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Abstract. The size, complexity and dimensionality of data collections
are ever increasing from the beginning of the computer era. Clustering
is used to reveal structures and to reduce large amounts of raw data.
There are two main issues when clustering based on unsupervised learn-
ing, such as Growing Neural Gas (GNG) [9], is performed on vast high
dimensional data collection – the fast growth of computational com-
plexity with respect to growing data dimensionality, and the specific
similarity measurement in a high-dimensional space. These two factors
reduce the effectiveness of clustering algorithms in many real applica-
tions. The growth of computational complexity can be partially solved
using the parallel computation facilities, such as High Performance Com-
puting (HPC) cluster with MPI. An effective parallel implementation of
GNG is discussed in this paper, while the main focus is on minimizing
of interprocess communication. The achieved speed-up was better than
previous approach and the results from the standard and parallel version
of GNG are same.

Keywords: Growing neural gas · High-dimensional dataset · High per-
formance computing · MPI

1 Introduction

The size and complexity of data collections are ever increasing from the beginning
of the computer era, while the dimensionality of the data sets is rapidly increas-
ing in recent years. Contemporary and especially future technologies allow us to
acquire, store and process large high dimensional data collections. High dimen-
sional data collections are commonly available in areas like medicine, biology,
information retrieval, web analysis, social network analysis, image processing,
financial transaction analysis and many others.

Clustering, considered the most important unsupervised learning problem, is
used to reveal structures, to identify “natural” groupings of the data collections
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and to reduce large amounts of raw data by categorizing in smaller sets of similar
items.

There are two main issues when clustering based on unsupervised learning,
such as Growing Neural Gas (GNG) [9], is performed on vast high dimensional
data collection:

1. The fast growth of computational complexity with respect to growing data
dimensionality, and

2. The specific similarity measurement in a high-dimensional space, where the
expected distance, computed by Euclidean metrics to the closest and to the
farthest point of any given point, shrinks with growing dimensionality [2].

These two factors reduce the effectiveness of clustering algorithms on the above-
mentioned high-dimensional data collections in many real applications.

The growth of computational complexity can be partially solved using the
parallel computation facilities, such as High Performance Computing (HPC)
cluster with MPI. Obviously, it is necessary to resolve technical and implemen-
tation issues specific to this computing platform. An effective parallel implemen-
tation of GNG is discussed in this paper, while the main focus is on minimizing
of interprocess communication.

2 Artificial Neural Networks

2.1 Related Works

The methods based on Artificial Neural Networks (ANN) are highly computa-
tionally expensive. There are different approaches on how to improve effectivity
of these methods. The one possibility is to improve computation. The authors of
this paper [3] propose two optimization techniques that are aimed at an efficient
implementation of the GNG algorithm internal structure. Their optimizations
preserve all properties of the GNG algorithm. The first technique enhances the
nearest neighbor search using a space partitioning by a grid of rectangular cells
and the second technique speeds up the handling of node errors using the lazy
evaluation approach.

The next possibility for how to improve effectivity methods based on ANN
is parallelization. In the paper [4] the authors combine the batch variant of the
GNG algorithm with the MapReduce paradigm resulting in a GNG variant suit-
able for processing large data sets in scalable, general cluster environments. The
paper [16] is focused on the actualizations of neurons’ weights in the learning
phase of parallel implementation of SOM. There are two extremal update strate-
gies. Using the first strategy, all necessary updates are done immediately after
processing one input vector. The other extremal choice is used in Batch SOM
– updates which are processed at the end of whole epoch and authors study
update strategies between these two extremal strategies.

For parallelization is often use Graphics Processing Units (GPU). In the
paper [1] authors present the results of different parallelization approaches to the
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GNG clustering algorithm. They especially investigated the GPU and multi-core
CPU architectures. Authors in the paper [12] explore an alternative approach
for the parallelization of growing self-organizing networks, based on an algo-
rithm variant designed to match the features of the large-scale, ne-grained par-
allelism of GPUs, in which multiple input signals are processed simultaneously.
The paper [15] describes the implementation and analysis of a network-agnostic
and convergence-invariant coarse-grain parallelization of the deep neural network
(DNN) training algorithm. The coarse-grain parallelization is achieved through
the exploitation of the batch-level parallelism. This strategy is independent from
the support of specialized and optimized libraries. Therefore, the optimization is
immediately available for accelerating the DNN training. The proposal is com-
patible with multi-GPU execution without altering the algorithm convergence
rate.

2.2 Growing Neural Gas

The principle of this neural network is an undirected graph which need not be
connected. Generally, there are no restrictions on the topology. The graph is
generated and continuously updated by competitive Hebbian Learning [8,13].
According to the pre-set conditions, new neurons are automatically added and
connections between neurons are subject to time and can be removed. GNG can
be used for vector quantization by finding the code-vectors in clusters [7], clus-
tering data streams [6], biologically influenced [14] and 3D model reconstruction
[10]. GNG works by modifying the graph, where the operations are the addition
and removal of neurons and edges between neurons.

To understand the functioning of GNG, it is necessary to define the algorithm.
The algorithm described in our previous article [17] is based on the original
algorithm [5,7], but it is modified for better continuity in the SOM algorithm.
The description of the algorithm has been divided for convenience into two parts.
Here is the Algorithm 1 which describes one iteration.

Remark. The notation used in the paper is briefly listed in Table 1.

3 Parallelization

In the paper [17] we have dealt with the parallelization of GNG. The following
is a brief description of our parallelization algorithm.

After analysing the GNG learning algorithm we identified the one most time-
consuming processor area. This part was selected as a candidate for the possible
parallelization. The selected area are:

Finding BMU – this part of GNG learning can be significantly accelerated by
dividing the GNG output layer into smaller pieces – distribution of neurons for
effective parallelization. Each piece is then assigned to an individual computa-
tion process. The calculation of the Euclidean distance among the individual
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Table 1. Notation used in the paper

Symbol Description

M Number of input vectors

n Dimension of input vectors, number of input neurons, dimension of weight
vectors in GNG output layer neurons

N Current number of neurons in GNG output layer

Nmax Maximum allowed number of neurons in GNG output layer

ni i-th input neuron, i = 1, 2, . . . , n

Ni i-th output neuron, i = 1, 2, . . . , N

eij edge between neurons Ni and Nj for some i, j = 1, . . . , N , where i �= j.

E set of all edges in GNG

G undirected graph describing topology of GNG, G({N1, . . . ,NN},E)

t Current epoch, t = 1, 2, . . . , T

X Set of input vectors, X ⊂ R
n

x(t) Current input vector in epoch t, arbitrarily selected vector from set
Xx(t) ∈ X, x(t) = (x1, x2, . . . , xn)

wk(t) Weight vector of neuron Nk, k = 1, 2, . . . , Nwk(t) ∈ R
n,

wk(t) = (w1k, w2k, . . . , wnk)

Nc1 The first Best Matching Unit (BMU1), winner of learning competition

Nc2 The second Best Matching Unit (BMU2), the second best matching
neuron in learning competition

wc1(t) Weight vector of BMU1

wc1(t) Weight vector of BMU2

lc1 Learning factor of BMU1

lnc1 Learning factor of BMU1 neighbours

ei Local error of output neuron Ni, i = 1, 2, . . . , N

α Error ei reduction factor

β Neuron error reduction factor

γ Interval of input patterns to add a new neuron

amax Maximum edges age

aij Age of edge eij

p Number of processes

Vi Set of neurons assigned to Processi

V Set of in the GNG

input vector and all the weight vectors to find BMU in a given part of the
GNG output layer is the crucial point of this part of GNG learning. Each
process finds its own partial BMU in its part of the GNG output layer. Each
partial BMU is then compared with other BMUs obtained by other processes.
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Algorithm 1. One iteration of the Growing Neural Gas algorithm
1. Find neurons BMUs neurons Nc1 and Nc2 .
2. Update the local error ec1 of neuron Nc1

ec1 = ec1 + ‖wc1 − x‖2 (1)

3. Update the weight vector wc1 of neuron Nc1

wc1 = wc1 + lc1(x − wc1) (2)

4. For all neurons Nk where exists edge ec1k (Nc1 neighbourhood)
(a) Update the weights wk using lnc1 learning factor

wk = wk + lnc1(x − wk) (3)

(b) Increase age akc1 of edge ec1k

akc1 = akc1 + 1 (4)

5. If there is no edge between neurons Nc1 and Nc2 , then create such edge. If the edge
exists, the age is set to 0.

6. If any edge has reached the age of amax, it is removed.
7. If there is a neuron without connection to any edge, the neuron is then removed.
8. If the number of processed input vectors in the current iteration has reached the

whole multiple of the value γ and the maximum allowed number of output neurons
is not reached, add a new neuron NN+1. The location and error of the new neuron
is determined by the following rules:
(a) Found neuron Nb(NBE) which has the biggest error eb.
(b) Found neuron Nc(NSE) among neighbours of neuron Nb and has the biggest

error ec among these neighbours.
(c) Create a new neuron NN+1 and the value of wn is set as:

wN+1 =
1

2
(wb + wc) (5)

(d) Creating edges between neurons Nb and NN+1, and also between neurons Nc

and NN+1.
(e) Removed edge between neurons Nb and Nc.
(f) Reduction of error value in neurons Nb and Nc using the multiplying factor α.

Error for neuron NN+1 is equal to the new error of neuron Nb.

Information about the BMU of the whole network is then transmitted to all
the processes to perform the updates of the BMU neighbourhood.

Updates of weights – update weights of edges incident with Nc1 it is quickly in
the event that the neighboring nodes to Nc1 are on a same process. This part
can theoretically accelerate if we move adjacent nodes on a single process.
Unfortunately, the transfer node for multidimensional data is very time con-
suming (test data have a dimension of 8000+).

A detailed description of our parallelization process is described in Fig. 1.
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Fig. 1. Parallel algorithm

The parallelization of GNG learning was performed on an HPC cluster, using
Message Passing Interface (MPI) technology. MPI technology is based on effec-
tive communication between processes. That means that one application can
run on many cores. The application uses MPI processes which run on individual
cores. The processes are able to send and receive messages and data, communi-
cate etc. Detailed information about HPC and MPI technology is provided, for
example, in [11].1

3.1 Distribution Neurons for Effective Parallelization

In the paper [17] we used Method 1 (the equal distribution of neurons), where
new neurons are allocated to the process with the lowest number of neurons (see
Fig. 2). The advantage of this distribution is constant workload processes. The
disadvantage is increased communication between processes.

Our goal is to focus on reducing interprocessor communication by using the
following methods for adding new neuron:

Method 2 The neurons are gradually added to the process, which currently
does not contain a predetermined number of neurons (Nmax

p ). If one
process is filled up so a new neuron is added to the next process (see
Fig. 3).

1 A specification of MPI is available on the web: http://www.mpi-forum.org/.

http://www.mpi-forum.org/
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Fig. 2. Add the new neuron to the next free Processj by a cyclic way - Method 1.

|Vi| = Nmax
p

|Vi+1| ≤ Nmax
p

Nc1

Nc2 Nnew

Processi Processi+1

|Vi| = Nmax
p

|Vi+1| = Nmax
p |Vi+2| = 1

Nc1

Nc2 Nnew

Processi Processi+1 Processi+2

Fig. 3. Add the new neuron to the Processx by gradual way - Method 2.
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. . .
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p

|Vj | ≤ Nmax
p
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. . . . . .

P rocessi Processk Processj

|Vi| = Nmax
p

|Vk| = Nmax
p

|Vj | ≤ Nmax
p

Fig. 4. Add the new neuron to the Processx where is Nc1 or Nc2 - Method 3.

Method 3 The start is similar to Method 1. If |Vi| ≥ 2 ∀i ≤ p then add Nnew

to Processi where (Nc1 ∈ Vi and |Vi| ≤ Nmax

p ) or add Nnew to
Processk where (Nc2 ∈ Vk and |Vk| ≤ Nmax

p ) or add Nnew to the
next free Processj (see Fig. 4).

4 Experiments

4.1 Experimental Datasets and Hardware

One dataset was used in the experiments. The dataset was commonly used in
Information Retrieval – Medlars.

Medlars Dataset. The Medlars dataset consisted of 1,033 English abstracts
from a medical science2. The 8,567 distinct terms were extracted from the Med-
lars dataset. Each term represents a potential dimension in the input vector
2 The collection can be downloaded from ftp://ftp.cs.cornell.edu/pub/smart. The total

size of the dataset is approximately 1.03 MB.

ftp://ftp.cs.cornell.edu/pub/smart


70 L. Vojáček et al.

space. The term’s level of significance (weight) in a particular document rep-
resents a value of the component of the input vector. Finally, the input vector
space has a dimension of 8,707, and 1,033 input vectors were extracted from the
dataset.

Experimental Hardware. The experiments were performed on a Linux HPC
cluster, named Anselm, with 209 computing nodes, where each node had 16
processors with 64 GB of memory. Processors in the nodes were Intel Sandy
Bridge E5-2665. Compute network is InfiniBand QDR, fully non-blocking, fat-
tree. Detailed information about hardware is possible to find on the web site of
Anselm HPC cluster3.

4.2 The Experiment

The experiment was oriented towards a comparison of the parallel GNG algo-
rithm and parallel by modification by assignment to processes. The Medlars
dataset was used for the experiment. A parallel version of the learning algo-
rithm was run using 2, 8, 16, 24, 32 and 64 MPI processes. The records with
an asterisk (*) represents the results for only one process i.e. this is the original
serial learning algorithm and there is no network communication.

GNG parameters are the same for all experiments and are as follows γ =
200, ew = 0.05, en = 0.006, α = 0.5, β = 0.0005, amax = 88, M = 2021, δ =
1500. The achieved computing time is presented in Table 2.

Table 2. Computing time with respect to number of cores, standard GNG algorithm,
dataset medlars

Cores Computing time [mm:ss]

Method 1 Method 2 Method 3

1* 35:41

4 09:36 10:28 10:41

8 06:59 06:25 06:52

16 05:53 06:18 06:37

24 07:29 05:33 05:35

32 07:42 07:13 07:17

As we can see from Table 2 and Fig. 5, the computing time depends on
the number of used cores as well. With a growing number of processors, the
computation effectiveness increases, and the computational time is sufficiently
reduced (in the paper [17] we used Method 1).

3 https://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview.

https://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview
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Fig. 5. Graph of computing time with respect to number of cores, standard GNG
algorithm, dataset medlars

5 Conclusion

In this paper the parallel implementation of the GNG neural network algorithm
is presented. The achieved speed-up was better than our previous approach.
However, the effectiveness of a parallel solution is dependent on the division
of the output layer. The authors introduced three different methods of neuron
assignment to processes, where better acceleration for the new approaches was
achieved. These approaches reached the best time but speed up is not too signif-
icant for the selected data set. Our methods are focusing on the different ways
of assigning a new neuron in the GNG to processes for parallel computation.

In future work we intend to focus on the sparse date, use combinations of
neural networks for improved result and improved acceleration.
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Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp.
408–419. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40925-7 38

http://dx.doi.org/10.1007/978-3-319-41920-6_43
http://dx.doi.org/10.1007/978-1-4471-2063-6_104
http://dx.doi.org/10.1007/978-3-319-03500-0_6
http://dx.doi.org/10.1007/978-3-319-03500-0_6
http://dx.doi.org/10.1007/978-3-319-24369-6_13
http://dx.doi.org/10.1007/978-3-642-40925-7_38

	Optimalization of Parallel GNG by Neurons Assigned to Processes
	1 Introduction
	2 Artificial Neural Networks
	2.1 Related Works
	2.2 Growing Neural Gas

	3 Parallelization
	3.1 Distribution Neurons for Effective Parallelization

	4 Experiments
	4.1 Experimental Datasets and Hardware
	4.2 The Experiment

	5 Conclusion
	References


