Evil-AP - Mobile Man-in-the-Middle Threat

Kamil Brenski, Maciej Chotuj, and Marcin Luckner®™)

Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warszawa, Poland
{brenskik,cholujm}@student .mini.pw.edu.pl, mluckner@mini.pw.edu.pl

Abstract. Clients of public hotspots are exposed to various threats
including a man-in—-the-middle attacks. To stress existing threats we
created the Evil-AP application for demonstrating a man—in—the-middle
attack. The application, installed on an Android phone with root per-
missions, turns on hotspot services and performs network redirection.
We tested as the proposed techniques can be used to eavesdrop, redirect,
inject, and strip the Internet traffic. A mobility of the created solution
together with the wide functionality creates an extremely dangerous tool.
Therefore, we concluded our work with good practices that allow the
users to avoid similar threats as described in our work.

1 Introduction

The users of mobile devices utilise various access points to connect with the Inter-
net including public hotspots. They are exposed on various penetration tests [2]
including man-in-the-middle (MITM) attack [12]. Such dangerous should be
examined and a proper tools for that must be created.

In this work we presented the Evil-AP application developed for demonstra-
tion purposes. It sets up a MITM attack using an Android phone with root
permissions, turns on hotpot services and preforms network redirection.

The performed tests showed that the proposed technique creates extremely
dangerous mobile trap for careless public hotspots users. The Evil-AP can eaves-
drop, redirect, inject, and strip the Internet traffic.

Similarly, as in works [3,9-11,13] the main aim of this document is to raise
awareness of the dangers of MITM attacks. We demonstrated the methods that
could be used by attackers, and provided appropriate methods and things to
consider in order to stay safe, and keep our information private.

The rest of the paper is structured as follows. Section 2 contains information
on a man-in-the middle attack and network protocols. Section 3 presents related
works. Section 4 describes the Evil-AP application. Section 5 presents the tests
of the application. Finally, Sect. 6 presents brief conclusions.

2 Preliminaries

A man-in-the middle attack intercepts communication between two systems.
The focus of this work were Hypertext Transfer Protocol (HTTP) transactions.

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved
K. Saeed et al. (Eds.): CISIM 2017, LNCS 10244, pp. 617-627, 2017.

DOI: 10.1007/978-3-319-59105-6_53

618 K. Brenski et al.

In this case the target is the Transmission Control Protocol (TCP) connection
between a client and a web server. Using different techniques, the attacker splits
the original TCP connection into 2 new connections, one between the client and
the attacker and the other between the attacker and the server. Once the TCP
connection is intercepted, the attacker acts as a proxy, being able to read, insert
and modify the data in the intercepted communication. MITM attacks can also
be done over Hypertext Transfer Protocol Secure (HTTPS) connections. The
only difference consists in the establishment of two independent Secure Socket
Layer (SSL) sessions, one over each TCP connection. The browser sets up a
SSL connection with the attacker, and the attacker establishes another SSL
connection with the web server. In general the browser warns the user that the
digital certificate used is not valid, but the user may ignore the warning because
he does not understand the threat. In some specific contexts it is possible that
the warning does not appear, as for example, when the Server certificate is
compromised by the attacker or when the attacker certificate is signed by a
trusted Certificate Authority (CA) and the Common Name (CN) is the same of
the original web site [8].

Since the developed Evil-AP proxy is an HTTP proxy, an overview of HTTP
is presented. The HTTP protocol has always been a popular protocol [1]. It is
the foundation of data communication in the world wide web. HTTP functions
as a request-response protocol in the client-server computing model [7]. In the
usual scenario a web browser like Firefox or Chrome is the client which makes
the request to the web server for some particular resource like an HTML, CSS,
or JavaScript file, along with any other resources needed to properly render a
website. HT'TP typically works over TCP which is a stateful protocol which pro-
vides a reliable connection. TCP is a transport layer protocol of the OSI model,
while HTTP is an application layer protocol. For the purposes of this work we
designed a HTTP proxy which will be between client and server communication.
The HTTP protocol that is in common use today was developed in 1999 and is
defined in RFC 2616 [4].

There are various requests that the client can make to the server, popular ones
being the GET and POST requests. The GET request is used to retrieve remote
data from a host server. Yet it is not uncommon to pass variables from one page
to another by using the URL query string. On the other hand a POST request
is used to insert or update remote data. Such data might include a comment or
a block of data that is the result of submitting a web form. This data is sent in
the body of the request and not clearly visible like variables in the URL of GET
requests. There is a common misconception among new web developers that data
sent in POST requests is safer than data sent in GET requests. That is not true
as someone using a proxy can easily modify any part of the request, just like
Evil-AP does. The data found in a POST request is quite commonly originating
from a web form, this makes the contents of the body particularly interesting
to someone with malicious intent as it might contain personal information or
login credentials. There are various other requests like the OPTIONS, HEAD,
or TRACE requests but they are usually used less often. Evil-AP application
supports the GET and POST requests.

Evil-AP - Mobile Man-in-the-Middle Threat 619

3 Related Work

Several works described MITM attacks. The high-level overview of what penetra-
tion tests are and what tools are used can be found in [2]. Some concrete examples
of certain activities that might be performed during a penetration test are dis-
cussed, yet only a small section is devoted to MITM attacks. That section only
describes MITM attack as Address Resolution Protocol (ARP) poisoning [5].
Work [12] identified the lack of a good taxonomy of MITM attacks against
HTTPS. It established such a taxonomy in order to improve the SSL/TLS pro-
tocols by providing a better understanding of such attacks. It did not provide
details on any concrete MITM attack implementation. Work [3] presented vari-
ous security vulnerabilities that occur in WiFi networks. It focused on showing
various ways that a malicious party can in fact monitor network traffic that
various other legitimate users are generating. The work presented more attack
types than MITM, yet it focused on sniffing private information like passwords
of email and bank accounts, along with facebook activity, without editing any
of the existing network traffic. The issue of encrypted traffic was not raised.
Several works discussed similar issues as presented in this work. We prepared
a brief description of those works and stressed differences between our approach
and other propositions. Work [13] presented a possible method of establishing a
secure point-to-point connection using a shared secret derived from the fluctu-
ations in a radio environment. Creating such a secure connection between two
points would effectively render MITM attacks unlikely as someone who is not in
close proximity to the two points that want to establish a connection will not
have the same radio environment from which a token was derived. This work
did not take into consideration the security and privacy of clients using a shared
LAN network. Work [10] presented an epidemiological approach to simulate the
spread of malware over poorly protected Wi—Fi Access Points. It focused on the
aspect of compromising a LAN network, which gives the attacker the ability to
perform MITM attacks. The work touched on the topic of compromising typi-
cal home routers and re-flashing them with new firmware which would give the
attacker total control over the device. Its aim was to show the possible coverage
and time needed in order to infect as many APs as possible. Work [6] presented
a detection scheme for discovering Evil-Twin attacks on WiFi networks. The
Evil-Twin attack is a certain type of MITM attack where the attacker poses
as a legitimate Access Point and intercepts communication. Using appropriate
hotspot configuration Evil-AP can also be used in an Evil Twin attack. Unfor-
tunately the scheme discussed in this work only functioned in attacks that use
a single ISP gateway, where Evil-AP uses a different ISP gateway, the one pro-
vided when using a mobile data plan. Extra steps are needed to ensure that the
detection scheme works for both scenarios. Work [9] demonstrated how Android
applications can be exploited using MITM attacks with DNS spoofing. It also
pointed out various security holes in the Android security model. Unlike Evil-AP
this work used a laptop to set up a rouge access point, and focuses on editing
the contents of a WebView that is displayed by an application. Finally, work [11]
discussed a vulnerability found on Apple i0S devices, affected version being iOS

620 K. Brenski et al.

3 to i0S 5. The vulnerability occurs when an Apple device joins an open WiFi
network, the device then automatically makes a request to one of the Apple’s
servers to test network connectivity. If the response is not what the device was
expecting it makes the assumption that there is a captive portal and it automat-
ically opens a UIWebView for the user to accept the terms of service. Problems
begin when that response contains malicious content like a hook used to control
browsers like the one that can be generated using the BEEF framework. This
work focused on attacking client devices and not on security and privacy of data
transferred on a LAN.

4 Evil-AP

At the core of the Evil-AP application there is a proxy server which listens
for incoming HTTP and HTTPS connections. Furthermore this proxy can be
seen as having two parts. The private network (LAN) facing part which will
be a server that accepts connections from clients connected the hotspot and a
public network (Internet) facing part which will send requests to web servers
in our client’s name. A request will have to go through our proxy server in
order to be processed, logged, and perhaps modified by it. Similar rules apply to
responses from web server. This scheme is represented in Fig. 1. Internally the
proxy server is implemented as an android service which uses two thread pools,
one for handling HTTP connections and the other one for handling HTTPS
connections.

4.1 Applied Technology and Requirements

The Evil-AP application is implemented in the Java programming language using
Android Studio IDE. Since the application also requires interaction with the

Private Network (Connected clients) Public Network (Internet)

%

Client 1

Request - Request ' O\

Web server 1

®

Web server 3

Client 2 . Response lResponse

E Evil-AP

Client 3

Web server 2

Fig. 1. Architecture overview.

Evil-AP - Mobile Man-in-the-Middle Threat 621

underlying Linux kernel of the rooted phone, UNIX commands from within Java
are used to accomplish certain tasks. These tasks include applying new fire-
wall traffic redirection rules or reading certain system files in order to gather
information about connected clients.

As the project requires at least a partial implementation of the HTTP pro-
tocol an external library is used to help with this. The library is called okhttp
[14] and it is used to make requests to web servers.

The application requires the following permissions:

ACCESS_CHECKIN_PROPERTIES Allows read/write access to the “properties” table
in the checkin database, to change values that get uploaded. Application
requires these permissions in order to configure the hotspot properties.

ACCESS_NETWORK_STATE Allows application to access information about net-
works.

CHANGE_NETWORK_STATE Allows application to change network state.

ACCESS_WIFI_STATE Allows application to access information about Wi-Fi net-
works.

CHANGE_WIFI_STATE Allows application to change Wi-Fi state.

READ_EXTERNAL_STORAGE Allows application to read from external storage. Nec-
essary for SQLite database to function properly.

WRITE_EXTERNAL_STORAGE Allows application to write to external storage. Nec-
essary for SQLite database to function properly.

INTERNET Allows application to open network sockets.

The phone itself needs to give the application root permissions which allows
it to redirect traffic using the Linux firewall called iptables. In order to do this the
phone itself needs to be rooted. The specific rule used for HT'TP redirection looks
as such iptables -t nat -I PREROUTING -i wlanO -p tcp --dport 80 -j
REDIRECT --to-port 1337, a similar rule is used in the case of HTTPS. The
application also uses the phones mobile data plan in order to connect to the
Internet, this is because the wireless interface that could be used to connect to
an existing WiF1i is already being used by the hotspot. Another assumption that
is made by the application is the fact that all requests made by the clients will
have the host header present since it is needed in order to construct the okhttp
request.

4.2 Evil-AP Functionality

To describe the functionality of the Evil-AP application we defined two roles.

The first role is the Evil-AP user. The user configures the hotspot. The
configuration consists of a service set identifier (SSID), a password, and a security
method.

Next, the user can define how the network traffic will be edited. There are
three modes. In the first mode, the user selects the image to use as a replacement
to all images in an HTTP response. In the second mode, the user writes the
JavaScript code he wants to inject to an HTTP response. For security reasons,

622 K. Brenski et al.

the JavaScript code is limited to an alert box and the user can only modify the
presented text.

In the last mode, the user enables SSL Strip. In the last mode the applica-
tion forces a client’s browser into communicating in plain-text over HT'TP. All
https:// URLs are striped and turned into http:// URLs.

Additionally, the user can ban clients, view the client log and redirect
HTTP(S).

The client, which is unaware, can only connect to the hotspot, browse the
Internet, and disconnect.

4.3 Proxy Architecture

The core of the Evil-AP application is a set of proxy components. The compo-
nents handle HTTP requests. The flow of a request through the proxy compo-
nents is shown in Fig. 2.

Main Proxy Components

Client (1) ProxyHTTP(S) | (2)

——' MainLoop ~|====fp| Thread
E,“ *) Handler
(6)
(3) I Web server
4) |Interceptor ___'
2’ Request
SharedClass
Dpl?atnaabgaesre +— (okhttp client) |(5) Interceptor ‘__

Response

Runnable
AddDbEntry

Fig. 2. Overview of main proxy components

The client sends a request and it is rerouted to our application (1). Next, the
ProxyHTTP(S)MainLoop accepts the connection and passes it to a thread from the
thread pool (2). The ThreadHandler reads the client request and parses it into an
okhttp request. While parsing the string request it uses the SharedClass object to
insert new entries into the SQLite database. Internally SharedClass uses a thread
pool to run SQL INSERT commands in order to avoid further delaying the han-
dling of client connections. It then accesses the okhttp client found in SharedClass
to make the request to the web server (3). Before forwarding the request to
the web server InterceptorRequest removes any security related headers like
“Upgrade-Insecure-Requests” or “Strict-Transport-Security” (4). The response
from the web server is edited by InterceptorResponse. The status-line of the
response has a hard-coded “HTTP/1.1” string in order to avoid using HTTP/2.0.

Evil-AP - Mobile Man-in-the-Middle Threat 623

This is also where various actions like injecting JavaScript or replacing the bytes
of images take place (5). After receiving the response ThreadHandler forwards it
to the client (6). When the client makes a regular HT TP request it will originally
be destined for port 80. This scheme still applies if the client makes an HTTPS
request, the only difference is that it will be destined for port 443 and before any
data is exchanged the SSL/TLS handshake will take place. When that happens
the proxy server will present the client with a self-signed certificate and the client
should have an option to either add an exception for the untrusted certificate or
be denied access to the web resource he is requesting (*).

5 Tests

In this section results of various Evil-AP configurations are shown. A single con-
nected client was used to make a request for the faculty of Mathematics and
Information Science website found at “http://www.mini.pw.edu.pl/tikiwiki”.
The Firefox browser was configured to not use its cache by changing entries.

The application was started as a hotspot and tested in several configurations
as it is shown in Fig. 3. The following configurations of Evil-AP were tested:

— Evil-AP not redirecting traffic (no redirection)

Evil-AP only redirecting and logging traffic (redirection)

— Redirection with JavaScript injection (js)

Redirection with image replacement and SSL Strip (ir + issl)

— Redirection with image replacement, SSL Strip, and JavaScript injection (ir
+ ssl + js)

o d PUPREL O] BY ramiizes o d ® ‘Ul w1:36

CONFIG CLIENTS ACTION CENTER CONFIG CLIENTS ACTION CENTER

CONFIG CLIENTS ACTION CENTER

Redirect HTTP

Redirect HTTPS

WPA/WPA2 PSK

Inject JS SETTINGS
Payload1 - Alert dialog box message

Hello from Evil-AP!

SSL Strip [

Replace Images serives @

(a) Configuration (b) Redirection (¢) JavaScript injection

Fig. 3. Evil-AP configuration and tests

http://www.mini.pw.edu.pl/tikiwiki

624 K. Brenski et al.

Evil-AP with no redirection did not establish a MITM attack between con-
nected clients. The requests were not logged or edited. The hotspot worked
normally, just as if Evil-AP would not have been installed. Figure 4a shows the
faculty website rendered normally.

E=—u
F
.

STUDIA STUDIA

(a) rendered normally (b) with replaced images

Fig. 4. Faculty website

In the redirection configuration Evil-AP proxy established a MITM attack
and logged client’s requests. The requests were sent and the response was for-
warded back without any editions. Figure3b shows the logged initial request
that was made by the client.

In the js configuration, the Evil-AP injected a small piece of JavaScript in
the HTML response. The used script was alert("Hello from Evil-AP!");.
As a result the alert box was displayed. Figure 3c shows configuration of the
injection.

In the next ir + ssl configuration, the bytes of every image in the response
were swapped, and all HT'TPS links were changed to HTTP ones. All images
were replaced by the image currently loaded in Evil-AP. The rendered website
is shown in Fig. 4b.

In the last configuration all features of Evil-AP were turned on. The user got
a JavaScript alert and all images were swapped like in Fig. 4b.

5.1 Performance Comparison

In order to test how the proxy impacts performance, 10 requests for the fac-
ulty website were made in each configuration. The amount of time for the ini-
tial request and the amount of time needed to render the entire website were
recorded. For the final chart the average for those times was taken. To fully load
the website 58 requests were made in total.

Figure 5 shows the performance comparison between various configurations
of Evil-AP. It is visible that enabling various features causes some delay while
handling requests which results in more time needed in order to fully render a
website. The delay is there yet it is not that significant mostly due to the fact
that HT'TP persistent connection is implemented inside the application. This
allows the browser to use a single TCP connection to make multiple requests,

Evil-AP - Mobile Man-in-the-Middle Threat 625

[sec] [ms]

’ ~—
/ 500
4
/ 400
3

300

200

100

no redirection redirection s ir +ssl i+ ssl+js

& website rendered (left axis) eg=minitial request (right axis)

Fig. 5. Network performance for different configurations of Evil-AP

without the overhead of setting up and tearing down each TCP connection for
each individual request.

6 Conclusions

In our work, we have shown that the usage of untrusted access points can
be extremely dangerous. Our mobile application Evil-AP can change, inject,
or redirect HTTP and HTTPS traffic. The Avast free Wi-Fi experiment at
Mobile World Congress' has shown that even experts are careless using unknown
hotspots with a free Internet. And by its mobility, our solution is even more dan-
gerous.

Maliciously performing MITM attacks like the ones discussed in this paper
is not only wrong, it is illegal. The goal of this paper is not to enable attacks
on hotspots clients, but rather to make people aware of the real dangers that
exist to an individual’s privacy so that better care can be taken in order to
secure ourselves against these threats. We honestly hope that the information
contained here will be used in good-faith by aspiring penetration-testers and
security enthusiasts. According to our aim it is good to stress several good prac-
tises that allow the users to avoid dangers connected with the attacks as one
described in this work.

! https://blog.avast.com/2016/02/24 /avast-free-wi-fi-experiment-fools-mobile-world
-congress-attendees/.

https://blog.avast.com/2016/02/24/avast-free-wi-fi-experiment-fools-mobile-world-congress-attendees/
https://blog.avast.com/2016/02/24/avast-free-wi-fi-experiment-fools-mobile-world-congress-attendees/

626 K. Brenski et al.

6.1 Good Practises

Since a generated self-signed SSL certificate was used to set up a MITM attack on
HTTPS connections for websites that do not use HSTS, a warning was presented
to the client that there is something wrong with the connection. This attack
relies strongly on the gullibility of the end-user. Therefore, the best thing to do
is to never add any exceptions or add any untrusted certificates to the browser
certificate store. If we do add an exception, then we should be perfectly aware of
the real reason behind the message, or be prepared to deal with the very serious
consequences that could result.

Using a VPN would circumvent traffic redirection entirely, in the case of
Evil-AP. Since VPNs do not use standard ports, and no other rules exist other
then the two that redirect traffic destined for port 80 and port 443, VPN traffic
would never even be redirected to Evil-AP. Assuming that somehow it was. The
authentication that needs to take place before any data is exchanged would fail.
The worst case scenario being that the attacker could cut off connectivity with
the VPN, which would be a clear indication that there is a proxy between us
and the public Internet.

Modern browsers always give us an indication of what kind of connection
is established with the host server. HI'TPS connections are usually represented
with a green lock somewhere around the address of the website we have con-
nected to The lack of this green lock or a crossed out lock indicates a regular
HTTP connection. This should raise our suspicion and we should be aware that
anything we send or receive over this type of connection can be easily intercepted,
monitored, or transformed.

In the case of the Evil-AP proxy there are a few indicators that could hint
that network traffic is being intercepted. The biggest one being that the HTTP
protocol is only partially implemented, meaning requests other than GET and
POST will not work. This means that websites that rely on other methods will
not render properly.

6.2 Possible Improvements and Future Work

The Evil-AP application does not work in the case of servers configured with
HSTS. This is because the browser has an entry saved that says it should only
connect to this server using HTTPS and it stops the user from easily adding
certificate exceptions for this host. While it is always nice for servers to be
configured this way, it should not be treated as a final cure for MITM attacks.
That is because a malicious actor could control the entire traffic flow, including
DNS traffic. An upgraded version of SSL Strip can be therefore constructed.
Instead of only changing all occurrences of https:// into http:// a small part of
the hostname could also be changed, like adding an extra w in www, it would
not really matter that such a host might not exists as the attacker is the one
that is doing the name resolution anyway. By doing DNS resolution on edited
hostnames an attacker will be able to slip past already existing HSTS entries
saved in the browser. Another possible improvement that would add potency

Evil-AP - Mobile Man-in-the-Middle Threat 627

to Evil-AP is the ability to inject forged 802.11 frames. This would allow for
better execution of the Evil-Twin attack since the configuration of a legitimate
AP can be copied, then the attacker would send forged 802.11 deauthentication
frames with the spoofed address of the client that will be disconnected from the
legitimate AP and perhaps re-connect to Evil-AP if the communication from the
malicious AP is faster then the one from the legitimate AP.

References

10.

11.

12.

13.

14.

. Raggett, D., Arnaud Le Hors, I.J.: HTML 4.01 specification (1999). https://www.

w3.org/TR/html4/. Accessed 28 Jan 2017

Denis, M., Zena, C., Hayajneh, T.: Penetration testing: concepts, attack meth-
ods, and defense strategies. In: 2016 IEEE Long Island Systems, Applications and
Technology Conference (LISAT), pp. 1-6, April 2016

Fahmy, S., Nasir, A., Shamsuddin, N.: Wireless network attack: raising the aware-
ness of kampung wifi residents. In: 2012 International Conference on Computer
Information Science (ICCIS), vol. 2, pp. 736740, June 2012

Fielding, R.T., Gettys, J., Mogul, J.C., Nielsen, H.F., Masinter, L., Leach, P.J.,
Berners-Lee, T.: Hypertext transfer protocol - http/1.1. RFC 2616, RFC Editor.
http://www.rfc-editor.org/rfc/rfc2616.txt

King, J., Lauerman, K.: ARP poisoning attack and mitigation techniques (2016).
http://www.cisco.com/c/en/us/products/collateral /switches/catalyst-6500-series
-switches/white_paper_c11_603839.html. Accessed 28 Jan 2017

Nakhila, O., Zou, C.: User-side wi-fi evil twin attack detection using random wire-
less channel monitoring. In: MILCOM 2016 - 2016 IEEE Military Communications
Conference, pp. 1243-1248, November 2016

IoT ONE: Hypertext Transfer Protocol. http://www.iotone.com/term/hypertext-
transfer-protocol-http/t557. Accessed Dec 2016

OWASP: Man-in-the-middle attack (2015). https://www.owasp.org/index.php/
Man-in-the-middle_attack. Accessed 28 Jan 2017

Park, M.W., Choi, Y.H., Eom, J.H., Chung, T.M.: Dangerous wi-fi access point:
attacks to benign smartphone applications. Pers. Ubiquitous Comput. 18(6), 1373—
1386 (2014). http://dx.doi.org/10.1007/s00779-013-0739-y

Sanatinia, A., Narain, S., Noubir, G.: Wireless spreading of wifi aps infections using
wps flaws: an epidemiological and experimental study. In: 2013 IEEE Conference
on Communications and Network Security (CNS), pp. 430-437, October 2013
Spaulding, J., Krauss, A., Srinivasan, A.: Exploring an open wifi detection vul-
nerability as a malware attack vector on ios devices. In: 2012 7th International
Conference on Malicious and Unwanted Software, pp. 87-93, October 2012
Stricot-Tarboton, S., Chaisiri, S., Ko, R.K.L.: Taxonomy of man-in-the-middle
attacks on https. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 527-534, August
2016

Varshavsky, A., LaMarca, A., de Lara, E.: Enabling secure and spontaneous com-
munication between mobile devices using common radio environment. In: Eighth
IEEE Workshop on Mobile Computing Systems and Applications, pp. 9-13, March
2007

Wilson, J.: Okhttp wiki, May 2014. https://github.com/square/okhttp/wiki

https://www.w3.org/TR/html4/
https://www.w3.org/TR/html4/
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.html
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.html
http://www.iotone.com/term/hypertext-transfer-protocol-http/t557
http://www.iotone.com/term/hypertext-transfer-protocol-http/t557
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
http://dx.doi.org/10.1007/s00779-013-0739-y
https://github.com/square/okhttp/wiki

	Evil-AP - Mobile Man-in-the-Middle Threat
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Evil-AP
	4.1 Applied Technology and Requirements
	4.2 Evil-AP Functionality
	4.3 Proxy Architecture

	5 Tests
	5.1 Performance Comparison

	6 Conclusions
	6.1 Good Practises
	6.2 Possible Improvements and Future Work

	References

