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Custom Hardware Versus Cloud Computing
in Big Data
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Abstract The computational and data handling challenges in big data are immense
yet a market is steadily growing traditionally supported by technologies such
as Hadoop for management and processing of huge and unstructured datasets.
With this ever increasing deluge of data we now need the algorithms, tools and
computing infrastructure to handle the extremely computationally intense data
analytics, looking for patterns and information pertinent to creating a market edge
for a range of applications. Cloud computing has provided opportunities for scalable
high-performance solutions without the initial outlay of developing and creating
the core infrastructure. One vendor in particular, Amazon Web Services, has been
leading this field. However, other solutions exist to take on the computational
load of big data analytics. This chapter provides an overview of the extent of
applications in which big data analytics is used. Then an overview is given of some
of the high-performance computing options that are available, ranging from multiple
Central Processing Unit (CPU) setups, Graphical Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs) and cloud solutions. The chapter concludes
by looking at some of the state of the art solutions for deep learning platforms in
which custom hardware such as FPGAs and Application Specific Integrated Circuits
(ASICs) are used within a cloud platform for key computational bottlenecks.

9.1 Introduction

The exponential growth in technology has fuelled the rise of complex computing
applications churning out reams of data and information which in turn needs to
be processed using high-performance computing solutions, stored using mammoth
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data centers and managed through the support of refined data governance. Such
applications span a broad range of areas and disciplines and this spread is accel-
erating at a phenomenal rate. The world around us offers endless possibilities of
monitoring and gathering data. Our cities, homes and even ourselves are amassed
with technology for monitoring, collating and analyzing data. From a vision of
smart cities (Townsend 2014) in which the very control of home heating is managed
through analytical decisions (ODwyer et al. 2016) through to effective control of
power generation (BritishGas 2017), it is clear to see how such analysis opens up
the potential for affecting power consumption and ultimately impacts the global fuel
crisis.

Through the development of powerful technology such as smart phones, wear-
able tech and sensors, we are now generating huge amounts of personal data on
our daily lives, behavior, health and well-being. We are currently amidst a self-
quantification era in which we wear sensors to report back on activity, behavior
and well-being.1 From a non-clinical aspect this enables a tracking of fitness and
personal goals with the added dimension of social support through disseminating
our personal metric data through social media communities. The direction this is
going, is to a more biological level in that we are prepared to share biosignal metrics
and signals such as Electroencephalography (EEG) (Terrell 2015) and even our own
DNA (AncestryDNATM 2016; 23andMe 2015) in the concerted goal to furthering
ourselves and medical science.2

Continuing the discussion in the medical domain, a further source of high
volume heterogeneous data is with digital records. Such an encompassing term
spans far beyond text-based information to mammoth digital files of x-ray images,
Magnetic Resonance Imaging (MRI) scans, recordings of EEG and possible Exome
or Genome sequences. The image processing required for digital capture again
needs to be of a significant quality as not to lose vital information from the record.
Furthermore, methods to analyze and quantify what the images are showing indicate
a necessity for high-performance computing solutions (Wang et al. 2010).

The result of such generation of huge volumes of data is referred to as big
data. However, it is not only the sheer quantity of data created that defines big
data, but there are also the four ‘V’s’ (Hashem et al. 2015) that are recognized
characteristics:

1. Volume: refers to the sheer amount of data coming from multiple resources.
2. Variety: refers to the heterogeneous nature of the data. That is data of the

different types coming from the different collection mechanisms, such as sensors,
physiological recordings, speech, video, text, social networks, to name just a few.
In addition to the sheer amount of data, a major hurdle is in handling the diversity
in data format and whether the data is structured or unstructured.

3. Velocity: refers to the speed at which the data is created and transferred.

1Quantified Self. http://quantifiedself.com/. Accessed: 2017-02-03.
2IGSR: The International Genome Sample Resource. http://www.internationalgenome.org/home.
Accessed: 2017-02-03.

http://quantifiedself.com/
http://www.internationalgenome.org/home
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4. Value: The benefit of meeting such a challenge is the potential that by gathering
such a diverse and large set of data then previously hidden trends and patterns
can emerge through analysis.

Big data opens up a range of challenges along every stage of data handling,
processing and analysis (Chen et al. 2014). The computational challenges are
extreme and as such a range of solutions exists, where each platform is heralding
scalability and performance advantages. In this chapter a high-level review is given
of the range of common applications in which big data now features. The overview
provides some insight into different solutions or examples of how the computational
challenges have been met in these applications. A summary is provided of high-
performance platforms, ranging from multiple CPU setups, GPUs, FPGAs and
cloud solutions. The chapter concludes with a discussion around custom hardware
solutions versus scalable on-demand cloud computing solutions, asking the question
whether cloud computing holds all the cards? A peek into current technology trends
is given suggesting that custom devices may be the support engine for computational
enhancements for the cloud, while providing customers with the scalable and on-
demand service that they require.

9.2 Applications

The range of applications involving big data is comprehensive and diverse, playing
a role in personalized medicine, genomics, self-quantification through to monitoring
financial markets or transactions. Smart cities and the Internet of Things (IOT)
create a wealth of recordable data from the devices in homes through to cities.
This section provides a high-level overview of some of the current big data
challenges.

9.2.1 Genomics and Proteomics

In the last decade there has been a seismic shift in the technological advances for
sequencing DNA. Edward Sanger developed the Sanger approach in 1975 using
capillary electrophoresis and for decades this approach has been the technique
employed. It is expensive and slow, limiting the opportunities for use. However,
recent technological advances in sequencing has led to it being possible to sequence
a whole human genome using a single instrument in 26 h (Miller et al. 2015). The
enabler for this has been the development of High-Throughput Sequencing (HTS)
which provides massively parallel sequencing power at an accelerated rate yet with
significant cost reductions (Baker 2010; ODriscoll et al. 2013).

The reduction in costs has made HTS technologies much more accessible to
labs and has facilitated their use in a broad range of applications and experi-
mentation, including diagnostic testing for hereditary disorders, high-throughput
polymorphism detections, comparative genomics, transcriptome analysis and ther-
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apeutic decision-making for somatic cancers (Van Dijk et al. 2014). A review and
comparison of sequencing technologies can be found in Metzker (2009) and Loman
et al. (2012).

However, HTS generates enormous datasets, with the possibility of producing
>100 gigabases (Gb) of reads in a day (Naccache et al. 2014). For these reasons,
coupled with the challenges of integrating heterogeneous datasets, HTS sequenc-
ing data can be characterised as big data, and as such there lies a significant
computational challenge. High-performance, cloud and grid computing are aspects
of computing that have become ubiquitous with processing and analysis of HTS
data (Lightbody et al. 2016), generated at ever increasing momentum. As the
technologies are ever developing, sequencing could become a routine facet of
personalized medicine (Erlich 2015).

9.2.2 Digital Pathology

Traditional microscopy involves the analysis of a sample, for example, a biopsy
on a glass slide using a microscope. The domain of virtual microscopy has
moved from viewing of glass slides to viewing of diagnostic quality digital
images using specialised software. These slides can be viewed on-line through a
browser or as recently demonstrated via a mobile device whereby the computational
power of mobile devices provide a cost-effective mobile-phone-based multimodal
microscopy tool which combines molecular assays and portable optical imaging
enabling on-site diagnostics (Kuhnemund et al. 2017). Where more extensive
computational power is required, some service providers have opted for cloud based
virtual microscopy solutions which offer the promise of in-depth image processing
of the tissue samples (Wang et al. 2010).

The drive towards personalized medicine has led to a deluge of personal data
from heterogeneous sources. This big data challenge is discussed by Li et al.
(2016), in which they highlight that “integrative analysis of this rich clinical,
pathological, molecular and imaging data represents one of the greatest bottlenecks
in biomarker discovery research in cancer and other diseases”. They have developed
a framework, Pathology Integromics in Cancer (PICan), to accelerate and support
data collation and analysis. This framework connects the tissue analysis to other
genomic information, enabling a full and comprehensive understanding to be
attained.

9.2.3 Self-Quantification

We are in an era in which society is ‘comfortable’ with every aspect of their behavior
and person being monitored and analyzed. Part of this, has been the birth of a
Quantified Self (QS) movement in which the person collates data on their daily
life and physiology. It is reported as “self-knowledge through numbers”.1
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The goal of such monitoring is often for self-improvement, whether it is to
encourage more physical activity or to improve on lifestyle choices (Almalki et al.
2013). Alternately, it could come from the belief that by gathering enough data from
enough people, then trends in the data can be found. This offers the opportunity to
impact society’s health and well-being, and not just benefit the individual.

The advances in personal devices such as smart phones and sensor technology
have promoted the gathering of such vast resources of personal data, which can fall
into the category of big data, due to the sheer amount of data, the heterogeneous
nature of the data and the speed at which it needs to be processed and managed.

An emerging addition to the QS movement is in collecting and analyzing elec-
trical activity of the brain. Measured using the EEG, evaluation and classification
of brain function such as sensory, motor and cognitive processes can be made.
With the advancements in electronics,3 wearable sensors, algorithms and software
development kits there has been a shift towards exploring other possible applications
in which EEG can play its part. One organization4 has developed a neuroscience
platform to encourage users to perform “routine brain health monitoring”. By many
users sharing their EEG, it is envisaged that it may be possible to derive critical
insight into brain health and disease.

As QS applications evolve, it is expected that advanced machine learning and
pattern recognition techniques will be involved in the analysis of data coming from
multiple heterogeneous sources such as wearable electronics, biosensors, mobile
phones, genomic data, and cloud-based services (Swan 2013).

9.2.4 Surveillance

Surveillance, specifically videos, are becoming ubiquitous in a number of situations
for the monitoring of activity. With threats of terrorism, crime events, traffic
incidents and governance, we have seen a rise of surveillance across global cites.
Alongside this increase, we have seen progress on research in the area of computer
vision, whereby processing and understanding surveillance videos can be performed
automatically and key tasks such as people segmentation, tracking moving entities,
as well as classification of human activities have been undertaken. Big data and the
four ‘V’s’ are relevant to the surveillance domain due to the scope and volume of
video data captured (Xu et al. 2016). It has been estimated by the British Security
Industry Association that there are between 4 and 5.9 million cameras in the UK. A
single camera can capture up to 48 GB of high-definition video a day. This results in
issues with local storage through to the fusion of data from multiple video streams
which may differ in terms of format. These issues lead to the processing of video
analytics which has an impact upon terrorist prediction and governance. To address
such needs, research has been performed in the area. This includes the study by Xu

3EMOTIV. https://www.emotiv.com/. Accessed: 2017-02-03.
4BrainWaveBank. https://www.brainwavebank.com/. Accessed: 2017-02-03.

https://www.emotiv.com/
https://www.brainwavebank.com/
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et al. (2015) whereby a semantic based model called Video Structural Description
was proposed to represent and organize video resources (Najafabadi et al. 2015).

Another application in the area has been work performed by Krizhevsky
et al. (2012) where deep convolutional neural networks were applied to classify 1.2
million images in the ImageNet dataset, achieving top-1 and top-5 and error rates of
37.5% and 17.0%, outperforming state-of-the-art classifiers. To speed up the process
and improve efficiency, GPU convolution operations were implemented.

9.2.5 Internet-of-Things

IOT has been defined by the radio frequency identification group as “the world-
wide network of interconnected objects uniquely addressable based on standard
communications protocols” (Gubbi et al. 2013). These objects, such as sensors
can be embedded in various devices across diverse domains such as healthcare,
environment and astrology and are continually collecting and communicating data.
These data are often semi-structured and require processing and analysis to provide
useful information (Riggins and Wamba 2015).

An example of IOT and big data analytics is urban planning and smart
cities (Kitchin 2014). A smart city can consist of devices built into the urban
environment such as utility, communication and transport systems. These devices
can be used in real-time to monitor and regulate city flows and processes.
The integration and analysis of the data produced from these devices could
provide an improved understanding of the city that enhances efficiency and
sustainability (Hancke et al. 2013) and further models and predicts urban processes
for future urban development (Batty et al. 2012). Examples of such platforms to
support the IOT within a smart city include ThingSpeak5 which provides a cloud-
based platform where sensor data can be uploaded and analyzed using MatLab
and iOBridge,6 which provides a hardware solution to connect to the cloud with
developed Application Programming Interfaces (APIs) to allow integration with
other web services. Multi-nationals such as HP and IBM are also investing in
projects such as CeNSE7 and Smarter Planet,8 respectively. CeNSE is deploying a
vast number of sensors used to track for a range of applications from monitoring
use and location of hospital equipment to tracking traffic flow. It then gathers and
transmits such data to computing engines for analysis in real-time.

5ThingSpeak. https://thingspeak.com/pages/learn_more. Accessed: 2017-02-03.
6ioBridge. http://connect.iobridge.com/. Accessed: 2017-02-03.
7CeNSE. http://www8.hp.com/us/en/hp-information/environment/cense.html#.WJCsHbaLR0K.
Accessed: 2017-02-03.
8IBM Smarter Planet. http://www.ibm.com/smarterplanet/us/en/. Accessed: 2017-02-03.

https://thingspeak.com/pages/learn_more
http://connect.iobridge.com/
http://www8.hp.com/us/en/hp-information/environment/cense.html#.WJCsHbaLR0K
http://www.ibm.com/smarterplanet/us/en/
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9.2.6 Finance

Financial institutions are adopting a data-driven approach with the aim of improving
their performance, service and, as seen with the financial crash in 2008, their
risks (Fan et al. 2014). Financial data can be in a structured or semi-structured form;
such data includes stock prices, derivative trades, transaction records and high-
frequency trades (HFT). A study by Seddon and Currie (2017) proposed a model
for applying big data analytics in HFT. HFT uses algorithmic software to perform
trades built upon advanced technological infrastructure with a focus on speed to
process and leverage vast amounts of financial data (Aldridge 2009). This study
analyzed big data and its impact upon financial markets. An important discussion,
applicable to all application areas is data security and privacy. With high volumes of
data used in analysis, questions need to be addressed around data security protection,
intellectual property protection, personal privacy protection, commercial secrets and
financial information protection (Chen and Zhang 2014).

9.3 Computational Challenges

At the heart of many of the computationally intense applications lies pattern
matching and machine learning:

• Machine learning
• Deep learning
• Pattern matching
• Image/video/audio processing
• Sentiment analysis
• Natural language processing

Recent advances in high-performance computing has encouraged the field of
deep learning to move out from research laboratories and become a commercial
opportunity. Deep learning, driven by research centers and initiatives such as the
Google Brain project,9 has projected to become a multi-billion pound industry by
2024 (Tractica 2015; PR Newswire 2016), finding potential enterprise applications
in areas of finance, advertisement, automotive, medical and other end-user appli-
cations. An enabler for this projected growth is in research and development of
infrastructures, software and hardware technologies optimized for deep learning
solutions.

9Google Brain Team. https://research.google.com/teams/brain/. Accessed: 2017-02-03.

https://research.google.com/teams/brain/
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9.4 High-Performance Computing Solutions

A background into different approaches is provided in this section. It should be
noted that different application domains will have varied computational demands
(Singh and Reddy 2014). The sections below discuss high-performance computing
solutions ranging in computational performance.

9.4.1 Graphics Processing Units (GPU) Computing

Graphics processing units as the name suggests, are custom devices consisting
of many processing cores or co-processors that have been tailored for processing
the vast computational and memory requirements for graphics rendering and
image processing. They enable highly mathematical and computationally intense
functions to be performed at an accelerated rate due to the parallel computational
units at the heart of their structure. The ability to offload computation most
suited to parallel operations, while maintaining a great level of flexibility and
scalability is a leading benefit of GPU-based computing over sequential oper-
ation CPU-based computing (Blayney et al. 2015; Melanakos 2008; Fan et al.
2004). However, the scale of the benefits depends strongly on the nature of the
computations.

The application and use of GPUs has gone far beyond computer graphics and
gaming, although expansion these markets have certainly reduced the cost of GPUs,
making them a more affordable and thus widespread technology (Fan et al. 2004).
The terms General-Purpose computation on Graphics Processing Units (GPGPU)
and GPU Computing have arisen which signifies that the processors have a broad
range of potential applications.

NVIDIA, is a market leader GPU producer, providing a range of GPU pro-
cessors, boards and platforms.10 The power of their GPUs can be harnessed
through NVIDIA’s own Compute Unified Device Architecture (CUDA) parallel
computing platform. This technology has been used in a range of applications
spanning gaming, mobile, personal computers through to high-performance com-
puting, and deep learning. For example, in bioinformatics there have been a
large number of CUDA-based tools developed for accelerating sequence pro-
cessing and analysis (Klus et al. 2012; Liu et al. 2012, 2013). Although GPU
computing is a promising direction for bioinformatics, memory handling and
slow data exchange between CPU and GPU processors can still cause challenges
(Starostenkov 2013).

In the area of deep learning, NVIDIA sees a market extending its capabilities
in the area of accelerating Artificial Intelligence (AI) algorithms (Azoff 2015)

10NVIDIA. http://www.nvidia.co.uk/page/home.html. Accessed: 2017-02-03.

http://www.nvidia.co.uk/page/home.html
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in industries such as automotive, internet, healthcare, government, finance and
others.11 They are clearly positioning themselves for the expected growth in the
big data market.

9.4.2 Field Programmable Gate Arrays

FPGAs are integrated circuits which enable a level of programmability. Their
structure consists of an array of programmable logic blocks containing com-
putational units, memory and interconnections that can be fully preconfigured.
They sit between highly programmable digital signal processing chips and custom
design ASICs, providing a balance of flexibility with parallel custom designed
operations. They offer an experimentation and development platform to design
and refine solutions. Yet they also provide enterprise solutions for applications
in which a certain degree of reconfiguration may be required. However, unlike
CPUs and GPUs this reconfiguration cannot be done totally on the fly and
takes a level of reprogramming the device. Where there are advantages is when
there is a large number of repetitive operations that are suited to parallel imple-
mentation, such examples are in image processing, pattern matching, or routing
algorithms. In such cases FPGAs can be orders of magnitude faster compared to
other platforms. The content below provides an overview of some examples of
FPGAs in use.

FPGAs can offer possible solutions to computational challenges in bioinfor-
matics and molecular biology (Ramdas and Egan 2005). A major computational
challenge in genomics is in sequence alignment. The Smith–Waterman algorithm
is a database search algorithm suited for protein sequence alignment. However,
it is computationally intensive and the complexity increases quadratically as the
dataset increases. Dydel and Bala (2004), present an implementation of it on FPGA.
Tan et al. (2016) also present a FPGA-based co-processor to speed up short read
mapping in HTS, reporting a throughput of 947 Gbp per a day, while providing
better power efficiency.

Another aspect that can benefit from computational enhancement is in the image
processing component in Genomic Microarrays. In these examples, sequencing is
not being performed, however, genetic markers are being looked for that respond to
known chemical interactions leading to a change in colour in the array, depending
on the level of expression. Rodellar et al. (2007) present such a device, tailored to be
portable so to make it applicable in regions remote from core healthcare provision.
An implementation of the CAST algorithm used for detecting low-complexity
regions in protein sequences is described by Papadopoulos et al. (2012). Significant
speed-up in computations in the region of 100� where observed. These examples are

11NVIDIA: Artificial Intelligence and Deep Learning. http://www.nvidia.co.uk/object/deep-
learning-uk.html. Accessed: 2017-02-03.

http://www.nvidia.co.uk/object/deep-learning-uk.html
http://www.nvidia.co.uk/object/deep-learning-uk.html
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not in themselves related to big data, however, they have relevance in the context of
personalized medicine in which such data can routinely form part of a heterogeneous
patient dataset.

9.4.3 Cloud Computing Platforms

The National Institute for Standards and Technology (NIST) defines Cloud comput-
ing as “a pay-per-use model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction”.

Foster et al. (2001) pioneered an idea of Grid computing which constitutes a
large-scale distributed resource sharing under specified rules among the users and/or
organizations. This idea was based on other known technologies of the time such
as distributed computing. Grid computing proved to be useful in many scenarios,
especially, for large-scale scientific computations (Di et al. 2012).

The concept of ‘Clouds’ as a similar but yet different way of distributed com-
puting has been popularized by Amazon12 in 2006. Armbrust et al. (2010) compare
Cloud computing to other similar computing concepts in their work. Hence, they
claim that although Grid computing offers protocols to share distributed resources,
Cloud computing has advanced forward by offering “a software environment that
grew beyond its community” (referring to the high-performance community).

Cloud computing has become a strong industry enabling a range of different
services to be deployed typically by a pay-per-use cost model providing scalability
in computing performance, storage and applications. Their expandability and sheer
flexibility of services can provide a cost effective option for organizations in which
the cost for development and maintenance for in-house solutions does not make
business sense. Furthermore, cloud services can provide tools such as project
and data management tools to aid in collaborations, provision of security and
regulations in accessing shared data and analytical resources for the visualisation
and understanding of datasets.

Cloud services fall under three different categories depending on the extent of
the service provided:

• Infrastructure as a Service (IaaS) – Providing access to the core computing and
storage infrastructure.

• Platform as a Service (PaaS) – Users can develop or build upon libraries and
existing core platforms, and these solutions run on the cloud infrastructure.

• Software as a Service (SaaS) – Users access applications that form part of the
cloud infrastructure.

12Amazon About AWS. https://aws.amazon.com/about-aws/. Accessed: 2017-02-03.

https://aws.amazon.com/about-aws/
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Some of the first adopters of big data in cloud computing are users that deployed
NoSQL and Hadoop clusters in highly scalable and elastic computing environments
provided by vendors, such as Google, Microsoft, and Amazon. An overview of the
key market players is summarised as follows.

9.4.3.1 Amazon Web Services

Amazon Web Services (AWS) are the strongest competitors in cloud ser-
vices (Leong et al. 2016), entering the market in 2006 and offering a range of
relatively cost effective solutions. Their Amazon Elastic Compute Cloud (EC2)
provides a scalable IaaS cloud service,13 offering users a simplistic interface to
their computing infrastructure. PaaS services are also supported. AWS have added
Amazon EC2 Elastic GPUs to their provision allowing performance enhancements.

9.4.3.2 Microsoft Azure

Microsoft Azure provides both PaaS and more recently IaaS services.14 The Azure
platform offers functionality to integrate models, analyze data and visualization
tools to scale data analysis. The Microsoft Azure model has been described
in Gannon et al. (2014) as “layers of services for building large scale web-
based applications”. These layers communicate across various levels including
the hardware level, utilizing data centers worldwide for computation and content
delivery. The ‘fabric controller’ acts as the kernel of the Azure operating system. It
performs tasks such as monitoring and managing the virtual machines and hardware
resources that make up the Azure system.

9.4.4 Deep Learning Libraries

Machine learning and, in particular, deep learning have become of immediate
interest for companies and researchers alike. Such technology is finding its way into
a range of products from speech recognition, image processing, search optimization,
through to any application where there is a need or interest to understand behavior,
images, speech and sentiment analysis. TensorFlowTM and other such systems can
be a great enabler to develop such features.15

TensorFlowTM is an open source machine learning infrastructure originating
from Google as part of their Google Brain project started in 2011. It formed part of

13Amazon EC2. https://aws.amazon.com/ec2/. Accessed: 2017-02-03.
14Microsoft Azure. https://azure.microsoft.com/. Accessed: 2017-02-03.
15TensorFlowTM. https://www.tensorflow.org/. Accessed: 2017-02-03.

https://aws.amazon.com/ec2/
https://azure.microsoft.com/
https://www.tensorflow.org/
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Table 9.1 Deep learning libraries

Library Detail

TensorFlowTM Open source machine learning infrastructure originating from Google
as part of their Google Brain project started in 2011 (https://www.
tensorflow.org/)

MXNet Flexible library (http://mxnet.io/) which supports multiple languages
(C++, Python, R, Scala, Julia, Matlab and Javascript), can operate on
personal CPU/GPU setups through to distributed and cloud platforms
(including AWS, Google Compute Engine (https://cloud.google.com/
compute/), Microsoft Azure)

Caffe A deep learning framework developed by the Berkeley Vision and
Learning Center (http://caffe.berkeleyvision.org/) (Jia 2014). Offers a
competitive high-performance convolutional neural networks solution

Theano A Python-based library with a focus on enhancing mathematical com-
putation of multi-dimensional arrays (http://deeplearning.net/software/
theano/)

Torch A scientific framework for machine learning (http://torch.ch/)

the Google’s Machine Intelligence research organization with its focus on machine
learning and in particular deep neural networks. A key feature of TensorFlowTM is
its sheer scalability and flexibility. It facilitates distribution of computations over
a range of devices and platforms, from mobile devices and desktops, through to
large scale infrastructures consisting of hundreds of machines or thousands of GPU
devices (Abadi et al. 2015). More recently it has been incorporated within AWS
Elastic Cloud (Amazon EC2) provision. It is part of their Deep Learning Amazon
Machine Image (AMI) and is just one of a suite of deep learning libraries included
(see Table 9.1).

9.5 The Role for Custom Hardware

Do we need to look at big data at the micro level or at the macro level? For example,
genetic sequencing, particularly as part of next generation sequencing, requires a
substantial computational overhead in the alignment of the small reads coming from
the initial sample analysis. From this alignment the DNA sequence of smaller exome
components can then be used to determine conditions and states of disease. Opposite
to this are huge datasets of genomic data across thousands of people ranging in
phenotype and genomic marker such as exome sequences. Gathering such huge
expanses of genetic data and combining this with other associated information
offers huge opportunities in disease stratification, biomarker discovery and drug
development (Raghupathi and Raghupathi 2014). This is clearly big data at the
macro level. So the question lies – would the same high-performance computing suit
both applications? This particular example is further complicated by the size of even
a single DNA sequence. Uploading such a file-size to a cloud-based system in itself

https://www.tensorflow.org/
https://www.tensorflow.org/
http://mxnet.io/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://torch.ch/
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presents challenges. Techniques have been developed to look at easing storage of
such genetic information. One particular approach is with compression algorithms
to find an efficient method to represent the data (Qiao et al. 2012). Such a method
needs to be loss-less, fast, and effective.

Another consideration could be the need for secure solutions which keep data
local, although cloud services such as AWS take great measures to keep their
services secure. Establishing a custom system incurs a significant investment and
maintenance overhead, and would be difficult to scale up. However, big data
computations pose an ever increasing challenge in meeting performance needs. In
particular, deep learning is an area of machine learning showing great commercial
prospect. The next sections look at some of the deep learning solutions available.

9.5.1 Deep Learning

TensorFlowTM and other deep learning libraries (Table 9.1) combined with cloud
services provide a platform to develop and create deep learning solutions, leading
on to commercial opportunities. However, despite the great flexibility and scala-
bility advantages of such a system, is there a possibility that a hardware-based
solution might provide the better solution? This of course depends strongly on
the application at hand and the limitations and challenges associated. Nevertheless,
deep learning is a component of machine learning with great commercial interest.
fpgaConvNet (Venieris et al. 2016) is a framework for mapping convolutional
neural networks, a form of deep learning, onto FPGAs. The authors relate to the
computational issues presented in convolutional networks, in particular, the classifi-
cation computation overhead and the rapid scaling in complexity. CNNLab (Zhu
et al. 2016), is another parallel framework for deep learning neural networks
that distributes computation to both GPUs and FPGAs. Microsoft Azure has also
incorporated FPGAs within their cloud platform (Feldman 2016). Woods and
Alonso (2011) have developed an FPGA based framework for analytics on high-
rate data streams. The next section looks further at enhancing cloud performance
through incorporating custom hardware provision.

9.5.2 ASIC Enhanced Cloud Platforms

Nervana16 has developed a platform for deep learning that is powered using a custom
ASIC engine accessed through a cloud platform. They state that their cloud solution
enables industry commercialized deep learning solutions. The platform they provide

16Nervana. https://www.nervanasys.com/intel-nervana/. Accessed: 2017-02-03.

https://www.nervanasys.com/intel-nervana/
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is described by them as a full stack solution for “AI on demand”, optimized at each
level.

Nervana Neon is an open source Python-based scalable deep learning library.
The Nervana Engine is custom ASIC hardware optimized for machine learning
and in particular deep learning. They promote high-speed data access with high
bandwidth memory, reaching speeds of 8 Terabits per second for memory access.
Additionally, on-chip memory is large (32 GB) to meet the excessive storage
requirements for machine learning. The core computational power is achieved
through a sea of multipliers supported with local memory, without a reliance on
cache memory. Nervana have paid great attention to data transfer across the chip
including communication pipelines tailored for machine learning operations. One
key aspect of this is the design allowing ASICs to be interconnected directly without
reliance on Peripheral Component Interconnect Express (PCIE) buses which cause
data flow bottlenecks. Nervana Engine is set to be released in 2017 and hopes to
establish a place in the top deep learning technologies (Schneider 2017).

9.5.3 ASIC Deep Learning Processors

However, Nervana are not the only ones interested in this market with others are
providing custom machine learning processing engines.

One of the most interesting areas in developing on-chip processing is based on
the operation of the human brain, termed Neuromorphic chips. In this field, Spiking
Neural Networks (SNN) are used to form the computations. The SpiNNaker Project
is one example (Sugiarto et al. 2016) and forms part of the Human Brain Project.17

The Darwin Neural Processing Unit is another exciting example of an ASIC co-
processer based on SNN (Shen et al. 2016). Through the very nature of how SNN
operate they may lend themselves more closely to machine learning and therefore
show great promise in this area (Elton 2016).

9.6 Discussion

Big data and its analysis have the potential to provide insight into many diverse
domains. The wealth of data collected at such a vast scale has led to the need for
computationally intensive solutions to find useful information hidden in the chaos.
The applications for such analysis are far reaching, from surveillance, finance,
IOT, and smart cities through to personalized health. Potential of such applications
include clinical decision support systems, personalized medicine for healthcare,
distribution and logistics optimization for retail and supply chain planning for

17Human Brain Project. https://www.humanbrainproject.eu/en_GB. Accessed: 2017-02-03.

https://www.humanbrainproject.eu/en_GB
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manufacturing (Sagiroglu and Sinanc 2013). However, even within each example,
applications will have different needs in terms of data growth, infrastructure and
governance along with integration, velocity, variety, compliance and data visualiza-
tion (Intel 2012). A number of challenges still need to be addressed such as handling
structured and unstructured data in real/near-time at a volume whereby traditional
data storage and analysis approaches are not applicable (Zikopoulos and Eaton
2012). Furthermore, as big data analytics becomes mainstream, important issues
such as data governance, guaranteeing privacy, safeguarding security, increased
network bottlenecks, training of skilled data science professionals, development
of compression technologies and establishing standards will require urgent atten-
tion (Intel 2012).

Big data analytics and applications are still in the early stages, however, the
continuation of technology and platform improvement such as Hadoop, Spark,
NoSQL coupled with the development of new analytical algorithms and infrastruc-
ture will contribute towards the maturing of the field. Companies such as Nervana
are developing custom hardware to work in tandem with their cloud platform
to accelerate deep learning. This is one field in which hardware developers can
create impact for cloud computing infrastructure and big data analytics. Recently,
Microsoft (Feldman 2016) announced the inclusion of Altera FPGAs within their
Azure cloud service with the promise of creating an AI supercomputer. Microsoft
does not currently plan to use the FPGAs for training neural networks, using
GPUs instead for offline training. At present, they see FPGAs providing effective
acceleration for evaluating already trained neural networks.

Qualcomm, recognize that their consumers require on-device solutions that do
not rely fully on cloud services. Their machine learning platform is implemented
on their Snapdragon Neural Processing Engine. The example here highlights that
data analytics is a challenge that may not always be resolved through scalable cloud
services, but as applications require more computationally intensive data analytics,
some of this workload may need to be shared between on-device and cloud-based
services. Other companies are also active in this area (Table 9.2) and seemingly there
is a strong market for this level of on-device processing. Furthermore, there have
been exciting advances happening in the area of Neuromorphic chips for machine
learning. It will be interesting to see how this technology impacts the deep learning
market.

Clearly, each computational solution offers unique opportunities for overcoming
the challenges of big data. FPGA and ASIC solutions can provide computational
benefits under certain conditions and as demonstrated through companies such as
Microsoft and Nervana they can form a key part of a high-performance cloud
platform. Conversely, they play an important role for on-device big data analytics
with companies such as Qualcomm and Intel investing largely in developing the
next generation of AI chips. In each example the solutions have been tailored for the
ever growing market of big data and deep learning. Meeting these challenges will
have great impact to applications in the future, advances in healthcare, smart cities,
security, automotive industry among other examples forming part of our daily lives.
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Table 9.2 Deep learning ASIC processors

Product Detail

Qualcomm Snapdragon
Neural Processing Engine

Deep learning toolkit for mobile and edge devices from
Qualcomm Technologies (https://www.qualcomm.com/invention/
cognitive-technologies/machine-learning)

Qualcomm Zeroth SDK On-device machine learning platform (Vicent 2016)

Google’s Tensor Process-
ing Unit

Part of Google’s drive for deep learning solutions (Osborne
2016). Accelerator ASIC developed to be accompanied by their
TensorFlowTM library

Intel Xeon Phi product
family – Knights Mill/
Knight Landing/Knights
Crest

Family of high-performance custom ASICs for machine learn-
ing (Hruska 2016). Their product development includes bringing
together Nervana’s chip technology (Intel acquired Nervana in
2016) together with Xeon processors to produce their Knights
Crest chip
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