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Abstract. In this paper we present a fast and easy method of quality
monitoring for processes observed by cameras. A process of combustion
in an industrial gas burner is used as an example. It is shown that we
can observe only a small randomly chosen part of subsequent camera
images. We propose a few, working in parallel manner, quality control
charts. These Shewart type charts operate on squared norms of sparse
partial image projections. Each chart is used for monitoring only a part
of the whole camera image. The charts provide a partial decision about
the state of the monitored system. A final decision is the logical product
of these partial decisions. A simulation study based on 144 images of a
working gas burner is presented.

Keywords: Image processing · Process monitoring · Random projec-
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1 Introduction

Camera-based process monitoring is a recently very popular method of super-
vising a production process. Quality control of products [11,12], controlling
processes [14,15], object fault detection [5,6,16,18] or anomaly detection [7] are
good examples.

In this paper we propose a methodology of quality monitoring for processes
observed by cameras. We illustrate its applicability by monitoring a process of
combustion in an industrial gas burner. Subsequent camera images of the process
under consideration are used for the process analysis.

A gas burner is a device which is used to generate a flame, in order to heat up
products using a gaseous fuel such as acetylene, natural gas, or propane. In the
case under consideration it is a natural gas (which is mainly methane) burner.
The burner has an air inlet to mix the fuel gas with air, to enable complete
combustion. Burner flames depend on air flow and we can register four states of
burning process:
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Fig. 1. Different states of a gas burner. (a) Laminar and lighting flame when the air
hole is closed. (b) (c) Orange-yellow turbulent flame and yellow-blue flame when the
air hole is slightly open or is not sufficiently open. (d) Roaring blue flame (normal
state) when the air hole is sufficiently open (Color figure online).

1. when the air hole is closed (yellow-white, laminar and lighting flame, see
Fig. 1a)

2. the air hole is slightly open (orange-yellow, more turbulent flame, see Fig. 1b)
3. the air hole is not sufficiently open (yellow-blue flame, see Fig. 1c)
4. the air hole fully open (roaring blue flame see Fig. 1d).

We assume that a blue flame (hardly visible on the camera image) means that
the process is an in-control state.

In contrast to the other approaches (see for example [14]) the presented
method is based on computing only the energy of a set of sub-images. Energy
of an image is defined as a sum of image pixel values squared. In other words,
the energy of an image is the squared Frobenius norm of this image treated as
a matrix, or is the squared Euclidean norm of the image if it is represented as a
vector.

Thus each image frame can be considered as a set of highly multidimensional
observations. In the case of an appropriate partition of every frame, the same for
every image, the proposed approach can be sufficiently informative in monitoring
the state of the process under consideration.

A partition of each camera image is always the same and in fact it is fully
content-dependent. In this paper we assume that the image partition is given
(is performed by an expert). When a large set of image data is available, designing
an adequate partition can be also stated as a learning problem.

Due to the very high dimensionality of image data the dimensionality reduc-
tion is rather necessary. Random projections seems to be a good choice in the
case of image energy monitoring. Random projections based approaches have
been widely used in computer science and machine learning applications and in
image processing [1–4,9,17–20].

If sub-images are sufficiently large it is possible to estimate their energy
using only a part of image pixels. Sparse random projections [1,9] allows us to
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retrieve only 1/3 of whole image pixels whilst retaining an adequate precision of
computations.

In this paper we propose to use simple monitoring charts of the Shewart type
[13] based on squared norms of sparse image projections in normal state (i.e.,
in-control).

In the next Section we provide some information about random projections.
Section 3 presents the Shewart-type control chart used in our monitoring system.
Section 4 describes a simulation study performed on 144 images of a working gas
burner. Finally, in Sect. 5 some brief conclusions are presented.

2 Random Projections

Random projections are closely related to the Johnson-Lindenstrauss lemma [8],
which states that any set of N points in an Euclidean space can be embedded
in an Euclidean space of lower dimension (∼ O(log N)) with relatively small
distortion of the distances between any pair of points from the set of points. The
Johnson-Lindenstrauss-lemma has been shown to be useful in many applications
in computer science [1–4,9,20], among many others.

The main idea of a random linear projection is that we can estimate the
distance between two points (two vectors), let say u and z, in a d-dimensional
Euclidean space D2(u, z) = ||u − z||2 = (u − z)T (u − z), u, z ∈ Rd from the
sample squared distances as follows:

D̂2(u, z) =
1
k

k∑

j=1

(sj(u − z))2 =
1
k

||Su − Sz||2, (1)

where sj is the j-th row of S, i.e., individual projection.
Thus, for any chosen pair of vectors u, v ∈ Rd E(D̂2) = D2, var(D̂2) = 2

kD4

and kD̂
D2 ∼ χ2

k. These facts lead to the conclusion that

Pr

{
|D̂2 − D2|

D2
≥ ε

}
≤ 2 exp

(
−k

4
ε2 +

k

6
ε3

)
, (2)

where ε ∈ (0, 1) (see for example [4,20] for details). The same inequalities one
can obtain for norms of vectors defined by the set of points under consideration.

2.1 Sparse Random Projections

We do not have to use sij ∼ N (0, 1) for dimension reduction in the space with
Euclidean norm. For example, we can sample sij from any subgaussian tails
distributions [2,9]. Sparse random projections proposed by Achlioptas [1] belong
to this class.

Thus, to speed up the computations, one can generate a sparse random pro-
jection matrix for data dimensionality reduction. It is proved that the entries of
projection matrix S can be chosen as independent +1, 0, −1 random variables.
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A projection matrix composed from independent entries of the form:

sij =

⎧
⎨

⎩

1 with probability 1
2c

0 with probability 1 − 1
c−1 with probability 1

2c

(3)

with common factor
√

c leads to the projection distribution with subgaussian
tails (at least up to a suitable threshold) [9].

An Achlioptas variant of this result (with c = 3) has the entries attaining
value 0 with probability 2/3 and values +1 and −1 with probability 1/6 each.
This setting allows for computing the projection about 3 times faster than the
Gaussian projection. Since S is sparse, only about one third of the entries are
nonzero numbers.

This kind of sparse projection, i.e., with c = 3, we have used for processing a
sequence of working gas burner images. Furthermore, the rows of the projection
matrix were orthonomalized. This fact is not important from the point of our
goals in this work, but it will be useful in a further more theoretical research on
the topic of sparse random projections.

Let SO denote such an orthonormalized matrix. It is easy to show that for
any vector x ∈ Rd

E{||SOx||2 =
k

d
||x||2.

It should be emphasized that after random construction of the projection
matrix, let us say SO, it is treated as unique, non-random projection matrix.
Thus, further in the paper SO will be represented an ordinary matrix.

3 Control Charts for Monitoring a Process Using
Random Projections of Camera Images

Let p1, p2, . . . , pN , denote a sequence of historical images (sub-images) in a nor-
mal (in-control) state. Each pi ∈ [0, 1]d is a vector consisting of pixel intensity
values and d is the number of pixels forming the image under consideration.

Let
xi =

1
k

||SOpi||2, (4)

for i = 1, 2, . . . , N .
Now Xh = (x1, x2, . . . , xN ) denote a sequence of historical observations in a

normal (in-control) state. Each observation xi ∈ [0, 1] is a real (non-negative)
value obtained according to (4).

Although we do not make any assumption about distribution of Xh, it is
presumed that Xh is a sequence of independent observations taken from the
same distribution. However, we suppose that Xi (i.e., observations treated as
random variables) are approximately Gaussian. It is not clear how large (or may
be small) should be projection dimension k. On the one hand, if k is large we can
use the Central Limit Theorem as a an argument for a Gaussianity of Xi, but
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on the other hand it is postulated [10] that typical k-dimensional projections of
probability measures on Rd are approximately Gaussian when k is sufficiently
small. It is in our opinion an open problem.

3.1 A Shewart Type Chart for Monitoring Energy of Images

Let mh denote the mean value of Xh and sh its standard deviation. The upper
control limit (UCL) is computed as

UCL = mh + 3 sh

and the lower control limit (LCL) is given by

LCL = mh − 3 sh.

Let p be any observed image. The Shewart control chart for individual obser-
vations [13] allows us to decide that if

x =
1
k

||SOp||2 > UCL

or
x =

1
k

||SOp||2 < LCL,

then the system state connected with x (i.e., with image p) is not normal (is out-
of-control). This simple test will be further used for monitoring separate parts of
the whole burning process image. Thus, the final decision will be in conjunction
with partial tests (the logical conjunction will be used). More technical details
will be provided in the next section.

4 Simulation Study

A data set used for experiments consists of 144 images similar to that shown
in Fig. 1. Each image has 120 × 352 pixels, i.e., its vector dimension is 42240.
Each image is assigned by an expert to one of the four classes (see Fig. 1).
The overall quality of images is rather poor. We decided to not rely on color
representation of the images since color-based segmentation of these images is
too time-consuming. It occurred that pixel intensity in the gray scale is sufficient
for the images analysis. As an alternative one can use red color channel (R) as
very similar in the intensity values to the gray level image representation in
this particular case. Each image in the sequence is divided into four sub-images
consisting of 0 − −120 × 0 − 88 (sub-image type A), 0 − 120 × 89 − 176 (sub-
image type B), 0− 120× 177− 264 (sub-image type C) and 0− 120× 265− 352
(sub-image type D) pixels of the original image.

The first ten images from the data set, which present normal gas burner state
(see Fig. 1d), was used as historical data. The first image in this set indicates the
state in-between normal state and some lack of air state. It was included into
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the normal state learning sequence, because we want to obtain a decision system
robust to a very small shortage of air. On the basis of this subset the levels
of alarm for the 4-dimensional chart were computed. Furthermore, the last ten
images, which present “no-air” state (see Fig. 1a), was also used for providing
the additional alarm levels for this state. Thus, the remainder of images (from
11 till 134) were used as a testing sequence.

Figure 2 shows mean energy of sub-images (A, B, C, D) for all images in the
data set. Corresponding mean energy of the images estimated using 10 and 100
random projections are drawn in Figs. 3, 4 and 5, respectively. One can observe,
that estimated mean energy of the images (blue lines) is very close to its true
values (yellow lines) even if dimensionality of the projection k is low.

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

Fig. 2. Mean energy of images A (blue line), B (yellow line), C (green line) and D (red
line) (Color figure online).
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Fig. 3. Mean energy of images A (blue line), B (yellow line), C (green line) and D (red
line) estimated using k = 10 sparse random projections (Color figure online).



Sparse Random Projections of Camera Images for Monitoring 453

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

Fig. 4. Mean energy of images A (blue line), B (yellow line), C (green line) and D (red
line) estimated using k = 100 sparse random projections (Color figure online).
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Fig. 5. Mean energy of images D – true values (yellow lines) and estimated using k = 10
(left panel) and k = 100 (right panel) sparse random projections (Color figure online).

The number of case images was rather restricted, but despite this we have
obtained satisfactory results. We expect that larger image data sets allow us to
design decision systems which could be used in practice.

Figure 6 illustrates decisions about alarm for the whole image sequence (144
items). The red line on zero level indicates the in-control state (the air inlet is
sufficiently open). The red line on 1 level shows the out-of-control state (the
air hole is too small). The alarming system works almost perfectly. It does not
accept as normal positions 45, 50 and 53 very similar (but slightly lighter) to the
mentioned earlier position 1 in the learning sequence. Removing testing based
on sub-images type A results in no alarms at positions 45, 50 and 53 (see Fig. 7).

In a similar way as previously we can design a decision system which produces
an additional alarm signal for the no-air state (see Fig. 1a). The system based
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Fig. 6. Mean energy of images A, B,C, D – (violet, blue, yellow and green lines respec-
tively) and estimated using k = 10 sparse random projections and a global alarm
decision (red line) (Color figure online).
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Fig. 7. Mean energy of images B,C, D – (blue, yellow and green lines respectively) and
estimated using k = 10 sparse random projections and a global alarm level (red line)
(Color figure online).
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on A, B, C and partial images and the last ten images labeled by an expert as
connected with no-air state (closed air hole) indicates correctly all such cases.
Additionally 6 images characterized by slightly turbulent flow (positions 24, 66,
74, 75 and 120, 121 also produce this kind of alarm. In fact this occurred when
the air inlet was almost closed.

5 Comments and Conclusion

The method proposed here can be applied to other processes observed using a
camera when relatively large image changes are important. The proposed control
chart may also be used without dimensionality reduction by random projections.
Our motivation behind applying a sparse random projection are twofold. First,
we want to obtain simultaneously a really simple and fast algorithm. Second, it
is suggested [10] that typical k-dimensional projections of probability measures
on Rd are approximately Gaussian when k is sufficiently small. The problem of
obtaining an adequate statistical model of the monitored sequence of images is
outside the scope of this paper.
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