V, T, μ, C,R, (M1, I1,D1), . . . , (Mh, Ih,Dh), ϕI

c , ϕ
I
r , ϕ

D
c , ϕD

r , i0)

where,
V is the finite nonempty set of symbols called alphabet;
T ⊆ V is the output alphabet;
μ is the membrane structure with h membranes or regions;
C is the finite subset of $cV

∗∗$c called column array contexts;
R is the finite subset of $rV

∗∗$r called row array contexts;
Mi is the finite set of arrays over V called as axioms, each associated with

the regions of μ;
ϕI

c : (V ∗∗, V ∗∗) → C is the choice mapping performing parallel column con-
textual insertion operations;

ϕI
r : (V ∗∗, V ∗∗) → R is the choice mapping performing parallel row contextual

insertion operations;
ϕD

c : (V ∗∗, V ∗∗) → C is the choice mapping performing parallel column con-
textual deletion operations;

Parallel Contextual Array Insertion Deletion P System 175

ϕD
r : (V ∗∗, V ∗∗) → R is the choice mapping performing parallel row contex-

tual deletion operations;
Ii = ∅ (or)

{ ({
ϕI

c(Ai, Bi) = $c [ui
ui+1] $c

∣∣∣i = 1, 2, . . . ,m − 1
}

, α
) }

Ai =
[aij ··· ai(k−1)

a(i+1)j ··· a(i+1)(k−1)

]
, Bi =

[aik ··· ai(l−1)
a(i+1)k ··· a(i+1)(l−1)

]
, 1 ≤ j ≤ k < l ≤ n+1

(or) 1 ≤ j < k ≤ l ≤ n + 1, α ∈ {here, out, int}, ui and ui+1 are of size 1 × p
with p ≥ 1.

(or){({
ϕI

r(Ci, Ei) = $r [ui ui+1] $r

∣∣∣i = 1, 2, . . . , n − 1
}
, α

)}

Ci =
[

aji aj(i+1)...
...

a(k−1)i a(k−1)(i+1)

]
, Ei =

[
aki ak(i+1)...

...
a(l−1)i a(l−1)(i+1)

]
, 1 ≤ j ≤ k < l ≤ m + 1

(or) 1 ≤ j < k ≤ l ≤ m + 1, α ∈ {here, out, int}, ui and ui+1 are of size p × 1
with p ≥ 1.

Di = ∅ (or)
{ ({

ϕD
c (Ai, Bi) = $c [ui

ui+1] $c

∣∣∣i = 1, 2, . . . ,m − 1
}

, α
) }

Ai =
[aij ··· ai(k−1)

a(i+1)j ··· a(i+1)(k−1)

]
, Bi =

[ai(k+p) ··· ai(l−1)
a(i+1)(k+p) ··· a(i+1)(l−1)

]
, 1 ≤ j ≤ k < l ≤ n +

1, α ∈ {here, out, int}, ui and ui+1 are of size 1 × p with p ≥ 1.
(or){({

ϕD
r (Ci, Ei) = $r [ui ui+1] $r

∣∣∣i = 1, 2, . . . , n − 1
}
, α

)}

Ci =
[

aji aj(i+1)...
...

a(k−1)i a(k−1)(i+1)

]
, Ei =

[
a(k+p)i a(k+p)(i+1)...

...
a(l−1)i a(l−1)(i+1)

]
1 ≤ j ≤ k < l ≤ m + 1,

α ∈ {here, out, int}, ui and ui+1 are of size p × 1 with p ≥ 1.
i0 is the output membrane

The direct derivation with respect to
∏

is a binary relation ⇒ on V ∗∗, T ∗∗

and is defined as X ⇒i,d Y , where X ∈ V ∗∗, Y ∈ T ∗∗ if and only if,
X = X1©|| A©|| B©|| X2, Y = X1©|| A©|| Ic©|| B©|| X2 or X = X3©=A©=B©=X4,
Y = X3©=A©=Ir©=B©=X4 for some X1,X2,X3,X4 ∈ V ∗∗ and Ic, Ir are inserted
column and row contexts obtained by using the insertion rules based on the
parallel column or row contextual insertion operations according to the choice
mappings. (or)
X = X1©|| A©|| Dc©|| B©|| X2, Y = X1©|| A©|| B©|| X2 or X = X3©=A©=Dr©=B©=X4,
Y = X3©=A©=B©=X4 for some X1,X2,X3,X4 ∈ V ∗∗ and Dc,Dr are deleted
column and row contexts obtained by using the deletion rules based on the
parallel column or row contextual deletion operations according to the choice
mappings.

The initial configuration of the system consists of the membrane structure
with h membranes labelled 1, 2, . . . , h where the outermost membrane being the
skin membrane is labelled as 1, which also acts as our output membrane. Using
the insertion or deletion rules Ii or Di based on the choice mapping ϕi present
in the region i we do the step by step computation. The array we obtain after
each computation is placed in the membrane indicated by α. If we choose α to
be ‘here’, it means that the resulting array remains in the same membrane. If we
choose α to be ‘out’, it means that the resulting array is sent out of the current
membrane and enters the immediate outer membrane. If that outer membrane

176 S. James Immanuel et al.

happens to be the skin membrane and if no further computation is possible,
we say that the resulting array is present in the language generated by this P
system. If we choose α to be ‘int’, it means that the resulting array is sent to
the membrane labelled t. When there is no rule applicable to the choice array
obtained after the last computation we say that the computation is successful
and it halts. A successful computation depending on α may result in an array
being sent out to the skin membrane. All the arrays with symbols over T collected
in the skin membrane is the language generated by the parallel contextual array
insertion deletion P system

∏
and is denoted by PCAIDP (

∏
). The family of all

array languages PCAIDP (
∏

) generated by parallel contextual array insertion
deletion P system with at most h membranes is denoted by PCAIDPh.

We also consider P system which involves only the insertion operation i.e.,∏
= (T, μ,C,R, (M1, I1), . . . , (Mh, Ih), ϕI

c , ϕ
I
r , i0). The language generated by

this P system is denoted by PCAIP (
∏

). The family of all array languages gen-
erated by parallel contextual array insertion P system with at most h membranes
is denoted by PCAIPh.

Example 1. We consider an example for a PCAIDP (
∏

),∏
= (V, T, μ, C,R, (M1, I1,D1), (M2, I2,D2), ϕI

c , ϕ
D
c , ϕI

r , ϕ
D
r , 1)

where,
V = {•,X, Y }
T = {•,X}
μ = [1[2]2]1
C =

{
$c [X Y

• Y] $c, $c [• Y
• Y] $c, $c [• Y

X Y] $c, $c [Y X
Y •] $c, $c [Y •

Y •] $c,

$c [Y •
Y X] $c, $c [Y

Y] $c

}

R =
{

$r [Y Y• •] $r, $r [Y Y
• Y] $r, $r [Y Y

Y X] $r, $r [Y Y
X Y] $r, $r [Y Y

Y •] $r,

$r [• •
Y Y] $r, $r [• Y

Y Y] $r, $r [Y X
Y Y] $r, $r [X Y

Y Y] $r, $r [Y •
Y Y] $r

}

M1 = ∅
M2 =

{[
X X X
• X •
X X X

]}

I1 = ∅
D1 =

{({
ϕD

r [X X , • •] = $r [Y Y] $r, ϕD
r [X X , • X] = $r [Y Y] $r,

ϕD
r [X X , X •] = $r [Y Y] $r

}
, here

)
,
({

ϕD
r [• • , X X ,] = $r [Y Y] $r,

ϕD
r [• X , X X] = $r [Y Y] $r, ϕD

r [X • , X X] = $r [Y Y] $r

}
, here

)}

I2 =
{({

ϕI
c [X• , X

X] = $c [X Y
• Y] $c, ϕI

c [•• , X
X] = $c [• Y

• Y] $c, ϕI
c [•

X , X
X] =

$c [• Y
X Y] $c

}
, here

)
,
({

ϕI
c [X

X , X•] = $c [Y X
Y •] $c, ϕI

c [X
X , ••] = $c [Y •

Y •] $c,

ϕI
c [X

X , •
X] = $c [Y •

Y X] $c

}
, here

)
,
({

ϕI
r [X X , • •] = $r [Y Y• •] $r,

ϕI
r [X Y , • Y] = $r [Y Y

• Y] $r, ϕI
r [Y X , Y X] = $r [Y Y

Y X] $r, ϕI
r [X Y , X Y] =

$r [Y Y
X Y] $r, ϕI

r [Y X , Y •] = $r [Y Y
Y •] $r

}
, here

)
,
({

ϕI
r [• • , X X] =

Parallel Contextual Array Insertion Deletion P System 177

$r [• •
Y Y] $r, ϕI

r [• Y , X Y] = $r [• Y
Y Y] $r, ϕI

r [Y X , Y X] = $r [Y X
Y Y] $r,

ϕI
r [X Y , X Y] = $r [X Y

Y Y] $r, ϕI
r [Y • , Y X] = $r [Y •

Y Y] $r

}
, here

)}

D2 =
{({

ϕD
c [X

Y , X
Y] = $c [Y

Y] $c, ϕD
c [Y• , Y

X] = $c [Y
Y] $c, ϕD

c [•• , X
X] =

$c [Y
Y] $c, ϕD

c [•
Y , X

Y] = $c [Y
Y] $c

}
, here

)
,
({

ϕD
c [X

Y , X
Y] = $c [Y

Y] $c,

ϕD
c [Y

X , Y•] = $c [Y
Y] $c, ϕ

D
c [X

X , ••] = $c [Y
Y] $c, ϕD

c [X
Y , •

Y] = $c [Y
Y] $c,

ϕD
c [Y

X , Y
X] = $c [Y

Y] $c

}
, here

)
,
({

ϕD
r [X X , • •] = $r [Y Y] $r,

ϕD
r [X X , • X] = $r [Y Y] $r, ϕD

r [X X , X •] = $r [Y Y] $r

}
, α

)
,({

ϕD
r [• • , X X] = $r [Y Y] $r, ϕD

r [• X , X X] = $r [Y Y] $r, ϕD
r [X • , X X] =

$r [Y Y] $r

}
, α

)}
, α ∈ {here, out}

Membrane labelled 1 i.e., the skin membrane is the output membrane.
The language generated by this parallel contextual array insertion deletion

P system is,

L(
∏

) =

⎧
⎨
⎩

Xn X Xn

(•n X •n)2n−1

Xn X Xn

∣∣∣n ≥ 1

⎫
⎬
⎭

This language can also be generated by a parallel contextual array insertion P
system,∏

= (T, μ,C,R, (M1, I1), (M2, I2), (M3, I3), (M4, I4), (M5, I5), ϕI
c , ϕ

I
r , 1)

where,

T = {•,X}
μ = [1[2[3]3]2[4[5]5]4]1
C =

{
$c [X•] $c, $c [••] $c, $c [•

X] $c

}

R =
{

$r [• •] $r, $r [• X] $r, $r [X •] $r

}

M1 = ∅
M2 = ∅
M3 =

{[
X X X
• X •
X X X

]}

M4 = ∅
M5 = ∅
I1 = ∅
I2 =

{({
ϕI

c [X
X , X•] = $c [X•] $c, ϕI

c [X
X , ••] = $c [••] $c, ϕI

c [X
X , •

X] =

$c [•
X] $c

}
, in5

)}

I3 =
{({

ϕI
c [X• , X

X] = $c [X•] $c, ϕI
c [•• , X

X] = $c [••] $c, ϕI
c [•

X , X
X] =

$c [•
X] $c

}
, out

)}

I4 =
{({

ϕI
r [• • , X X] = $r [• •] $r, ϕI

r [• X , X X] = $r [• X] $r,

ϕI
r [X • , X X] = $r [X •] $r

}
, out

)}

178 S. James Immanuel et al.

I5 =
{({

ϕI
r [X X , • •] = $r [• •] $r, ϕI

r [X X , • X] = $r [• X] $r,

ϕI
r [X X , X •] = $r [X •] $r

}
, α

)}
, α ∈ {out, in3}

Membrane labelled 1 i.e., the skin membrane is the output membrane.

By replacing X by and • by we can arrive at pictures like,

, , etc.,

4 Properties of Parallel Contextual Array Insertion
Deletion P Systems

In this section we give some properties of parallel contextual array insertion
deletion P system.

Theorem 1. The families PCAIDPh and PCAIPh are closed under union, col-
umn catenation and row catenation.

The proofs are straight forward. ��
Theorem 2. The families PCAIDPh and PCAIPh are closed under reflection
on the base and right leg, transpose and rotations by 90◦, 180◦, 270◦.

The proofs are straight forward. ��

5 Comparison Results

In this section we compare the generative power of PCAIDPh and PCAIPh

along with that of LOC, REC, families of Siromoney matrix languages and
family of languages generated by parallel contextual array insertion deletion
grammar (PCAIDG) available in the literature [4,5,8,18].

Theorem 3. PCAIDG ⊆ PCAIDP2.

Proof. For every parallel contextual array insertion deletion grammar,
G = (V, T,B,C,R, ϕI

c , ϕ
D
r , ϕD

c , ϕD
r) we can easily construct a parallel

contextual array insertion deletion P system
∏

with two membranes.∏
= (V, T, [1[2]2]1, C,R, (M1, I1,D1), (M2, I2,D2), ϕI

c , ϕ
D
c , ϕI

r , ϕ
D
r , 1) where,

M1 = ∅

Parallel Contextual Array Insertion Deletion P System 179

M2 = B
I1 = ∅
I2 =

{({
ϕI

c

[
a1
a2 , b1

b2

]
= $c [u1

u2] $c

∣∣∣ $c [u1
u2] $c ∈ ϕI

c

[
a1
a2 , b1

b2

]
in G

}
, here

)}

∪
{({

ϕI
r [a1 a2 , b1 b2] = $r [u1 u2] $r

∣∣∣ $r [u1 u2] $r ∈ ϕI
r [a1 a2 , b1 b2] in G

}
,

here
)}

∪
{({

ϕI
c [Λ , a1

a2] = $c Λ $c

∣∣∣ a1, a2 ∈ T
}

, out
)}

D1 = ∅
D2 =

{({
ϕD

c

[
a1
a2 , b1

b2

]
= $c [u1

u2] $c

∣∣∣ $c [u1
u2] $c ∈ ϕD

c

[
a1
a2 , b1

b2

]
in G

}
, here

)}

∪
{({

ϕD
r [a1 a2 , b1 b2] = $r [u1 u2] $r

∣∣∣ $r [u1 u2] $r ∈ ϕD
r [a1 a2 , b1 b2] in G

}
,

here
)}

1 is the output membrane.
Clearly we can see that L(

∏
) = L(G).

Hence PCAIDG ⊆ PCAIDP2. ��
Theorem 4. PCAIPh ⊂ PCAIDPh,∀ h ≥ 2.

Proof. Every parallel contextual array insertion P system,
∏

= (T, μ,C,R,
(M1, I1), (M2, I2), ϕI

c , ϕ
I
r , 1) is also a parallel contextual array insertion dele-

tion P system,
∏

= (V, T, μ, C,R, (M1, I1,D1), (M2, I2,D2), ϕI
c , ϕ

D
c , ϕI

r , ϕ
D
r , 1)

where, V = T , D1 = D2 = ∅. Hence PCAIPh ⊆ PCAIDPh. Strict inclusion
follows from example 1, where the language L(

∏
) cannot be generated by any

PCAIP2, PCAIP3 and PCAIP4. ��
Theorem 5. LOC ⊂ PCAIDP2.

Proof. From [8] where we have LOC ⊂ PCAIDG. From Theorem 3, we have
PCAIDG ⊆ PCAIDP2. Hence LOC ⊂ PCAIDP2. ��
Theorem 6. REC ⊂ PCAIDP2.

Proof. From [8] where we have REC ⊂ PCAIDG. From Theorem 3, we have
PCAIDG ⊆ PCAIDP2. Hence REC ⊂ PCAIDP2. ��
Theorem 7. LOC ⊂ PCAIP2.

Proof. Every LOC language can be generated by some parallel contextual
array insertion P system with two membranes. Let L be a language over
Γ in LOC with a finite set of tiles, Θ such that L = L(Θ). Consider
the parallel contextual array insertion P system with 2 membranes,

∏
=

(T, μ,C,R, (M1, I1), (M2, I2), ϕI
c , ϕ

I
r , 1) where,

T = Γ ∪ {#},
μ = [1[2]2]1,
C =

{
$c

e
f $c

∣∣∣ a b
c d , b e

d f , # #
b e

∈ Θ
}

,

R =
{

$r e f $r

∣∣∣ a b
c d , c d

e f ∈ Θ
}

.
M1 = ∅

180 S. James Immanuel et al.

M2 =
{

a b
c d

∣∣∣ # #
a , #

a b
, # a

b , a b
c d ∈ Θ

}

I1 = ∅
I2 =

{({
ϕI

c

[
a b
c d , Λ

]
= $c

e
f $c

}
, here

) ∣∣∣ a b
c d , b e

d f , # #
b e

∈ Θ
}

∪{({
ϕI

c

[
a b
c d , Λ

]
= $c

e
f $c

}
, out

) ∣∣∣ a b
c d , b e

d f , # #
b e

, # #
e # ∈ Θ

}
∪{({

ϕI
r

[
a b
c d , Λ

]
= $r e f $r

∣∣∣ a b
c d , c d

e f , # c
e ∈ Θ

}
∪

{
ϕI

r

[
a b
c d , Λ

]
= $r e f $r

∣∣∣
a b
c d , c d

e f ∈ Θ
}

∪
{({

ϕI
r

[
a b
c d , Λ

]
= $r e f $r

∣∣∣ a b
c d , c d

e f , d #
f # ∈ Θ

}
, here

)}
∪{({

ϕI
r

[
a b
c d , Λ

]
= $r e f $r

∣∣∣ a b
c d , c d

e f , # c
e , # e

∈ Θ
}

∪
{

ϕI
r

[
a b
c d , Λ

]
=

$r e f $r

∣∣∣ a b
c d , c d

e f , e f
∈ Θ

}
∪

{({
ϕI

r

[
a b
c d , Λ

]
= $r e f $r

∣∣∣ a b
c d , c d

e f , e f
,

f #
∈ Θ

}
, out

)}
and 1 is the output membrane.

Clearly,
∏

can generate any language in LOC and hence LOC ⊆ PCAIP2.
Now to prove the proper inclusion, we consider the language L′ = {(X)3m|m ≥

1}. This language, L′ is not in LOC as can be seen in [4]. But this language
can be generated by the parallel contextual array insertion P system,

∏
=

(T, μ,C,R, (M1, I1), (M2, I2), ϕI
c , ϕ

I
r , 1), where T = {X}, μ = [1[2]2]1, C = ∅,

R = {$r X X $r}, M1 = ∅, M2 = { X X X
X X X }, I1 = ∅, I2 = {({ϕI

r [X X , X X] =
$r X X $r}, α)}, α ∈ {here, out} and 1 is the output membrane.

Hence LOC is properly contained in PCAIP2. ��
Theorem 8. REC is incomparable with PCAIP3 but not disjoint.

Proof. The language considered in example 1 cannot be generated by any parallel
contextual array insertion P system with 3 membranes, whereas it is a language
in REC. This proves that REC−PCAIP3 = ∅.

Now we consider the picture language L consisting of arrays describing stair-

cases of X’s of the form,

• • • • • • • • • X
• • • • • • • • • X
• • • • • • X X X X
• • • • • • X • • •
• • • X X X X • • •
• • • X • • • • • •
X X X X • • • • • •

. This language can be gen-

erated by a parallel contextual array insertion P system with 3 membranes,∏
= (T, μ,C,R, (M1, I1), (M2, I2), (M3, I3), ϕI

c , ϕ
I
r , 1) where, T = {X, •}, M ={ • • • X

• • • X
X X X X

}
, C =

{
$c

• • •• • • $c

}
, R =

{
$r

• •
X X $r, $r

• X
X X $r, $r

X •
X • $r, $r

• •• • $r

}
,

I2 =
{({

ϕI
r [• •• • , Λ] = $r

• •
X X $r, ϕ

I
r [• •• • , Λ] = $r

• •• • $r, ϕ
I
r [• •

• X , Λ] =

$r
• X
X X $r, ϕ

I
r [• •

X X , Λ] = $r
X •
X • $r, ϕ

I
r [• •

X X , Λ] = $r
• •• • $r, ϕ

I
r [• X

X X , Λ] =

$r
• •• • $r

}
, α

)}
, α ∈ {out, in3}

I3 =
{({

ϕI
c [Λ , • •• •] = $c

• • •• • • $c, ϕ
I
c [Λ , • •

X X] = $c
• • •• • • $c

}
, out

)}

A kind of pumping lemma is available for the picture languages of the fam-
ily REC [4] called as the horizontal iteration lemma and the vertical iteration
lemma. It can be seen that this necessary condition cannot be satisfied in case
we assume that L is in the REC family. Hence L /∈ REC. This proves that
PCAIP3 − REC �= ∅.

Parallel Contextual Array Insertion Deletion P System 181

Now to prove REC ∩ PCAIP3 �= ∅, we consider the language L′ from the
proof of Theorem7. This language is in REC as can be seen in [4].

Hence REC is incomparable with PCAIP3 but not disjoint. ��
Theorem 9. CSML ⊂ PCAIDP2.

Proof. From [8], we have CSML ⊂ PCAIDG. From Theorem 3, we have
PCAIDG ⊆ PCAIDP2. Hence the proof. ��
Theorem 10. CFML ⊂ PCAIP3.

Proof. Every CFML can be generated by some parallel contextual array inser-
tion P system

∏
= (T, [1[2]2[3]3]1, C,R, (M1, I1), (M2, I2), (M3, I3), ϕI

c , ϕ
I
r , 1)

where every column insertion rule in I2 is only of the form,
{({

ϕI
c

[
a1 ··· an

b1 ··· bn ,

a′
1 ··· a′

n

b′
1 ··· b′

n

]
= $c

[u1 ··· up
v1 ··· vp

]
$c

∣∣∣n, p ≥ 1
}

, in3

)}
in I2 with ai, bi, a

′
i, b

′
i, uj , vj ∈

T, i = 1, . . . , n, j = 1, . . . , p and for each such rule in I2 there is a column
insertion rule,

{({
ϕI

c

[
a′
1 ··· a′

n

b′
1 ··· b′

n
,

a1 ··· an

b1 ··· bn

]
= $c

[up ··· u1
vp ··· v1

]
$c

∣∣∣n, p ≥ 1
}

, α
)}

, α ∈
{in2, out} in I3 and only such column insertion rules exists in I3.

Also, every row insertion rule in I2 is only of the form,
{({

ϕI
r

[
a1 ··· an

b1 ··· bn ,

a′
1 ··· a′

n

b′
1 ··· b′

n

]
= $r

[u1 ··· up
v1 ··· vp

]
$r

∣∣∣n, p ≥ 1
}

, here
)}

and for each such rule in I2 there
is the same row insertion rule in I3 and only such row insertion rules exist in I3.

To prove proper inclusion we consider the language L in the proof of Theo-
rem 8, which is not in CFML but in PCAIP3. To see that the language L is not
in CFML we can refer [19].

Hence CFML ⊂ PCAIP3. ��
Corollary 1. RML ⊂ PCAIP3.

6 Conclusion

In this paper, we have introduced parallel contextual array insertion P Sys-
tem along with parallel contextual array Insertion P system and listed some of
their closure properties. We have given some comparison results with some well
known families of two-dimensional picture languages available in the literature.
We can exhibit more comparison results of the new models with other families
of languages generated by certain other types of P systems in the literature like
parallel contextual array P systems [9] and parallel array-rewriting P systems
[21]. The application of this model can be seen in floor designing, kolam pattern
generation, etc. We can also study various other applications and properties.

182 S. James Immanuel et al.

References

1. Ceterchi, R., Mutyam, M., Pǎun, G., Subramanian, K.G.: Array - rewriting P
systems. Nat. Comput. 2, 229–249 (2003)

2. Dersanamiba, K.S., Krithivasan, K.: Contextual array P systems. Int. J. Comput.
Math. 81(8), 955–969 (2004)

3. Ehrenfeucht, A., Păun, G., Rozenberg, G.: Contextual grammars and formal lan-
guages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages:
Volume 2. Linear Modeling: Background and Application, pp. 237–293. Springer,
Heidelberg (1997)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages: Volume 3 Beyond Words, pp. 215–
267. Springer, Heidelberg (1997)

5. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recognit. Artif. Intell. 6, 241–256 (1992)

6. Helen Chandra, P., Subramanian, K.G., Thomas, D.G.: Parallel contextual array
grammars and languages. Electron. Notes Discrete Math. 12, 106–117 (2003)

7. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wielderhold, P.: Con-
textual array grammars and array P systems. Ann. Math. Artif. Intell. 75, 5–26
(2013)

8. James Immanuel, S., Thomas, D.G.: Parallel contextual array insertion deletion
grammar. In: Presented in the International Conference on Theoretical Computer
Science and Discrete Mathematics (ICTCSDM 2016). Kalasalingam University
(2016)

9. James Immanuel, S., Thomas, D.G., Thamburaj, R., Nagar, A.K.: Parallel con-
textual array P systems. In: The Proceedings of Asian Conference on Membrane
Computing (ACMC 2014), pp. 1–9. IEEE Xplore (2014)

10. Krithivasan, K., Balan, M.S., Rama, R.: Array contextual grammars. In: Recent
Topics in Mathematical and Computational Linguistics, pp. 154–168. The Pub-
lishing house of the Romanian Academy(2000)

11. Madhu, M., Krithivasan, K.: Contextual P systems. Fund. Info. 49, 179–189 (2002)
12. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures et Appl. 14(10), 1525–

1534 (1969)
13. Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
14. Pǎun, G.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)
15. Pǎun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford Univ. Press, Oxford (2010)
16. Rosenfeld, A.: Isotonic grammars, parallel grammars and picture grammars. In:

Michie, D., Meltzer, D. (eds.) Machine Intelligence VI, pp. 281–294. University of
Edinburgh Press, Scotland (1971)

17. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Acad-
emic Press, New York (1979)

18. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1, 234–307 (1972)

Parallel Contextual Array Insertion Deletion P System 183

19. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Contr. 22, 447–470 (1973)

20. Subramanian, K.G., Venkat, I., Wiederhold, P.: A P system model for contextual
array languages. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA
2012. LNCS, vol. 7655, pp. 154–165. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34732-0 12

21. Subramanian, K.G., Isawasan, P., Venkat, I., Pan, L.: Parallel array-rewriting P
systems. Rom. J. Inf. Sci. Technol. 17(1), 103–116 (2014)

http://dx.doi.org/10.1007/978-3-642-34732-0_12
http://dx.doi.org/10.1007/978-3-642-34732-0_12

A 3D Curve Skeletonization Method

Nilanjana Karmakar1(B), Sharmistha Mondal2, and Arindam Biswas2

1 Department of Information Technology,
St. Thomas’ College of Engineering and Technology, Kolkata, India

nilanjana.nk@gmail.com
2 Department of Information Technology,

Indian Institute of Engineering Science and Technology, Shibpur, India
sharmistha28101990@gmail.com, barindam@gmail.com

Abstract. An efficient and robust technique for the determination of
the 3D curve skeleton of a digital object is presented in this paper. As
a preprocessing step, the 3D isothetic inner cover of the digital object
is constructed. The voxels adjacent to the surface of the inner cover are
represented in a topological space. The object voxels which are interior
to the inner cover and satisfy certain conditions along the three coordi-
nate planes are also expressed in another topological space. Homotopy
equivalence of the topological spaces is utilized to report the 3D curve
skeleton. The resultant skeleton is a single voxel thick, connected, and
centered representation of the object that preserves the object topology.
Accuracy of shape representation by the skeleton may be varied by using
control values according to the requirement of the application. Experi-
mental results on a wide range of objects demonstrate the efficacy and
robustness of the method.

Keywords: 3D curve skeleton · 3D isothetic inner cover · 3D object
topology · Homotopy · Attaching spaces

1 Introduction

The concept of skeletonization has received considerable attention from a wide
range of research domains due to its potential applications in diverse areas. In
two dimensions as well as in three dimensions, skeletonization has often been
associated with the concept of medial axis and thinning. An object boundary
has been proved to be homotopy equivalent to its medial axis [6]. Skeletonization
of 3D digital objects provide important information about the object topology.
An efficient skeletonization algorithm that is insensitive to object boundary com-
plexity, preserves basic connectivity and centeredness, and facilitates object hole
detection is proposed in [19]. The method involves the SS-coding that converts
objects into a directed cluster graph leading to shortest path extraction and
the BS-coding that generates a traditional minimum distance field. An effective
sequential thinning algorithm has been presented in [18] that directly produces
medial curves from 3D binary objects. The algorithm preserves topology and
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 184–197, 2017.
DOI: 10.1007/978-3-319-59108-7 15

A 3D Curve Skeletonization Method 185

exploits the local topological parameters of a digital image to extract the curve
skeleton. Partitioning of an object can assist in the creation of a skeleton and
any segmentation of the skeleton can infer a partitioning of the object. In [11], a
volume-based shape-function called the shape-diameter-function (SDF) has been
used for the purpose. These algorithms are largely insensitive to pose changes of
the same object and also present similar results in analoguous parts of different
objects.

The survey in [14] presents an overview of 3D shape skeletonization for both
surface and curve skeletons using mesh based and voxel based representations.
The survey includes definitions and properties of different types of 3D skeletons
and comparison among them based on those properties like homotopy, invari-
ance, thinness, centeredness, smoothness, etc. A taxonomy of the methods, based
on dimensionality and sampling, used to compute different types of 3D skele-
tons is also included along with a discussion on the assumptions, advantages,
and limitations of the methods. Another comprehensive and concise survey of
different skeletonization algorithms has been presented in [10] where the prin-
ciples, challenges, and benefits of different skeletonization algorithms have been
discussed. Discussion on topology preservation, parallelization, and multi-scale
skeleton approaches constitute a specialty of the survey. Various applications
of skeletonization and the fundamental challenges of assessing the performance
of different skeletonization algorithms have also been included. A comparison
of six curve-skeletonization and four surface-skeletonization methods based on
voxel models has been presented in [12]. A two-level method of comparison is
carried out where firstly, the curve and surface skeletons are globally compared in
terms of the standard criteria like homotopy, thinness, centeredness, smoothness,
etc. followed by a detailed comparison based on resolution. A detailed visualiza-
tion has been proposed here which is able to highlight small-scale centeredness
differences between curve and surface skeletons.

3D skeletonization has also been attempted in the orthogonal domain.
Straight skeleton of an orthogonal polyhedron is constructed by an output sensi-
tive algorithm [7] that exploits a plane-sweep approach instead of shrinking the
object boundary. The curve skeleton extraction algorithm in [13] is restricted to
surface-like objects and is based on the detection of curves and junctions between
different surfaces. In [17], a novel valence driven spatial median (VDSM) algo-
rithm has been developed which eliminates crowded regions and ensures that
the output skeleton is unit-width. It computes the center of a crowded region,
and applies Dijkstra’s shortest path algorithm to generate a unit-width curve to
replace the crowded region. The 3D thinning algorithm proposed in [9] directly
extracts medial lines consisting of arcs and/or curves instead of surfaces. The
thinning strategy used here is the hybrid method, which is a combination of
both directional and subfield methods. A variation in the form of an efficient 3D
parallel thinning algorithm has been reported in [8], which produces medial sur-
faces. Each iteration step is composed of three parallel subiterations according
to the three deletion directions. Other skeletonization algorithms where voxel

186 N. Karmakar et al.

connectivity is ensured or the density of the skeletal structure is controlled by a
thinness parameter, etc. may be found in [2,16].

The use of vertex antipodal points for extracting 3D mesh skeletons has been
reported in literature [1]. A vertex antipodal point is the diametrically opposite
point that belongs to the same mesh. The set of centers of the connecting lines
between each vertex and its antipodal point represents the desired skeleton of
the 3D mesh. In another algorithm based on Discrete Euclidean Distance Trans-
form [15], each interior voxel in the 3D image object is classified according to
its relative distance from the object border. Recently, algorithms for centerline
extraction of tubular objects based on surface normal accumulation [5] and based
on Voronoi covariance measure using orthogonal planes [3] have also been pro-
posed. Though our algorithm exploits the concept of antipodal points, they are
localized to regular specific ranges along each coordinate plane. Also, unlike the
above cases, the centrally located voxels in each grid range are selected to be a
part of the skeleton depending upon the number of object voxels present in the
grid range.

The rest of the paper is organized as follows. A few preliminary concepts
related to the work is explained in Sect. 2. In Sect. 3, the 3D curve skeleton of
a given digital object has been extracted by proving its homotopy equivalence
to the topological space representing the 3D isothetic inner cover of the object.
The paper is concluded with some experimental results in Sect. 4.

2 Definitions and Preliminaries

The following concepts have been used in the current work.

2.1 Directional Distance

In a specific grid range along a given coordinate plane, a voxel v has eight
neighbors, four of which are 2-adjacent and four are 1-adjacent to v. Directional
distance between two voxels v1 and v2 can be defined if v1 and v2 are such that
v2 can be reached from v1 following a path consisting of only 1-adjacent (only
2-adjacent) voxels. Then the number of voxels constituting the path (includ-
ing v2) is the directional distance between the voxels v1 and v2. In Fig. 1(a),
the voxels from v1 to v2 are 1-adjacent and in Fig. 1(b), they are 2-adjacent.
In both the cases the directional distance between v1 and v2 is 3. Note that
directional distance can be calculated for only those pairs of voxels which are
connected according to the above criteria. For example, in Fig. 1(a), there exists
no directional distance between voxels v1 and v3.

2.2 Local Antipodal Points

Antipodal points are defined as diametrically opposite points on a sphere of any
dimension. Along a given coordinate plane in the orthogonal domain, we define
two voxels v2 and v′

2 as local antipodal points w.r.t. another voxel v1 if

A 3D Curve Skeletonization Method 187

Fig. 1. Directional distance between voxels v1 (red) and v2 (blue) is 3. The consecutive
voxels connecting v1 and v2 are (a) 1-adjacent or (b) 2-adjacent. No directional distance
exists between v1 and v3 in (a). (Color figure online)

Fig. 2. v2, v′
2 (blue) and v3, v′

3 (blue) are two pairs of local antipodal points equidistant
from v1 (red). (Color figure online)

– v1, v2, and v′
2 lie in the same grid range,

– v2 and v′
2 are located at equal (or almost equal) directional distance from v1,

and
– v2 and v′

2 are diametrically opposite w.r.t. v1.

In Fig. 2, v2 and v′
2 are local antipodal points which are at equal directional

distance from v1. In this case, 2-adjacency is considered for the directional dis-
tance. v3 and v′

3 are also local antipodal points at equal directional distance from
v1 where the connecting voxels are 1-adjacent. Here, v2 and v3 do not qualify
as local antipodal points because their locations are not diametrically opposite
w.r.t. v1. Note that, given a coordinate plane, there may be at most four pairs
of local antipodal points w.r.t. a given voxel.

3 Proposed Work

Let us consider a 3D digital object A provided as a triangulated data set
such that exactly two triangles are incident on each edge of the triangulation
(Fig. 3(a)). Let the object be embedded on a 3D digital grid represented as a set
of unit grid cubes (UGCs) each of length g. We construct the 3D isothetic inner
cover PG(A) which is defined as the 3D polyhedron of maximum volume defined
w.r.t. an underlying grid G having surfaces parallel to the coordinate planes and
inscribing the entire object (Fig. 3(b)) [4]. A voxel p is considered as an object
voxel if it is intersected by one or more triangles on the object surface. If each
of the voxels in a UGC are object voxels, then the UGC is called totally object-
occupied. If at least one of the voxels in a UGC is a background voxel, then it

188 N. Karmakar et al.

Fig. 3. A digital object Fox, its 3D isothetic inner cover, and 3D curve skeleton.

is called partially object-occupied. As the grid is represented by a set of UGCs,
each UGC-face constituting the polytope faces of PG(A), is neighbored by a
totally occupied UGC on one side and a partially occupied UGC on the other
side. Therefore, the boundary of the 3D isothetic inner cover may be represented
by a set of totally occupied UGCs. As each voxel contained in a totally occupied
UGC is an object voxel, it may be assumed that the boundary of the 3D isothetic
inner cover is represented by a set of object voxels. Our objective is to find a
single voxel thick 3D curve skeleton of the object which is connected, centered
w.r.t. the object thereby capturing the object shape, as shown in Fig. 3(c).

Let X be the set of object voxels ub representing the boundary of PG(A).
Henceforth, object voxels representing the boundary of PG(A) will be referred to
as boundary voxels and those representing the interior of PG(A) will be referred
to as interior voxels. Let ΓXx, ΓXy, and ΓXz be three topologies defined on X
w.r.t. the three coordinate planes yz-, zx-, and xy-planes. Let βXx, βXy, and
βXz be the bases for X for the corresponding topologies defined as a collection
of basis elements such that

i. a basis element Pi consists of boundary voxels intercepted between grid values
gi and gi+1, where 0 < i < l, where l is the length of PG(A) along a given
coordinate plane expressed in units of g.

ii. if ∃Pi,Pj ∈ βXm, m ∈ {x, y, z}, such that Pi ∩ Pj �= ∅, then ∃Pk ∈ βXm such
that Pk ⊂ Pi ∩ Pj .

In Fig. 4, a sample set of voxels representing the basis element Pi in the grid
range gi and gi+1 along the zx-plane are shown in blue.

Fig. 4. A sample set of voxels (blue) that represents the basis element Pi in the grid
range gi to gi+1. Pi is a basis element of the basis βXy that defines the topological
space X along the zx-plane. (Color figure online)

A 3D Curve Skeletonization Method 189

Let us be an interior voxel that is at equal (or almost equal) directional
distance from a pair of boundary voxels ub and u′

b such that ub and u′
b are

local antipodal points w.r.t us within the grid range gi to gi+1 along a given
coordinate plane. If more than one such pairs exist for a us along a coordinate
plane, then us is selected. In Fig. 5(a), three pairs of local antipodal points
({x1, x

′
1}, {x2, x

′
2}, and {x3, x

′
3}) (blue) exist such that the voxel us (red) is

equidistant from the antipodal voxels in each pair. Hence, us is selected as shown
in Fig. 5(b). Note that all the voxels connecting us to the local antipodal points
are either 0-adjacent or 2-adjacent. Let W be the set of all selected interior
voxels us and let ΓWx, ΓWy, and ΓWz be three topologies defined on W w.r.t.
the three coordinate planes. Let βWx, βWy, and βWz be the bases for W for the
corresponding topologies defined as a collection of basis elements such that

i. a basis element Ri consists of the selected interior voxels intercepted between
grid values gi and gi+1, where 0 < i < l, where l is the length of PG(A) along
a given coordinate plane expressed in units of g.

ii. if ∃Ri,Rj ∈ βWm, m ∈ {x, y, z}, such that Ri ∩ Rj �= ∅, then ∃Rk ∈ βWm

such that Rk ⊂ Ri ∩ Rj .

In Fig. 5(b), a sample set of voxels representing the basis element Ri in the grid
range gi and gi+1 along the zx-plane are shown in red. There exists more than
one pair of antipodal points w.r.t. each voxel in the set.

Let n be the total number of voxels that represent PG(A). Along a given
coordinate plane

n =
l∑

i=0

ni

where ni denotes the number of voxels intercepted between gi and gi+1. Let W ′

be a topological space defined with a topology ΓW′ . Let w be an element of W
that belongs to the basis elements Rix, Riy, and Riz in the topologies ΓWx,
ΓWy, and ΓWz respectively. w ∈ W ′ if

(((w ∈ Rix) ∧ (nix = n′)) ∨ ((w ∈ Riy) ∧ (niy = n′)) ∨ ((w ∈ Riz) ∧ (niz = n′))) = 1

where nix, niy, and niz denote the number of voxels intercepted between the grid
ranges gi to gi+1 along the three coordinate planes and n′ = min(nix, niy, niz).
The basis βW′ for W ′ is defined as a collection of basis elements R′

i that satisfy
the same conditions as for the basis elements of βW .

The method of extracting the 3D curve skeleton may be summarized in the
following steps.

1. Homotopy equivalence: Prove that X and W ′ are homotopy equivalent.
2. Space attachment: If W ′ is disconnected, then connect it by space attachment

technique to form W ′′.
3. Retraction: Define a retraction r : W ′′ → S such that S represents the resul-

tant 3D curve skeleton.

190 N. Karmakar et al.

Fig. 5. (a) A sample case of three pairs of local antipodal points ({x1, x
′
1}, {x2, x

′
2},

and {x3, x
′
3}) (blue) such that the voxel us (red) is equidistant from the two points in

each pair. (b) A sample set of voxels (red) selected according to (a) that represents the
basis element Ri in the grid range gi to gi+1. Ri is a basis element of the basis βWy

that defines the topological space W along the zx-plane. (Color figure online)

3.1 Homotopy Equivalence

Let us consider the grid range gi to gi+1. As defined above, an element w ∈ R′
i is

equidistant (equal or nearly equal directional distance) from more than one pairs
of elements x, x′ ∈ Pi. As elements x and x′ represent local antipodal points,
they are termed as local antipodal elements. It is observed that a pair of local
antipodal elements is equidistant from a single element w ∈ R′

i. Let f : X → W ′

be a function that maps to w ∈ W ′ one element out of each pair of local antipodal
elements in X which are equidistant from w within the grid range gi to gi+1. Let
g : W ′ → X be a function that maps w ∈ W ′ to one element out of each pair
of local antipodal elements in X which are equidistant from w within the grid
range gi to gi+1. Our objective is to show that the topological space W ′ is a part
of the 3D curve skeleton of the object by proving that topological spaces W ′

and X are homotopy equivalent. If f : X → W ′ and g : W ′ → X are continuous
maps such that f ◦ g and g ◦ f are homotopic to the identity map of X and W ′

respectively, then X and W ′ are homotopy equivalent.
We have the following lemma.

Lemma 1. f : X → W ′ and g : W ′ → X are continuous maps.

Proof. Let Pi be a basis element of X and let R′
i be a basis element of W ′. Let

x ∈ Pi and w ∈ R′
i such that f(x) = w, where x, x′ ∈ Pi are local antipodal

elements equidistant from w. Let V be an open subset of W ′ such that w ∈ V and
V =

⋃
i∈J R′

i, where J is the set of indices of the basis elements that comprise
the open set V. Therefore, f−1(V) =

⋃
i∈J f−1(R′

i). This implies that if each set
f−1(R′

i) is open, then f−1(V) is an open subset of X . Since, f(x) = w is true,
f(Pi) ⊂ R′

i holds. As x ∈ Pi and Pi ⊂ f−1(R′
i) holds, f−1(R′

i) is an open set
∀i ∈ J . Since union of open sets is open, f−1(V) is an open subset of X . Hence,
f is a continuous map.

Let g(w) = x where x, x′ ∈ Pi are local antipodal elements equidistant from
w. Let V ′ be an open subset of X such that V ′ =

⋃
i∈J Pi. Hence, g−1(V ′) =⋃

i∈J g−1(Pi). This implies that if each set g−1(Pi) is open, then g−1(V ′) is an
open subset of W ′. Since, g(w) = x holds, g(R′

i) ⊂ Pi. Therefore, w ∈ R′
i and

A 3D Curve Skeletonization Method 191

R′
i ⊂ g−1(Pi). Hence, g−1(Pi) is an open set ∀i ∈ J . It follows that g is a

continuous map. ��
Let IdW′ be the identity map of W ′ and IdX be that of X . We have the

following lemma.

Lemma 2. f ◦ g is homotopic to IdW′ and g ◦ f is homotopic to IdX .

Proof. Let x ∈ X and w ∈ W ′. Let g(w) = {x1, x2, ..., xk}. This means that
w is equidistant from k pairs of local antipodal elements {x1, x

′
1}, {x2, x

′
2}, ...,

{xk, x
′
k} belonging to X , where 2 � k � 4. This is justified because initially a

voxel is selected for topological space W only if it is equidistant from more than
one pair of local antipodal voxels (Sect. 3).

Let

f ◦ g = f(g(w))
= f(x1) ∩ f(x2) ∩ ... ∩ f(xk)
= w.

Note that the function f involves intersection operation instead of standard
union operation. Since f(g(w)) = w ∀ w ∈ W ′, we conclude that f ◦ g IdW′ .

Now, let f(x) = {w1, w2, w3, ..., wk}. Here, x ∈ X is mapped to W ′ using
f with no knowledge about the local antipodal element to x. Hence, x may be
mapped to any number of elements in W ′.

Let

g(w1) = {x11, x12, ..., x,, x1m},

g(w2) = {x21, x22, ..., x,, x2m},

g(w3) = {x31, x32, ..., x,, x3m},

...
g(wk) = {xk1, xk2, ..., x,, xkm}.

This indicates that wi is equidistant from im number of pairs of local antipodal
elements {xi1, x

′
i1}, {xi2, x

′
i2}, ..., {xim, x′

im}, where 1 � i � k. Note that x
remains common in all the cases whereas its local antipodal element is distinct
for each case.

Let

g ◦ f = g(f(x))
= g(w1) ∩ g(w2) ∩ g(w3) ∩ ... ∩ g(wk)
= x.

Note that the function g also involves intersection operation instead of standard
union operation. Also, the intersection operation involved in the function g in
case of f ◦g and in the function f in case of g◦f are trivial because the functions
are imposed on a single element. Since g(f(x)) = x ∀ x ∈ X , we conclude that
g ◦ f IdX . ��

192 N. Karmakar et al.

The relation between the topological spaces X and W ′ is established by the
following theorem.

Theorem 1. X and W ′ are homotopy equivalent.

Proof. From Lemmas 1 and 2, f : X → W ′ and g : W ′ → X are continuous
maps such that the path f ◦ g is homotopic to the identity map of W ′ and the
path g ◦ f is homotopic to the identity map of X . Since the cardinality of the
bases (number of basis elements) of X and W ′ are equal, the path homotopies
are satisfied for all x ∈ X and for all w ∈ W ′. Hence, the topological spaces X
and W ′ are homotopy equivalent. ��

3.2 Space Attachment

PG(A) may be disconnected [4]. As the topological space X represents the bound-
ary voxels of PG(A), X may also be disconnected. Hence, the topological space
W ′ may also be disconnected. In order to connect two components of W ′, we
define a subspace of one of the components, find the closest points between the
subspace and the other component, and then connect them by space attachment
technique. Let W ′ be represented as W ′ = W ′

1 ∪ W ′
2 ∪ W ′

3 ∪ ... ∪ W ′
k. Let us

consider two topological spaces W ′
i ⊂ W ′ and W ′

j ⊂ W ′ which are components
of W ′. In order to attach two topological spaces, we need to define a subspace
D ⊂ W ′

i and identify the points in D with the points in W ′
j . Let D be a subset

of W ′
i with a topology ΓD defined on it such that ΓD = {D ∩ V | V ∈ ΓW′

i
},

where V is an open set of ΓW′
i
. As a degenerate case, ΓD will be equivalent to

ΓW′
i

if D ∩ V = V ∀ V ∈ ΓW′
i
.

Let the function h : D → W ′
j be defined by the following method of alternate

BFS (breadth first search) performed on the topological spaces D and W ′
j in

order to find the closest points between them. Let us consider p1 ∈ D and
p2 ∈ W ′

j and record the Euclidean distance d(p1, p2) between them. Starting
from p1, BFS is performed as long as the dequeued element pk belongs to the
neighborhood of p1. BFS is paused and d(p1, p2) is replaced with d(pk, p2) if
d(pk, p2) < d(p1, p2). Next, a separate BFS traversal is started from p2 and is
continued as long as the dequeued element pl belongs to the neighborhood of
p2. Again, BFS is paused and d(pk, p2) is replaced with d(pk, pl) if d(pk, pl) <
d(pk, p2). The two separate BFS traversals are continued alternately until both
the queues are empty. Finally, pk and pl are selected as the closest points between
D and W ′

j .
Next, W ′

i and W ′
j are to be attached by space attachment technique as

described below. Let the elements in the 26-neighborhood of pk(x, y, z) belonging
to D be given by

N(pk) = {p′
k : p′

k ∈ Z
3 ∧ p′

k ∈ D ∧ L1(pk, p′
k) ∈ {1, 2, 3} ∧ L∞(pk, p′

k) = 1},

where p′
k = (x′, y′, z′), L∞(pk, p′

k) = max{|x − x′|, |y − y′|, |z − z′|}, and
L1(pk, p′

k) = |x − x′| + |y − y′| + |z − z′|.
Let t(i, j, k) denote the direction of proceeding with the space attachment where

A 3D Curve Skeletonization Method 193

i, j, k ∈ {−1, 0, 1}. Starting from pk, we find p′′
k = (x + i, y + j, z + k). The set of

neighboring elements of p′′
k belonging to D is given by N(p′′

k). Next, the neigh-
borhood N(pk) is imposed on p′′

k to give N∗(p′′
k) (explained next in the example

in Fig. 6). In the process, the set of neighboring elements of p′′
k that are added

to D is given by N∗(p′′
k) − (N∗(p′′

k) ∩ N(p′′
k)). Next, p′′

k is considered as pk and
the procedure is continued until pk = pl is reached. Thus, W ′

i is topologically
attached with W ′

j by adding a new set of elements between the closest points pk
and pl.

For instance, in Fig. 6(a), the 26-neighborhood of pk(x, y, z) (yellow color) is
highlighted in blue.

N(pk) = {{x − 1, y, z}, {x − 1, y, z − 1}, {x, y + 1, z − 1}, {x, y − 1, z}, {x +
1, y + 1, z}, {x + 1, y + 1, z + 1}, {x + 1, y − 1, z − 1}} (Fig. 6(b), orange color).

Let t = (−1, 0, 0). Therefore, p′′
k = (x−1, y, z) as shown in Fig. 6(c) (magenta

color). The 26-neighborhood of p′′
k is highlighted in green (Fig. 6(d)).

N(p′′
k) = {{x − 2, y, z − 1}, {x − 2, y − 1, z + 1}, {x − 1, y, z − 1}, {x, y + 1, z −

1}, {x, y, z}, {x, y − 1, z}} (Fig. 6(e), cyan color).
If the neighborhood of pk is imposed on p′′

k , then N∗(p′′
k) is obtained by

replacing (x, y, z) by (x − 1, y, z) in N(pk), i.e.,
N∗(p′′

k) = {{x − 2, y, z}, {x − 2, y, z − 1}, {x − 1, y + 1, z − 1}, {x − 1, y −
1, z}, {x, y + 1, z}, {x, y + 1, z + 1}, {x, y − 1, z − 1}}, as shown by the green
and cyan elements in Fig. 6(f). The set of elements added to D is given by
N∗(p′′

k) − (N∗(p′′
k) ∩ N(p′′

k)) = {{x − 2, y, z}, {x − 1, y + 1, z − 1}, {x − 1, y −
1, z}, {x, y + 1, z}, {x, y + 1, z + 1}, {x, y − 1, z − 1}}, as shown by the green
elements in Fig. 6(f).

3.3 Retraction

Let W ′′ be the connected topological space thus obtained. Let V be an open set
in W ′′. Let S ⊂ W ′′ be a subspace of W ′′ with a topology ΓS defined on it such
that ΓS = {S ∩V | V ∈ ΓW′′}. Our aim is to define a topological retraction from
W ′′ to S. Let an element w ∈ W ′′. Let the elements of the 26-neighborhood of
w(x, y, z) belonging to W ′′ be given by

N(w) = {w′ : w′ ∈ Z
3 ∧ w′ ∈ W ′′ ∧ L1(w,w′) ∈ {1, 2, 3} ∧ L∞(w,w′) = 1},

where w′ = (x′, y′, z′), L∞(w,w′) = max{|x − x′|, |y − y′|, |z − z′|}, and
L1(w,w′) = |x − x′| + |y − y′| + |z − z′|.
The number of elements of N(w) is given by |N(w)|. Let |N ′(w)| = 26−|N(w)|.
w is an element of the subspace S if any one of the following conditions is true.

i. |N ′(w)| > T ,
ii. 0 � |N ′(w)| � T and W ′′\w is disconnected,

where T is a threshold such that 1 � T < 26. It may be noted that if w does not
satisfy any of the above conditions, then it remains out of consideration while
checking the next element in W ′′.

194 N. Karmakar et al.

Fig. 6. Attaching spaces W ′
i and W ′

j by adding a set of elements to the subspace D
of W ′

i. (a) 26-neighborhood of pk(x, y, z) (yellow) is highlighted in blue. (b) N(pk) =
{{x− 1, y, z}, {x− 1, y, z − 1}, {x, y +1, z − 1}, {x, y − 1, z}, {x+1, y +1, z}, {x+1, y +
1, z + 1}, {x + 1, y − 1, z − 1}} (orange color). (c) p′′

k = (x − 1, y, z) (magenta). (d)
26-neighborhood of p′′

k is highlighted in green. (e) N(p′′
k) = {{x − 2, y, z − 1}, {x −

2, y − 1, z +1}, {x− 1, y, z − 1}, {x, y +1, z − 1}, {x, y, z}, {x, y − 1, z}} (cyan color). (f)
N∗(p′′

k) = {{x − 2, y, z}, {x − 2, y, z − 1}, {x − 1, y + 1, z − 1}, {x − 1, y − 1, z}, {x, y +
1, z}, {x, y +1, z +1}, {x, y −1, z −1}} (cyan and green). Therefore, the set of elements
N∗(p′′

k)− (N∗(p′′
k)∩N(p′′

k)) = {{x−2, y, z}, {x−1, y+1, z −1}, {x−1, y−1, z}, {x, y+
1, z}, {x, y+1, z +1}, {x, y−1, z −1}} added to D is shown in green color in (f). (Color
figure online)

Let r : W ′′ → S maps all the elements belonging to W ′′ − S to S. That is,
all the elements of W ′′ that do not satisfy the above conditions are mapped to
those elements which satisfies any of the conditions. Also, r(w′) = w′, ∀w′ ∈ S
because S\w′ is disconnected. Hence, r | S = IdW′′ . Therefore, the function r

A 3D Curve Skeletonization Method 195

represents a retraction from W ′′ to S. Since the topological space S is obtained
as a retraction from W ′′, it is concluded that the 3D curve skeleton of a given
triangulated object is reported in the topological space S.

4 Experimental Results and Conclusion

The proposed algorithm has been implemented in C in Linux Fedora Release 13,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. The experimental results in

Fig. 7. Results for 3D curve skeletons of some digital objects. The number of voxels
in the 3D isothetic inner cover (#t) and that in the 3D curve skeleton (#s) are given
below each figure. (Color figure online)

196 N. Karmakar et al.

Fig. 7 demonstrate the 3D curve skeleton of the digital objects Elephant, Pliers,
Cube, Spiral, Octopus, Hand, Camel, Tiger, and Human. The number of voxels
in the 3D isothetic inner cover (#t) and that in the 3D curve skeleton (#s)
for each digital object are given below each result. The skeleton is connected,
single voxel thick, and centered w.r.t. the object thereby capturing the object
shape up to a high degree of accuracy. The accuracy of capturing the object
shape varies with the accuracy of the 3D isothetic inner cover which may be
adjusted by appropriate scaling of the object. The accuracy of the curve skeleton
also varies with a variation in the grid resolution of the inner cover. A special
case is observed in case of a cube (Fig. 7 top right) where the direction of the
skeleton is different from the usual direction owing to the grid ranges considered
orthogonally. The CPU times of extraction of the 3D curve skeleton for the
digital objects in Fig. 7 are given in Table 1.

The 3D curve skeleton, thus obtained, is not unique for a given object. It
is yet to be explored whether the object can be reconstructed from the resul-
tant skeleton. A hierarchical representation of the skeleton that is suitable to
distinguish parts of the object may be attempted in future.

Table 1. CPU time of 3D curve skeletonization of some digital objects.

Object (g = 2) CPU time (in secs.)

Elephant 4.005

Pliers 0.965

Cube 6.045

Spiral 6.276

Octopus 2.952

Hand 1.242

Camel 5.845

Tiger 6.520

Human 0.627

References

1. Farag, S., Abdelrahman, W., Creighton, D., Nahavandi, S.: Extracting 3D mesh
skeletons using antipodal points locations. In: Proceedings of the 15th International
Conference on Computer Modelling and Simulation: UKSim 2013, Cambridge, UK,
10–12 April 2013, pp. 135–139. IEEE (2013)

2. Gagvani, N., Silver, D.: Parameter controlled skeletonization of three dimensional
objects. Department of Electrical and Computer Engineering, Rutgers University,
Piscataway, NJ, Technical report CAIP-TR-216 (1997)

A 3D Curve Skeletonization Method 197

3. Grélard, F., Baldacci, F., Vialard, A., Domenger, J.-P.: Centerlines of tubular vol-
umes based on orthogonal plane estimation. In: Normand, N., Guédon, J., Aut-
russeau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 427–438. Springer, Cham (2016).
doi:10.1007/978-3-319-32360-2 33

4. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinatorial
algorithm to construct 3D isothetic covers. Int. J. Comput. Math. 90(8), 1571–
1606 (2013)

5. Kerautret, B., Krähenbühl, A., Debled-Rennesson, I., Lachaud, J.-O.: 3D geometric
analysis of tubular objects based on surface normal accumulation. In: Murino,
V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 319–331. Springer, Cham
(2015). doi:10.1007/978-3-319-23231-7 29

6. Lieutier, A.: Any open bounded subset of Rn has the same homotopy type as its
medial axis. Comput.-Aid. Des. 36(11), 1029–1046 (2004)

7. Martinez, J., Vigo, M., Pla-Garcia, N.: Skeleton computation of orthogonal poly-
hedra. Comput. Graph. Forum 30(5), 1573–1582 (2011)

8. Palágyi, K.: A 3D 3-subiteration thinning algorithm for medial surfaces. In:
Borgefors, G., Nyström, I., Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953, pp.
406–418. Springer, Heidelberg (2000). doi:10.1007/3-540-44438-6 33

9. Palágyi, K., Kuba, A.: A hybrid thinning algorithm for 3D medical images. J.
Comput. Inf. Technol. 6(2), 149–164 (1998)

10. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms
and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

11. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeleton-
isation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)

12. Sobiecki, A., Jalba, A., Telea, A.: Comparison of curve and surface skeletonization
methods for voxel shapes. Pattern Recogn. Lett. 47, 147–156 (2014)

13. Svensson, S., Nyström, I., di Baja, G.S.: Curve skeletonization of surface-like
objects in 3D images guided by voxel classification. Pattern Recogn. Lett. 23(12),
1419–1426 (2002)

14. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons:
a state-of-the-art report. Comput. Graph. Forum 35(2), 573–597 (2016)

15. Tran, S., Shih, L.: Efficient 3D binary image skeletonization. In: IEEE Computa-
tional Systems Bioinformatics Conference-Workshops: CSBW 2005, Stanford, CA,
8–12 August 2005, pp. 364–372. IEEE Computer Society (2005)

16. Wang, T., Basu, A.: A note on ‘A fully parallel 3D thinning algorithm and its
applications’. Pattern Recogn. Lett. 28, 501–506 (2007)

17. Wang, T., Cheng, I.: Generation of unit-width curve skeletons based on Valence
Driven Spatial Median (VDSM). In: Bebis, G., Boyle, R., Parvin, B., Koracin, D.,
Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne,
T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 1051–1060. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89639-5 100

18. Wu, J., Duan, H., Zhong, Q.: A new 3D thinning algorithm extracting medial
curves. In: IEEE International Conference on Intelligent Computing and Intelligent
Systems: ICIS 2010, Xiamen, China, 29–31 October 2010, vol. 2, pp. 584–587. IEEE
(2010)

19. Zhou, Y., Toga, A.W.: Efficient skeletonization of volumetric objects. IEEE Trans.
Vis. Comput. Graph. 5(3), 196–209 (1999)

http://dx.doi.org/10.1007/978-3-319-32360-2_33
http://dx.doi.org/10.1007/978-3-319-23231-7_29
http://dx.doi.org/10.1007/3-540-44438-6_33
http://dx.doi.org/10.1007/978-3-540-89639-5_100

Inscribing Convex Polygons in Star-Shaped
Objects

Nikolay M. Sirakov1(B) and Nona Nikolaeva Sirakova2

1 Department of Mathematics, Department of CSCI,
Texas A&M University Commerce, Commerce, TX 75428, USA

Nikolay.Sirakov@tamuc.edu
2 Computer Science Department, University of Washington,

Seattle, WA 98105, USA
nonas@cs.washington.edu

Abstract. This study develops a new algorithm which automatically
inscribes a convex polygon in a star shaped object Ŏ. Starting at Ŏ’s
mass center, our active contour (E-AC) expands until it encounters the
boundary of Ŏ (∂Ŏ). As a result it constructs a star-shaped polygon on
∂Ŏ. We measure the Euclidean distance from ∂Ŏ’s mass center to each
vertex of the star-shaped polygon defined by E-AC. The distances form
a distance function, whose local minima construct star-shaped polygon
inscribed in ∂Ŏ. Its consecutive convex triplets of vertices define a unique
pair of convex polygons inscribed in ∂Ŏ. The Convex Core (CC) of Ŏ is
defined to be the polygon with the largest area (perimeter if the areas
are equal). The CC is unique and invariant to rotation, translation and
scaling. Experiments validate the new algorithm. The paper ends listing
our contributions and comparing them with contemporary papers.

Keywords: Active contour · Distance function · Local minima ·
Convexity

1 Introduction

Automatic object decomposition into parts is a subject of interest for the com-
puter vision community and games industry. Three major approaches are used to
solve the problem. One of them is to use low level geometric properties [8,9,12],
the 2nd one applies high level semantic information [2,9] and preliminary knowl-
edge, the 3rd approach is a hybrid of the previous two [9].

Polygon decomposition methods using geometric features and mathematical
concepts are described in [7,12]. Object’s plausible hypotheses are used in [8] to
train a continuous model to determine the likelihood that a segment is part of
an object. The method in [9] integrates low level edge detection and a region
growing with semantic knowledge. Such knowledge about regions and parts is
also used in [2] along with a scanning window and global appearance cues.

A useful analysis on a number of shape representation methods is given by
Tari in [16]. In this work the author uses the shape representation approach of
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 198–211, 2017.
DOI: 10.1007/978-3-319-59108-7 16

Inscribing Convex Polygons in Star-Shaped Objects 199

partial differential equations (PDE) and considers an object as created by a gross
and peripheral (limbs-convexities, protrusions) parts. The gross part is defined
as the least deformable part under a geometric (the author used “visual” [16])
transformation. The above approach is further elaborated in [17]. The authors
utilized the solution of a special form of the Poisson PDE to generate “Ambrosio-
Tortorelli Phase Field” [17] which provides more accurate object decomposition.
To represent the objects’ shape the authors designed a Randomized Hierarchy
Tree. They validated the theory with a number of sophisticated object decom-
positions from natural images.

In the present paper we adopt the idea that objects are composed of “gross”
or “core” part(s) and “peripheral” part(s), if any [16]. Since we seek the core’s
boundary as a convex polygon, we extend the notion of core to Convex Core
(CC) following an analogy with a concept used in manifolds [4], where the CC
of a hyperbolic 3-manifold is defined as the smallest convex sub-manifold.

The methods capable of inscribing convex polygons into objects have a long
history [7,10–13] and are employed in object (polygons) decomposition. The
latter alone has applications to database management and access, data com-
pression, computer graphics and image processing [12]. The same source also
describes a number of methods used for polygon decomposition and proves that
decomposition of objects with voids is NP complete.

Recall that the convex hull (CH) of an object Ŏ is the minimal area convex
polygon circumscribing Ŏ and the CH of Ŏ is unique [14]. Useful definitions and
study on star-shaped sets are presented in [5]. Finding the maximum area convex
polygon in a star shaped object is a subject of interest to the mathematical
and computer science communities. Multiple algorithms are developed to solve
the problem [7,11,12] including “finding largest potato” and/or “longest stick”
[10,13]. For certain objects the solution is unique, however for others is not. Such
an example is the cross (Fig. 2), where the method in [7] will detect two maximum
area convex subsets. Furthermore, the problem of finding the minimum area
convex polygon inscribed in another polygon is meaningless because an infinite
number of such polygons are possible [1].

In this paper we develop an approach capable of inscribing a convex polygon
in a given 2D star shaped object Ŏ [12]. Section 2 formulates basic notions and
an expanding active contour (E-AC). In Sect. 3 we define a distance function,
find its minima and use convex triplets of the minima’s vertices to design the
convex core (CC) of ∂Ŏ. Section 4 shows that the newly defined CC is unique,
invariant to rotation, scaling and translation. Section 5 validates the theory with
experimental results. The paper ends deriving conclusions and comparing the
new method with contemporary ones.

2 Background Notions

Let Ŏ denotes a closed object in R2, ∂Ŏ = {v1, ..., vn} be Ŏ‘s boundary of
Ŏ. Let r1,, rk be the subset of ∂Ŏ′s vertices which are concave (also called
“reflex vertices” [7]). Therefore k < n. A concave (reflex) vertex is the vertex

200 N.M. Sirakov and N.N. Sirakova

of an internal (for ∂Ŏ) angle larger than π radians and a convex vertex vi is
a vertex of an internal angle smaller than π (Fig. 1(d)). Consider the following
four definitions:

Definition 1. A point A ∈ Ŏ is visible from B ∈ Ŏ if and only if AB ∈ Ŏ.

Definition 2. Ŏ is a convex object if and only if every pair of points in Ŏ are
visible from each other.

Definition 3. Ŏ is a star shaped object if and only if there is a point A ∈ Ŏ\∂Ŏ
such that Avi ∈ Ŏ for i = 1, ..., n (all vertices vi are visible from A) ([7]).

The set of points A with the above property is called kernel of ∂Ŏ, and is
denoted by Kern(∂Ŏ) ([7]). In [5] it is proven that the kernel is convex.

Definition 4. A chain is a set of consecutive vertices on ∂Ŏ. A chain is
monotone if there exists a line-l, in the plane, such that the projections of the
chain vertices on l follow the same order as on ∂Ŏ. The polygon ∂Ŏ is monotone
if there exist l which divides ∂Ŏ into two monotone chains (see [12]).

A polygon is inscribed in a circle if and only if its vertices lie on the circle. For
the purpose of our study we follow this idea and introduce four new definitions.

Definition 5. We say that the polygon Π is inscribed in the polygon ∂Ŏ if and
only if every Π‘s vertex lies on an edge from ∂Ŏ, such that Π is entirely in Ŏ.

Let Π be inscribed in ∂Ŏ such that vi
∼= v (vi coincides with v), vi ∈ ∂Ŏ,

v ∈ Π, then we consider that v belongs to the two ∂Ŏ edges which meet in vi.

Definition 6. The polygon Π is exactly inscribed in the polygon ∂Ŏ if and only
if Π is inscribed in ∂Ŏ, and every ∂Ŏ edge contains exactly one Π’s vertex.

Therefore no ∂Ŏ edge contains any edge from the exactly inscribed polygon
Π (Fig. 1). Further, it is known that in a closed polygon Π, with no self-
intersections, the number of edges equals the number of vertices. Denote this
number by | Π |.
Lemma 1. Consider a convex polygon Π such that |Π| = n. Then there are
�n/2� + 1 convex polygons, with different number of vertices, which could be
exactly inscribed in Π. The polygons with the smallest number of vertices has
�n/2�, while the one with the largest number has n (Fig. 1(a), (b), (c)).

Proof: 1. Assume |Π| = n = 2k. Denote Π‘s vertices with vi, the edges with ei,
such that ei = vivi+1, i = 1, ..., n and vn+1

∼= v1 (vn+1 coincides with v1). Select
vi, i = 1, 3, ..., 2k − 1, denote them by Vj

∼= v2j−1 for j = 1, .., k. Therefore, we
constructed a polygon Πk exactly inscribed in Π such that |Πk| = k, which is
the smallest number of vertices to comply with the exact inscribing (Fig. 1(a)).

If we selected Vi ∈ ei such that Vi � vi and Vi � vi+1 for i = 1, ..., n and
vn+1

∼= v1, we receive the set of vertices V1, ..., Vn which constitute the exactly
inscribed polygon Πn with the largest number of vertices (see Fig. 1(b)).

Inscribing Convex Polygons in Star-Shaped Objects 201

Fig. 1. (a) and (b) Hexagon and its exactly inscribed polygons with minimum and
maximum number of vertices; (c) Pentagon and exactly inscribed polygon with mini-
mum number of vertices; (d) A star shaped polygon and a non-convex exactly inscribed
one; (e) A star shaped polygon into which no polygon could be exactly inscribed.

Consider Πk and remove its vertex Vi. We know that Vi
∼= v2i−1 and v2i−1

is a join of e2i−1 and e2i−2. Select the new pints V2i−1 ∈ e2i−1 and V2i−2 ∈
e2i−2. Thus we have the set of points V1, ..., Vi−1, V2i−2, V2i−1, Vi+1, ..., Vk which
constitutes an exactly inscribed polygon Πk+1 such that |Πk+1| = k + 1.

Applying the above procedure on any point from the set Π ∩ Πk+1 we con-
struct Πk+2 such that |Πk+2| = k + 2. Continue the algorithm since all vertices
V1, ..., Vk are exhausted we construct Πk,Πk+1, ...,Π2k exactly inscribed poly-
gons. Follows that the total number of exactly inscribed, in Π, polygons with
different number of vertices is k + 1.

2. Assume |Π| = n = 2k + 1. In this case the polygon with the smallest
number of vertices is Πk+1 such that |Πk+1| = k + 1, where Vi

∼= v2i−1 for
i = 1, ..., k and V2k+1 ∈ e2k+1 (see Fig. 1(c)).

The reasoning to prove the remaining part of the odd case is analogous to
the reasoning we presented above for the case with even number of vertices.	

Lemma 1 implies that every star shaped convex polygon has multiple exactly
inscribed convex polygons, with a different number of vertices. On the other
hand, some star shaped polygons, with reflex points, may not have a single
exactly inscribed polygon (Fig. 1(d)).

Definition 7. The polygon Π is partially on the polygon ∂Ŏ if and only if Π is
inscribed in ∂Ŏ, and at least one of Π’s edges lies on a ∂Ŏ edge. The polygon
Π is entirely on the polygon ∂Ŏ if and only if each of Π’s edges lies on an edge
from ∂Ŏ and Π ∈ Ŏ.

The above definition implies that if Π is entirely on ∂Ŏ then Π ∼= ∂Ŏ.

Lemma 2. Every star shaped polygon is monotone.

Proof: Consider a star shaped object Ŏ, with a boundary ∂Ŏ, whose vertices
are vi, i = 1, ..., n. Follows from Definition 4 that we have to find a line l which
divides ∂Ŏ into two monotone chains. Consider a point A ∈ Kern(∂Ŏ). Build the
lines Avi for i = 1, ..., n and select a line l � Avi (l does not coincide with Avi) for
i = 1, ..., n such that l intersects, inside Ŏ, the maximum number of consecutive
lines Avi, for i = u, ..., j (see Fig. 2(c)). Consider the Avi intersections with l as
vi projections on l and denote the projections with v′

i for i = u, ..., j.
Assume that the pair vivi+1 is mapped on l to a pair v

′
i+1v

′
i. This implies

that Avi ∩ Avi+1 = U such that U � A. Follows that Avi
∼= Avi+1, which is a

contradiction because the vertices vi and vi+1 does not coincide vi � vi+1.

202 N.M. Sirakov and N.N. Sirakova

Fig. 2. (a) A cross and its kernel- the inner square; (b) An object Ŏ12 with ∂Ŏ12 and
its Kern(∂Ŏ12)-the light triangle with vertex ri; (c) A ∈ Kern(∂Ŏ12), the lines Avi,
and the line l splitting ∂Ŏ12 to two chains. (d) Inscribed convex polygon.

Follows that the projections v′
i keep the same order on l as vi do on ∂Ŏ.

Therefore the vertices vi, for i = u, ..., j are monotone and represent a chain.
The projections for the remaining consecutive vertices vi, where i = j +

1, ..., u − 1, are defined by the intersection of l with the Avi reflections about A
(see Fig. 2(c)). Denote these intersections with v′′

i for i = j + 1, ..., u − 1. The
same reasoning as above asserts that the projections v′′

i keep on l the same order
as vi on ∂Ŏ. Therefore the set of vertices vi, for i = j + 1, ..., u − 1 is monotone
and represents a chain.	

Define an expanding active contour (E-AC) with evolution Eq. 1:

r(q, t(u)) = eaq−4a2t[x(q), y(q)], (1)
r(q, t(0)) = R.e(0.1q−10)[x(q), y(q)]. (2)

In Eq. 1, x(q) = C1 cos(caq), y(q) = C2 sin(caq), t = (t0 + u∂t) is the time
parameter, q is a space parameter, a = 0.5|∂r(q,t)

∂q |, and C1, C2, c are coefficients.
From practice, we determined that Eq. 1 describes a circle with radius R =
C1 = C2 if c = 1000, a2t = 0.001 and q ∈ [0, 2π

ac]. The equation describes a point
(pixel) if c = 1000 and a2t = 2.5. Follows that the curve r(q, t) will evolve from
a point (pixel) to a circle as t decreases from the upper to the lower bound of
2.5/a2 ≥ t ≥ 0.001/a2. Thus, to make Eq. 1 defines a point (pixel) we substitute
C1 = C2 = R, a = 0.1, c = 1000, t0 = 250, u = 0 and receive Eq. 2 where
x(q) = cos(102q), y(q) = sin(102q).

Denote the image function by f(x, y). The following boundary condition (BC)
halts the AC vertices on objects boundaries:

r(q, t(u)) = r(q, t(u) − ∂t) if ε2 >
∂f(r(q, t))

∂t
> ε1, (3)

where q ∈ [0, 2π
ac] and 2.5/a2 ≥ t(u) = t0 + u∂t ≥ 0.001/a2 for u = −1,−2,

But, if the double inequality in Eq. 3 fails, then:

r(q, t) �= r(q, t − ∂t). (4)

The initial conditions (IC) defined with Eq. 2, evolution Eq. (1), BC (3) and
u → −∞, define an enlarging parametric AC (E-AC), which represents Euclidean
growth from a point r(q, 250) ∈ Ŏ toward ∂Ŏ. Figure 3(a) depicts an image of
a neutrophil [6] whose boundary is star shaped and was extracted by E-AC in
0.036 s (Fig. 3(b)).

Inscribing Convex Polygons in Star-Shaped Objects 203

Fig. 3. (a) Neotrophil’s video [6] 4th frame; (b) Neutrophil’s boundary extracted by
E-AC; (c) Cat’s (original image from [3]) star shaped boundary visible from the mass
center of the entire boundary. The star shaped boundary is extracted in 0.016 s.

3 Active Convex Core Model

Let Ŏ be a star shaped object whose boundary ∂Ŏ is a polygon with vertices
v1, ..., vn of which r1, ..., rk are concave. Apply E-AC with IC 2 using the initial
point ℵ0

∼= r(q, t(0)) ∈ Ŏ\∂Ŏ. At u = −1, ℵ0 “springs” to r(qi, t(−1)), qi ∈
[0, 2π

ac], i = 1, ..., e vertices, which draw a closed curve. If u = −2,−3,,−∞
then Eq. (1) evolves the curve by moving each of its vertices, on a straight line,
until BC (3) halts the vertex on ∂Ŏ. Define a function to measure the Euclidean
distance traveled by every E-AC vertex Qi for u = 0,−1, ...,−ui < 0:

dE(Q1(q1, t(0)), Qi(qi, t(ui))) = |r(q, 250 − ui∂t)) − r(q, 250)|. (5)

Denote the E-AC vertices, at the time they halt on ∂Ŏ, by Vi such that
r(qi, t(ui)) = Vi for i = 1, ..., e and the mass center of ∂Ŏ by m(∂Ŏ) =

∑n
i=1

vi

n .
Assume m(∂Ŏ) ∈ Ŏ, ℵ0

∼= m(∂Ŏ) /∈ Kern(∂Ŏ) and ℵ0 ∈ Ŏ\∂Ŏ (Fig. 2(b)).
It follows from the E-AC definition that the lines ℵ0Vi ∈ Ŏ for i = 1, ..., e. There-
fore, ∂Ŏ(ℵ0) = {V1, ..., Ve} is a star shaped polygon, partially on ∂Ŏ (Fig. 4(c),
(d)), with ℵ0 ∈ Kern(∂Ŏ(ℵ0)) and mass center:

m(∂Ŏ(ℵ0)) =
e∑

i=1

Vi

e
∼= ℵ1. (6)

If ℵ0
∼= m(∂Ŏ) ∈ Kern(∂Ŏ) (Fig. 2(a)), then there exists an E-AC with

e > n vertices such that at time u∗ a subset of these vertices coincide with
the ∂Ŏ vertices: Vi1

∼= v1, ..., Vin
∼= vn. Follows that the star shaped polygon

∂Ŏ(ℵ0) ∼= {V1, ..., Ve} is entirely on ∂Ŏ, ∂Ŏ(ℵ0) ∼= ∂Ŏ (Fig. 4(a), (b)) and ℵ0
∼=

ℵ1. Thus, we choose ℵ0
∼= m(∂Ŏ) as E-AC initial point and measure the distances

dE(ℵ0, Vi), i = 1, ..., e. Then we calculate their local minima, employing the
statements:

(i) the Euclidean distances |ℵ0ri| to the concave vertices ri, i = 1, ..., k rep-
resent local minima;

(ii) if a ∂Ŏ(ℵ0)’s edge belongs to a convexity, then the local minimum, of
the distances to the edge, equals the length of the perpendicular from ℵ0 to the
line defined by the edge. For this case we consider two subcases:

– if the end of the perpendicular lies on the edge, then the local minimum is
the length of the perpendicular;

204 N.M. Sirakov and N.N. Sirakova

Fig. 4. Ŏ12 from Fig. 2. (a) The star shaped polygon ∂Ŏ12(ℵ0) produced by E-AC
with initial point ℵ0

∼= A ∈ Kern(∂Ŏ12); (b) ∂Ŏ12(ℵ0) is entirely on ∂Ŏ; (c) ∂Ŏ12(ℵ0)
produced by E-AC with ℵ0

∼= A /∈ Kern(∂Ŏ12); (d) ∂Ŏ12(ℵ0) is partially on ∂Ŏ.

– if the end of the perpendicular does not lie on the edge, the algorithm con-
siders that there is no minimum distance to the edge Fig. 5(b)).

Theorem 1. Given a convex object Ŏ. The end points of the local minima of
the distances from ℵ0 to ∂Ŏ(ℵ0)) define a convex polygon inscribed in ∂Ŏ.

Proof: Since Ŏ is convex follows that ℵ0 ∈ Kern(Ŏ) and ∂Ŏ(ℵ0) ∼= ∂Ŏ.
Lemma 1 asserts that, in a convex polygon with n edges one may inscribe a
convex polygon with maximum n vertices. Since Ŏ is convex, follows that the
polygon ∂Ŏ has no concave (reflex) points. Therefore the local minima of the
distances are represented only by the perpendiculars from ℵ0 to ∂Ŏ. If the end of
every perpendicular to the line of every edge is inner to the edge, then the poly-
gon, defined by the end points of the local minima (perpendiculars), is exactly
inscribed in ∂Ŏ. If the end of at least one local minimum (perpendicular) is outer
for the edge then the polygon defined by the end points of the perpendiculars is
inscribed in ∂Ŏ.

We prove now that the minimum number of perpendiculars from ℵ0 to the
boundary ∂Ŏ is 2. Assume that ∂Ŏ is a triangle (the closed polygon with, non
zero area, and the smallest number of edges). Recall that ℵ0 is inner for ∂Ŏ.
Connect ℵ0 with the ∂Ŏ vertices. ℵ0 is a vertex common for three angles. At
least two of them are greater than π/2, which implies that the ends of at least
two perpendiculars, from ℵ0, lie on ∂Ŏ edges. Follows that any polygon whose
number of edges is larger than 3 will have at least two minima. 	

Theorem 1 constructs exactly inscribed convex polygon in a convex object
Ŏ. But if Ŏ is star shaped then the end points of the local minima of the dis-
tances ℵ0Vji define star shaped polygon {Vj1 , ..., Vjw} ∼= Γ (∂Ŏ(ℵ0)) inscribed in
∂Ŏ. Traverse Γ (∂Ŏ(ℵ0)) starting with Vji and generate the consecutive triplets
Vji−1VjiVji+1 for i = 1, ..., w, such that Vj0

∼= Vjw and Vjw+1
∼= Vj1 . Therefore,

a set of w distinct triplets of consecutive vertices exist on Γ (∂Ŏ(ℵ0)). The set
is invariant according to the starting point, and we check the convexity of its
triplets:

(xji − xj(i−1))(yj(i+1) − yji) < (xj(i+1) − xji)(yji − yj(i−1)), (7)

If a triplet satisfies Eq. (7) then it is convex and the algorithm keeps the three
points, otherwise the algorithm discards (deletes):

Inscribing Convex Polygons in Star-Shaped Objects 205

Fig. 5. (a) Ŏ15 star shaped and the E-AC generated star shaped polygon ∂Ŏ15(ℵ0) for
ℵ0

∼= m(∂Ŏ15); (b) The star shaped polygon Γ (∂Ŏ15(ℵ0)); (c) The convex polygon
C1(O15(ℵ0))) extracted from Γ (∂Ŏ15(ℵ0)) using Eq. (7) and deleting the 1st point from
every triplet of Γ (∂Ŏ15(ℵ0)) vertices; (d) The convex polygon C3(Ŏ15(ℵ0))) extracted
from Γ (∂Ŏ15(ℵ0)) using Eq. (7) and deleting the 3rd point.

∗ the first point Vji−1 , in clockwise direction, and keeps the remaining two.
When the set of triplets is exhausted the remaining vertices form a convex poly-
gon C1(Ŏ(ℵ0)) inscribed in ∂Ŏ as shown in Fig. 5(c);

∗∗ the third point Vji+1 , in clockwise direction, and keeps the remaining
two. When the set of triplets is exhausted the remaining vertices form a convex
polygon C3(Ŏ(ℵ0)) inscribed in ∂Ŏ as shown in Fig. 5(d).

Deleting the middle point may produce an edge a part of which does not
belong to Ŏ. Therefore the generated polygon will be convex but will neither be
inscribed in, nor will be on ∂Ŏ (partially or entirely). Therefore such a case is
not in consideration.

Follows that the new algorithm inscribes, in ∂Ŏ, two convex polygons:
C1(Ŏ(ℵ0)), C3(Ŏ(ℵ0)), and calculates their areas AC1 , AC3 using [15]:

A =
p+1∑

i=1

(xjiyj(i+1) − xj(i+1)yji), (8)

where p denotes the number of polygon’s vertices, and (p + 1)MODp = 1.

Definition 8. Consider star shaped object Ŏ and the inscribed-convex polygons
C1(Ŏ(ℵ0)) and C3(Ŏ(ℵ0)). The one with largest area we call Convex Core (CC)
of Ŏ, CC(Ŏ). If AC1 = AC3 the one with largest perimeter is considered as CC.

The derivations made so far could be summarized in the following parametric
active CC algorithm (PACCA) for star shaped object Ŏ:

1. Run E-AC with initial point ℵ0
∼= m(∂Ŏ) and find ∂Ŏ(ℵ0) entirely on ∂Ŏ

if ℵ0 ∈ Kern(∂Ŏ) (Fig. 4(b)), and partially on ∂Ŏ otherwise (Figs. 5(a) and
4(d));

2. Calculate the Euclidean distances from ℵ0 to the ∂Ŏ(ℵ0) vertices;
3. Find the local minima of the distances. Use their end points to construct the

polygon Γ (∂Ŏ(ℵ0)) ∼= {Vj1 , ..., Vjw} (Fig. 5(b));

206 N.M. Sirakov and N.N. Sirakova

4. Traverse Γ (∂Ŏ(ℵ0)) in clockwise direction. Start with any vertex Vji . Apply
Eq. 7 on every triplet consecutive boundary vertices. Deleting the 1st or the
3rd vertices construct C1(Ŏ(ℵ0)) and C3(Ŏ(ℵ0)) (Figs. 5(c), (d));

5. Employing Eq. (8) and Definition 8 find CC(Ŏ).

4 Properties and Validation

Hereafter we prove the existence and uniqueness of the CC of a star shaped object
Ŏ. Recall that the CC is a closed convex polygon. In this study we consider that
the closed convex polygon with the smallest number of vertices and zero area is
the straight segment, which may represent CC as shown in Fig. 6(b)).

Fig. 6. (a) A pentagon O5 and the E-AC generated polygon ∂O5(ℵ0), which is entirely
on O5 for ℵ0

∼= m(∂O5); (b) The CC for ∂O5 is the straight segment.

Fig. 7. (a) OM and the star shaped polygon ∂OM (ℵ0) produced by E-AC with ℵ0 ∈
Kern(∂OM); (b) ∂OM (ℵ0) alone. (c) OM along with its CC; (d) CC(OM) alone.

Denote the mass center of the ∂Ŏ vertices with m(∂Ŏ) ∼= ℵ0, and assume
ℵ0 ∈ Kern(Ŏ). The Euclidean growth driven by E-AC starting at ℵ0 exists and
is unique. Follows that the star shaped polygon {V1, ..., Ve} ∼= ∂Ŏ(ℵ0) exists, is
unique and is entirely on ∂Ŏ. Therefore ∂Ŏ(ℵ0) ∼= ∂Ŏ (Figs. 4(b) and 6(a)).

If ℵ0 ∈ Ŏ\∂Ŏ but ℵ0 /∈ Kern(Ŏ) the star shaped polygon ∂Ŏ(ℵ0) exists, is
unique and is partially on ∂Ŏ (Figs. 5(a) and 4(d)).

From the two statements above follows that if ℵ0 ∈ Ŏ\∂Ŏ the set of distances
|ℵ0V1|,, |ℵ0Ve| exists, is unique and belongs to Ŏ. Therefore the set of local
minima of the distances exists and is unique. This implies that the star-shaped
polygon Γ (∂Ŏ(ℵ0)), inscribed in ∂Ŏ, is unique.

Note, there are star shaped objects such that ℵ0 /∈ Ŏ\∂Ŏ (Fig. 7(a)). There-
fore the set of distances does not belong to Ŏ\∂Ŏ either. In this case we select
ℵ0 ∈ Kern(Ŏ) and ℵ0 � m(∂Ŏ). Applying E-AC with initial point ℵ0 we find
∂Ŏ(ℵ0) which exists, is unique and entirely on ∂Ŏ. Using Eq. 6 we calculate
m(∂Ŏ(ℵ0)) ∼= ℵ1, which is the mass center of the E-AC vertices {Vi, ..., Ve} ∈ ∂Ŏ.

Inscribing Convex Polygons in Star-Shaped Objects 207

Follows that ℵ1 ∈ Ŏ\∂Ŏ, which implies that |ℵ1Vi| ∈ Ŏ for i = 1, ..., e. Thus we
calculate the set of distances |ℵ1V1|,, |ℵ1Ve| and determine their minima in a
unique way. Therefore the star-shaped polygon Γ (∂Ŏ(ℵ1)) is unique.

Theorem 1 asserts that if ∂Ŏ is non-zero area convex polygon its distance
function attains at least 2 local minima. Assume a star shaped ∂Ŏ having at
least one concave vertex r1. Follows that |ℵ0r1| is a local minimum. Recall, if
ℵ0 ∈ Ŏ\∂Ŏ the distance function is calculated using ℵ0, and ℵ1 ∈ Ŏ\∂Ŏ is
utilized if ℵ0 /∈ O\∂Ŏ. This is known that if a point is inner for a polygon, there
is at least one perpendicular from the point to the polygon’s edge such that the
end of a the perpendicular lies on a edge. Follows that there are at least two
minima (w ≥ 2). Therefore the star shaped polygon {Vj1 , ..., Vjw} ∼= Γ (∂Ŏ(ℵ))
exists for both: convex and star shaped objects.

If w = 2 then Γ (∂Ŏ(ℵ0)) ∼= C1(Ŏ(ℵ0)) ∼= C3(Ŏ(ℵ0)) and the CC is a
straight segment (Fig. 6(b)). If w = 3 then Γ (∂Ŏ(ℵ0)) is a triangle which yields
C1(Ŏ(ℵ0)) ∼= C3(Ŏ(ℵ0)) and the CC is a triangle (Fig. 7).

Recall, the convex polygons C1(O(ℵ0)), C3(O(ℵ0)) are generated traversing
Γ (∂O(ℵ0))’s vertices in clockwise direction and using the convex triplets found
by Eq. (7) deleting the 1st or the 3rd point in non convex triplets. We proved
that Γ (∂Ŏ(ℵ0)) exists and is unique. Therefore the set of consecutive triplets
of its boundary vertices exists and is unique as well. Follows that C1(Ŏ(ℵ0)),
C3(Ŏ(ℵ0)) are invariant to the starting point of Γ (∂Ŏ(ℵ0)) traversal, and accord-
ing to rotation in clockwise direction (Fig. 8). C1(O(ℵ0)), C3(O(ℵ0)) are invariant
to traversal and rotation in counterclockwise direction as well. The statement
holds because deleting the 1st (the 3rd) point of a triplet in a counterclockwise
direction of traversing a boundary is the same as deleting the 3rd (1st) point in
clockwise direction.

Recall that, to find the inscribed convex polygons C1(Ŏ(ℵ0)), C3(Ŏ(ℵ0)) we
use Γ (∂Ŏ(ℵ0)) if ℵ0

∼= m(∂Ŏ) ∈ Ŏ\∂Ŏ and Γ (∂Ŏ(ℵ1)) is used if m(∂Ŏ) /∈
O\∂Ŏ. Since ℵ0 and ℵ1 are inner to ∂Ŏ follows that the shapes of the inscribed
polygons are invariant to translation and scaling of Ŏ (Fig. 10).

So far we proved that the pair of convex polygons C1(Ŏ(ℵ0)), C3(Ŏ(ℵ0)),
inscribed in a star-shaped object Ŏ, exists is unique and invariant according to

Fig. 8. The object Ŏ15 from Fig. 5, with shortened second convexity; (a) The object
Ŏ15 with its CC; (b) the CC alone; (c)–(h) rotations by −π/2, −π, −3π/2.

208 N.M. Sirakov and N.N. Sirakova

Fig. 9. An object Ŏ14−4 with 14 vertices and 4 reflex points, symmetric according to
the vertical line connecting two of them; (a) Ŏ14−4 along with ∂Ŏ14−4(ℵ0) which is
entirely on ∂Ŏ14−4,; (b) ∂Ŏ14−4(ℵ0) alone; (c) Ŏ14−4 along with C1(Ŏ14−4(ℵ0)); (d)
C1(Ŏ14−4(ℵ0)) alone; (e) Ŏ14−4 along with C3(Ŏ14−4(ℵ0)); (f) C3(Ŏ14−4(ℵ0)) alone.

Fig. 10. (a) The star and its CC in an image of 1024× 1024; (b) the CCalone; (c)
The star and its CC in an image of 128× 128; (d) the CC alone. Original image
from [3].

rotation, translation and scaling the object Ŏ. Among the two polygons we call
CC of Ŏ the one with largest area. Note, there are star-shaped objects for which
C1(Ŏ(ℵ0)) = C3(Ŏ(ℵ0)) but do not coincide (Fig. 9). In this case we consider
that the CC is represented by a single polygon, located in two different parts of
the object.

Lemma 3. If ∂Ŏ is convex then C1(Ŏ(ℵ0)) ∼= C3(Ŏ(ℵ0)).

In Lemma 3 the two polygons coincide because Γ (∂Ŏ(ℵ0)) is convex. Therefore,
all consecutive triplets of its vertices are convex and there are no points to delete.

If C1(Ŏ(ℵ0)) �= C3(Ŏ(ℵ0)) but AC1 = AC2 we select as a CC the polygon
with the greatest perimeter. Follows that the CC is unique.

5 Experimental Results

We codded in Java the Euclidean Growth E-AC model along with the CC detec-
tion algorithm. To validate the theoretical concepts we performed a number of
experiments on a diverse set of images containing star-shaped objects of varying
sizes and shapes. For this purpose we used a PC with CPU 2.40 GHz, 4GB RAM
such that a single core was engaged.

The computation complexity of the CC detection method is O(m ∗ e), where
e shows the number of the E-AC vertices, while m is the length, in pixels, of
the largest side of the box enveloping the star-shaped object Ŏ. Figure 11 shows
experimental results in finding the CC of six star shaped objects in images with
varying sizes. Studying these results, one may notice that the additional branch
of the object in Fig. 11(j) compared to the object in (g) added a horizontal
straight segment to the CC (Figs. 11(i), (l)). On the other hand the run time for
the two experiments is same: 0.76 s.

Inscribing Convex Polygons in Star-Shaped Objects 209

Fig. 11. The images in columns 1 and 4 contain six objects Ŏ along with the polygons
∂Ŏ(ℵ0); Columns 2 and 5 show the objects Ŏ along with their CCs; Columns 3 and 6
contain the CCs alone. The images in (m) and (p) come from Tari’s collection [3].

Although E-AC is capable of expanding the active contour through color
images we refrain from presenting experiments with color objects because the
scope of the present study is to define the geometric structure CC. Also, input
must be pre-processed to remove noise, since certain types of noise can affect
the shape of the polygon Γ (∂Ŏ(ℵ0)) and consequently the shape of CC as well.

6 Conclusions

The main contribution of the paper is the development of a new algorithm for
inscribing a convex polygon (named convex core (CC)) in a star shaped object.
We proved that the CC of a star shaped object exists, is unique, invariant to
rotation, translation and scaling. These properties show that the CC segments,
in a unique way, every star-shaped object to convex parts.

The algorithm is implemented in Java along with an expanding active con-
tour. The software was validated on a large amount of star-shaped objects includ-
ing objects from a collection used by Tari [3].

An other contribution of this paper is the definition of the following new
notions: (a) inscribed polygon in another polygon; (b) exactly inscribed polygon
in another polygon; (c) a polygon partially on another polygon; (d) a polygon
entirely on another polygon. We prove also that every star-shaped polygon is
monotone.

The importance of the problem for automatic objects segmentation provoked
interest among the computer vision and mathematical societies. This interest led
to the development of a number of methods and algorithms capable of automat-
ically defining maximum area convex polygons (objects) inside another polygon
(object) “peeled potato,” “longest stick” [10]. Compared to our new method,
in accordance with the new definitions introduced in this paper, the polygons
defined in [10] are partially on the original polygon, while the CC is an inscribed
polygon. The method in [11] may define inscribed and even exactly inscribed

210 N.M. Sirakov and N.N. Sirakova

maximum area parallelogram in a polygon, but the method in [11] can not
inscribe any other convex polygon, while our method does.

A more general approach for finding the maximum area convex subset of
a star shaped object is developed in [7]. The method cuts the convex protru-
sions and determines the kernel of the object. The calculation complexity of the
method is O(n + klogk), where n is the number of the boundary points, while
k is the number of reflex points. Comparing the Big Oh above with the Big Oh
of our algorithm one may notice that every methods is faster than the other for
certain cases. Both methods differ in the sense that the one in [7] defines maxi-
mal area polygon which is partially on the original, while our method determines
inscribed polygon. Also, our algorithm is capable of segmenting a convex polygon
while the one in [7] can’t. Moreover, for a cross as the one in Fig. 11 our method
determines a single inscribed polygon, while the method in [7] determines two -
every branch is considered as a maximal subset.

A sophisticated and conceptually different method for object decomposition
is given in [3,16,17]. The method applies Ambrosio-Tortorelli field generated by
the solution of the Poisson PDE, and separates the object to different regions. An
advantage of the method in [3,16,17] is that it segments any object with concav-
ities, while our algorithm segments only star-shaped objects. But an advantage
of our method is that it is capable of segmenting convex objects while the other
one is not.

Our study continues with extending E-AC capabilities and making this tool
resilient to noise. Also, we are investigating the opportunity to extend the present
method and develop one capable of inscribing convex polygons in non star shaped
objects using any point in Ŏ\(∂Ŏ) as initial point for the active contour.

Acknowledgement. Thanks to the anonymous reviewers whose notes helped us
improve the paper. In loving memory of our parents and grandparents, Mariika and
Metody Sirakov, for their support throughout our lives and professional development.

References

1. Aggarwal, A., Booth, H., O’Rourke, J., Suri, S.: Finding minimal convex nested
polygons. J. Inf. Comput. 83(1), 98–110 (1989)

2. Arbelaez, P., Hariharan, P., Gu, C., Gupta, S., Bourdev, L., Malik, J.: Semantic
segmentation using regions and parts. In: Proceedings of IEEE CVPR 2012, Rhode
Island, 16–21 June (2012). doi:10.1109/CVPR.2012.6248077

3. Aslan, C., Tari, M.: An axis based representation for recognition. In: ICCV, pp.
1339–1346 (2005)

4. Bridgeman, M., Canary, R.D.: From the boundary of the convex core to the con-
formal boundary. J. Geometrica Dedicata 96(1), 211–240 (2003)

5. Brimkov, V.E., Barneva, R.P.: Digital stars and visibility of digital objects. In:
Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares,
J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 11–23. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12712-0 2

6. Crawling neutrophil chasing a bacterium. http://www.youtube.com/watch?v=I
xh-bkiv c. Accessed 01 Dec 2015

http://dx.doi.org/10.1109/CVPR.2012.6248077
http://dx.doi.org/10.1007/978-3-642-12712-0_2
http://www.youtube.com/watch?v=I_xh-bkiv_c
http://www.youtube.com/watch?v=I_xh-bkiv_c

Inscribing Convex Polygons in Star-Shaped Objects 211

7. Coeurjolly, D., Chassery, J.-M.: Fast approximation of the maximum area convex
subset for star-shaped polygons. In: RR-LIRIS-2004-006, CNRS (2004). http://
liris.cnrs.fr/Documents/Liris-1909.pdf

8. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using con-
strained parametric min-cuts. IEEE Trans. PAMI 34(7), 1312–1328 (2012)

9. Fan, J., Yao, D.K., Elmagarmid, A.K., Aref, W.G.: Automatic image segmentation
by integrating color-edge extraction and seeded region growing. IEEE TIP 10(10),
1454–1466 (2001)

10. Hall-Holt, O., Katz, M.J., Kumar, P., Mitchell, J.S., Sityon, B.A.: Finding large
stick and potato in polygons. In: Proceedings of the 17th SIAM SODA 2006, pp.
474–483 (2006). doi:10.1145/1109557.1109610

11. Jin, K., Matulef, R.D.: Finding the maximum area paralelogram in a
convex polygon. In: CCCG2011, Toronto, 10–12 August 2011 (2011).
cccg.ca/PDFschedule/papers/paper3.pdf

12. Keil, J.M.: Polygon Decomposition Survey in Handbook of Computational Geome-
try. Elsevier Sciences Publishing, Amsterdam (2000). Sack, J.R., Urrutia, J. (eds.)
ISBN: 9780444825377

13. Lien, J.-M., Amato, N.M.: Approximate convex decomposition of poligons. Com-
put. Geom. 35(2006), 100–123 (2006)

14. Sirakov, N.M.: A new active convex hull model for image regions. J. Math. Imaging
Vis. 26(3), 309–325 (2006)

15. Sirakov, N.M.: Monotonic vector forces and Green’s theorem for automatic area
calculation. In: Proceedings of IEEE ICIP2007, San Antonio, September, vol. IV,
pp. 297–300 (2007)

16. Tari, S.: Extracting parts of 2D shapes using local and global interactions simul-
taneously. In: Chen, C.H. (ed.) Handbook of Pattern Recognition and Computer
Vision, 4th edn., pp. 283–303 (2009)

17. Tari, S., Genctav, M.: From a non-local Ambrosio-Tortorelli phase field to a ran-
domized part hierarchy tree. JMIV 49(1), 69–86 (2014)

http://liris.cnrs.fr/Documents/Liris-1909.pdf
http://liris.cnrs.fr/Documents/Liris-1909.pdf
http://dx.doi.org/10.1145/1109557.1109610
http://cccg.ca/PDFschedule/papers/paper3.pdf

On Characterization and Decomposition
of Isothetic Distance Functions for 2-Manifolds

Piyush K. Bhunre, Partha Bhowmick(B), and Jayanta Mukhopadhyay

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

kbpiyush@gmail.com, bhowmick@gmail.com, jay@cse.iitkgp.ernet.in

Abstract. We introduce in this paper certain interesting characteriza-
tion of isothetic distance functions in the 3D space. The characterization
done by us eventually leads to decomposition of an isothetic distance
function for higher-order simplices to that of lower-order ones, which
subsequently helps in efficient computation. We show how inter-simplex
isothetic distance is a natural choice for determining an appropriate
voxel size during the voxelization of a 2-manifold surface, such as the
most-commonly used triangle mesh. Preliminary test result have been
furnished to demonstrate its merit and aptness.

Keywords: Digital geometry · Digital line · Digital triangle ·
Discretization · Isothetic distance · Manifolds

1 Introduction

Discretization of a geometric object in the real space to a set of isotropic pixels
or voxels is a well-studied problem in the subject of digital geometry. Different
distance metrics are used for this, each having its own merits and issues while
being used from one domain to another or from one application to another. Out
of the most commonly used metrics, ‘Euclidean distance’ is a natural choice
for some, owing to its easy comprehensibility and implementability both in the
real and in the discrete spaces. However, it is not readily commensurable with
the process of pixelization or voxelization of an object when it is subject to
certain topological conditions, as we show in this paper. In fact, it is better
replaced by ‘isothetic distance’, which is the focus of this study.

1.1 Motivation

The motivation of our study mainly springs from the recent upsurge in voxeliza-
tion and various applications involving voxel sets. A significant volume of work
on voxelization and related applications have been reported in recent time. The
first group of work is on designing efficient voxelization algorithms for 2-manifold
surfaces such as triangle mesh. Although some work had initiated on this in 1990s
[6,8,13,15,25], its importance has shot up quite lately with the current explosion

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 212–225, 2017.
DOI: 10.1007/978-3-319-59108-7 17

Characterization and Decomposition of Isothetic Distance 213

in computational field and various voxel-based applications. Some recent work
related to voxelization algorithms can be seen in [12,19,21,24,26,33,34].

On the application side, a multitude of work have come up over the last
few years, which essentially indicates the advantage of voxelized representation
of a surface for various purposes. These include reconstruction of surfaces from
voxelized data [23,37]; 3D printing using voxel set as input [5,7,9,30,31,36];
ray casting using voxel octrees [17,20]; shadow generation based on voxelized
geometry [14,27,32]; texture creation on voxelized surfaces [11,35]; animation
with well-formed voxel sets [10]; and physical simulation like fluid flow where
particles are modeled as voxels [22].

1.2 Our Contribution

Computation of isothetic distance between two simplices can be considered as
an optimization problem and hence can be solved by an optimization tech-
nique. Since isothetic distance is a continuous but not a differentiable function,
derivative-based optimization cannot be used. Moreover, optimization methods
are iterative, time consuming, and can provide approximate solutions, in gen-
eral. For example, computation of isothetic distance between two triangles will
be inefficient if an iterative method is used. As an efficient solution, we show how
isothetic distance between two simplices, e.g., two triangles, can be computed in
constant time, using decomposition to lower-order simplices.

We show that for discretization of a 2-manifold surface, certain constraints
need to be satisfied. This constraints can be, for example, based on topological
properties of a voxel set in concurrence with those of its preimage in the real
space. In short and by intuition, as voxels have their edges or faces parallel to
the principal axes or the principal planes, isothetic distance becomes a natural
choice for determining the maximum permissible size.

It is worth mentioning here that the discretization problem has been studied
by several researchers for continuous analytical surfaces such as the ones that
are r-regular; see, for example, [18,28,29]. For topological equivalence of an r-
regular surface with its discrete representation under Gauss digitization, we refer
to [28]. Discretization of n-dimensional implicit surfaces and related analysis can
be seen in [29], and for further details we refer to a recent work in [18]. The major
difference of our work with all these work are as follows.

– We consider 2-manifold surface, e.g., triangle mesh, for voxelization. On the
contrary, the above-mentioned techniques all deal with r-regular implicit sur-
faces.

– We show how the voxel size can be fixed using inter-simplex isothetic dis-
tance for 2-manifold surface. Estimation of voxel size for r-regular surface is
computationally expensive and not addressed in the related papers.

– A 2-manifold surface such as triangle mesh is not r-regular and hence can-
not readily be analyzed by the existing techniques. Our technique based on
isothetic distance is designed for this and can efficiently voxelize the surface
with necessary topological properties.

214 P.K. Bhunre et al.

2 Preliminaries

This section contains some basic terminologies to be used in the sequel. The rest
are put in the relevant sections.

A 2-simplex means, in general, a planar facet (e.g., triangle) of a mesh in
the 3D real space. A 2-simplex M (2) consists of a planar interior bounded by
three or more 1-simplices (line segments), which are denoted by M

(2:1)
i , where

i = 1, 2, 3, . . ., and an equal number of 0-simplices (points) denoted by M
(2:0)
i .

Similarly, each 1-simplex L(1), has a linear interior and is bounded by two
0-simplices, denoted as L

(1:0)
1 , L

(1:0)
2 . For a persistent topology, we consider 2-

manifold orientable surface, and hence the constituent 2-simplices intersect each
other only at 0- and 1-simplices.

A pixel is a 2-cell, or equivalently, an axis-parallel unit square centered at
a point in Z

2 [16]. A pixel is this made of four 1-cells (edges) and four 0-cells
(vertices); and hence, a 2D digital straight line (2DSL) or segment (2DSS) can
be 0- or 1-connected. In a 0-connected 2DSL or 2DSS for example, every two
consecutive pixels are 0-adjacent. A voxel is a 3-dimensional extension of a pixel,
and defined as a 3-cell or an axis-parallel unit cube centered at a point in Z

3. It
contains eight 0-cells, twelve 1-cells, and six 2-cells (faces). Two voxels are said
to be k-adjacent (k = 0, 1, 2) if they share a k-cell. Note that this notion of 0-,
1-, and 2-adjacencies is equivalent to the notion of 26-, 18-, and 6-neighborhoods
used in [8].

Let p(xp, yp, zp) and q(xq, yq, zq) be two 0-simplices or ordinary points in R
3.

The x-distance, y-distance, z-distance between them are denoted by fx(p, q) :=
|xp −xq|, fy(p, q) := |yp −yq|, and fz(p, q) := |zp −zq|, respectively, and are used
to define the isothetic distance between them as follows.

Definition 1. The 0-0 or inter-point isothetic distance between p and q is
defined as

f⊥(p, q) = max{fx(p, q), fy(p, q), fz(p, q)}. (1)

The axis-parallel box with p and q as two endpoints of its principal diagonal is
called the isoBox of p and q, and denoted by B(p, q).

Note that f⊥(p, q) is basically the L∞ or Chebyshev norm between two points
p and q [16]. Geometrically, it is the maximum length over the three sides of their
isoBox. We extend Eq. 1 to define and characterize the isothetic distance between
two higher-order geometric primitives like points/0-simplices, line segments/1-
simplices, triangles/2-simplices, and between two set of simplices. As a general-
ization, we now introduce the following definition.

Definition 2. For m,n ∈ {0, 1, 2}, the m-n or inter-simplex isothetic dis-
tance between two simplices M (m) and N (n) is defined as

f⊥
(
M (m), N (n)

)
= min

{
f⊥(p, q) :

(
p ∈ M (m)

) ∧ (
q ∈ N (n)

)}
. (2)

Characterization and Decomposition of Isothetic Distance 215

Note that for an orientable 2-manifold surface, the isothetic distance between
two 2-simplices is zero if and only if they are adjacent, i.e., they share a 0- or
a 1-simplex. The possible cases arising during the computation of triangle-to-
triangle and other types of inter-simplex distance are discussed in Sect. 3.

3 Characterization of Isothetic Distance

We start with the following observation.

Observation 1. All three axis-parallel distances and hence the isothetic dis-
tance of a fixed point p from a variable point on a line in R

3 are convex contin-
uous functions having their minimums at finite points.

Proof. Let the line be L = a+(b−a)t, where t ∈ R, and let a and b be two fixed
and distinct points on L. For brevity, let xab = xa −xb, xba = xb −xa, etc. Then
the x-distance function fx(p, q) := |xpq| between p and q(t) ∈ L can explicitly
be written as

fx(p, q) =
{

xpa − t · xba if t � xpa

xba

xap + t · xba otherwise.
(3)

Hence, fx(p, q) is a piecewise linear function with a global minimum at t = xpa

xba
.

The other two functions fy(p, q) := |ypq| and fz(p, q) := |zpq| can be shown to
be of the same nature in a similar way. Figure 1 shows an example. Since the
maximum of two (or more) continuous functions is continuous, and the maximum
of two convex functions is convex, the proof follows. ��

Observation 1 can be extended for the isothetic distance between a fixed
point and a variable point on a 3D plane or on a 2-simplex. This is in fact true
when both the points are allowed to vary on the simplices. We have the following
observation for this.

Observation 2. The axis-parallel and the isothetic distance functions defined
for two variable points lying on two k-simplices, k ∈ {0, 1, 2}, are continuous,
convex, and piecewise linear.

We now do a characterization of isoBox and corresponding isothetic distance
between 0- and 1-simplices. We use the following lemma for this.

Lemma 1. Let L be a straight line and p be a point in R
3. Let q be a point in

L such that f⊥(p, q) = f⊥(p, L). Then at least two among fx(p, q), fy(p, q), and
fz(p, q) are equal in value.

Proof. Let, w.l.o.g., f⊥(p, q) = fx(p, q). From the definition of isothetic distance,
fx(p, q) � fy(p, q) and fx(p, q) � fz(p, q). If fx(p, q) is strictly greater than both
fy(p, q) and fz(p, q), then we can still move q on L so as to reduce it further
until it becomes equal with fy(p, q) or fz(p, q). This happens as each of fx(p, q),
fy(p, q), and fz(p, q) is a convex continuous function (Observation 1). ��

216 P.K. Bhunre et al.

Fig. 1. Two possible cases of 0-1 (p-to-L) isothetic distance. Here, the endpoints of L
are a = (5.2, 5.0, 4.8) and b = (4.6, 6.0, 5.2) with respective parameter values t = 0 and
1. The variable point q lies on L. (a) Case 1: p = (4.2, 4.8, 5.4). The isoBox has two of
its sides equal and larger in length than the third, which implies it touches an interior
point t = 0.5 := (4.9, 5.5, 5.0) of the line L. (b) Case 2: p = (5.6, 4.2, 5.4). All three
axis-parallel distances from p to L are different, which means the isoBox touches L at
one endpoint. As shown in the plots, f⊥(p, L) = 0.7 in (a) and 0.8 in (b).

When L is a finite line segment, Lemma 1 implies that there may not exist an
interior point q in L at which two axis-parallel distances are of the same value;
the isothetic distance in such case occurs at an endpoint of L. Figure 1 illustrates
these two cases. In particular, we have the following theorem.

Theorem 1. Let a and b be the endpoints of a line segment L, and p be a point
in R

3. If q is an interior point in L such that f⊥(p, q) = f⊥(p, L), then at least
two of the axis-parallel distances between p and q are equal in value; otherwise,
the isothetic distance occurs when q coincides with either a or b.

Proof. Let L′ be the straight line containing the segment L. Let q be a point
in L′ such that f⊥(p, q) = f⊥(p, L). If q is a point in L, then by Lemma 1,
the theorem holds. If q lies in L′

�L, then we can move q on L′ to the effect
that f⊥(p, q) increases continuously (Observation 1) until q coincides with an
endpoint of L. This completes the proof. ��

Theorem 1 can be extended to higher-order simplices as well, and is stated
in the following theorem.

Theorem 2. If p and q are two points in M (m) and N (n) respectively, such that
either p or q is an interior point and f⊥(p, q) = f⊥(M (m), N (n)), then at least
two of the axis-parallel distances between p and q are equal in value.

Characterization and Decomposition of Isothetic Distance 217

Proof. We prove by contradiction. If possible, let p be an interior point in M (m)

such that, w.l.o.g., f⊥(M (m), N (n)) = fx(p, q) > fy(p, q) > fz(p, q). As p lies in
the interior of M (m), there exists a sufficiently small neighborhood Xε(p) of p in
M (m). As the distance functions are all linear and continuous (Observation 1),
we always get a point p′ in Xε(p) such that fx(p′, q) < fx(p, q), which implies
fx(p, q) > f⊥(M (m), N (n)), whence the contradiction. ��

4 Decomposition of Distance Functions

In this section we discuss the algebraic techniques for computing the isothetic
distance between two simplices having same or different order. We denote by B

the isoBox of two simplices under consideration.

4.1 0-1 Distance

Let L(1) be a 1-simplex and p a 0-simplex or point in R
3. Let q(t) = tL

(1:0)
1 +(1−

t)L(1:0)
2 , where t is a real number. Then, by Theorem 1, the function f⊥(p, L(1))

is decomposed into two cases as follows (see Fig. 1).

Case 1. B(p, L(1)) touches a point in L(1)
�

{
L
(1:0)
1 , L

(1:0)
2

}
, which is true if and

only if the following equation has a solution t ∈ (0, 1).

(∣∣xp−xq(t)

∣∣−∣∣yp−yq(t)

∣∣)(∣∣xp−xq(t)

∣∣−∣∣zp−zq(t)
∣∣)(∣∣yp−yq(t)

∣∣−∣∣zp−zq(t)
∣∣) = 0 (4)

Case 2. Equation 4 produces t �∈ [0, 1], which means B(p, L(1)) touches L(1) at
L
(1:0)
1 or at L

(1:0)
2 , and so it reduces to 0-0 distance function, i.e., f⊥(p, L(1)) =

min
{
f⊥(p, L

(1:0)
1), f⊥(p, L

(1:0)
2)

}
.

4.2 0-2 Distance

Let M (2) be a 2-simplex defined by the 1-simplex set M(1) :=
{
L
(1)
i : 1 � i � k

}
and the 0-simplex set M(0) :=

{
qi : 1 � i � k

}
. Clearly, a point q(t) :=

∑k
i=1 tiqi

belongs to the interior of M (2) if and only if {ti}k
i=1 ∈ (0, 1)k and

∑k
i=1 ti = 1.

The distance function f⊥(p,M (2)) between a point p and the simplex M (2) can
be decomposed as follows.

Case 1. The isoBox B(p,M (2)) touches an interior point of M (2), which is
true if and only if at least two of the axis-parallel distances are equal in value
(Theorem 2), or equivalently, the following equation yields {ti}k

i=1 ∈ (0, 1)k with∑k
i=1 ti = 1.
(∣∣xp−xq(t)

∣∣−∣∣yp−yq(t)

∣∣)(∣∣xp−xq(t)

∣∣−∣∣zp−zq(t)
∣∣)(∣∣yp−yq(t)

∣∣−∣∣zp−zq(t)
∣∣) = 0 (5)

Case 2. B(p,M (2)) touches M (2) at one of its 1-simplices, and so reduces to
0-1 function (Sect. 4.1), i.e., f⊥(p,M (2)) = min

L
(1)
i ∈M(1)

{
f⊥(p, L

(1)
i)

}
.

218 P.K. Bhunre et al.

Fig. 2. Decomposition of 1-1 distance into possible cases and sub-cases: isoBox touches
(a) both the line segments at their interiors; (b) one at the interior; (c) both at their
endpoints. Case 1 is solved in the parametric space, while Case 2(i) as 0-1 and Case 2(ii)
as 0-0 distance functions.

4.3 1-1 Distance

Let K(1) and L(1) be two 1-simplices.. Let q(s) = sK
(1:0)
1 + (1 − s)K(1:0)

2 and
r(t) = tL

(1:0)
1 + (1 − t)L(1:0)

2 , where s, t are two real numbers. The distance
function f⊥(p,M (2)) between a point p and the simplex M (2) can be decomposed
as follows (see Fig. 2).

Case 1. The isoBox B(K(1), L(1)) touches the interiors of both the 1-simplices
if and only if, by Theorem 2, the following equation yields (s, t) ∈ (0, 1)2.

(∣∣xq(s) − xr(t)

∣∣ − ∣∣yq(s) − yr(t)

∣∣) (∣∣xq(s) − xr(t)

∣∣ − ∣∣zq(s) − zr(t)

∣∣)
(∣∣yq(s) − yr(t)

∣∣ − ∣∣zq(s) − zr(t)

∣∣) = 0 (6)

Case 2. B(K(1), L(1)) touches one of the 0-simplices, and so reduces to 0-1 func-
tion (Sect. 4.1), i.e., f⊥(K(1), L(1)) = min

i=1,2

{
f⊥(K(1:0)

i , L(1)), f⊥(L(1:0)
i ,K(1))

}
.

4.4 2-2 Distance

Using the result presented in Sects. 4.2 and 4.3, we get the following theorem on
the inter-simplex distance between two 2-simplices.

Theorem 3. For two 2-simplices, there exists an isoBox that does not simulta-
neously touch their interiors.

Proof. We assume that M (2) and N (2) are mutually in general orientation, that is
non-parallel to each other, since otherwise there exist infinitely many positions
of the isoBox B(M (2), N (2)), and the theorem is true for some of them. We prove
by contradiction for the general case. Let, if possible, B(M (2), N (2)) touch M (2)

and N (2) at their respective interior points p and q such that f⊥(M (2), N (2)) =
f⊥(p, q). By Theorem 2, at least two among fx(p, q), fy(p, q), fz(p, q) are equal

Characterization and Decomposition of Isothetic Distance 219

in value. So, let, w.l.o.g., f⊥(p, q) := fx(p, q) = fy(p, q) � fz(p, q). Let Xε(p)
be a sufficiently small neighborhood of p in M (2). Since the axis-parallel dis-
tance functions are linear and continuous (Observation 1), and M (2) and N (2)

are mutually non-parallel, we always get another point p′ ∈ Xε(p) such that
fx(p′, q) < fx(p, q) and fy(p′, q) < fy(p, q), or f⊥(p′, q) < f⊥(p, q), whence the
contradiction. ��
Clearly, by Theorem 3, the isothetic distance between M (2) and N (2) is given by

f⊥
(
M (2), N (2)

)
= min

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
1 � i � m
1 � j � n

{
f⊥

(
M

(2:1)
i , N

(2:1)
j

)}
,

min
1 � i � m

{
f⊥

(
M

(2:0)
i , N (2)

)}
,

min
1 � j � n

{
f⊥

(
N

(2:0)
j ,M (2)

)}

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7)

where, m and n denote the respective number of 1-simplices (and the same of
0-simplices thereof) comprising M (2) and N (2).

Equation 7 shows how the isothetic distance between two 2-simplices (tri-
angles) is computed from the isothetic distances among lower-order simplices.
An illustration of the concept is given in Fig. 3. Notice in particular that the

Fig. 3. Hierarchy of computation of isothetic distance.

220 P.K. Bhunre et al.

computation of 2-2 isothetic distance is quite simplified, since the isoBox never
touches the interior regions of both the triangles in simultaneity, as shown by
us; hence, it has only two possibilities: (i) solving in the parametric space for a
point and the interior of a triangle and (ii) 1-1 isothetic distance. Clearly, the
distance computation between any two simplices down the hierarchy takes O(1)
time, wherefore the 2-2 isothetic distance is done in O(1) time.

4.5 Voxel Size

The inter-simplex isothetic distance determines the voxel unit for voxelization of
a 2-manifold surface. We show some result in Sect. 5. For the underlying theory,
we recall here a few concepts from [3,4,16].

Let A be a set of 3-cells (i.e., voxels), which may be of finite or of infinite
cardinality. For k = 0, 1, 2, a k-path in A is a sequence of voxels in A where every
two consecutive voxels are k-adjacent. If there is a k-path in A between any two
voxels of A, then A is said to be k-connected. A k-component in A is a maximal
k-connected subset of A. If B is a subset of A such that A�B is not k-connected,
then B is said to be k-separating in A; in addition, B is k-minimal if it contains
no k-simple voxel. A k-simple voxel of B is a voxel v such that B�{v} is still
k-separating.

The clearance between two voxel sets A and B is the number of voxels com-
prising a/the shortest 2-path between A and B, discounting the first and the last
voxels. We denote by V(M (2)) the 2-minimal voxel set obtained by voxelization
of M (2), wherefore the distance of each voxel u ∈ V(M (2)) is at most half the
voxel unit from M (2). We use these concepts in the following theorem.

Theorem 4. Let M (2) and N (2) be two 2-simplices in an orientable surface such
that δ := f⊥(M (2), N (2)) > 0. The clearance between V(M (2)) and V(N (2)) is
at least κ voxel units if the voxel length is fixed to s � δ

κ+2 .

Proof. As the voxelization of the 2-simplices is 2-minimal and the voxel unit is
s, the isothetic distance of (the center of) each voxel u ∈ V(M (2)) from M (2) is
at most s

2 , and so also for each voxel v ∈ V(N (2)) from N (2) (see [2]: Theorem 1).
For a clearance of at least κ voxels, the isothetic distance between V(M (2)) and
V(N (2)) is at least κ + 1 voxels, and hence f⊥(M (2), N (2)) � s(κ + 1) + 2 × s

2 ,
or, s � δ

κ+2 . ��
We end this section with a brief discussion on the homeomorphism between

a 2-manifold surface S and the voxel set V(S) given by the union of naive (i.e.,
2-minimal) voxelization of all 2-simplices comprising the surface S. We refer to
a recent work [1] for further details. As shown in [1], by making the voxel size
appropriately small, the following conditions are ensured:

(i) for each real point p lying on the surface S, there exists a voxel v ∈ V(S),
which is sufficiently close to p;

(ii) for each voxel v ∈ V(S), there exists a point p ∈ S, which is sufficiently
close to v.

Characterization and Decomposition of Isothetic Distance 221

Theorem 4 can be used to fix the voxel size while setting up the homeomorphism.
Its practical usefulness is discussed further in Sect. 5.

5 Test Result

Based on the isothetic distance metric, we have designed an algorithm for vox-
elization that takes as input a 2-manifold surface along with the value of the
parameter κ. The algorithm first computes the inter-simplex isothetic distance
for every pair of non-adjacent 2-simplices, using the decomposition technique
discussed in Sect. 4. It uses the minimum (δmin) of these inter-simplex distances,
and based on the specified value of κ, finds the appropriate voxel size s using
Theorem 4. Each 2-simplex (triangle) is then voxelized to its 2-minimal set as
discussed in [4, Sect. 7.3.1].

The algorithm runs in the integer space. This is achieved by scaling up the
input surface by a factor of 1

s . Owing to this, the effective voxel size becomes
unity in the transformed voxel space and the voxelization also retains the
required property of 2-minimality for the voxel set corresponding to each 2-
simplex. This is as per the practice commonly followed in the existing algorithms
[19,21,24,26].

We have shown here our test result on two models, namely cogwheel and
bunny, in Figs. 4 and 5. A summary of result for these two models and a couple of
other models is presented in Table 1. In the figures, we have shown cutout images
for seeing the interiors of the voxelized surfaces. It is clear from these result that
the number of voxels is minimum when κ is set to 1, and with an increasing value
of κ, the voxelized surface improves in size and quality, as the voxel size s becomes
smaller and the number of voxels ns becomes larger, thereby approximating
the surface with a higher resolution and precision. Nevertheless, the resultant
voxelization is always homeomorphic as long as κ � 1. For a low value of κ,
say κ = 1 in cogwheel, there appear some object voxels around the ‘corners’
of the triangle mesh, which may be removed without creating any tunnels in

Table 1. Summary of test result by our algorithm on 3D models.

Cogwheel TorusKnot Bunny Dragon

κ = 1 κ = 2 κ = 5
Object, #tris δmin s ns s ns s ns

Cogwheel, 1k 5.827 1.942 2566 1.457 4615 0.832 13830

TorusKnot, 2k 3.841 1.280 2155 0.960 3669 0.549 10868

Bunny, 5k 19.006 6.335 1624 4.751 2588 2.715 7080

Dragon, 20k 18.739 6.246 2226 4.685 3691 2.677 9740

222 P.K. Bhunre et al.

Fig. 4. Result on cogwheel. Top, Middle: κ = 1. Bottom: κ = 5.

the voxel set. This operation is, however, not permissible under homeomorphism
(Sect. 4.5). For, on removal of any such apparently redundant voxel, there arises
points on the corresponding real triangle which would not have any object voxel
in a sufficiently close neighborhood.

Characterization and Decomposition of Isothetic Distance 223

Fig. 5. Result on bunny (κ = 5).

6 Conclusion

We have shown how isothetic distance can be decomposed into lower-order dis-
tances, which eventually aids in efficient computation of the distance function for
simplices of different orders. The significance of isothetic distance in voxeliza-
tion has also been theoretically explained and experimentally shown through
different test result. As this technique produces 2-minimal voxelization of a 2-
manifold surface, it can readily be used for construction of voxel sets for different
applications mentioned in Sect. 1.1.

We plan to explore further with the usefulness of our technique for solv-
ing other digital-geometric problems like curvature and normal estimation on
a voxelized surface. These problems are found to have strong connections with
different application-oriented problems defined on voxel sets, such as ray cast-
ing, shadow generation, and texture creation, which can have efficient solutions
thereof, as we foresee.

Acknowledgments. We are thankful to the reviewers for their critical comments and
suggestions, which helped us in revising the paper up to its merit.

224 P.K. Bhunre et al.

References

1. Bhalla, G., Bhowmick, P.: DIG: Discrete Iso-contour Geodesics for topological
analysis of voxelized objects. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS,
vol. 9667, pp. 265–276. Springer, Cham (2016). doi:10.1007/978-3-319-39441-1 24

2. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesics
paths and circles in Z

3. Theor. Comput. Sci. 605, 146–163 (2015)
3. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial prob-

lems. Discrete Appl. Math. 147, 169–186 (2005)
4. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete

Appl. Math. 155, 468–495 (2007)
5. Brunton, A., Arikan, C.A., Urban, P.: Pushing the limits of 3D color printing: error

diffusion with translucent materials. ACM ToG 35(4), 1–13 (2015)
6. Chandru, V., Monohar, S., Prakash, C.: Voxel-based modeling for layered mani-

facturing. IEEE Comput. Graph. Appl. 15, 42–47 (1995)
7. Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D.,

Chen, B.: Dapper: decompose-and-pack for 3D printing. ACM ToG 34(213), 1–12
(2015)

8. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models
Image Process. 57(6), 453–461 (1995)

9. Desimone, J., Ermoshkin, A., Samulski, E.: Method and apparatus for three-
dimensional fabrication, US Patent 20140361463 (2014)

10. Dionne, O., de Lasa, M.: Geodesic voxel binding for production character meshes.
In: Proceedings of SCA 2013, pp. 173–180 (2013)

11. Dumas, J., Lu, A., Lefebvre, S., Wu, J., Dick, C.: By-example synthesis of struc-
turally sound patterns. ACM ToG 34(137), 1–12 (2015)

12. Fei, Y., Wang, B., Chen, J.: Point-tessellated voxelization. In: Proceedings of
Graphics Interface, GI 2012, pp. 9–18 (2012)

13. Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing
polygon meshes. In: Proceedings of 1998 IEEE Symposium, VVS 1998, pp. 119–126
(1998)

14. Kämpe, V., Sintorn, E., Assarsson, U.: High resolution sparse voxel DAGs. ACM
ToG 32(101), 1–13 (2013)

15. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based vox-
elization algorithm. J. Graph. Tools 4, 5–10 (1999)

16. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

17. Koa, M.D., Johan, H.: ESLPV: enhanced subsurface light propagation volumes.
Vis. Comput. 30, 821–831 (2014)

18. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized shapes and digital surface
integration. JMIV 54(2), 162–180 (2016)

19. Laine, S.: A topological approach to voxelization. Comput. Graph. Forum 32,
77–86 (2013)

20. Laine, S., Karras, T.: Efficient sparse voxel octrees. In: Proceedings of ACM SIG-
GRAPH Symposium, I3D 2010, pp. 55–63 (2010)

21. Laine, S.: System, method, and computer program product implementing an algo-
rithm for performing thin voxelization of a three-dimensional model, US Patent
9,245,363 (2016)

22. Lozano-Durán, A., Borrell, G.: Algorithm 964: an efficient algorithm to compute
the genus of discrete surfaces and applications to turbulent flows. ACM Trans.
Math. Softw. 42(34), 1–19 (2016)

http://dx.doi.org/10.1007/978-3-319-39441-1_24

Characterization and Decomposition of Isothetic Distance 225

23. Niebner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruction
at scale using voxel hashing. ACM ToG 32(169), 1–11 (2013)

24. Pantaleoni, J.: VoxelPipe: a programmable pipeline for 3D voxelization. In: Pro-
ceedings of ACM SIGGRAPH Symposium, HPG 2011, pp. 99–106 (2011)

25. Prakash, C., Manohar, S.: Volume rendering of unstructured grids–a voxelization
approach. Comput. Graph. 19, 711–726 (1995)

26. Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on GPUs.
ACM ToG 29(179), 1–10 (2010)

27. Sintorn, E., Kämpe, V., Olsson, O., Assarsson, U.: Compact precomputed voxelized
shadows. ACM ToG 33(150), 1–8 (2014)

28. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D
object and the reconstruction of its digital image. IEEE TPAMI 29(1), 126–140
(2007)

29. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital sur-
faces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.)
DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi:10.1007/
978-3-319-09955-2 28

30. Vidimče, K., Wang, S.P., Ragan-Kelley, J., Matusik, W.: OpenFab: a program-
mable pipeline for multi-material fabrication. ACM ToG 32(136), 1–12 (2013)

31. Wu, J., Dick, C., Westermann, R.: A system for high-resolution topology optimiza-
tion. IEEE TVCG 22, 1195–1208 (2016)

32. Wyman, C.: Voxelized shadow volumes. In: Proceedings of ACM SIGGRAPH Sym-
posium, HPG 2011, pp. 33–40 (2011)

33. Zhang, J.: Speeding up large-scale geospatial polygon rasterization on GPGPUs.
In: Proceedings ACM SIGSPATIAL, HPDGIS 2011, pp. 10–17 (2011)

34. Zhang, L., Chen, W., Ebert, D.S., Peng, Q.: Conservative voxelization. Vis. Com-
put. 23, 783–792 (2007)

35. Zhao, S., Hašan, M., Ramamoorthi, R., Bala, K.: Modular flux transfer: effi-
cient rendering of high-resolution volumes with repeated structures. ACM ToG
32 (2013). Article No. 131

36. Zhou, Y., Sueda, S., Matusik, W., Shamir, A.: Boxelization: folding 3D objects
into boxes. ACM ToG 33(71), 1–8 (2014)

37. Zollhofer, M., Dai, A., Innmann, M., Wu, C., Stamminger, M., Theobalt, C.,
Niebner, M.: Shading-based refinement on volumetric signed distance functions.
ACM ToG 34(96), 1–14 (2015)

http://dx.doi.org/10.1007/978-3-319-09955-2_28
http://dx.doi.org/10.1007/978-3-319-09955-2_28

Theory and Applications: Image
Segmentation, Classification,

Reconstruction, Compression, Texture
Analysis, and Bioimaging

Topological Data Analysis for Self-organization
of Biological Tissues

M.J. Jimenez1(B), M. Rucco2, P. Vicente-Munuera3,4, P. Gómez-Gálvez3,4,
and L.M. Escudero3,4

1 Departamento Matematica Aplicada I, Universidad de Sevilla,
Campus Reina Mercedes, 41012 Sevilla, Spain

majiro@us.es
2 School of Science and Technology, Computer Science Division,

University of Camerino, Camerino, Italy
matteo.rucco@unicam.it

3 Departamento de Bioloǵıa Celular, Universidad de Sevilla, Sevilla, Spain
{pvicente1,pgomez-ibis,lmescudero-ibis}@us.es

4 Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Roćıo,
CSIC, Universidad de Sevilla, 41013 Sevilla, Spain

Abstract. In this paper we propose a method to topologically analyze
segmented images of cells in a biological tissue. This is a mainly exper-
imental paper in which we present initial results of applying persistent
homology computation to characterize cell organization. For that aim,
a graph is constructed to model the cell organization and a simplicial
complex is derived from such a graph. Then a filter function is designed,
on the simplicial complex, that reflects neighbouring relations on cells
as well as their size. Finally, persistent homology and persistent entropy
are computed and the results are analyzed.

Keywords: Cell organization · Persistent homology · Bottleneck dis-
tance · Persistent entropy

1 Introduction

Topological Data Analysis (TDA) has got its main motivation in the study
of shape of data. The core concept of computational topology that is used to
analyse shapes is homology. Homology is an algebraic concept which is a topo-
logical invariant of the space. Roughly speaking, homology characterizes “holes”
in any dimension (in the case of a 3D space, connected components, tunnels and
cavities). The main tool used in TDA, however, is persistent homology [7,22],

M.J. Jimenez—Partially supported by Ministerio de Economı́a y Competitividad de
España under grant MTM2015-67072-P.
P. Vicente-Munuera, P. Gómez-Gálvez and L.M. Escudero—Part of this work was
supported by Ramon y Cajal program (PI13/01347); two grants from “Fundacion
Asociacion Española contra el Cancer” and “Universidad de Sevilla”; BFU2016-
74975 grant from the Spanish government.

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 229–242, 2017.
DOI: 10.1007/978-3-319-59108-7 18

230 M.J. Jimenez et al.

which studies the evolution of homology classes and their life-times (persistence)
in an increasing nested sequence of spaces (that is called a filtration) and which
is more informative that the homology class of the whole space.

Persistent homology has proved to be a useful tool in the study of shape
analysis (in [12] some trends are described). For example, in the paper [4] the
authors deal with the application of persistent homology for comparing 3D
shapes represented by triangle meshes, or in [15], an algorithm for applying
persistent homology to activity recognition is designed. However, as far as we
know, there are no applications to organizational study of biological tissues using
persistent homology, so far.

We are concerned with a specific application of persistent homology to the
analysis of organizational aspects of biological cells in a tissue. As a first step,
we deal, in this paper, with the topological analysis of some epithelia samples as
well as a group of synthetic images that are usually considered (in the biological
context) as a reference scale to study self-organization.

Our main contribution is the introduction of persistent homology as a tool
for the analysis of cell organization in biological tissue images.

In the following Section, we describe the biological problem that motivated
this work. Section 3 recalls main concepts from TDA that will be used in the
sequel. Section 4 describes the particular way in which we make use of persis-
tent homology concepts to topologically analyze the input data. Reports on the
computations performed as well as some conclusions are collected in Sect. 5. We
draw some ideas for future work in the last section.

2 Motivation

The embryo of any animal is constituted by epithelial cells which will undergo
lots of transformations through development to acquire the specific functions and
shapes of the 4 types of adult tissues (epithelia, connective tissue, nervous tissue
and muscle tissue). Epithelia are packed tissues formed by tightly assembled
cells. Their apical surfaces are shaped as convex polygons forming a natural
tessellation of cells that fill the exterior of the epithelium without leaving any
empty space. Epithelial organization has been analyzed in various systems from
a topological and biophysical perspective [11,13,19,20]. These studies have been
mainly based in the analysis of the polygon distribution of the tissues.

Recently, some of the authors have used Voronoi tessellations as a geometrical
tool to understand the physical constraints that drive the organization of bio-
logical tissues [21]. They described a “Centroidal Voronoi Tessellation” (CVT)
path formed by successive Lloyd iterations of a random Voronoi diagram, and
showed that the CVT became predictive of the polygon distribution of the nat-
ural packed tissues [19]. They found that packed tissues are under a physical
constraint that drives its self-organization.

We consider that understanding how tissues are organized is key to uncover
the causes and mechanisms of developmental and pathological variations. For
this reason we want to go beyond of a mere quantification of polygon distribu-
tions and capture the organization of a tessellation in a more complete manner.

TDA for Self-organization of Biological Tissues 231

We propose the use of persistent homology as a tool to topologically analyse data
coming from tessellations with the goal of characterising epithelial organization
under different biological conditions.

3 Background

We can always consider that the input data is a point cloud on the euclidean
plane that corresponds to centroids of regions or polygons that partition the
plane. Hence, those points are endowed with information of “neighbour” points,
corresponding to neighbour regions or polygons. By considering the graph from
such a set of vertices and edges, one can, in fact, construct a simplicial complex.

Intuitively, a simplicial complex is a representation of a topological space by
decomposing it into simple pieces such that their common intersections are lower-
dimensional pieces of the same kind, what allows the use of a data structure that
is easily treated computationally.

Simplicial complex. A simplicial complex K is given by:
– a set V of vertices or 0–simplices;
– for each d ≥ 1 a set of d–simplices {σ = {v0, v1, . . . , vd}, where vi ∈ V };
– each d–simplex has d + 1 faces obtained by removing one of the vertices;
– if σ belongs to K, then all the faces of σ must belong to K.

Homology. Homology groups are defined from the algebraic structure endowed
to the set of d-simplices: chain complexes. The set of groups {Cd(K)}d where
each Cd(K) is the group (with Z2 coefficients) of d-chains generated by all the
d-simplices of K, and a set of homomorphisms {∂d : Cd(K) → Cd−1(K)}d,
describing algebraically the boundary of d-chains (boundary operators). A d-
chain c such that ∂(c) = 0 is a d-cycle and it is a d-boundary if there exists
a (d + 1)-chain c′ such that ∂(c′) = c. This way, the d–dimensional homology
group Hd(K) is the group of d-cycles modulo the group of d-boundaries. The
d–th Betti number βd(K) is the rank of the d–dimensional homology group
Hd(K). Informally, for a fixed d, the d–th Betti number, βd counts the number
of d–dimensional holes characterizing the space: β0 is the number of connected
components, β1 counts the number of holes in 2D or tunnels in 3D1, β2 can
be thought as the number of voids in geometric solids. See [14] or [16] for an
introduction to algebraic topology.

Persistent homology. Persistent homology is a method that was created origi-
nally for computing d–dimensional holes (d–holes) at different spatial resolutions.
For a more formal description we refer the reader to [6]. In order to compute
persistent homology, we need a filtration on the simplicial complex, that is a
nested sequence of increasing subcomplexes. More formally, a filtered simpli-
cial complex K is a collection of subcomplexes {K(t) : t ∈ R} of K such that
K(t) ⊂ K(s) for t < s and there exists tmax ∈ R such that Ktmax

= K. The

1 nD refers here to the n–dimensional space R
n.

232 M.J. Jimenez et al.

filtration time (or filter value) of a simplex σ ∈ K is the smallest t such that
σ ∈ K(t).

Persistent homology describes how the homology of K changes along the fil-
tration. A d–dimensional Betti interval, with endpoints [tstart, tend), corresponds
to a d–dimensional hole that appears at filtration time tstart and remains until
time tend. We refer to the holes that are still present at t = tmax as persistent
topological features, otherwise they are considered topological noise [1]. The set
of intervals representing birth and death times of homology classes is called the
persistence barcode associated to the corresponding filtration. In the case of an
interval with no death time, we consider the interval [tstart , m) in the persis-
tence barcode, where m = tmax+1. We call d–barcode to the persistence barcode
encoding the persistence of d-holes (corresponding to d–dimensional homology
classes).

Instead of bars, we sometimes draw points in the plane such that a point
(x, y) ∈ R

2 (with x < y) corresponds to a bar [x, y) in the barcode. This set of
points is called persistence diagram.

Bottleneck distance. The Bottleneck distance is used as a metric on the space
of persistence diagrams. The bottleneck distance between the persistence dia-
grams D1 and D2 is: dB(D1,D2) = infγ supa{||a − γ(a)||∞}, where, for points
a = (x, y) and γ(a) = (x′, y′), ||a − γ(a)||∞ = max{|x − x′|, |y − y′|} and the
bijection γ : D1 → D2 can associate a point off the diagonal with another on or
off the diagonal2. See [6, p. 229].

Persistent entropy. Persistent entropy is defined as the Shannon entropy of
the persistence barcode of a given filtration [5,17]. Given a filtered simplicial
complex {K(t) : t ∈ R}, and the corresponding persistence diagram D = {ai =
(xi, yi) : i ∈ I} (being xi < yi for all i ∈ I), the persistent entropy H of the
filtered simplicial complex is calculated as follows:

H = −
∑

i∈I

pi log(pi)

where pi = �i
L , �i = yi − xi, and L =

∑
i∈I �i. In [18] the authors made use of

persistent entropy to successfully classify the signal of DC motors and, what is
more important, they proved the stability of persistent entropy for piece-wise
linear functions.

4 Methodology

In this section we describe the methodology applied to topologically study the
organization of cells. Roughly speaking, we mean to capture organizational infor-
mation of the cells in a tissue by looking at the evolution of connected compo-
nents and holes as we add cells of increasingly higher number of neighbours (see
Fig. 1). For such aim, we need to model the data by a simplicial complex for
defining later a filter function on the simplices.
2 Diagonal is the set of points {(x, x)} ⊂ R

2.

TDA for Self-organization of Biological Tissues 233

Fig. 1. The cells are added increasingly (left to right, top to bottom) according to their
number of neighbours.

4.1 Modelling Data by Weighted Graphs

The input data could be seen as a map of regions (cells) in the plane. We can
consider the centroid of each cell, together with the information of the neigh-
bours of each cell. Then, naturally we have got the graph whose vertices are the
centroids and whose edges are determined by each pair of neighbouring centroids
(that is, those of neighbouring cells). See Fig. 2, left and center pictures.

If we assume that there are no four mutually adjacent neighbours, the result-
ing graph would be a triangulation of the convex hull of the set of centroids
in the plane. In such a case, a Delaunay complex could be considered, induced
by such graph. However, in practice, there are cases in which four regions are
considered to be neighbours, so those four vertices would form a 4-clique and
hence the corresponding simplicial complex (induced by the initial graph) would
have, eventually, a 3-simplex.

Since it would be interesting to get information of the organization of differ-
ent polygonal cells (triangles, squares, pentagons,...) within the tissue, we endow
each vertex of the graph with a weight that corresponds to the number of neigh-
bouring cells. Such amount will coincide with the degree of the vertex in the
graph in the cases of vertices representing no-boundary cells (see Fig. 2, right).

Fig. 2. Left: Segmented cells from a tissue image. Center: Graph constructed out of
the centroids of the segmented cells. Right: Weights assigned to each vertex, encoding
the number of neighbouring cells. This value coincides with the degree of the vertex,
except for those points lying on the boundary (in red). (Color figure online)

234 M.J. Jimenez et al.

However, in an attempt to capture as much information as possible of the orga-
nization, we also order the cells having the same number of neighbours by size.
This ordering will provide, in fact, a filter function on the simplicial complex,
that will allow persistent homology computation.

4.2 Persistent Homology Computation

The steps for persistent homology computation are the following ones:

1. Consider the simplicial complex K induced by the graph representing neigh-
bouring relations of cells, with set of vertices V = {v1, . . . , vm}.

2. Define a filter function f : K → R. First, define the filter value on each vertex,
f(vi). Then, extend the filter value to the rest of simplices σ in K, such that

f(σ) = max{f(v)|v ∈ σ}.

This filter function has been designed so that information of both aspects:
the polygon distribution as well as the role of the size of the cells within their
self-organization, take part in the computation.

3. Now, consider the lower-star filtration of f (see [6, p. 135]). Recall that the
lower star of vi is the subset of simplices for which vi is the vertex with
maximum function value,

St vi = {σ ∈ St vi : x ∈ σ ⇒ f(x) ≤ f(vi)},

where St vi, is the star of a vertex vi, which is the set of simplices in K for
which vi is a face. The considered filtration is the lower-star filtration of f :
∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kr = K, in which Ki is the union of the first i lower
stars.

4. Persistent barcodes and persistent entropy are computed.

5 Experiments

Two different natural images have been taken to be analyzed: chick neuroep-
ithelium (cNT1-cNT16) from chicken embryos and wing imaginal disc in the
prepupal stage (dWP1-dWP16) from Drosophila. A detailed description of the
protocol for obtaining the images can be found in [9,10,19]. The area of 1 pixel is
3.78× 10− 3µm2. A region of interest was selected for each image, and the cells
that border the ROI were excluded. Likewise, each cell included in ROI not lying
on the border of the picture was considered as a valid cell. Images were processed
modifying the bright contrast, and they were segmented using segment.sci soft-
ware [10]. A post-curation process was carried out by visual inspection correcting
boundaries with Photoshop CS2 and processed images were exported to BMP
files with 2 pixel wide cell outline. See Fig. 3 as one examples of each type of
tissue.

Besides, a group of synthetic images have also been used for experiments.
They are the so-called Voronoi diagrams in CVT path [19]. In fact, we have

TDA for Self-organization of Biological Tissues 235

Fig. 3. Samples of cNT (left) and dWP (right) segmented images.

Fig. 4. Samples of two Voronoi images: a Voronoi1 on the left; a Voronoi5 on the right.

taken as input a variation of CVT standard path called CVT noise path. This
CVT noise path is similar to CVT standard path in proportion of sides in first
20 diagrams. However, as the number of iterations increases, the proportion of
hexagons in CVT path is stabilized at while CVT noise path hexagons percent-
age breaks the 90% wall. The development process of CVT noise path is the
same than CVT path modifying the fact in which seeds taken for next iteration
diagram are not strictly the centroid regions. So we chose a region of 5 pixels of
ratio from centroid region position where seeds could be located randomly. This
noise is only included in even iterations, stabilizing the system in odd iterations
applying the original Lloyd algorithm. We will call this set of images, Voronoi
images (see Fig. 4). The iterations considered (from 20 different initial random
sets of points) are: iterations 1 to 10, 20, 30, 50, 100, 300 and 700. So we will
denote ImageXXX-VoronoiYYY to the image number XXX within the group of
YYY-th iteration of Lloid algorithm.

5.1 Implementation

In order to perform the computational experiment we have coded the algorithm
that implements the procedure represented in Fig. 2. Generally speaking, the
algorithm aims to transform a biological picture already segmented in cells into
a weighted graph. Finally, the graph is completed to a filtered simplicial complex
that is studied by persistent homology and persistent entropy.

Our input Matlab file contains the following variables: a list of the identifiers
of valid cells, a list of the identifiers of all the cells, i.e. valid cells and not valid

236 M.J. Jimenez et al.

cells, a list of the identifiers of the neighbors of each cell, and for each cell its
area measured in squared pixels computed from the original image space.
For each input image:

– Map a valid cell to a vertex. For each vertex vi, compute a weight function
f described in Subsect. 4.2 as a filter function. This way, in our experiments,
we have used two different filter functions:

f1(vi) = Area of the cell represented by vi,

to order the cells in terms of their areas, and

f2(vi) = Number of neighbors +
area of the cell − 1

maximum area among the cells
,

to order the cells by the number of neighbors and the cells with the same
number of neighbors, by their area.

– For each filter function, f = f1, f2:
• Fill the adjacency matrix between vertices. For each edge ei,j between

vertex vi and vertex vj compute the following weight function:

f(ei,j) = max{f(vi), f(vj)}.

• List all the maximal cliques of dimension k ≥ 3 from the weighted graph by
using the Eppstein algorithm [8]. We remark that degeneracy-based Epp-
stein algorithm has a computational complexity of Θ(d(n − d)3

d
3), where

d is the degeneracy of the graph and n is the number of maximal cliques.
* For each maximal clique do a tessellation with triangles, now the clique

is a set of triangles {t1, t2, . . . , tn}.
* For each triangle tl ∈ {t1, t2, . . . , tn} that is composed by the set of

edges {ei,j , ei,k, ej,k} compute the following weight function:

f(tl) = max{f(ei,j), f(ei,k), f(ej,k)}

• For each clique ci compute the following weight function:

f(ci) = max{f(t1), f(t2), . . . , f(tn)}

• Build a filtered simplicial complex that contains the weighted vertices of
the graph as filtered 0-simplices, the weighted edges as filtered 1-simplices,
the weighted triangles as filtered 2-simplices, and the weighted k-cliques as
filtered k − 1-simplices.

• Compute i-barcodes for i = 0, 1, of the resulting filtered complex and save
birth and death times for each persistent homology class.

• Export the intervals forming the i-barcodes to separate text files.
• For each i-barcode compute persistent entropy (PE): PEi(f).

TDA for Self-organization of Biological Tissues 237

Given a set of images, we are initially interested in comparing both the entropy
and the barcodes themselves. In order to compare the persistent entropies we
normalized them for each image as follows

PEi(f) =
PEi(f)

log(number of bars in the barcode)
,

as it is suggested in [2]. That way, all the entropy values lie in [0, 1].
Moreover, from the text file, we compute the pair-wise Bottleneck distance

matrix among the barcodes, see for example Fig. 5.
The computational experiment has been coded in Matlab R2016a and the

java package JavaPlex has been used for computing persistent homology [1]. The
code for computing the Bottleneck distance has been written by Miro Kramar
and it can be freely downloaded3. The code for listing all the maximal cliques has
been written by Darren Strash and it can be freely downloaded4. The experiment
is executed on the following laptop: Asus G752VY, equipped with a CPU Intel
i7@2.60GHz and 32 GB of RAM, the average time for the analysis of a single
image is of the order of 30 s.

Fig. 5. First row: heat maps representing Bottleneck distance between persistence dia-
grams (0-dimensional diagram on the left, 1-dimensional diagram on the right) of all
the samples of cNT and dWP, using filter function f1. Second row: anologous heat
maps corresponding to filter function f2.

3 http://www.wpi-aimr.tohoku.ac.jp/hiraoka labo/miroslav/software/distances-
between-the-persi.html.

4 https://github.com/darrenstrash/quick-cliques.

http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/miroslav/software/distances-between-the-persi.html
http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/miroslav/software/distances-between-the-persi.html
https://github.com/darrenstrash/quick-cliques

238 M.J. Jimenez et al.

5.2 Results

We have computed persistence barcodes from 32 biological images as well as 320
Voronoi images.

First we have computed Bottleneck distances of pairs of persistence diagrams
within each of the two groups using both filter functions f1 and f2. First row of
Fig. 5 shows a heat map to visualize such distances for filter function f1, which
have been normalized with respect to the maximum distance in the group of 32
biological images. Second row shows analogous heat maps for f2. In the latter,
we can appreciate that, for both, 0–dimensional and 1–dimensional persistent
homology, two clusters have been formed precisely corresponding to cNT and
dWP images. However, no such a clear clustering can be visualized in the case
of the filter function that order the cells only by area (f1), so filter function f2
is capturing more characterising properties than f1. Regarding Voronoi images,
neither for dimension 0 or 1 and neither for filter function f1 or f2, there is
any clear information derived from the corresponding heat maps. This means
that persistent homology (via the second filter function) is capturing topological
properties of biological images that are not present in the synthetic ones.

Fig. 6. Persistent entropies PE0 corresponding to the 16 samples of cNT and dWP
images, using filter function f1 (left) and f2 (right).

Table 1. Statistics from biological images.

Group Mean PE0 STD PE0 Mean PE1 STD PE1

cNT (f1) 0.0000496 0.0000128 0.3885337 0.0096051

dWP (f1) 0.0000235 0.0000093 0.3920771 0.0086374

cNT (f2) 0.0004082 0.0000866 0.3936774 0.0078098

dWP (f2) 0.0001950 0.0000562 0.3880369 0.0186688

TDA for Self-organization of Biological Tissues 239

Fig. 7. PE0 values of the 20 Voronoi images of each iteration (1-10, 20, 30, 50, 100,
300, 700) computed over filter function f1 (left) and f2 (right).

Table 2. Statistics from Voronoi images with filter function f1.

Group Mean PE0 STD PE0 Mean PE1 STD PE1

001 0.0000290 0.0000044 0.3765092 0.0174484

002 0.0000210 0.0000030 0.3741915 0.0199586

003 0.0000173 0.0000024 0.3673860 0.0264625

004 0.0000159 0.0000026 0.3647423 0.0261707

005 0.0000137 0.0000021 0.3671967 0.0219497

006 0.0000140 0.0000022 0.3708472 0.0202959

007 0.0000122 0.0000019 0.3699749 0.0181497

008 0.0000129 0.0000019 0.3795762 0.0144121

009 0.0000113 0.0000015 0.3788369 0.0160855

010 0.0000124 0.0000015 0.3842456 0.0164408

020 0.0000116 0.0000012 0.3923878 0.0125203

030 0.0000111 0.0000015 0.3964554 0.0101165

050 0.0000114 0.0000014 0.3988734 0.0076556

100 0.0000113 0.0000011 0.4012543 0.0062276

300 0.0000108 0.0000010 0.3964468 0.0066500

700 0.0000099 0.0000008 0.3972066 0.0071246

Second, we have computed persistent entropy of the persistence 0–barcodes
and 1–barcodes, PE0 and PE1, also for the two groups. Figure 6 shows graphic
representations of values of PE0 obtained with both filter functions f1 (left)
and f2 (right) and we can observe that in the second case, both classes are
better separated by more differentiated values of PE0. This fact does not occur

240 M.J. Jimenez et al.

Table 3. Statistics from Voronoi images with filter function f2.

Group Mean PE0 STD PE0 Mean PE1 STD PE1

001 0.0002572 0.0000194 0.3981657 0.0090901

002 0.0001910 0.0000122 0.3947638 0.0110328

003 0.0001719 0.0000114 0.3943745 0.0128170

004 0.0001618 0.0000114 0.3928436 0.0129756

005 0.0001533 0.0000099 0.3940693 0.0124182

006 0.0001465 0.0000117 0.3954044 0.0108254

007 0.0001448 0.0000119 0.3969867 0.0122664

008 0.0001430 0.0000105 0.3986129 0.0113020

009 0.0001388 0.0000083 0.4030867 0.0128106

010 0.0001389 0.0000084 0.4039906 0.0112654

020 0.0001254 0.0000078 0.4109133 0.0078082

030 0.0001173 0.0000113 0.4142859 0.0075656

050 0.0001015 0.0000060 0.4139179 0.0054006

100 0.0000852 0.0000072 0.4080267 0.0083150

300 0.0000615 0.0000060 0.3824104 0.0087491

700 0.0000506 0.0000056 0.3692338 0.0100102

with values PE1 for any of the two filter functions. Numeric values of mean
and standard deviation collected in Table 1 clarify this idea. Regarding Voronoi
images, a clearer behaviour can be described in the case of filter function f2
(see Fig. 7), where persistent entropy of first iteration is quite higher than the
others and we can observe that, in general, the values decrease as the Voronoi
iteration increases (see also Table 3). So PE0, computed over f2, reveals to be
of topological significance. In the case of f1 one cannot distinguish such a clear
pace, as shown in Table 2. Again, PE1 does not seem to throw any classifying
information (neither for f1 or f2) as it can be deduced from Tables 2 and 3.

6 Conclusions and Future Work

The work developed in this paper is a first step in a persistent-homology-based
topological approach for studying epithelial organization. We have found that
the design of the filter function for persistent homology computation is of great
importance for getting an informative description of the input data. Our method
is able to capture new traits of tissue organization beyond the traditional compar-
ison of polygon distributions used in biology. We have found differences between
cNT and Voronoi1 images at the level of persistent entropy that cannot be
appreciated comparing the cell sides frequencies (which are similar). Something
similar happened when examining dWP and Voronoi5 images. Therefore, we
plan to work on this line to improve the initial results presented here and to set

TDA for Self-organization of Biological Tissues 241

persistent entropy as a reference parameter able to quantify topological aspects
of cell organization. We will also focus our further efforts on implementing a
new version of jHoles algorithm that is a tool for computing persistent homol-
ogy from weighted undirected graphs [3]. The current version of jHoles is based
on the Bron-Kerbosch algorithm that is characterized by a computational com-
plexity in the worst case bounded by O(3

n
3), where n is the number of maximal

cliques. The new version of jHoles will use the Eppstein algorithm instead of
Bron-Kerbosch and it will benefit from a reduced computational complexity.

References

1. Adams, H., Tausz, A.: Javaplex tutorial. Stanford University (2011)
2. Atienza, N., Gonzalez-Diaz, R., Rucco, M.: Persistent Entropy for Separating Topo-

logical Features from Noise in Vietoris-Rips Complexes. arXiv:1701.07857
3. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for under-

standing biological complex networks via clique weight rank persistent homology.
Electron. Notes Theor. Comput. Sci. 306, 5–18 (2014)

4. Cerri, A., Di Fabio, B., Jablonski, J., Medri, F.: Comparing shapes through multi-
scale approximations of the matching distance. Comput. Vis. Image Underst. 121,
43–56 (2014)

5. Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An
entropy-based persistence barcod. Pattern Recogn. 48(2), 391–401 (2015)

6. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2010)

7. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: FOCS 2000, IEEE Computer Society, pp. 454–463 (2000)

8. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs
in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17517-6 36

9. Escudero, L.M., Freeman, M.: Mechanism of G1 arrest in the Drosophila eye imag-
inal disc. BMC Dev. Biol. 7, 13 (2007)

10. Escudero, L.M., Costa Lda, F., Kicheva, A., Briscoe, J., Freeman, M., Babu, M.M.:
Epithelial organisation revealed by a network of cellular contacts. Nat. Commun.
2, 526 (2011)

11. Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of
cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr.
Biol. 17(24), 2095–2104 (2007)

12. Ferri, M.: Progress in persistence for shape analysis (extended abstract). In: Bac,
A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 3–6. Springer, Cham (2016).
doi:10.1007/978-3-319-39441-1 1

13. Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The emergence of geometric
order in proliferating metazoan epithelia. Nature 442(7106), 1038–1041 (2006)

14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
15. Jimenez, M.-J., Medrano, B., Monaghan, D., O’Connor, N.E.: Designing a topo-

logical algorithm for 3D activity recognition. In: Bac, A., Mari, J.-L. (eds.)
CTIC 2016. LNCS, vol. 9667, pp. 193–203. Springer, Cham (2016). doi:10.1007/
978-3-319-39441-1 18

http://arxiv.org/abs/1701.07857
http://dx.doi.org/10.1007/978-3-642-17517-6_36
http://dx.doi.org/10.1007/978-3-642-17517-6_36
http://dx.doi.org/10.1007/978-3-319-39441-1_1
http://dx.doi.org/10.1007/978-3-319-39441-1_18
http://dx.doi.org/10.1007/978-3-319-39441-1_18

242 M.J. Jimenez et al.

16. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley Co., Reading (1984)
17. Rucco, M., Castiglione, F., Merelli, E., Pettini, M.: Characterisation of the idiotypic

immune network through persistent entropy. Proc. ECCS 2014, 117–128 (2016)
18. Rucco, M., Gonzalez-Diaz, R., Jimenez, M.J., Atienza, N., Cristalli, C.,

Concettoni, E., Ferrante, A., Merelli, E.: A new topological entropy-based app-
roach for measuring similarities among piecewise linear functions. Sig. Process.
134, 130–138 (2017)

19. Sánchez-Gutiérrez, D., Tozluoglu, M., Barry, J.D., Pascual, A., Mao, Y., Escudero,
L.M.: Fundamental physical cellular constraints drive self-organization of tissues.
EMBO J. 35, 77–88 (2016)

20. Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc.
Natl. Acad. Sci. U.S.A. 102(9), 3318–3323 (2005)

21. Voronoi, G.F.: Nouvelles applications des paramètres continus à la théorie de
formes quadratiques. J. Für Die Reine Und Angewandte Mathematik 134, 198–287
(1908)

22. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geometry 33(2), 249–274 (2005)

Distance Between Vector-Valued
Representations of Objects in Images
with Application in Object Detection

and Classification

Nataša Sladoje1,2(B) and Joakim Lindblad1,2

1 Centre for Image Analysis, Department of IT, Uppsala University, Uppsala, Sweden
natasa.sladoje@it.uu.se, joakim@cb.uu.se

2 Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia

Abstract. We present a novel approach to measuring distances between
objects in images, suitable for information-rich object representations
which simultaneously capture several properties in each image pixel. Mul-
tiple spatial fuzzy sets on the image domain, unified in a vector-valued
fuzzy set, are used to model such representations. Distance between such
sets is based on a novel point-to-set distance suitable for vector-valued
fuzzy representations. The proposed set distance may be applied in, e.g.,
template matching and object classification, with an advantage that a
number of object features are simultaneously considered. The distance
measure is of linear time complexity w.r.t. the number of pixels in the
image. We evaluate the performance of the proposed measure in tem-
plate matching in presence of noise, as well as in object detection and
classification in low resolution Transmission Electron Microscopy images.

1 Introduction

Fuzzy object representations and related fuzzy image analysis tools show, in
general, very good performance when used to model imprecision of images, [1].
Image objects can be well represented by spatial fuzzy sets; that has shown
to reduce loss of information caused by discretization and hard decisions made
about belongingness of image elements (pixels) to one object exclusively. A vari-
ety of image processing tools applicable to fuzzy representations have been pro-
posed, [2,8–11]. Studies confirm increased precision of a number of shape descrip-
tors if fuzzy object representations are used instead of crisp ones, [4,12–14].

Distance measures, being among the most useful image processing tools, have
also been proposed for fuzzy objects; a detailed overview can be found in [1]. We
have previously suggested a family of fuzzy point-to-fuzzy set distances, which we
utilize to develop state-of-the-art performing distance measures between fuzzy
sets, [7]. They capture both shape and intensity variations of objects into one
distance measure which, as confirmed by performed evaluation, make them well
suited for applications in template matching and classification. They can be
applied to fuzzy segmented objects, but also directly on gray scale image data.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 243–255, 2017.
DOI: 10.1007/978-3-319-59108-7 19

244 N. Sladoje and J. Lindblad

We are aiming at responding to the needs of modern image analysis applica-
tions where single channel object representations are not sufficient and novel
methods that can handle heterogeneous information-rich representations are
needed. Such representations can incorporate information about a variety of
different object properties, and may result from fusion of information coming
from different sources (e.g., simultaneous imaging by different modalities). We
suggest to model each property by a fuzzy set over the image domain, and to cre-
ate a vector valued fuzzy set to store the membership values assigned to a pixel
by each observed fuzzy membership function. Dimension of the representation
is equal to the number of observed features/fuzzy sets.

In this paper we extend the path-based point-to-set distance measure and
related set-to-set distances proposed in [7]. We introduce the concept of a set
distance measure applicable to object representation by vector-valued fuzzy sets
and we evaluate the performance of some examples of such measures in template
matching and object classification. We observe fuzzy sets representing (1) origi-
nal image intensities, (2) smoothed image intensities, and (3) gradient magnitude
map. The combined use of these fuzzy sets enables simultaneous multi-resolution
representation of image data, noise suppression and fine structural analysis.

2 Preliminaries

2.1 Fuzzy Sets

A fuzzy set [16] S on a reference set X is a set of ordered pairs S =
{(x, μS (x)) : x ∈ X}, where μS : X → [0, 1] is the membership function of
the set S .
A crisp set C ⊂ X is a special case of a fuzzy set, defined by its characteristic

function as its membership function: μC(x) =
{

1, for x ∈ C

0, for x ∈ C.

The height of a fuzzy set S is h(S) = max
x∈X

μS (x).

The support of S is supp(S) = {x ∈ X : μS (x) > 0}.
The complement S of a fuzzy set S , is S = {(x, 1 − μS (x)) : x ∈ X}.
A fuzzy point p defined at p ∈ X, also called a fuzzy singleton, with height
h(p) is defined by a membership function

μp(x) =
{

h(p), for x = p
0, for x �= p.

2.2 Distance Transforms and Path-Based Distances

The (internal) Distance transform (DT) of a crisp set A ⊂ X is

DT[A](x) = min{d(x, y) : y ∈ A}.

Most often used point-to-point distance d is the Euclidean distance. In this
paper we use its squared version.

Distance Between Vector-Valued Fuzzy Representations 245

The Fuzzy distance transform [11] (FDT) of a fuzzy set A is

FDT[A](x) = min{dA(x, y) : y ∈ supp(A)}. (1)

The point-to-point distance dA in (1) is commonly a path-based distance.
The path-based distance (a.k.a. shortest path distance) between two points
in X is the length l of a shortest path connecting them:

d(p, q) = min
π(p,q)

l(π(p, q)).

In the discrete case, a path π between grid points p and q, is a sequence of
adjacent grid points, π : p = r1, r2, . . . rn−1, rn = q, with respect to a given
adjacency relation. The length of a path is commonly computed as a sum of
weighted local steps,

l(π(p, q)) =
n−1∑
i=1

w(ri, ri+1)d(ri, ri+1), (2)

where d is a distance between adjacent grid points [3] and w(ri, ri+1) is some
non-negative cost function. The approach used in this paper is defined in [11].
We use

w(ri, ri+1) =
1
2
(
μA(ri) + μA(ri+1)

)
in (2) to define a path-based-distance dA(p, q) between points p and q in a
fuzzy set A. As shown in [11], dA(p, q) is a metric on the support of a fuzzy
set A.

2.3 Path-Based Point-to-Set Distances

Two path-based point-to-set distances, exhibiting several good properties, are
introduced in [7]. The inwards path-based distance is zero as soon as the height
of the point is not larger than the membership function of the set at the same
position. The bi-directional path-based point-to-set distance is zero if and only
if the height of the point is the same as the membership function value of the
set at that position. Illustrative “definitions” are given in Fig. 1, where the cost
of a path between the point and the set is indicated (red/striped area) and its
suitable measure represents the desired distance.
Formal definitions of the distances follow.

For a fuzzy point p with height h(p) and a fuzzy set S with membership
function μS , let us denote with Dp,S the fuzzy set with membership function

μDp,S = max{0, h(p) − μS}. (3)

Definition 1 ([7]). The inwards path-based point-to-set distance between a
fuzzy point p and a fuzzy set S , where h(p) ≤ h(S), is

dπ(p, S) = FDT[Dp,S](p). (4)

246 N. Sladoje and J. Lindblad

Fig. 1. Illustration of distance between a fuzzy point p with height h(p)=0.5 (shown
as a vertical stick reaching membership 0.5 at spatial positions p=1.3 (a) resp. p=2.8
(b)) and a one-dimensional fuzzy set S , with a piecewise linear membership function
(shown in blue). The resp. distance corresponds to the area of the red striped region.
(Color figure online)

Definition 2 ([7]). The bi-directional path-based point-to-set distance between
a fuzzy point p and a fuzzy set S , s.t. min

x∈X
μS (x) ≤ h(p) ≤ h(S), is

d̄π(p, S) = dπ(p, S) + dπ(p, S) = FDT[Dp,S](p) + FDT[Dp,S](p). (5)

FDT is defined according to (1) and FDT[Dp,S] is computed on a fuzzy set with
membership function

μDp,S
= max{0, h(p) − μS} = max{0, μS − h(p)}.

2.4 Distance Between Fuzzy Sets

Distances between sets of points are often based on a point-to-set distance.
Examples include the widely used Hausdorff distance, and the Sum of minimal
distances (SMD) [5,6]. In [7] a family of distances between fuzzy sets is defined
based on different fuzzy point-to-fuzzy set distances. For this study, the most
relevant set distance measure is the one based on SMD with path-based point-
to-set distances (4) and (5). We take the definition from [7].

For a given fuzzy set A, let A(x) indicate the fuzzy point at x ∈ X with
height equal to μA(x).

Definition 3 ([7]). The sum of minimal distances (SMD) between fuzzy sets
A and B, based on a point-to-set distance d∗ ∈ {dπ, d̄π}, is

d∗
SMD(A,B) =

1
2

(∑
x∈X

d∗(A(x),B) +
∑
x∈X

d∗(B(x),A)
)

.

3 Novel Point-to-Set Distances for Vector-Valued Fuzzy
Sets

When representing an image with a spatial fuzzy set, the membership function
reflects spatial distribution of some observed property over the image domain.

Distance Between Vector-Valued Fuzzy Representations 247

Each pixel in the underlying grid is assigned the degree to which it exhibits the
particular property. Belongingness to the object can be given by the original
gray level map, and/or different fuzzy segmentation techniques can be used to
obtain suitable membership functions (coverage of a pixel by the image object,
connectedness w.r.t. a seed point, edgeness measured as e.g. gradient intensity).
It may be beneficial to observe several of these features simultaneously. In that
case each pixel in the image is assigned a sequence of values – its memberships
to each of the observed fuzzy sets (properties). A convenient way to handle these
values is to use vector-valued membership functions.

Our aim is to develop image analysis tools for such information-rich rep-
resentations. In this study we propose a path-based distance between a vector-
valued fuzzy point and a vector-valued fuzzy set. To define such a distance several
approaches can be followed. A vector-valued fuzzy set can be aggregated to a
single-valued fuzzy set, utilizing some appropriate aggregation principle, which
then allows application of any existing distance measures between fuzzy objects.
An alternative approach is to apply existing distance measures for single-valued
fuzzy objects component-wise, and then aggregate the obtained distances.

We suggest to take an approach in between the two mentioned: instead of
aggregating early (vector-valued sets), or late (component-wise distance mea-
sures), we aggregate the generated distance transform landscapes internally in
the distance measure. We believe that this approach better utilizes the joint
information included in the vector-valued fuzzy representations.

3.1 Vector-Valued Fuzzy Sets

Let us observe n fuzzy sets, S1, S2, . . . , Sn , defined on a reference set X. Let
μSi : X → [0, 1] be the membership function of the fuzzy set Si , for i = 1, 2, . . . , n.

A vector-valued fuzzy set SSS on X, is a set of ordered (n + 1)-tuples

SSS = {(x, μS1(x), μS2 (x), . . . , μSn (x)) : x ∈ X}.

We denote μSSS = (μS1 , μS2 , . . . , μSn). The sequence of values assigned to
x ∈ X by the observed membership functions is denoted by μSSS (x) =
(μS1(x), μS2 (x), . . . , μSn (x)).

A vector-valued fuzzy point ppp at a point p ∈ X, with the (vector-valued)
height h(ppp) = (h1(ppp), h2(ppp), . . . , hn(ppp)), w.r.t. the components of a vector-valued
fuzzy set, is defined by a membership function

μppp(x) =
{

h(ppp) = (h1(ppp), . . . , hn(ppp)), for x = p
0, for x �= p.

The complement of a vector-valued fuzzy set is given by the complement of its
components: SSS = {(x, 1 − μS1(x), . . . , 1 − μSn (x)) : x ∈ X}.

The definitions of the proposed distance measures rely on the following aggre-
gation of the fuzzy distance transform landscape, as a generalization of (3):

248 N. Sladoje and J. Lindblad

For a vector-valued fuzzy point ppp with height h(ppp) and a vector-valued fuzzy set
SSS with membership function μSSS , let us denote with Dppp,SSS the (scalar valued) fuzzy
set with membership function

μDppp,SSS = max{0, h1(ppp) − μS1 , . . . , hn(ppp) − μSn}.

Fig. 2. Illustration of distance between a vector valued fuzzy point ppp with height
h(ppp) = (0.4, 0.7) (shown as a green and blue vertical stick reaching memberships 0.4
and 0.7 at spatial position p=0.2) and a two-component one-dimensional fuzzy set SSS ,
with piecewise linear membership functions S1 and S2 (shown in green and blue). Cf.
Fig. 1(a). (Color figure online)

Using this extension, the inwards and the bi-directional path-based point-to-
set distances follow directly, as generalizations of Definitions 1 and 2.

Definition 4. The inwards path-based point-to-set distance between a vector-
valued fuzzy point ppp and a vector-valued fuzzy set SSS , where hi(ppp) ≤ h(SiSiSi), for
i = 1, 2, . . . , n, is

dπ(ppp, SSS) = FDT[Dppp,SSS](p). (6)

The inwards path based point-to-set distance dπ(ppp, SSS) is illustrated in Fig. 2, for
a two component fuzzy point ppp and set SSS on a 1D reference set on R.

Definition 5. The bi-directional path-based point-to-set distance between a
vector-valued fuzzy point ppp and a vector-valued fuzzy set SSS , s.t. min

x∈X
μSi (x) ≤

hi(ppp) ≤ h(Si), for i = 1, 2, . . . , n, is

d̄π(ppp, SSS) = dπ(ppp, SSS) + dπ(ppp, SSS) = FDT[Dppp,SSS](p) + FDT[Dppp,SSS](p). (7)

4 Distances Between Vector-Valued Fuzzy Sets

The point-to-set distances defined in the previous section can be inserted into
different expressions for set-to-set distances. In this study we insert (7) into the
weighted SMD to define a distance measure between vector-valued fuzzy sets.
For a vector-valued fuzzy set AAA, let AAA(x) indicate the vector-valued fuzzy point
at x∈X, such that hi(AAA(x)) = μAi (x).

Distance Between Vector-Valued Fuzzy Representations 249

Definition 6. Given two weight functions wAAA , wBBB : X → R, the Weighted sum
of minimal distances (wSMD) between vector-valued fuzzy sets AAA and BBB, based
on the point-to-set distance d∗ ∈ {dπ, d̄π}, is

d∗
wSMD(AAA,BBB, wAAA , wBBB) =

1
2

(∑
x∈X

wAAA(x)d∗(AAA(x),BBB) +
∑
x∈X

wBBB(x)d∗(BBB(x),AAA)
)
.

As commented in [7], the symmetric treatment of the two observed sets, pro-
vided by Definition 6, is desired when the involved sets are similar (in the sense
of noise level, size, etc.) This is often the case for, e.g., image registration. How-
ever, in applications such as, e.g., template matching, an asymmetric treatment
of the two sets may be more appropriate.

Definition 7. Given a weight functions wAAA : X → R
+, the asymmetric

Weighted sum of minimal distances from a fuzzy sets AAA to a fuzzy set BBB, based
on the point-to-set distance d∗ ∈ {dπ, d̄π}, is

d∗
−→wSMD(AAA,BBB, wAAA) =

∑
x∈X

wAAA(x)d∗(AAA(x),BBB). (8)

5 Implementation and Complexity Analysis

The Fuzzy Distance Transform is of linear complexity w.r.t. number of pixels,
the same holds for the proposed set distance. A separate distance transform
is required for each combination of membership values present. From a com-
putational point of view, it is often beneficial to compute all required distance
transforms in advance. Remaining computation required for the proposed set
distances then reduces to one or two lookup-table accesses per pixel.

The selection of the number of gray/membership levels to use in object rep-
resentation affects both computational time and performance of the distance
measures. A good balance between gain in information preservation from gray-
levels and loss in speed should be made. It is often beneficial to use a coarser
quantization than what is provided from the input image; intensity variations
which are mainly attributed to image noise do not need to be well preserved. In
Sect. 6.2 we evaluate performance vs. number of membership levels. To further
limit the impact of noise, it may be beneficial to set an upper limit to the point-
to-set-distance by restricting the values of the fuzzy distance transform to the
range [0, dmax]. This circumvents the height requirements in Definitions 4 and 5.

6 Performance Analysis

The proposed distance measures use not only spatial and intensity information,
but allow to incorporate a variety of image features. We illustrate the perfor-
mance of the proposed distance measures between vector-valued fuzzy sets on
examples related to template matching and object classification. We compare
them with the state-of-the-art distance measure proposed in [7].

250 N. Sladoje and J. Lindblad

6.1 Template Matching

We evaluate performance of the proposed distances in template matching,
observing a well known data set. From the Lena image, Fig. 3(a), we cut out the
region corresponding to Lena’s right eye, Fig. 3(b), and use that as a template
which is to be appropriately positioned in the original image. We are particu-
larly interested in the performance in presence of noise. The distance measures
proposed in [7] exhibit relatively high noise-sensitivity; many pixels appear close
to noise (offering all possible membership values). Utilizing more features, even
if extracted from a noisy image, decreases the probability that noise will simul-
taneously provide a suitable match for several features of a pixel. We evaluate
the noise sensitivity of the distance measure in template matching, searching for
a noise free template in an observed image which is heavily corrupted (signal-
to-noise ratio −7.2 dB) by a sum of Gaussian white noise and blurred (σ = 5)
Gaussian noise.

We consider the following components in scalar and vector valued represen-
tations: (i) The intensity values of the observed noisy Lena image, Fig. 3(f);
(ii) The observed image convolved by a Gaussian smoothing filter with σ = 2,
Fig. 3(g); (iii) Gradient magnitude map, Fig. 3(h), (computed from convolutions
with derivative of Gaussian with σ = 1) of the observed image. In Fig. 3(d)–(e)
the corresponding blur and gradient magnitude membership functions of the
template, obtained by blurring and gradient map computation on the noise-free
template (b), are shown. The values in all images are scaled to the interval [0,1]
and considered as membership values of fuzzy sets.

We evaluate separately all combinations of the three observed membership
functions in vector-valued representations (of both template and image), incor-
porating one, two, or all three, values assigned to each pixel. Appropriately for
template matching, we use the asymmetric set distance formulation. Figure 3(c)
shows the weight mask used in asymmetric wSMD, according to Definition 7.
We use dmax = 30. For the special case of a single valued fuzzy representation,
Definition 7 is consistent with the one in [7]. This evaluation therefore enables
direct performance comparison with the corresponding measure presented in [7].

For each observed vector-valued fuzzy representation, the template is trans-
lated over the image and the asymmetric wSMD between the template and the
image is evaluated at each position. This exhaustive evaluation of the search
space, computed using fast convolutions, enables us to draw conclusions on how
gradient based optimization would work on the same task. We observe the num-
ber of regional minima (NoM) in the search space, and the size of the catchment
basin (CB) (region of attraction) of the global minimum relative to the total
size of the search space. A large CB of the global optimum increases probability
that gradient based optimization converges to the correct global optimum.

Results. The first row of Fig. 4 illustrates the performance of the asymmet-
ric wSMD in finding the template when relying on individual (scalar-valued)
fuzzy sets (intensity, I, blurred, B, and gradient magnitude, G). The second row
shows performance when combining two sets (IB, BG, and IG), and the last row

Distance Between Vector-Valued Fuzzy Representations 251

50 100 150 200 250

50

100

150

200

250

(a) Noise free image

5 10 15 20

2

4

6

8

10

12

14

(b) Noise
free template

5 10 15 20

2

4

6

8

10

12

14

(c) Weight
mask

5 10 15 20

2

4

6

8

10

12

14

(d) Blurred
template

5 10 15 20

2

4

6

8

10

12

14

(e) Gradient
magn. of templ.

(f) Observed noisy im-
age, I, SNR=-7 dB

(g) Blurred noisy
image, B

(h) Gradient magnitude
of noisy image, G

Fig. 3. Template matching: (a) Reference Lena image, (b) selected template and (c)
the weight mask used. (f) Observed noisy image in which we search for (b). (d, e) and
(g, h) additional component representations utilized in the matching.

shows the result when all three sets (IBG, raw intensity, blurred, and gradient
magnitude) are utilized together.

The green “+” sign indicates the correct position of the template. Yellow
“×” indicates position of the global minimum of the distance map computed for
a particular representation (in a noise-free case this distance is equal to zero, but
in presence of noise that is not granted). In the case of a successful detection,
the signs overlap, forming a “×+”; otherwise the matching failed. The red region
around the yellow “×” corresponds to the CB of the global minimum; the larger
the CB, the better (however, this is meaningful only for successful matches).
The NoM (smaller is better) and the size of the CB relative to the image size
are indicated for successful detections.

The best performance is observed when all the three fuzzy membership func-
tions are used together, combining the good properties of the three; a large CB
(from the blurred image) with the higher specificity of the other two. Following
in performance is the IB vector-valued fuzzy representation. The IG represen-
tation produces smaller CB than IB, but larger than I, which is, on the other
hand, the only single valued representation that provides successful matching
(and corresponds to the result presented in [7]).

6.2 Cilia Detection and Classification

We explore the applicability of the proposed distance measure in a tem-
plate matching based method for automated detection of cilia objects in low

252 N. Sladoje and J. Lindblad

Fig. 4. Usefulness of combined features in template matching. Green “+” indicates
correct location. Yellow “×” indicates position of global minimum of the distance map.
Successful detection is indicated by “×+”; otherwise the matching failed. The red region
corresponds to the CB of the global minimum; larger is better (for successful matching).
The NoM (smaller is better) and the relative size of the CB are indicated for successful
detections. (a) I; (b) B; (c) G; (d) IB; (e) BG; (f) IG; (g) IBG. We observe that
the combined use of several membership functions in the proposed distance measure
provides most reliable detection. (Color figure online)

magnification Transmission Electron Microscopy (TEM) images. Cilia are hair-
like cell organelles protruding from cells; their dysfunctionality (often due to
genetic disorders) causes a number of serious health problems. For setting a patho-
logical diagnosis, it is required to efficiently detect regions highly populated by
cilia, at very low image resolution, where a cilium instance does not have more
than 20 pixels in diameter. At such a resolution, the characteristic cilia structure
is barely resolved and can hardly be used as a reliable discriminative feature. How-
ever, the shape and size can be used to detect relevant areas, as shown in [15].

The task is so far addressed by template matching utilizing Normalized Cross
Correlation and a highly optimized synthetic template. We believe that the excel-
lent discriminative power of our proposed distance measure may allow to directly
utilize a few cilia cut-outs as templates, avoiding the tedious synthetic template
optimization which requires a large number of annotated cilia observations and
has to be repeated whenever image resolution, or other imaging conditions, are
changed. To compensate for the very low presence of characteristic structural
details in cilia instances at so low resolutions as well as to take into account
within class variations, we utilize multiple templates, i.e., a number of object
cut-outs, to detect all resembling objects in the image. At each position, dis-
tance from each of the templates and the image is computed, and the lowest
value is assigned to the position.

Distance Between Vector-Valued Fuzzy Representations 253

We start from 9 cilia cut-outs (three are shown in Fig. 5(a)–(c)). The cut-outs
are rotated in steps of 90◦ and mirrored to produce 9 × 4 × 2 = 72 templates
Ti. For each template Ti, the corresponding distance to the observed image I,
d̄−→wSMD(TiTiTi , III , w), is computed for every translation of Ti over I (using FFT
convolutions). We limit the point-to-set distance values to dmax = 300. Similarly
as in Sect. 6.1, we evaluate 7 combinations of one, two, or three, membership
functions to create vector valued representations.

For each image position, the smallest value (the best fitting template) over
the 72 distance maps is selected. Every local minimum in this final distance map
which has a distance value below a detection threshold is considered a detected
cilium. We set the detection threshold at the level which maximizes F1 score,
F1 = 2 · precision · recall

precision+recall . This approach, which provides easy comparison between
methods, is possible since ground truth is provided by a pathologist. We compare
the performance of the different combinations of membership functions, and we
analyze the performance w.r.t. the number of membership levels in the observed
fuzzy representations.

Fig. 5. Detection of cilia in a TEM image by template matching. The proposed dis-
tance (Definition 7) and different vector-valued fuzzy representations are utilized. (a)
Cut-outs from the original image used as templates; (b) Weight mask used for wSMD
computation. (c) Detected objects in the original image when using IG and 11 mem-
bership levels: green circles are correctly detected, red crosses indicate false positives
(wrongly detected objects), and red squares indicate false negatives (missed cilia); (d)
Performance comparison: F1-score w.r.t number of quantization levels, for all observed
representations. (Color figure online)

254 N. Sladoje and J. Lindblad

Results. A low magnification (LM) TEM image of cilia, of size 4096 × 4096
pixels, with a Field of View (FOV) 60.6µm is used in the study. A part of the
image is shown in Fig. 5(c). Nine templates are cut out from the LM image, each
of a size 23 × 23 pixels, and containing one cilium; three examples are shown
in Fig. 5(a), reflecting the difficulty of the task. The same types of vector-valued
fuzzy representations as in Sect. 6.1 are used, however in this case no noise-free
image is available and both the reference and the template, as acquired, contain
high level of noise. Asymmetric wSMD is used, with a weight mask w shown
in Fig. 5(b).

The detection results are presented in Fig. 5(c)–(d). The plot shows F1 score
as a function of the number of membership levels used, for the proposed distance
measure applied to 7 different vector-valued fuzzy representations: three are
single-channeled (I,G,B) and four are their different combinations (IG, IB, GB,
and IGB). The IGB combination is, however, rather computationally demand-
ing; our naive MATLAB implementation ran out of memory past 10 membership
levels, indicating the need for a more efficient implementation. As a base-line per-
formance, the weighted Normalized Cross Correlation (wNCC) on the intensity
image (I) is used, with the same templates and the same weight mask. Utiliza-
tion of I representation corresponds to utilization of the approach of [7]. The
plots clearly indicate that: (i) the proposed method, utilizing any of the repre-
sentations, except the gradient map alone (G), outperforms the classic template
matching approach based on wNCC; (ii) vector-valued representations outper-
form single-channel ones.

7 Conclusion

We propose a novel point-to-set distance measure applicable to vector-valued
representations of objects. Such representations enable simultaneous utilization
of a variety of selected relevant features of the observed images, presented as
fuzzy membership functions on the image domain. The proposed point-to-set
distance can be incorporated in a number of set-to-set distances and used in tem-
plate matching, object detection and classification, image registration, retrieval,
and other image processing tasks.

We explore performance of the asymmetric weighted SMD utilizing the pro-
posed point-to-set distance in template matching and object detection and classi-
fication. We observe evident improvement compared to the previously suggested
approach utilizing one fuzzy set as an object representation. Considering compar-
ative analysis conducted in [7], where the distance measures applicable to (single)
fuzzy representations outperformed several other widely used approaches, we can
conclude that the improvements proposed in this paper are highly relevant for
the field.

We note that an alternative and closely related approach is recently pre-
sented in [17]. Due to simultaneous submission and processing/reviewing times,
performance comparison of the two methods remains as future work.

Distance Between Vector-Valued Fuzzy Representations 255

Acknowledgment. The authors acknowledge Amit Suveer, Anca Dragomir, and Ida-
Maria Sintorn for acquired and annotated TEM images of Cilia. Ministry of Science of
the Republic of Serbia is acknowledged for support through the Projects ON 174008
and III 44006 of MI-SANU. N. Sladoje is also supported by Swedish Governmental
Agency for Innovation Systems (VINNOVA).

References

1. Bloch, I.: On fuzzy distances and their use in image processing under imprecision.
Pattern Recogn. 32, 1873–1895 (1999)

2. Bloch, I., Mâıtre, H.: Fuzzy mathematical morphologies: a comparative study. Pat-
tern Recogn. 28(9), 1341–1387 (1995)

3. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph.
Image Process. 34, 344–371 (1986)

4. Dražić, S., Sladoje, N., Lindblad, J.: Accurate estimation of feret’s diameter of a
shape from pixel coverage digitization. Pattern Recogn. Lett. 80, 37–45 (2016)

5. Eiter, T., Mannila, H.: Distance measures for point sets and their computation.
Acta Informatica 34(2), 103–133 (1997)

6. Lindblad, J., Ćurić, V., Sladoje, N.: On set distances and their application to image
registration. In: Proceedings of the IEEE International Symposium Image Signal
Processing and Analysis (ISPA), pp. 449–454 (2009)

7. Lindblad, J., Sladoje, N.: Linear time distances between fuzzy sets with applica-
tions to pattern matching and classification. IEEE Trans. Image Process. 23(1),
126–136 (2014)

8. Rosenfeld, A.: Fuzzy digital topology. Inf. Control 40, 76–87 (1979)
9. Rosenfeld, A.: The fuzzy geometry of image subsets. Pattern Recogn. Lett. 2,

311–317 (1984)
10. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects:

theory, algorithms, and applications in image segmentation. Comput. Vis. Image
Underst. 82(1), 42–56 (2001)

11. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algo-
rithms, and applications. Comput. Vis. Image Underst. 86, 171–190 (2002)

12. Sladoje, N., Lindblad, J.: Estimation of moments of digitized objects with fuzzy
borders. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 188–195.
Springer, Heidelberg (2005). doi:10.1007/11553595 23

13. Sladoje, N., Lindblad, J.: High precision boundary length estimation by utilizing
gray-level information. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 357–363
(2009)

14. Sladoje, N., Nyström, I., Saha, P.K.: Measurements of digitized objects with fuzzy
borders in 2D and 3D. Image Vis. Comput. 23, 123–132 (2005)

15. Suveer, A., Sladoje, N., Lindblad, J., Dragomir, A., Sintorn, I.-M.: Automated
detection of cilia in low magnification transmission electron microscopy images
using template matching. In: Proceedings of IEEE International Symposium on
Biomedical Imaging (ISBI), pp. 386–390 (2016)

16. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
17. Öfverstedt, J., Sladoje, N., Lindblad, J.: Distance between vector-valued fuzzy

sets based on intersection decomposition with applications in object detection. In:
Angulo, J., et al. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 395–407. Springer,
Cham (2017). doi:10.1007/978-3-319-57240-6 32

http://dx.doi.org/10.1007/11553595_23
http://dx.doi.org/10.1007/978-3-319-57240-6_32

A Statistical-Topological Feature Combination
for Recognition of Isolated Hand Gestures

from Kinect Based Depth Images

Soumi Paul1, Hayat Nasser2,3(B), Mita Nasipuri1, Phuc Ngo2,3,
Subhadip Basu1, and Isabelle Debled-Rennesson2,3

1 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700032, India

soumip@research.jdvu.ac.in, {mnasipuri,subhadip}@cse.jdvu.ac.in
2 Université de Lorraine, LORIA, UMR 7503, 54506 Vandoeuvre-lès-nancy, France

3 CNRS, LORIA, UMR 7503, 54506 Vandoeuvre-lès-nancy, France
{hayat.nasser,hoai-diem-phuc.ngo,isabelle.debled-rennesson}@loria.fr

Abstract. Reliable hand gesture recognition is an important problem
for automatic sign language recognition for the people with hearing and
speech disabilities. In this paper, we create a new benchmark database
of multi-oriented, isolated ASL numeric images using recently launched
Kinect V2. Further, we design an effective statistical-topological feature
combinations for recognition of the hand gestures using the available
V1 sensor dataset and also over the new V2 dataset. For V1, our best
accuracy is 98.4% which is comparable with the best one reported so far
and for V2 we achieve an accuracy of 92.2% which is first of its kind.

Keywords: Hand gesture recognition · Sign language · Kinect · Depth
data · Statistical-topological features · Discrete curve · Polygonal sim-
plification

1 Introduction

Hand gesture recognition is of great importance due to its potential applications
in contactless human-computer interaction (HCI). In particular, reliable hand
gesture recognition is crucial for many applications, including automatic sign
language recognition for the HCI of hearing and speech impaired persons. Some
of these techniques require wearing of an electronic glove [5] so that the key
features of hand can be accurately measured, but the device is somewhat costly
and inconvenient for domestic applications. Another class of methods uses optical
markers [8] instead of electronic gloves but it requires rather complex configu-
ration. On the other hand, affordable depth-based systems are coming up with
promising results in the field of depth-based hand gesture recognition. Microsoft
Kinect [15] is one such RGB-D sensor providing synchronized color and depth
images. It was launched as a gaming device, but computer vision research com-
munity has taken interest into it and extended it for a lower cost replacement for
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 256–267, 2017.
DOI: 10.1007/978-3-319-59108-7 20

Recognition of Isolated Hand Gestures 257

traditional 3D cameras, such as stereo cameras and time-of-flight (TOF) cam-
eras. In just two years after Kinect V1 was released, a large number of scientific
papers with technical demonstrations have started appearing in diverse publica-
tion venues. Recently, the new version of the Kinect sensor V2 has been launched
with more accurate depth sensing technology. The work presented in this paper
involves both V1 and V2 sensors for recognition of isolated depth images of ASL.

Literature Survey and Our Contributions. Many vision based hand gesture
recognition algorithms have been proposed in the past years and comprehensive
reviews can be found in [9]. Methods based on skin color model [21] and hand
shape model [20] have also been proposed. However, they are not robust in the
dynamic environment and rely significantly on the models. The recent develop-
ment of depth cameras, such as Microsoft Kinect [15], Creative Senz3D or Mesa
Swiss-Ranger etc., opens up new avenues for hand gesture recognition. Therefore,
how the depth information can be efficiently utilized and how the depth camera
can be incorporated in the hand gesture recognition system is an active topic
of research [17]. In early studies, hand detection mainly relies on vision-based
features which was sensitive to variations of skin colors and lighting. On the
other hand, depth camera offers a much simpler way of isolating hands by depth
thresholding. After the hand localization and segmentation, various hand fea-
tures can be extracted from either the depth maps, e.g. Histogram of 3D Facets
(H3DF) [22], or the corresponding color images such as Histogram of Oriented
Gradients (HOG) [3], which will then be used for hand gesture recognition.

We have already explored that depth based image recognition has more
advantage over vision based systems. Within depth based systems, recent trend
is to use low cost device like Kinect V1 to input images, which gives a color
image of 640× 480 resolution and depth map of 320× 240 at 30 FPS. Whereas
recently launched V2 has better RGB resolution 1920× 1080 and depth resolu-
tion 512× 424 at 30 FPS. Not only that, the field of view (i.e., the solid angle
through which the detector is sensitive to electromagnetic radiation) has also
been expanded, skeleton joint point has also been upgraded from 20 to 26 and
most importantly, with USB 3.0, the speed has been increased to get more sup-
port for real time applications. A detailed comparison of Kinect V1 and V2 can
be found in [16].

With the use of depth data we can detect hand gestures robustly in the
cluttered background independent of lighting conditions. So the objective of our
proposed work is to, (1) create a new challenging benchmark of multi-oriented,
isolated ASL numeric image dataset using recently launched Kinect V2, (2)
design an effective statistical-topological feature combinations for recognition of
the hand gestures using the available V1 sensor dataset and also the new V2
dataset.

258 S. Paul et al.

2 Tools to Study Discrete Contours

In this section, we recall a method of contour simplification based on selected
dominant points. They are computed using a discrete structure, named adaptive
tangential cover (ATC) [11], well adapted to analyse irregular noisy contours.

2.1 Adaptive Tangential Cover [11]

An adaptive tangential cover (ATC) is composed of a sequence of maximal
straight segments, called maximal blurred segments, of the studied contour. The
notion of maximal blurred segment has been introduced in [4] as an extension of
arithmetical discrete line [14] with a width parameter for noisy or disconnected
digital contours.

Definition 1. An arithmetical discrete line D(a, b, μ, ω), with a main vector
(b, a), a lower bound μ and an arithmetic thickness ω (with a, b, μ, ω ∈ Z and
gcd(a, b) = 1) is the set of integer points (x, y) verifying μ ≤ ax − by < μ + ω.

Definition 2. A set Sf is a blurred segment of width ν if the discrete
line D(a, b, μ, ω) containing Sf has the vertical (or horizontal) distance d =

ω−1
max (|a|,|b|) equal to the vertical (or horizontal) thickness of the convex hull of
Sf , and d ≤ ν (see Fig. 1).

Let C be a discrete curve and Ci,j a sequence of points of C indexed from i to
j. Let denote the predicate “Ci,j is a blurred segment of width ν” as BS(i, j, ν).

Definition 3. Ci,j is called a maximal blurred segment (MBS) of width
ν and denoted MBS(i, j, ν) iff BS(i, j, ν), ¬BS(i, j + 1, ν) and ¬BS(i − 1, j, ν)
(see Fig. 1).

Fig. 1. (a) Example of arithmetical discrete line D(2,−3,−5, 5) (grey and blue points)
and a blurred segment of width ν = 1.4 (grey points) bounded by D. (b) Maximal
blurred segment of width ν = 1.4 (green points). (Color figure online)

An ATC consists of MBS of different widths, which are a function of the
noise perturbations of the studied contour. In particular, we use the local noise

Recognition of Isolated Hand Gestures 259

estimator, namely meaningful thickness [6,7], to determine the significant
width locally at each point of the contour. This meaningful thickness is used as
an input parameter to compute the ATC with appropriate widths w.r.t. noise.
A non-parametric algorithm is developed in [11] to compute the ATC of a given
discrete curve. In the ATC, the obtained MBS decomposition of various widths
transmits the noise levels and the geometrical structure of the given discrete
curve (see Fig. 2(a, c)).

(a) (b) (c) (d)

Fig. 2. (a, c): Adaptive tangential cover, (b, d) polygonal representation (in red)
using the dominant points and polygonal simplification results (in green). (Color figure
online)

2.2 Polygonal Simplification [10–12]

Dominant points are significant points on a curve with local maximum cur-
vature. Such points contain a rich information which allows to characterize and
describe the curve. Issued from the dominant point detection proposed in [10,12]
and the notion of ATC, an algorithm is developed in [11] to determine the dom-
inant points of a given noisy curve C. The main idea is that the candidate
dominant points are localized in the common zones of successive MBS of the
ATC of C. An angle measure m is used to determine the dominant points with
local extreme curvature in the common zones. More precisely, this measure m
is the angle between the considered point and the two left and right endpoints
of the left and right MBS involved in the studied common zone. When the con-
sidered point varies, m becomes a function of it. A dominant point is defined
as a local minimum of m. Dominant points are illustrated in Fig. 2(b, d) in red
points. Red lines represent the polygonal representation of the shape.

First goal of finding the dominant points is to have an approximate descrip-
tion of the input curve, called polygonal simplification. Dominant points are
sometimes redundant or stay very near, which is presumably undesirable in par-
ticular for polygonal simplification. So, we associate to each detected dominant
point a weight, i.e., the ratio of integral sum of square errors and the angle with
the two dominant point neighbours, indicating its importance with respect to
the approximating polygon of the curve. Polygonal simplification is illustrated
in Fig. 2(b, d) with green lines.

260 S. Paul et al.

3 Feature Descriptors

In this work, we are using a combination of topological, statistical and geometric
features. In the following, we describe each feature descriptor in details.

Fig. 3. Histogram of contour angles and contour distances: C and H are the center of
Contour points and center of Convex Hull points; Pi, Li, ai are the i-th Contour point,
Contour Distance and Contour Angle respectively.

3.1 Histogram of Contour Angles (HoCa) and Contour
Distances (HoCd)

Suppose there are m contour points (X1, Y1), . . . , (Xm, Ym) and n convex hull
points (X ′

1, Y
′
1), . . . , (X ′

n, Y ′
n).

The image moments with pixel intensity f(x, y) at location (x, y) are given by

Mij =
∑

x,y

xiyjf(x, y). (1)

For a contour or a set of points without any associated intensity, f(x, y) is taken
to be 1.

In our case, let M c
ij denote the moments of the contours and let Mh

ij be the
moments of the convex hull points. Then the center C = (Xc, Yc) of the contour
points is given by

Xc =
M c

10

M c
00

, Yc =
M c

01

M c
00

, (2)

and the center H = (X ′
c, Y

′
c) of the convex hull is given by

X ′
c =

Mh
10

Mh
00

, Y ′
c =

Mh
01

Mh
00

. (3)

Then we fix the line segment LCH between the points C and H. Let Li be
the line segment joining C to the contour point Pi = (Xi, Yi) and let ai be the
angle between LCH and Li formed at the point C, for i = 1, . . . ,m.

Recognition of Isolated Hand Gestures 261

Now we create a histogram with 10 bins from these m angles a1, . . . , am and
get 10 descriptors say h1, . . . , h10.

Let |Li| be the length of the line segment Li, i = 1, . . . , m. We create a his-
togram with 10 bins from these m lengths and thus get 10 descriptors l1, . . . , l10.

In Fig. 3 we explain the above set of descriptors.

3.2 Moments

We use different kinds of moments as follows.

Raw or Spatial Moments. We use Eq. (1) on the entire image, where (x, y)
denotes a pixel location and f(x, y) denotes the corresponding greyscale intensity
value. From this, we generate 10 descriptors Mij , with 0 ≤ i + j ≤ 3. More
explicitly, we use M00,M01,M10, . . . ,M03,M30.

Central Moments. First we calculate the spatial moments as above. Then we
define

x =
M10

M00
and y =

M01

M00
. (4)

Now, the central moments are given by

μij =
∑

x,y

(x − x)i(y − y)jf(x, y), (5)

where (x, y) denotes a pixel location and f(x, y) denotes the corresponding
greyscale intensity value. From this, we generate 7 descriptors μij , with 2 ≤
i + j ≤ 3. More explicitly, we use μ11, . . . , μ03, μ30.

Central Standardized or Normalized or Scale Invariant Moments.
These moments are normalized versions of the central moments, defined as fol-
lows:

νij =
μij

(M00)
i+j
2 +1

. (6)

From this, we generate 7 descriptors ν11, ν12, ν02, ν20, ν21, ν03, ν30.

3.3 Geometric Descriptors from Polygonal Simplification
of Shape Contours

We propose different descriptors from the selected dominant points (DP),
obtained with the method presented in Sect. 3.3, applied on a shape S. The poly-
gon obtained with the DP is called DP (S). Let per(DP (S)) and area(DP (S))
be respectively the perimeter and the area of DP (S). Let ch(DP (S)) be the con-
vex hull of DP (S). The following descriptors give indications about compacity
and convexity of the shape S:

262 S. Paul et al.

per(DP (S))2

area(DP (S))
(7)

per(ch(DP (S)))2

area(ch(DP (S)))
(8)

area(ch(DP (S)))
area(DP (S))

(9)

We compute descriptors that indicate if the contour of the shape S is regular or
contains big irregularities:

– mean value of angles between two successive segments formed by three suc-
cessive dominant points of DP (S)

– variance value of angles between two successive segments formed by three
successive dominant points of DP (S)

– minimum distance from the centroid of S to the dominant points of S
– maximum distance from the centroid of S to the dominant points of S
– the difference between minimum and maximum distances
– variance of segment lengths in DP (S)
– number of peaks detected in S

We should notice that the centroid of S is the centroid of the polygonal
simplification of the shape S. All our geometric descriptors are based on the
dominant points selected by the polygonal simplification process. We do not
work with all points of the contour S.

Moreover we detect the number of “peaks” in each shape contour.
A peak is a dominant point located in a convex part of the shape contour

with an angle greater than a given threshold. We fix this threshold angle to 1,38.
Figure 4 shows that in this convex part, point Pi+1 is considered as a peak point
because its angle is greater than the threshold and angle at point Pi+2 is less
than the threshold.

Fig. 4. Convex part of a shape contour shows the angle at each dominant points (Pi,
Pi+1, Pi+2, Pi+3) to determine peak points.

Recognition of Isolated Hand Gestures 263

4 Dataset and Pre-processing for Experimental
Evaluation

This section describes the collection of dataset and pre-processing that we per-
formed to extract stong features.

4.1 Dataset from Kinect V1

As a benchmark dataset for Kinect V1, we are using the NTU dataset [13]. This
dataset is collected from 10 subjects and it contains 10 gestures for numbers
0 to 9. Each subject performs 10 different poses for the same gesture. Thus
this database has 1000 cases in total and it consists of a color image and the
corresponding depth map.

4.2 Development of New Benchmark Dataset from Kinect V2

We are proposing a new hand gesture dataset using Kinect V2. In this dataset
we have collected standard ASL hand gestures from 10 subjects for numbers 0 to
9. Each subject performs 10 different poses for the same gesture. Thus in total
the dataset has 10 people × 10 gestures/people × 10 cases/gesture = 1000 cases,
each of which consists of a contour map and the corresponding depth map. This
dataset is a real-life dataset, which is collected in cluttered backgrounds. Besides,
for each gesture, the subject poses with variations in hand orientation (almost
180 degree variation), scale, articulation, etc.

4.3 Data Collection

For NTU dataset collected from Kinect V1, we have annotated the ROI region
in RGB images. Then after depth thresholding, we have cropped the exact ROI
regions from depth images by comparing it with the RGB images. For V1 dataset,
it was not a problem because depth resolution is 320× 240 and RGB resolution
is 640× 480 which is just the double. Whereas, in our proposed database col-
lected from Kinect V2, RGB resolution is 1920 × 1080 and Depth resolution is
512× 424. So in our database, we collected a joint color-depth hand gesture along
with wrist joint point. This gives us the flexibility of locating the ROI in the
whole frame. Gesture samples are shown in Fig. 5 which are labeled from 0 to 9.
It should be noted that this dataset is a real life dataset collected in uncontrolled
environment with different illumination and different orientations.

4.4 Hand Localization and Segmentation

In previous depth camera-based approaches [17], the hand is required to be the
front-most object from the depth camera. Moreover, a black belt on the gesturing
hand’s wrist is also required in some cases [13], which is rather inconvenient for
real world applications. In our system, we relax these restrictions by utilizing

264 S. Paul et al.

the rather stable joints from Kinect’s skeleton tracking. The Kinect joints are
directly used to locate the hands, wrists and elbows. By assuming that the hand
is visible to the camera without any occlusion, it allows us to quickly separate
the hands from background objects using depth information alone. Using the
hand joint point as the center, a pair of color texture and depth map blocks
is extracted first and then the hand shape is segmented quickly using a depth
threshold value.

4.5 Noise Removal

In practical applications, the extracted hand gestures usually have different scales
due to various distances from the camera to hand, or different rotations caused
by the body postures. Moreover, different people’s hands always have distinct
characteristics even for the same gesture. Hence it is necessary to perform some
pre-processing to normalize and align the shape representation before recogni-
tion. However, the palm size varies from one person to another, which affects the
recognition between different subjects. So instead of depth thresholding in our
dataset, we have done histogram thresholding calculating mean and standard
deviation of the depth values and extracted gray scale cropped hand shapes,
shown in Fig. 5. In Fig. 5, it also can be seen that the hand shapes from different
persons are correctly segmented, even when the hands are cluttered by the face
or background.

5 Performance Evaluation

Now we evaluate the performance of the proposed system from mean accu-
racy, time efficiency and comparisons with other methods. We are using Ran-
dom Forest classifier on extracted features using the Weka version 3.6.12 (c)
1999–2014 [19] machine learning tool. We performed all experiments on an Intel
i7-6500U CPU @2.50 GHz processor with 8 GB RAM and 64-bit Windows 8.1
Pro OS.

In our experiments, leave-p-out (LpO) cross-validation (CV) is conducted to
evaluate the recognition performance, where with M instances, p < M subjects
are used for testing and the remaining for training. This process is repeated for
every combination of subjects so that the average accuracy can be computed.
For NTU dataset, we only calculated LOO CV to compare the results. In our
dataset, two values of (1 and 100) are considered, which are respectively referred
to as leave-one-out CV (LOO CV) and 10-fold CV. Experiments based on these
two CVs are presented in next section.

5.1 Results and Comparison

Here we produce comparative results (see Table 1) between our proposed work
and other different algorithms on standard V1 NTU hand digit dataset. Our
mean accuracy is 98.4% which outperforms all other works mentioned in the

Recognition of Isolated Hand Gestures 265

Table 1. Comparison between Mean Accuracy of Shape Contexts, Skeleton Matching,
HOG, H3DF, FEMD and our method on the NTU HAND DIGIT DATASET.

Algorithms Mean Accuracy

Skeleton Matching [1] 78.6%

Shape Context with bending cost [2] 79.1%

Shape Context without bending cost [2] 83.2%

HOG [3] 93.1%

Thresholding Decomposition+FEMD [13] 93.2%

Near-convex Decomposition+FEMD [13] 93.9%

H3DF [22] 95.5%

Current Work 98.4%

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Gesture samples (0–9) of ASL captured in Kinect V2.

table. Figure 5 shows our proposed benchmark V2 dataset containing ASL ges-
tures 0 to 9 captured using Kinect V2. On this dataset, we get an accuracy of
92.2% with the same feature set as V1.

Figure 6 illustrates the confusion matrix of hand gesture recognition on stan-
dard V1 dataset and our benchmark V2 dataset (Fig. 5) using our feature set
presented in Sect. 4.

266 S. Paul et al.

Fig. 6. The confusion matrices of hand gesture recognition using with our feature set:
(a) LOO CV on NTU hand digit dataset, (b) 10-fold CV on our own V2 benchmark
dataset.

6 Conclusion

In this work, a hand gesture recognition system from depth data using
topological-statistical features for contactless HCI has been proposed. It is based
on an efficient feature extraction and classification which recognizes gestures
based on the shape and depth features. The effectiveness of the system is
illustrated by extensive experiments on two real-life datasets, NTU hand digit
dataset [13] and our own V2 dataset (achieving high mean accuracies 98.4%, 92%
respectively). In comparison with previous distance measures such as FEMD [13],
shape context [2], Skeleton Matching [1], H3DF [22], HOG [3], our feature set
achieves comparable performance for hand gesture recognition. Recently, another
work of SPEMD [18] has been proposed with 99.1% (LOO CV) accuracy on their
own dataset. We are still to compare our features with their dataset. Our pro-
posed descriptors are computationally efficient and thus suitable for fast gesture
recognition. As this work has only been done using depth map, so our future
research will focus on exploring robust color features and extending it to dynamic
hand gesture, body posture and generic object recognition.

References

1. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pat-
tern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

3. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms
of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). doi:10.1007/
11744047 33

http://dx.doi.org/10.1007/11744047_33
http://dx.doi.org/10.1007/11744047_33

Recognition of Isolated Hand Gestures 267

4. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments
decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)

5. Dewaele, G., Devernay, F., Horaud, R.: Hand motion from 3D point trajectories and
a smooth surface model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol.
3021, pp. 495–507. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24670-1 38

6. Kerautret, B., Lachaud, J.O.: Meaningful scales detection: an unsupervised noise
detection algorithm for digital contours. Image Process. On Line 4, 98–115 (2014)

7. Kerautret, B., Lachaud, J.O., Said, M.: Meaningful thickness detection on polyg-
onal curve. In: Proceedings of the 1st International Conference on Pattern Recog-
nition Applications and Methods, pp. 372–379. SciTePress (2012)

8. Kry, P.G., Pai, D.K.: Interaction capture and synthesis. ACM Trans. Graph.
(TOG) 25, 872–880 (2006). ACM

9. Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 37(3), 311–324 (2007)

10. Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based
on discrete curve structure. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E.
(eds.) IWCIA 2015. LNCS, vol. 9448, pp. 143–156. Springer, Cham (2015). doi:10.
1007/978-3-319-26145-4 11

11. Ngo, P., Nasser, H., Debled-Rennesson, I., Kerautret, B.: Adaptive tangential cover
for noisy digital contours. In: Normand, N., Guédon, J., Autrusseau, F. (eds.)
DGCI 2016. LNCS, vol. 9647, pp. 439–451. Springer, Cham (2016). doi:10.1007/
978-3-319-32360-2 34

12. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant
point detection. Pattern Recogn. 44(1), 32–44 (2011)

13. Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition
using kinect sensor. IEEE Trans. Multimedia 15(5), 1110–1120 (2013)

14. Reveillès, J.P.: Gèométrie discrète, calculs en nombre entiersgorithmique, et al.:
thèse d’état. Université Louis Pasteur, Strasbourg (1991)

15. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A.,
Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth
images. Commun. ACM 56(1), 116–124 (2013)

16. Paul, S., Basu, S.: Microsoft kinect in gesture recognition: a short review. Int. J.
Control Theor. Appl. 8(5), 2071–2076 (2015)

17. Suarez, J., Murphy, R.R.: Hand gesture recognition with depth images: a review.
In: RO-MAN, 2012 IEEE, pp. 411–417. IEEE (2012)

18. Wang, C., Liu, Z., Chan, S.C.: Superpixel-based hand gesture recognition with
kinect depth camera. IEEE Trans. Multimedia 17(1), 29–39 (2015)

19. WEKA: Fibonacci notes (1996). http://www.cs.waikato.ac.nz/ml/weka/
downloading.html

20. Wu, Y., Lin, J., Huang, T.S.: Analyzing and capturing articulated hand motion
in image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1910–1922
(2005)

21. Yang, M.H., Ahuja, N., Tabb, M.: Extraction of 2D motion trajectories and its
application to hand gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell.
24(8), 1061–1074 (2002)

22. Zhang, C., Yang, X., Tian, Y.: Histogram of 3D facets: a characteristic descriptor
for hand gesture recognition. In: 10th IEEE International Conference and Work-
shops on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2013)

http://dx.doi.org/10.1007/978-3-540-24670-1_38
http://dx.doi.org/10.1007/978-3-319-26145-4_11
http://dx.doi.org/10.1007/978-3-319-26145-4_11
http://dx.doi.org/10.1007/978-3-319-32360-2_34
http://dx.doi.org/10.1007/978-3-319-32360-2_34
http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Image Segmentation via Weighted
Carving Decompositions

Derek Mikesell(B) and Illya V. Hicks

Computational and Applied Mathematics, Rice University,
Houston, TX 77005, USA

{djm13,ivhicks}@rice.edu

Abstract. In this paper we propose a graph-theoretic method of image
segmentation, borrowing ideas from finding community structure in
social networks using edge betweenness. This method constructs a
weighted carving decomposition, or a partial carving decomposition to
some resolution, of the image. From this structure image segments can
be obtained in a hierarchical manner. We apply this method to multiple
generated images with well defined image segments of varying complex-
ity. Additionally, we apply this method to the Mona Lisa, an image
without such well defined partitions. Results suggest that the method
provides a hierarchical segmentation framework that is well suited for
finding features in images.

1 Introduction

Numerous studies have explored the subject of image segmentation. The main
task in image segmentation is to decompose an image into multiple segments or
features. Depending on the goal, this can take place as dividing the image in
two distinct regions up to any number less than the size of the pixel set. Within
this framework an image is not to be confused with the output of a function,
rather it is a collection of pixels assembled into an array. A pixel, coming from
“picture” and “element”, is the minimal element of an image, generally showing
some color [4].

A graph G is an ordered pair (V,E), where V is the vertex set and E is the
edge set. Elements of E, or edges, are unordered pairs of elements of V that
defines a relation between the two vertices. A planar graph is a graph that can
be drawn onto a plane or sphere without having any edges cross. A subgraph F
of G is a graph F = (V̄ , Ē) with V̄ ⊆ V, Ē ⊆ E. Given a graph G = (V,E) and
V̄ ⊆ V , the induced subgraph G[V̄] is the graph with vertex set V̄ in which the
edge set is composed of all edges that have both endpoints in V̄ . In a graph G a
walk is a sequence v0, e1, v1, e1, ..., ek, vk, where vi ∈ V and ei ∈ E for 0 ≤ i ≤ k.
We will only consider walks in which all elements of the sequence are distinct,
known as paths. If v0 = vk then the walk is said to be closed or a cycle.

Let G = (V,E) be a graph. Then, let T be a tree such that T has |V | leaves,
with every non-leaf vertex having degree 3. Additionally, let μ be a bijection
between the nodes of G and the leaves of T . The pair (T, μ) is said to be a
carving decomposition or minimum-congestion routing tree of G.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 268–279, 2017.
DOI: 10.1007/978-3-319-59108-7 21

Image Segmentation via Weighted Carving Decompositions 269

Later, we will need a centrality measure known as edge betweenness (EB).
Let G = (V,E) be a graph with u, v ∈ V . Additionally, let σu,v be the number
of shortest paths between u and v and σu,v(e) be the number of shortest paths
between u and v containing edge e. Then, the betweenness of edge e can be
expressed as:

EB(e) =
∑

u∈V

∑

v∈V

σu,v(e)
σu,v

(1)

The edge betweenness represents the extent to which an edge is between
groups of nodes. Thus, the removal of an edge with high edge betweenness is
more likely to disconnect a graph, than one of low edge betweenness.

In this paper we present a graph-theoretic image segmentation method bor-
rowing techniques from biological and social network community structure. In
Sect. 1.1 we discuss various methods of image segmentation. Additionally, some
context into the graph objects and community structures is explored. In Sect. 2
a full exploration of the method and algorithm is given. Section 3 introduces the
results of the method, with Sects. 3.1 through Sect. 3.4 exploring different test
cases. We end with some concluding remarks in Sect. 4.

1.1 Literature Review

A number of image segmentation techniques have been created with a varying
levels of complexity. Thresholding techniques may be the most simple; they seek
to set some threshold and choose pixels on either side of that threshold. An early
method of thresholding is Otsu’s method (1975) [21]. This method operates on a
greyscale image and acts to construct a binary image by placing pixels into two
groups such that their interclass variance is maximized. Another method used
as a means of thresholding an image is the k-means algorithm. Originally used
in scalar quantization, Lloyd’s k-means algorithm (1982) [17] was shown to be
an adequate thresholding method for computer vision by Barghout and Sheynin
[1]. More current models of thresholding have been developed for computed
tomography images using local and adaptive thresholding to improve on global
techniques, and providing higher quality segmentation in the presence of artifacts
[2,3].

Region growing techniques are another set of methods that rely on one sim-
ple rule that adjacent pixels share similar values. An early method, building
on the work in [5], uses a split-and-merge and a tree traversal algorithm to
recursively build image segments [15,16]. Pixel intensities and neighborhood-
linking paths are used by Chen et al. to form a partial connectedness measure,
λ-connectedness. This connectedness is applied to “fuzzy subfibers” to construct
a higher dimensional region growing segmentation method [6]. Statistical region
merging uses the same idea of neighboring pixel intensity as a means of deter-
mining likeness. This method improves on previous techniques by introducing a
priority queue and merging via a statistical basis [19].

270 D. Mikesell and I.V. Hicks

Another set of methods, borrowing techniques from encoding, is image seg-
mentation via compression. The main idea in compression based segmentation
is that the best segmentation comes from finding the minimal coding length of
the data. Mobahi et al. constructed a method that uses the minimum descrip-
tion length for image segmentation after noticing that homogenous textures can
be modeled via Gaussian distributions and their boundaries can be encoded
efficiently [18,22].

Graph based techniques are a natural method of segmentation as they encode
pixel connectivity, while segments can be found by looking for clusters of nodes.
It will be seen that the model proposed in this paper lies within this category.
In 1971, Zahn proposed a family of minimum-spanning tree based algorithms
capable of detecting cluster structure and applicable to image segmentation [28].
Wu and Leary proposed a method that removes edges in the network to “form
mutually exclusive subgraphs such that the largest inter-subgraph maximum flow
is minimized” [27]. In 2000, Shi and Malik proposed a method using normalized
cuts, which attempts to find a global impression of an image [26]. Grady proposed
a method utilizing random walks. In this technique a small number of user given
labels exist within a graph and the pixels with high probability of reaching these
pixels via a random walk form segments in an image [11].

The aforementioned methods are only a small subset of the field and more
can be found in the Survey on Image Segmentation Techniques by Zaitoun [29]
and A Study of Digital Image Segmentation Techniques by Oak [20].

Inspiration for the present paper came from Diestel and Whittle [7], who
stated that an image can be represented by the tangles of its pixels, but left
the development and implementation of this technique as an open problem.
Tangles are introduced and studied extensively in Robertson and Seymour’s
Graph Minors X [23]. As tangles relate to separations of nodes in graphs there
seems to exist a potential relation to image segmentation. Further objects of
interest, carvings and carving decompositions, are explored in [14,24]. Efficient
computation of carving width and branch decompositions is given by Hicks in
[12,13].

In the forthcoming method, the edge betweenness centrality is used to find
edges that lie between segments. This centrality is originally defined by Girvan
and Newman [10], who provide an algorithm for clustering that, while different,
parallels the method in this paper in its use of edge betweenness as a metric for
node selection.

2 Method

2.1 Color Expression

Rather than using the standard Euclidean norm in the familiar RGB color space,
the CIEDE2000 color space [25] is used instead. Numerous weaknesses of the
RGB color space have been fixed in CIEDE2000, such as a hue rotation that
fixes difficulties in the blue range.

Image Segmentation via Weighted Carving Decompositions 271

While feature differentiation is an easy task for most humans, it can be a
rather difficult task in computer vision. The CIEDE2000 color space is said to
better represent human vision, and therefore is a natural candidate for com-
pleting computer vision tasks. Computing the color CIEDE2000 color difference
requires the evaluation of multiple expressions and thus increases the cost of
computing the difference compared to simpler color difference formulas.

Rather than representing color in the RGB space, CIEDE2000 represents
color in L for lightness, a a red-green opponent axis, and b a blue-yellow oppo-
nent axis. Thus, this space gives a different three dimensional representation of
color with neutral grey at a = 0 and b = 0, green for a < 0, red for a > 0, and
similarly blue for b < 0 and yellow for b > 0.

The formula for color difference in the CIEDE2000 color space is as follows:

ΔEi,j
00 =

√(
ΔL′

kLSL

)2

+
(

ΔC ′

kCSC

)2

+
(

ΔH ′

kHSH

)2

+ RT
ΔC ′

kCSC

ΔH ′

kHSH
(2)

where ΔL′ is the difference in lightness, ΔC ′ is the difference in chroma, ΔH ′

is a difference in hue, and the cross term is a hue rotation factor. The values
kL, kC , and kH are constants associated with each distance and SL, SC , and SH

are factors computed in the algorithm. A full explanation and algorithm can be
found in [25].

2.2 Image Representation

Construction of a network from an image is a simple task as graphs are natu-
rally suited for handling connectivity. Within this framework we will consider a
five-point stencil for interior pixels and adjust accordingly for pixels along the
boundary. It should be noted that a higher order stencil can be used within this
method at a cost of increased runtime and a loss of planarity. Additionally, this
method is not restricted to square images or two dimensional images and is not
affected by the range of colors.

(a) (b)

Fig. 1. (a) shows an image and its corresponding graph in (b). The weights along each
edge are given as given by (2).

272 D. Mikesell and I.V. Hicks

We will assume the image is a m × n rectangular array. Therefore, we arrive
at a m × n grid graph as seen in Fig. 1. Weights along each edge in the graph
are given by:

wG(i, j) = exp(−ΔEi,j
00) (3)

where ΔEi,j
00 is the CIEDE2000 color difference as described in (2).

2.3 Segmentation Method

Consider the scenario in which a person is tasked with selecting a feature within
an image. Equipped with only a pen and the image, it is natural for the individual
to circle the feature on the image. This action of circling features can be modeled
as follows.

Let Σ be a sphere, and let G be a graph drawn in Σ, constructed from some
image I. The set of regions, ri, enclosed by the edges in E(G) in addition to the
region surrounding G, will be denoted R(G). Each region r ∈ R(G) is an open
set in Σ, with the edges that enclose a given region, r, labeled as incident to r.

Now, drawn within Σ, form the geometric dual, G∗, to the graph G. This
construction occurs in the following way: for each r ∈ R(G) there exists a v∗ ∈
V (G∗) and for each ri, rj ∈ R(G) that share an incident edge e ∈ E(G) there
exists an edge f∗ ∈ E(G∗) connecting the vertices corresponding to ri, rj . Hence,
G∗ contains a unique node for each region of G. Similarly, for each edge e ∈ E(G)
there exists a dual edge f∗ ∈ E(G∗) such that the endpoints of f∗ are contained
within the regions incident to e; f∗ is said to cross e.

In the hypothetical situation above, a feature, F , is a set of nodes in G, while
the act of circling the image is equivalent to finding a cycle, C, in the geometric
dual such that E(C) cross all of the edges connecting G\F to F . Further, the
concept of finding a “best” segment could be posed as finding a minimal cycle
in G∗. It should be noted that using a higher order stencil for connectivity
eliminates planarity and thus limits or previously stated intuition. Thus, it will
be assumed that graphs are constructed using the five-point stencil.

Proposition 1. Let G be a graph constructed from an image I. Let G∗ be the
geometric dual of G such that

wG∗(f) =
1

BE(e)
∀f ∈ E(G∗)

such that e crosses f . Then the first separation formed by removing edges of G
in ascending inverse order of edge betweenness is equivalent to the separation
formed by G\S, where S is the set of edges crossed by a minimum cycle in G∗.

Proof. Let F be a priority queue of edges of G, with priority proportional to its
edge betweenness centrality. Remove edges of G according to F until G is split
into two components. Label the vertices of each component V1, V2.

Consider the subgraphs G1, G2 induced by V1, V2. As Σ is continuous, there
exists a continuous closed curve, �, in Σ such that � encloses G1, G2 (note that

Image Segmentation via Weighted Carving Decompositions 273

� encloses both as G is embedded in a sphere and is minimal with respect to
the regions in R(G) it traverses as G1, G2 are induced by the partitioned vertex
set). Therefore, we can construct a cycle, C, in G∗ by taking the vertex that
corresponds to each region that � crosses. As G1, G2 are constructed via F , C is
minimal in G∗. ��

Given the above proposition, we can begin to derive an algorithm that mim-
ics a natural process in finding segments in images. Starting with an image I, we
construct the graph, G, of that image as is stated in Sect. 2.2. From G construct a
priority queue F , containing edges of G with priority set to be the edge between-
ness. Iteratively remove edges from G, from the queue F until G separates into
two components. This marks one iteration of the algorithm. By recomputing the
edge betweenness after each separation, and recursively applying this algorithm
on the components until we reach individual nodes, we arrive at a full hierarchy
of image segments. The algorithm can be seen in detail in Algorithm1

Data: Graph G constructed from image, Graph H with single node
containing list of V (G)

Result: Tree H of segments
while |E(G)| > 0 do

numComp0 = number of components of G;
numCompNew = numComp0;
Construct priority queue F ;
while numCompNew ≤ numComp0 do

e = highest priority edge in F ;
F = F \ e ;
G = (V,E \ e);
newComp = connected components of G;
numCompNew = |newComp|;

end
Append new component nodes to parent node in H;

end
Algorithm 1. Betweenness Segmentation

Remark 1. It is advised to add an edge selection tie-breaker to Algorithm 1. This
can be done by constructing the priority queue F from the edge betweenness and
then sorting ties by the largest ΔEi,j

00

Upon completion of the algorithm we are left with a tree H containing all of
the segmentation information. It should be noted that the leaves of the tree cor-
respond to individual pixels of the original image. Additionally, each additional
node in the tree has degree 3 (aside from the original root node). Therefore, by
removing the root node and adding an edge in between its two children we arrive
at a carving decomposition. Research into branch decompositions of graphs have
shown significant complexity benefits. Having constructed a weighted carving
decomposition of our image, it is left to future works to take advantage of this
structure in an attempt to produce lower complexity image algorithms.

274 D. Mikesell and I.V. Hicks

Edge betweenness can be computed via finding the shortest paths between
all pairs of vertices in the graph. Given the relative sparsity of the grid structure
assumed in this model, this can be computed via repeated Dijkstra’s algorithm
[8]. Using Fibonacci heaps, Fredman and Tarjan give a method that can be
implemented in O(|E||V |+ |V |2 log |V |) [9]. Additionally, the task of finding the
number of connected components in the graph can be found linearly in |V | and
|E| via a depth first search. The complexity of these algorithms are given only
as a starting point for the complexity analysis as it is not the focus of this work
to provide an efficient implementation of the algorithm, but will be explored in
future works.

3 Results

The following sections contain various test cases used in checking the efficacy of
the aforementioned model. When two images are presented side by side, as in
Fig. 4(d) and (e), the figures do not display all pixels, but rather a separation of
those in the parent node of the tree constructed by the model. This method of
display is used to illustrate the separation at a given layer. Note that a cut in the
hierarchy tree, such as in Fig. 3(b), will yield a complete and disjoint separation
of pixels.

3.1 Times New Roman “L”

The first test image used to test the method is a greyscale text image; see Fig. 2.
The file is a white on black, 16 × 16 pixel image of the letter “L” in Times
New Roman font. While the image is not binary, it provides a test case with
two primary regions and some intensity variations (in the form of grey pixels).
Inspiration for this test case comes from [7]. Figure 2(a) shows the original test
image. After the first separation in the algorithm we are left with Fig. 2(b) and
(c). In Fig. 2(c) we see that the majority of the “L” has been separated away
from the black background, while six gray pixels remain in Fig. 2(b). Figure 2(d)
and (e) show a separation of the right serif from the baseline bar, while Fig. 2(f)
and (g) show a separation of the baseline bar from the stem. Looking at further
segments (figures not shown) one would hope to find the remaining serifs, which
are indeed found, but one cannot expect to find the reflected serifs as one segment
given that the stem of the “L” is much wider than the serifs.

3.2 Embedded Full Color

Now consider the test image as seen in Fig. 3. This image is a full color, 4 × 4
pixel image. A blue square is embedded inside a red and orange hemisphere.
Given the visual similarity of red and orange compared to that of blue, it is
natural to assume that the primary separation will occur via removing the blue
segment. The segmentation of the blue pixels would expected to be followed by
a separation of the orange and red segments. Figure 3(b) gives a full hierarchical

Image Segmentation via Weighted Carving Decompositions 275

Fig. 2. The original image can be seen in (a). A 16pt Times New Roman “L” in white
on black background. (b) through (g) show the steps of segmentation using the method
outlined in this paper. It should be noted that the black portions of (c) are not black
pixels, rather the lack of pixels.

(a) (b)

Fig. 3. The original image can be seen in (b). (b) shows the hierarchical breakdown
after running the segmentation model; each numbered box represents a pixel in (b)
from top left to bottom right. (Color figure online)

breakdown of Fig. 3(a), in which the values at the leaves correspond to pixel
indices (labeled from top left to bottom right). One can see that by cutting the
topmost edge in the tree we obtain our desired result. Additionally, cutting the
next topmost edge separates the red and orange sections.

3.3 Embedded Full Color 2

The test image in Fig. 4(a) is a more complex 8 × 8 pixel version of Fig. 3(a). A
green and blue vertically aligned rectangle are embedded in the middle of orange

276 D. Mikesell and I.V. Hicks

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. The original image can be seen in (a). An 8 × 8 image of imbedded shapes
of various colors. (b) and (c) show the first step of segmentation using the method
outlined in this paper. (d) and (e) show the splitting of (b). Further, (f) and (g) show
the splitting of (d). (Color figure online)

and red hemispheres. After the first segmentation, the algorithm finds the green
rectangle as seen in Fig. 4(b) and (c). This aligns with intuition, as the green
region is visually different from the red and orange hemisphere (the selection
of the green region over the blue is a function of the CIEDE2000 color differ-
ence formula). The next segment found via the algorithm is the blue embedded
rectangle as seen in Fig. 4(d) and (e). Following the blue segment, the image
of Fig. 4(d) is segmented into Fig. 4(f) and (g). These segmentations continue
to align with intuition as the blue segment varies the most from the remaining
pixels, while the splitting of the two hemispheres is a natural step.

3.4 Mona Lisa

The last test image is a low resolution (48×32) picture of the Mona Lisa inspired
by [7], see Fig. 5(a). While the previous methods were able to immediately find
the most prominent features of the image, the Mona Lisa proved to be a bit
more difficult. For instance, there were a few small sections of pixels that were
chosen early in the computation. After choosing these small groups of pixels,
later separations in the tree provide high quality features. In Fig. 5(b) and (c)
one can see a separation of the chest from the rest of the image. This feature
selection makes intuitive sense as it is a large section of nearly uniform color.
Next, in Fig. 5(d) and (e) the algorithm separated out the hands and arms from

Image Segmentation via Weighted Carving Decompositions 277

(a) (b) (c)

(d) (e) (f) (g)

Fig. 5. Figures 5(b) through 5(g) contain interesting segmentations of Figure 5(a).
Figures 5(b) and 5(c) separate the chest from the background and body. Figures 5(d)
and 5(e) separate the hands and arms from the body; Figures 5(f) and 5(g) separates
the face from the surrounding features.

the body. Finally, in Fig. 5(f) and (g) we see the a selection of the face, containing
the famous smile, from the hair and background.

4 Conclusion

In this paper we explored an image segmentation method that looks for edges of
high betweenness in “communities” of pixels. This method attempts to approx-
imate the human process of image segmentation. We have tested this technique
on multiple generated images and find results in accordance with our expecta-
tions. Further, the method was tested on a low resolution image of the Mona
Lisa and we found it was able to capture natural features in the image in line
with intuition. There are numerous potential avenues for improvement, such as
implementing a faster, parallel edge betweenness algorithm. Additionally, the
construction of a method that focuses more on the boundaries of segments as
opposed to their centers may provide for a more scalable algorithm. The pri-
mary focus of this paper is to develop the aforementioned method and an effi-
cient implementation will be the focus of future work, allowing us to explore and

278 D. Mikesell and I.V. Hicks

compare the runtime with other methods. This is to be achieved via efficient
algorithm implementation and potential use of the graph structure. Finally, an
added bonus to this method is that the final data structure is a weighted carving
decomposition. Thus, there may be additional algorithms that can be applied to
the resulting segmentation in lower order time.

Acknowledgements. We would like to thank the three referees whose comments
were valuable to the completion of this work. This work is supported by the National
Science Foundation, Grants No. CMMI-1300477 and CMMI-1404864.

References

1. Barghout, L., Sheynin, J.: Real-world scene perception and perceptual organiza-
tion: lessons from computer vision. J. Vis. 13(9), 709 (2013)

2. Batenburg, K.J., Sijbers, J.: Adaptive thresholding of tomograms by projection
distance minimization. Pattern Recognit. 42(10), 2297–2305 (2009)

3. Batenburg, K.J., Sijbers, J.: Optimal threshold selection for tomogram segmen-
tation by projection distance minimization. IEEE Trans. Med. Imaging 28(5),
676–686 (2009)

4. Billingsley, F.C.: Processing ranger and mariner photography. Optical Eng. 4(4),
404147 (1966)

5. Brice, C.R., Fennema, C.L.: Scene analysis using regions. Artif. Intell. 1(3–4),
205–226 (1970)

6. Chen, L., da Cheng, H., Zhang, J.: Fuzzy subfiber and its application to seismic
lithology classification. Inf. Sci. Appl. 1(2), 77–95 (1994)

7. Diestel, R., Whittle, G.: Tangles and the Mona Lisa. arXiv preprint
arXiv:1603.06652 (2016)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM (JACM) 34(3), 596–615 (1987)

10. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

11. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 28(11), 1768–1783 (2006)

12. Hicks, I.V.: Planar branch decompositions i: the ratcatcher. INFORMS J. Comput.
17(4), 402–412 (2005)

13. Hicks, I.V.: Planar branch decompositions ii: The cycle method. INFORMS J.
Comput. 17(4), 413–421 (2005)

14. Hicks, I.V., Koster, A.M., Kolotoğlu, E.: Branch and tree decomposition tech-
niques for discrete optimization. In: Emerging Theory, Methods, and Applications,
pp. 1–29 (2005)

15. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J.
ACM (JACM) 23(2), 368–388 (1976)

16. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a directed split and merge
procedure. In: CMetImAly77 (1977)

17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–137 (1982)

http://arxiv.org/abs/1603.06652

Image Segmentation via Weighted Carving Decompositions 279

18. Mobahi, H., Rao, S.R., Yang, A.Y., Sastry, S.S., Ma, Y.: Segmentation of natural
images by texture and boundary compression. Int. J. Comput. Vis. 95(1), 86–98
(2011)

19. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach.
Intell. 26(11), 1452–1458 (2004)

20. Oak, R.: A study of digital image segmentation techniques. Int. J. Eng. Comput.
Sci. 5(12), 19779–19783 (2016)

21. Otsu, N.: A threshold selection method from gray-level histograms. Automatica
11(285–296), 23–27 (1975)

22. Rao, S.R., Mobahi, H., Yang, A.Y., Sastry, S.S., Ma, Y.: Natural image segmenta-
tion with adaptive texture and boundary encoding. In: Zha, H., Taniguchi, R.,
Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 135–146. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12307-8 13

23. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)

24. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

25. Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: imple-
mentation notes, supplementary test data, and mathematical observations. Color
Res. Appl. 30(1), 21–30 (2005)

26. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

27. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory
and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
15(11), 1101–1113 (1993)

28. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clus-
ters. IEEE Trans. Comput. 100(1), 68–86 (1971)

29. Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation techniques. Procedia
Comput. Sci. 65, 797–806 (2015)

http://dx.doi.org/10.1007/978-3-642-12307-8_13

An Image Texture Analysis Method
for Minority Language Identification

Darko Brodić1(B), Alessia Amelio2, and Zoran N. Milivojević3

1 Technical Faculty in Bor, University of Belgrade, V.J. 12, 19210 Bor, Serbia
dbrodic@tfbor.bg.ac.rs

2 DIMES, University of Calabria, Via Pietro Bucci Cube 44, 87036 Rende, CS, Italy
aamelio@dimes.unical.it

3 College of Applied Technical Sciences, Aleksandra Medvedeva 20, 18000 Nǐs, Serbia
zoran.milivojevic@vtsnis.edu.rs

Abstract. This paper introduces an image texture analysis method for
minority language identification. In the first stage, each letter is associ-
ated with a given script type according to its energy status in the text-line
area. Mapping is carried out by extracting unicode text and transforming
it into coded text. There are four different script types, which correspond
to four grey levels of an image. Then, the obtained image is subjected
to a feature extraction process performed by the texture analysis. This
way, the grey level co-occurrence matrix and its derivative features are
calculated. Extracted features are compared and classified using the K-
Nearest Neighbors and Naive Bayes methods to establish a difference
that can identify a minority language such as Serbian language among
other world languages in the text. Very good accuracy results prove the
efficiency of the proposed approach, when compared to other state-of-
the-art methods.

Keywords: Image processing · Natural language processing · Classifi-
cation · Statistical analysis · Feature extraction

1 Introduction

As of July 2013, the United Nations website was available in six languages, while
the official website of the European Union could be read in 24 languages. Fur-
thermore, Google supported 90 languages, while Wikipedia supported 295 [25].
However, just a few of them have an above-average dispersion. As a consequence,
the Web mainly employs texts written in the so-called world languages, such as
English, French, German and Spanish (over 70% of all web content). In con-
trast, the vast majority, i.e., over 95% of the languages have already lost the
capacity to ascend digitally [16]. A number of minority languages in Europe still
exists despite the strong pressure from the majority languages such as English,
French, German and Spanish. The later languages are clearly widespread and
dominant languages in Europe and on the Web. As a consequence, most speakers
of minority languages are bilingual or multilingual. Hence, minority languages
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 280–293, 2017.
DOI: 10.1007/978-3-319-59108-7 22

Image Texture Analysis for Minority Language Identification 281

are changing because the websites in these languages also have to include some
of the widespread world languages, creating the concept of multilingual web-
sites. Hence, the extraction of some text fragments in minority languages and
their classification is a real challenge and worths investigation. If we take as an
example of minority language the Serbian one, then it is used in around 0.1% of
the websites [25].

Language identification is the process of language recognition in a certain
text. Many methods have been proposed for language identification. They are
classified into the following groups [13]: (i) Letter based approach, (ii) Word
based approach, (iii) N-gram approach, and (iv) Language identification using
a Markov model. Previous research has included the statistical analysis of the
text content. In the letter based approach, the frequency distribution of certain
letters or common letter combination is analyzed for making easier the language
identification [23]. The problem is that the obtained results would be reliable if
the number of words in the sentences was high (above 21). Word based approach
uses only words up to a specific length or the most frequent word’s appearance
for establishing the language model [12,22]. The main limitation is the train-
ing phase needing a high number of documents to create the language model.
Another technique generates a language n-gram model for each of the languages,
extracting substrings of length n and computing their frequency in the text [4,8].
A problem can occur when the pieces of input text are composed of several lan-
guages. Unfortunately, this approach cannot solve such a case. The methods in
the last group use Markov models in combination with Bayesian decision rules
to produce models for each language [9]. It is worth noting that the training
process is computationally intensive, needing at least 50-100 K words for suc-
cessfully testing small parts of text of length above 100 characters [18].

In this paper, an image-based method for language identification is proposed
to overcome the limitations of the previous approaches. In fact, it has the follow-
ing advantages: (i) it does not require a large piece of text for training, (ii) it is
not computer time intensive, (iii) it is able to identify a minority language among
the most widespread languages on the Internet, (iv) it needs unicode or prior to
Optical Character Recognition (OCR) input, and (v) it is not dependent on the
certain alphabet extension with specific letters. The first stage of the method is
based on coding. It maps the initial text into a coded text established accord-
ing to the energy characteristic of each letter based on its position in the text
line. A similar approach with six established elements, which is not converted to
image elements, was proposed in [21]. Still, this method uses a typical n-gram
method for language discrimination. Unlike that, in our method the coded text,
which includes four different script types, corresponds to an image with four
grey levels. Then, it is subjected to co-occurrence statistical analysis in order
to extract texture features. This way, the feature extraction and further text
classification are performed in the image processing area. To test the proposed
approach, an experiment is conducted on a custom-oriented dataset contain-
ing text mainly from Web documents (unicode format) given in different world
languages: German, Spanish, English and French and minority language such

282 D. Brodić et al.

as Serbian. The classification is performed by employing K-Nearest Neighbors
and Naive Bayes algorithms. The differences in the feature values establish an
important aspect for classification that can identify a minority language such as
Serbian among the world languages (in unicode, i.e. web, PDF, or in a scanned
text document). This presents a new application of the method which has not
been investigated in the previous literature [1,2]. Classification results are com-
pared with the results obtained by the n-gram language model for identification
of the minority language. This comparison confirms the superiority of the pro-
posed method in language identification. It was also confirmed in a complex
problem such as discrimination of evolving languages [3].

The remainder of the paper is organized as follows. Section 2 addresses all
aspects concerning the proposed algorithm, including script coding, four grey
level image definition, texture features extraction and classification. Section 3
discusses the experiment. Section 4 presents the classification results. Section 4
draws the conclusions and outlines future work directions.

2 Proposed Algorithm

The proposed algorithm is a multi-stage method that consists of the Following
steps: (i) unicode text is mapped into the coded text according to the energy
characteristics, (ii) creation of four grey level image that fully corresponds to
the coded text, (iii) feature extraction by co-occurrence analysis, (iv) feature
classification, and (v) identification of the language. Figure 1 shows the flow of
the proposed algorithm.

Fig. 1. The flow of the algorithm.

2.1 Unicode Text Mapping

Typically, the text in the documents is divided into text lines. Each character
can be separated according to its energy characteristic, i.e. horizontal projections
profile. Figure 2 shows the different characters and their corresponding energy
characteristics. We can realize that the height of different characters corresponds
to their energy. Obviously, all characters have different energy characteristic. The
most diffused energy is given by the characters that outspread over the full text
line height such as character lj in Serbian or Croatian language. Taking into
account all aforementioned, we can draw virtual lines in each text line. They can
be represented as: (i) top-line, (ii) upper-line, (iii) base-line, and (iv) bottom-line.
Furthermore, they establish three vertical zones [26]: (i) upper zone, (ii) middle

Image Texture Analysis for Minority Language Identification 283

Fig. 2. Energy characteristic of different characters: (a) different characters in different
text lines, (b) their corresponding energy.

Fig. 3. Definition of the script characteristics according to baseline status of the text.

zone, and (iii) lower zone. All letters can be classified according to these vertical
zones. The short letters (S) take the middle zone. The capital letters and letters
with ascenders (A) take the middle and upper zones. The descendent ones (D)
occupy the middle and lower zones. The full letters (F) outspread over the upper,
middle and lower zones. Figure 3 shows the script characteristics according to
the letter baseline position.

According to the vertical zone classification, all letters from the alphabet are
substituted with the script types. Each letter is positioned into a given zone(s)
in the text line. Consequently, it is mapped to a unique element of the set {S,
A, D, F}.

2.2 Image Creation

In order to easily apply a statistical analysis, the script type should be injectively
coded in the following way:

S → 0, A → 1,D → 2, F → 3. (1)

These codes can be transformed into the grey level pixels of an image. Hence,
it corresponds to an image with four grey levels. Figure 4 shows an example of
the coding procedure for a text sample given in German language.

2.3 Feature Extraction

Currently, the initial text is transformed into an image through a variable reduc-
tion process. The obtained image is then subjected to the texture analysis. It

284 D. Brodić et al.

Fig. 4. An example of coding procedure for a German text: (a) initial text, (b) extrac-
tion of characters, (c) coding according to script types, (d) image creation.

includes the extraction of the co-occurrence probabilities, which provide second-
order texture features [14]. These features are extracted from the image in two
steps. At the first step, the pairwise spatial co-occurrences of pixels separated
by a particular angle θ and distance d are tabulated using a Grey Level Co-
occurrence Matrix (GLCM). At the second step, a set of texture measures is
calculated from GLCM. The GLCM shows how often different combinations of
grey level co-occur in a part or in the whole image [14].

Let’s suppose that our grey scale image is given as I, featuring M rows, N
columns, and T number of grey levels. GLCM represents the spatial relationship
of grey levels in the image I. It is a T ×T square matrix. To compute GLCM C,
a central pixel I(x, y) with a neighborhood defined by the Window Of Interest
(WOI) is taken. WOI is defined by inter-pixel distance d and orientation θ.
Hence, for the given image I, GLCM C is defined as [10]:

C(i, j) =
T∑

x=1

T∑

y=1

⎧
⎪⎪⎨

⎪⎪⎩

1 if I(x, y) = i, and
I(x + Δx, y + Δy) = j,

0 otherwise

(2)

where i and j are the intensity values of the image I, x and y are the spatial
positions in the image I, the offset (Δx,Δy) is the distance between the pixel-
of-interest and its neighbor. It should be noted that the offset depends on the
direction θ that is used and the distance d at which the matrix is computed.

In our case, the neighborhood is given as 2-connected only, due to the nature
of the text. Accordingly, θ is 0◦, while d is typically used as first neighborhood,
i.e. d = 1. Then, the normalized matrix P of GLCM C is calculated as [5]:

P (i, j) = C(i, j)/
T∑

i

T∑

j

C(i, j). (3)

Image Texture Analysis for Minority Language Identification 285

Table 1. Twelve co-occurrence elements.

μx

∑T
i=1 i

∑T
j=1 P (i, j),

μy

∑T
j=1 j

∑T
i=1 P (i, j),

σx

√∑T
i=1(i − μx)2

∑T
j=1 P (i, j),

σy

√∑T
j=1(j − μy)2

∑T
i=1 P (i, j),

Correlation
∑T

i=1

∑T
j=1

(i·j)·P (i,j)−(μx·μy)

σx·σy
,

Energy
∑T

i=1

∑T
j=1 P (i, j)2,

Entropy −∑T
i=1

∑T
j=1 P (i, j) · logP (i, j),

Maximum max{P (i, j)},
Dissimilarity

∑T
i=1

∑T
j=1 P (i, j) · |i − j|,

Contrast
∑T

i=1

∑T
j=1 P (i, j) · (i − j)2,

Invdmoment
∑T

i=1

∑T
j=1

1
1+(i−j)2

P (i, j),

Homogeneity
∑T

i=1

∑T
j=1

P (i,j)
1+|i−j|

Still, GLCM provides only a quantitative description of the spatial patterns.
Hence, it is not used for practical image analysis. Ref. [14] proposed a set of
texture measures, which summarize the information from GLCM. Although a
total of 14 quantities, i.e. features was originally proposed, only subsets of them
are used [17]. These are the following twelve GLCM texture measures: (i) mean
value μx, (ii) mean value μy, (iii) standard deviation σx, (iv) standard deviation
σy, (v) correlation, (vi) energy, (vii) entropy, (viii) maximum, (ix) dissimilarity,
(x) contrast, (xi) inverse difference moment and (xii) homogeneity. The twelve
co-occurrence elements are shown in Table 1. Hence, after this phase, the four
grey level image is represented by a 12-dimensional feature vector.

2.4 Feature Classification

In order to classify the obtained feature vector, the K-Nearest Neighbors and
Naive Bayes methods have been used, which are well-known algorithms for data
classification.

K-Nearest Neighbors. K-Nearest Neighbors (K-NN) is a very easy approach
to classify feature vectors [7,11]. Let Tr be the training set composed of n feature
vectors with associated class labels and xt be a test feature vector to classify.
Classification of xt is performed by computing the distance between xt and each
training vector in Tr from 1 to n. The K training vectors Tr′ which are the
nearest to xt are finally considered. K is a fixed parameter of the algorithm,
determining the amplitude of the neighborhood. The predicted class label for
xt is the one occurring most frequently in Tr′. Because even values of K can
determine class labels with the same frequency in Tr′ [19], the value of the K
parameter is usually fixed to a small odd integer. When the instances are fixed-
length vectors of real-value features, the distance function often adopted for

286 D. Brodić et al.

K-NN is the Euclidean one. However, different distance functions can determine
variations in the similarity evaluation [19]. In fact, based on the chosen distance
function, two vectors xi and xj can be considered more or less similar to each
other. Consequently, other possible functions are selected for K-NN, such as the
Manhattan distance or the Chebyshev distance.

Naive Bayes. Naive Bayes (NB) classifier is a probabilistic learning method
based on the assumption that all variables are mutually independent, given the
class variable [20]. The classifier is defined as: fnb(xi) = p(Y=1)

p(Y=0)

∏h
k=1

p(xk
i |Y=1)

p(xk
i |Y=0)

,

where xi = {x1
i , ..., x

h
i } represents a vector of h features and class variable Y . In

order to classify the test feature vector xi in class 1 or class 0, the probability of
each of its features conditioned to class 1 or 0 and the probability of occurrence
of class 1 and 0 in the training set are computed. xi is predicted to be in class 1
if and only if fnb(xi) ≥ 1. Otherwise, it is predicted to be in class 0.

For numerical features, the normal distribution is considered for computing
the probability values:

f(w, μ, σ) =
1√
2πσ

e− (w−μ)2

σ2 . (4)

Accordingly, p(xk
i |Y = 1) = f(xk

i , μyi
, σyi

), where μY=1 and σY=1 are respec-
tively the mean and standard deviation of the values of k-th feature with class 1.

3 Experiment

A test is conducted to evaluate the quality of the proposed method in correctly
identifying a minority language among a set of world languages. Accordingly, a
custom-oriented dataset extracted from the web text given in unicode format of
different languages is employed. It represents a set of text excerpts in German,
Spanish, English, French and Serbian languages. It consists of a total of 150
texts, divided into two classes respectively of 25 Serbian and 125 world language
texts (German, Spanish, English and French). The class label for each text in the
dataset corresponds to Serbian or world language. All texts have different con-
tents and size. The size of the text excerpts is between 378 and 2822 characters.
The length of the texts is chosen according to the size standard in factor analy-
sis, which means that the total number of analyzed elements would be higher
than 300 [24]. It means that our text samples contain approx. more than 300
characters. Figure 5 illustrates a web page in Serbian language from which the
unicode text is extracted.

The proposed features are extracted from each text in the dataset, in order to
create 150 feature vectors. Then, K-NN and NB algorithms are adopted on the
feature representation of the dataset for identification of the minority language.
Finally, classification results are compared and discussed.

Image Texture Analysis for Minority Language Identification 287

Fig. 5. Web page sample in Serbian language.

4 Results and Discussion

Figure 6 and Table 2 show the GLCM features obtained by the dataset for the
world and Serbian languages in a min-max manner. μx and μy are the same as
well as σx and σy count on two decimal places. Hence, only one graph repre-
senting both is enough. It is worth noting that Serbian language can mostly be
discriminated from the world languages by the GLCM dissimilarity and contrast.
In fact, the overall characteristics of Serbian text have much smaller values of
dissimilarity and contrast.

Because the classification accuracy depends on the choice of training and
test sets, the dataset is processed by a k-fold cross-validation strategy [15], for
obtaining different results on multiple training and test sets. The dataset is
randomly divided into k folds. Then, each fold is considered as the test set
and the remaining k − 1 folds are considered as the training set. Each fold has
roughly equal dimension and roughly the same language class proportions as
in the dataset. Consequently, the test set is composed of a small number of
texts in Serbian and a number of texts in world languages. Model learning by
K-NN and NB is performed each time by using the current training set, then
classification evaluation is established on the current test set. The K value of the
K-Nearest Neighbor has been fixed to small odd values (see Sect. 2.4), i.e. 1, 3
and 5. Furthermore, the K-NN algorithm has been executed with the traditional
Euclidean distance, which revealed to be particularly reliable in this context with
respect to other distance measures. Because the feature vectors have numerical
values, probabilities of the NB have been computed by using (4).

Our task is in the domain of binary classification, because we need to classify
a model and correctly predict the classes that represent texts written in the
world languages (German, Spanish, English and French) and in minority Serbian
language. The problem of language classification and identification is similar to
the information retrieval one. Hence, precision, recall and f-measure are preferred
metrics for the evaluation of the proposed algorithm [6]. They are calculated from
the confusion matrix between the classification results obtained by the test set
and the ground truth partitioning of the test set in Serbian and world languages.
Performance measures have been computed for each selection of the test and
training folds and the average values together with the standard deviation have
been reported for each of the measures. Furthermore, k-fold cross-validation has

288 D. Brodić et al.

Fig. 6. The twelve GLCM features obtained by the dataset for the world and Serbian
languages in a min-max manner

Image Texture Analysis for Minority Language Identification 289

Table 2. GLCM feature values from Fig. 6 in the min-max manner.

German Spanish Serbian English French

μx min. 1.6418 1.6557 1.3700 1.6809 1.6007

max. 1.8090 1.8353 1.4382 1.7610 1.6634

μy min. 1.6399 1.6526 1.3691 1.6813 1.5999

max 1.8081 1.8329 1.4375 1.7612 1.6618

σx min. 0.9865 1.0088 0.6153 1.0209 0.9904

max. 1.0586 1.0665 0.7003 1.0611 1.0303

σy min. 0.9857 1.0077 0.6151 1.0204 0.9901

max. 1.0585 1.0655 0.7002 1.0606 1.0298

Energy min. 0.2388 0.2431 0.2395 0.2602 0.2928

max. 0.3041 0.2911 0.2811 0.2890 0.3270

Entropy min. −1.6149 −1.6106 −1.6641 −1.6062 −1.5151

max. −1.4249 −1.4624 −1.5171 −1.5180 −1.4245

Maximum min. 0.3639 0.3283 0.3805 0.4136 0.4684

max. 0.4695 0.4496 0.4401 0.4636 0.5127

Dissimilarity min. 0.9913 1.0364 0.6593 0.9385 0.9300

max. 1.1361 1.2244 0.8037 1.0867 1.0324

Contrast min. 2.0975 2.2870 0.9201 2.0532 2.0479

max 2.5232 2.7229 1.2532 2.4019 2.3350

Invdmoment min. 0.5645 0.5309 0.6431 0.5882 0.6141

max. 0.6211 0.6068 0.6965 0.6422 0.6468

Homogeneity min. 0.6356 0.6081 0.6685 0.6549 0.6768

max. 0.6832 0.6717 0.7134 0.7005 0.7038

Correlation min. −0.1833 −0.2696 −0.2779 −0.1055 −0.1130

max. −0.0488 −0.1068 −0.1758 0.0498 −0.0122

been repeated separately for three different values of k equal to 2, 5 and 10
[15]. Finally, for avoiding the dependence of the classification results from the
particular division in folds, k-fold cross-validation has been executed 50 times
for each value of k.

The classification results obtained by the proposed method using K-NN or
NB classifier are very positive. Evaluation reveals a perfect identification of the
Serbian texts in the test set. In fact, precision, recall and f-measure obtain a
value of 1 in all the cases, when the k value of fold cross-validation is equal to
2, 5 and 10 for all the 50 runs and when the K value of the Nearest Neighbor
classifier is fixed to 1, 3 and 5. The classification results of the proposed method
are compared with those obtained by the n-gram language model. In particular,
each text in the dataset is represented by the normalized frequency values of
the extracted bi-grams. The same classification experiment is performed with

290 D. Brodić et al.

the bi-gram feature vectors by adopting K-NN and NB algorithms and k-fold
cross-validation. Also, the same parameter values for the classifiers are selected
in the experiment with bi-grams.

Table 3 reports the classification results of bi-grams with the K-NN classifier
and Euclidean distance at the different values of k = 2, 5, 10 folds and with
K = 1, 3, 5.

Table 3. Average results in terms of precision, recall and f-measure, together with the
standard deviation (in parenthesis), obtained by bi-grams and K-NN classifier using
k-fold cross-validation.

2-fold 5-fold 10-fold

World lang Serbian World lang Serbian World lang Serbian

K = 1 Precision 0.9994 1.0000 0.9997 1.0000 1.0000 1.0000

(0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000)

Recall 1.0000 0.9962 1.0000 0.9984 1.0000 1.0000

(0.0000) (0.0054) (0.0000) (0.0036) (0.0000) (0.0000)

F-Measure 0.9997 0.9979 0.9998 0.9990 1.0000 1.0000

(0.0004) (0.0030) (0.0003) (0.0022) (0.0000) (0.0000)

K = 3 Precision 0.9935 1.0000 0.9988 1.0000 1.0000 1.0000

(0.0091) (0.0000) (0.0026) (0.0000) (0.0000) (0.0000)

Recall 1.0000 0.9587 1.0000 0.9924 1.0000 1.0000

(0.0000) (0.0584) (0.0000) (0.0170) (0.0000) (0.0000)

F-Measure 0.9967 0.9771 0.9994 0.9950 1.0000 1.0000

(0.0046) (0.0324) (0.0013) (0.0112) (0.0000) (0.0000)

K = 5 Precision 0.9859 1.0000 0.9954 1.0000 0.9976 1.0000

(0.0134) (0.0000) (0.0103) (0.0000) (0.0077) (0.0000)

Recall 1.0000 0.9120 1.0000 0.9710 1.0000 0.9843

(0.0000) (0.0854) (0.0000) (0.0648) (0.0000) (0.0495)

F-Measure 0.9929 0.9519 0.9976 0.9831 0.9987 0.9893

(0.0068) (0.0475) (0.0053) (0.0379) (0.0040) (0.0337)

Although precision, recall, and f-measure are in the range of 0.91–1.00, it is
worth noting that bi-grams are not able to obtain the perfect identification of
the minority language among the world languages in all the cases. In fact, in
10-fold the f-measure value for Serbian class is in the range 0.98–1.00. However,
in 5-fold it varies in the range 0.98–0.99. Finally, in 2-fold the f-measure value is
in the range 0.95–0.99, depending on the K value.

Table 4 shows the classification results of bi-grams with the NB classifier at
the different values of k = 2, 5, 10 folds. We may observe a poor classification
result w.r.t that obtained by our method. In particular, the method is mostly
poor in recognition of the minority Serbian language, with the highest f-measure

Image Texture Analysis for Minority Language Identification 291

Table 4. Average results in terms of precision, recall and f-measure, together with
the standard deviation (in parenthesis), obtained by bi-grams and NB classifier using
k-fold cross-validation.

2-fold 5-fold 10-fold

World lang Serbian World lang Serbian World lang Serbian

Precision 0.9141 0.6409 0.8837 0.2000 0.8701 0.0867

(0.0754) (0.4821) (0.0495) (0.3332) (0.0433) (0.2574)

Recall 0.9984 0.4045 1.0000 0.1690 0.9992 0.0850

(0.0022) (0.5310) (0.0000) (0.3187) (0.0024) (0.2477)

F-Measure 0.9532 0.4356 0.9375 0.1747 0.9296 0.0847

(0.0397) (0.5410) (0.0269) (0.3180) (0.0234) (0.2491)

value of 0.44 in the 2-fold. Also, classification of the world languages is not per-
fect, reaching a peak of 0.95 in the 2-fold.

Figure 7 illustrates the f-measure values obtained by our method and by bi-
grams using K-NN and NB classifiers for the different k-folds. Bars represent
the f-measure values obtained by bi-grams. The black dashed lines represent the
value of f-measure equal to 1 obtained by our method in all cases. This graphical
comparison confirms that our method outperforms the competitor in most cases.

Fig. 7. F-measure values obtained by our method and by the bi-grams feature repre-
sentation. Bars represent the f-measure values obtained by bi-grams. The black dashed
lines represent the value of f-measure equal to 1 obtained by our method in all cases

These results indicate that the bi-grams are not totally robust and reliable
in the identification of a minority language such as Serbian among the world
languages. Also, the tri-grams did not obtain a meaningful improvement w.r.t.
bi-grams, similarly as in [3]. Consequently, their results will be omitted. On the
contrary, the proposed feature representation demonstrated to be robust and
effective in solving the same task on the same dataset and in the same operating

292 D. Brodić et al.

conditions when two different machine learning algorithms are employed. Hence,
it is a very promising approach in language identification.

The experiment has been performed in MATLAB R2015a, on a Desktop com-
puter quad-core 2.3 GHz CPU with 8 GB RAM and operating system Windows
7. Based on these specifications, the CPU time for the feature extraction proce-
dure is below 0.1 s. Again, the CPU time for feature classification by K-NN and
NB is around 0.003 s. Obviously, the method has proven to be computationally
non-intensive.

5 Conclusion

This paper proposed an image-based method for minority language identifica-
tion by considering statistical analysis of the text based on the text-line status
of each script element. The statistical analysis was performed by the grey level
co-occurrence matrix. Due to the difference in the language characteristics, the
results of the statistical analysis in terms of features showed significant dissimi-
larity. Classification of the introduced features was performed by the well-known
supervised learning algorithms K-Nearest Neighbors and Naive Bayes. The pro-
posed method was tested on text excerpts from a custom oriented dataset. It
incorporated texts given in German, Spanish, English, French (world languages)
and Serbian (minority language). The experiments showed encouraging results:
minority language was perfectly classified by the proposed method. Furthermore,
a comparison with the n-gram language model demonstrated the superiority
of the proposed feature representation in minority language identification. The
research presented in this manuscript can be used for language identification on
the Web, in preprocessing steps of OCR, and for video text identification.

Future work will enlarge the dataset with more complex samples and will
employ other well-known classification algorithms for the experiment, such as
deep learning based approaches.

Acknowledgments. This work was partially supported by the Grant of the Ministry
of Education, Science and Technological development of the Republic Serbia within
the project TR33037.

References

1. Brodić, D., Amelio, A., Milivojević, Z.N.: An approach to the language discrimina-
tion in different scripts using adjacent local binary pattern. J. Exp. Theor. Artif.
Intell., 1–19 (2016, in press). doi:10.1080/0952813X.2016.1264090

2. Brodić, D., Amelio, A., Milivojević, Z.N.: Language discrimination by texture
analysis of the image corresponding to the text. Neural Comput. Appl., 1–22 (2016,
in press). doi:10.1007/s00521-016-2527-x

3. Brodić, D., Amelio, A., Milivojević, Z.N.: Clustering documents in evolving lan-
guages by image texture analysis. Appl. Intell. 46(4), 916–933 (2017)

4. Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Document
Analysis and Information Retrieval, Las Vegas, USA, pp. 161–175 (1994)

http://dx.doi.org/10.1080/0952813X.2016.1264090
http://dx.doi.org/10.1007/s00521-016-2527-x

Image Texture Analysis for Minority Language Identification 293

5. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey
level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)

6. Confusion Matrix. http://www2.cs.uregina.ca/∼dbd/cs831/notes/confusion
matrix/confusion matrix.html

7. Dasarathy, B.V.: Nearest Neighbor: Pattern Classification Techniques (Nn Norms:
Nn Pattern Classification Techniques). IEEE Computer Society Press, Los Alami-
tos (1990)

8. Dunning, T.: Statistical Identification of Language. Technical report MCCS 94–
273, New Mexico State University (1994)

9. Dunning, T.: Statistical Identification of Language. Technical report CRLMCCS-
94-273, Computing Research Lab, New Mexico State University (1994)

10. Eleyan, A., Demirel, H.: Co-occurrence matrix and its statistical features as a new
approach for face recognition. Turkish J. Electr. Eng. Comput. Sci. 19(1), 97–107
(2011)

11. Elkan, C.: Nearest Neighbor Classification (2011). http://cseweb.ucsd.edu/∼elkan/
250Bwinter2010/nearestn.pdf

12. Grefenstette, G.: Comparing two language identification schemes. In: Statistical
Analysis of Textual Data, Rome, Italy, pp. 1–6 (1995)

13. Grothe, L., De Luca, E.W., Nurnberger, A.: A comparative study on language iden-
tification methods. In: Language Resources and Evaluation, Marrakech, Morocco,
pp. 980–985 (2008)

14. Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural features for image classifi-
cation. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1978)

15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2009)

16. Kornai, A.: Digital language death. PLoS ONE 8(10), 1–11 (2013)
17. Newsam, S., Kamath, C.: Comparing shape and texture features for pattern recog-

nition in simulation data. In: Image Processing: Algorithms and Systems IV, San
Jose, USA, pp. 1–14 (2005)

18. Padro, M., Padro, L.: Comparing methods for language identification. In: XXCon-
greso de la Sociedad Espanola para el Procesamiento del Lenguage Natural,
Barcelona, Spain, pp. 155–161 (2004)

19. Proietti, A., Panella, M., Leccese, F., Svezia, E.: Dust detection and analysis in
museum environment based on pattern recognition. Measurement 66, 62–72 (2015)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd ed. Prentice
Hall (2003). [1995]

21. Sibun, P., Spitz, A.L.: Language determination: natural language processing from
scanned document images. In: 4th Conference on Applied Natural Language
Processing, Stuttgart, Germany, pp. 15–21 (1994)

22. Souter, C., Churcher, G., Hayes, J., Hughes, J., Johnson, S.: Natural language
identification using corpus-based models. Hermes J. Linguist. 13, 183–203 (1994)

23. Takcı, H., Soğukpınar, İ.: Letter based text scoring method for language identifi-
cation. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 283–290. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30198-1 29

24. Wackerly, D.D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with
Applications. Duxbury Press, Belmont (1996)

25. Web 2014. http://w3techs.com/technologies/overview/content language/all
26. Zramdini, A.W., Ingold, R.: Optical font recognition using typographical features.

IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 877–882 (1998)

http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
http://cseweb.ucsd.edu/~elkan/250Bwinter2010/nearestn.pdf
http://cseweb.ucsd.edu/~elkan/250Bwinter2010/nearestn.pdf
http://dx.doi.org/10.1007/978-3-540-30198-1_29
http://w3techs.com/technologies/overview/content_language/all

JPEG Quantization Table Optimization
by Guided Fireworks Algorithm

Eva Tuba1, Milan Tuba2(B), Dana Simian3, and Raka Jovanovic4

1 Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
etuba@ieee.org

2 Graduate School of Computer Science, John Naisbitt University, Belgrade, Serbia
tuba@ieee.org

3 Faculty of Science, Lucian Blaga University, Sibiu, Romania
dana.simian@ulbsibiu.ro

4 Qatar Environment and Energy Research Institute,
Hamad Bin Khalifa University, Doha, Qatar

rjovanovic@qf.org.qa

Abstract. Digital images are very useful and ubiquitous, however there
is a problem with their storage because of their large size and memory
requirement. JPEG lossy compression algorithm is prevailing standard
that solves that problem. It facilitates different levels of compression (and
the corresponding quality) by using recommended quantization tables. It
is possible to optimize these tables for better image quality at the same
level of compression. This presents a hard combinatorial optimization
problem for which stochastic metaheuristics proved to be efficient. In this
paper we propose an adjustment of the recent guided fireworks algorithm
from the class of swarm intelligence algorithms for quantization table
optimization. We tested the proposed approach on standard benchmark
images and compared results with other approaches from literature. By
using various image similarity metrics our approach proved to be more
successful.

Keywords: Image processing · JPEG algorithm · Quantization tables ·
Fireworks algorithm · Swarm intelligence

1 Introduction

Widespread use of digital images facilitated advances in numerous scientific
areas. Biology, astronomy, medicine and many other fields were significantly
improved by digital images introduction [3,10]. Common requirement in all these
areas that use digital images is some kind of image processing which reduces to

M. Tuba was supported by the Ministry of Education, Science and Technological
Development of Republic of Serbia, Grant no. III-44006.
D. Simian was supported by the research grant LBUS-IRG-2015-01, project financed
by Lucian Blaga University of Sibiu.

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 294–307, 2017.
DOI: 10.1007/978-3-319-59108-7 23

JPEG Quantization Table by GFWA 295

application of different algorithms and mathematical formulas to the matrix
of numbers that represent digital image. Simplicity and power of digital image
processing is one of the major factors that contributes to ubiquity of digital
images.

Benefits of using digital images are numerous, however there are also some
problems. One of the biggest problems is the space needed for storing digital
images. One high quality digital image typically consists of millions of pixels
and accordingly needs more that ten megabytes of memory. One solution to
that problem is to use compression techniques to record image data in some
format that would use less memory. All compression algorithms can be divided
into two groups: lossless and lossy algorithms. Lossless algorithms try to find
some consistency and redundancy in the data and to rewrite it in more compact
but reversible way so that decompressed data are identical to the original [21].
Such algorithms can achieve typical compression ratios of 2:1 or 3:1 which is
inadequate for huge digital images. Fortunately, lossy compression algorithms,
by discarding some informations which results in minimal quality loss, achieve
much high compression rates of 10:1 or even 100:1.

JPEG is one of the most used lossy compression algorithm for digital images.
It is well known that by using JPEG algorithm space needed for image infor-
mation can be reduced twenty or even fifty times [11]. The main compression
is done by quantization step where, based on quantization table, less important
information is neglected.

In this paper a recent and very successful swarm intelligence algorithm,
guided fireworks algorithm, was used to solve combinatorial problem of selecting
elements of quantization table for JPEG algorithm in order to optimize decom-
pressed image according to some metrics.

In Sect. 2 basic steps of JPEG algorithm are described while in Sect. 3 the use
of quantization table in JPEG algorithm is briefly explained. In Sect. 4 guided
fireworks algorithm is presented. The proposed algorithm for quantization table
selection is explained in Sect. 5. Experimental results are shown in Sect. 6 and
at the end in Sect. 7 conclusion and suggestion for further work are given.

2 JPEG Algorithm

JPEG algorithm the most used lossy algorithm for digital image compression. It
is a very powerful algorithm that can significantly reduce the size of the image
file without any significant visible consequences.

JPEG algorithm consists of several steps and the first preprocessing step
is based on the fact that human eye is less sensitive to changes in color than
in the light intensity. HSV chromaticity components resolution reduction facili-
tates stronger compression for color images. JPEG algorithm is less suitable for
the simple drawings (drawings with sharp edges or text). For such images even
moderate compression will noticeably damage them.

The main step in the JPEG algorithm that results in significant compression
is quantization, which is the subject of research and experiments in this paper.

296 E. Tuba et al.

Some of the steps in JPEG algorithm will be just mentioned since they do not
have impact on results of our proposed algorithm.

The first step, after preprocessing, is to transform image into the frequency
domain by applying two-dimensional discrete cosine transform (DCT) which is
performed on non-overlapping blocks of size 8 × 8 of light intensities.

Result of this step is that the image is transformed to blocks of size 8 × 8
where each block consists of 64 frequency coefficients. The very first coefficient in
the block represents average intensity and it is named DC component, while the
rest 63 coefficients are AC components. DC coefficient contain the most informa-
tion about the block of the image. Coefficients close to DC coefficient represent
low frequencies and coefficients closer to the lower-right corner represent high
frequencies. Higher frequencies describe sudden changes in intensity values, i.e.
edges and noise. These features are less important and usually these coefficients
are close to zero.

The next step in JPEG algorithm is quantization where the main compression
is done, but also some information is lost.

3 Quantization Tables

Compression level and the quality of compressed image in JPEG algorithm are
mainly determined by the quantization table. The idea is to discard DCT coeffi-
cient that are less important and to reduce precision level for others. At quantiza-
tion step each DCT coefficient from 8 × 8 matrix is divided by the corresponding
element from the quantization table. By arranging elements in the quantization
table different compression levels and qualities of compressed images can be
determined. If all elements in the quantization table are equal to one, then there
will be no compression and the quality of the image will not be decreased.

JPEG standard provides recommendation for quantization tables that was
determined empirically based on human perception. Quantization table that pro-
vides high compression and good decompressed image quality is named Q50. Based
on this quantization table, tables Q1 to Q100 can be calculated. The number in
index represents the scale for quality of the compressed image. For low quality
index higher compression will be achieved, but at the expense of image quality.
On the other hand, with high quality index better image quality will be achieved,
but the compression level will be low. For higher quality indices over 50 (less com-
pression), quantization tables are obtained by multiplying the table Q50 by (100−
quality level)/50 while for lower quality indices below 50 but higher compression,
quantization tables are defined by multiplying standard Q50 by 50/quality level.
In both cases values are clipped to be between 1 and 255.

As mentioned before, these Qi matrices are quantization tables constructed
based on human subjective opinion about image quality, but for many applica-
tions some more objective metrics are necessary. For such kinds of applications
compressed images are further processed with some specific goal, and that goal
achievement represents the quality metrics [1,9,13,24].

JPEG Quantization Table by GFWA 297

A method for determining customized JPEG quantization table for low bit
rate mobile visual search was proposed in [8]. In the proposed method pair-
wise image matching precision was incorporated into distortion measure and
quantization table was optimized to achieve better trade-off between compression
level and visual quality.

In [5] an algorithm for finding the optimal quantization table that enables
improvement of feature detection performance was proposed. Optimal quantiza-
tion table was based on the measured impact that scale-space processing has on
the DCT.

A comparison between compression by the traditional quantization matrix
and by a set of quantization matrices especially optimized for ultrasound images
was performed in [33]. Experimental results have shown that images compressed
by optimized tables have significantly better quality in the sense of the medical
information.

Selecting elements of the quantization table represents a combinatorial prob-
lem: each of the 64 elements can be any number from some range. Theoretically,
that range should be [1, 1023], but in practice table elements are usually in
the range [1, 255]. The only certain way to find the best quantization table is
exhaustive search. However, that is not possible since the computational time is
measured in hours even for 5 coefficients and then increased 255 times for each
additional coefficient up to 64. For such hard optimization problems during last
decades algorithms that imitate some natural processes were successfully used.
Very promising branch of such algorithms are swarm intelligence algorithms that
simulate simple individuals that collectively produce significant intelligence.

Many different swarm intelligence algorithms have been proposed so far and
were successfully used for various purposes [2,4,6,14,22,26,28,30]. These algo-
rithms were also used for JPEG quantization table optimization. Evolutionary
approach for quantization table selection was proposed in [16]. In [15] genetic
algorithm was used, while in [19] particle swarm optimization was used for opti-
mizing quantization table. In [27] firefly algorithm was proposed to solve this
combinatorial problem. Bacterial foraging optimization algorithm for quantiza-
tion table selection for color images was proposed in [7]. In [20,29] brief reviews
on swarm intelligence algorithms applied to JPEG algorithm were given. In this
paper one of the latest swarm intelligence algorithm, fireworks algorithm, will
be used for quantization table selection.

4 Guided Fireworks Algorithm

Guided fireworks algorithm (GFWA) is the latest improvement of the fireworks
algorithm and it was proposed by Li, Zheng and Tan in 2016 [18]. The original
fireworks algorithm (FWA) proposed in 2010 [23] simulates fireworks explosion
with two different types of the fireworks. Well manufactured fireworks produce
numerous sparks around explosion center which is used to define exploitation,
while badly manufactured fireworks produce only a few sparks scattered in the
space which represents exploration [23]. During last few years fireworks algorithm

298 E. Tuba et al.

was used as part of many different applications for solving hard optimization
problems. It was used for SVM parameters tuning in [25] and in [12] it was used
for parameter tuning of local-concentration model for spam detection.

Since the initial version of the fireworks algorithm introduction, several
improved versions were proposed. The first modification was named enhanced
fireworks algorithm where five modification of the initial fireworks algorithm were
introduced [31]. After enhanced FWA, cooperative FWA (CoFWA) was proposed
in [32]. CoFWA enhanced the exploitation ability by using independent selection
operator and increased the exploration capacity by crowdness-avoiding cooper-
ative strategy among the fireworks. In [17] another two methods for improving
exploration were proposed. One is the mechanism that allows FWA to dynam-
ically adjust the number of sparks based on the fitness function results and on
the search results. Additionally, better diversity of the fireworks population was
achieved by sharing the fitness information among the fireworks. This version of
the FWA is also known as the FWA with dynamic resource allocation (FWA-
DRA). The latest version of the FWA, guided fireworks algorithm, will be briefly
described.

Guided fireworks algorithm uses n fireworks and for each of them some
number of sparks is generated. Fireworks and sparks represent points in d-
dimensional space, where d is the dimension of the problem. The number of
the sparks for each firework xi is calculated as:

λi = λ̂

max
j

(f(xj)) − f(xi)
∑n

j=1(max
k

(f(xk)) − f(xi))
, (1)

where λ̂ represents parameter that controls the overall number of sparks gen-
erated by n fireworks, ymax = max(f(xi)), (i = 1, 2, ..., n) represents the worst
solution in the population and η is a small constant used to avoid division-by-zero
error.

For each firework, explosion amplitude is defined by the following equation:

Ai = Â
f(xi) − ymin + η

∑n
i=1(f(xi) − ymin) + η

, (2)

where Â defines the highest value of the explosion amplitude and ymin =
min(f(xi), (i = 1, 2, ..., n) represents the best solution in the population of n
fireworks.

In each generation, the firework with the best fitness is named core firework
(CF). For CF, explosion amplitude is adjusted according to the following equa-
tion [18]:

ACF (t) =

⎧
⎪⎨

⎪⎩

ACF (1) if t = 1,

CrACF (t − 1) if f(XCF (t)) = f(XCF (t − 1)),
CaACF (t − 1) if f(XCF (t)) < f(XCF (t − 1))

(3)

JPEG Quantization Table by GFWA 299

where t represents the number of the current generation, while Ca > 1 and
Cr < 1 are constants.

In each generation, a guiding spark (GS) is generated for each firework. The
GS is generated by adding to the firework’s position a guiding vector (GV).
The position of the GS and Gi for firework Xi is determined by the following
algorithm [18]:

Algorithm 1. Generating the Guiding Spark for Xi [18]
Require: Xi, sij , λi and σ

Sort the sparks by their fitness values f(sij) in ascending order.
Δi ← 1

σλi
(
∑σλi

j=1)sij −∑λi
j=λi−σλi+1 sij

Gi ← Xi + Δi

return Gi

The guiding vector Δi is the mean of σλi vectors which is defined by the
following equation:

Δi =
1

σλi

σλi∑

j=1

(sij − si,λi−j+1) (4)

The complete guided fireworks algorithm overview is shown as Algorithm 2:

Algorithm 2. Guided fireworks algorithm [18]
Randomly initialize μ fireworks in the potential space.
Evaluate the fireworks’ fitness.
repeat

Calculate λi according to the Eq. 1
Calculate Ai according to the Eq. 2 and Eq. 3
For each firework, generate λi sparks within the amplitude Ai

For each firework, generate guiding sparks according to previous algorithm.
Evaluate all the sparks’ fitness.
Keep the best individual as a firework.
Randomly choose other μ − 1 fireworks among the rest of individuals.

until termination criteria is met.
return the position and the fitness of the best individual.

In this paper the GFWA will be used for selecting coefficients in the JPEG
quantization table.

5 The Proposed Algorithm

Compression level and the corresponding image quality are mainly determined
by the quantization table. In this paper the goal is to find equivalent compression

300 E. Tuba et al.

level to some compression level achieved by using the recommended quantization
tables Qi, but with the aim that image compressed by new quantization table
has better quality. As mentioned before, the quality is often measured by human
perception, but in many different applications some objective measurements are
necessary. We will use two different metrics that are used in literature to measure
similarity of two images. The compressed image has better quality if it is more
similar to the original one. For our proposed algorithm the goal is to get the best
quality of the compressed image with some constraints, so the objective function
for the optimization algorithm, GFWA, will be appropriate image similarity
metrics.

The first standard metrics for image similarity is the mean square error
(MSE) defined by:

MSE =
1

NM

N∑

i=1

M∑

j=1

(xi,j − x′
i,j)

2 (5)

where xi,j represents the intensity value of the pixel (i, j) in the original image,
x′

i,j represents the intensity value of the corresponding pixel in the compressed
image, while M and N are dimensions of the image. For two identical images,
MSE is equal to zero since all the differences in the sum are zero which means
that in the case when MSE is used as an objective function, the goal is to
minimize it. Standard metrics based on MSE also used for image similarity is
peak signal to noise ratio (PSNR). This metrics is defined by:

PSNR = 10 log
2552

MSE + ε
(6)

where ε is a small constant to prevent dividing by zero. PSNR is larger for more
similar images.

The second metrics that will be used as an objective function is normalized
cross correlation (NK) that is defined as:

NK =

∑N
i=1

∑M
j=1 xi,jx

′
i,j

∑N
i=1

∑M
j=1 x2

i,j

(7)

For identical images NK is equal to 1 which is also the maximal possible
value. Therefore, the objective is to minimize -NK.

When the metrics are established, GFWA should find elements of the quanti-
zation table so that the best quality of the image with some predetermined com-
pression level is achieved. Since the elements of the quantization table need to be
determined, they will represent input vector for the GFWA. Problem dimension
is 64. Even though theoretically elements can be in range [1, 1023], in practice,
usually it is enough to set the range to [1, 255] because DCT coefficients are
rarely larger then 255 (with minor consequence that in rare situations it will be
impossible to completely cancel some DCT frequency coefficients).

Condition that some compression level should be achieved can be described
in different ways. One measure of compression level could be the sum of all

JPEG Quantization Table by GFWA 301

bits that are needed by all quantized non-zero DCT coefficients i.e. coefficient
between 2k−1 and 2k −1 requires k bits. This measure is not convenient since the
number of required bits changes for each block. Element from the quantization
table determines the maximum number of bits that is necessary for saving the
quantized coefficient, but not the exact number. However, that is rectified by
later Huffman coding so the sum of all the elements in the quantization table can
be an appropriate measure of the level of compression. Larger sum corresponds to
larger elements in the quantization table and consequently higher compression.
In this paper this measure was used as a requirement that the sum of elements
in the optimized quantization table should be equal to the sum of elements in
the corresponding Qi table.

In order to incorporate this condition the problem of selecting elements in
the quantization table becomes a constrained optimization problem. The most
difficult constraints are equality constraints where all feasible solutions are in
one hyperplane since the search space is extremely reduced and it is difficult to
find any feasible solutions. Equality constraints are usually relaxed by allowing
some tolerance, larger in the beginning in order to find some feasible solutions
and later dynamically reduced to zero.

In our case, equality constraint can be changed to inequality constraint that
the sum elements in the optimized quantization table need to be larger or equal
than the sum of elements in the corresponding Qi table. This is possible because
the objective function searches for the best possible quality of the image, and the
image will have better quality if more information is saved, i.e. DCT coefficients
were divided by smaller numbers so the sum will be as small as possible. In this
way the objective function will force the solutions towards equality constraint
and play the role of dynamic tolerance for equality relaxation.

In constraint optimization problems not all generated solution will be feasible.
In this example, solutions where the sum of quantization table elements is less
then given number are not acceptable. In order to guide optimization algorithm,
Deb’s rules are usually used. Between feasible and non-feasible solution, feasible
solution is better regardless of the value of the objective function. Between two
non-feasible solutions, better is the one that has smaller constraint violation.
For two feasible solution, value of the objective function is used to determine the
better one. In this paper, GFWA was modified so that non-feasible solutions were
discarded immediately after they were generated, without computing objective
function value which is computationally very expensive operation (compression
and decompression of the whole image). This was possible since the constraint
was not on objective function but on the property of the input vector (bound-
constrained optimization).

Another adjustment in the proposed algorithm deals with the fact that ele-
ments of the quantization table are integers while GFWA works with real num-
bers. We performed optimization with the standard GFWA that generates real
number solutions and rounded them to the nearest integer. That is possible
since pixel intensities as well as DCT coefficients are originally real numbers,

302 E. Tuba et al.

artificially converted to integers because of our conventions for storing digital
images.

6 Experimental Results

The proposed algorithm was implemented in Matlab version R2016b. All exper-
iments were performed on Intel R© CoreTM i7-3770K CPU @ 4 GHz, 8 GB RAM
computer with Windows 10 Professional OS.

Performance of our proposed algorithm was tested on several standard test
images. Experimental results are shown for image “Lena” (Fig. 1), gray version,
resolution 512 × 512.

Results are first shown for the level of compression where the degradation of
image quality is easily visible. For that purpose we selected recommended Q10

table and by using GFWA we computed optimized quantization table Q10 opt

that achieves the same compression level. JPEG recommended table Q10 and
our optimized Q10 opt when MSE was used as objective function are shown in
Table 1.

Table 1. Quantization table Q10 (left) and Q10 opt optimized by GFWA (right)

80 55 50 80 120 200 255 255 7 5 9 2 18 226 231 255
60 60 70 95 130 255 255 255 26 17 35 68 177 254 255 255
70 65 80 120 200 255 255 255 8 35 15 84 252 255 255 255
70 85 110 145 255 255 255 255 118 172 244 247 255 255 255 255
90 110 185 255 255 255 255 255 243 250 252 255 255 255 255 255

120 175 255 255 255 255 255 255 138 201 255 255 255 255 255 255
245 255 255 255 255 255 255 255 133 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

It can be seen that these tables are rather different even though their level of
compression is very similar. Elements under and on anti-diagonal are all 255 in
both cases. The difference is in elements above anti-diagonal. Sum of the elements
in Q10 is 12,610 while the sum of elements in our Q10 opt is larger, 12,647. This
means that the compression level is slightly larger then by Q10 table. This is
due to the constraint that the sum has to be larger or equal to the sum of
elements in Q10 table. Even with larger sum in quantization table, i.e. higher
compression level, better quality of decompressed image was achieved because
elements of quantization table are more appropriate. Resulting images are shown
in Fig. 2. By visual inspection it is easy to see that the quality image in Fig. 2(b)
is much better. Image is smoother and block edges are not visible like in the
image compressed by JPEG recommended Q10 table (Fig. 2(a)).

Next, we used the level of compression 20 where degradation of the image is
almost unnoticeable by human eye, but detectable by the metrics described by
Eqs. 5, 6 and 7. JPEG standard recommended Q20 table and computed optimized

JPEG Quantization Table by GFWA 303

Table 2. Quantization table Q20 (left) and Q20 opt optimized by GFWA (right)

40 28 25 40 60 100 128 153 4 1 22 17 138 96 184 9
30 30 35 48 65 145 150 138 2 10 8 2 102 220 156 191
35 33 40 60 100 143 173 140 9 6 16 236 8 248 60 187
35 43 55 73 128 218 200 155 32 2 4 178 30 205 235 255
45 55 93 140 170 255 255 193 39 205 213 5 43 107 255 255
60 113 138 160 203 255 255 230 227 160 120 162 238 255 255 255

123 160 195 218 255 255 255 253 170 139 188 159 255 255 255 255
180 230 238 245 255 250 255 248 120 219 226 255 255 255 255 255

by GFWA quantization table Q20 opt that achieves the same compression level
are shown in Table 2.

Again, these tables are rather different even though their level of compres-
sion is very similar. Compression is smaller then in the previous case, thus less
elements have value 255. Elements in the lower right triangle of Q20 are not all
255 but they are close. In quantization table obtained by our proposed method
elements are somewhat unexpected where some rather small values appear on
the anti-diagonal and even below it. Sum of the elements in Q20 is 9070 while
the sum of the elements in our quantization table is, as in the previous case,
slightly larger, 9183.

Resulting images are shown in Fig. 3. In this case the difference in quality
is hardly noticeable by human eye. Skin texture on the shoulder is smoother in
the image decompressed by our quantization table in Fig. 3(b) while the blocks
edges can be seen when Q20 table was used (Fig. 3(a)).

Besides perceptual results which are interesting, numerical results using men-
tioned metrics are more important and they are also better. In Table 3 metrics
obtained for three different test images are shown. As it can be seen, our pro-
posed algorithm successfully selected elements of the quantization tables so that
the quality of the images was significantly improved for the same compression
level.

Compression by quantization tables obtained by our proposed method
achieved better results for all considered metrics compared to images compressed
by standard quantization tables. Improvements were higher for compression level
Q10 than for Q20. It could be expected since for higher compression level degra-
dation is larger thus there is more space for improvements. For example, image
quality measured by MSE for Q10 was improved by 45.72% for “Lena”, 26.20%
for “Barbara” and 35.21% for “Boat” while for Q20 improvements were 22.64%,
15.42% and 20.42% respectively.

In [27] average pixel intensity distance between the original and compressed
image was used as similarity measure. For images that were using Q10 table
average pixel intensity distance was 5.886, while for optimized quantization table
it was 5.100. For quantization table obtained by our proposed algorithm, average
pixel intensity level was 4.085 which is better.

304 E. Tuba et al.

Fig. 1. Original image

Fig. 2. Decompressed image by (a) Q10 and (b) quantization table Q10 opt obtained
by GFWA with MSE as objective function.

Fig. 3. Decompressed image by (a) Q20 and (b) quantization table Q20 opt obtained
by GFWA with MSE as objective function.

JPEG Quantization Table by GFWA 305

Table 3. Comparison of experimental results obtained by recommended JPEG stan-
dard quantization tables and quantization tables optimized by the proposed GFWA.

Image MSE PSNR NK

Q10 QGFWA Q10 QGFWA Q10 QGFWA

Lena 59.3049 32.1913 30.3999 33.0534 0.9999 1.0000

Barbara 175.1430 129.2543 25.6969 27.0164 0.9997 0.9999

Boat 99.9588 61.7657 28.1326 30.2233 0.9979 0.9996

Image MSE PSNR NK

Q20 QGFWA Q20 QGFWA Q20 QGFWA

Lena 32.9300 25.4735 32.9549 34.0699 0.9987 0.9999

Barbara 97.0153 82.0541 28.2624 28.9898 0.9974 0.9982

Boat 57.9879 46.1490 30.4974 31.4892 0.9985 0.9991

7 Conclusion

In this paper an algorithm for JPEG quantization table selection was proposed.
For selecting elements in quantization table novel swarm intelligence algorithm,
guided fireworks algorithm, was used. Quantization table elements were opti-
mized so that desired compression level was achieved while the quality of the
image was maximized according to selected metrics. For quality measurement
two standard metrics were used, mean square error and normalized cross corre-
lation, while peak signal to noise ratio was also used. Our proposed algorithm
significantly improved the quality of the compressed image. In further work more
similarity metrics that are adjusted for specific applications can be used.

Acknowledgement. M. Tuba was supported for this research by the Ministry
of Education, Science and Technological Development of Republic of Serbia,
Grant No. III-44006.

References

1. Alam, L., Dhar, P.K., Hasan, M.A.R., Bhuyan, M.G.S., Daiyan, G.M.: An improved
JPEG image compression algorithm by modifying luminance quantization table.
Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 17(1), 200 (2017)

2. Alihodzic, A., Tuba, M.: Improved bat algorithm applied to multilevel image
thresholding. Sci. World J. 2014, 1–17 (2014)

3. Aschwanden, M.J.: Image processing techniques and feature recognition in solar
physics. Sol. Phys. 262(2), 235–275 (2010)

4. Bacanin, N., Tuba, M.: Firefly algorithm for cardinality constrained mean-variance
portfolio optimization problem with entropy diversity constraint. Sci. World J.
2014, 1–16 (2014)

5. Chao, J., Chen, H., Steinbach, E.: On the design of a novel JPEG quantization table
for improved feature detection performance. In: IEEE International Conference on
Image Processing, pp. 1675–1679 (2013)

306 E. Tuba et al.

6. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
Biosystems 43(2), 73–81 (1997)

7. Dua, R.L., Gupta, N.: Fast color image quantization based on bacterial foraging
optimization. In: Fourth International Conference on Advances in Recent Tech-
nologies in Communication and Computing (ARTCom), pp. 100–102 (2012)

8. Duan, L.Y., Liu, X., Chen, J., Huang, T., Gao, W.: Optimizing JPEG quantization
table for low bit rate mobile visual search. In: Visual Communications and Image
Processing, pp. 1–6 (2012)

9. Ernawan, F., Nugraini, S.H.: The optimal quantization matrices for JPEG image
compression from psychovisual threshold. J. Theor. Appl. Inform. Technol. 70(3),
566–572 (2014)

10. Gunda, N.S.K., Choi, H.W., Berson, A., Kenney, B., Karan, K., Pharoah, J.G.,
Mitra, S.K.: Focused ion beam-scanning electron microscopy on solid-oxide fuel-cell
electrode: Image analysis and computing effective transport properties. J. Power
Sources 196(7), 3592–3603 (2011)

11. Gupta, M., Garg, A.K.: Analysis of image compression algorithm using DCT. Int.
J. Eng. Res. Appl. (IJERA) 2(1), 515–521 (2012)

12. He, W., Mi, G., Tan, Y.: Parameter optimization of local-concentration model for
spam detection by using fireworks algorithm. In: Tan, Y., Shi, Y., Mo, H. (eds.)
ICSI 2013. LNCS, vol. 7928, pp. 439–450. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38703-6 52

13. Jiang, C., Pang, Y., Xiong, S.: A high capacity steganographic method based
on quantization table modification and F5 algorithm. Circuits Syst. Sig. Process.
33(5), 1611–1626 (2014)

14. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Technical report - TR06, pp. 1–10 (2005)

15. Kumar, B.V., Karpagam, M.: Differential evolution versus genetic algorithm in
optimising the quantisation table for JPEG baseline algorithm. Int. J. Adv. Intell.
Paradigms 7(2), 111–135 (2015)

16. Lazzerini, B., Marcelloni, F., Vecchio, M.: A multi-objective evolutionary approach
to image quality/compression trade-off in JPEG baseline algorithm. Appl. Soft
Comput. 10(2), 548–561 (2010)

17. Li, J., Tan, Y.: Enhancing interaction in the fireworks algorithm by dynamic
resource allocation and fitness-based crowdedness-avoiding strategy. In: IEEE
Congress on Evolutionary Computation (CEC), pp. 4015–4021 (2016)

18. Li, J., Zheng, S., Tan, Y.: The effect of information utilization: Introducing a novel
guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–
166 (2017)

19. Ma, H., Zhang, Q.: Research on cultural-based multi-objective particle swarm opti-
mization in image compression quality assessment. Optik-Int. J. Light and Elec-
tron. Opt. 124(10), 957–961 (2013)

20. Naresh, S., Kumar, B.V., Karpagam, G.: A literature review on quantization table
design for the JPEG baseline algorithm. Int. J. Eng. Comput. Sci. 4(10), 14686–
14691 (2015)

21. Starosolski, R.: New simple and efficient color space transformations for lossless
image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)

22. Subotic, M., Tuba, M., Stanarevic, N.: Parallelization of the artificial bee colony
(ABC) algorithm. In: Proceedings of the 11th WSEAS International Conference
on Evolutionary Computing, vol. 10, pp. 191–196 (2010)

http://dx.doi.org/10.1007/978-3-642-38703-6_52
http://dx.doi.org/10.1007/978-3-642-38703-6_52

JPEG Quantization Table by GFWA 307

23. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13495-1 44

24. Thai, T.H., Cogranne, R., Retraint, F., et al.: JPEG quantization step estimation
and its applications to digital image forensics. IEEE Trans. Inf. Forensics Secur.
12(1), 123–133 (2017)

25. Tuba, E., Tuba, M., Beko, M.: Support vector machine parameters optimization by
enhanced fireworks algorithm. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2016. LNCS,
vol. 9712, pp. 526–534. Springer, Cham (2016). doi:10.1007/978-3-319-41000-5 52

26. Tuba, M., Bacanin, N.: Improved seeker optimization algorithm hybridized with
firefly algorithm for constrained optimization problems. Neurocomputing 143,
197–207 (2014)

27. Tuba, M., Bacanin, N.: JPEG quantization tables selection by the firefly algorithm.
In: International Conference on Multimedia Computing and Systems (ICMCS), pp.
153–158. IEEE (2014)

28. Tuba, M., Bacanin, N., Stanarevic, N.: Guided artificial bee colony algorithm. In:
Proceedings of the 5th European Conference on European Computing Conference,
pp. 398–403 (2011)

29. Viswajaa, S., Kumar, V., Karpagam, G.R.: A survey on nature inspired meta-
heuristics algorithm in optimizing the quantization table for JPEG baseline algo-
rithm. Int. Adv. Res. J. Sci. Eng. Technol. 2(4), 114–123 (2015)

30. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04944-6 14

31. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE
Congress on Evolutionary Computation, pp. 2069–2077 (2013)

32. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2016)

33. Zimbico, A., Schneider, F., Maia, J.: Comparative study of the performance of the
JPEG algorithm using optimized quantization matrices for ultrasound image com-
pression. In: 5th ISSNIP-IEEE Biosignals and Biorobotics Conference: Biosignals
and Robotics for Better and Safer Living (BRC), pp. 1–6 (2014)

http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-319-41000-5_52
http://dx.doi.org/10.1007/978-3-642-04944-6_14

Shape Matching for Rigid Objects by Aligning
Sequences Based on Boundary Change Points

Abdullah N. Arslan1(B) and Nikolay M. Sirakov1,2

1 Department of Computer Science and Information Systems,
Texas A&M University – Commerce, Commerce, TX 75428, USA

{Abdullah.Arslan,Nikolay.Sirakov}@tamuc.edu
2 Department of Mathematics, Texas A&M University – Commerce,

Commerce, TX 75428, USA

Abstract. This paper presents a new boundary (shape) matching algo-
rithm for 2D rigid objects without voids. Our new algorithm presents a
new shape representation that uses the outcome from an active contour
(AC) model. An object’s shape is partitioned into a clockwise ordered
sequence of edges, where every edge is a boundary segment enclosed by
reference points. These points are convex hull vertices which lie on bound-
ary corners. Further, the reference points are used to generate angles.
Hence, a boundary shape maps to a sequence of angles, turning the
shape matching problem to alignment of cyclic sequences of angles. The
latter makes our method scaling and rotational invariant. Experiments
validate the theoretical concept, and provide qualitative comparison with
other methods in the field.

Keywords: Shape · Active contour · Concavity · Representation ·
Cyclic alignment · Matching

1 Introduction

Shape is an effective discriminator for objects in many domains. Shape match-
ing has been used to classify objects in computer vision [13,16,18,28,29,35], in
medical imaging [2,24,37], in molecular pharmacology [11,22,23]. This study is
part of an on-going project for assessment of threat posed by firearms [4,5].

There are many different shape matching methods based on various repre-
sentation and distance definitions [9,15,19,25,26,28] (e.g. Haussdorff distance in
[19], Inner-Distance in [25]). Some shape matching methods are developed for
rigid objects (e.g. [36]) while some others are for non-rigid objects (e.g. [10]). In
the present paper, we consider rigid objects without voids.

The method we propose in this paper combines an AC model, and a cyclic
sequence alignment method [3,30,32].

A number of methods are published on shape representation and matching
using sequences derived from 2D shapes [12,20,21]. Methods in [12,20] are most
relevant to our work in this paper. They generate sequences by collecting local

c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 308–321, 2017.
DOI: 10.1007/978-3-319-59108-7 24

Shape Matching for Rigid Objects 309

information (based on turning angle) from the points on the boundary of a
given shape. Analogously our method generates sequences from boundary. Unlike
[12,20] it considers concavities, convexities, and line segments. The literature
has works on concavity extraction, and their use in shape representation and
matching [14,31,33].

The basics of the new shape matching method can be found in [3]. Similarly
to [3,5] the present paper partitions object boundary into segments separated by
reference points (convex hull vertices which lie on boundary corners). However,
unlike previous methods it considers each segment and its enclosing reference
points as an edge. The shape is described as a sequence of angles constructed from
edges. Thus the shape matching consists of sequence matching. The resulting
shape matching is more accurate compared to the one in [4,5] which considers
reference points and segments separately. The constructed angles do not change
under shape rotation and scaling. Therefore, they are invariant according to
these plane transformations, and they make the method rotation invariant as
well. Furthermore, the method attains scaling invariance in several steps. First,
it defines a neighborhood based on the relative sizes of shapes, and removes
boundary points in close vicinity. By this way, we aim to have similarly sized
boundary representations (in terms of both number of boundary points and
lengths of the sequences of angles) for compared shapes. A similarity score is
calculated for aligned sequences of angles in two shapes. The total score obtained
is divided by the average of the lengths of the compared sequences. This results
in scores in [0, 1]. The shape similarity score is calculated by using cyclic sequence
alignment at a higher level to handle rotations.

We organize sections with the following purposes: Sect. 2 for the notation;
Sect. 3 for the new shape representation; Sect. 4 for the new shape matching
method; Sect. 5 for experimental evidence; Sect. 6 for concluding remarks.

2 Notations and Basic Definitions

On a given shape without voids, let B = b1b2 . . . bn be a clockwise ordered
sequence of boundary points, bj = (xj , yj) such that bn = b1. Let R =
r1r2 . . . rm ⊆ B be a clockwise ordered sequence of reference points. We call
reference points of a shape the convex hull points which lie on boundary

Fig. 1. (A) Edge ei = ripiri+1; (B, C) Two shapes.

310 A.N. Arslan and N.M. Sirakov

corners, where the convex hull means the convex hull of the shape. For example,
in Fig. 1(C), the reference points are r21, r

2
2, r

2
3, r

2
4, r

2
5 and r26.

Denote by

pk: a nonempty boundary segment as a sequence bk1bk2 . . . bk|pk| , where
bkj

∈ B denotes the j’th boundary point in segment k;
ek: an edge rkpkrk+1 which is a segment enclosed by two reference points, i.e.

rkbk1bk2 . . . bk|pk|rk+1;
b̃j : angle ∠rkbjrk+1 with a vertex at bj and arms through rk and rk+1;
r̃i: an angle ∠ri−1riri+1 at reference point ri;
p̃k: the sequence of angles b̃k1 b̃k2 . . . b̃k|pk| at the points in segment pk;
s̃k: a sequence of angles r̃kp̃kr̃k+1.

To summarize, for every segment pi, there is a corresponding sequence of
angles p̃i = b̃i1 b̃i2 . . . b̃i|pi| .

Figure 1(A) illustrates an edge ei = ripiri+1 that includes a (concave)
boundary segment. The angles r̃i = ∠ri−1riri+1, r̃i+1 = ∠riri+1ri+2, and
b̃kj

= ∠ribkj
ri+1 are also illustrated. Shape 1 in (B) has 3 reference points,

and 3 edges that include one convex, one concave, and one line segment. Shape
2 in (C) has 6 reference points, and 6 edges that include 3 line segments, one
convex, and two concave segments. No angles are shown in (B) and (C) in Fig. 1,
but they are calculated in a similar way as shown in (A).

3 Shape Representation

We abstract a shape by a clockwise ordered sequence of edges ek obtained from
boundary.

3.1 Boundary Extraction

In the present study we apply a shrinking active contour model (S-ACES) to
extract the boundary of objects of interest. The model is developed in [32],
and uses the following evolution equation to converge S-ACES toward objects’
boundaries:

r(s, t) = Reas−4a2(t0+u∂t)[cos(cas), sin(sas)], (1)

In Eq. 1, s ∈ [0, 2π
ca] is a space parameter, t is a time parameter, t0 is initial time

moment, a = |∂s|/2, u = 1, 2, . . ., and R is the radius of the initial circle. To
make the initial circle encompass the entire image we select:

u = 0, a2t0 = 0.001, c = 1000. (2)

Denote the image function as f(x(s, t), y(s, t)) = f(r(s, t)). The condition
(BC) that halts the AC in the vicinity of the object’s boundary is:

r(s, t) = r(s, t + ∂t)) which holds if
∂f(r(s,t))

∂t > ε where t = t0 + u∂t such that
2.5 ≥ ta2 ≥ 0.001.

(3)

Shape Matching for Rigid Objects 311

Fig. 2. Extracted CH and boundary of (a) a skin lesion; (b) weapons.

To evolve into deep concavities, a curve re-parametrization is conducted [32].
If Ineq. 4 is satisfied the AC point (xi, yi) moves to the right of the AC if a
clockwise direction is considered.

(yi − yi−1)(xi+1 − xi) < (yi+1 − yi)(xi − xi−1). (4)

The AC was validated on the extraction of 162 skin lesion boundaries and
170 weapon and non-weapon images [5]. Sample results are shown in Fig. 2.

3.2 Generating the Shape Sequence

Let (xi−1, yi−1), (xi, yi), (xi+1, yi+1) be any three clockwise ordered points in
a 2D Euclidean plane. Consider the clockwise traversal of (xi−1, yi−1), (xi, yi),
(xi+1, yi+1). If Ineq. 4 is satisfied, we say that (xi, yi) is a concavity point with
respect to (xi−1, yi−1) and (xi+1, yi+1). If the reverse of Ineq. 4 is satisfied,
then we say that (xi, yi) is a convexity point with respect to (xi−1, yi−1) and
(xi+1, yi+1). If Ineq. 4 becomes an equality, then we say that these points are
co-linear.

We define concavity as a sequence of clockwise-ordered boundary points
rkbk1bk2 . . . rk+1 on B such that all bkj

are concavity points with respect to
rk and rk+1. We say that rkbk1bk2 . . . rk+1 is a level-1 concavity if it is a con-
cavity not included in another (larger) concavity (this definition is in parallel
with the definition in [31]). In this paper we consider only level-1 concavities.
Figure 1(A) illustrates a concave boundary segment.

Our method collects a sample of boundary points on the boundary via S-
ACES. We process the initial boundary obtained by S-ACES to eliminate bound-
ary points which are“too close” to each other. For this purpose, we calculate the
minimum-area rectangular bounding box enclosing the object. By dividing the
perimeter of this rectangle by a parameter, we obtain a threshold length. If any
two neighbors are within this threshold (horizontally and vertically) from each
other, only one of them is kept in B and the other one is removed. Our goal
is to obtain similarly sized sequence representation regardless of the size of the
object. We perform a complete clockwise traversal on B starting at an arbitrary
point, and find all level-1 concavities. We do this by considering every visited
point as a potential concavity beginning, and all successors as potential con-
cavity ends. Then we apply Ineq. 4 to check if all the points between the two
potential concavity beginning and end points are concavity points with respect

312 A.N. Arslan and N.M. Sirakov

to these points. If the current point is not a concavity beginning we move to
the next point. Once a level-1 concavity is found, we mark the found concavity
and advance the traversal to the concavity end point, and continue iterating the
same logic described above. By this way, we find all level-1 concave segments. All
other points on B are labelled as convexity points initially. Additional clockwise
traversals are performed to partition them into line, and other (convex) seg-
ments using Ineq. 4. Concave and convex segments which are almost linear are
replaced by line segments. We merge short line segments into larger ones. This
includes consecutive line segments which are almost linear, too. Similarly, two
consecutive convex segments can be merged into a larger convex segment. We
test if two consecutive segments can be merged by taking the beginning of the
first and the end of the second one, and checking if all the points between them
have the same characteristic (convex or concave) with respect to these reference
points. We continue iterating until there are no such consecutive segments.

We define a shape as a cyclic sequence s̃1s̃2s̃3 . . . s̃|s̃|, where each s̃i is a
sequence of angles obtained from edge ei ordered clockwise. In this sequence, each
angle at a reference point is calculated by using two other reference points (the
predecessor and the successor reference of this point clockwise), and each angle
at boundary point is calculated using the reference points enclosing this point.
We assign a sign to segment types as follows: for any segment pi, sign(pi) = −1
indicates that pi is concave; sign(pi) = 0 indicates that pi is a line; sign(pi) = 1
indicates that pi is convex. Figure 1 includes two example shapes. Shape number
is shown in the superscript. Shape 1 in (B) is represented by s̃11s̃

1
2s̃

1
3, where s̃1i =

r̃1i p̃1i r̃1i+1, for all i, 1 ≤ i ≤ 3, and sign(p11) = 1, sign(p12) = −1, sign(p13) = 0,
and Shape 2 in (C) is represented by s̃21s̃

2
2s̃

2
3s̃

2
4s̃

2
5s̃

2
6, where s̃2i = r̃2i p̃2i r̃2i+1, for

all i, 1 ≤ i ≤ 6, and sign(p26) = sign(p24) = sign(p21) = 0, sign(p22) = 1, and
sign(p25) = sign(p23) = −1.

4 Shape Matching

We convert the differences between angles b̃1i and b̃2j , and r̃1k and r̃2� to similarity
scores in [0, 1]. All angles are represented in radian and as a factor of π. We
convert the difference Δ = |b̃1i − b̃2j | between angles b̃1i and b̃2j , to a similarity
score in [0, 1] using

f(Δ) =

⎧
⎨

⎩

1, if (Δ < β1);
1 − √

Δ, if β1 ≤ Δ < β2;
0, otherwise,

(5)

where in the current implementation we set β1 = 0.02, and β2 = 0.05. Via these
parameters, the differences are either ignored or amplified. The purpose is to
distinguish very close matches from other similarities. When the difference Δ is
within β1, the angles are considered perfectly matching, and the similarity score
f(Δ) is maximum (i.e. 1). When Δ is larger than or equal to β2 the angles are
considered completely different (not similar at all), and f(Δ) is minimum (i.e.
0). In between β1 and β2, as the difference Δ increases the similarity score f(Δ)

Shape Matching for Rigid Objects 313

decreases at a faster rate. We note that with β1 = 0.02, and β2 = 0.05, f(Δ) = 0
if Δ > 0.05; f(Δ) = 1 if Δ ≤ 0.02; and f(Δ) is in [0.77, 0.85] for Δ in [0.02, 0.05).
Analogously, the difference Δ = |r̃1k − r̃2� | between angles r̃1k and r̃2� , is converted
to a similarity score in [0, 1] using f(Δ). Based on these, the similarity score for
a pair of boundary segments p1i , and p2j , with the same sign, is the alignment
score scores(p1i , p

2
j) for the sequences b̃1i1 b̃

1
i2

. . . b̃1i|p1
i

|
, and b̃2j1 b̃

2
j2

. . . b̃2j|p2
j

|
. This can

be computed by a special case of the global sequence alignment algorithm [27] in
which score of insertions, deletions are zeros, and substitutions (matches) have
positive scores. We can also formulate the objective of the optimization as the
following:

scores(p1i , p
2
j) = max

i′,j′

u∑

m=1

f(|b1i′
m

− b2j′
m

|) (6)

over all index sequences i′, j′ such that i′1, i′2, . . . , i′u is a subsequence of
i1, i2, . . . , i|p1

i |, and j′
1, j

′
2, . . . , j′

u is a subsequence of j1, j2, . . . , j|p2
j |, for some

u ∈ [1, min{|p1i |, |p2j |}]. For p1i and p2j , when one is concave and the other one is
convex then scores(p1i , p

2
j) = 0; when one is concave or convex, and the other one

is a line segment then the similarity score calculated by using Eq. 6 is halved.
For two sequences of angles s̃1i , s̃2j obtained from edges e1i = r1i p1i r

1
i+1, e2j =

r2j p2jr
2
j+1 with sign(p1i) = sign(p2j), wscores(s̃1i , s̃

2
j) is one fourth of the sum

of the scores between r1i and r2j , and between r1i+1 and r2j+1 plus half of the
alignment score for segments p̃1i and p̃2j divided by average length (|p1i |+ |p2j |)/2.
The resulting score is in [0, 1] and denoted by wscores (s̃1i , s̃

2
j). More formally,

wscores(s̃1i , s̃
2
j) =

1
4

(
f(|r1i − r2j |) + f(|r1i+1 − r2j+1|)

)
+

scores(p1i , p
2
j)

|p1i | + |p2j |
(7)

For any two shape sequences s̃1 = s̃11s̃
1
2 . . . s̃1|s̃1| and s̃2 = s̃21s̃

2
2 . . . s̃2|s̃2|

we consider sequence alignment [27] for calculating their similarity score
scoreseq(s̃1, s̃2). Let |s̃1| and |s̃2| denote the number of edges in shapes 1, and 2,
respectively.

The objective function can be described as the following:

scoreseq(s̃1, s̃2) = max
i,j

r∑

m=1

wscores(s̃1im , s̃2jm) (8)

over all index sequences i, j such that i1, i2, . . . , ir is a subsequence of
1, 2, . . . , |s̃1|, and j1, j2, . . . , jr is a subsequence of 1, 2, . . . , |s̃2|, for some r ∈
[1,min{|s̃1|, |s̃2|}].

The dynamic programming formulation of the sequence alignment in this
case is based on deleting s̃1i , inserting s̃2j , and matching s̃1i to s̃2j . We cre-
ate a model with the following similarity score parameters described by the
real score function γ. We set the insert and delete scores to zero. That is,

γ

([−
s̃2j

])

= γ

([
s̃1i
−

])

= 0. The similarity score for matching s̃1i to s̃2j is

314 A.N. Arslan and N.M. Sirakov

γ

([
s̃1i
s̃2j

])

= wscores(s̃1i , s̃
2
j), where wscores(s̃1i , s̃

2
j) is the alignment score cal-

culated as we described in Eq. 7. Then the alignment score scoreseq (s̃1, s̃2) =
E|s̃1|,|s̃2|, where E is the matrix calculated by the following dynamic program-
ming formula for sequence alignment [27]: For all i, j, i ∈ [0, |s̃1|], j ∈ [0, |s̃2|],
Ei,−1 = E−1,j = −∞, and for all other i, j, if i = j = 0 then E0,0 = 0 else Ei,j

is calculated from Ei,j−1, Ei−1,j−1, and Ei−1,j using the following formula

Ei,j = max

⎧
⎪⎪⎨

⎪⎪⎩

Ei,j−1 + γ

([
s̃1i

])

, Ei,j−1 + γ

([

s̃2j

])

,

Ei−1,j−1 + γ

([
s̃1i
s̃2j

])

⎫
⎪⎪⎬

⎪⎪⎭

(9)

The alignment score scoreseq(s̃1, s̃2) = E|s̃1|,|s̃2| is normalized by dividing it
by an upper bound for a maximal attainable score (|s̃1|+|s̃2|)/2, where n1, n2 are
respectively the number of edges in aligned shapes s̃1, s̃2. The resulting score is in
[0, 1] and denoted by |scoreseq(s̃1, s̃2)|. That is, |scoreseq(s̃1, s̃2)| = scoreseq(s̃

1,s̃2)

(|s̃1|+|s̃2|)/2 .

If s̃1 = s̃2, |scoreseq(s̃1, s̃2)| = 1, otherwise, |scoreseq(s̃1, s̃2)| < 1.
Given s̃2, the cyclic shift of s̃2 by k positions is s̃2,k = s̃2k+1s̃

2
k+2 . . . s̃2|s̃2|s̃

2
1

. . . s̃2k. Therefore we define the shape similarity score for two shapes (cyclic
sequences) s̃1 and s̃2 as

cscore(s̃1, s̃2) = max
0≤k<|s̃2|

|scoreseq(s̃1, s̃2,k)| (10)

If s̃1 = s̃2,k, for some k, then cscore(s̃1, s̃2) = 1, else, cscore(s̃1, s̃2) < 1.
On the bases of above concepts, we develop the following shape match-

ing algorithm: (1) Extract the boundary; (2) Generate shape sequences s̃1 =
s̃11s̃

1
2 . . . s̃1|s̃1| and s̃2 = s̃21s̃

2
2 . . . s̃2|s̃2|; (3) Shape matching is performed as follows:

(3.1) Define T as a two dimensional matrix whose elements are described by the
following:

T [i, j] = wscore(s̃1i , s̃
2
j), 1 ≤ i ≤ |s̃1|, 1 ≤ j ≤ |s̃2| (11)

The entire matrix T is built by calculating wscore(s̃1i , s̃
2
j) for all i, j. (3.2)

Sequences of angles from edges (Shapes) s̃1 and s̃2 are cyclically aligned using
matrix T , the optimum score is found by using the dynamic programming for-
mulation given by Eq. 9, and calculating Eq. 10. That is, for k = 0 to |s̃2| − 1,
|scoreseq(s̃1, s̃2,k)| is computed, and an optimal alignment is returned.

Boundary extraction takes O(MN) time, where M×N is the size of the input
images. Boundary sequence generation can be done within the same theoretical
time complexity using convex hull. In our implementation, we only used the
boundary points as described in Sect. 3.2, and it took less than 16 ms to generate
boundary sequences. For different k, the scores of the insertions, deletions, and
substitutions at given positions in the alignment computation for s̃1 and s̃2,k are
different because of the cyclic shifting of symbols in s̃2. Each pair of positions
(i, j + k) (i in s̃1 and j in s̃2,k) in aligning s̃1 and s̃2,k corresponds to (i, j) in

Shape Matching for Rigid Objects 315

aligning s̃1 and s̃2. Therefore, matrix T is computed only once, and all necessary
values are available there at different indices. Each pairwise segment alignment
takes time O(|p1i ||p2j |). Let �1 and �2 be the number of boundary points of the
input shapes, Shape 1 and Shape 2, respectively, after reducing close neighbors
as described in Sect. 3.2. That is, �1 = Σ

|s̃1|
k=1|p1k|, and �2 = Σ

|s̃2|
k=1|p2k|. The total

time required for building the table T is O(Σi,j |p1i ||p2j |) = O(|p11|�2 + |p12|�2 +

. . . + |p1|s̃1||�2) = O((Σ|s̃1|
k=1|p1k)�2) = O(�1�2). After constructing the table T ,

each pairwise edge alignment takes time O(|s̃1||s̃2|). The algorithm performs
|s̃2| such alignments. Therefore, the total time spent in this step is O(|s̃1||s̃2|2),
where |s̃1| and |s̃2| are the number of edges (much smaller than the perimeters),
respectively. Hence the total time of our shape matching algorithm is O(�1�2 +
|s̃1||s̃2|2).

5 Experimental Results

An earlier version of the shape representation and matching method was used
in [5]. The results there validated our theoretical concepts on a visual weapon
ontology composed by 153 weapons [5]. A visual hierarchy was designed by
creating clusters such as machine guns, pistols, riffles. Figure 3 includes a cluster
from this hierarchy. The clustering was done based on the algorithm in [17] and
using as the measure of similarity an earlier version of the cyclic shape sequence
alignment score described by the present paper. The ontology was queried by
objects. The results of identifying queried objects were encouraging [5].

In the present paper we tested our method on the dataset of Aslan and Tari
[7], and shown some of our results out of 56 shapes in Fig. 4. In each row we give
a query on the leftmost column, and in the next four columns we present the
nearest matches to the query in descending order of similarity as computed by
our method.

The results in Fig. 4 show the accuracy of 100% of our shape model in finding
identical 2D shapes. When segments -in particular concavities- appear similarly
in two compared shapes, the similarity score is high. For example, turtle looks
similar to human when hands and legs are in similar gesture.

We also want to note an implementation detail. The normalized similarity
scores distinguish the nearest neighbors. The scores are numbers in [0, 1]. We

Fig. 3. A cluster from the visual hierarchy in [5].

316 A.N. Arslan and N.M. Sirakov

Fig. 4. Select queries and nearest matches in a subset of the database from [7].

note that because of the scoring function for angles in Eq. 5, only very closely
matching angles in edges (at reference points, and at boundary points) contribute
to the total score; others have no contribution. Our observation is that in this
model we discriminate real similarities from other random matches. That is,
the scores we obtain is an effective measure of similarity. However, the resulting
normalized scores are small, even for near matches. Therefore, by taking the
fourth power of the normalized score in [0, 1], we maintain the same ordering for
matches, yet we obtain numbers corresponding 70% or higher percentages for
near matches. These numbers are shown as percentages in our results.

The dataset of Aslan and Tari [7] contains 56 images. The sizes of these
images vary from 190×111 to 222×250 pixels. In [8,34] the same dataset is used
for shape classification. The methods in [8,34] took above 5 min to process all
images. In our method on this dataset, on average per image, the AC extraction
took 400 ms; the sequence generation time, and the total time for alignments
were 16 ms. The total time to process the entire data set with our method and
answer queries with all 56 images is 47 s using a PC with 1.6 GHz clock, 512 MB
RAM. The comparisons show that our method is faster than those in [8,34].

We remark that our shape representation is based on the boundary features
(e.g. concavities). This is different than models based on symmetry axis in [7].
Naturally, a symmetry axis-based model performs very well classifying all human
shapes with different arm and leg positions. Our shape representation and com-
parison method performs very well for objects whose boundaries are rigid such
as firearms. The effectiveness of the seed ideas and initial method were proven
empirically in [5]. The effectiveness in detecting partial matches was illustrated
in identifying partially occluded firearms in [4]. We also note that two dissimilar
objects can have similar axis of symmetry such as a broom and a long gun,
however, boundary features can be the discriminating features in this case. Our
method can differentiate these objects in this example from each other (see [5]).

Shape Matching for Rigid Objects 317

To validate our shape matching method on weapons on a simple illustrative
example, we select six weapons from the weapon ontology presented in [5]. For
these weapons, the number of boundary points range from 300 to 998, and the
boundary sequence lengths range from 97 to 129. These weapons come from
three different clusters such that there are two weapons from each cluster. In
Fig. 5, on the very left, enclosed by a dashed rectangle these weapons are shown.
We perform a query with each weapon. In every case, the weapon itself is the
nearest match, and the next nearest match is the other weapon from the same
cluster.

Fig. 5. Select queries and nearest matches in a subset of weapon ontology in [5].

To validate and have an experimental evidence of the scale invariance capa-
bility of our method, we compared a query human figure with its 2×2 and 3×3
enlargements shown in Fig. 6(A). The similarity score remains very high even
there is a significant scaling difference.

Fig. 6. (A) Comparison of a human figure with its 2× and 3× enlargements; (B)
Comparison of a human figure with its rotations.

To validate the rotation invariance capability of our method, we compared
a query human figure with its rotations by 30, 90, and 150◦ angles (clockwise.)
We show the results in Fig. 6(B). The similarity score between the object and
its rotated version remains high. However, the 90◦ angle rotation yields better

318 A.N. Arslan and N.M. Sirakov

scores compared to 30-degree and 150-degree rotations. We believe the reason
lies with the rectangular bounding box. We bound an object with its minimum
horizontal, and minimum vertical boundary position as the bottom left corner,
and maximum horizontal, and maximum vertical boundary position on the top
right corner. To see this take a vertical line segment of length x with width
1; rotate it at 45◦ angle, the rectangular box that encloses the new object has
a diagonal of length

√
2 x, which has larger perimeter. In 90-degree case, the

perimeter stays the same. However, in 30 and 150-degree cases, the perimeter
increases. As a result, in these cases, shape sequences are longer, the total length
of the compared sequences is larger while the similarity score remains nearly the
same, and the normalized score is lower.

Figure 7 includes a clustering result based on the Gonzalez’ algorithm [17].
For computing the pairwise distances between shapes, our new algorithm is used.
In the figure, instead of distances, the normalized similarity scores are shown as
percentages. This example is another validation of our method’s performance on
clustering/discriminating rigid objects based on their shapes.

Fig. 7. Clusters of some containers.

6 Conclusions

The paper presents an improved shape representation based on convex, line,
and concave edges. These boundary features perform very well as shown in [5]
for rigid objects such as weapons which retain these features. This preservation
makes them very suitable for detecting partial matches [4]. Further, contributions
and advantages of the present study compared to the shape representation and
matching approach in [3,5] are the following:

– Here the shape is represented as a single sequence of angles obtained from
edges. The previous methods created separate convex hull (CH) and boundary
sequences of angles, and aligned them separately and independently. There-
fore, the new method is better applicable for local matches when only parts
of the boundary are visible. The new method aligns sequences of edges main-
taining the original clockwise ordering with respect to each other (in the order
of edges). The AC was reformulated for the tasks.

Shape Matching for Rigid Objects 319

– The new shape matching method generates similarly sized sequences and
similar angles even though the object sizes are different, and even though the
objects are rotated. This makes the method not only rotation invariant, but
also, scale invariant, which is a missing property in [3,5].

One shortcoming of the new representation and method is that some unre-
lated objects may look similar in different orientation. For example, with respect
to the new shape model, a human and a turtle can be very similar, and two
human shapes in different posses (e.g. a jumping man in two different poses)
may look very different (see. Fig. 4). The new representation and method apply
better to rigid objects. This is because rigid objects retain their shapes better
and concavities in them could be identifying features.

One disadvantage of the elaborated method is that it uses a number of user-
defined parameters such as a number of thresholds.

An area in which our shape matching method can be applied is the Ribonu-
cleic Acid (RNA) 2D structure analysis. RNA molecule makes interesting 2D
formations. Similar functions and evolutionary relatedness can be analysed via
structural similarities. New representations and algorithms for RNA 2D struc-
tures continue to be popular (e.g. see recent articles [1,6]). RNA 2D structures
have distinguishable boundary features such as bulges and hairpin loops in their
drawings. A linear sequence representation can be developed based on these
boundary features, and partitioning the boundary into segments. This would
yield a cyclic sequence alignment RNA structure comparison algorithm similar
to the one we use in this paper. Such a representation would also be useful for
searching boundary for given segment types. Our method will also be applied to
compare malignant and benign skin lesion boundaries.

Acknowledgements. We are thankful to reviewers for their insightful and construc-
tive comments. Addressing them yielded valuable additions to the present work. This
work is partially supported by USA NSF Award No: IIS-1528027.

References

1. Anandan, J., Fry, E., Monschke, Arslan, A.N.: A fast algorithm for finding largest
common substructures in multiple RNAs. In: Proceeedings of the 9th International
Conference on Bioinformatics and Computational Biology, BICOB’07, Honolulu,
HI, USA, 20–22 March, pp. 51–57 (2017)

2. Antani, S., Xu, X., Long, L.R., Thoma, G.R.: Partial shape matching for CBIR of
spine X-ray images. In: SPIE Proceedings of Storage and Retrieval Methods and
Applications for Multimedia, vol. 5307, pp. 1–8 (2004)

3. Arslan, A.N., Sirakov, N.M., Attardo, S.: Weapon ontology annotation using
boundary describing sequences. In: Proceedings of IEEE SSIAI 2012, pp. 101–104,
Santa Fe, 22–24 April 2012

4. Arslan, A.N., Hempelmann, C.F., Attardo, S., Blount, G.P., Sirakova, N.N., Sir-
akov, N.M.: Identification of partially occluded firearms through partonomy. In:
Sadjadi, M. (ed.) Proceedings of SPIE 2015 (2015). doi:10.1117/12.2184102

http://dx.doi.org/10.1117/12.2184102

320 A.N. Arslan and N.M. Sirakov

5. Arslan, A.N., Hempelmann, C.F., Attardo, S., Blount, G.P., Sirakov, N.M.: Threat
assessment using visual hierarchy and conceptual firearms ontology. Opt. Eng.
54(5), 053109 (2015). doi:10.1117/1.OE.54.5.053109

6. Arslan, A.N., Anandan, J., Fry, E., Pandey, R., Monschke, K.: A new structure
representation for RNA and fast RNA substructure search. In: Proceedings of CSCI
2016, Las Vegas, USA, 14–17 December, pp. 1226–1231. IEEE CPS (2016). doi:10.
1109/CSCI.2016.230

7. Aslan, C., Tari, S.: An axis based representation for recognition. In: Proceedings
of ICCV, pp. 1339–1346 (2005)

8. Bai, X.Y., Yui, D., Latecki, L.J.: Skeleton-based classification using path similarity.
Int. J. Pattern Recogn. Artif. Intell. 22(4), 733–746 (2008)

9. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. Trans. PAMI 24, 209–222 (2002)

10. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A
Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-
rigid shape matching. Int. J. Comput. Vis. 89(2), 266–286 (2010)

11. Chekmarev, D.S., Kholodovych, V., Balakin, K.V., Ivanenkov, Y., Ekins, S., Welsh,
W.J.: Shape signatures: new descriptors for predicting cardiotoxicity in silico.
Chem. Res. Toxicol. 21, 1304–1314 (2008)

12. Chen, L., Feris, R.S., Turk, M.: Efficient partial shape matching using the Smith-
Waterman algorithm. In: Proceedings of CVPR Workshop on Non-Rigid Shape
Analysis and Deformable Image Alignment, Anchorage, Alaska, June 2008. doi:10.
1109/CVPRW.2008.4563078

13. Cour, T., Shi, J.: Recognizing objects by piecing together the segmentation puzzle.
In: Proceedings of CVPR (2008). doi:10.1109/CVPR.2007.383051

14. Badawy, O., Kamel, M.: Matching concavity trees. In: Fred, A., Caelli, T.M., Duin,
R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR/SPR 2004. LNCS, vol. 3138,
pp. 556–564. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27868-9 60

15. Felzenszwalb, P., Schwartz, J.: Hierarchical matching of deformable shapes. In:
Proceedings of CVPR, pp. 1–8. IEEE (2007)

16. Gavrila, D.M.: Pedestrian detection from a moving vehicle. In: Vernon, D. (ed.)
ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000). doi:10.1007/
3-540-45053-X 3

17. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
ret. Comput. Sci. 38(2–3), 293–306 (1985)

18. Grega, M., Matiolański, A., Guzik, P., Leszczuk, M.: Automated detection of
firearms and knives in a CCTV image. Sensors 16(1), 47 (2016). doi:10.3390/
s16010047

19. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the
Hausdorff distance. Trans. PAMI 15(9), 850–863 (1993)

20. Huang, R., Pavlovic, V., Metaxas, D.N.: A profile Hidden Markov Model framework
for modeling and analysis of shape. In: Proceedings of International Conference
on Image Processing, Atlanta, GA. IEEE, October 2006. doi:10.1109/ICIP.2006.
312827

21. Kim, H.-S., Chang, H.-W., Liu, H., Lee, J., Lee, D.: BIM: Image matching using
biological gene sequence alignment. In: Proceedings of International Conference on
Image Processing, pp. 205–108. IEEE ICIP (2009)

22. Kortagere, S., Chekmarev, D., Welsh, W.J., Ekins, S.: Hybrid scoring and shape
based classification approaches for human pregnane X receptor. Pharm. Res. 26(4),
1001–1011 (2009)

http://dx.doi.org/10.1117/1.OE.54.5.053109
http://dx.doi.org/10.1109/CSCI.2016.230
http://dx.doi.org/10.1109/CSCI.2016.230
http://dx.doi.org/10.1109/CVPRW.2008.4563078
http://dx.doi.org/10.1109/CVPRW.2008.4563078
http://dx.doi.org/10.1109/CVPR.2007.383051
http://dx.doi.org/10.1007/978-3-540-27868-9_60
http://dx.doi.org/10.1007/3-540-45053-X_3
http://dx.doi.org/10.1007/3-540-45053-X_3
http://dx.doi.org/10.3390/s16010047
http://dx.doi.org/10.3390/s16010047
http://dx.doi.org/10.1109/ICIP.2006.312827
http://dx.doi.org/10.1109/ICIP.2006.312827

Shape Matching for Rigid Objects 321

23. Kortagere, S., Krasowski, M.D., Sean Ekins, S.: The importance of discerning shape
in molecular pharmacology. Trends Pharmacol. Sci. 30(3), 138–147 (2009)

24. Korotkov, K.: Automatic change detection in multiple skin lesions. Ph.D. thesis,
Universitat de Girona (2014)

25. Ling, H., Jacobs, D.: Using the Inner-Distance for classification of articulated
shapes. In: Proceedings of Conference on Computer Vision and Pattern Recog-
nition, vol. II, pp. 719–726. IEEE CVPR (2005)

26. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
CAPTCHA. In: Proccedings of Computer Vision and Pattern Recognition, pp.
134–141. IEEE CVPR (2003)

27. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–53
(1970)

28. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detec-
tion. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952,
pp. 575–588. Springer, Heidelberg (2006). doi:10.1007/11744047 44

29. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection.
In: Proceedings of ICCV (2005). doi:10.1109/ICCV.2005.63

30. Sirakov, N.M.: A new active convex hull model for image regions. J. Math. Imaging
Vis. 26(3), 309–325 (2006)

31. Sirakov, N.M., Simonelli, I.: A new automatic concavity extraction model. In: Pro-
ceedings of SSIAI, pp. 178–182 (2006)

32. Sirakov, N.M., Ushkala, K.: An integral active contour model for convex hull and
boundary extraction. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y.,
Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva,
C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 1031–1040. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10520-3 99

33. Sklansky, J.: Measuring concavity on a rectangular mosaic. IEEE Trans. Comput.
C-21, 1355–1364 (1972)

34. Sun, K.B., Super, B.J.: Classification of contour shapes using class segment sets.
In: Proceedings of CVPR, pp. 727–733 (2005). doi:10.1109/CVPR.2005.98

35. Thayananthan, A., Stenger, B., Torr, P., Cipolla, R.: Shape context and chamfer
matching in cluttered scenes. In: Proceedings of CVPR, pp. 127–134 (2003). doi:10.
1109/CVPR.2003.1211346

36. Wang, H., Oliensis, J.: Rigid shape matching by segmentation averaging. IEEE
Trans. Pattern Anal. Mach. Intell. 32(4), 619–635 (2010). doi:10.1109/TPAMI.
2009.199

37. Xu, X., Lee, D.-J., Antani, S., Long, L.R.: A spine x-ray image retrieval system
using partial shape matching. IEEE Trans. Inf Technol. Biomed. 12(1), 100–108
(2008)

http://dx.doi.org/10.1007/11744047_44
http://dx.doi.org/10.1109/ICCV.2005.63
http://dx.doi.org/10.1007/978-3-642-10520-3_99
http://dx.doi.org/10.1109/CVPR.2005.98
http://dx.doi.org/10.1109/CVPR.2003.1211346
http://dx.doi.org/10.1109/CVPR.2003.1211346
http://dx.doi.org/10.1109/TPAMI.2009.199
http://dx.doi.org/10.1109/TPAMI.2009.199

Gradient and Graph Cuts Based Method
for Multi-level Discrete Tomography

Tibor Lukić and Marina Marčeta(B)

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
{tibor,marina.marceta}@uns.ac.rs

Abstract. In this paper, we are proposing a new energy-minimization
reconstruction method for the multi gray level discrete tomography. The
proposed reconstruction approach combines a gradient based algorithm
with the graph cuts optimization. This new technique is able to recon-
struct images that consist of an arbitrary number of gray levels. We
present the experimental evaluation of the new method, where we com-
pare its performance with performance of the already suggested methods
for multi-level discrete tomography. The obtained experimental results
give an advantage to the proposed approach, especially regarding the
quality of the reconstructed test images.

1 Introduction

Tomography [14] reconstructs images of non accessible or non visible objects. It
deals with recovering images from a number of projections. Tomography will be
our focus in this paper. From a mathematical point of view, the object corre-
sponds to a function. The problem posed, is to reconstruct this function from
its integrals, or its sums over subsets of its domain. In general, the tomographic
reconstruction problem may be continuous or discrete. In Discrete Tomography
(DT) [15,16] the range of the function is a finite set. In practice, DT often deals
with reconstructions of digital images that consist of a number of gray levels.
DT has a wide range of applications in areas where the materials of the object
under investigation are known before, such as industrial non-destructive testing
or electron tomography [15,16].

To the best of our knowledge, there are only a few reconstruction algorithms
suggested for this DT problem, that deal with multi gray level tomography image
reconstruction. These are the Discrete Algebraic Reconstruction Technique
(DART) [2], the Multi-Well Potential based method (MWPDT) [22], method
which combines non-local projection constraints, continuous convex relaxation
of the Multilabeling problem and DC programming (MDC) [25], and the Non-
Linear Discretization function based reconstruction algorithm (NLD) [30]. The
DART method uses a fixed threshold function for the discretization process
(without any regularization), which can lead to radical solutions and less accu-
rate reconstructions, especially in the case of reduced projection data. The MDC
is a powerful method, but less flexible related to adding new regularization terms,
because the energy function has to be expressed as a difference of convex func-
tions. The MWPDT and NLD methods applies a non-convex energy function in
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 322–333, 2017.
DOI: 10.1007/978-3-319-59108-7 25

Gradient and Graph Cuts Based Method 323

the reconstruction process, which can stuck in local minimum, i.e., in a semi-
continuous solution. The proposed method in this paper is developed in such a
way to avoids the above listed disadvantages.

One of the approaches used for solving problems in image processing and
computer vision has been developed based on graph cuts. The core of this app-
roach is to construct a specialized graph for the energy function to be minimized
such that the minimum cut on the graph also minimizes the energy (either glob-
ally or locally). The minimum cut, in turn, can be computed very efficiently by
max-flow algorithms. The output of these algorithms is generally a solution with
some interesting theoretical quality guarantees. In [20] is given, which conditions
the energy function needs to satisfy in order to be minimized via graph cuts.

In this paper,we propose a newdeterministic reconstructionmethod for theDT
problem, which combines a gradient based method, with a graph cuts type opti-
mization method. The proposed method uses a smooth regularization prior and
allows reconstruction of images that contain an arbitrary number of different gray
levels.

The structure of the paper is the following. In Sect. 2, the basic reconstruction
problem is described. In Sect. 3, we present the new reconstruction method based
on the graph cuts approach. Our experimental results are provided in Sect. 4 and
finally, Sect. 5 is the conclusion.

2 Reconstruction Problem

In this paper we consider the DT reconstruction problem, represented by a linear
system of equations

Au = b, where
A ∈ R

M×N , u ∈ ΛN , b ∈ R
M , Λ = {λ1, λ2, ..., λk}, λi ∈ [0, 1], k ≥ 2.

(1)

Fig. 1. (a) Example of a projection value calculation on an image u∗ of size N =
4×4 = 16. A projection ray penetrates through the image pixels. The projection value
bi is calculated by bi = ai,4u

∗
4 + ai,6u

∗
6 + ai,7u

∗
7 + ai,8u

∗
8 + ai,9u

∗
9 + ai,10u

∗
10. (b) Parallel

beam projection. The source-detector system can rotate around a center point. The
projection direction is determined by the angle β.

324 T. Lukić and M. Marčeta

The value of k represents the number of different gray level values. The set Λ
is given by the user. The matrix A is a so-called projection matrix, whose each
row corresponds to one projection ray. The corresponding components of the
vector b contain the detected projection values, while the vector u represents
the unknown binary image to be reconstructed. The i-th row entries ai,· of A
represent the length of the intersection of the pixels and the i-th projection
ray passing through them, see Fig. 1(a). The projection value measured by a
projection ray is calculated as a sum of products of the pixel’s intensity and
the corresponding length of the projection ray through that pixel. The side
length of each pixel is one. Therefore, vertical and horizontal projection rays
represent the sum of the gray intensity values of pixels in corresponding columns
and rows, respectively. Projections are taken from different directions. For each
projection direction, a number of parallel projection rays are taken (parallel
beam projection), as shown in Fig. 1(b). The distance between two adjacent
parallel projection rays can vary depending on the reconstruction problem. We
set this distance to be equal to the side length of pixels.

The reconstruction problem means finding the solution image u of the linear
system of Eq. (1), where the projection matrix A and the projection vector b are
given. This system is often undetermined (N > M), and therefore additional
regularization (based on a priori information) is needed for the determination of
quality and acceptable solutions.

3 Reconstruction Method Based on the Graph Cuts
Method

A directed, weighted graph G = (X, ρ), consists of a set of nodes X and a set
of directed edges ρ that connect them. The nodes, in image processing inter-
pretations, mostly correspond to pixels or voxels in 3D. All edges of graph are
assigned some weight or cost.

Let G = (X, ρ) be a directed graph with non-negative edge weights that has
two special nodes or terminals, the source A and the sink B. An a−b-cut (which
is referred informally as a cut) C = A,B is a partition of the terminals in X
into two disjoint sets A and B so that a ∈ A and b ∈ B. The cost of the cut is
the sum of the costs of all edges that go from A to B:

c(A,B) =
∑

x∈A,y∈B,(x,y)∈ρ

c(x, y).

The minimum a − b-cut problem is to find a cut C, with the minimum cost
among all cuts. Algorithms to solve this problem can be found in [8].

The approach that uses graph cuts for energy minimization has, as a basic
technique, the construction of a specialized graph for the energy function to be
minimized, so that the minimum cut on the graph also minimizes the energy.
The form of the graph depends on the exact form of X and on the number of
labels. The minimum cut, in turn, can be computed very efficiently by max flow
algorithms.

Gradient and Graph Cuts Based Method 325

These methods have been successfully used in the last 20 years for a wide
variety of problems, naming image restoration [9,10], stereo and motion [3,19],
image synthesis [21], image segmentation [7] and medical imaging [6,18].

3.1 Potts Model

The Potts model in graph cuts theory is based on the minimization of the fol-
lowing energy

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · T (dp �= dq), (2)

where d = {dp|p ∈ P} represents the labelling of the image pixels p ∈ P.
By D(p, dp) we denote the data cost term, where D(p, dp) is a penalty or cost
for assigning a label dp to a pixel p. K(p,q) is an interaction potential between
neighboring pairs p and q, N is a set of neighboring pairs. Function T (·) is 1 if
the condition inside parenthesis is true and 0 otherwise.

3.2 Proposed Reconstruction Method

Our tomography reconstruction approach is a combination of the graph cuts
method and the quadratic iterative minimization method. In the first step,
we determine the data cost values for each image pixels. The data cost val-
ues are determined as intensity values of the continuous/smooth approximation
of the final reconstruction image, obtained as a solution of the following energy-
minimization problem

min
u∈[0,1]N

EQ(u) := ‖Au − b‖2. (3)

Function EQ is quadratic type and Ω = [0, 1]N is a feasible set. Therefore,
the problem (3) is a constrained and quadratic type energy-minimization prob-
lem. This minimization problem can be solved by several optimization methods.
According to our earlier experiences in similar problems [23,24,26] we chose the
Spectral Projected Gradient (SPG) optimization algorithm [4] for this task.

For THE application of this algorithm two conditions must be satisfied [4]:
(i) The objective function has continuous partial derivatives on an open set that
contains Ω; (ii) The projection function PΩ of an arbitrary vector onto the set
Ω is provided. The objective function in (3) is a multiple differentiable function
in R

N , therefore requirement (i) is satisfied. The projection PΩ of an arbitrary
vector u ∈ R

n onto the set Ω we define as

[PΩ(u)]i =

⎧
⎨

⎩

0, ui ≤ 0
1, ui ≥ 1
ui, elsewhere

, where i = 1, . . . , N.

PΩ is a projection with respect to the Euclidean distance, i.e.
PΩ(x) = arg {min

y∈Ω
d2(x, y)}. Hence, requirement (ii) is also satisfied.

326 T. Lukić and M. Marčeta

The pseudo-code of the SPG is presented in Algorithm 1. The reconstruction
process, starts with the initial solution u0, where each pixel intensity is set
as 0.5, as the middle of the interval [0, 1]. The SPG algorithm combines the
non-monotone line search algorithm [13] and the spectral gradient step-length
selection [1,5,27].

Algorithm 1. SPG optimization algorithm.
u0 = [0.5, 0.5, ..., 0.5]T ; d0 = PΩ(u0 − ∇EQ(u0)) − u0; k = 0;
repeat

Determine the step-length λk > 0 by a line search approach, see [4];
uk+1 = uk + λkdk;
Calculate the gradient spectral step-length θk+1 > 0, see [4];
dk+1 = PΩ(uk+1 − θk+1∇EQ(uk+1)) − uk+1; k = k + 1;

until ‖uk − uk−1‖∞ < 10−2;

unew = uk;

In the next step we have to discretize the smooth solution of the problem
3 u, obtained by the SPG algorithm. For this task we apply the graph cuts
method based on the Potts model, described in Sect. 3.1. The energy model
in (2) is successfully used in many energy minimization problems with similar
energy structure: sum of a data and a regularization/neighboring interaction
terms. We mention discrete tomography reconstruction algorithms proposed by
Schüle et al. [28,31] and Lukić et al. [23,24]. The Potts interaction model (second
term in (2)) showed good ability to enhance compactness of the solution (see
[8,12,29]), in a similar way as the compactness saving regularization terms do
in already suggested reconstruction methods [24,28], which also motivate our
choice for application of this model. We note that other interaction models, for
example the linear model [8], can also be taken into consideration, but this issue
is out of focus of this paper. The data cost term D in (2) is determined using
information provided by the smooth solution. More precisely, we define it in the
following way

D(p, 0) = |u(p) − λ1|,
D(p, 1) = |u(p) − λ2|,
D(p, 2) = |u(p) − λ3|,
...
D(p, k − 1) = |up − λk|,

where u(p) represents the intensity of a pixel p. The idea is to make data cost
small/cheap in the vicinity of the given gray values. The neighbor pairs are
defined based on 1-neighboring system, i.e., (p, q) ∈ N if the image coordinates
of p and q differs for one value only. The interaction potential K(p,q) (see (2))
in our experiments is set as a constant and its value is 1. Now, the energy
function in (2) is determined and ready to be minimized. For this task we use the
GCO graph cuts based optimization algorithm, introduced in [10] and further

Gradient and Graph Cuts Based Method 327

analyzed in [8,11,20]. The GCO algorithm determines the label values dp for
each pixel p. Each label value is assigned to one predefined gray level in the
following way: dp = 0 → λ1, dp = 1 → λ2, ..., dp = (k − 1) → λk. Therefore, the
obtained label values also determine intensities of pixels (from the given set of
gray levels) in the final (discrete) solution, therefore the reconstruction process
is terminated. We denote this method by Graph Cuts Discrete Tomography
(GCDT) reconstruction method.

Naturally arises the simplest, but less powerful, way for discretization of the
smooth solution u provided as a result of the minimization problem (3). This
approach is based on the application of the thresholding function, defined by

t(v) =

⎧
⎪⎪⎨

⎪⎪⎩

λ1 v < τ1
λ2 τ1 ≤ v < τ2
...
λk τl−1 ≤ v

,

where v ∈ R and τl = λi+λi+1
2 , l = 1, 2, ..., k − 1. The final solution ur is

obtained by application of the thresholding function to the smooth solution u,
i.e., ur = [t(u1), t(u2), t(u3), ..., t(uN)]. We denote this method by TRDT, and
use it in experimental work as a control method.

4 Experimental Results

In this section we experimentally evaluate the proposed graph cuts based recon-
struction method, denoted by GCDT. In the experiments we use 4 test images
(phantoms), as originals in reconstructions, presented in Fig. 2. Phantoms PH1,
PH2 and PH3 contain 3 gray levels, while the well-known Shepp-Logan phantom
[17] contains 6 gray levels. We consider reconstructions of these images obtained
from different projection directions. A total of 128 parallel rays are taken for
each projection direction. In all cases, the projection directions are uniformly
selected between 0 and 180◦. The obtained results are compared with the results
provided by the Multi Well Potential based method (MWPDT) [22], already

Fig. 2. Original test images (128 × 128). Phantoms PH1, PH2 and PH3 contain 3
different gray levels (0, 0.5, 1), while Shepp-Logan contains 6 different gray levels (0,
0.1, 0.2, 0.3, 0.4, 1).

328 T. Lukić and M. Marčeta

suggested for multi-level discrete tomography reconstruction, and with the sim-
ple method based on the classical thresholding, denoted by TRDT. Related to
the Shepp-Logan test image, the DART method, proposed in [2], is also included
into the evaluation process.

In the evaluation process, we analyze the quality of the reconstructions and
required running times. The quality of the reconstructions are expressed by the
pixel error (PE), i.e., the absolute number of the misclassified pixels, and by
the misclassification rate (m.r.), i.e., the pixel error measure relative to the
total number of image pixels. Also, as a qualitative error measure, we consider
the projection error, defined by PRE = ‖Aur − b‖, where ur represents the
reconstructed image. This error expresses the accordance of the reconstruction
with the given projection data.

Fig. 3. Reconstructions of the test images using data from 6 projection directions.

Gradient and Graph Cuts Based Method 329

Table 1. Experimental results for Shepp-Logan image, using three different reconstruc-
tion methods. The abbreviation m.r. indicates misclassification rate and d indicates the
number of projections.

d TRDT (m.r.%) DART (m.r.%) GCDT (m.r.%)

Shepp-Logan 12 12.74 14.21 5.72

15 10.44 8.44 3.17

18 10.03 2.56 2.14

Fig. 4. Reconstructions of the test images using data from 15 projection directions.

In Table 2 we present pixel errors for reconstructions of three phantom images
(PH1, PH2 and PH3) obtained from a different number of projections by three
different methods (MWPDT, GCDT and TRDT). In Figs. 3 and 4 reconstruc-
tions from 6 and 15 projection directions are presented. From a total of 12

330 T. Lukić and M. Marčeta

Table 2. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation d indicates the number of projections.

d PH1 PH2 PH3

6 9 12 15 6 9 12 15 6 9 12 15

MWP (PE) 255 159 59 35 379 242 56 5 655 456 275 174

(m.r.%) 1.55 0.97 0.36 0.21 2.31 1.47 0.34 0.03 3.99 2.78 1.67 1.06

TRDT (PE) 412 175 48 28 555 290 37 11 412 301 101 41

(m.r.%) 2.51 1.06 0.29 0.17 3.38 1.77 0.22 0.06 2.51 1.83 0.61 0.25

GCDT (PE) 272 69 8 5 295 121 15 6 272 116 20 9

(m.r.%) 1.66 0.42 0.04 0.03 1.80 0.73 0.09 0.03 1.66 0.70 0.12 0.05

Table 3. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation e.t. means elapsed time in minutes and d
indicates the number of projections.

d PH1 PH2 PH3

6 9 12 15 6 9 12 15 6 9 12 15

MWPDT (PRE) 14.70 12.19 9.96 9.08 15.32 15.50 9.68 3.09 19.83 18.77 18.80 16.43

(e.t.) 1.76 2.63 3.17 4.06 1.78 2.82 3.21 3.06 2.19 2.87 4.30 4.66

TRDT (PRE) 18.66 14.72 10.61 8.87 19.01 19.09 8.89 6.23 23.64 17.87 13.66 10.61

(e.t.) 7.73 12.58 14.55 17.77 5.44 10.90 12.67 15.74 7.28 11.07 13.39 16.00

GCDT (PRE) 23.24 11.12 6.52 4.39 18.31 13.94 7.10 4.57 25.87 14.96 7.59 5.60

(e.t.) 7.73 12.58 14.55 17.77 5.45 10.91 12.67 15.74 7.29 11.07 13.40 16.01

Fig. 5. Reconstructions of the Shepp-Logan test images by the proposed GCDT
method.

different reconstruction problems, GCT method provided the best results in 10
cases, while in 2 cases the dominant was the MWPDT method. We emphasize
that the results of the GCT method, in cases when they are the best, are sig-
nificantly better, at least by 50%, compared with other results. Table 3 presents
the obtained projection errors (PRE) and the needed running times in these
experiments. Regrading the PRE values, the proposed GCT method dominated
in 8 cases, while MWPDT in 4 cases.

All reconstruction methods (MWPDT, GCDT and TRDT) are implemented
completely in Matlab. The best running times in all of the experiments was
achieved by the MWPDT method (see Table 3). GCDT and TRDT methods
uses the smooth solution/reconstruction as a first step, before the “binarization
process” starts by GCO graph cuts optimization [10]. This smooth solution is

Gradient and Graph Cuts Based Method 331

achieved as a final termination, with high precision. This process, because of the
high precision, requires significantly higher number of iterations than is needed
for MWPDT method in total, resulting in a greater consumption of time.

Reconstruction results of the well-known Shepp-Logan [17] phantom image
is presented in Table 1 and Fig. 5. This phantom is considered to be one of the
most complex, containing 6 different gray levels. We compare the results obtained
by the three different reconstruction methods: TRDT, DART and GCDT. The
results for DART are taken from [2]. The projection data is acquired from 12,
15 and 18 projection directions. The GCDT method provides the best results in
all cases (smallest m.r. values).

Summarizing the results obtained by the total of the 15 analyzed reconstruc-
tion tasks, see Tables 1 and 2, the quality of the reconstruction, indicated by
m.r., for the proposed GCDT method was the best in 13 cases, i.e., in 87% of
the cases. According to these results, we conclude that the experiments confirm
the capability of the proposed method to provide high quality reconstructions.

5 Conclusions

In this paper, a new energy-minimization based reconstruction method for multi-
level tomography is proposed. It combines a gradient based method, with the
graph cuts optimization method. Experiments show advantages of the proposed
method in comparison with three formerly published reconstruction methods.
Based on the obtained experimental results and analysis presented in this paper,
we conclude that the combination of a gradient based method with graph cuts
optimization method is suitable for providing high quality reconstructions.

Acknowledgement. Tibor Lukić acknowledges the Ministry of Education and Sci-
ences of the R. of Serbia for support via projects OI-174008 and III-44006. Marina
Marčeta acknowledges the Ministry of Education and Sciences of the R. of Serbia for
support via project OI-174008.

References

1. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Num.
Anal. 8, 141–148 (1988)

2. Batenburg, K.J., Sijbers, J.: DART: a fast heuristic algebraic reconstruction algo-
rithm for discrete tomography. In: Proceedings of International Conference on
Image Processing (ICIP), pp. 133–136 (2007)

3. Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted sur-
faces. In: Proceedings of International Conference on Computer Vision, pp. 489–495
(1999)

4. Birgin, E.G., Mart́ınez, J.M., Raydan, M.: Algorithm: 813: SPG - software for
convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

5. Birgin, E., Mart́ınez, J.: Spectral conjugate gradient method for unconstrained
optimization. Appl. Math. Optim. 43, 117–128 (2001)

332 T. Lukić and M. Marčeta

6. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. In: Proceedings of International Conference
on Computer Vision, pp. 105–112 (2001)

7. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: Proceedings of International Conference on Computer Vision, pp. 26–33
(2003)

8. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. PAMI 26(9), 1124–1137
(2004)

9. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approx-
imations. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 648–655 (1998)

10. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)

11. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy mini-
mization with label costs. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition vol. 96, no. 1, pp. 1–27 (2010)

12. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for
binary images. J. R. Stat. Soc. 51(2), 271–279 (1989)

13. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for
Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

14. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction
from Projection. Advances in Computer Vision and Pattern Recognition, 2nd edn.
Springer, London (2009)

15. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and
Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston
(1999)

16. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.
Birkhäuser, Boston (2006)

17. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM,
Philadelphia (2001)

18. Kim, J., Zabih, R.: Automatic segmentation of contrast-enhanced image sequences.
In: Proceedings of International Conference on Computer Vision, pp. 502–509
(2003)

19. Kolmogorov, V., Zabih, R.: Visual correspondence with occlusions using graph
cuts. In: Proceedings of International Conference on Computer Vision, pp. 508–
515 (2001)

20. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. PAMI 26(2), 147–159 (2004)

21. Kwatra, V., Schoedl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image
and video synthesis using graph cuts. In: Proceedings of SIGGRAPH 2003, pp.
277–286 (2003). ACM Trans. Graphics

22. Lukić, T.: Discrete tomography reconstruction based on the multi-well potential.
In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 335–345. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21073-0 30

23. Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orienta-
tion. Pattern Recognit. Lett. 79, 18–24 (2016)

24. Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction method for
images on triangular grid. Pattern Recognit. Lett. 49, 11–16 (2014)

http://dx.doi.org/10.1007/978-3-642-21073-0_30

Gradient and Graph Cuts Based Method 333

25. Zisler, M., Petra, S., Schnörr, C., Schnörr, C.: Discrete tomography by continu-
ous multilabeling subject to projection constraints. In: Rosenhahn, B., Andres, B.
(eds.) GCPR 2016. LNCS, vol. 9796, pp. 261–272. Springer, Cham (2016). doi:10.
1007/978-3-319-45886-1 21

26. Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Funda-
menta Informaticae 145, 125–141 (2016)

27. Raydan, M.: The Barzilai and Browein gradient method for the large scale uncon-
strained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

28. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-
concave regularization and D.C. programming. Discrete Appl. Math. 151, 229–243
(2005)

29. Snow, D., Viola, P., Zabih, R.: Exact voxel occupacy with graph cuts. In: Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp.
345–352 (2000)

30. Varga, L., Balázs, P., Nagy, A.: An energy minimization reconstruction algorithm
for multivalued discrete tomography. In: Proceedings of 3rd International Sympo-
sium on Computational Modeling of Objects Represented in Images, pp. 179–185.
Taylor & Francis, Rome (2012)

31. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evalua-
tion of large-scale optimization approaches to binary tomography. In: Kuba, A.,
Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer,
Heidelberg (2006). doi:10.1007/11907350 13

http://dx.doi.org/10.1007/978-3-319-45886-1_21
http://dx.doi.org/10.1007/978-3-319-45886-1_21
http://dx.doi.org/10.1007/11907350_13

Reconstruction of Nearly Convex
Colored Images

Fethi Jarray1,2 and Ghassen Tlig1,3(B)

1 Cedric-CNAM, 292 rue St-Martin, Paris, France
fethi jarray@yahoo.fr, ghassen.tlik@gmail.com

2 Higher Institute of Computer Science of Medenine, Medenine, Tunisia
3 LIMTIC, Higher Institute of Computer Science of Tunis, Tunis, Tunisia

Abstract. This paper studies the problem of reconstructing hv-convex
images with a small number of discrete colors from two projections for
each color in horizontal and vertical directions. A new integer program-
ming based method is proposed to reconstruct nearly hv-convex colored
images. Firstly, we model the reconstruction problem by a quadratic
binary program. Secondly, we linearize the program into two linear binary
programs. Thirdly, we solve the continuous relaxation of these programs
by using IBM ILOG Cplex. Finally, we use a min-cost/max-flow model
to transform the continuous solution into an approximate binary solution
which may contains overlapping between colors.

Keywords: Discrete tomography · Image reconstruction · Integer pro-
gramming

1 Introduction

Discrete tomography (DT) deals with the reconstruction of discrete objects such
as matrices and images from a small number of projections (see [14,15]). The
reconstruction techniques are used in many real-life applications such as work-
force scheduling [18,20], data compression, and data security and networks [19].
Colored image reconstruction problem from horizontal and vertical projections
is considered to be one of the most important problems in DT (see Fig. 1). The
projections count the number of cells of each color in each row and column.

Ryser [25] and Gale [12] establish necessary and sufficient conditions for the
existence of monocolored images satisfying horizontal and vertical projections.
The definition of the reconstruction problem raises the question of uniqueness
of the reconstruction. To make the reconstruction unique, a priori information
on the nature of the object to be reconstructed needs to be integrated. The
convexity is one of such useful assumptions for the reconstruction of binary
matrices [6,10,21,22] and bicolored images [5,7,17,23].

A colored image is called a polyomino if there exists a path between all pairs
of cells with the same color. There are other definitions of connexity in discrete
images. A path is a sequence of cells with the same color that are horizontally
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 334–346, 2017.
DOI: 10.1007/978-3-319-59108-7 26

Reconstruction of Nearly Convex Colored Images 335

Fig. 1. A 3-colored convex image.

or vertically adjacent. A colored image is said to be h-convex if all the cells
with the same color in each row are contiguous. Similarly an image is said to
be v-convex if all the cells with the same color in each column are contiguous.
An image is hv-convex if it is both h-convex and v-convex. The reconstruction
problems of polyominoes [4], h-convex [4], v-convex [4] and hv-convex images are
NP-complete [26]. However, the reconstruction of hv-convex polyominoes can be
solved in polynomial time [4,9].

The general problem of reconstructing colored images was proved to be
NP-complete for two or more colors [8,11,13]. Recently, the reconstruction of
hv-convex colored disjoint polyominoes was proved to be NP-complete for an
unbounded number of colors [1].

In this paper, we examine a new method to reconstruct nearly hv-convex col-
ored images based on an integer programming approach. In Sect. 2, we introduce
some definitions and notation. In Sect. 3, we provide an integer programming
formulation. In Sect. 4, we propose two linearization approaches. In Sect. 5, we
present and discuss the numerical results. We conclude in Sect. 6.

2 Definitions and Notations

Definition 1. Given a set of colors C and an m × n image M whose items
are elements of C, the horizontal projection of color c is the vector Hc =
(hc

1, . . . , h
c
m) ∈ N

m where hc
i = |{j : Mij = c}|, i.e., the number of cells colored

with c in row i, the vertical projection of color c is the vector V c = (vc
1, . . . , v

c
n) ∈

N
n, for c ∈ C where vc

j = |{i : Mij = c}|, i.e., the number of cells colored with c

in column j. We note H = {H1, . . . , HC} and V = {V 1, . . . , V C} the orthogonal
projections of image M .

336 F. Jarray and G. Tlig

In this paper, we are mainly concerned with the problem of reconstructing hv-
convex colored images, denoted RCI(H,V). The associated consistency problem
can be defined as:

Reconstruction of Convex Colored Images: RCI(H,V)
Given: H = {H1, . . . , HC} and V = {V 1, . . . , V C} two collections of
integer vectors.
Goal: Construct an m × n hv-convex colored image satisfying H
and V .

3 Integer Programming Formulation

In this section, we propose an integer program P for solving RCI(H,V). To
simplify the notation, we introduce the binary variables xc

i,j , where 1 ≤ i ≤ m,
1 ≤ j ≤ n and c ∈ {1, . . . , C} such that xc

i,j = 1 if the cell (i, j) is colored with
color c. If xc

i,j = 0 for all c, then the cell is said to be white, or uncolored. The
following function Fadj(X) counts the number of adjacent pairs of cells having
the same color in X where X is the vector of all (xc

i,j):

Fadj(X) =
C∑

c=1

(
m−1∑

i=1

n∑

j=1

xc
i,jx

c
i+1,j +

m∑

i=1

n−1∑

j=1

xc
i,jx

c
i,j+1)

Our optimization formulation is

P

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maxFadj(X)
s.t.∑n

j=1 xc
i,j = hc

i i = 1, . . . ,m; c = 1, . . . , C (i)∑m
i=1 xc

i,j = vc
j j = 1, . . . , n; c = 1, . . . , C (ii)∑C

c=1 xc
i,j ≤ 1 i = 1, . . . ,m; j = 1, . . . , n (iii)

xc
i,j ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n; c = 1, . . . , C

Constraints (i) and (ii) ensure the satisfaction of the orthogonal projections
of each color. Constraint (iii) represents the exclusiveness condition, i.e., no more
than one color per cell.

Definition 2. We define the conflict between the colors of a C-colored image
as:

conf(X) =
C∑

c1=1

C∑

c2>c1

m∑

i=1

n∑

j=1

xc1
ij xc2

ij

We derive the following result:

Proposition 1. Let M be a m × n C-colored image whose orthogonal projec-
tions H = {H1, . . . , HC} and V = {V 1, . . . , V C}, are given. Then M is hv-
convex image if and only if there exists a vector X ∈ [0, 1]m×n×C that satisfies
constraints (i), (ii) and (iii) with Fadj(X) = 2

∑C
c=1

∑m
i=1 hc

i − Cm − Cn.

Reconstruction of Nearly Convex Colored Images 337

Proof. Firstly suppose that M is hv-convex and set X = M . X is hv-convex if
and only if the cells in each row and column for every color c form a contiguous
interval and there is no conflict between colors for every cell (i, j).

So
∑n−1

j=1 xc
i,jx

c
i,j+1 = hc

i − 1, for i = 1, . . . ,m; c = 1, . . . , C and
∑m−1

i=1 xc
i,jx

c
i+1,j = vc

j − 1, for j = 1, ..., n; c = 1, . . . , C.
By summing over the rows and the columns, we get

∑m
i=1

∑n−1
j=1 xc

i,jx
c
i,j+1 =

∑m
i=1 hc

i−m and
∑n

j=1

∑m−1
i=1 xc

i,jx
c
i+1,j =

∑n
j=1 vc

j−n. Since
∑m

i=1 hc
i =

∑n
j=1 vc

j

for every color c, therefore∑C
c=1

(∑m
i=1

∑n−1
j=1 xc

i,jx
c
i,j+1 +

∑n
j=1

∑m−1
i=1 xc

i,jx
c
i+1,j

)
= 2

∑C
c=1

∑m
i=1 hc

i −
Cm − Cn = Fadj(X).

Conversely suppose there exists a vector X satisfying (i), (ii), (iii) and
Fadj(X) = 0.

In one hand, we can not have simultaneously x
cp
i+1,j x

cq
i+1,j = 1 with ensures

the exclusiveness constraint.
On the other hand, for each color c:

∑n
j=1 xc

i,j = hc
i so

∑n−1
j=1 xc

i,jx
c
i,j+1 ≤

hc
i − 1.

Therefore
∑m

i=1

∑n−1
j=1 xc

i,jx
c
i,j+1 ≤ ∑m

i=1 hc
i − m for every color c.

So
∑C

c=1

∑m
i=1

∑n−1
j=1 xc

i,jx
c
i,j+1 ≤ ∑C

c=1

∑m
i=1 hc

i − C m.
Similarly

∑C
c=1

∑m−1
i=1

∑n
j=1 xc

i,jx
c
i+1,j ≤ ∑C

c=1

∑n
j=1 vc

j − C n.
=⇒ Fadj(X) ≤ 2

∑C
c=1

∑m
i=1 hc

i − C m − C n

Observe that Fadj(X) is the sum of non negative terms
∑m−1

i=1 xc
i,jx

c
i+1,j and

∑n−1
j=1 xc

i,jx
c
i,j+1. So if Fadj reaches its upper bound then each term reaches its

upper bound too.
So finally

∑m−1
i=1 xc

i,jx
c
i+1,j = hi − 1 and

∑n−1
j=1 xc

i,jx
c
i,j+1 = vj − 1 and X is

hv-convex.

4 Linearization

It is difficult to directly solve program P because the objective function is
quadratic. So, we consider the classical linearization of program P obtained
by replacing the quadratic terms xc

ijx
c
i,j+1 by the 0–1 variables hxc

ij (h stands
for horizontally adjacent) and xc

ijx
c
i+1,j by vxc

ij . We get the following equiva-
lent integer linear program with additional constraints (1.a; 1.b) and (2.a; 2.b) to
ensure the equivalence between P and MIP [24]

MIP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {Fadj(X) =
∑C

c=1(
∑m

i=1

∑n−1
j=1 hxc

ij +
∑m−1

i=1

∑n
j=1 vxc

ij)}
s.t.
(i), (ii), (iii)
hxc

ij ≤ xc
i,j i = 1, . . . , m; j = 1, . . . , n − 1; c = 1, . . . , C (1.a)

hxc
ij ≤ xc

i,j+1 i = 1, . . . , m; j = 1, . . . , n − 1; c = 1, . . . , C (1.b)
vxc

ij ≤ xc
ij i = 1, . . . ,m − 1; j = 1, . . . , n; c = 1, . . . , C (2.a)

vxc
ij ≤ xc

i+1,j i = 1, . . . ,m − 1; j = 1, . . . , n; c = 1, . . . , C (2.b)
xc
ij ∈ {0, 1} i = 1, . . . , m − 1; j = 1, . . . , n; c = 1, . . . , C

hxc
ij , vxc

ij ,∈ [0, 1] i = 1, . . . , m − 1; j = 1, . . . , n; c = 1, . . . , C

338 F. Jarray and G. Tlig

It is also possible to linearize P by replacing the constraints (1.a) and (1.b) by
2hxc

ij ≤ xc
ij + xc

i,j+1 and the constraints (2.a) and (2.b) by 2vxc
ij ≤ xc

ij + xc
i+1,j .

We get the following program IP

IP

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max {Fadj(X) =
∑C

c=1(
∑m

i=1

∑n−1
j=1 hxc

ij +
∑m−1

i=1

∑n
j=1 vxc

ij)}
s.t.
(i), (ii), (iii)
2hxc

ij ≤ xc
ij + xc

i,j+1 i = 1, . . . , m; j = 1, . . . , n − 1; c = 1, . . . , C
2vxc

ij ≤ xc
ij + xc

i+1,j i = 1, . . . ,m − 1; j = 1, . . . , n; c = 1, . . . , C
xc
ij , hxc

ij , vxc
ij ∈ {0, 1} i = 1, . . . , m − 1; j = 1, . . . , n; c = 1, . . . , C

We note IP the continuous relaxation of IP obtained by relaxing the inte-
grality constraints (xc

ij , hxc
ij , vxc

ij ∈ [0, 1]). It’s worth to note that IP is a fea-
sibly program. Since hxc

ij and vxc
ij can be chosen freely in [0, 1], constraints

2hxc
ij ≤ xc

ij + xc
i,j+1 and 2vxc

ij ≤ xc
ij + xc

i+1,j will become equalities:
{

2hxc
ij = xc

ij + xc
i,j+1 i = 1, . . . ,m; j = 1, . . . , n − 1; c = 1, . . . , C

2vxc
ij = xc

ij + xc
i+1,j i = 1, . . . , m − 1; j = 1, . . . , n; c = 1, . . . , C

If we extend this into the objective function of IP , we get:

Fadj(X) =
∑C

c=1

(∑m

i=1

∑n−1

j=1
hxc

ij +
∑m−1

i=1

∑n

j=1
vxc

ij

)

=
1
2

∑C

c=1

(∑m

i=1

∑n−1

j=1
xc
ij + xc

i,j+1 +
∑m−1

i=1

∑n

j=1
xc
ij + xc

i+1,j

)

Applying constraints (i) and (ii) of horizontal and vertical projections, we
see that the objective function of IP is equal to a constant:

Fadj(X) =
1
2

C∑

c=1

⎡

⎣
n−1∑

j=1

(vc
j + vc

j+1) +
m−1∑

i=1

(hc
i + hc

i+1)

⎤

⎦ = τ

Note every feasible solution of the relaxed linear program IP has the same
value, and is therefore an optimal solution to the program.

Proposition 2. Let M be C-colored image whose orthogonal projections H =
{H1, . . . , HC} and V = {V 1, . . . , V C} are given. Any solution of the continuous
relaxation of MIP verifies Fadj(X) ≤ τ

Proof. We prove that the objective value of any solution of P is less than τ . Con-
straints (a) and (b) imply that

∑m
i=1

∑n−1
j=1 hxc

i,j ≤ 1
2

∑n−1
j=1 (vc

j +vc
j+1). Similarly,

we obtain
∑m−1

i=1

∑n
j=1 vxc

i,j ≤ 1
2

∑m−1
i=1 (hc

i + hc
i+1).

Thus
∑C

c=1

[∑m

i=1

∑n−1

j=1
hxc

ij

]
≤ 1

2

∑C

c=1

[∑n−1

j=1
(vc

j + vc
j+1)

]
(1)

and ∑C

c=1

[∑m−1

i=1

∑n

j=1
vxc

ij

]
≤ 1

2

∑C

c=1

[∑m−1

i=1
(hc

i + hc
i+1)

]
(2)

Then (1) + (2) =⇒ Fadj(X) ≤ τ .

Reconstruction of Nearly Convex Colored Images 339

4.1 Min-cost Max-flow Associated Problem

Both programs MIP and IP remain hard to solve since they deal with binary
variables. Thus we consider the continuous relaxations MIP and IP of MIP
and IP , respectively, and we investigate the solutions of MIP and IP .

Let S = (x, hx, vx) be an optimal solution provided by the program MIP or
IP . If S is integer then S is an optimal solution to P and RCI(H,V). Otherwise,
we solve the following integer program to get an approximate solution z satisfying
(H,V) and as close as possible to x, i.e., the variables (xc

i,j) and (zci,j) have the
same value.

The program Q seeks to find a matrix Z satisfying both H and V and being
close to x

Q =

⎧
⎪⎪⎨

⎪⎪⎩

max
∑C

c=1

∑m
i=1

∑n
j=1 xc

ijz
c
ij∑n

j=1 zcij = hc
i i = 1, . . . ,m; c = 1, . . . , C∑m

i=1 zcij = vc
j j = 1, . . . n; c = 1, . . . , C

zcij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n; c = 1, . . . , C

We note that if we consider the exclusiveness constraint, i.e., at most one
color per cell. The program Q may be equivalent to the original program P .
The matrix z satisfies the orthogonal projections and is as close as possible to
x since the objective function expresses the number of cells sharing the same
color on x and z. The main remark is that program Q can be separated into C
programs Qc, c = 1, . . . , C, one program for each color. The program Qc can be
represented as:

Qc =

⎧
⎪⎪⎨

⎪⎪⎩

max
∑m

i=1

∑n
j=1 xc

ijz
c
ij∑n

j=1 zcij = hc
i i = 1, . . . , m;∑m

i=1 zcij = vc
j j = 1, . . . n;

zcij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n

The program Qc is equivalent to a min-cost/max-flow in a complete bipartite
graph G(Rc, Sc, E) [10,21]. Rc = {rci , i = 1, . . . , m} represents the rows and

Fig. 2. Program Qc and the associated min-cost max-flow in G(Rc, Sc, E); Hc =
(2, 2, 2, 3) and V c = (3, 2, 3, 1).

340 F. Jarray and G. Tlig

Fig. 3. Test images and their approximate reconstructions.

Sc = {scj , j = 1, . . . , n} represents the columns (see Fig. 2). We add a source
s and a directed edge (s, rci) with capacity equals hc

i which is the horizontal
projection of row i. Similarly, We add a sink t and a directed edge (scj , t) with
capacity vc

j which is the vertical projection of column j. There is an arc from
every pair of row node rci and column node scj with a unit capacity and a cost
−xc

ij . These arcs correspond to the cells of the image to reconstruct. The problem
Q is equivalent to the min-cost/max-flow problem in G. Q admits a solution if
and only if the maximum flow from the source to the sink is of value

∑m
i=1 hc

i =∑n
j=1 vc

j for c ∈ {1, . . . , C}. Since the capacities are integer, there exists an
optimal integer flow. Intuitively, a solution to Q is computed by affecting to
each cell (i, j) the flow on the corresponding arc (rci , s

c
j).

5 Numerical Results

All our experiments were run on an AMD Athlon XP-M 1.7 GHz PC with 512 Mb
of memory. The mathematical programs MIP and IP were solved using Ilog
Cplex 12.0 and the min-cost max-flow associated models are solved by the CS2
network flow library [16].

In order to compare the relative efficiency of integer programming for recon-
structing hv-convex images, we have used a systematic approach to generate
hv-convex colored images from a set of square hv-convex binary matrices of var-
ious sizes as described and generated in [2,3]. We generate a large set of colored

Reconstruction of Nearly Convex Colored Images 341

Table 1. Numerical comparisons of the heuristics for two colored images, (average on
10 instances for each pair of size and number of components. (∗) indicates that the
instance was not solved with one hour.

Size MIP based approach IP based approach τ CPLEX Solver

F adj Fadj %Conf Time Fadj %Conf Time Fadj Time

(10, 1) 56 48 0.00 0.013 50 0.00 0.016 75 54 0.06

(10, 2) 85 44 0.00 0.022 41 0.00 0.028 109.5 78 4.05

(10, 3) 57 16 4.12 0.031 18 2.00 0.041 77 46 11.68

(10, 4) 57 18 3.26 0.041 12 0.00 0.053 74.5 40 27.79

(20, 1) 410.89 332 3.25 0.059 304 2.75 0.073 465 401 26.72

(20, 2) 307 193 4.50 0.079 121 1.75 0.094 367 294 ∗
(20, 3) 189 89 3.00 0.101 62 2.00 0.116 245.5 176 2307.49

(20, 4) 199 80 3.00 0.121 69 2.25 0.135 251.5 177 ∗
(30, 1) 437 272 0.88 0.153 249 0.55 0.163 501 413 ∗
(30, 2) 655 455 6.33 0.192 297 2.55 0.198 744 626 ∗
(30, 3) 541 315 6.11 0.233 204 2.88 0.234 631 506 ∗
(30, 4) 373 209 4.66 0.273 128 1.11 0.268 458 334 ∗
(40, 1) 949 758 1.93 0.329 567 1.75 0.315 1040.5 926 ∗
(40, 2) 1076 831 5.18 0.401 479 2.68 0.375 1209 1017 ∗
(40, 3) 737 405 5.25 0.471 237 1.68 0.433 850.5 502 ∗
(40, 4) 637 369 2.50 0.541 237 1.43 0.492 755 518 ∗
(50, 1) 1035 807 0.00 0.623 771 0.00 0.555 1127 1024 ∗
(50, 2) 1283 812 6.16 0.734 453 2.16 0.646 1420.5 921 ∗
(50, 3) 1293 883 3.84 0.846 530 2.16 0.738 1451 1119 ∗
(50, 4) 1029 695 4.64 0.967 370 1.20 0.827 1181 259 ∗
(60, 1) 1253 1075 0.13 1.088 670 0.00 0.937 1352 1182 ∗
(60, 2) 2520 2007 7.66 1.265 1093 3.38 1.068 2717.5 861 ∗
(60, 3) 2003 1450 5.38 1.438 898 2.55 1.208 2203.5 0 ∗
(60, 4) 1671 1094 3.91 1.631 637 1.83 1.355 1861 472 ∗
(70, 1) 1398 1159 0.04 1.816 575 0.00 1.494 1502 1252 ∗
(70, 2) 2211 1523 3.12 2.054 825 1.28 1.686 2398.5 0 ∗
(70, 3) 2115 1449 3.51 2.326 747 1.16 1.889 2329 0 ∗
(70, 4) 2171 1589 2.63 2.579 927 1.04 2.099 2400.5 702 ∗
(80, 1) 2203 1931 0.03 2.845 1536 0.01 2.308 2346.5 2064 ∗
(80, 2) 4038 3380 6.32 3.195 2001 3.23 2.601 4288 0 ∗
(80, 3) 3240 2320 1.76 3.554 1587 1.23 2.897 3490 0 ∗
(80, 4) 2414 1606 2.04 3.916 1029 0.98 3.201 2659 0 ∗

342 F. Jarray and G. Tlig

Table 2. Numerical comparisons of the heuristics for three colored images, (average
on 10 instances for each pair of size and number of components). (∗) indicates that the
instance was not solved with one hour.

Size MIP based approach IP based approach τ CPLEX Solver

F adj Fadj %Conf Time Fadj %Conf Time Fadj Time

(10, 1) 71 56 1.00 0.013 55 0.00 0.011 94.5 65 0.33

(10, 2) 76 26 5.15 0.025 25 2.00 0.021 106 63 4.92

(10, 3) 81 27 5.17 0.036 25 2.13 0.033 107.5 62 18.51

(10, 4) 69 15 6.27 0.048 17 2.16 0.044 95.5 46 227.98

(20, 1) 238 199 0.00 0.069 174 0.29 0.061 285.5 231 4.96

(20, 2) 185 79 2.00 0.093 88 2.05 0.081 242.5 175 139.94

(20, 3) 275 125 7.75 0.121 89 5.05 0.104 352 244 ∗
(20, 4) 258 116 8.13 0.149 68 5.25 0.128 330 210 ∗
(30, 1) 544 451 0.00 0.191 444 0.00 0.164 618.5 536 18.89

(30, 2) 236 241 1.55 0.239 174 1.88 0.206 459.5 345 ∗
(30, 3) 519 246 7.11 0.293 148 3.55 0.255 626 444 ∗
(30, 4) 597 306 8.21 0.351 207 3.77 0.307 710 419 ∗
(40, 1) 814 687 0.00 0.424 605 0.00 0.368 921.5 803 1717.53

(40, 2) 852 589 2.37 0.517 391 1.68 0.434 977 820 ∗
(40, 3) 877 550 5.06 0.613 328 2.87 0.519 1031.5 666 ∗
(40, 4) 585 309 2.81 0.709 190 1.68 0.597 725 434 ∗
(50, 1) 1102 873 2.48 0.837 591 1.28 0.704 1226 961 ∗
(50, 2) 1440 940 8.12 0.998 548 3.56 0.836 1621.5 424 ∗
(50, 3) 1609 981 8.48 1.172 549 4.88 0.975 1827 392 ∗
(50, 4) 1672 1046 8.58 1.348 628 5.36 1.115 1899.5 0 ∗
(60, 1) 2725 2390 0.44 1.543 1041 0.05 1.258 1766 1493 ∗
(60, 2) 2892 2402 8.63 1.792 1329 3.91 1.451 3130.5 0 ∗
(60, 3) 2671 1789 8.75 2.065 1056 5.77 1.663 2944.5 0 ∗
(60, 4) 2132 1454 5.25 2.348 803 3.00 1.874 2400.5 699 ∗
(70, 1) 3042 2646 0.00 2.632 2491 0.00 2.091 3236.5 2967 ∗
(70, 2) 3128 2640 7.06 3.015 1173 4.02 2.387 3397 0 ∗
(70, 3) 3505 2640 8.36 3.406 1343 4.83 2.697 3822.5 0 ∗
(70, 4) 2773 1963 6.12 3.808 1067 3.12 3.016 3094 2540 ∗
(80, 1) 3090 2613 2.23 4.226 2028 1.67 3.329 3293.5 0 ∗
(80, 2) 4970 3933 6.73 4.732 2926 5.39 3.732 5296.5 0 ∗
(80, 3) 4220 3304 7.17 5.264 1684 4.41 4.149 4565.5 0 ∗
(80, 4) 3783 2761 8.89 5.825 1402 3.87 4.615 4180 0 ∗

Reconstruction of Nearly Convex Colored Images 343

Table 3. Numerical comparisons of the heuristics for four colored images, (average on
10 instances for each pair of size and number of components). (∗) indicates that the
instance was not solved with one hour.

Size MIP based approach IP based approach τ CPLEX Solver

F adj Fadj %Conf Time Fadj %Conf Time Fadj Time

(10, 1) 57.13 51 2.00 0.032 50 2.00 0.011 91 56 0.26

(10, 2) 43 17 2.00 0.044 15 1.00 0.021 65.5 32 0.54

(10, 3) 87 24 8.32 0.059 26 4.00 0.032 123 67 44.11

(10, 4) 80.65 19 7.27 0.074 12 5.16 0.043 108.5 49 55.91

(20, 1) 373.09 291 3.25 0.105 268 3.25 0.065 447.5 360 23.38

(20, 2) 242 130 8.75 0.141 75 5.25 0.088 311 208 ∗
(20, 3) 325 147 8.50 0.174 105 4.10 0.115 423.5 289 ∗
(20, 4) 277 121 9.75 0.213 84 6.25 0.144 372 227 ∗
(30, 1) 691 541 1.77 0.272 450 0.77 0.187 797.5 659 ∗
(30, 2) 367 239 0.00 0.334 190 0.00 0.228 464 352 488.99

(30, 3) 367 403 7.44 0.408 284 4.88 0.283 825.5 588 ∗
(30, 4) 603 262 9.66 0.487 153 6.44 0.342 753 118 ∗
(40, 1) 1113 947 0.00 0.585 815 0.00 0.415 1243 1093 ∗
(40, 2) 1047 747 6.37 0.705 455 3.31 0.507 1227.5 931 ∗
(40, 3) 1256 675 9.06 0.844 440 6.62 0.614 1486 335 ∗
(40, 4) 1064 544 8.50 0.988 359 5.37 0.723 1293 229 ∗
(50, 1) 1833 1596 0.20 1.155 1373 0.12 0.846 1982.5 1799 ∗
(50, 2) 1003 763 0.12 1.342 524 0.08 0.983 1154 959 ∗
(50, 3) 923 620 3.68 1.545 298 1.60 1.137 1125.5 728 ∗
(50, 4) 1095 672 4.88 1.764 365 2.72 1.301 1329.5 289 ∗
(60, 1) 1284 1017 0.00 2.027 776 0.11 1.491 1421.5 1212 ∗
(60, 2) 2059 1628 5.63 2.331 932 3.36 1.721 2287.5 1649 ∗
(60, 3) 2451 1725 7.13 2.681 985 4.97 1.989 2762 0 ∗
(60, 4) 1277 841 5.05 3.015 436 2.16 2.244 1513 1028 ∗
(70, 1) 2826 2466 0.00 3.402 2194 0.00 2.531 3029 2709 ∗
(70, 2) 2830 1732 3.46 3.866 1631 2.51 2.893 3120 2237 ∗
(70, 3) 2471 1732 3.36 4.344 1090 2.51 3.287 2777 826 ∗
(70, 4) 2301 1531 3.12 4.853 891 2.97 3.739 2635.5 0 ∗
(80, 1) 2774 1446 0.03 5.393 2256 0.01 4.131 2967 2722 ∗
(80, 2) 3353 2696 3.39 6.034 1505 1.93 4.674 3663.5 1254 ∗
(80, 3) 3769 2753 9.03 6.728 1372 2.96 5.232 4134 0 ∗
(80, 4) 3642 2731 7.21 7.431 1541 3.87 5.792 4036 0 ∗

344 F. Jarray and G. Tlig

images with size varying from 10×10 to 80×80 and four possible colors for each
size. For each size and for each color we generate four classes of images. For each
class we generate instances with 1, 2, 3 and 4 components. A component is a
maximal hv-convex connected set colored by one color. However, each image can
be decomposed into a minimum number of components per color (see Fig. 3).
For a given number of colors (2, 3, 4), we take the average of 10 instances for
each pair of size and number of components.

The results of computational experiments are summarized in Table 1 for two
colored images, Table 2 for three colored images and Table 3 for four colored
images. In these tables, the size column gives the size and the number of hv-
convex components for each color. The subcolumn labelled Fadj contains the
number of adjacent pairs cells having the same color. The subcolumn Conf con-
tains the ratio of the number of cells with conflict over the total number of cells
(mn) provided by each method. The subcolumn F adj gives the objective value of
the relaxed program. The sub-column labelled Time contains the running CPU
time (in seconds) required by each method. The column labelled τ is bound to
Fadj . We note that for any method if Fadj = τ the image is hv-convex.

The performance measures used in the numerical study are the running time
and the final solution quality. For each method, the quality of a solution is
expressed by the pair (Fadj) and (Conf). We have also solved directly the pro-
gram MIP by CPLEX Solver. We note that for this solver (Conf = 0).

The results showed that for almost all the sizes and the colors, the MIP
method gives a higher number of adjacent pair that share the same color and
a greater number of conflicts than the IP method. However, we note that the
ratio of conflicts is less than 10% even for the large sized images which proves
the efficiency of the proposed methods. We mention also that the MIP based
approach cannot perform the CPLEX Solver. In fact the CPLEX Solver can only
solve small image sizes with one hour.

6 Conclusion

Since the reconstruction of hv-convex colored images is NP-complete, it is com-
putationally too expensive to attack the problem directly. We have proposed
a method based on mixed integer programming and linear relaxation to recon-
struct hv-convex colored images that satisfy horizontal and vertical projections.
As a future research in discrete tomography problems, the integer programming
formulation can be enriched with other definitions of connectivity and convexity,
with more linearization and convexification techniques.

References

1. Bains, A., Biedl, T.: Reconstructing hv-convex multi-coloured polyominoes. Theor.
Comput. Sci. 411, 3123–3128 (2010)

2. Balázs, P.: A benchmark set for the reconstruction of hv-convex discrete sets.
Discrete Appl. Math. 157, 3447–3456 (2009)

Reconstruction of Nearly Convex Colored Images 345

3. Balázs, P.: A framework for generating some discrete sets with disjoint components
by using uniform distributions. Theor. Comput. Sci. 406, 15–23 (2008)

4. Barcucci, E., Del Lungo, A., Nival, M., Pinzani, R.: The reconstruction of polyomi-
noes from their orthogonal projections. Theor. Comput. Sci. 155, 321–347 (1996)

5. Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem: an heuristic
algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N.,
Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21073-0 27

6. Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E.: Reconstructing convex matrices
by integer programming approaches. J. Math. Model. Algorithms OR 12(4), 329–
343 (2013)

7. Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E.: Reconstruction of bicolored
images. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA
2015. LNCS, vol. 9448, pp. 276–283. Springer, Cham (2015). doi:10.1007/
978-3-319-26145-4 20

8. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal
projection. Inf. Process. Lett. 69, 283–289 (1999)

9. Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from discrete x-ray.
Theor. Comput. Sci. 259(3), 81–98 (2001)

10. Dahl, G., Flatberg, T.: Optimization and reconstruction of hv-convex (0, 1)-
matrices. Discrete Appl. Math. 151, 93–105 (2005)

11. Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from hori-
zontal and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA
2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04128-0 69

12. Gale, D.: A theorem on flows in networks. Discrete Math. 187, 1073–1082 (1957)
13. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity

of determining polyatomic structures by x-rays. Theor. Comput. Sci. 233, 91–106
(2000)

14. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and
Applications. Birkhäuser, Boston (1999)

15. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.
Birkhäuser, Boston (2007)

16. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. J. Algorithms 22, 1–29 (1997)

17. Costa, M.-C., Jarray, F., Picouleau, C.: Reconstructing an alternate periodical
binary matrix from its orthogonal projections. In: Coppo, M., Lodi, E., Pinna, G.M.
(eds.) ICTCS 2005. LNCS, vol. 3701, pp. 173–181. Springer, Heidelberg (2005).
doi:10.1007/11560586 14

18. Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce
size. Asia Pac. J. Oper. Res. 26(5), 685–696 (2009)

19. Jarray, F., Wynter, L.: An optimal smart market for the pricing of telecommuni-
cation services. Technical report 4310, INRIA, Rocquencourt, France (2001)

20. Jarray, F.: Solving problems of discrete tomography: applications in workforce
scheduling. Ph.D. thesis, University of CNAM, Paris (2004)

21. Jarray, F., Costa, M.-C., Picouleau, C.: Approximating hv-convex binary matrices
and images from discrete projections. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 413–422. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79126-3 37

22. Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary
matrices. Electron. Notes Discrete Math. 36, 447–454 (2010)

http://dx.doi.org/10.1007/978-3-642-21073-0_27
http://dx.doi.org/10.1007/978-3-319-26145-4_20
http://dx.doi.org/10.1007/978-3-319-26145-4_20
http://dx.doi.org/10.1007/978-3-642-04128-0_69
http://dx.doi.org/10.1007/978-3-642-04128-0_69
http://dx.doi.org/10.1007/11560586_14
http://dx.doi.org/10.1007/978-3-540-79126-3_37

346 F. Jarray and G. Tlig

23. Jarray, F., Tlig, G.: Approximating bicolored images from discrete projections. In:
Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 311–320. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21073-0 28

24. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams. Math. Program. 10, 147–175 (1976)

25. Ryser, H.R.: Combinatorial properties of matrices of zeros and ones. Can. J. Math.
9, 371–377 (1957)

26. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projec-
tions. Inf. Process. Lett. 77, 225–229 (2001)

http://dx.doi.org/10.1007/978-3-642-21073-0_28

A Greedy Algorithm for Reconstructing Binary
Matrices with Adjacent 1s

Fethi Jarray1,2 and Ghassen Tlig1,3(B)

1 Cedric-CNAM, 292 rue St-Martin, Paris, France
fethi jarray@yahoo.fr, ghassen.tlik@gmail.com

2 Higher Institute of Computer Science of Medenine, Medenine, Tunisia
3 LIMTIC, Higher Institute of Computer Science of Tunis, Tunis, Tunisia

Abstract. This paper deals with the reconstruction of special cases of
binary matrices with adjacent 1s. Each element is horizontally adjacent
to at least another element. The projections are the number of elements
on each row and column. We give a greedy polynomial time algorithm to
reconstruct such matrices when satisfying only the vertical projection.
We show also that the reconstruction is NP-complete when fixing the
number of sequence of length two and three per row and column.

Keywords: Discrete objects · Polynomial time algorithm · Binary
matrices reconstruction · NP-completeness

1 Introduction

Discrete Tomography (DT) deals with the reconstruction of discrete objects such
as matrices and images that are usually represented as integer matrices from
finite projections [15,16]. Often, the projections of a structure are the number
of elements on each discrete line. One of the main issue is to find a structure
that corresponds to the given projections. The reconstruction of discrete objects
arises on a number of applications, including Scheduling [8,18,19], Data com-
pression and Data security and networks [17,20], Estimation of parameters in
Internet [25], Industrial nondestructive testing [2], Medical imaging [14,23] and
Timetabling [4].

The basic problem of reconstructing binary matrices consists in finding an
m×n binary matrix satisfying a given couple of axes projections. The computa-
tional complexity of the basic problem is O(n(m + logn)) [15,24]. However the
problem is usually highly undetermined and a large number of solutions may
exist [26]. In many cases, prior knowledge on size, shape, smouthless, etc. are
incorporated to uniquely reconstruct the original structure from the projections.

In literature several additional constraints and prior knowledge have been
considered to reduce the set of the feasible solutions of the basic problem. These
constraints include periodicity [9,11], convexity [5,6,10,12,22], adjacency [4],
connectedness [1,7,27] and timetabling [4]. In this paper we are concerned with
the adjacency constraint.
c© Springer International Publishing AG 2017
V.E. Brimkov and R.P. Barneva (Eds.): IWCIA 2017, LNCS 10256, pp. 347–355, 2017.
DOI: 10.1007/978-3-319-59108-7 27

348 F. Jarray and G. Tlig

The remainder of this paper is organized as follows. In Sect. 2, we introduce
some definitions and notation. In Sect. 3, we consider the problem of reconstruct-
ing binary matrices satisfying only the vertical projection. In Sect. 4, we address
the reconstruction under the number of each sequence type per line. We conclude
in the last section.

2 Definitions and Notations

Given an m × n binary matrix A we denote by H = (h1, ..., hm) the horizontal
projection of A, hi being the number of 1’s on row i, and by V = (v1, ..., vn)
the vertical projection of A, vj being the number of 1’s on column j (see Fig. 1).
The condition

∑m
i=1 hi =

∑n
j=1 vj is obviously necessary for the existence of a

solution respecting both projections in the reconstruction problem for the binary
matrix from H and V .

A sequence of 1s (sequence for short) is a set of adjacent 1s on a row. By
convention, we say that a sequence begins on the column of its leftmost cell. The
distance between two consecutive sequences is the number of 0s between them.
A 2-sequence is a sequence of length 2 and a 3-sequence is a sequence of length 3.

We denote by HV − adjacent(m,n) the problem of reconstructing an m× n
binary matrix from its horizontal projection H = (h1, . . . , hm) and its vertical
projection V = (v1, . . . , vn) such that each 1 is adjacent to at least another 1
per row or column.

Brocchi et al. [3] proposed a general framework that solves in polynomial time
the problem HV −adjacent(m,n) whenever m or n is fixed. Its time complexity
is O(mn22n). Jarray [21] proved that if the number of columns is not greater
than six the problem could be solved in a quadratic time.

Fig. 1. A binary matrix with horizontal projection H = (4, 4, 4, 2, 4) and vertical pro-
jection V = (3, 4, 1, 4, 4, 2).

Since each row contains at least a sequence of length 2, we have now the
obvious necessary condition for the feasibility of the problem.

Proposition 1. HV − adjacent(m,n) admits a solution only if

Reconstructing Binary Matrices with Adjacent 1s 349

(i) m ≥ maxj vj
(ii)

∑n
j=1 vj ≥ 2m

(iii) v1 ≤ v2, vn ≤ vn−1 and vj ≤ vj+1 + vj−1, j = 2, . . . , n − 1.

3 Reconstruction Under the Vertical Projection
V − adjacent(m,n)

In this section, we provide the polynomial time algorithm to reconstruct a binary
matrix respecting the vertical projection V without isolated cell of value 1 per
row and column. The related consistency problem is defined as follows:

Instance: V = (v1, . . . , vn) integer positive vector and an integer m.
Question: Is there an m×n binary matrix respecting the vertical projection V

without isolated cell of value 1 per row and column?

We propose the polynomial time algorithm A−V −adjacent(m,n) that gives
a solution Ŝ or says no such solution exists. At each step j, the rows are divided
into three classes (as depicted in Fig. 2):

Cj
1: the rows, i, such that Ŝ(i, j − 1) = 1 and Ŝ(i, j − 2) = 0.

Cj
2: the rows, i, such that Ŝ(i, j − 1) = 1 and Ŝ(i, j − 2) = 1.

Cj
3: the rows, i, such that Ŝ(i, j − 1) = 0.

The algorithm A− V − adjacent(m,n) assigns at each iteration j, the value
1 to dj cells of column j and starts by the rows of the class Cj

1 , then the highest
priority available rows of Cj

3 and finally the rows of class Cj
2 . The highest priority

row of Cj
3 is the row that admits the leftmost cell of value 1.

We note that for each row i of class Cj
1 , we should have Ŝ(i, j) = 1 to satisfy

the constraint of at least two adjacent consecutive ones.

Algorithm A − V − adjacent(m,n)
Set dj = vj , j = 1, . . . , n;
For j = 1 to n do

Ŝ(i, j) = 1 for any row i of Cj
1 and dj = vj − |Cj

1 |;
Ŝ(i, j) = 1 for min(dj , vj+1) highest priority available rows of Cj

3 ;
If dj − min(dj , vj+1) > |Cj

2 | then exit with error;
Ŝ(i, j) = 1 for dj − min(dj , vj+1) rows of C

j
2 ;

Proposition 2. The algorithm A− V − adjacent(m,n) solves the problem V −
adjacent(m,n) in polynomial time.

Proof. Suppose that the problem V −adjacent(m,n) admits a solution S. Denote
by S(1..j) the sub-matrix of S corresponding to the 1s placed on columns 1, . . . , j.
Similarly, denote by Ŝ(1..j) the partial solution obtained by the algorithm A −
V −adjacent(m,n) at step j. We will demonstrate by induction on j, that there
is a solution S such that S(1..j) = Ŝ(1..j) for j = 1, . . . , n.

350 F. Jarray and G. Tlig

Fig. 2. Classes of rows at step j.

1. Initialization of recurrence
Suppose that S(1) �= Ŝ(1). There exist two rows k and l such that Ŝ(l, 1) =
1, S(l, 1) = 0 and Ŝ(k, 1) = 0, S(k, 1) = 1. By swapping the rows k and l in

Fig. 3. Fifth case: Swapping of lines k, i0 and l at step j + 1.

Reconstructing Binary Matrices with Adjacent 1s 351

S, we get S(k, 1) = 0 and S(l, 1) = 1. By reiterating this type of swapping,
we obtain a solution S such that S(1) = Ŝ(1).

2. Suppose that there exists a solution S such that S(1..j) = Ŝ(1..j) and
S(1..j+1) �= Ŝ(1..j+1).

Let us provide an equivalent solution S such that S(1..j+1) = Ŝ(1..j+1). At
step j + 1, there exist at least dj+1 available rows because S is a solution.
There exist two rows k and l such that Ŝ(l, j + 1) = 1, S(l, j + 1) = 0 and
Ŝ(k, j + 1) = 0, S(k, j + 1) = 1. We distinguish all the cases according to the
classes of rows k and l and we propose an appropriate transformation.

First case if l ∈ Cj+1
3 and k ∈ Cj+1

3 or l ∈ Cj+1
2 and k ∈ Cj+1

2 then by
swapping rows k and l in S from column j + 1, we get S(k, j + 1) = 0 and
S(l, j + 1) = 1.

Second case if k ∈ Cj+1
3 and l ∈ Cj+1

2 then swap rows lines k and l from
column j + 1.

Third case if k ∈ Cj+1
2 , l ∈ Cj+1

3 and S(k, j + 2) = 1 then swap k and l
from column j + 1.

Fourth case if k ∈ Cj+1
2 , l ∈ Cj+1

3 , S(k, j + 2) = 0 and S(l, j + 2) = 1 then
set S(k, j + 1) = 0 and S(l, j + 1) = 1.

Fifth case if k ∈ Cj+1
2 , l ∈ Cj+1

3 , S(k, j + 2) = 0 and S(l, j + 2) = 0
then search another pair (k, l) satisfying one of the above cases and make the
associated transformation in S. Suppose that if S(1...j+1) �= Ŝ(1...j+1) then
the rows k and l belong to the fifth case, i.e. Ŝ(l, j + 1) = 1, S(l, j + 1) = 0,
Ŝ(k, j + 1) = 0 and S(k, j + 1) = 1. The transformation is done through an
auxiliary row i0. To determine i0, we introduce the following subclasses:

C ′2j = {i ∈ Cj+1
2 /Ŝ(i, j + 1) = 1, S(i, j + 1) = 1}.

C2j = {i ∈ Cj+1
2 /Ŝ(i, j + 1) = 0, S(i, j + 1) = 1}.

C ′3j = {i ∈ Cj+1
3 /Ŝ(i, j + 1) = 1, S(i, j + 1) = 1}.

C3j = {i ∈ Cj+1
3 /Ŝ(i, j + 1) = 1, S(i, j + 1) = 0}.

We deduce the following properties:
(a) |C3j| = |C2j|.
(b) vj+2 ≥ |C ′3j| + |C3j| because each sequence starting in row j + 1 covers

also row j + 2.
(c) In column j+1, |C3j|+ |C ′3j| sequences start in Ŝ and |C ′3j| sequences

start in S. Even more, in S, there are |C3j| rows other than C ′3j having
a cell of value 1 in column j + 2 because of (b).

352 F. Jarray and G. Tlig

(d) according to (a) and (c), for each row k ∈ C2j, there is a row l ∈ C3j
and a row i0 /∈ C ′3j with S(i0, j + 2) = 1 (see Fig. 3).

The transformation of the fifth case is the following: We firstly swap the rows
k and i0 from column j + 2, then, we swap the rows k and l from column
j + 1 (third case). ��
We easily develop the following properties of A − V − adjacent(m,n):

Property 1.

(i) The algorithm A − V − adjacent(m,n) constructs a solution with maxj vj
rows since in each step all the rows are available, if m > maxj vj then the
remaining rows are empty.

(ii) The sequences of 0s have a minimum length Because the 1s are cyclically
placed on class Cj

3 .

4 Reconstruction Under the Projections of Each
Sequence Type 23adjacent(m, n)

Since each sequence of 1s can be decomposed into a set of 2-sequences and 3-
sequences, we suppose that the projections are the number of 2-sequences and
3-sequences per row and column, i.e. we are given the projection of each sequence
type. The related consistency problem is the following:

Instance: H2 = (h2
1, . . . , h

2
m), H3 = (h3

1, . . . , h
3
m), V 2 = (v21 , . . . , v

2
n) and V 3 =

(v31 , . . . , v
3
n) four integer positive vectors.

Question: Is there a binary matrix without isolated 1s per row satisfying
(H2, V 2) for the 2-sequences and (H3, V 3) for the 3-sequences?

We recall that in a 2-colored image, each cell is either uncolored, red or blue.
The projections are the number of red cells and blue cells per row and column
[13,19]. The related consistency problem is the following:

Instance: Hr = (hr
1, . . . , h

r
m), Hb = (hb

1, . . . , h
b
m), V r = (vr1, . . . , v

r
n) and V b =

(vb1, . . . , v
b
n) four integer positive vectors.

Question: Is there a 2-colored image respecting (Hr, V r) for color red and
(Hb, V b) for color blue?

We establish the following result:

Proposition 3. The problem 23adjacent(m, n) is NP-complete.

Proof. We will show that an instance of the 2-colored image can be reduced in
polynomial time to an instance of 23adjacent(m, n). Consider an instance I ′

of the 2-colored image consistent with (H ′r, V ′r) and (H ′b, V ′b). We define an
instance I of size m×3n to 23adjacent(m, n) satisfying the projections (H2, V 2)
and (H3, V 3) by associating the colors red and blue to the 2-sequences and 3-
sequences respectively:

Reconstructing Binary Matrices with Adjacent 1s 353

• v23j−2 = v23j−1 = v′r
j , v

2
3j = 0, j = 1, . . . , n,

• v33j−2 = v33j−1 = v33j = v′b
j , j = 1, . . . , n,

• h2
i = h′r

i , i = 1, . . . ,m,
• h3

i = h′b
i , i = 1, . . . ,m.

I ′ and I are equivalent since from the projections (H2, V 2) and (H3, V 3),
the sequences begin only on columns 3j − 2. The numbers of 2-sequences and
3-sequences beginning on column 3j−2 in I are equal to the number of red cells
and blue color respectively on column j in I ′ (see Fig. 4). Hence the problem
23adjacent(m, n) is NP-complete as the problem of reconstructing 2-colored
image [13]. ��

Fig. 4. Reduction from 2-colored image to 23adjacent(m, n). (Color figure online)

354 F. Jarray and G. Tlig

5 Conclusion

In this paper, we have studied the complexity of reconstructing binary matri-
ces from their orthogonal projections without horizontally isolated 1s. We have
proved that when the horizontal projection is not considered the problem could
be solved in a polynomial time. We have established also that when the projec-
tions give the number of 2-sequences and 3-sequences per line, the consistency
becomes NP-complete. Nevertheless, the problem HV-adjacent(m,n) remains an
open problem.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from their horizontal and vertical projections. Theor. Comput. Sci. 155,
321–347 (1996)

2. Baumann, J., Kiss, Z., Krimmel, S., Kauba, A., Nagy, A., Rodek, L., Schillinger, S.,
Stephan, J.: Discrete tomography methods for non-destrictive testing, In: Advances
in Discrete Tomography and Its Applications, pp. 303–331. Birkhäuser, Boston
(2007)

3. Brocchi, S., Frosini, A., Picouleau, C.: Reconstruction of binary matrices under
neighborhood constraints. Theor. Comput. Sci. 406(1–2), 43–54 (2008)

4. Brunetti, S., Costa, M.C., Frosini, A., Jarray, F., Picouleau, C.: Reconstruction of
binary matrices under adjacency constraints. In: Advances in Discrete Tomography
and Its Applications, pp. 125–150. Birkhäuser, Boston (2007)

5. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor.
Comput. Sci. 304(1–3), 35–57 (2003)

6. Jarray, F., Costa, M.-C., Picouleau, C.: Approximating hv-convex binary matrices
and images from discrete projections. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 413–422. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79126-3 37

7. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Maurice, N.: Reconstruction
of 4- and 8-connected convex discrete sets from row and column projections. In:
Linear Algebra and Its Applications, vol. 339, pp. 37–57 (2001)

8. Costa, M.C., Jarray, F., Picouleau, C.: An acyclic days-off scheduling problem.
4OR 4(1), 73–85 (2006)

9. Costa, M.-C., Jarray, F., Picouleau, C.: Reconstructing an alternate periodical
binary matrix from its orthogonal projections. In: Coppo, M., Lodi, E., Pinna, G.M.
(eds.) ICTCS 2005. LNCS, vol. 3701, pp. 173–181. Springer, Heidelberg (2005).
doi:10.1007/11560586 14

10. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal
projections. Inf. Process. Lett. 69(6), 283–289 (1999)

11. Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: reconstruc-
tion under periodicity constraints. In: Widmayer, P., Eidenbenz, S., Triguero, F.,
Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp.
38–56. Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9 5

12. Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections.
In: Discrete Tomography: Foundations, Algorithms, and Applications, pp. 163–188.
Birkhäuser, Boston (1999)

http://dx.doi.org/10.1007/978-3-540-79126-3_37
http://dx.doi.org/10.1007/11560586_14
http://dx.doi.org/10.1007/3-540-45465-9_5

Reconstructing Binary Matrices with Adjacent 1s 355

13. Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from hori-
zontal and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA
2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04128-0 69

14. Hall, P.: A model for learning human vascular anatomy. In: DIMACS Serie in
Discrete Mathematical Problems with Medical Applications, vol. 55, pp. 11–27
(2000)

15. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms
and Applications. Birkhäuser, Boston (1999)

16. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Appli-
cations. Birkhäuser, Boston (2007)

17. Ivring, R.W., Jerrum, M.R.: Three-dimensional data security problems. SIAM J.
Comput. 23, 170–184 (1994)

18. Jarray, F.: Solving problems of discrete tomography: applications in workforce
scheduling. Ph.D. thesis, University of CNAM, Paris (2004)

19. Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce
size. Asia Pac. J. Oper. Res. 26(5), 685–696 (2009)

20. Jarray, F., Wynter, L.: An Optimal Smart Market for the Pricing of Telecommu-
nication Services. Technical report 4310, INRIA, Rocquencourt, France (2001)

21. Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary
matrices. Electron. Notes Discrete Math. 36, 447–454 (2010)

22. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial
time. Theor. Comput. Sci. 283, 223–242 (2000)

23. Onnasch, D.G.W., Prause, G.P.M.: Heart chamber reconstruction from biplane
angiography. In: Discrete Tomography: Foundations, Algorithms and Applications,
pp. 385–403. Birkhäuser, Boston (1999)

24. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math.
9, 371–377 (1957)

25. Vardi, Y.: Network tomography: estimating source-destination traffic intensities
from link data. J. Am. Stat. Assoc. 91(433), 65–377 (1996)

26. Wang, B., Zhang, F.: On the precise number of (0, 1)-matrices in U(R,S). Discrete
Math. 187, 211–220 (1998)

27. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projec-
tions. Inf. Process. Lett. 77, 225–229 (2001)

http://dx.doi.org/10.1007/978-3-642-04128-0_69
http://dx.doi.org/10.1007/978-3-642-04128-0_69

Author Index

Akkeleş, Arif 16
Amelio, Alessia 280
Arslan, Abdullah N. 308

Balázs, Péter 105
Basu, Subhadip 256
Bhatnagar, Shaleen 156
Bhowmick, Partha 40, 93, 212
Bhunre, Piyush K. 212
Biswas, Arindam 184
Biswas, Ranita 93
Bodnár, Péter 105
Brimkov, Boris 30
Brodić, Darko 280
Brunetti, Sara 105

Debled-Rennesson, Isabelle 256
Diaz-del-Rio, Fernando 142

Eppstein, David 117
Escudero, L.M. 229

Gómez-Gálvez, P. 229
Goodrich, Michael T. 117

Han, Yo-Sub 79
Hicks, Illya V. 268

James Immanuel, S. 170
Jarray, Fethi 334, 347
Jimenez, M.J. 229
Jovanovic, Raka 294

Karmakar, Nilanjana 184

Lindblad, Joakim 243
Lukić, Tibor 322

Mahato, Papia 40
Malik, Saleem 156

Mamano, Nil 117
Marčeta, Marina 322
Midya, Abhisek 156
Mikesell, Derek 268
Milivojević, Zoran N. 280
Mir-Mohammad-Sadeghi, Hamid 53
Mondal, Sharmistha 184
Mukhopadhyay, Jayanta 212

Nagar, Atulya K. 170
Nagy, Benedek 16, 53
Nasipuri, Mita 256
Nasser, Hayat 256
Ngo, Phuc 256

Onchis, Darian 142

Palágyi, Kálmán 3
Pani, Alok Kumar 156
Paul, Soumi 256
Perner, Petra 66
Průša, Daniel 79

Real, Pedro 142
Rucco, M. 229

Simian, Dana 294
Sirakov, Nikolay M. 198, 308
Sirakova, Nona Nikolaeva 198
Sladoje, Nataša 243
Šlapal, Josef 132

Thamburaj, Robinson 170
Thomas, D.G. 156, 170
Tlig, Ghassen 334, 347
Tuba, Eva 294
Tuba, Milan 294

Vicente-Munuera, P. 229

	Preface
	Organization
	Contents
	Theoretical Foundations: Discrete Geometry and Topology, Tilings and Patterns, Grammars, Models, and Other Technical Tools for Image Analysis
	Simplifier Points in 2D Binary Images
	1 Introduction
	2 Basic Notions and Results
	3 Simplifier Points
	4 Efficient Implementation of Endpoint-Based 2D Thinning Algorithms
	5 Conclusions
	References

	Trajectories and Traces on Non-traditional Regular Tessellations of the Plane
	1 Introduction
	2 Traces and Trajectories on the Hexagonal Grid
	2.1 Number of Shortest Paths on the Hexagonal Grid

	3 Preliminaries: Description of the Triangular Grid
	3.1 A Shortest Path

	4 Generalized Traces Describing Shortest Paths
	5 The Number of Shortest Paths
	5.1 The Case of Even Paths
	5.2 The Case of Odd Paths

	6 Concluding Remarks
	References

	On Sets of Line Segments Featuring a Cactus Structure
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Applications
	4.1 Finding Intersections
	4.2 Constrained Shortest Path

	5 Concluding Remarks
	References

	Construction of Thinnest Digital Ellipsoid Using Inverse Projection and Recursive Integer Intervals
	1 Introduction
	1.1 Metrics and Topology
	1.2 Digital Ellipsoid and Its Octants

	2 Inverse Projection
	2.1 Functional Plane
	2.2 Isothetic Distance

	3 Integer Intervals
	4 Algorithm for Digital Ellipsoid
	5 Concluding Notes
	References

	On the Chamfer Polygons on the Triangular Grid
	1 Introduction
	2 The Triangular Grid
	3 Preliminaries: Technical Notions and Notations
	4 Digital Disks and Their Corners
	5 Approximation of Euclidean Disks
	6 Conclusions
	References

	Verification of Hypotheses Generated by Case-Based Reasoning Object Matching
	Abstract
	1 Introduction
	2 State-of-the Art
	3 Hypothesis Generation and Problems
	3.1 Hypothesis Generation
	3.2 Kinds of Hypothesis Verification Based on Set-Theory

	4 Results
	4.1 The Relationship “Inside”
	4.2 The Relationship “Overlapping”

	5 Statistical Reduction of the Hypotheses
	5.1 Common Statistical Measures
	5.2 Hypotheses Reduction by the Evaluation of the Local Score

	6 Conclusions
	References

	Template-Based Pattern Matching in Two-Dimensional Arrays
	1 Introduction
	2 Preliminaries
	3 Working Examples
	4 Regular Matrix Grammars with Scanning Window
	5 String Languages with Polynomial Pattern Complexity
	5.1 Matching by DFA
	5.2 Matching by k-gapped Two-Head DFA

	6 Conclusion
	References

	Construction of Persistent Voronoi Diagram on 3D Digital Plane
	1 Introduction
	2 Preliminaries
	2.1 3D Digital Plane

	3 2D Digital Voronoi Diagram
	3.1 Convexity of Digital Regions

	4 Voronoi Diagram on 3D Digital Plane
	4.1 Inter-voxel Euclidean Metric
	4.2 Inter-pedal Euclidean Metric

	5 Conclusion
	References

	Extension of a One-Dimensional Convexity Measure to Two Dimensions
	1 Introduction
	2 Notation and Definitions
	2.1 Measuring Non-convexity of a Single Row or Column

	3 New Q-Convexity Measure
	3.1 Connection with the Directional Convexity

	4 Normalization
	4.1 Implementation

	5 Experiments
	6 Conclusions
	References

	Algorithms for Stable Matching and Clustering in a Grid
	1 Introduction
	2 Algorithms
	2.1 Circle-Growing Algorithm
	2.2 Distance-Sorting Methods
	2.3 Bichromatic Closest Pairs and Nearest Neighbor Chains

	3 Experiments
	4 Discussion
	References

	A Relational Generalization of the Khalimsky Topology
	1 Introduction
	2 Preliminaries
	3 Plain Relations and Induced Connectedness
	4 Conclusions
	References

	Toward Parallel Computation of Dense Homotopy Skeletons for nD Digital Objects
	1 Introduction
	2 Primal-Dual Abstract Cell Complexes
	3 pACC Homotopy Computation
	4 Generation of Symmetric pACCs and Parallel Processing Units
	5 Generation of MrSFs
	6 Examples of Homological Magnitudes of Several Shapes Obtained Through 3-Dimensional HSFs
	7 Conclusions
	References

	Polynomial Time Algorithm for Inferring Subclasses of Parallel Internal Column Contextual Array Languages
	1 Introduction
	2 Definition and Examples
	3 Subclasses of Parallel Internal Column Contextual Array Grammars
	3.1 Example
	3.2 Example of 2-UPICCAG

	4 Identification of Subclasses of Parallel Internal Column Contextual Array Languages
	5 Pseudocode of Our Algorithm
	5.1 Finding Axiom - Pseudocode-Step: 1
	5.2 Defining Insertion Rule and Converting It into Contextual Rule - Pseudocode-Step: 2, 8, 9
	5.3 Making Correction and Updating Rules - Pseudocode-Step: 10--16
	5.4 Controlling over Generalization - Pseudocode-Step: 17--21
	5.5 Parallalization Contextual Array Rules - Pseudocode-Step: 22, 23

	6 Correctness of the Algorithm and Characteristic Sample
	7 Running Time Complexity of Our Algorithm
	8 Conclusion and Future Work
	References

	Parallel Contextual Array Insertion Deletion P System
	1 Introduction
	2 Preliminaries
	3 Parallel Contextual Array Insertion Deletion P Systems
	4 Properties of Parallel Contextual Array Insertion Deletion P Systems
	5 Comparison Results
	6 Conclusion
	References

	A 3D Curve Skeletonization Method
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Directional Distance
	2.2 Local Antipodal Points

	3 Proposed Work
	3.1 Homotopy Equivalence
	3.2 Space Attachment
	3.3 Retraction

	4 Experimental Results and Conclusion
	References

	Inscribing Convex Polygons in Star-Shaped Objects
	1 Introduction
	2 Background Notions
	3 Active Convex Core Model
	4 Properties and Validation
	5 Experimental Results
	6 Conclusions
	References

	On Characterization and Decomposition of Isothetic Distance Functions for 2-Manifolds
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution

	2 Preliminaries
	3 Characterization of Isothetic Distance
	4 Decomposition of Distance Functions
	4.1 0-1 Distance
	4.2 0-2 Distance
	4.3 1-1 Distance
	4.4 2-2 Distance
	4.5 Voxel Size

	5 Test Result
	6 Conclusion
	References

	Theory and Applications: Image Segmentation, Classification, Reconstruction, Compression, Texture Analysis, and Bioimaging
	Topological Data Analysis for Self-organization of Biological Tissues
	1 Introduction
	2 Motivation
	3 Background
	4 Methodology
	4.1 Modelling Data by Weighted Graphs
	4.2 Persistent Homology Computation

	5 Experiments
	5.1 Implementation
	5.2 Results

	6 Conclusions and Future Work
	References

	Distance Between Vector-Valued Representations of Objects in Images with Application in Object Detection and Classification
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Sets
	2.2 Distance Transforms and Path-Based Distances
	2.3 Path-Based Point-to-Set Distances
	2.4 Distance Between Fuzzy Sets

	3 Novel Point-to-Set Distances for Vector-Valued Fuzzy Sets
	3.1 Vector-Valued Fuzzy Sets

	4 Distances Between Vector-Valued Fuzzy Sets
	5 Implementation and Complexity Analysis
	6 Performance Analysis
	6.1 Template Matching
	6.2 Cilia Detection and Classification

	7 Conclusion
	References

	A Statistical-Topological Feature Combination for Recognition of Isolated Hand Gestures from Kinect Based Depth Images
	1 Introduction
	2 Tools to Study Discrete Contours
	2.1 Adaptive Tangential Cover
	2.2 Polygonal Simplification

	3 Feature Descriptors
	3.1 Histogram of Contour Angles (HoCa) and Contour Distances (HoCd)
	3.2 Moments
	3.3 Geometric Descriptors from Polygonal Simplification of Shape Contours

	4 Dataset and Pre-processing for Experimental Evaluation
	4.1 Dataset from Kinect V1
	4.2 Development of New Benchmark Dataset from Kinect V2
	4.3 Data Collection
	4.4 Hand Localization and Segmentation
	4.5 Noise Removal

	5 Performance Evaluation
	5.1 Results and Comparison

	6 Conclusion
	References

	Image Segmentation via Weighted Carving Decompositions
	1 Introduction
	1.1 Literature Review

	2 Method
	2.1 Color Expression
	2.2 Image Representation
	2.3 Segmentation Method

	3 Results
	3.1 Times New Roman ``L''
	3.2 Embedded Full Color
	3.3 Embedded Full Color 2
	3.4 Mona Lisa

	4 Conclusion
	References

	An Image Texture Analysis Method for Minority Language Identification
	1 Introduction
	2 Proposed Algorithm
	2.1 Unicode Text Mapping
	2.2 Image Creation
	2.3 Feature Extraction
	2.4 Feature Classification

	3 Experiment
	4 Results and Discussion
	5 Conclusion
	References

	JPEG Quantization Table Optimization by Guided Fireworks Algorithm
	1 Introduction
	2 JPEG Algorithm
	3 Quantization Tables
	4 Guided Fireworks Algorithm
	5 The Proposed Algorithm
	6 Experimental Results
	7 Conclusion
	References

	Shape Matching for Rigid Objects by Aligning Sequences Based on Boundary Change Points
	1 Introduction
	2 Notations and Basic Definitions
	3 Shape Representation
	3.1 Boundary Extraction
	3.2 Generating the Shape Sequence

	4 Shape Matching
	5 Experimental Results
	6 Conclusions
	References

	Gradient and Graph Cuts Based Method for Multi-level Discrete Tomography
	1 Introduction
	2 Reconstruction Problem
	3 Reconstruction Method Based on the Graph Cuts Method
	3.1 Potts Model
	3.2 Proposed Reconstruction Method

	4 Experimental Results
	5 Conclusions
	References

	Reconstruction of Nearly Convex Colored Images
	1 Introduction
	2 Definitions and Notations
	3 Integer Programming Formulation
	4 Linearization
	4.1 Min-cost Max-flow Associated Problem

	5 Numerical Results
	6 Conclusion
	References

	A Greedy Algorithm for Reconstructing Binary Matrices with Adjacent 1s
	1 Introduction
	2 Definitions and Notations
	3 Reconstruction Under the Vertical Projection V-adjacent(m,n)
	4 Reconstruction Under the Projections of Each Sequence Type 23adjacent(m, n)
	5 Conclusion
	References

	Author Index

